WO2007108054A1 - 通信ノード及び通信経路選択方法 - Google Patents

通信ノード及び通信経路選択方法 Download PDF

Info

Publication number
WO2007108054A1
WO2007108054A1 PCT/JP2006/305260 JP2006305260W WO2007108054A1 WO 2007108054 A1 WO2007108054 A1 WO 2007108054A1 JP 2006305260 W JP2006305260 W JP 2006305260W WO 2007108054 A1 WO2007108054 A1 WO 2007108054A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
route
port
packet
selecting
Prior art date
Application number
PCT/JP2006/305260
Other languages
English (en)
French (fr)
Inventor
Bun Kimura
Eiji Ikeda
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008506070A priority Critical patent/JPWO2007108054A1/ja
Priority to EP06729253A priority patent/EP1995917A4/en
Priority to PCT/JP2006/305260 priority patent/WO2007108054A1/ja
Publication of WO2007108054A1 publication Critical patent/WO2007108054A1/ja
Priority to US12/200,412 priority patent/US20080317046A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath

Definitions

  • the present invention relates to a communication node and a communication path selection method used in a communication system in which a plurality of communication paths exist between communication nodes.
  • the present invention has been made in view of the above-mentioned problems, and the problem is related to packet transmission. To provide a communication node and a communication method for quickly determining an appropriate route. Means for solving the problem
  • transmission / reception means connected to one or more communication ports, derivation means for deriving route candidates for transmitting packets to the destination node in a connectionless-oriented manner, and packets are transmitted.
  • a communication node having selection means for selecting a communication port to be used for the communication is used.
  • the derivation means includes user-specified logic means for deriving one or more route candidates with logic designated by a user, communication information processing means for selecting one or more route candidates based on communication information for each route, and at least And a means for excluding a route passing through a destination port whose medium access control (MAC) address is unknown from route candidates. Packets are transmitted from the communication port corresponding to the powerful route that is not excluded.
  • MAC medium access control
  • FIG. 1 shows a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a state in which a packet is transmitted by a connection-oriented method.
  • FIG. 2B is a diagram showing a state in which a packet is transmitted by a connectionless oriented method.
  • FIG. 4A is a chart showing an example of communication information.
  • FIG. 4B is a chart showing an example of communication information.
  • FIG. 5 is a diagram showing a route selection example according to one embodiment of the present invention.
  • route candidates when route candidates are considered, one or more route candidates are derived by logic specified by the user (layer 4Z5), and based on communication information about each route. 1 or more route candidates are selected (Layer 3), and at least routes that pass through destination ports with unknown MAC addresses are also excluded (Layer 1 and 2). A packet is sent from the port. Since the final route is determined after comprehensively examining route candidates in various layers above and below, a highly reliable route can be derived appropriately. By performing connectionless-oriented route selection, route selection can be performed quickly and flexibly for each packet.
  • the communication information may be managed for each destination and each communication port, or may be managed for each route. Furthermore, the communication information may be measured by the own node or notified from an external management device. The communication information may be updated at regular intervals.
  • the communication information indicates that no communication port can be used for a certain destination node
  • a route corresponding to any communication port of the destination node is left as a route candidate. Since the communication information does not always match the current situation, even if the communication information is NG, it may actually be transmitted. In anticipation of such a case, the packet to be transmitted is transmitted as much as possible (so that it is not discarded as much as possible). This stores it in the send buffer. The amount of packets that can be received can be greatly reduced.
  • the logic specified by the user may have a criterion for selecting a communication port so that the frequency of use of the plurality of communication ports is the same. For example, the remainder when the port number of the communication port is divided by the total number of communication ports may be associated with the route number.
  • the logic specified by the user may have a criterion for selecting a communication port so that the frequency of use of a specific communication port is increased.
  • FIG. 1 shows a schematic diagram of a communication system according to an embodiment of the present invention.
  • Figure 1 shows four communication nodes X, A, B, and C, six switches (SW), a management device (CONT), and a transmission path connecting each element.
  • SW switches
  • CONT management device
  • Each communication node can communicate with each other.
  • the communication node X is a transmission source
  • the other communication nodes A, B, and C are transmission destinations or destinations.
  • Each communication node is connected to all communication nodes in a normal state. There may be more than one path connecting communication nodes.
  • the route can be specified by various methods. For example, the route may be specified by a combination of a communication port number and a destination.
  • the switch (SW) is also a router, and forwards packets according to the routing table.
  • the management device performs maintenance or management for each element in the system.
  • the number of communication nodes, the number of routes, etc. are only examples, and any appropriate numerical value may be used.
  • connection oriented system In the communication system shown in Fig. 1, a connection oriented system is adopted. Unlike the connection-oriented method, the connectionless-oriented method has multiple communication paths in a single connection.
  • FIG. 2A is a diagram illustrating a state in which a packet is transmitted by a connection-oriented method.
  • a connection-oriented method In the example shown in the figure, when the first to third packets are transmitted from communication node X to communication node A, One port combination is determined and all packets are transmitted along that route. This connection will maintain its power at establishment until it is released.
  • FIG. 2B is a diagram illustrating a state in which a packet is transmitted by a connectionless oriented method.
  • An appropriate combination of ports that can be used for packet transmission is selected for each packet, and each packet is transmitted.
  • the first to third packets are routed individually, and it is allowed that the communication path is different for each packet and the arrival order is different. This eliminates the need for processing to uniquely determine the communication path prior to packet transmission, and allows the optimum communication path to be determined flexibly for each packet.
  • FIG. 3 shows a detailed block diagram of the communication node.
  • this communication node may be any of X, A, B, and C in FIG. 1, for convenience of explanation, the communication node X will be described.
  • Figure 3 shows three communication ports shown as NI C # 0 to # 3, maintenance interface part shown as maintenance IF, data receiver 31, data transmitter 32, control information processor 33, protocol A processing function unit 34, a route selection unit 35, and a route candidate derivation logic unit 36 are depicted.
  • the route candidate derivation logic unit 36 includes a NIC link state monitoring unit 361, an ARP resolution monitoring unit 362, a first availability determination unit 3631, a second availability determination unit 3632, a third availability determination unit 3633, and a user. It has a designated logic management unit 364, an ARP processing unit 365, and a route communication monitoring unit 366.
  • Communication ports (NIC: Network Interface Card) # 0 to # 3 are physical ports for packet communication.
  • the interface part for maintenance and inspection (maintenance IF) is a physical port used when performing maintenance and Z or management of the communication node from the outside.
  • the data receiving unit 31 receives packets received from each communication port NIC # (T3 and routes them to an appropriate processing element.
  • the processing element includes a control information processing unit 33 and a protocol processing function. Part 34 mag.
  • the data transmission unit 32 transmits data to be transmitted to a transmission destination.
  • the data transmission unit 32 receives the destination route guidance from the route selection unit 35.
  • the control information processing unit 33 processes the control information data received by the data receiving unit. When data to be transmitted is generated in the control information processing unit 33, the data is transferred to the data transmission unit 32.
  • the protocol processing function unit 34 processes application data received by the data receiving unit 31. When data to be transmitted is generated in the protocol processing function unit 34, the data is transferred to the data transmission unit 32.
  • the route selection unit 35 determines an optimum route based on the route candidate derived from the route candidate derivation logic unit 36 and information on the packet to be transmitted, and the result of the determination is transmitted to the data transmission unit 3
  • the route candidate derivation logic unit 36 derives a route (route candidate) that may become an optimum route among various routes when a packet is transmitted to some destination.
  • the user-specified logic management unit 364 manages the route selection rule set by the user based on the protocol information of the upper layer of layer 4 or higher.
  • the route selection logic can be set in various ways. As an example, multiple communication ports (communication ports are determined so that the packet flow rate of each NIC # (T # 3) is distributed as much as possible (in other words, the bandwidth used is uniform). For example, when the lower 1 digit of the port number (decimal) used in protocols such as UDP, GTP-U, SCTP, etc. is referenced and divided by the number of ports (3 in the current example) Depending on the remainder, the communication port may be selected.
  • the UDP port number is 6, the remainder of dividing 6 by 3 is 0, so the # 0 route is selected, and if the UDP port number is 7, the # 1 route Is selected, and the route of # 2 may be selected when the UDP port number power is selected.
  • a specific communication port may be preferentially used!
  • the communication ports may be used in ascending order, or the reverse order may be used.
  • the communication port may be selected using a land robin method.
  • the route candidate may be selected based on some logic or rule that can be determined by the user.
  • the user-designated logical management unit 364 does not discard a packet scheduled to be transmitted even if any route has a power that matches the content designated by the user. In that case, at least one path or communication port is considered to match the logic specified by the user.
