WO2007108066A1 - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
WO2007108066A1
WO2007108066A1 PCT/JP2006/305387 JP2006305387W WO2007108066A1 WO 2007108066 A1 WO2007108066 A1 WO 2007108066A1 JP 2006305387 W JP2006305387 W JP 2006305387W WO 2007108066 A1 WO2007108066 A1 WO 2007108066A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
air conditioner
heat
amount
heating
Prior art date
Application number
PCT/JP2006/305387
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Isoda
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2006540063A priority Critical patent/JPWO2007108066A1/en
Priority to PCT/JP2006/305387 priority patent/WO2007108066A1/en
Publication of WO2007108066A1 publication Critical patent/WO2007108066A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner for a vehicle.
  • Vehicle air conditioners using a refrigeration cycle are already known (see, for example, Patent Document 1 and Patent Document 2).
  • automatic control has been carried out to automatically adjust the air conditioning capacity so that the in-vehicle temperature matches the target temperature.
  • the control device temperature controller
  • the conventional method is to use both compressor stage operation and heater energization rate control (energization time control). Is adopted. Since the heating rate control of the heater can control the calorific value in a stepless manner on a time average, the calorific value is controlled macroscopically.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-139142
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-182201
  • the necessary air conditioning capacity is approximately generated by using the compressor stage operation and the heater energization rate control together.
  • the temperature inside the car fluctuated due to fluctuations in the temperature of the blown air caused by repeated conduction.
  • the present invention has been made to solve the above-described problems.
  • the vehicle can reduce fluctuations in the temperature of the blown-out air more than a conventional device.
  • the purpose is to propose an air conditioner.
  • the vehicle air conditioner according to the present invention calculates the amount of heat supplied to the vehicle based on input information, a cooling device that can change the amount of cooling in stages, a heating device that can change the amount of heat generation in steps. And a control device that sets the amount of heat generated by the cooling device and the heating device based on the calculated supply heat amount.
  • the apparatus further includes target temperature setting means for setting a target value of the in-vehicle temperature, and in-vehicle temperature detection means for detecting the in-vehicle temperature, and the control device sets the set value of the target temperature setting means and the set value of the target temperature.
  • the amount of heat supplied to the vehicle is calculated based on the input information with the detection value of the vehicle interior temperature detection means.
  • the vehicle air conditioner according to the present invention determines the air conditioning capacity by combining a cooling device that can change the amount of heat in stages and a heating device that can change the amount of heat generation in steps. While suppressing the instantaneous fluctuation of the blown air temperature, the optimum amount of heat (cooling heat and heat generation) is always supplied into the vehicle, and the instantaneous fluctuation of the vehicle temperature can be suppressed. In addition, fine adjustment of the air-conditioning capacity is possible if the stepwise changes in cooling and heating equipment are set in detail.
  • the vehicle air conditioner of the present invention can supply the optimal amount of heat into the vehicle without controlling the heater energization rate, the frequency of opening and closing (ON / OFF) of the heater drive switch is greatly reduced. The product life of the switch can be improved.
  • FIG. 1 is an explanatory diagram showing an example of application of a vehicle air conditioner according to an embodiment of the present invention to a vehicle.
  • FIG. 2 is a configuration diagram of a refrigeration cycle of a cooling device that constitutes the vehicle air conditioner of FIG.
  • FIG. 3 is a block diagram showing the configuration of the vehicle air conditioner according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing the control contents of a control device constituting the vehicle air conditioner of FIG.
  • FIG. 5 is a timing chart showing an example of the operation of the vehicle air conditioner of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram of a vehicle air conditioner in an embodiment of the present invention.
  • a vehicle 1 in which an air conditioner 20 is installed is composed of an interior space (also simply referred to as an interior) 2, an underfloor space 3, and a rooftop space 4.
  • the force air conditioner 20 which describes the case where the air conditioner 20 is installed in the underfloor space 3 may be installed in the roof space 4.
  • the air conditioner 20 includes a cooling device 5 that can change the amount of cooling in stages, a heating device 6 that can change the amount of heat generated in steps, an indoor fan 7, and an outdoor fan 8.
  • Reference numeral 9 in FIG. 1 denotes a return duct for returning air from the vehicle interior space 2 to the air conditioner 20, and reference numeral 10 denotes an outlet duct for sending air from the air conditioner 20 to the vehicle interior space 2.
  • FIG. 2 is a configuration diagram of the cooling device 5.
  • the cooling device 5 includes a refrigeration cycle having a refrigerant circuit force in which an evaporator 21, a compressor 22, a condenser 23, and an expansion valve 24 are sequentially connected by piping. Have been. Further, the vehicle interior space 2 is provided with a temperature sensor 11 as vehicle interior temperature detection means.
  • the interior air in the interior space 2 is driven by the indoor fan 7 and taken into the air conditioner 20 via the return duct 9. Then, it is cooled by the evaporator 21 inside the air conditioner 20, and further heated by the heater 6 if necessary, and supplied to the vehicle interior space 2 via the blowout duct 10. On the other hand, when the outside air driven by the outdoor fan 8 passes through the condenser 23, the refrigerant in the refrigeration cycle is cooled.
  • FIG. 3 is a block diagram showing a configuration of the air conditioner 20 and its accessory devices.
  • the air conditioner 20 has a difference in heat generation capability as a heating element that forms a cooling device 5 that can change the amount of heat in stages and a heating device that can change the amount of heat in steps. It has multiple heaters 6A, 6B and 6C.
  • the cooling capacity of the cooling device 5 can be changed by controlling the operation frequency of the compressor 22 constituting the cooling device 5 by the inverter 32.
  • the operating frequency of the cooling device 5 is assumed to use only three stages of 40/50 / 60HZ due to the vibration surface of the refrigerant circuit and the restriction of the circulation of the lubricating oil, and each cooling capacity is -5 / -7 / -9kW.
  • the compressor 22 The operating frequency is not necessarily limited to these three stages and values, but may be changed as appropriate within a range where safety is ensured.
  • the heating device 6 is composed of three types of heaters 6A, 6B, and 6C each having a different heating capacity as a heating element, and each of the heaters 6A, 6B, and 6C Energization is controlled by the corresponding switches 31A, 31B, 31C.