  • Third availability determination unit 3633 derives route candidates based on the communication information for each route. This process belongs to layer 3. As mentioned above, the route is the communication port and destination. It may be specified in combination. Third availability determination unit 3633 individually determines whether or not a packet can be transmitted from communication port NIC # (T # 2) for each of destination nodes A, B, and C. Specifically, (3) Usability determination unit 3633, in cooperation with route communication monitoring unit 366, sends a check signal (for example, a PING signal) from communication node NIC # 0 to destination node A to confirm arrival or a positive response.
  • a check signal for example, a PING signal
  • the communication information may be periodically or irregularly, but typically is performed in a certain period.
  • the third availability determination unit 3633 does not discard a packet scheduled to be transmitted even if any route is NG. In that case, at least one path or communication port is considered to match the logic specified by the user. This is because, even if the communication state power is SNG, if the frequency of update of the communication information is low, the possibility of being NG at the time of subsequent packet transmission cannot be denied.
  • the second availability determination unit 3632 also derives a route candidate based on the communication information for each route, and this process also belongs to Layer 3.
  • the communication information used in the second usability judging unit 3632 is notified of the higher-level device power such as the management device (CONT) in FIG. 1 and is not measured by the own node.
  • the communication information used in the 2nd and 3rd usability judging sections essentially shows the same contents, but there is no different power depending on the situation. For example, for path # 0 between communication nodes X and B, the force at which source X is measured to be NG may not be confirmed by the health check at destination B. This can happen depending on where the fault occurred and the length of the path delay.
  • the higher-level management device notifies the communication information to each communication node, so that each communication node can hold the communication information that is more realistic.
  • Notification of communication information from the management device to each communication node may be performed periodically or irregularly. Typically, it is performed irregularly as needed. For example, a failure occurs in some route or maintenance of a certain route is performed. You may be notified of communication information when
  • the second availability determination unit 3632 does not discard the packet to be transmitted even if any route is NG. In that case, at least one path or communication port is considered to match the logic specified by the user. This is because even if the communication device strength is NG at the time when the management device power is also notified, it is not NG at the time of subsequent packet transmission! /, And the possibility cannot be denied! /.
  • the first availability determination unit 3631 also derives route candidates based on the communication information for each route, and this process also belongs to layer 3.
  • the communication information used in the first availability determination unit 3632 is notified of the higher-level device such as the management device (CONT) in FIG. 1 and is not measured by the own node. More specifically, the communication information used here is managed for each route as shown in Fig. 4B. Therefore, regardless of the destination, communication port NIC # (T # 3 or route # ( ⁇ # 3 indicates whether it can be used or not. For example, when both switches SW # 0 in Fig. None of the communication nodes can use route # 0. In this case, it is theoretically possible for the management device to include the communication information as shown in FIG. 4B in the communication information as shown in FIG. However, from the viewpoint of promptly notifying each communication node of such a situation with a small amount of information, it is desirable to manage the above two types of communication information separately.
  • the first availability determination unit 3631 does not discard a packet scheduled to be transmitted even if any route is NG. In that case, at least one path or communication port is considered to match the logic specified by the user. This is because even if the communication device strength is NG at the time when the management device power is also notified, it is not NG at the time of subsequent packet transmission! /, And the possibility cannot be denied! /.
  • the ARP resolution monitoring unit 362 checks whether or not the destination IP address and MAC address are known, and manages the correspondence between the addresses. If the destination IP address and MAC address are not known, packets cannot be sent to that port. Therefore, a route through a port whose address is unknown is excluded from route candidates.
  • ARP Address Resolution Protocol
  • this method broadcasts a packet (harp request) containing the IP address to be examined. Only one node with the appropriate IP address responds to the source with its own MAC address. Other nodes do not return any response. If the address required for packet transmission is known, it is managed as “harp resolved”, otherwise it is managed as “harp unresolved”. If all the route candidates for a certain destination node are unresolved, the packet cannot be sent to that destination node, and the packet is discarded.
  • the NIC link state monitoring unit 361 monitors the link state of the connection destination for each communication port (NIC), and checks whether they are physically connected!
  • the connection destination of the communication port (NIC) is represented by a switch (SW).
  • Link state change can be detected by hardware interrupt. For example, when a communication node or switch is connected or disconnected, the physical connection status changes and the link status is updated.
  • the link state may be managed as a link-up state and a link-down state. A link-up route can be included in a route candidate A link-down route is excluded from the route candidate. If all the route candidates for a certain destination node are in the link-down state, the packet cannot be transmitted to the destination node, and the packet is discarded.
  • FIG. 5 is a diagram showing an example of route selection according to an embodiment of the present invention.
  • the communication node is trying to select an appropriate route for sending packets.
  • FIG. 5 shows operations by the route candidate deriving unit 36 and the route selecting unit 35 of FIG. Data destined for a certain destination is finally transmitted or discarded from any one of the communication ports NIC # 0, # 1 or # 3.
  • the packet is discarded only when the ARP resolution monitoring unit 362 or the link status monitoring unit 3 61 has no suitable route, and there is no appropriate route in the other processing unit. In such a case, it is considered that either route is appropriate and the packet is not discarded as much as possible.
  • the route candidate derivation unit 36 of the communication node X examines the route candidate by the user-specified logic management unit 364 (layer 4Z5).
  • any communication port may be used, but a specific port is selected for load distribution.
  • the communication port (communication port # 2 in the example shown in the figure) corresponding to the remainder when the low-order digit (decimal) of the port number is divided by the number of ports 3 is selected. .
  • the third availability determination unit 3633 determines the availability of the route based on the communication information measured by the own node.
  • any communication port is NG.
  • all communication ports # 0 to # 2 are marked with an X.
  • the packet scheduled to be transmitted is not discarded at this stage, and the communication status of one or more communication ports is considered to be OK.
  • communication port # 2 is considered to be OK.
  • the user specified logic management unit 364 (layer 4Z5) can use other than communication port # 2, so communication ports # 0, # 1 may be selected in current layer 3-3 .
  • the user's intention at layer 4Z5 can be reflected in the route selection by selecting the same communication port as the communication port selected at layer 4Z5 in layer 3-3 (inheriting).
  • the second availability determination unit 3632 determines the availability of the route based on the communication information notified from the management device.
  • any communication port is NG, and any communication ports # 0 to # 2 are marked with an X.
  • packets to be transmitted are not discarded, and the communication status of one or more communication ports is considered to be OK.
  • Communication port # 2 is selected in the same way as in Layer 3-3 processing.
  • the first availability determination unit 3631 determines the availability of a route based on the communication information for each route notified from the management device.
  • communication port # 2 is NG for destination node A, and communication ports # 0, # 1 are OK.
  • communication port # 0 is selected. Whether to select communication port # 0 or # 1 may be determined by various criteria. For example, even if the next best candidate is adopted based on the selection criteria in layer 4Z5 Good.
  • the ARP resolution status monitoring unit 362 determines whether or not the route can be used according to the address identification status.
  • the MAC address for the communication port # 0 of the destination node A is unknown, and the loop is in an unresolved state for this port. The other address is known (has been resolved). Accordingly, one of the communication ports # 0 and # 1 is selected as the route, and in the example shown in the figure, the route passing through the communication port # 1 of the destination node A is selected.
  • communication port # 0, # 1, # 2 related to layer 2 is the communication port of destination node A, and communication port # 0, # 1, # 2 related to other layers means the communication port of its own node Please pay attention to.
  • measures are taken so that the MAC address becomes clear for the communication port that has not been resolved.
  • a trap request including an IP address corresponding to an unknown MAC address is broadcast, and a correspondence relationship between IP and MAC addresses is found based on the response from the communication node having the corresponding IP address.
  • This correspondence is used for route search at the next packet transmission.
  • adding the MAC address that has been found to this route search may not be theoretically conceivable, but the ability to select an appropriate route as much as possible for each packet while reducing the delay time as much as possible. I hope you like it!
  • the NIC link state monitoring unit 361 (layer 1) finally narrows down the route based on the physical connection state. In the illustrated example, a packet is transmitted from communication port # 1 toward destination node A.
  • the route candidates derived by the respective processing units are comprehensively examined, so that a relatively reliable route can be appropriately selected.
  • the procedure in each processing unit is described so that the upper layer force is also directed toward the lower layer in turn, which is not essential to the present invention.
  • the processing of layers 3-1, 3-2, 2, 3-3 may be done in a different order.
  • the contents of the route candidates of each processing unit may be expanded in a list, and the optimum route may be selected. In any case, it is only necessary to comprehensively examine the route candidates of all the processing units.

Abstract

 通信ノードはパケット伝送に適切な経路を速やかに決定する。通信ノードは、1以上の通信ポートに接続された送受信手段と、コネクションレス指向方式で宛先ノードへパケットを送信するための経路候補を導出する導出手段と、パケットを送信するのに使用する通信ポートを選択する選択手段とを有する。導出手段は、ユーザにより指定された論理で1以上の経路候補を導出するユーザ指定論理手段と、各経路についての疎通情報に基づいて1以上の経路候補を選択する疎通情報処理手段と、少なくとも媒体アクセス制御(MAC)アドレスが不明な宛先ポートを通る経路を、経路候補から除外する手段とを有する。除外されなかった経路に対応する通信ポートからパケットが送信される。

Description

通信ノード及び通信経路選択方法
技術分野
[0001] 本発明は通信ノード間に複数の通信経路が存在する通信システムで使用される通 信ノード及び通信経路選択方法に関する。
背景技術
[0002] インターネットプロトコルを使用する IPネットワーク等では通信ノード間に複数の経 路が存在し得る。 IPネットワークでのパケット伝送経路はルーティングプロトコルで管 理されるのが一般的である。これにより例えばどこかの経路が使用できなくなった場 合でも迂回経路が探索され、ルーティングテーブルが変更され、別経路 (迂回経路) でパケット伝送が行われる。コネクション指向 (connection oriented)方式の通信シス テムでコネクション生成時に上位層プロトコル及び下位層プロトコルを考慮し、経路の 柔軟な組み合わせを実現しょうとする技術にっ 、ては特許文献 1に記載されて 、る。 特許文献 1:特開平 6— 14088号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながらルーティングプロトコルによる制御には時間がかかり、通信状況に応じ て経路を速やかに変更することは容易でない。上記の場合に迂回経路への経路変 更が遅れると、パケットが欠落してしまうおそれがある。ノンリアルタイムのデータ通信 ならば或る程度のパケット欠落が生じても通信品質はさほど劣化しないかもしれない 。し力しながら音声通信やテレビ電話通信のようなリアルタイムデータが通信される場 合には、パケットの欠落は通信品質に大きな影響を及ぼしてしまうことが懸念される。 特許文献 1記載発明ではコネクション生成時点でなるべく適切な経路が確立されるか もしれないが、コネクションは確立時力 解放時まで一定に維持され、通信途中で速 やかな経路変更を実現するものではない。従って上記の問題が依然として懸念され る。
[0004] 本発明は、上記の問題に鑑みてなされたものであり、その課題は、パケット伝送に 適切な経路を速やかに決定する通信ノード及び通信方法を提供することである。 課題を解決するための手段
[0005] 本発明では、 1以上の通信ポートに接続された送受信手段と、コネクションレス指向 方式で宛先ノードへパケットを送信するための経路候補を導出する導出手段と、パケ ットを送信するのに使用する通信ポートを選択する選択手段とを有する通信ノードが 使用される。前記導出手段は、ユーザにより指定された論理で 1以上の経路候補を 導出するユーザ指定論理手段と、各経路についての疎通情報に基づいて 1以上の 経路候補を選択する疎通情報処理手段と、少なくとも媒体アクセス制御 (MAC)ァドレ スが不明な宛先ポートを通る経路を、経路候補から除外する手段とを有する。除外さ れな力つた経路に対応する通信ポートからパケットが送信される。
発明の効果
[0006] 本発明によればコネクションレス指向方式の通信システムでパケット伝送に適切な 経路を速やかに決定することができる。
図面の簡単な説明
[0007] [図 1]本発明の一実施例による通信システムの概略図を示す。
[図 2A]コネクション指向方式によりパケットが伝送される様子を示す図である。
[図 2B]コネクションレス指向方式によりパケットが伝送される様子を示す図である。
[図 3]通信ノードの詳細なブロック図を示す。
[図 4A]疎通情報の一例を示す図表である。
[図 4B]疎通情報の一例を示す図表である。
[図 5]本発明の一実施例による経路選択例を示す図である。
符号の説明
[0008] NIC#0〜#3 通信ポート
保守 IF 保守点検用インターフェース部
31 データ受信部
32 データ送信部
33 制御情報処理部 34 プロトコル処理機能部
35 経路選択部
36 経路候補導出論理部
361 NICリンク状態監視部
362 ARP解決状況監視部
3631 第 1使用可否判断部
3632 第 2使用可否判断部
3633 第 3使用可否判断部
364 ユーザ指定論理管理部
365 ARP処理咅
366 経路疎通監視部
発明を実施するための最良の形態
[0009] 本発明の一形態では、経路の候補が検討される際に、ユーザにより指定された論 理で 1以上の経路候補が導出され (レイヤ 4Z5)、各経路についての疎通情報に基 づいて 1以上の経路候補が選択され (レイヤ 3)、少なくとも MACアドレスの不明な宛 先ポートを通る経路が、経路候補力も除外され (レイヤ 1, 2)、除外されな力 た経路 に対応する通信ポートからパケットが送信される。上下様々なレイヤでの経路候補が 総合的に検討された上で最終的な経路が決定されるので、高信頼性の経路を適切 に導出することができる。コネクションレス指向方式の経路選択が行われることで、経 路選択をパケット毎に柔軟に速やかに行うことができる。
[0010] 疎通情報は宛先毎及び通信ポート毎に管理されてもよいし、経路毎に管理されて もよい。更に疎通情報は自ノードで測定されてもよいし、外部の管理装置から通知さ れてもよ 、。疎通情報は一定の周期で更新されてもょ 、。
[0011] 或る宛先ノードについてどの通信ポートも使用できないことが疎通情報で示されて いる場合に、該宛先ノードの何れかの通信ポートに対応する経路が経路候補に残さ れる。疎通情報は常に現状と一致するわけではないので、疎通情報で NGであっても 実際には送信可能なこともある。そのような場合を期待して送信予定のパケットはなる ベく送信される(なるべく破棄されな ヽようにする)。これにより送信バッファに格納さ れるパケット量をなるベく減らすことができる。
[0012] ユーザにより指定された論理は、複数の通信ポートの使用頻度が同程度になるよう に通信ポートを選択する判断基準を有してもょ 、。例えば通信ポートのポート番号を 通信ポート総数で除算した場合の剰余と経路番号とが対応付けられてもよい。