  • the heat generation capacities of heaters 6A, 6B, and 6C are l / 2 / 4kW, respectively, and the total heat generation capacity is 7kW.
  • the number of heaters constituting the heating device 6 and the heat generation capacity are not limited to the above example, and the air conditioning temperature can be set more finely according to the stepwise change in the amount of cooling of the cooling device 5. It can be the number or ability. A heating element other than the heater can also be used.
  • the heating capacity can be set at equal intervals between the heating capacity by the operation of one heater having the minimum heat generation capacity and the heating capacity by the operation of all the heaters.
  • a heater having a heat generation capacity capable of setting the cooling capacity at equal intervals between the stop of the compressor 22 and the operation at the maximum operating frequency is selected and installed (see Table 2 described later).
  • the air conditioner 20 further includes a supply heat amount calculation unit 30A that calculates the amount of heat supplied to the vehicle interior space 2, and the cooling device 5 and the heaters 6A, 6B, based on the supply heat amount calculated by the supply heat amount calculation unit 30A.
  • a control device 30 having a calorific value Z cold energy setting unit 30B for setting a heat generation amount of 6C is provided.
  • the supplied heat amount calculation unit 30A calculates the supplied heat amount necessary to set the vehicle interior space 2 to the target temperature based on the target value and the actual temperature of the vehicle interior space 2. This can be done, for example, by proportional integral (PI) calculations.
  • PI proportional integral
  • the air conditioning capacity command value or supply
  • the air conditioning capacity command value is calculated from the sum of the deviation between the target temperature and the temperature in the interior space 2 multiplied by the proportional gain, and the deviation integrated over time to obtain the integral gain.
  • (Heat command value) Q is calculated.
  • Calorific value Z Cold energy setting unit 30B sets the operation of cooling device 5 and heaters 6A, 6B, 6C so that the supply heat amount calculated by supply heat amount calculation unit 30A can be obtained, and switch 31A , 31B, 31C and inverter 32 are controlled. Therefore, the control device 30 performs the above calculation and A force such as a microcomputer with pre-programmed control functions is also configured.
  • the operation panel 12 serves as target temperature setting means for setting a target value
  • the temperature sensor 11 serves as vehicle temperature detection means for detecting the temperature of the vehicle interior space 2, respectively.
  • the setting data and the detection data are taken into the control device 30 as input information.
  • Table 1 shows the air conditioning capability of the air conditioner 20 configured as described above.
  • FIG. 4 is a flowchart showing the control contents of the control device 30. The operation of the control device 30 will be described with reference to FIG.
  • Step S1 The target temperature of the vehicle interior space 2 set by the operation panel 12 and the current value of the vehicle interior temperature 2 detected by the temperature sensor 11 are input to the control device 30 of the air conditioner 20.
  • Step S2 In the control device 30, based on the value taken in in S1, the supply heat amount calculation unit 30A calculates the supply heat amount necessary for setting the interior space 2 to the target temperature. For example, proportional-integral (PI) calculation is performed based on the deviation between the target temperature and the actual in-vehicle temperature, and the air conditioning capability command value Q corresponding to the supplied heat amount is calculated.
  • the air conditioning capability command value Q can be substituted by proportional integral derivative (PID) calculation.
  • Step S3 Based on the air conditioning capability command value Q, the control device 30 determines the operation pattern previously determined and stored by the combination of the operation frequency of the cooling device 5 and the heaters 6A, 6B, 6C to be energized. To select the corresponding operation pattern.
  • Operating capacity for air conditioning capability command value Q For example, the turn is determined as shown in Table 2.
  • Steps S4, S5 The control device 30 controls the operation of the cooling device 5 and the heaters 6A, 6B, 6C by controlling the inverter 32 and the circuit breakers 31A, 31B, 31C according to the selected operation pattern.
  • the air conditioning capacity of the air conditioner 20 is automatically adjusted.
  • the air conditioning capacity in lkW increments can be selected.
  • the resolution (in steps) of air conditioning capacity is worse than the combination shown in Table 2.
  • FIG. 5 is a timing chart showing the timing operation of the relevant part when the air conditioning capability command value Q shifts from ⁇ 4 kW to ⁇ 3 kW in the air conditioner 20 configured as described above.
  • air conditioning capability command value Q is -4kW, -3> Q ⁇ -4, so "1" in Table 2 is selected as the operation pattern.
  • the air conditioning capacity command value Q increases to -3kW, -2> Q ⁇ -3, so "k” in Table 2 is selected as the operation pattern.
  • the heating value of the heater is set so that the cooling capacity and the heating capacity can be combined to reduce the resolution (step) of the obtained air conditioning capacity. Selected.
  • This makes it possible to always supply a stable amount of heat to the vehicle interior space 2 according to the air conditioning capability command value Q by simple heater ON / OFF control.
  • the optimal amount of heat can be supplied to the vehicle at all times while suppressing fluctuations in the temperature of the blown air, so the temperature of the interior space 2 can be controlled stably with little fluctuation. It will be.
  • the air-conditioning capacity can be controlled in a fine manner without performing the conventional energization rate control (energization time control). / The frequency of OFF can be greatly reduced and the product life of the switch can be improved.
  • the vehicle air conditioner of the present invention has a narrow interior space such as the air conditioning of the driver's seat. Small heat capacity! / Suitable for air conditioning in some cases.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An air conditioner for a vehicle, in which a variation in the temperature of discharge air is reduced when a temperature-controlled air is supplied into a cabin space. The air conditioner has a cooling device (5) capable of stepwise changing a cold energy quantity, heaters (6A, 6B, 6C) forming a heating device (6) that is capable of stepwise changing a heat production quantity and having different heat production capacities, and a controller (30) having a supply heat quantity calculation part (30A) for calculating the quantity of heat supply to the cabin space (2) and also having a heat production quantity/cold energy quantity setting part (30B) for setting, based on the quantity of heat supply calculated in the supply heat quantity calculation part (30A), the quantity of heat production by both the cooling device (5) and the heating device (6).