[0013] 或いは、ユーザにより指定された論理は、特定の通信ポートの使用頻度が高くなる ように通信ポートを選択する判断基準を有してもょ 、。
実施例 1
[0014] 図 1は本発明の一実施例による通信システムの概略図を示す。図 1には 4つの通信 ノード X, A, B, Cと、 6つのスィッチ(SW)と、管理装置(CONT)と、各要素間を接続 する伝送経路とが描かれて 、る。
[0015] 各通信ノードは互いに通信可能であり、図示の例では通信ノード Xが送信元であり 、他の通信ノード A, B, Cが送信先又は宛先となっている。各通信ノードは正常状態 では全ての通信ノードと互いに接続されている。通信ノード間を接続する経路は 1以 上存在してよい。図示の例では送信元 Xと送信先 Aとの間には 3つの経路 # 0,経路 # 1,経路 # 2があり、それらは互いに独立である。同様に送信元 Xと送信先 Bとの間 にも互いに独立な 3つの経路 # 0,経路 # 1,経路 # 2がある。送信元 Xと送信先じと の間にも互いに独立な 3つの経路 # 0,経路 # 1,経路 # 2がある。経路は様々な手 法で指定可能である力 例えば通信ポート番号と宛先の組み合わせで指定されても よい。
[0016] スィッチ(SW)はルータでもあり、ルーティングテーブルに従ってパケットを転送する
[0017] 管理装置 (CONT)はシステム内の各要素に対する保守又は管理を行う。通信ノー ド数ゃ経路数等は一例に過ぎず、適切な如何なる数値が使用されてもょ 、。
[0018] 図 1に示される通信システムではコネクションレス指向 (connection oriented)方式が 採用されている。コネクションレス指向方式は、コネクション指向方式とは異なり、 1つ のコネクションの中に複数の通信経路が存在してよ 、。
[0019] 図 2Aは、コネクション指向方式によりパケットが伝送される様子を示す図である。図 示の例では、通信ノード Xから通信ノード Aに第 1〜第 3パケットが伝送される際に、 ポートの組み合わせが 1つ決定され、その経路で全てのパケットが伝送される。このコ ネクシヨンは確立時力も解放時に至るまで不変に維持される。
[0020] 図 2Bは、コネクションレス指向方式によりパケットが伝送される様子を示す図である 。パケット伝送に使用可能なポートの組み合わせのうち適切なものがパケット毎に選 択され、各パケットが伝送される。このように第 1〜第 3パケットはそれぞれ個別にルー ティングされ、パケット毎に通信経路が異なること、及び到着順序の異なることが許容 される。これにより、パケット送信に先立って通信路を一義的に確定するための処理 は不要であり、パケット毎に最適な通信経路を柔軟に決定することができる。
[0021] 図 3は、通信ノードの詳細なブロック図を示す。この通信ノードは図 1の X, A, B, C の何れでもよいが、説明の便宜上、通信ノード Xが説明される。図 3には、それぞれ NI C#0〜#3として示される 3つの通信ポート、保守 IFとして示される保守点検用インター フェース部、データ受信部 31、データ送信部 32、制御情報処理部 33、プロトコル処 理機能部 34、経路選択部 35及び経路候補導出論理部 36が描かれている。経路候 補導出論理部 36は、 NICリンク状態監視部 361、 ARP解決状況監視部 362、第 1使 用可否判断部 3631、第 2使用可否判断部 3632、第 3使用可否判断部 3633、ユー ザ指定論理管理部 364、 ARP処理部 365及び経路疎通監視部 366を有する。
[0022] 通信ポート(NIC: Network Interface Card) #0〜#3はパケット通信用の物理的なポ ートである。
[0023] 保守点検用インターフェース部 (保守 IF)は通信ノードの保守及び Z又は管理を外 部から行う際に使用される物理的なポートである。
[0024] データ受信部 31は各通信ポート NIC#(T3から受信されたパケットを受信し、それら を適切な処理要素にルーティングする。処理要素は具体的には制御情報処理部 33 やプロトコル処理機能部 34等である。
[0025] データ送信部 32は送信すべきデータを送信先に送信する。この場合に、データ送 信部 32は経路選択部 35から送信先経路の案内を受ける。
[0026] 制御情報処理部 33はデータ受信部で受信した制御情報データを処理する。制御 情報処理部 33で送信すべきデータが発生すると、そのデータはデータ送信部 32に 転送される。 [0027] プロトコル処理機能部 34はデータ受信部 31で受信したアプリケーションデータを処 理する。プロトコル処理機能部 34で送信すべきデータが発生すると、そのデータは データ送信部 32に転送される。
[0028] 経路選択部 35は経路候補導出論理部 36から導出された経路候補と送信すべきパ ケットについての情報とに基づいて最適な経路を判別し、判別結果をデータ送信部 3
2に通知する。
[0029] 経路候補導出論理部 36は、何らかの宛先へパケットを送信する際の様々な経路の うち、最適な経路になる可能性のある経路 (経路候補)を導出する。
[0030] ユーザ指定論理管理部 364はレイヤ 4以上の上位レイヤのプロトコル情報に基づ いてユーザが設定している経路選択餘理を管理する。経路選択論理は様々に設定 可能である。一例として、複数の通信ポート (NIC#(T#3)各々のパケット流量がなるベ く分散されるように (言 、換えれば、使用帯域が均一化されるように)通信ポートが決 定されてもよい。例えば、 UDP、 GTP-U、 SCTP等のようなプロトコルで使用されるポー ト番号 (デシマル)の下位 1桁が参照され、ポート数(目下の例では 3)で除算したとき の剰余 (余り)に応じて通信ポートが選択されてもょ 、。
[0031] 例えば、 UDPポート番号が 6であった場合には、 6を 3で割った剰余は 0なので # 0 の経路が選択され、 UDPポート番号が 7であった場合には # 1の経路が選択され、 U DPポート番号力 であった場合には # 2の経路が選択されてもよい。
[0032] 或 、は特定の通信ポートが優先的に使用されてもよ!、。例えば若番順に通信ポー トが使用されてもよいし、その逆順が使用されてもよい。更には、ランドロビン方式を 用いて、通信ポートを選択してもよい。
[0033] いずれにせよユーザが決定可能な何らかの論理又は規則に基づいて経路候補が 選択されてもよい。本実施例ではユーザ指定論理管理部 364で、たとえどの経路も ユーザの指定した内容に合わな力つたとしても、送信予定のパケットは破棄されない 。その場合、少なくとも 1つの経路又は通信ポートが、ユーザの指定した論理に合致 すると見なされる。
[0034] 第 3使用可否判断部 3633は、各経路に対する疎通情報に基づいて経路候補を導 出する。この処理はレイヤ 3に属する。上述したように、経路は通信ポート及び宛先の 組み合わせで指定されてもよい。第 3使用可否判断部 3633は、宛先ノード A,B,Cの 各々について、通信ポート NIC#(T#2からパケットが送信可能であるか否かを個々に 判別する。具体的には、第 3使用可否判断部 3633は、経路疎通監視部 366と協同 して、宛先ノード Aに対して通信ノード NIC#0から検査信号 (例えば、 PING信号)を送 信し、到達確認又は肯定的な応答信号が得られたか否かを判定する。それが得られ たならば、その経路は使用可能であり(OK状態として管理されてもよい)、そうでなけ れば使用できない (NG状態として管理されてもよい)。目下の例の場合には、 3種類 の宛先ノード A,B,Cの各々につ!/、て 3つの通信ポート NIC#0〜#2が検査されるので、 図 4Aに例示されるように、全部で 9個の検査結果が得られる。
[0035] 疎通情報は定期的に又は不定期的になされてよいが、典型的には或る一定の周 期で行われる。
[0036] 本実施例では第 3使用可否判断部 3633で、たとえどの経路も NGであったとしても 、送信予定のパケットは破棄されない。その場合、少なくとも 1つの経路又は通信ポ ートが、ユーザの指定した論理に合致すると見なされる。疎通状態力 SNGであったとし ても、疎通情報の更新頻度が低力つたならば、以後のパケットの送信時点では NGで な ヽ可能性は否定できな 、からである。
[0037] 第 2使用可否判断部 3632も各経路に対する疎通情報に基づいて経路候補を導出 し、この処理もレイヤ 3に属する。第 2使用可否判断部 3632で使用される疎通情報 は、図 1の管理装置 (CONT)のような上位装置力 通知され、自ノードで測定されるも のではない。第 2,第 3使用可否判断部で使用される疎通情報は本来的には同じ内 容を示すが、状況によっては異なる力もしれない。例えば通信ノード X及び B間の経 路 # 0について、送信元 Xではそれが NGであることが測定された力 送信先 Bでの ヘルスチェックではそれが未確認なこともあり得る。障害の起こった場所や経路遅延 の長短によっては、そのようなことが起こり得る。このような場合に、上位の管理装置 が疎通情報を各通信ノードに通知することで、各通信ノードは、より実情に即した疎 通情報を保持することができる。管理装置から各通信ノードへの疎通情報の通知は、 定期的に行われてもよいし、不定期的に行われてもよい。典型的には不定期的に必 要に応じて行われる。例えばどこかの経路に障害が生じたり、或る経路の保守を行つ たりする場合に疎通情報の通知がなされてもよ 、。
[0038] 第 2使用可否判断部 3632でも、第 3使用可否判断部 3633と同様に、たとえどの経 路も NGであったとしても、送信予定のパケットは破棄されない。その場合、少なくとも 1つの経路又は通信ポートが、ユーザの指定した論理に合致すると見なされる。管理 装置力も通知された時点の疎通状態力NGであったとしても以後のパケットの送信時 点では NGでな!/、可能性は否定できな!/、からである。
[0039] 第 1使用可否判断部 3631も各経路に対する疎通情報に基づいて経路候補を導出 し、この処理もレイヤ 3に属する。第 1使用可否判断部 3632で使用される疎通情報 は、図 1の管理装置 (CONT)のような上位装置力 通知され、自ノードで測定されるも のではない。ここで使用される疎通情報はより具体的には図 4Bに示されるように経路 毎に管理されている。従って宛先によらず、通信ポート NIC#(T#3又は経路 #(Γ#3毎 に使用可否が示される。例えば、図 1の 2つのスィッチ SW# 0が共に保守点検を受 ける場合には、どの通信ノードも経路 # 0を使用することはできない。この場合に、管 理装置が図 4Aに示されるような疎通情報に、図 4Bに示されるような疎通情報を含ま せることも理論上は可能力もしれない。しかしながら、そのような状況を少ない情報量 で速やかに各通信ノードに通知する観点からは、上記のような 2種類の疎通情報が 別々に管理されることが望ましい。
[0040] 第 1使用可否判断部 3631でも、第 2, 3使用可否判断部と同様に、たとえどの経路 も NGであったとしても、送信予定のパケットは破棄されない。その場合、少なくとも 1 つの経路又は通信ポートが、ユーザの指定した論理に合致すると見なされる。管理 装置力も通知された時点の疎通状態力NGであったとしても以後のパケットの送信時 点では NGでな!/、可能性は否定できな!/、からである。
[0041] ARP解決状況監視部 362は、送信先の IPアドレス及び MACアドレスが判明している か否かを確認し、アドレスの対応関係を管理する。送信先の IPアドレス及び MACアド レスが判明していなければ、そのポートにパケットを送信することはできない。従って アドレスが不明なポート通る経路は、経路候補から除外される。
[0042] 本実施例ではアドレスの不明なポートを含む経路が発見された場合には、 ARP処 理部 365と協同してそのポートのアドレス(具体的には MACアドレス)が何であるかが 明らかにされ、以後使用されるアドレス管理テーブルが更新される。このような処理は 、ァープ(ARP: Address Resolution Protocol ---アドレス解決プロトコル)により行 われてもよい。概してこの手法では検査対象の IPアドレスを含むパケット(ァープ要求 )がブロードキャストされる。該当する IPアドレスを有する唯 1つのノードは自身の MAC アドレスと共に送信元に応答する。他のノードは何らの応答も返さない。パケット送信 に必要なアドレスが判明している場合にはそれは「ァープ解決済み」として管理され、 そうでな ヽ場合は「ァープ未解決」として管理される。或る宛先ノードに関して全ての 経路候補がァープ未解決であったならば、その宛先ノードにパケットを送信すること はできないので、パケットは破棄される。