Description

明 細 書  Specification
車両空調装置  Vehicle air conditioner
技術分野  Technical field
[0001] この発明は、空調装置に係り、特に車両用の空調装置に関するものである。  [0001] The present invention relates to an air conditioner, and more particularly to an air conditioner for a vehicle.
背景技術  Background art
[0002] 冷凍サイクルを利用した車両空調装置が既に知られて 、る(例えば、特許文献 1、 特許文献 2参照)。これに加えて、近年は、車内温度を目標温度に一致させるように 空調能力を自動的に調整する自動制御を行って 、る。制御装置 (温度コントローラ) は目標温度と車内温度の偏差から、必要な空調能力を連続的に要求するが、冷房 装置に使用される圧縮機は配管系の共振等の問題により、安全性が確認された周 波数のみでの段階的な運転しか行えないので、空調能力(冷房能力)も段階的にし か変更ができない。さらに、冷熱機器の回転部ゃ摺動部の潤滑のため、冷媒回路に 混入される潤滑油の安定した循環も必要であるため、低周波(例えば、 30Hz未満)で の運転が行えない場合もあり、微小冷房負荷に対応することが難しい。上記のような 空調装置のハードウェア上の制約がある場合、必要な空調能力を近似的に生成する ため、従来は圧縮機の段階運転とヒータの通電率制御 (通電時間制御)を併用する 方法が採用されている。ヒータの通電率制御は、時間平均では発熱量を無段階に制 御できるので、巨視的には発熱量を連続で制御していることになる。  [0002] Vehicle air conditioners using a refrigeration cycle are already known (see, for example, Patent Document 1 and Patent Document 2). In addition, in recent years, automatic control has been carried out to automatically adjust the air conditioning capacity so that the in-vehicle temperature matches the target temperature. The control device (temperature controller) continuously requires the required air conditioning capacity based on the deviation between the target temperature and the in-vehicle temperature, but the compressor used in the cooling device has been confirmed to be safe due to problems such as resonance in the piping system. Since only stepped operation can be performed only at the specified frequency, the air conditioning capacity (cooling capacity) can only be changed in stages. Furthermore, since lubrication of the rotating parts and sliding parts of refrigeration equipment requires stable circulation of the lubricating oil mixed in the refrigerant circuit, operation at low frequencies (for example, less than 30 Hz) may not be possible. Yes, it is difficult to cope with minute cooling loads. In the case where there are restrictions on the air conditioner hardware as described above, in order to generate the required air conditioning capacity approximately, the conventional method is to use both compressor stage operation and heater energization rate control (energization time control). Is adopted. Since the heating rate control of the heater can control the calorific value in a stepless manner on a time average, the calorific value is controlled macroscopically.
特許文献 1:特開平 5— 139142号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-139142
特許文献 2:特開 2004 - 182201号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-182201
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 上記のように、従来の車両空調装置では、圧縮機の段階運転とヒータの通電率制 御を併用することで必要な空調能力を近似的に生成しているため、ヒータ通電と非通 電の繰り返しに起因する吹出し空気温度の変動により、車内温度も変動するという問 題があった。さらに、吹出し風の温度変動(温度リプル)により、吹出し口付近の乗員 へ不快感を与えると 、つた問題もあった。 [0004] この発明は、上記のような課題を解決するためになされたもので、温度調整された 空気を車内へ供給する際、吹出し空気温度の変動を従来の装置に比べてより低減 できる車両空調装置を提案することを目的とする。 [0003] As described above, in the conventional vehicle air conditioner, the necessary air conditioning capacity is approximately generated by using the compressor stage operation and the heater energization rate control together. There was a problem that the temperature inside the car fluctuated due to fluctuations in the temperature of the blown air caused by repeated conduction. In addition, there was another problem when discomfort was given to passengers near the outlet due to temperature fluctuations (temperature ripple) of the outlet. [0004] The present invention has been made to solve the above-described problems. When supplying temperature-adjusted air into a vehicle, the vehicle can reduce fluctuations in the temperature of the blown-out air more than a conventional device. The purpose is to propose an air conditioner.
課題を解決するための手段  Means for solving the problem
[0005] この発明に係る車両空調装置は、冷熱量を段階的に変更可能な冷房装置と、発熱 量を段階的に変更可能な暖房装置と、入力情報に基づいて車内への供給熱量を算 出し、算出された供給熱量を基に前記冷房装置と前記暖房装置の発生熱量を設定 する制御装置と、を備えたものである。 [0005] The vehicle air conditioner according to the present invention calculates the amount of heat supplied to the vehicle based on input information, a cooling device that can change the amount of cooling in stages, a heating device that can change the amount of heat generation in steps. And a control device that sets the amount of heat generated by the cooling device and the heating device based on the calculated supply heat amount.
なお、通常は、車内温度の目標値を設定する目標温度設定手段と、車内温度を検 出する車内温度検出手段とをさらに備え、前記制御装置は、前記目標温度設定手 段の設定値と前記車内温度検出手段の検出値との入力情報に基づいて車内への 供給熱量を算出する。  Normally, the apparatus further includes target temperature setting means for setting a target value of the in-vehicle temperature, and in-vehicle temperature detection means for detecting the in-vehicle temperature, and the control device sets the set value of the target temperature setting means and the set value of the target temperature. The amount of heat supplied to the vehicle is calculated based on the input information with the detection value of the vehicle interior temperature detection means.
発明の効果  The invention's effect
[0006] この発明に係る車両空調装置は、冷熱量を段階的に変更可能な冷房装置と、発熱 量を段階的に変更可能な暖房装置とを組合わせて空調能力を決定しているので、吹 出し空気温度の瞬時変動を抑制しながら、常に最適な熱量 (冷熱量、発熱量)を車 内へ供給して、車内温度の瞬時変動を抑制できるという効果を有する。また、冷房装 置と暖房装置の段階的な変化量を細かく設定すれば、空調能力の微調整も可能とな る。  [0006] Since the vehicle air conditioner according to the present invention determines the air conditioning capacity by combining a cooling device that can change the amount of heat in stages and a heating device that can change the amount of heat generation in steps. While suppressing the instantaneous fluctuation of the blown air temperature, the optimum amount of heat (cooling heat and heat generation) is always supplied into the vehicle, and the instantaneous fluctuation of the vehicle temperature can be suppressed. In addition, fine adjustment of the air-conditioning capacity is possible if the stepwise changes in cooling and heating equipment are set in detail.