[0043] NICリンク状態監視部 361は、通信ポート (NIC)毎の接続先のリンク状態を監視し、 それらが物理的に接続されて!ヽるか否かを確認する。図 1に示される例では通信ポ ート (NIC)の接続先はスィッチ (SW)で表現される。リンク状態変化はハードウェアか らの割り込みで検出可能である。例えば通信ノードやスィッチが接続又は分離された りすると、物理的な接続状態が変わり、リンク状態は更新される。一例としてリンク状態 は、リンクアップ(Link-UP)状態及びリンクダウン (Link-Down)状態として管理されて もよい。リンクアップ状態の経路は経路候補に含められる力 リンクダウン状態の経路 は経路候補から除外される。或る宛先ノードに関して全ての経路候補がリンクダウン 状態であったならば、その宛先ノードにパケットを送信することはできないので、パケ ットは破棄される。
[0044] 図 5は、本発明の一実施例による経路選択例を示す図である。 3つの通信ポート及 び 3つの送信先が存在する場合において、通信ノードがパケットを送信するのに適切 な経路を選択しょうとしているものとする。概して図 5は図 3の経路候補導出部 36及 び経路選択部 35による動作を示す。或る宛先へのデータは、最終的には何れか 1つ の通信ポート NIC#0,#1又は #3から送信されるカゝ、或いは破棄される。但し本実施例 でパケットの破棄がなされるのは、 ARP解決状況監視部 362又はリンク状態監視部 3 61で適切な経路が無力つた場合に限られ、他の処理部で適切な経路が無かった場 合には何れかの経路が適切であるとみなされ、なるべくパケットが破棄されないように 動作する。 [0045] 例えば通信ノード Xから Aへの適切な経路候補を導出する際に、通信ノード Xの経 路候補導出部 36はユーザ指定論理管理部 364 (レイヤ 4Z5)により経路候補を調 ベる。本実施例では何れの通信ポートが使用されてもよいが、負荷分散を図るため、 特定のポートが選択されている。本実施例では、ポート番号の下位 1桁の数値 (デシ マル)がポート数 3で除算されたときの剰余に対応する通信ポート(図示の例では、通 信ポート # 2)が選択されている。但し、他の通信ポートが使用されることを禁止するも のではなぐ後述のように別の通信ポートが選択されてもょ 、。
[0046] 次に、第 3使用可否判断部 3633 (レイヤ 3— 3)では自ノードで測定した疎通情報 に基づいて経路の使用可否が判定される。図示の例では宛先ノード Aに対して、ど の通信ポートも NGである。このため、どの通信ポート # 0〜# 2にも X印が付されて いる。上述したようにこの段階では送信予定のパケットは破棄されず、 1以上の通信ポ ートの疎通状態が OKであるとみなされる。図示の例では通信ポート # 2が OKである とみなされて 、る。目下の例では、ユーザ指定論理管理部 364 (レイヤ 4Z5)で通信 ポート # 2以外のも使用可能であったので、通信ポート # 0, # 1が目下のレイヤ 3— 3で選択されてもよい。但し、レイヤ 4Z5で選択された通信ポートと同じ通信ポートを レイヤ 3— 3でも選択することで(引き継ぐことで)、レイヤ 4Z5でのユーザの意向を経 路選択に反映させることができる。
[0047] 第 2使用可否判断部 3632 (レイヤ 3— 2)では管理装置から通知された疎通情報に 基づいて経路の使用可否が判定される。図示の例では宛先ノード Aに対して、どの 通信ポートも NGであり、どの通信ポート # 0〜# 2にも X印が付されている。上述した ようにこの段階では送信予定のパケットは破棄されず、 1以上の通信ポートの疎通状 態が OKであるとみなされる。レイヤ 3— 3での処理の場合と同様に通信ポート # 2が 選択される。
[0048] 第 1使用可否判断部 3631 (レイヤ 3— 1)では管理装置から通知された経路毎の疎 通情報に基づいて経路の使用可否が判定される。図示の例では宛先ノード Aに対し て通信ポート # 2が NGであり、通信ポート # 0, # 1が OKである。図示の例では通信 ポート # 0が選択されている。通信ポート # 0, # 1の何れを選択するかは様々な基準 で判定されてよい。例えばレイヤ 4Z5での選択の基準で次善の候補が採用されても よい。
[0049] ARP解決状況監視部 362 (レイヤ 2)では、アドレスの判明状況に応じて経路の使用 可否が判定される。図示の例では宛先ノード Aの通信ポート # 0に対する MACアド レスが不明であり、このポートに関してァープ未解決状態である。他のアドレスは判明 している(ァープ解決済みである)。従って通信ポート # 0, # 1の一方が経路に選択 され、図示の例では宛先ノード Aの通信ポート # 1を通る経路が選択されている。図 中、レイヤ 2に関する通信ポート # 0, # 1, # 2は宛先ノード Aの通信ポートであり、 他のレイヤに関する通信ポート # 0, # 1, # 2は自ノードの通信ポートを意味すること に留意を要する。
[0050] 本実施例では、ァープ未解決であった通信ポートに関し、 MACアドレスが明らか になるように措置が講じられる。具体的には不明な MACアドレスに対応する IPァドレ スを含むァープ要求がブロードキャストされ、該当する IPアドレスを有する通信ノード 力もの応答に基づいて、 IP— MACアドレスの対応関係が見出される。この対応関係 は次回のパケット送信時の経路探索に使用される。なお、判明した MACアドレスを 今回の経路探索に加味することも理論上考えられる力もしれないが、遅延時間をでき るだけ短縮しながら個々のパケットになるべく適切な経路を選択する観点力 は、そ のようにしな 、ことが望まし!/、。
[0051] NICリンク状態監視部 361 (レイヤ 1)では、物理的な接続状態に基づいて経路が最 終的に絞り込まれる。図示の例では宛先ノード Aに向けて通信ポート # 1からパケット が送信される。
[0052] このように各処理部で導出された経路候補が総合的に検討されることで、相対的に 信頼性の高い経路を適切に選択することができる。説明の便宜上、各処理部での手 順が、上位レイヤ力も順に下位レイヤに向けてなされるように説明された力 そのこと は本発明に必須ではない。例えばレイヤ 3— 1, 3- 2, 3— 3の処理は異なる順序で なされてもよい。更には各処理部の経路候補の内容が一覧表に展開され、最適な経 路が選択されてもよい。いずれにせよ、各処理部全ての経路候補を総合的に検討で さればよい。
[0053] 以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されるわけでは なぐ本発明の要旨の範囲内で種々の変形及び変更が可能である。

Claims

請求の範囲
[1] 1以上の通信ポートに接続された送受信手段と、コネクションレス指向方式で宛先ノ ードへパケットを送信するための経路候補を導出する導出手段と、パケットを送信す るのに使用する通信ポートを選択する選択手段とを有する通信ノードであって、前記 導出手段は、
ユーザにより指定された論理で 1以上の経路候補を導出するユーザ指定論理手段 と、
各経路についての疎通情報に基づいて 1以上の経路候補を選択する疎通情報処 理手段と、
少なくとも媒体アクセス制御 (MAC)アドレスが不明な宛先ポートを通る経路を、経路 候補から除外する手段と、
を有し、除外されなカゝつた経路に対応する通信ポートからパケットが送信される ことを特徴とする通信ノード。
[2] 前記疎通情報処理手段が、
宛先毎及び通信ポート毎に管理された疎通情報に基づいて経路を選択する手段 を有することを特徴とする請求項 1記載の通信ノード。
[3] 前記疎通情報処理手段が、
経路毎に管理された疎通情報に基づいて経路を選択する手段
を有することを特徴とする請求項 1記載の通信ノード。
[4] 前記疎通情報処理手段が、
自ノードで測定された各経路についての疎通情報に基づいて、前記経路候補から 経路を選択する手段
を有することを特徴とする請求項 2記載の通信ノード。
[5] 前記疎通情報が、一定の周期で更新される
ことを特徴とする請求項 4記載の通信ノード。
[6] 前記疎通情報処理手段が、
経路を管理する管理ノードから通知された疎通情報に基づいて、前記経路候補か ら経路を選択する手段と、 を有することを特徴とする請求項 2記載の通信ノード。
[7] 不明な MACアドレスが明らかになるように、他ノードに問い合わせ信号が送信され る
ことを特徴とする請求項 1記載の通信ノード。
[8] 或る宛先ノードについてどの通信ポートも使用できないことが疎通情報で示されて いる場合に、該宛先ノードの何れかの通信ポートに対応する経路が前記経路候補に 残される
ことを特徴とする請求項 1記載の通信ノード。
[9] ユーザにより指定された論理は、複数の通信ポートの使用頻度が同程度になるよう に通信ポートを選択する判断基準を有する
ことを特徴とする請求項 1記載の通信ノード。
[10] 通信ポートのポート番号を通信ポート数で除算した場合の剰余と経路番号とが対応 付けられる
ことを特徴とする請求項 9記載の通信ノード。
[11] ユーザにより指定された論理は、特定の通信ポートの使用頻度が高くなるように通 信ポートを選択する判断基準を有する
ことを特徴とする請求項 1記載の通信ノード。
[12] 1以上の通信ポートをそれぞれが有する通信ノード間でコネクションレス指向方式で パケットを伝送するための経路を選択する経路選択方法であって、
ユーザにより指定された論理で経路候補を導出するステップと、
各経路についての疎通情報に基づいて経路候補を導出するステップと、 少なくとも媒体アクセス制御 (MAC)アドレスが不明な宛先ポートを通る経路を、経路 候補から除外するステップと、
を有し、除外されなカゝつた経路に対応する通信ポートからパケットが送信される ことを特徴とする通信経路選択方法。
PCT/JP2006/305260 2006-03-16 2006-03-16 通信ノード及び通信経路選択方法 WO2007108054A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008506070A JPWO2007108054A1 (ja) 2006-03-16 2006-03-16 通信ノード及び通信経路選択方法
EP06729253A EP1995917A4 (en) 2006-03-16 2006-03-16 COMMUNICATION NODES AND COMMUNICATION ROUTE SELECTION PROCEDURES
PCT/JP2006/305260 WO2007108054A1 (ja) 2006-03-16 2006-03-16 通信ノード及び通信経路選択方法
US12/200,412 US20080317046A1 (en) 2006-03-16 2008-08-28 Communication node and communication route selecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/305260 WO2007108054A1 (ja) 2006-03-16 2006-03-16 通信ノード及び通信経路選択方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/200,412 Continuation US20080317046A1 (en) 2006-03-16 2008-08-28 Communication node and communication route selecting method