さらに、この発明の車両空調装置は、ヒータの通電率制御を行わなくても最適な熱 量を車内へ供給できるため、ヒータ駆動用開閉器の開閉(ON/OFF)頻度を大幅に 低減して、開閉器の製品寿命を改善できるという効果も奏する。  Furthermore, since the vehicle air conditioner of the present invention can supply the optimal amount of heat into the vehicle without controlling the heater energization rate, the frequency of opening and closing (ON / OFF) of the heater drive switch is greatly reduced. The product life of the switch can be improved.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]この発明の実施の形態に係る車両空調装置の車両への適用例を示す説明図。  FIG. 1 is an explanatory diagram showing an example of application of a vehicle air conditioner according to an embodiment of the present invention to a vehicle.
[図 2]図 1の車両空調装置を構成する冷房装置の冷凍サイクル構成図。  FIG. 2 is a configuration diagram of a refrigeration cycle of a cooling device that constitutes the vehicle air conditioner of FIG.
[図 3]この発明の実施の形態に係る車両空調装置の構成を示すブロック図。  FIG. 3 is a block diagram showing the configuration of the vehicle air conditioner according to the embodiment of the present invention.
[図 4]図 3の車両空調装置を構成する制御装置の制御内容を示すフローチャート。  4 is a flowchart showing the control contents of a control device constituting the vehicle air conditioner of FIG.
[図 5]図 3の車両空調装置の動作の一例を示すタイミングチャート。 発明を実施するための最良の形態 FIG. 5 is a timing chart showing an example of the operation of the vehicle air conditioner of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 図 1はこの発明の実施の形態における車両空調装置の構成図である。図 1におい て、空調装置 20が設置される車両 1は、車内空間(単に車内ともいう) 2、床下空間 3お よび屋根上空間 4からなるものとする。なお、図 1では、空調装置 20が床下空間 3へ設 置される場合を記載している力 空調装置 20は屋根上空間 4へ設置される場合もある 。空調装置 20は、冷熱量を段階的に変更可能な冷房装置 5、発熱量を段階的に変 更可能な暖房装置 6、室内ファン 7および室外ファン 8を備えている。  FIG. 1 is a configuration diagram of a vehicle air conditioner in an embodiment of the present invention. In FIG. 1, a vehicle 1 in which an air conditioner 20 is installed is composed of an interior space (also simply referred to as an interior) 2, an underfloor space 3, and a rooftop space 4. In addition, in FIG. 1, the force air conditioner 20 which describes the case where the air conditioner 20 is installed in the underfloor space 3 may be installed in the roof space 4. The air conditioner 20 includes a cooling device 5 that can change the amount of cooling in stages, a heating device 6 that can change the amount of heat generated in steps, an indoor fan 7, and an outdoor fan 8.
なお、図 1中の符号 9は車内空間 2から空調装置 20へ空気を戻すリターンダクトを、 符号 10は空調装置 20から車内空間 2への空気を送る吹出しダクトを、それぞれ示して いる。  Reference numeral 9 in FIG. 1 denotes a return duct for returning air from the vehicle interior space 2 to the air conditioner 20, and reference numeral 10 denotes an outlet duct for sending air from the air conditioner 20 to the vehicle interior space 2.
[0009] 図 2は冷房装置 5の構成図であり、冷房装置 5は、蒸発器 21、圧縮機 22、凝縮器 23、 膨張弁 24が配管で順に接続された冷媒回路力 なる冷凍サイクルが構成されている 。また、車内空間 2には、車内温度検出手段としての温度センサ 11が備えられている  FIG. 2 is a configuration diagram of the cooling device 5. The cooling device 5 includes a refrigeration cycle having a refrigerant circuit force in which an evaporator 21, a compressor 22, a condenser 23, and an expansion valve 24 are sequentially connected by piping. Have been. Further, the vehicle interior space 2 is provided with a temperature sensor 11 as vehicle interior temperature detection means.
[0010] 次に、上記車両 1における空調装置 20の空調動作について説明する。車内空間 2 の車内空気は、室内ファン 7により駆動され、リターンダクト 9を経由して空調装置 20に 取り込まれる。そして、空調装置 20内部の蒸発器 21により冷却され、必要な場合には さらに暖房装置 6により加熱され、吹出しダクト 10を経由して車内空間 2へ供給される 。一方、室外ファン 8により駆動された外気が凝縮器 23を通過する際に、冷凍サイク ル内の冷媒が冷却される。 Next, the air conditioning operation of the air conditioner 20 in the vehicle 1 will be described. The interior air in the interior space 2 is driven by the indoor fan 7 and taken into the air conditioner 20 via the return duct 9. Then, it is cooled by the evaporator 21 inside the air conditioner 20, and further heated by the heater 6 if necessary, and supplied to the vehicle interior space 2 via the blowout duct 10. On the other hand, when the outside air driven by the outdoor fan 8 passes through the condenser 23, the refrigerant in the refrigeration cycle is cooled.
[0011] 図 3は空調装置 20およびその付属機器の構成を示すブロック図である。空調装置 2 0は、先に説明したように、冷熱量を段階的に変更可能な冷房装置 5と、発熱量を段 階的に変更可能な暖房装置を構成する発熱体として、発熱能力の相違する複数のヒ ータ 6A、 6B、 6Cを備えている。  FIG. 3 is a block diagram showing a configuration of the air conditioner 20 and its accessory devices. As described above, the air conditioner 20 has a difference in heat generation capability as a heating element that forms a cooling device 5 that can change the amount of heat in stages and a heating device that can change the amount of heat in steps. It has multiple heaters 6A, 6B and 6C.
[0012] 冷房装置 5の冷房能力はインバータ 32により、冷房装置 5を構成する圧縮機 22の運 転周波数を制御することで変更できるようにしている。ここでは、冷房装置 5の運転周 波数は、冷媒回路の振動面と潤滑油の循環の制約により、 40/50/60HZの 3段階のみ を使用するものとし、それぞれの冷房能力は、 -5/-7/-9kWとする。なお、圧縮機 22 の運転周波数は必ずしもこの 3つの段数や値に限定されるものではなぐ安全性が 確保されて ヽる範囲で適宜変更しても良 ヽ。 The cooling capacity of the cooling device 5 can be changed by controlling the operation frequency of the compressor 22 constituting the cooling device 5 by the inverter 32. Here, the operating frequency of the cooling device 5 is assumed to use only three stages of 40/50 / 60HZ due to the vibration surface of the refrigerant circuit and the restriction of the circulation of the lubricating oil, and each cooling capacity is -5 / -7 / -9kW. The compressor 22 The operating frequency is not necessarily limited to these three stages and values, but may be changed as appropriate within a range where safety is ensured.
[0013] 一方、暖房装置 6は、発熱体として発熱能力がそれぞれ異なる 3種類のヒータ 6A、 6 B、 6Cが 1本ずつ備えられて構成されており、各ヒータ 6A、 6B、 6Cは、それぞれ対応 する開閉器 31A、 31B、 31Cにより通電が制御される。ここでは、ヒータ 6A、 6B、 6Cの発 熱能力は、それぞれ l/2/4kWであり、トータルの発熱能力は 7kWとなっている。 [0013] On the other hand, the heating device 6 is composed of three types of heaters 6A, 6B, and 6C each having a different heating capacity as a heating element, and each of the heaters 6A, 6B, and 6C Energization is controlled by the corresponding switches 31A, 31B, 31C. Here, the heat generation capacities of heaters 6A, 6B, and 6C are l / 2 / 4kW, respectively, and the total heat generation capacity is 7kW.
なお、暖房装置 6を構成するヒータは、その本数や発熱能力が上記の例に限定され るものではなぐ冷房装置 5の冷熱量の段階的な変化に応じて、空調温度をより細か く設定できる本数や能力とすることができる。また、ヒータ以外の発熱体の利用も可能 である。  Note that the number of heaters constituting the heating device 6 and the heat generation capacity are not limited to the above example, and the air conditioning temperature can be set more finely according to the stepwise change in the amount of cooling of the cooling device 5. It can be the number or ability. A heating element other than the heater can also be used.
[0014] この例では、最小の発熱能力を有する 1つのヒータの動作による暖房能力と複数の 全ヒータの動作による暖房能力との間で、等間隔に暖房能力が設定できる発熱能力 を有し、かつ圧縮機 22の停止時と最大運転周波数での動作時との間で、等間隔に 冷房能力が設定できる発熱能力を有するヒータを選定して設置している (後述する表 2参照)。  [0014] In this example, the heating capacity can be set at equal intervals between the heating capacity by the operation of one heater having the minimum heat generation capacity and the heating capacity by the operation of all the heaters. In addition, a heater having a heat generation capacity capable of setting the cooling capacity at equal intervals between the stop of the compressor 22 and the operation at the maximum operating frequency is selected and installed (see Table 2 described later).
[0015] 空調装置 20はさらに、車内空間 2への供給熱量を算出する供給熱量演算部 30Aと、 供給熱量演算部 30Aで算出された供給熱量を基に、冷房装置 5とヒータ 6A、 6B、 6C の発生熱量を設定する発熱量 Z冷熱量設定部 30Bとを有した制御装置 30を備えて いる。  [0015] The air conditioner 20 further includes a supply heat amount calculation unit 30A that calculates the amount of heat supplied to the vehicle interior space 2, and the cooling device 5 and the heaters 6A, 6B, based on the supply heat amount calculated by the supply heat amount calculation unit 30A. A control device 30 having a calorific value Z cold energy setting unit 30B for setting a heat generation amount of 6C is provided.
[0016] 供給熱量演算部 30Aは、目標値と車内空間 2の実際の温度に基づいて、車内空間 2を目標温度へ設定するのに必要な供給熱量を算出する。これは、例えば比例積分 (PI)計算により行うことができる。比例積分 (PI)計算では、目標温度と車内空間 2の 温度との偏差に比例ゲインをかけたものと、さらにその偏差を時間積分し積分ゲイン を力けたものの和から空調能力指令値 (または供給熱量指令値) Qを算出するもので ある。  The supplied heat amount calculation unit 30A calculates the supplied heat amount necessary to set the vehicle interior space 2 to the target temperature based on the target value and the actual temperature of the vehicle interior space 2. This can be done, for example, by proportional integral (PI) calculations. In the proportional integral (PI) calculation, the air conditioning capacity command value (or supply) is calculated from the sum of the deviation between the target temperature and the temperature in the interior space 2 multiplied by the proportional gain, and the deviation integrated over time to obtain the integral gain. (Heat command value) Q is calculated.
発熱量 Z冷熱量設定部 30Bは、供給熱量演算部 30Aで算出された供給熱量が得ら れるように、冷却装置 5とヒータ 6A、 6B、 6Cの動作を設定し、それに応じて開閉器 31A 、 31B、 31Cやインバータ 32を制御する。従って、制御装置 30は、上記の演算および 制御機能が予めプログラムされたマイクロコンピュータなど力も構成される。 Calorific value Z Cold energy setting unit 30B sets the operation of cooling device 5 and heaters 6A, 6B, 6C so that the supply heat amount calculated by supply heat amount calculation unit 30A can be obtained, and switch 31A , 31B, 31C and inverter 32 are controlled. Therefore, the control device 30 performs the above calculation and A force such as a microcomputer with pre-programmed control functions is also configured.
[0017] なお、図 3に示すように、ここでは目標値の設定を行う目標温度設定手段として操 作盤 12が、車内空間 2の温度検出を行う車内温度検出手段として温度センサ 11が、 それぞれ備えられており、それらの設定データおよび検出データが、入力情報として 制御装置 30に取り込まれる。  Note that, as shown in FIG. 3, here, the operation panel 12 serves as target temperature setting means for setting a target value, and the temperature sensor 11 serves as vehicle temperature detection means for detecting the temperature of the vehicle interior space 2, respectively. The setting data and the detection data are taken into the control device 30 as input information.
[0018] 以上の構成による空調装置 20の空調能力を表 1に示す。  [0018] Table 1 shows the air conditioning capability of the air conditioner 20 configured as described above.
[表 1]  [table 1]
Figure imgf000007_0001
Figure imgf000007_0001
[0019] 図 4は制御装置 30の制御内容を示すフローチャートである。この図 4を利用して、制 御装置 30の作用を説明する。 FIG. 4 is a flowchart showing the control contents of the control device 30. The operation of the control device 30 will be described with reference to FIG.
(ステップ S1) .操作盤 12により設定される車内空間 2の目標温度と、温度センサ 11に より検出される車内温度 2の現在値が、空調装置 20の制御装置 30に入力される。 (ステップ S2) .制御装置 30では、 S1で取り込まれた値を基に、供給熱量演算部 30A において、車内空間 2を目標温度へ設定するのに必要な供給熱量を算出する。これ は例えば、目標温度と実際の車内温度の偏差を基に比例積分 (PI)計算を行って、 上記供給熱量に対応する空調能力指令値 Qを算出する。なお、空調能力指令値 Q は、比例積分微分 (PID)計算によっても代用することが可能である。  (Step S1) The target temperature of the vehicle interior space 2 set by the operation panel 12 and the current value of the vehicle interior temperature 2 detected by the temperature sensor 11 are input to the control device 30 of the air conditioner 20. (Step S2) In the control device 30, based on the value taken in in S1, the supply heat amount calculation unit 30A calculates the supply heat amount necessary for setting the interior space 2 to the target temperature. For example, proportional-integral (PI) calculation is performed based on the deviation between the target temperature and the actual in-vehicle temperature, and the air conditioning capability command value Q corresponding to the supplied heat amount is calculated. The air conditioning capability command value Q can be substituted by proportional integral derivative (PID) calculation.
(ステップ S3) .制御装置 30は、空調能力指令値 Qに基づき、冷房装置 5の運転周波 数と、通電するヒータ 6A、 6B、 6Cの組合せにより予め決定して記憶しておいた運転パ ターンから、対応する運転パターンを選択する。空調能力指令値 Qに対する運転パ ターンは、例えば、表 2ように決定されているものとする。 (Step S3) Based on the air conditioning capability command value Q, the control device 30 determines the operation pattern previously determined and stored by the combination of the operation frequency of the cooling device 5 and the heaters 6A, 6B, 6C to be energized. To select the corresponding operation pattern. Operating capacity for air conditioning capability command value Q For example, the turn is determined as shown in Table 2.
(ステップ S4、 S5) .制御装置 30は、選択した運転パターンに従い、インバータ 32と開 閉器 31A、 31B、 31Cを制御して、冷房装置 5とヒータ 6A、 6B、 6Cの動作を制御し、空 調装置 20の空調能力を自動的に調整する。  (Steps S4, S5) The control device 30 controls the operation of the cooling device 5 and the heaters 6A, 6B, 6C by controlling the inverter 32 and the circuit breakers 31A, 31B, 31C according to the selected operation pattern. The air conditioning capacity of the air conditioner 20 is automatically adjusted.
[表 2]  [Table 2]
Figure imgf000008_0001
Figure imgf000008_0001
[0021] この空調装置 20では、ヒータ 6A、 6B、 6Cの発熱能力をそれぞれ l/2/4kWとしたこと で、 lkW刻みの空調能力が選択可能である。これに対して、ヒータ 6A、 6B、 6Cのトー タルの発熱量 7kWを満足するために、例えば 7kW÷3 = 2.3kWの発熱能力をもつ 1種 類のヒータ 3本で暖房装置 6を構成した場合には、空調能力の最小設定刻みは 2.3k Wとなるので、表 2の組合せと比べ、空調能力の分解能 (刻み)が悪くなる。なお、ここ では、ヒータが 3本の構成について具体例を示した力 ヒータの本数に制限を設ける 必要はない。 [0021] In this air conditioner 20, by setting the heat generation capacities of the heaters 6A, 6B, and 6C to l / 2 / 4kW, the air conditioning capacity in lkW increments can be selected. On the other hand, in order to satisfy the total heating value of heaters 6A, 6B, and 6C of 7 kW, for example, the heating device 6 is composed of three types of heaters having a heat generation capacity of 7 kW ÷ 3 = 2.3 kW, for example. In this case, since the minimum setting increment of air conditioning capacity is 2.3kW, the resolution (in steps) of air conditioning capacity is worse than the combination shown in Table 2. In this case, there is no need to limit the number of force heaters, which is a specific example of a configuration with three heaters.
[0022] 図 5は上記のように構成された空調装置 20における、空調能力指令値 Qが- 4kWか ら -3kWへ移行する場合の、関連部分のタイミング動作を示すタイミングチャートであ る。 空調能力指令値 Qが- 4kWのとき、 - 3 >Q≥-4のため、運転パターンは表 2の "1 "が 選択される。次に、空調能力指令値 Qが増加し- 3kWとなった場合には、 - 2 >Q≥-3 のため、運転パターンは表 2の" k"が選択される。 FIG. 5 is a timing chart showing the timing operation of the relevant part when the air conditioning capability command value Q shifts from −4 kW to −3 kW in the air conditioner 20 configured as described above. When air conditioning capability command value Q is -4kW, -3> Q≥-4, so "1" in Table 2 is selected as the operation pattern. Next, when the air conditioning capacity command value Q increases to -3kW, -2> Q≥-3, so "k" in Table 2 is selected as the operation pattern.
[0023] 以上説明したように、この空調装置 20においては、冷房能力と暖房能力とを糸且合わ せて、得られる空調能力の分解能 (刻み)を小さくできるように、ヒータの発熱量を組 合選択している。これにより、単純なヒータの ON/OFF制御によって、空調能力指令 値 Qに応じて、安定した熱量を常に車内空間 2へ供給することが可能となる。言い換 えると、吹出し空気温度の変動を抑制しながら、常に最適な熱量 (冷熱量、発熱量) を車内に供給できるので、車内空間 2の温度を、変動の小さい状態で安定に制御で さることになる。 [0023] As described above, in this air conditioner 20, the heating value of the heater is set so that the cooling capacity and the heating capacity can be combined to reduce the resolution (step) of the obtained air conditioning capacity. Selected. This makes it possible to always supply a stable amount of heat to the vehicle interior space 2 according to the air conditioning capability command value Q by simple heater ON / OFF control. In other words, the optimal amount of heat (cold heat and heat generation) can be supplied to the vehicle at all times while suppressing fluctuations in the temperature of the blown air, so the temperature of the interior space 2 can be controlled stably with little fluctuation. It will be.
[0024] 加えて、この実施形態に係る空調装置 20によれば、従来の通電率制御(通電時間 制御)を行わなくても空調能力を細力べ制御できるので、ヒータ駆動用開閉器の ON/ OFF頻度が大幅に低減でき、開閉器の製品寿命も改善することができる。  [0024] In addition, according to the air conditioner 20 according to this embodiment, the air-conditioning capacity can be controlled in a fine manner without performing the conventional energization rate control (energization time control). / The frequency of OFF can be greatly reduced and the product life of the switch can be improved.
なお、吹出し空気温度の変動が、車内温度に与える影響は車体特性 (車体の熱容 量、放熱特性など)により異なるが、この発明の車両空調装置は、運転席の空調など 車内空間が狭ぐ熱容量の小さ!/、場合の空調に適して 、る。  Although the effect of fluctuations in the temperature of the blown air on the temperature inside the vehicle varies depending on vehicle body characteristics (such as the heat capacity and heat dissipation characteristics of the vehicle body), the vehicle air conditioner of the present invention has a narrow interior space such as the air conditioning of the driver's seat. Small heat capacity! / Suitable for air conditioning in some cases.
符号の説明  Explanation of symbols
[0025] 1 車両、 2 車内空間、 3 床下空間、 4 屋根上空間、 5 冷房装置、 6 暖房装置 、 6A, 6B, 6C ヒータ、 7 室内ファン、 8 室外ファン、 9 リターンダクト、 10 吹出し ダクト、 11 温度サンサ、 12 操作盤、 20 空調装置、 21 蒸発器、 22 圧縮機、 23 凝縮器、 24 膨張弁、 30 制御装置、 30A 供給熱量演算部、 30B 発熱量 Z冷 熱量設定部、 31A, 31B, 31C 開閉器、 32 インバータ。  [0025] 1 vehicle, 2 interior space, 3 floor space, 4 roof space, 5 cooling system, 6 heating system, 6A, 6B, 6C heater, 7 indoor fan, 8 outdoor fan, 9 return duct, 10 outlet duct, 11 Temperature sensor, 12 Control panel, 20 Air conditioner, 21 Evaporator, 22 Compressor, 23 Condenser, 24 Expansion valve, 30 Control device, 30A Supply heat amount calculation unit, 30B Heat generation amount Z Cold energy setting unit, 31A, 31B , 31C switch, 32 inverter.

Claims

請求の範囲 The scope of the claims
[1] 冷熱量を段階的に変更可能な冷房装置と、  [1] a cooling device capable of changing the amount of cooling in stages;
発熱量を段階的に変更可能な暖房装置と、  A heating device capable of changing the calorific value in stages;
入力情報に基づいて車内への供給熱量を算出し、算出された供給熱量を基に前 記冷房装置と前記暖房装置の発生熱量を設定する制御装置と、  A controller that calculates the amount of heat supplied to the vehicle based on the input information, and sets the amount of heat generated by the cooling device and the heating device based on the calculated amount of supplied heat;
を備えたことを特徴とする車両空調装置。  A vehicle air conditioner comprising:
[2] 車内温度の目標値を設定する目標温度設定手段と、  [2] Target temperature setting means for setting the target value of the vehicle interior temperature,
車内温度を検出する車内温度検出手段とを備え、  An in-vehicle temperature detecting means for detecting the in-vehicle temperature,
前記制御装置は、前記目標温度設定手段の設定値と前記車内温度検出手段の検 出値との入力情報に基づいて車内への供給熱量を算出することを特徴とする請求項 1記載の車両空調装置。  2. The vehicle air conditioner according to claim 1, wherein the control device calculates an amount of heat supplied into the vehicle based on input information of a set value of the target temperature setting unit and a detection value of the in-vehicle temperature detection unit. apparatus.
[3] 前記冷房装置は運転周波数を複数段に切換可能な圧縮機を有した冷凍サイクル 装置であり、前記圧縮機の運転周波数の切換えにより冷熱量を段階的に変更可能と していることを特徴とする請求項 1または 2記載の車両空調装置。  [3] The cooling device is a refrigeration cycle device having a compressor capable of switching the operating frequency to a plurality of stages, and the amount of cooling heat can be changed stepwise by switching the operating frequency of the compressor. The vehicle air conditioner according to claim 1 or 2, characterized in that
[4] 前記暖房装置は異なる発熱能力を有する複数の発熱体を備え、それらの発熱体の 動作の組合わせにより、発熱量を段階的に変更可能としていることを特徴とする請求 項 1〜3のいずれかに記載の車両空調装置。  [4] The heating device includes a plurality of heating elements having different heat generation capacities, and the amount of generated heat can be changed stepwise by a combination of operations of the heating elements. The vehicle air conditioner according to any one of the above.
[5] 前記複数の発熱体は、最小の発熱能力を有する 1つの発熱体の動作による暖房能 力と複数の全発熱体の動作による暖房能力との間で、等間隔に暖房能力が設定で きる発熱能力を有し、かつ前記圧縮機の停止時と最大運転周波数での動作時との 間で、等間隔に冷房能力が設定できる発熱能力を有したものであることを特徴とする 請求項 4記載の車両空調装置。  [5] The plurality of heating elements have a heating capacity set at equal intervals between the heating capacity by the operation of one heating element having the minimum heating capacity and the heating capacity by the operation of all the heating elements. The heat generation capability is such that the cooling capability can be set at equal intervals between the stop of the compressor and the operation at the maximum operating frequency. 4. The vehicle air conditioner according to 4.
[6] 前記制御装置は、所定の供給熱量毎に前記圧縮機の運転周波数と前記発熱体の 組合わせによる予め定められた運転パターンを持ち、該運転パターンに基づいて前 記冷房装置と前記暖房装置とを制御することを特徴とする請求項 4または 5記載の車 両空調装置。 [6] The control device has a predetermined operation pattern based on a combination of an operation frequency of the compressor and the heating element for each predetermined amount of heat supplied, and the cooling device and the heating device based on the operation pattern 6. The vehicle air conditioner according to claim 4, wherein the vehicle air conditioner is controlled.
PCT/JP2006/305387 2006-03-17 2006-03-17 Air conditioner for vehicle WO2007108066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006540063A JPWO2007108066A1 (en) 2006-03-17 2006-03-17 Vehicle air conditioner
PCT/JP2006/305387 WO2007108066A1 (en) 2006-03-17 2006-03-17 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/305387 WO2007108066A1 (en) 2006-03-17 2006-03-17 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2007108066A1 true WO2007108066A1 (en) 2007-09-27

Family

ID=38522107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305387 WO2007108066A1 (en) 2006-03-17 2006-03-17 Air conditioner for vehicle

Country Status (2)

Country Link
JP (1) JPWO2007108066A1 (en)
WO (1) WO2007108066A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8042746B2 (en) 2005-06-08 2011-10-25 Mitsubishi Electric Corporation Vehicular air conditioner
KR20130100715A (en) * 2012-03-02 2013-09-11 한라비스테온공조 주식회사 Control method of heat pump system for vehicle and its system
JP2014124988A (en) * 2012-12-25 2014-07-07 Japan Climate Systems Corp Vehicle air conditioner
JP2014129090A (en) * 2014-02-10 2014-07-10 Mitsubishi Heavy Ind Ltd Heat medium heating device and vehicle air conditioner using the same
JP2015502293A (en) * 2011-12-23 2015-01-22 ヴァレオ システム テルミク Automotive heating and / or air conditioning equipment
JP2015031500A (en) * 2013-08-07 2015-02-16 バルミューダ株式会社 Heating apparatus and heat generator used in the heating apparatus
JP6059984B2 (en) * 2010-04-12 2017-01-11 株式会社ヴァレオジャパン Electric heating heater core for vehicle air conditioning and vehicle air conditioner having the same
US10024575B2 (en) 2010-04-14 2018-07-17 Mitsubishi Heavy Industries, Ltd. Heating-medium heating unit and vehicle air conditioner using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151318A (en) * 1990-10-12 1992-05-25 Nippondenso Co Ltd Automobile air conditioner
JPH05229334A (en) * 1991-12-27 1993-09-07 Nippondenso Co Ltd Airconditioner
JPH08244439A (en) * 1995-03-14 1996-09-24 Nippon Climate Syst:Kk Air conditioner for electric vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198707B2 (en) * 1993-03-16 2001-08-13 株式会社デンソー Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151318A (en) * 1990-10-12 1992-05-25 Nippondenso Co Ltd Automobile air conditioner
JPH05229334A (en) * 1991-12-27 1993-09-07 Nippondenso Co Ltd Airconditioner
JPH08244439A (en) * 1995-03-14 1996-09-24 Nippon Climate Syst:Kk Air conditioner for electric vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8042746B2 (en) 2005-06-08 2011-10-25 Mitsubishi Electric Corporation Vehicular air conditioner
JP6059984B2 (en) * 2010-04-12 2017-01-11 株式会社ヴァレオジャパン Electric heating heater core for vehicle air conditioning and vehicle air conditioner having the same
US10024575B2 (en) 2010-04-14 2018-07-17 Mitsubishi Heavy Industries, Ltd. Heating-medium heating unit and vehicle air conditioner using the same
JP2015502293A (en) * 2011-12-23 2015-01-22 ヴァレオ システム テルミク Automotive heating and / or air conditioning equipment
KR20130100715A (en) * 2012-03-02 2013-09-11 한라비스테온공조 주식회사 Control method of heat pump system for vehicle and its system
KR101587108B1 (en) 2012-03-02 2016-01-21 한온시스템 주식회사 Control method of heat pump system for vehicle and its system
JP2014124988A (en) * 2012-12-25 2014-07-07 Japan Climate Systems Corp Vehicle air conditioner
JP2015031500A (en) * 2013-08-07 2015-02-16 バルミューダ株式会社 Heating apparatus and heat generator used in the heating apparatus
JP2014129090A (en) * 2014-02-10 2014-07-10 Mitsubishi Heavy Ind Ltd Heat medium heating device and vehicle air conditioner using the same

Also Published As

Publication number Publication date
JPWO2007108066A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
WO2007108066A1 (en) Air conditioner for vehicle
JP3979181B2 (en) Vehicle electrical equipment control device
JP6249932B2 (en) Air conditioning system
JP4762229B2 (en) Vehicle air conditioner
JPS63150551A (en) Air-conditioning system and control method of speed of compressor and speed of motor in said system
JP7099425B2 (en) In-vehicle temperature control device
CA2511732A1 (en) Hvac&r humidity control system and method
JP2005193749A (en) Controller
JP2011088600A (en) Air conditioner for vehicle
JP5098948B2 (en) Air conditioner for vehicles
JPH09300951A (en) Air-conditioning control device for electric vehicle
US20090159256A1 (en) Vehicle air-conditioning system
JP5195702B2 (en) Air conditioner for vehicles
US6997002B2 (en) Air conditioning unit and method of operating the same
JP2002204598A (en) Motor serving as generator, and its driving control method
JP2010083456A (en) Vehicular air conditioner
JP2009107605A (en) Control device
WO2019058464A1 (en) Air conditioner
JP2010105505A (en) Air conditioner for vehicle
KR101282338B1 (en) Method for controlling air conditioner of vehicle
JP6647317B2 (en) Air conditioner control device and air conditioner system
JP6902912B2 (en) Air conditioning system and total heat exchanger
KR101587655B1 (en) Manual air conditioner for vehicles and method for controlling thereof
JP2002264637A (en) Electric load controller and vehicle air conditioner
JP2002264629A (en) Electric load controller and air conditioner for vehicle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006540063

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11579152

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06729377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06729377

Country of ref document: EP

Kind code of ref document: A1