Publications (1)

Publication Number Publication Date
WO2007108054A1 true WO2007108054A1 (ja) 2007-09-27

Family

ID=38522095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305260 WO2007108054A1 (ja) 2006-03-16 2006-03-16 通信ノード及び通信経路選択方法

Country Status (4)

Country Link
US (1) US20080317046A1 (ja)
EP (1) EP1995917A4 (ja)
JP (1) JPWO2007108054A1 (ja)
WO (1) WO2007108054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299508B2 (ja) * 2009-05-11 2013-09-25 富士通株式会社 ノード装置および通信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614088A (ja) 1992-06-25 1994-01-21 Nippon Telegr & Teleph Corp <Ntt> 通信制御処理装置
JPH1065733A (ja) * 1996-08-15 1998-03-06 Nec Corp 高速ルーティング制御方式
JP2005026902A (ja) * 2003-06-30 2005-01-27 Nec Engineering Ltd ネットワーク中継装置におけるネットワーク障害監視方法及びこれを適用した中継装置
JP2005057487A (ja) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> 複数経路を選択する経路制御装置、経路選択方法およびそのプログラムと記録媒体
JP2005318556A (ja) * 2004-03-31 2005-11-10 Matsushita Electric Ind Co Ltd 中継装置および通信システム
JP2006060579A (ja) * 2004-08-20 2006-03-02 Fujitsu Ltd アプリケーション特性に応じて複数の経路を同時に利用する通信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734907A (en) * 1985-09-06 1988-03-29 Washington University Broadcast packet switching network
ATE209414T1 (de) * 1992-12-18 2001-12-15 Cit Alcatel Atm-vermittlungsstelle und atm- vermittlungselement mit leitweglenkungslogik
DE4343588A1 (de) * 1993-12-21 1995-06-22 Sel Alcatel Ag Verfahren und Einrichtung zur zufälligen Auswahl einer von N gleichen Einheiten, sowie Koppelelement, Koppelnetz und Vermittlungsstelle damit
US6665733B1 (en) * 1996-12-30 2003-12-16 Hewlett-Packard Development Company, L.P. Network communication device including bonded ports for increased bandwidth
JP3601393B2 (ja) * 2000-01-11 2004-12-15 日本電気株式会社 データグラム中継装置及びその方法
US6976087B1 (en) * 2000-11-24 2005-12-13 Redback Networks Inc. Service provisioning methods and apparatus
US6895443B2 (en) * 2001-11-02 2005-05-17 Microsoft Corporation Method and system for facilitating communication between nodes on different segments of a network
US7180894B2 (en) * 2002-05-29 2007-02-20 Intel Corporation Load balancing engine
US8798043B2 (en) * 2002-06-28 2014-08-05 Brocade Communications Systems, Inc. Apparatus and method for routing traffic in multi-link switch
ES2228266B1 (es) * 2003-07-28 2006-06-01 Diseño De Sistemas En Silicio, S.A. Procedimiento de conmutacion de paquetes en un medio de transmision con multiples estaciones conectadas mediante distintos enlaces.
US7505403B2 (en) * 2004-10-28 2009-03-17 Alcatel Lucent Stack manager protocol with automatic set up mechanism
GB2433675B (en) * 2005-12-22 2008-05-07 Cramer Systems Ltd Communications circuit design

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614088A (ja) 1992-06-25 1994-01-21 Nippon Telegr & Teleph Corp <Ntt> 通信制御処理装置
JPH1065733A (ja) * 1996-08-15 1998-03-06 Nec Corp 高速ルーティング制御方式
JP2005026902A (ja) * 2003-06-30 2005-01-27 Nec Engineering Ltd ネットワーク中継装置におけるネットワーク障害監視方法及びこれを適用した中継装置
JP2005057487A (ja) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> 複数経路を選択する経路制御装置、経路選択方法およびそのプログラムと記録媒体
JP2005318556A (ja) * 2004-03-31 2005-11-10 Matsushita Electric Ind Co Ltd 中継装置および通信システム
JP2006060579A (ja) * 2004-08-20 2006-03-02 Fujitsu Ltd アプリケーション特性に応じて複数の経路を同時に利用する通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995917A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299508B2 (ja) * 2009-05-11 2013-09-25 富士通株式会社 ノード装置および通信方法
US8672566B2 (en) 2009-05-11 2014-03-18 Fujitsu Limited Node apparatus and communication method

Also Published As

Publication number Publication date
EP1995917A1 (en) 2008-11-26
US20080317046A1 (en) 2008-12-25
EP1995917A4 (en) 2011-08-24
JPWO2007108054A1 (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
US10666563B2 (en) Buffer-less virtual routing
EP1805939B1 (en) METHODS AND SYSTEMS FOR DETECTING IP ROUTE FAILURE AND FOR DYNAMICALLY RE-ROUTING VoIP SESSIONS IN RESPONSE TO FAILURE
JP5867211B2 (ja) 中継装置、中継装置の制御方法及び中継システム
KR101317969B1 (ko) 링크 애그리게이션 방법 및 노드
EP1741247B1 (en) Router configured for outputting update messages specifying a detected attribute change of a connected active path according to a prescribed routing protocol
JP4840236B2 (ja) ネットワークシステム及びノード装置
US6898630B2 (en) Network management system utilizing notification between fault manager for packet switching nodes of the higher-order network layer and fault manager for link offering nodes of the lower-order network layer
US20080279201A1 (en) Methods, systems, and computer program products for source-aware ip routing at a media gateway
US8462636B2 (en) Systems and methods for communication of management traffic over link aggregation group interface for a network element with distributed architecture
CA2311197A1 (en) Enhanced dual counter rotating ring network control system
EP1895721A1 (en) Method and apparatus for end-to-end link detection and policy routing switching
JPH0936873A (ja) リンクステートルーティング装置
CN102347905A (zh) 一种网络设备及其转发信息更新方法
EP2709405B1 (en) Method and system for mobility management in label switched networks
JPWO2005057864A1 (ja) ネットワークの経路切替えシステム
CN102281165A (zh) 一种基于服务质量的故障检测方法、系统和装置
EP2517422B1 (en) Grid router and network
WO2007108054A1 (ja) 通信ノード及び通信経路選択方法
JP2003092593A (ja) 輻輳制御を考慮した経路選択制御機能付きノード及びこれを適用したネットワークにおける経路選択制御方式
Song et al. Scalable fault-tolerant network design for ethernet-based wide area process control network systems
JP2010246013A (ja) 通信経路切替装置および方法
JPH10276207A (ja) Atm−lan間冗長接続通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06729253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506070

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006729253

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE