WO2007105578A1 - 誘電泳動による微粒子の状態の測定方法 - Google Patents
誘電泳動による微粒子の状態の測定方法 Download PDFInfo
- Publication number
- WO2007105578A1 WO2007105578A1 PCT/JP2007/054498 JP2007054498W WO2007105578A1 WO 2007105578 A1 WO2007105578 A1 WO 2007105578A1 JP 2007054498 W JP2007054498 W JP 2007054498W WO 2007105578 A1 WO2007105578 A1 WO 2007105578A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine particles
- electric field
- state
- measuring
- electrode
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
Definitions
- the present invention relates to a method for measuring the state of fine particles by dielectrophoresis and an apparatus for use in the method.
- the dielectrophoretic mobility has different values depending on the sample to be electrophoresed.
- the sample is polarized by being placed in a non-uniform electric field from the outside, and a dielectrophoretic force is generated to move in a positive or negative direction with respect to the electrode.
- Dielectrophoresis can also be applied to uncharged samples and large samples.
- the dielectrophoretic force is reduced and the mobility is also reduced. Therefore, the sensitivity required for analysis could not be obtained, and there was no device for observing the dielectrophoretic mobility itself.
- the array consists of a series of spaced electrodes in a comb shape, and the tip of the electrode is located near the common electrode, so that the injected sample can move between the electrodes. is there. Therefore, when a single sample is injected into the chamber and a series of different dielectrophoretic fields are simultaneously formed on each electrode, the particles in the sample solution are preferentially placed on one electrode according to their dielectric properties. Will be gathered.
- This 0 specific frequency is the characteristic frequency for different particle types and can be used, for example, to separate major particles from a solvent by dielectrophoresis. It is also possible to examine the homogeneity of a sample that has been purified to a single species. Alternatively, if the injected sample is a mixture, the data at the appropriate frequency for one type of particles present in the mixture and the particle count number, the phase of the mixture of known particles
- .5 Pair concentration can be determined.
- Cell proliferation activity is measured by measuring the state of the target sample based on dielectrophoresis (Yu Hakoda et al., Chemical Engineering Society 6th 9th Annual Conference Proceedings, Q 1 1 7, 2004) And Japanese Patent Laid-Open No. 2 0205-2 2 4 1 71).
- dielectrophoresis Yama Hakoda et al., Chemical Engineering Society 6th 9th Annual Conference Proceedings, Q 1 1 7, 2004
- Japanese Patent Laid-Open No. 2 0205-2 2 4 1 71 Japanese Patent Laid-Open No. 2 0205-2 2 4 1 71.
- An object of the present invention is to provide a method for measuring the state of fine particles by dielectrophoresis and an apparatus for use in the method.
- the present invention provides a method for measuring the state of fine particles, the method comprising:
- the state consists of surface functional group structure, surface specificity, surface potential, size, shape, activity, internal ion content distribution, internal ionic composition, internal composition, and internal structure At least one selected from the group.
- the non-uniform electric field is generated by a multipole electrode, and the multipole electrodes are arranged symmetrically.
- the dielectrophoresis solution is in a capillary channel with an inner diameter of 10 / zm to 500 ⁇ arranged vertically, and the electrode has a length of 0.1 mm to 2 mm. Then, it is arranged along the one flow path.
- the surface of the electrode is exposed at a ridge of the single channel of the capillary, and a wall supporting the electrode is isolated from the single channel of the capillary.
- the fine particles are biological fine particles.
- the measurement is performed on a plurality of microparticles.
- the plurality of microparticles have the same size and structure.
- the states of the plurality of fine particles are different.
- the method comprises: after the correlating step,
- condition is active and the activity is assessed by the correlating step.
- the method comprises: after the step of measuring the position R t of the microparticles,
- the sample containing the microparticles is previously stimulated.
- the stimulus is a chemical addition. More preferably, the addition amount of the chemical solution is different.
- the biological microparticle is a human cell and may be a liver-derived cell.
- the introduction of the sample into the dielectrophoresis solution is performed using an inkjet device, a capillary, a pipette, a tweezer, or a dispenser.
- the intensity and frequency of the non-uniform electric field are measured in time or Change according to the behavior of the material.
- the method further includes discharging the sample containing the fine particles after measuring the position R t or R s .
- the method further includes analyzing the state based on the dielectrophoretic mobility.
- the state is a surface structure or a functional group of the fine particles.
- the present invention also provides a dielectrophoresis apparatus for use in the method for measuring a state of the fine particles according to any one of the above,
- the non-uniform electric field generating means can generate an electric field having a strength sufficient for measuring the state of the fine particles.
- the non-uniform electric field generating means is a multipole electrode, and the multipole electrodes are arranged symmetrically so as to generate a non-uniform electric field having concentric symmetry.
- the apparatus further comprises means for calculating dielectrophoretic mobility from the measured positions of the microparticles, and calculating the state of the microparticles from the dielectrophoretic mobility.
- the present invention it is possible to integrally measure the state of fine particles such as the surface characteristics and internal structure of the fine particles from the dielectrophoretic mobility. For example, since the dielectric properties depending on the cell diameter obtained by dielectrophoresis include information on the cell surface, not only the inside of the cell but also the state of the cell surface layer can be identified. According to the method of the present invention, Analysis of one individual particle is possible without the need for a large amount of sample, and the analysis speed is fast. Furthermore, if a database is created, it will be possible to identify fine particles and to estimate (discriminate) materials. In addition, since there is no damage due to the addition of marker substances or contact, the sample used for analysis can be reused, and the microparticles used for analysis can be used for further analysis. Therefore, it can be applied to quality control. Brief Description of Drawings
- FIG. 1 is a top sectional view schematically showing the configuration of a dielectrophoresis apparatus used in the present invention.
- FIG. 2 is a cross-sectional view schematically showing the configuration of the dielectrophoresis apparatus used in the present invention.
- Figure 3 is a graph showing the change over time in the distance traveled by each cell cultured under different conditions.
- FIG. 4 is a graph showing the relationship between applied frequency and dielectrophoretic mobility for yogurt and yeast.
- FIG. 5 is a graph showing the time course of cell migration distance when He p G 2 cells are left in a nutrient medium.
- FIG. 6 is a graph showing the change over time in the dielectrophoretic mobility of cells when He p G 2 cells are left in a nutrient medium or an oligotrophic medium.
- Figure 7 is a graph showing the relationship between doxorubicin concentration and cell dielectrophoretic mobility.
- Figure 8 shows EC 5 for doxorubicin.
- 5 is a graph showing the relationship between doxorubicin concentration and cell electrophoretic mobility when the ⁇ value is normalized based on the value.
- Figure 9 shows the EC 5 of various anticancer agents estimated from the dielectrophoretic mobility values of the cells. It is a graph which shows a value.
- FIG. 10 is a graph showing the relationship between the ⁇ value of individual cells derived from each well and the intracellular Ca 2 + influx (A) and ATPase activity (B) of each well.
- Figure 11 is a graph showing the time course of the travel distance obtained for each ribosome.
- fine particles refers to various fine particles such as inorganic fine particles, organic fine particles, and biological fine particles having a size of about 1 nm to about 1 mm.
- examples of such fine particles include inorganic metal oxides such as silica and alumina; metals such as gold, titanium, iron and nickel; inorganic metal oxides into which functional groups have been introduced by operations such as silane coupling treatment.
- Polysaccharides such as agarose, cellulose, insoluble dextran; polymer particles such as polystyrene latex, styrene-butadiene copolymer, styrene-methacrylic acid copolymer, acrolein-ethyleneglycolylene methacrylate copolymer; microorganism (yeast , Bacteria, viruses), cells (red blood cells, white blood cells, virus-infected cells, etc.), sugars, nucleic acids (DNA, RNA, etc.), proteins (enzymes, etc.), biological particles such as lipids.
- non-biological particles such as latex beads may be bound to or coated with biological materials such as microorganisms, cells, viruses, plasmids, or chemically active species.
- the biological fine particles may be a body fluid such as serum, plasma, cerebrospinal fluid, synovial fluid, lymph fluid, or a processed product of a biological sample such as excrement such as urine and feces.
- a treated product is suitably diluted, dissolved or suspended as appropriate with water or a buffer solution.
- Biological fine particles include those chemically synthesized.
- the “fine particle state” means not only the surface characteristics of the fine particles but also the total state of the fine particles including the internal composition, internal structure and the like.
- Surface properties include surface structure (functional group structure, specificity, etc.), size, dielectric constant, conductivity, table Surface charge, shape, etc.
- the internal composition and internal structure refer to the activity of the fine particles, the ion content distribution inside the fine particles, the ionic composition, the density of the particles, and the physical structure.
- the overall state refers to the overall state of fine particles including these surface characteristics and internal structure.
- the total potential is determined by the potential generated on the surface of the microparticles due to the composition and distribution of the constituents of the microparticles and the potential outside the microparticles created by superimposing the potentials formed by the substances and solvent ions released from the microparticles. Indicates the status. For example, when the microparticle is a cell, the state can be cell viability, activity, affinity, and the like.
- the state of the fine particles can be measured integrally by measuring the dielectrophoretic mobility.
- the force received from the solvent changes and the dielectrophoretic mobility is affected, so it is possible to measure the external state change. Specifically, it is as follows. Fine particles are migrated by the electric charge (electric potential state) formed by the applied electric field and the fine particles by applying an alternating electric field. The potential involved in this electrophoretic force is only the surface potential at the beginning of electric field application, but as time passes, the interior of the microparticles is also polarized to create a unique electric field. Charge and solvent charge move to form a unique electric field.
- the potential that affects the electrophoretic force is the total potential created by the superposition of these electric fields. Accordingly, by observing the dielectrophoresis, it is possible to integrally measure the surface of the fine particle, the inside of the fine particle, and the outside of the fine particle.
- the functional group distributed on the cell wall is not constant, and the distribution and type of the functional group changes depending on the degree of cell generation and growth.
- the cell membrane itself and the specificity of the cell membrane change with cell activity. Therefore, when a potential is applied to a cell, a change in the state (for example, activity) of the cell can be read by the dielectrophoretic mobility.
- a non-uniform electric field with uniformly varying intensity is not formed, so the dielectrophoretic force varies depending on the particle path, and the final migration distance changes.
- a general dielectrophoresis apparatus that has been difficult to grasp the migration path of particles cannot obtain linear parameters that represent the state of particles, so individual states cannot be measured.
- the distance between the electrodes is large and a sufficiently uniform electric field cannot be applied to the sample. The state of the particles could not be measured.
- two-dimensional electrodes that are smaller than trials such as those used in many conventional dielectrophoresis devices, cannot apply a sufficiently uniform electric field to the sample, so the distance between the electrodes is small. However, as a result, a sufficient migration force cannot be applied.
- long-time measurements caused by weak electric fields for example, 10 minutes or more
- impose a heavy load on the biological sample leading to sample deterioration during measurement and making it difficult to measure with high accuracy.
- the dielectrophoretic mobility of the fine particles is represented by ⁇ in the following formula:
- the distance is preferably the horizontal distance on the surface where the non-uniform electric field generating means is provided.
- [3] is the device coefficient
- r dep is the particle radius
- ⁇ ⁇ is the dielectric constant of the medium
- Re [K e] is the real part of the Clausius-Mossotti factor. Therefore, the dielectrophoretic force is
- the dielectrophoretic mobility ⁇ is not position-dependent, it can be easily evaluated only at the electrophoretic start position and the end position.
- Dielectrophoretic mobility is generally measured using a dielectrophoresis apparatus.
- the dielectrophoresis apparatus is not particularly limited as long as it is capable of generating an electric field having a sufficient strength for measuring the state of fine particles.
- the dielectrophoresis apparatus includes a flow path, a non-uniform electric field generating means for generating a non-uniform electric field provided in the flow path, and the positions of the fine particles in the flow path. Means for measuring.
- the flow path refers to a chamber portion having a non-uniform electric field generating means and having an inlet and an outlet, which is a liquid passage containing fine particles.
- the dielectrophoresis apparatus includes at least a pair of inhomogeneous electric field generating means, for example, inside or outside a flow path such as a pillway, as shown in the top view of FIG. 1 and the cross-sectional view of FIG. With electrodes.
- the inner diameter of the capillary is usually 10 Onm to 5 mm, preferably 10 ⁇ ! ⁇ 1 mm, more preferably 10 ⁇ m to 500 m. It is preferable that the material of the pillar is an insulating material (non-conductive material). In addition, the length of the pillar is usually about 0.1 to 5 mm, more preferably 0.1 lnim to 2 mm.
- a plurality of flow paths may be arranged on one substrate and formed into one chip. In the present invention, the flow path is preferably arranged in the vertical direction.
- the width of the electrode itself provided in the flow path may be thick or narrow, such as a wire. It suffices to adopt an electrode structure in which the sample that receives the negative dielectrophoretic force gathers and there is no electrode in the vertical direction.
- the shape of the electrodes is not limited as long as it can form a spatially nonuniform electric field between the electrodes.
- the electrode is preferably a multipole electrode, and the number of electrodes is not limited to a quadrupole, and may be a double pole or an octupole.
- the cross-sectional shape of each electrode is preferably formed such that the boundary of the electrode cross-section is represented by a function f (x, y) that satisfies the Laplace equation.
- f (x, y) is, a (X 2 - y 2 ) + b X y, a (x 3 - 3 xy 2) + b (y 3 ⁇ 3 x 2 y), and a (x 4 — 6 x 2 y 2 + y 4 ) + b (x 3 y—xy 3 ).
- a and b are constants.
- the formed non-uniform electric field is preferably symmetric with respect to the central axis or the central portion of the flow path. More preferably, the multipole electrodes are arranged symmetrically so as to generate a non-uniform electric field having concentric symmetry. It is. Furthermore, it is preferable that the electrode be disposed along the single flow path, that is, in the vertical direction.
- the electrode is preferably a quadrupole electrode.
- the electric field of the quadrupole electrode among the multipole electrodes has been sufficiently analyzed, and the state can be measured by measuring only the ⁇ value that is the dielectrophoretic mobility as described above. This is because the mobility measured in a non-uniform electric field generated by a normal electrode structure is a tensor amount and is position-time dependent. In other words, when the electric field is symmetric like a quadrupole electrode, the value is a scalar quantity (strictly, in the radial direction), so it is easy to handle.
- the dielectrophoresis is usually performed on a microscale such as a one-way, the mobility in the ⁇ -axis direction due to the influence of gravity can be ignored, and the threshold value can be treated approximately as a scalar quantity.
- the threshold value can be treated approximately as a scalar quantity.
- the electrode is made of, for example, a conductive material such as carbon or a noble metal, and the structure may be any as long as the dielectric swimming power generates a non-uniform electric field in a direction perpendicular to the central axis of the flow path.
- the diameter of the electrode varies depending on the particulate to be analyzed. Usually, the diameter is 10 O nm to 5 mm, preferably 1 ′ 0 m to 1 mm.
- the length of the electrode can usually be the same as the length of the channel.
- the distance between the electrodes depends on the precision of microfabrication and is usually 500 m or less 0.1 ⁇ or more, preferably 75 zm or less ⁇ ⁇ ⁇ or more.
- the diameter and spacing of the multipole electrodes placed in each channel can be measured by, for example, viruses, prions, proteins, bioparticles such as DN DN, chemically active particles such as coated latex beads, etc. It can be changed according to the fine particles. If the distance between the electrodes is significantly larger than the size of the substance to be measured, a non-uniform electric field with sufficient electric field strength cannot be formed. In the present invention, the fine particles to be measured have different distances from the central axis of the flow channel when introduced into the flow channel.
- the surface of the electrode is exposed to the inside of the single flow passage, and the wall supporting the electrode is isolated from the single flow passage.
- a strong and less distorted electric field can be formed. This is because if a non-conducting substance exists between the electrode and the capillary, this substance becomes a dielectric and weakens the electric field. Therefore, the distance between the wall supporting the electrode and the single channel is electrically increased. When it is not isolated, it polarizes and becomes a dielectric, affecting the electric field and distorting the electric field.
- a strong electric field is formed, high-speed electrophoresis is performed by the strong electric field, and measurement in a short time of several tens of seconds to several minutes is possible, preventing deterioration of the sample and measuring with high accuracy.
- the non-uniform electric field generating means must be able to generate an electric field having a strength sufficient for measuring the state of the fine particles.
- a sufficiently strong electric field is an internal factor such as Brownian motion or thermal motion (molecular motion) of the fine particles to be measured, or an external factor such as vibration of the measuring device or flow due to disturbance of the electrophoresis liquid.
- This is the strength at which the microparticles to be measured have sufficiently large dielectrophoretic mobility, that is, the strength at which S ZN increases.
- the dielectrophoretic mobility depends on the dielectric constant, size, and electrophoretic liquid of the fine particles to be measured, the absolute strength of the required electric field cannot be determined.
- the intensity of the electric field formed in the flow path can be appropriately determined according to the measurement target fine particles.
- the intensity of the electric field formed in the flow path is, for example, usually 3.5 MV / m or less, preferably 1. OMVZm or less.
- the applied frequency is usually 1 OHz to l 0 OM Hz, more preferably 100 Hz to l 0 MHz.
- the electric field formed may be either a DC electric field or an AC electric field, but an AC electric field is preferred.
- the electrode portion may be appropriately cooled. Further, the intensity and frequency of the non-uniform electric field may be changed according to the time or the behavior of the sample.
- the applied AC voltage is usually 2 to 90 V, preferably 1 to 20 V, and the frequency is usually 10 Hz to: LOO MHz, preferably 10 OHz to l OMHz. is there.
- the sample may be placed in a liquid reservoir provided on the inlet side of the flow path and sucked with a pump or the like from the flow path outlet side to be introduced into the flow path.
- the sample may be injected into the flow path using an inkjet device, a capillary, a pipette, tweezers, a dispenser, etc.
- an inkjet device is preferred.
- the ejection port of the ink jet device is arranged at the upper part of the flow channel inlet, and the position thereof can be adjusted so that the sample can be injected along the central axis of the flow channel.
- the entire inner surface of the channel is preferably covered with a hydrophilic film or a biocompatible film.
- the dielectrophoretic liquid is introduced or driven into the dielectrophoresis apparatus by, for example, a syringe pump or an ink jet device.
- the dielectrophoretic solution introducing means or driving means and the flow path are communicated, for example, with a tube or the like.
- the dielectrophoresis solution is preferably defoamed in advance.
- the distance from the center of the microparticle in the flow path (i.e., position) and the position change are. It is measured by any measuring means capable of detecting fine particles in the flow path. Examples of such measurement means include a charge coupled device (CCD) camera, a confocal laser microscope, and a fluorescence microscope.
- CCD charge coupled device
- CCD observation means observation by visible light, fluorescent light, phase interference, differential interference, etc. is possible.
- Detection devices such as these can be placed at the bottom of the chip where the flow path is provided to observe the inside of the flow path. In this way, the entire capillary can be observed with only one camera from the bottom, so it is possible to measure a sample at any position.
- the behavior in the channel cross section may be observed at the entire height. In other words, it is possible to observe all positions in the flow path by scanning at a height position or moving the focal point.
- Means may be provided for calculating dielectrophoretic mobility from the obtained data and thereby calculating the state.
- An example of such a means is a computer. Specifically, the measured position change is stored in a computer together with the frequency applied to the flow path. The computer calculates the dielectrophoretic mobility from the measured position based on the above formula.
- means may be provided for spectralizing as a function of the high frequency electric field frequency to generate a non-uniform electric field. In order to perform spectral analysis, data at various frequencies is required. Therefore, it is preferable to use an apparatus provided with a plurality of flow paths capable of measuring position changes at different frequencies at the same time. The obtained data can be output as a dielectrophoretic mobility spectrum showing frequency dependence.
- the frequency scan showing the dielectrophoretic mobility of the particles.
- data acquired for various states of various fine particles can be collected by a computer and used as a database.
- the dielectrophoretic mobility or the dielectrophoretic mobility spectrum is measured for microparticles in an unknown state, the obtained dielectrophoretic mobility or spectrum is used to determine the status of known microparticles in this database using a computer.
- the state of the fine particles can be identified by collating with the dielectrophoretic mobility or frequency spectrum.
- the dielectrophoresis apparatus may include a means for such collation.
- the method of the present invention is usually a method for measuring the state of fine particles using such a dielectrophoresis apparatus,
- the state can be analyzed based on the dielectrophoretic mobility.
- the measurement can be performed by the following procedure.
- the medium is preferably water, but is not limited to this, and various organic or inorganic solvents can be used.
- the medium may be used as it is, and it is preferable to use it after adjusting the conductivity, density, osmotic pressure, pH, etc. in relation to the fine particles.
- the addition of substances that interfere with the AC electric field is not preferred.
- a sample containing fine particles to be measured is introduced into the flow path or the upper liquid reservoir previously filled with the medium.
- causes flow by pump or sinks By lowering, the fine particles are moved to a predetermined position where the electrodes are provided.
- a sample placed at a predetermined position is observed with a means for measuring the above position, for example, a CCD camera, a laser, an electromagnetic measurement means, etc., and stored in a computer.
- an alternating electric field is applied to the stationary sample, and the behavior of the fine particles in the sample is observed by the above means and stored in a computer. If necessary, the AC electric field strength or frequency may be changed during electrophoresis. Depending on the observation results, for example, if there is sample position data and flow, the electrode exit passage time is obtained.
- the specimen is discharged from the outlet of the channel by the above suction means.
- the obtained data is corrected by the sample shape, position, flow, electric field distribution, electrode shape, etc.
- the dielectrophoretic mobility is calculated.
- detailed analysis can be performed on the state of the target fine particles by changing the initial acceleration and speed. A profile for each frequency is created and a detailed state analysis is performed.
- stimulation electrical, physical, drug-like
- Means for giving such stimulation include, for example, means for dripping a drug onto a sample containing fine particles by a pipette or an inkjet device, etc .; means for arranging a sample containing fine particles in a stimulation device; Means for inserting a terminal or the like into a container containing a sample containing, a means for inserting a drug dropping pipe, an electrode, or an antenna into a flow path system or a wall surface.
- electromagnetic stimulation or impact can be applied by irradiation from outside the flow path.
- the method of the present invention for example, after the step of measuring the position R t of the fine particles,
- measurements with different conditions can be performed sequentially or simultaneously.
- multiple samples fine particles can be measured with a single measurement in the same channel.
- a step of discharging the L0 charge may be further included. That is, if necessary, the fine particles can be separated based on the calculated data, and the discharged fine particles can be reused.
- a database can be created by accumulating the data obtained about the state of fine particles. It is also possible to characterize fine particles by comparing the measured data of individual fine particles with the obtained database.
- measurements may be taken on multiple microparticles that are the same size and structure to identify or characterize their condition.
- examples of such fine particles include biological fine particles such as cells. For example, the ratio of the obtained measurement results to the individual lifetime
- KC 1 solution in the tip (tip with 1 0 0 ⁇ diameter splay) Fill the solution (conductivity 33.5 mS> m) and inject the sample into the solution reservoir at the top of the chip.
- the solution is flowed by a syringe pump (10 n 1 minutes to 100 n 1 minutes), and the sample is transported to the measurement site in the pillar.
- a syringe pump (10 n 1 minutes to 100 n 1 minutes)
- the sample is transported to the measurement site in the pillar.
- the system observation system Sony DFW-X 700 or PI XERA 600 SL with a CU digital camera Start behavior observation.
- the set electrophoretic electric field is generated to start swimming.
- the applied voltage is stopped after a predetermined time or when the sample reaches the center of the capillary or the electrode. Generate a flow of the solution (approximately 10,000 n 1 min), and remove the sample and clean the inside of the capillary. Next, a new sample is introduced. By performing image analysis on the data measured in parallel, the position of the sample in the cab is calculated. The dielectrophoretic mobility is calculated from this sample position.
- Figure 3 shows the distance traveled for each cell.
- the cells cultured in the poor nutrient state ( ⁇ ) and the cells cultured in the normal nutrient state (mouth and ⁇ ) have completely different mobility in the direction of dielectrophoresis. It was. From this, it became clear that the state of the cell surface varies greatly depending on the cell activity. Cells remain insulative in the living state, and show a charged state according to the characteristics of various biopolymers with negative surface charge. However, the cell membrane of dead cells has lost insulation, and the results of this example suggest that the state of the cell membrane surface is reflected in the electrophoretic results. Therefore, by examining the correlation between the dielectrophoretic mobility and the parameters representing the stress state of the cell membrane surface, it is considered possible to identify the cell membrane surface state using the dielectrophoretic mobility. It is.
- a dielectrophoresis profile was obtained for the commercially available Kyodart ⁇ ⁇ yoji yeast.
- the applied voltage was 5 V, and a KCl solution (conductivity: 33.5 mS / m) was used as a solvent.
- the applied frequency was 1 kHz to 10 MHz. The results are shown in Fig. 4.
- yogurt bacteria ⁇
- yeast ⁇
- ⁇ were positively migrating
- ⁇ were negatively migrating.
- Hep G 2 cells derived from human liver are left in nutrient medium or oligotrophic medium at 37 ° C for 60 hours, and separated into the above-mentioned quadrupole electrode dielectrophoresis chip every 10 hours.
- the transferred cells were introduced and the moving distance was measured.
- the solvent was each medium, and the applied frequency was 100 Hz.
- Figure 5 shows the time course of the migration distance of Hep G 2 cells in the nutrient medium.
- the time course of dielectrophoretic mobility a associated with the decrease in cell activity in nutrient medium ( ⁇ ) or oligotrophic medium ( ⁇ ) was calculated and shown in FIG.
- the cells in the nutrient medium were negatively electrophoresed when the incubation time was short, but changed to normal migration as the incubation time became longer (Fig. 5). As can be seen from FIG. 6, it was found that the cells in the nutrient medium had a dielectrophoretic mobility ⁇ of 0 in about 40 hours, and the cell activity was decreasing. On the other hand, the cells in the oligotrophic medium in the oligotrophic medium were slightly larger than the cells in the normal nutrient state in the nutrient medium, but there was no significant difference from the cells in the nutrient medium.
- the anticancer drug doxorubicin hydrochloride was added at various concentrations, incubated for 24 hours, and then Hep G 2 cells were mixed with the above quadruple.
- the cell was introduced into a polar electrode dielectrophoresis measurement chip, the cell migration distance was measured, and the dielectrophoretic mobility ⁇ at each concentration addition was determined.
- the activity of cells in each culture were measure by AT [rho Aze activity, the concentration corresponding to half the normalized value of the activity values, was 50% effective concentration of doxorubicin hydrochloride (EC 5 0) .
- EC 5 . was 0.16 mM for cells in nutrient medium and 0,077 mM for oligotrophic cells.
- a decrease in activity was observed at 0.5 mM or more.
- Figure 7 shows the relationship between the dielectrophoretic mobility ⁇ and the concentration.
- doxorubicin hydrochloride changed the value from around 0.1 mlV [near cells in any medium.
- the change in the threshold value was small at 0.5 mM or more.
- the threshold value corresponding to the obtained EC 50 value concentration was 0.5
- the threshold value when no drug was added was 0,
- the drug concentration when cell activity was lost was lost.
- the corresponding threshold value is set to 1 and the threshold value is normalized, the graph shown in Fig. 8 is obtained.
- the pharmacological effects of drugs can be screened by changes in ⁇ value.
- HepG2 cells derived from human liver were cultured at 37 ° C. for 72 hours in a cell culture well containing a nutrient medium. Three cells were taken out from each well, each cell was introduced into the above-mentioned quadrupole electrode dielectrophoresis measurement chip, the cell migration distance was measured, and the dielectrophoretic mobility ⁇ was determined. Then, for each well, intracellular Ca2 + influx and ATPase activity were measured. Intracellular Ca 2+ influx Lobe F ura-2 was measured, and ATPase activity was measured by phosphate concentration. The relationship between the ⁇ value of individual cells derived from each well, the intracellular Ca 2+ influx, and the activity of each well is shown in Fig. 1 OA Op B. '
- Intracellular Ca 2+ influx and ATPase activity are both indicators related to cell membrane function. Therefore, the state of the cell membrane is thought to affect the ⁇ value.
- 1-palmitoyleu 2-oleoylphosphatidylcholine (POP C) and POP C / 1-palmitoinole 1-oleoylphosphatidylglyceronorole (POPG) are used with a fluorescent probe Prepared by high-temperature hydration method (60 ° C, 3 o'clock) in aqueous solution containing certain force Lucein (ImM) (particle size 2-20m).
- ImM Lucein
- Figure 11 shows the time course of the travel distance R obtained for each ribosome.
- the dielectrophoretic mobility ⁇ of the ribosome composed of POPC calculated from the migration distance was 0.00798, and the ⁇ value was 0.013 1 for the liposome composed of POPC-no-POPG.
- the ⁇ value varied depending on the ribosome composition.
- the method of the present invention it is possible to integrally measure the state of fine particles such as the surface characteristics and internal structure of the fine particles from the dielectrophoretic mobility. According to the method of this effort, it is possible to analyze one individual particle without requiring a large amount of sample, and the analysis speed is also high. Furthermore, by creating a database, it will be possible to identify particles and estimate (discriminate) substances. In addition, since there is no damage due to the addition of a marker substance or contact, the sample used for analysis can be reused, and the fine particles used for analysis can be used for further precision analysis. For example, it is possible to evaluate the difference in the state of the same type of particles (having the same structure) using dielectrophoretic mobility. Therefore, it is particularly useful for applications in fields such as quality control, activity measurement, medicinal efficacy determination, and tailor-made medicine for biological microparticles (cells, bacteria, cell membranes, ribosomes, etc.).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本発明の微粒子の状態を測定する方法は、微粒子を含む試料を誘電泳動液中に導入し、該微粒子の位置R0を測定する工程;該誘電泳動液中の該微粒子に対して不均一電界を発生させ、t秒後の該微粒子の位置Rtを測定する工程;該得られた微粒子の位置R0およびRtから、誘電泳動移動度を算出する工程;および該状態と該算出された誘電泳動移動度とを相関させる工程;を含む。ここで、状態とは、表面の官能基の構造、表面の特異性、表面の電位、大きさ、形状、活性、内部のイオン量分布、内部のイオン成分、内部の組成、および内部の構造からなる群より選択される少なくとも1つである。本発明の方法によれば、微粒子の表面特性および内部構造などの微粒子の状態、例えば、細胞の活性度や生死などを一体的に測定することができる。
Description
明 細 書 誘電泳動による微粒子の状態の測定方法 技術分野
本発明は、 誘電泳動によつて微粒子の状態を測定する方法およぴ該方法に 用いるための装置に関する。 背景技術
生体微粒子 (細胞、 細菌、 細胞膜など) の品質管理、 活性度測定、 薬効 判定、 テーラーメイド医療などの分野で、 生体微粒子の状態測定が必要とさ れている。 通常、 生体微粒子の生死や活性などの状態測定には、 細胞内カル シゥムイオン濃度、 c AM P濃度、 細胞外微小 p H、 細胞膜電位などを指標 とする測定方法;酸素、 栄養、 またはマーカーの取り込み量を測定する方 法;細胞膜の張りを針などで接触測定する方法などがある。 し力 ^し、 前 2者 は、 多数の細胞と時間が必要であり、 さらに、 マーカーとして蛍光物質など を使用するため、 一旦測定に使用した試料を再利用することは困難である。 一方、 後者は、 直接接触するために対象試料に影響を及ぼす。
誘電泳動移動度は、 泳動される試料によって異なる値を持つことが知られ ている。 試料は、 外部からの不均一な電界中に配置されることによって分極 し、 誘電泳動力が発生して電極に対して正または負の方向に移動する。 また、 誘電泳動は、 無電荷試料おょぴ巨大試料にも適用可能である。 しかし、 微小 試料に対しては、 誘電泳動力が小さくなり、 移動度も小さくなる。 そのため、 分析に必要な感度が得られず、 誘電泳動移動度そのものを観察する装置は存 在しなかった。
近年、 誘電泳動特性を決定することによって、 流体中の特定の種類の粒子
の存在および zまたは相対濃度を識別する方法およびそのための装置が報告 されている (例えば、 特表 2 0 0 1— 5 0 0 2 5 2号公報参照). 。 この方法 では、 多重電極アレイが収容されたチャンバ内に試料を注入し、 内部の電極 を同時に異なる周波数で励起している。 このチャンバ内に収容された多重極
5 アレイは、 櫛状の一連の離間した電極からなり、 その電極の先端部は共通設 置電極の近くに配置されているため、 注入された試料は各電極間の移動が自 在に可能である。 したがって、 単一種類からなる試料がチャンバに注入され、 各電極に異なる一連の誘電泳動電界が同時に形成される場合、 試料液中の粒 子はその誘電特性に応じた 1つの電極に選好的に集結することになる。 この0 特定周波数を異なる粒子タイプに対する特徴的周波数とし、 例えば、 溶媒か ら主要な粒子を誘電泳動により分離するために利用することができる。 また、 単一種に精製されている試料の均質度を検查することもできる。 あるいは、 注入試料が混合物の場合は、 混合物中に存在するある種類の粒子に対する適 切な周波数でのデータおよび粒子カウント数カゝら、 既知の粒子の混合物の相
.5 対濃度を決定することができる。
また、 四重極電極による誘電泳動力とキヤピラリー内の流速分布の複合効 果を利用した誘電泳動法が報告されている (特開 2 0 0 1— 2 4 2 1 3 6号 公報参照) 。 誘電率、 粒径などのパラメータにより、 電荷を持たない粒子や 表面電荷が同じである粒子を効率よくかつ簡便な手段で、 検出、 計測、 選別、
:0 または分離できることを示している。 この方法は、 従来の電気泳動による粒 子の分離の限界を超えること、 つまり、 電気泳動では不可能なサイズの粒子 (例えば、 40kbp以上の D NA) の分離、 電荷がない物質の分離、 あるいは 表面電荷が同じ物質の検出、 計測、 選別、 または分離を主目的としており、 粒子の特性化や同定を目的としたものではない。 こ.のキヤピラリーを使用し
:5 て粒子の特性化を行うためには、 周波数を変えた測定を繰り返し実施する必 要があり、 多大な手間と時間を要する。
これらとは別に、 誘電泳動を利用して、 流体中に存在する微量な粒子を特 性化または同定するための装置が開発されている (特開 2 0 0 4 - 2 1 2 2 7 2号公報参照) 。 この装置は、 例えば、 流体中に存在する物質または粒子 を同定するため、 あるいは精製試料の均質度を分析するために使用され得る。 また、 化学的プロセス中にサンプリングされる化合物の均質性 (粒度や化学 的組成) も、 モニターすることができる。
微生物の活 'ί生を、 交流による誘電特 1"生を利用したインピーダンス値に基づ いて測定するための装置もある (特開 2 0 0 3— 2 2 4号公報) 。 この装置 を用いると、 誘電泳動によって生菌のみが濃縮され、 電極間のインピーダン ス値から微生物の数が算出される。 この装置では、 微生物の生死のみの判定 が可能であり、 微生物の活性自体 (状態) は測定されず、 しかも生死の判定 のために多量の試料を必要とする。
物質を識別および分離するために、 粒状物質およぴ溶解物質の周波数依存 性の誘電およぴ導電特性と、 懸濁輸送培地の特性の使用とを組み合わせた方 法もある (特表 2 0 0 0— 5 0 5 5 4 5号公報および F. F. Beckerら、 Proc. Natl. Acad. Sci. USA, 1995年, 92卷, pp. 860- 864参照) 。 この装置は、 流体の流れにより運ばれた物質が、 誘電泳動力によって流体内で分離される。 例えば、 正常細胞からの癌細胞の分離、 正常赤血球からの感染赤血球の分離、 核酸の分離などの細胞混合物の分離に利用され得ることが開示されている。 このように、 いずれの方法においても、 誘電泳動に基づく物質の検出、 分析、 または分離 ·選別を目的としており、 対象試料の状態についての測定は行わ れていない。
誘電泳動に基づく対象試料の状態の測定としては、 細胞の増殖活性の測定 が行われている (箱田優ら、 化学工学会 第 6 9年会 研究発表講演予稿集、 Q 1 1 7、 2004年およぴ特開 2 0 0 5— 2 2 4 1 7 1号公報参照) 。 これら の文献では、 細胞に作用する誘電泳動力と重力との釣り合いにより細胞を静
止させることによって、 細胞径に依存しない誘電特性を細胞活性の指標とし ている。 すなわち、 当該指標は直接的な細胞表面の情報を含んでいない。 発明の開示
本発明は、 誘電泳動によって微粒子の状態を測定する方法おょぴ該方法に 用いるための装置を提供することを目的とする。
本発明は、 微粒子の状態を測定する方法を提供し、 該方法は、
微粒子を含む試料を誘電泳動液中に導入し、 該微粒子の位置 R 0を測定す る工程;
該誘電泳動液中の該微粒子に対して不均一電界を発生させ、 t秒後の該微 粒子の位置 R tを測定する工程;
該得られた微粒子の位置 R 0および R tから、 誘電泳動移動度を算出するェ 程;および
該状態と該算出された誘電泳動移動度とを相関させる工程;
を含み、
該状態が、 表面の官能基の構造、 表面の特異性、 表面の電位、 大きさ、 形 状、 活性、 内部のイオン量分布、 内部のイオン成分、 内部の組成、 および内 部の構造からなる群より選択される少なくとも 1つである。
1つの実施態様では、 上記不均一電界は多重極電極により発生され、 該多 重極電極は対称に配置されている。
さらなる実施態様では、 上記誘電泳動液が、 垂直方向に配置された内径 1 0 /z mから 5 0 0 μ πιのキヤピラリー流路内にあり、 そして上記電極は、 0 . 1 mmから 2 mmの長さであって、 該キヤビラリ一流路に沿つて配置される。 さらなる実施態様では、 上記電極の表面は、 上記キヤビラリ一流路の內部 に露出し、 そして該電極を支持する壁は、 該キヤビラリ一流路から隔離され ている。
■ 他の実施態様では、 上記微粒子は生体微粒子である。
ある実施態様では、 上記測定は、 複数の微粒子について行われる。
さらなる実施態様では、 上記複数の微粒子の大きさおよび構造は同じであ る。 あるいは、 上記複数の微粒子の状態は異なっている。
5 1つの実施態様では、 該方法は、 上記相関させる工程の後に、
上記複数の微粒子の状態について比較する工程;
をさらに含む。
好適な実施態様では、 上記状態は活性であり、 そして上記相関させる工程 によつて該活性が評価される。
ίθ 別の実施態様では、 該方法は、 上記微粒子の位置 R tを測定する工程の後 に、
該微粒子に刺激を与える工程;
該刺激を受けた微粒子の位置 R sを測定する工程;および
.該得られた微粒子の位置 R tおよび R sから、 誘電泳動移動度を算出するェ L5 程;
をさらに含む。
さらに別の実施態様では、 上記微粒子を含む試料に、 予め刺激が与えられ ている。
ある実施態様では、 上記刺激は薬液添加である。 より好適には、 薬液の添 10 加量が異なっている。
さらなる実施態様では、 上記生体微粒子は、 ヒト細胞であり、 肝臓由来細 胞であり得る。
1つの実施態様では、 上記誘電泳動液への前記試料の導入は、 インクジェ ットデパイス、 キヤビラリ一、 ピペット、 ピンセッ.ト、 またはデイスペンサ 5 一を用いて行われる。
ある実施態様では、 上記不均一電界の強度および周波数を、 時間または試
料の挙動に応じて変化させる。
ある実施態様では、 該方法は、 上記位置 R tまたは R sを測定した後に、 上 記微粒子を含む試料を排出する工程をさらに含む。
ある実施態様では、 該方法は、 上記誘電泳動移動度に基づいて状態を解析 する工程をさらに含む。
1つの実施態様では、 上記状態は、 上記微粒子の表面構造または官能基で ある。
本発明はまた、 上記のいずれかに記載の微粒子の状態を測定する方法に用 いるための誘電泳動装置を提供し、 該装置は、
流路;
該流路に備えられた、 不均一電界を発生させるための不均一電界発生手 段;および
該流路中の微粒子の位置を測定する手段;
を備え、
該不均一電界発生手段は、 該微粒子の状態の測定に十分な強度の電界を発 生し得る。
1つの実施態様では、 上記不均ー電界発生手段は、 多重極電極であり、 該 多重極電極は、 同心円状対称性を有する不均一電界を発生するように対称に 配置される。
ある実施態様では、 上記装置は、 さらに、 上記測定した微粒子の位置から 誘電泳動移動度を計算して、 該誘電泳動移動度から該微粒子の状態を計算す るための手段を備える。
本発明によれば、 誘電泳動移動度から微粒子の表面特性および内部構造な どの微粒子の状態を一体的に測定することが可能である。 例えば、 誘電泳動 により得られる細胞径に依存する誘電特性は、 細胞表面の情報も含むため、 細胞内部だけでなく、 細胞表層の状態を識別できる。 本発明の方法によれば、
大量の試料を必要とせずに、 微粒子 1個体の分析が可能であり、 分析速度も 速い。 さらに、 データベースを作成すると、 微粒子の同定が可能となり、 物 質の推定 (判別) 可能となる。 また、 マーカー物質の添加、 接触による損傷 などがないため、 分析に供した試料を再利用でき、 分析に供した微粒子をさ らなる精密分析に供することもできる。 したがって、 品質管理にも適用可能 である。 図面の簡単な説明
図 1は、 本発明に用いる誘電泳動装置の構成を模式的に示す上断面図であ る。
図 2は、 本発明に用いる誘電泳動装置の構成を模式的に示す横断面図であ る。
図 3は、 異なる条件下で培養した各細胞の移動距離の経時変化を示すグラ フである。
図 4は、 ヨーグルト菌および酵母菌についての、 印加周波数と誘電泳動移 動度との関係を示すグラフである。
図 5は、 栄養培地中での H e p G 2細胞を放置した場合の、 細胞の移動距 離の経時変化を示すグラフである。
図 6は、 栄養培地または貧栄養培地中に H e p G 2細胞を放置した場合の、 細胞の誘電泳動移動度の時間変化を示すグラフである。
図 7は、 ドキソルビシン濃度と細胞の誘電泳動移動度ひとの関係を示すグ ラフである。
図 8は、 ドキソルビシンの E C 5。値に基づいて、 α値を規格化した場合の ドキソルビシン濃度と細胞の誘 ¾泳動移動度ひとの関係を示すグラフである。 図 9は、 細胞の誘電泳動移動度 値から推定した、 種々の抗癌剤の E C 5。 値を示すグラフである。
図 1 0は、 各ゥエルに由来する個々の細胞の α値と、 各ゥエルの細胞内 C a 2 +流入 (A) および AT Pァーゼ活性 (B ) との関係を示すグラフである。 図 1 1は、 各リボソームについて得られた移動距離の経時変化を示すグラ フである。 発明を実施するための最良の形態
本発明において、 「微粒子」 とは、 約 1 n m〜約 l mmのサイズを有する 無機微粒子、 有機微粒子、 生体微粒子などの種々の微粒子をいう。 このよう な微粒子としては、 シリカ、 アルミナなどの無機金属酸化物;金、 チタン、, 鉄、 二ッケルなどの金属;シランカツプリング処理などの操作によつて官能 基が導入された無機金属酸化物;ァガロース、 セルロース、 不溶性デキスト ランなどの多糖類;ポリスチレンラテックス、 スチレン一ブタジエン共重合 体、 スチレンーメタクリル酸共重合体、 ァクロレイン一エチレングリコーノレ ジメタタリレート共重合体などのポリマー粒子;微生物 (酵母、 細菌、 ウイ ルス) 、 細胞 (赤血球、 白血球、 ウィルス感染細胞など) 、 糖、 核酸 (D N A、 R NAなど) 、 タンパク質 (酵素など) 、 脂質などの生体微粒子などが 挙げられる。 例えば、 ラテックスビーズなどの非生体粒子が、 微生物、 細胞、 ウィルス、 プラスミドなどの生体物質、 あるいは化学活性種と結合していて もよくもしくはこれらによって被覆されていてもよい。 生体微粒子は、 血清、 血漿、 髄液、 滑液、 リンパ液などの体液、 または尿、 糞便のような排泄物な どの生体由来試料の処理物であってもよい。 このような処理物は、 好適には 水や緩衝液などで適宜希釈、 溶解、 または懸濁されている。 生体微粒子には、 化学的に合成されたものも包含される。
本発明において、 「微粒子の状態」 とは、 微粒子の表面特性のみならず、 内部の組成、 内部の構造などを含めた微粒子の総合状態をいう。 表面特性と は、 表面構造 (官能基の構造、 特異性など) 、 大きさ、 誘電率、 導電率、 表
面電荷、 形状などをいう。 内部の組成および内部の構造とは、 微粒子の活性、 微粒子内部のイオン量分布、 イオン成分、 粒子の密度、 物理的構造などをい う。 総合状態とは、 これらの表面特性や内部構造などを含む微粒子の総合的 な状態をいう。 すなわち、 微粒子の構成物の組成および分布によって微粒子 表面に生じる電位と、 微粒子から放出される物質おょぴ溶媒のイオンにより 形成される電位が重ね合わされて作成される微粒子外部の電位とによる、 総 合状態を示す。 例えば、 微粒子が細胞である場合、 その状態とは、 細胞の生 死、 活性、 親和性などであり得る。
微粒子の状態は、 活性や構造によって相対電位が異なるため、 誘電泳動移 動度を測定することによって一体的に測定することができる。 また、 外形が 変化することによって、 溶媒から受ける力が変化して誘電泳動移動度が影響 を受けるので、 外形的な状態変化の測定も可能である。 具体的には、 次のと おりである。 交流電場印加によって印加電場と微粒子とが形成する電荷 (電 位状態) によって微粒子が泳動される。 この泳動力に関与する電位は、 電場 印加最初期には表面電位のみであるが、 時間を経るとともに微粒子内部も分 極されることによって独自の電場を作成し、 微粒子外部においても、 微粒子 に起因する電荷および溶媒に起因する電荷が移動し、 独自の電場を形成する。 そのため、 泳動力に影響を及ぼす電位は、 これらの電場の重ね合わせによつ て作られる総体の電位となる。 したがって、 誘電泳動を観察することによつ て微粒子表面、 微粒子内部、 および微粒子外部の状態を一体的に測定するこ とが可能となる。
例えば、 細胞において、 細胞壁に分布する官能基は一定ではなく、 細胞の 発生および成長の度合いにより、 官能基の分布や種類も変化する。 また、 細 胞膜自体や細胞膜の特異性 (選択透過性、 選択吸着性など) も、 細胞の活性 とともに変化する。 したがって、 細胞に電位をかけると、 その誘電泳動移動 度により細胞の状態 (例えば、 活性) の変化を読み取ることができる。
ところで、 従来は、 多くの誘電泳動装置において、 個別粒子の詳細測定を 良好に行うことが困難であった。 一般的な誘電泳動装置では、 一様に強度が 変化する不均一電場が形成されないため、 粒子の経路によって誘電泳動力が 異なり、 最終的な泳動距離が変わってくる。 このため、 粒子の泳動経路を把 握することが困難であった一般的な誘電泳動装置では、 粒子の状態をあらわ す線形パラメータが得られないため、 個別の状態を測定することはできなか つた。 また、 このような装置では、 電極間距離が大きいこと、 試料に対して 十分に一様な電界をかけることができないことなどのため、 電場強度が弱く、 個別粒子に対する測定精度が悪く、 詳細な粒子の状態を測定することができ なかった。
具体的には、 D N Aなどのナノメートルオーダーの生体微粒子では、 大き さに対して微粒子自体の持つ電荷に大きな差が生じるので、 このような装置 においても比較的測定しやすい。 一方、 細胞などのマイクロメートルオーダ 一の生体微粒子では、 大きさに対する比率的には電荷的には類似すると考え られている。 そのため、 個々の状態を調べるためには、 大きな感度を得るた めに十分強力な泳動電場が必要である。 し力、し、 電極間距離が大きいと十分 な電場を印加するために、 大きな電圧が必要となり電気分解が生じる。 また、 従来の多くの誘電泳動装置で使われているような、 試科よりも小さい 2次元 電極は、 試料に十分に一様な電界を掛けることができないため、 電極間距離 が小さい場合であっても、 結果的に十分な泳動力を印加することができない。 さらに、 弱い電場に起因する長時間測定 (例えば、 1 0分以上) は、 生体試 料に大きな負荷がかかるため、 測定中に試料の劣化をまねき、 結果精度の良 い測定を困難にする。
誘電泳動においては、 対象試科を浮遊させる必要がある。-誘電泳動力で浮 遊させる場合は、 垂直方向 (z軸方向) に対して電界が均一でないため、 Z 軸の位置に応じて泳動力が異なる。 また、 重力などとの外力で釣り合いをと
ることにより浮遊させる場合は、 うまく釣り合いが取れた場合にしか測定が できない。 不均一電場の分布が不明である場合には、 測定のための十分な線 形なパラメータを得ることができない。 さらに、 H. Wataraiら (Langmuir, 1997年, 13巻, 8号, pp. 2417-2420) 、 H. ffataraiら (Chem. Lett. , 1998年: 3号, ρρ, 279 - 280) 、 S. Tsukaharaら (Langmuir, 2000年, 16巻, p. 3866) および I. Ikedaら (Anal. Sci. , 2003年, 19卷, pp. 27 - 31) に記載のような 平面四重極の場合は、 上記の電場強度の問題があり、 また 3次元四重極の場 合も、 重力の影響を排除するために、 試料と溶液との密度を同等にして浮遊 させているため、 試料ごとに溶液を調整する必要があり、 個々の試料を同条 件で比較することは困難である。 また、 水平な数十 mmの長さのキヤビラリ 一を使用しているため、 リアルタイムの粒子移動観察には複数のカメラを必 要とし、 一基のみのカメラでは、 端面のみしか観察できない。
このような問題点は、 本発明によって解決される。 すなわち、 対称な 3次 元多重極電極および垂直方向に配置したマイクロキヤビラリ一を使用するこ とによって、 位置依存性のない誘電泳動移動度 αで線形的に高感度で試料の 状態を評価することが可能となった。
本発明において、 微粒子の誘電泳動移動度は、 以下の式中の αで表され る:
1 0 g R t = 1 o g R 0 + a t
ここで、 円座標の中心を R = 0とし、 誘電泳動開始位置は R 0、 そして t秒 後の中心からの距離は R tで表される (図 1を参照のこと) 。 距離は、 好ま しくは、 不均一電界発生手段が設けられている面における水平距離である。 あるいは、 試料の重力による沈降速度や泳動液の流速を考慮して、 試料の移 動速度 (移動時間) を解析するこ'とも可能である。 . - 例えば、 四重極電極を用いる場合、 誘電泳動力く FDEP>は、 以下の式で表さ れる:
<FDEP> = 2π /3 £mrdep 3Re[Ke]V|Erms|2
ここで、 ]3は装置係数、 rdepは粒子半径、 εΠは媒体の誘電率、 および Re[K e]は Clausius- Mossotti因子の実数部である。 したがって、 誘電泳動力は、
<FDEP> oc V|Erms|2
5 であり、 V|Erras|2に比例する。
四重極の場合には、 電場は、 VlErrasl2 = 2RV2 rms/d4 (ここで、 Vは印加電圧 であり、 dは電極間距離である) となる。 したがって、 粘性との釣り合いに より、
Fst= 6π rjre dR/dt - く FDEP> = 2π β ε mrdep¾e [Ke] 2RV2 rms/d4 . .0 ここで、 ηは溶媒の粘性、 および Rはキヤビラリ一中心 R。よりの距離であ る。 両辺を Rで除すると、
1/R dR/dt = 2π β £ mrdep¾e[Ke]2V2 rm d4 =a となる。 この式の右辺は、 装置おょぴ測定条件によって一義的に決定される ため、 αとし、 積分すると、
■5 1 nR=a t +C (ここで、 Cは積分定数)
となる。 ここで、 泳動開始時 (t = 0) の試料の位置を R。とすると、
l nR。 = C
となるので、
1 nR= a t + 1 n R。
:0 となる。
このように、 誘電泳動移動度 αは、 位置依存性がないため、 泳動開始位置 およぴ終了位置のみで簡便に評価可能である。
誘電泳動移動度は、 一般的に、 誘電泳動装置を用いて測定される。 微粒子 の状態の測定に十分な強度の電界を発生できる誘電泳動装置であれば、 特に 5 限定されない。 通常、 誘電泳動装置は、 流路、 該流路に備えられた不均一電 界を発生させるための不均一電界発生手段、 および該流路中の微粒子の位置
を測定する手段を備える。 ここで、 流路とは、 微粒子を含む液体の通路であ つて、 不均一電界発生手段を備え、 入口おょぴ出口を有する室部分をいう。 誘電泳動装置は、 図 1の上新面図および図 2の横断面図に示すように、 例 えば、 キヤビラリ一などの流路の内部または外部に、 不均一電界発生手段と して少なくとも一対の電極を備える。
流路がキヤビラリ一である場合、 キヤピラリーの内径は、 通常、 10 O n m〜 5 mmであり、 好ましくは 10 μ π!〜 1 mm、 より好ましくは 10 μ m 〜 500 mである。 キヤビラリ一の材質は、 絶縁性物質 (非導電性物質) であることが好適である。 なお、 キヤビラリ一の長さは、 通常、 約 0. 1〜 5 mm程度、 より好ましくは 0. lnim〜2mmである。 複数の流路が 1つ の基板上に配置され、 ワンチップ化されていてもよい。 本発明においては、 流路は垂直方向に配置されることが好ましい。
流路內に設けられる電極自体の幅も、 流路の内径に応じて、 太くても、 ヮ ィヤーのように細くても差し支えない。 負の誘電泳動力を受ける試料が集合 する部位およびその上下方向に電極が存在しないような電極構造をとればよ い。 電極の形状は、 電極間に空間的に不均一な電界を形成し得るものであれ ばよい。 電極は、 多重極電極であることが好ましく、 電極数は、 四重極に限 らず、 二重極や八重極でもよい。 各電極の断面形状は、 その電極断面の境界 がラプラス方程式を満足する関数 f (x, y)で表されるように形成されてい ることが好ましい。 例えば、 四重極、 六重極、 および八重極の場合、 それぞ れ、 f (x, y)は、 a (X 2— y 2) + b X y、 a ( x 3 - 3 x y 2) + b ( y 3 - 3 x2y)、 および a (x4— 6 x2y2+y4) + b ( x 3 y— x y 3)で表される。 ここで、 aおよび bは定数である。 具体的には、 例えば四重極の場合は、 ほ ぼ双曲線状であることが好ましい。 形成される不均一電界は、 流路の中心軸 または中心部に対して対称であることが好ましい。 より好ましくは、 多重極 電極は、 同心円状対称性を有する不均一電界を発生するように対称に配置さ
れる。 さらに、 電極は、 キヤビラリ一流路に沿って、 すなわち、 垂直方向に 配置されることが好ましい。
本発明においては、 電極は、 四重極電極であることが好ましい。 多重極電 極の中でも四重極電極については電場が十分に解析されており、 上記のよう に誘電泳動移動度である α値のみの測定によって、 状態を測定することが可 能である。 なぜなら、 通常の電極構造によって発生される不均一電場で実測 される移動度はテンソル量になるので、 位置時間依存的であるからである。 すなわち、 四重極電極のように電場に対称性がある場合は、 値は (厳密に は、 動径方向に対して) スカラー量となるため、 その取り扱いが容易である。 本発明においては、 通常、 キヤビラリ一などのマイクロスケールで誘電泳動 が行われるため、 重力の影響による ζ軸方向の移動度を無視することができ、 ひ値は近似的にスカラー量として取り扱われ得る。 例えば、 長さ. 5 0 0 μ πι 〜 l mmの電極をキヤビラリ一に沿って垂直方向 (z軸に平行) に配置する と、 試料が z軸方向に移動しても電場形状が変わらず誘電泳動力に変化がな い。 また、 Z軸方向への移動を許すために試料を浮遊させる必要がなく、 誘 電泳動液への自由度も高く、 同条件で試料の比較を行うことが可能である。 さらに、 電極方向 (Z軸に対して垂直な平面) への外力が働いていないため、 試料が電極へ付着し、 あるいは有効測定範囲へ移動しそうになつても、 電圧 印加を停止するだけで試料の移動を止めることができる。 試料の位置、 外力 などの釣り合いを考える必要がなレ、。
電極は、 例えば、 炭素や貴金属の導電性物質からなり、 その構造は誘電泳 動力が流路の中心軸に対して垂直な方向に不均一電場を生じるものであれば よい。 電極の直径は分析すべき微粒子に応じて異なる。 通常、 直径 1 0 O n m〜 5 mmであり、 好ましくは 1' 0 m〜 1 mmである。 電極の長さは、 通 常、 上記流路の長さと同様であり得る。 電極と電極との間隔は、 微細加工精 度に依存し、 通常 5 0 0 m以下 0 . 1 πι以上、 好ましくは 7 5 z m以下
Ι μ πι以上である。 各流路に配置された多重極電極の直径および間隔は、 例 えば、 ウィルス、 プリオン、 タンパク質、 D N Αのような生体微粒子、 被覆 されたラテックスビーズのような化学的活性粒子などの、 測定対象微粒子に 応じて変更することも可能である。 電極間距離が測定対象物質のサイズに比 ベて著しく大きいと、 十分な電界強度の不均一電界を形成することができな い。 なお、 本発明においては、 測定対象微粒子は、 流路に導入された時点で の流路の中心軸からの距離は異なる。
また、 電極の表面は、 キヤビラリ一流路の内部に露出し、 そしてこの電極 を支持する壁は、 該キヤビラリ一流路から隔離されていることが好ましい。 電極を支える壁をキヤビラリ一流路より十分離すことによって、 強くかつ歪 みの少ない電場を形成することができる。 これは、 電極とキヤピラリーとの 間に非導電性物質が存在すると、 この物質が誘電体となり電界を弱めるため、 電極を支持する壁とキヤビラリ一流路との距離をとるなどの手段で電気的に 隔離されていない場合には、 分極し誘電体となって電場に影響を与え、 電場 を歪めるためである。 強い電場が形成されると、 強い電場によって高速泳動 され、 数十秒から数分の短時間測定が可能となり、 試料の劣化を防ぎ、 高精 度に測定できる。
本発明においては、 不均一電界発生手段は、 微粒子の状態の測定に十分な 強度の電界を発生できなければならない。 ここで、 十分な強度の電界とは、 測定対象微粒子のブラウン運動、 熱運動 (分子運動) などの内的要因、 ある いは測定装置の振動、 泳動用液体の乱れによる流れなどの外的要因による惑 乱に対して、 測定対象微粒子が十分に大きな誘電泳動移動度を有する強度、 すなわち S ZNが高くなる強度をいう。 ただし、 誘電泳動移動度は、 測定対 象微粒子の誘電率、 サイズ、 泳動用液体などに依存するので、 必要な電界の 絶対的な強度を定めることはできない。 したがって、 流路内に形成される電 界の強度は、 測定対象微粒子に応じて適宜決定され得る。
流路内に形成される電界の強度は、 例えば、 通常 3. 5MV/m以下、 好 ましくは 1. OMVZm以下である。 印加周波数は通常 1 OHz〜l 0 OM Hz、 より好ましくは 100Hz〜l 0 MHzである。 本発明において、 形 成される電界は、 直流電界おょぴ交流電界のいずれでもよいが、 交流電界が 好ましい。 電界強度を強くすると、 発熱により分析が困難になる場合がある。 このような可能性がある場合には、 電極部分を適宜冷却するなどすればよい。 また、 不均一電界の強度および周波数は、 時間または試料の挙動に応じて変 化させてもよい。
代表的な四重極電極の場合、 印加する交流電圧は、 通常 2〜90V、 好ま しくは 1〜20Vであり、 そして周波数は、 通常 10Hz〜: L O O MH z、 好ましくは 10 OHz〜l OMHzである。
試料を、 例えば、 流路の入口側に設けられた液溜め部分に置き、 流路出口 側からポンプなどで吸引することによって、 流路内に導入させてもよい。 あ るいは、 インクジェットデバイス、 キヤビラリ一、 ピペット、 ピンセット、 ディスペンサーなどを用いて流路に試料を注入してもよく、 この場合、 イン クジェットデパイスが好ましい。 インクジェットデバイスの吐出口は、 流路 入口の上部に配置され、 その位置は、 流路の中心軸に沿って試料を注入でき るように調整され得る。
試料が流路の壁面または電極に付着するのを防ぐために、 例えば、 流路の 内表面全体が、 親水性膜または生体親和性膜で被覆されていることが好まし い。
誘電泳動液は、 例えば、 シリンジポンプ、 インクジェットデパイスなどに よって誘電泳動装置に導入され、 あるいは駆動される。 誘電泳動液の導入手 段または駆動手段と流路とは、 例えばチューブなどで連通されている。 気泡 の発生を防ぐために、 誘電泳動液は、 予め脱泡されていることが好ましい。 流路中の微粒子の中心からの距離 (すなわち、 位置) および位置変化は、.
流路中の微粒子を検出できる任意の測定手段によって測定される。 このよう な測定手段としては、 例えば、 電荷結合デバイス (C C D) カメラ、 共焦点 レーザー顕微鏡、 蛍光顕微鏡などが挙げられる。 C C D観察手段としては、 可視光、 蛍光光、 位相干渉、 微分干渉などによる観察が可能である。 これら のような検出デバイスを流路が設けられているチップの下部に配置し、 流路 内を観察できる。 このように、 下部より一基のみのカメラでキヤピラリー全 体を観察することができるので、 どこの位置の試料も測定可能である。 また、 通常の光学顕微鏡を用いた場合も、 流路内に焦点を合わせ、 微粒子の位置を 測定することが可能である。 流路断面内の挙動を全高さで観察してもよい。 すなわち、 高さ位置でのスキャンまたは焦点の移動により、 流路内の全位置 を観察することが可能である。
得られたデータより誘電泳動移動度を計算し、 それによつて状態を計算す るための手段を備えてもよい。 このような手段としては、 コンピュータが挙 げられる。 具体的には、 測定された位置変化は、 流路への印加周波数と共に コンピュータに記憶される。 コンピュータは、 測定した位置から、 上記の式 に基づいて誘電泳動移動度を算出する。 必要に応じて、 不均一電界を発生さ せるための高周波電界周波数の関数としてスぺクトル化する手段を備えても よい。 スペクトルィ匕するためには、 種々の周波数によるデータが必要である ため、 同時に異なる周波数における位置変化が測定可能な複数の流路が備え られている装置を用いること好ましい。 得られたデータは、 周波数依存性を 示す誘電泳動移動度スぺクトルとして出力され得る。
複数の流路のそれぞれに印加した種々の周波数とその流路中の微粒子の誘 電泳動移動度とを、 デ一タとしてコンピュータに取り込むことにより、 微粒 子の誘電泳動移動度を示した周波数スぺクトルを得ることができる。 あるい は、 種々の微粒子の種々の状態について取得したデータをコンピュータによ' つて集積し、 データベース化することも可能である。
未知の状態の微粒子について誘電泳動移動度または誘電泳動移動度スぺク トルを測定した場合、 得られた誘電泳動移動度またはスペク トルを、 コンビ ユータを用いてこのデータベース中の既知の微粒子の状態の誘電泳動移動度 または周波数スぺクトルと照合することにより、 微粒子の状態の同定を行う ことができる。 誘電泳動装置は、 このような照合のための手段を備えていて もよい。
本発明の方法は、 通常、 このような誘電泳動装置を用いて微粒子の状態を 測定する方法であり、
微粒子を含む試料を誘電泳動液中に導入し、 該微粒子の位置 R 0を測定す る工程;
該誘電泳動液中の該微粒子に対して不均一電界を発生させ、 t秒後の該微 粒子の位置 R tを測定する工程;
該得られた微粒子の位置 R 0および R tから、 誘電泳動移動度を算出するェ 程;および
該状態と該算出された誘電泳動移動度とを相関させる工程;
を含む。 このように相関させることによって、 誘電泳動移動度に基づいて状 態を解析することができる。
具体的には、 例えば、 以下のような手順で測定が行われ得る。
まず、 測定すべき微粒子に適合した媒体を誘電泳動液として選定する。 媒 体としては水が好ましいが、 これに限定されるものではなく、 各種の有機ま たは無機の溶媒を使用することができる。 媒体はそのまま使用してもよく、 微粒子との関係において、 導電率、 密度、 浸透圧、 p Hなどを調整して使用 することが好ましい。 しかし、 交流電場に支障がある物質の添加は好ましく ない。 ' '
次いで、 予め上記媒体で満たした流路内または上部液溜めに、 測定すべき 微粒子を含む試料を導入する。 ポンプによって流れを起こすか、 あるいは沈
降させることによって、 微粒子を電極が備えられた所定の位置に移動させる。 所定の位置に配置された試料を、 上記の位置を測定する手段、.例えば、 C C Dカメラ、 レーザー、 電磁気的測定手段などで観察し、 コンピュータに記 憶させる。 '
次いで、 静止状態の試料に交流電場を印加し、 試料中の微粒子の挙動を上 記手段で観察し、 コンピュータに記憶させる。 必要に応じて、 泳動中に交流 電場強度または周波数を変化させてもよい。 観察結果に応じて、 例えば、 試 料の位置データおよび流れがある場合は、 電極出口通過時間を得る。
観察終了とともに、 上記の吸引手段によつて試科を流路出口から排出させ る。 得られたデータについて、 試料形状、 位置、 流れ、 電場分布、 電極形状 などによりデータ補正が行われる。 補正したデータに基づいて、 誘電泳動移 動度が算出される。 また、 初期加速度、 速度変化などにより、 対象微粒子の 状態について、 詳細に解析が行われ得る。 各周波数に対するプロファイルを 作成し、 詳細な状態分析が行われる。
あるいは、 泳動前または泳動中の微粒子に対して、 刺激 (電気的、 物理的、 薬物的) を与えることが可能である。 このような刺激を与えるための手段と しては、 例えば、 微粒子を含む試料に薬物を'ピペットやインクジェットデパ イスなどにより滴下する手段;微粒子を含む試料を刺激用デバイス内に配置 する手段;微粒子を含む試料を含む容器に端子など揷入する手段;流路系ま たは壁面に薬物滴下用パイプ、 電極、 またはアンテナを差し込む手段などが 挙げられる。 このような刺激を与えるための手段により、 分析前および分析 中に微粒子に対して刺激を与える。 あるいは、 電磁的刺激や衝撃などは、 流 路の外部からの照射などによって刺激を与えることができる。
この場合、 本発明の方法は、 例えば、 上記微粒子の位置 R tを測定するェ 程の後に、
該微粒子に刺激を与える工程;
該刺激を受けた微粒子の位置 R sを測定する工程;および
該得られた微粒子の位置 R tおよび R sから、 誘電泳動移動度を算出するェ 程;
をさらに含む。 これらのデータについても、 詳細に解析が行われ、 状態分析
5 力 s行われる。
複数の流路が設置されている場合は、 条件を変更した測定を逐次または同 時に実行することが可能である。 また、 同一流路内の 1回の測定で、 複数の 試料 (微粒子) の測定が可能である。
本発明の方法は、 位置 R tまたは R sを測定した後に、 上記微粒子を含む試
L0 料を排出する工程をさらに含んでもよい。 すなわち、 必要に応じて、 算出さ れたデータに基づいて、 微粒子を分別し、 排出された微粒子を再利用するこ ともできる。 また、 微粒子の状態について得られたデータを集積して、 デー タベースが作成され得る。 個々の微粒子の測定データを、 得られたデータべ ースと照合することにより、 微粒子を特徴付けることも可能である。
15 例えば、 大きさおよび構造が同じである複数の微粒子について測定を行つ て、 それらの状態を同定または特徴付けてもよい。 あるいは、 大きさおょぴ 構造が同じであるが状態が異なっている複数の微、粒子について、 それぞれの 状態を比較することもできる。 このような微粒子として、 細胞のような生体 微粒子が挙げられ、 例えば、 それらの個々の活十生を、 得られた測定結果の比
10 較によって評価することもできる。 実施例
以下の実施例においては、 図 2に示すようなキヤビラリーを有する四重極 マイクロキヤビラリ一生体微粒子分析システムを使用した。.誘電泳動移動度 !5 の測定の操作手順は、 以下のとおりである。
まず、 チップ内 (1 0 0 πι径キヤビラリ一を備えたチップ) に K C 1溶
液 (導電率 33. 5mS>m) を満たし、 チップ上部の溶液溜めに試料をィ ンジエタトする。 シリンジポンプによって溶液をフロー ( 10 n 1ノ分〜 1 00 n 1ノ分) させてキヤビラリ一内の測定部位に試料を輸送する。 システ ム観測系に設置したニコン ELWD P l a n F l u o r 40倍レンズ を用い、 測定装置を作動させて動画としてシステム観測系である S ony DFW-X 700もしくは P I XERA 600 S L一 CUデジタルカメラ で試料の挙動観察を開始する。 次いで、 設定した泳動用電場を発生させ、 泳 動を開始させる。 所定の時間後にまたは試料がキヤピラリー中央もしくは電 極に到達すると、 印加電圧を停止する。 溶液のフロー ( 10000 n 1 分 程度) を発生させ、 試料除去およびキヤピラリー内の洗浄を行う。 次いで、 新たな試料の導入を行う。 並列して測定したデータを、 画像解析を行うこと によって、 キヤビラリ一内での試料位置を計算する。 この試料位置より誘電 泳動移動度を算出する。
(実施例 1 :異なる栄養状態で培養した細胞の状態の測定)
ヒト褐色脂肪細胞 (Chang liver株) の一部を LB栄養培地 (以下、 単に 栄養培地という場合がある) に、 ならびに他の一部をアルギン酸ナトリウム を含まない貧栄養培地中で 37 °Cにて 12時間培養した。 一方、 図 1に示す ような四重極電極を有する測定チップのキヤピラリー内を、 予めそれぞれの 培地で満たしておいた。 次いで、 細胞を含む各培地 10◦ Lを、 それぞれ 上部液溜め (またはキヤピラリー内) にマイクロシリンジによってインジェ タトした。 キヤピラリー内の培地をシリンジポンプによって、 それぞれの細 胞を四重極電極の位置まで移動させ、 lMVZm 10 OH zの電荷を 30 秒間印加した。 印加の開始前から'終了まで流路を観察し、 細胞の位置を測定 した。 得られた位置データをもとに、 移動距離を求め、 そして以下の式によ り誘電泳動移動度 αを算出した。
1 o g R t = 1 o g R o + a t
(式において、 キヤビラリ一断面の中心が R = 0、 泳動開始位置が R。、 お ょぴ t秒後の中心からの距離が R tのとき、 誘電泳動移動度は a ) 。
各細胞について得られた移動距離を図 3に示す。 図 3に示すように、 貧栄 養状態で培養した細胞 (〇) と通常栄養状態で培養した細胞 (口および Δ) とは、 誘電泳動の移動方向おょぴ移動度が全く異なることがわかった。 この ことから、 細胞表面の状態が、 細胞の活性により大きく異なることが明らか になった。 細胞は、 生きている状態では絶縁性を保っており、 表面の負電荷 の各種生体高分子の特性に応じた荷電状態を示す。 しかし、 死細胞の細胞膜 は絶縁性を失つており、 本実施例の結果は細胞膜表面の状態が泳動結果に反 映することを示唆している。 したがって、 誘電泳動移動度と細胞膜表面のス トレス状態を表すパラメータとの間の相関関係を検討することにより、 誘電 泳動移動度を用いて細胞膜表面状態を識別することが可能性であると考えら れる。
(実施例 2 : ヨーグルト菌および酵母菌の判別)
市販のョ一ダルト菌ぉよぴ酵母菌について、 誘電泳動プロフアイルを取得 した。 印加電圧は 5 Vであり、 溶媒として K C 1溶液 (導電率 3 3 . 5 m S /m) を用いた。 印加周波数は 1 k H z〜l 0 MH zとした。 結果を図 4に 示す。
印加周波数 1 MH zにおいては、 ヨーグルト菌 (〇) が正泳動、 酵母菌 (Δ) が負泳動を起こしていた。 ヨーグルト菌と酵母菌とでは誘電泳動移動 度のプロファイルに明らかな違いが見られることより判別が可能であり、 ま た、 印加周波数 1 MH zのように泳動拳動が明確に異なっている箇所では単 独の周波数測定で判別が可能であることがわかった。
(実施例 3 :四重極内での細胞の移動挙動)
ヒ ト肝臓由来の H e p G 2細胞を 3 7 °Cで栄養培地または貧栄養培地中に 6 0時間放置し、 1 0時間ごとに上記の四重極電極誘電泳動測定用チップに 個々に分離した細胞を導入して移動距離を測定した。 溶媒は、 各培地であり、 印加周波数は 1 0 0 H zとした。 栄養培地中での H e p G 2細胞の移動距離 の経時変化を図 5に示す。 また、 栄養培地 (〇) または貧栄養培地 (△) 中 での細胞活性の減少に伴う誘電泳動移動度 aの経時変化を算出し、 図 6に示 した。
栄養培地中の細胞は、 放置時間が短い場合は負泳動であるが、 放置時間が 長くなるにつれて正泳動に変化した (図 5 ) 。 図 6からわかるように、 栄養 培地中の細胞は、 約 4 0時間で誘電泳動移動度 αが 0になり、 細胞活性が低 下に向かっていることがわかった。 一方、 貧栄養培地中の貧栄養状態の細胞 は、 栄養培地中の通常の栄養状態の細胞よりもやや気が大きいが、 栄養培地 中の細胞との顕著な差は見られなかつた。
(実施例 4 :薬物添加効果の検討)
H e p G 2細胞を含む培養液 (栄養培地または貧栄養培地) に、 抗癌剤で ある塩酸ドキソルビシンを種々の濃度で添加して 2 4時間インキュベートし た後、 H e p G 2細胞を上記の四重極電極誘電泳動測定用チップに導入し、 細胞の移動距離を測定し、 各濃度の添加時における誘電泳動移動度 αを求め た。 同時に、 それぞれの培地中の細胞の活性を A T Ρァーゼ活性によって測 定し、 活性値を基準化した値の半値に対応する濃度を、 塩酸ドキソルビシン の 5 0 %有効濃度 (E C 5 0) とした。 E C 5。は、 栄養培地中の細胞につい ては 0 . 1 6 mMであり、 貧栄養状態の細胞では 0 , 0 7 7 mMであった。 また、 いずれの細胞も、 0 . 5 mM以上で活性の低下が見られた。
誘電泳動移動度 αと濃度との関係を図 7に示す。 栄養培地で培養した細胞
を〇で、 そして貧栄養培地で培養した細胞を△で示す。 塩酸ドキソルビシン の添加により、 いずれの培地で培養した細胞においても 0. 1 mlV [付近から ひ値が変化することがわかった。 また、 0. 5 mM以上でひ値の変化が小さ くなっていた。
次いで、 この図 7のグラフにおいて、 得られた EC 50値の濃度に対応する ひ値を 0. 5、 薬物未添加時のひ値を 0、 ならびに細胞の活性がなくなつた ときの薬物濃度に対応するひ値を 1として、 ひ値を規格化すると、 図 8に示 すグラフが得られた。 このように、 α値の変化で薬剤の薬理効果をスクリー ユングできる可能性が示唆された。
(実施例 5 :種々の薬物の添加効果の評価の検討)
上記実施例 4と同様に、 通常の栄養状態または貧栄養状態の He pG2細 胞に対して、 抗癌剤である塩酸ドキソルビシン、 硫酸ブレオマイシン、 およ びマイトマイシン Cをそれぞれ種々の濃度で添加して培養した後、 細胞の移 動距離を測定し、 誘電泳動移動度ひを求めた。 次いで、 薬物添加濃度と α値 との関係をグラフにした。 各薬物についてのグラフから、 薬物未添加時の α 値と α値が変化しなくなつた薬物濃度に対応する α値との中間の α値を求め、 この中間のひ値に対応する薬物濃度を EC 5。値であると推定した。 各薬物に ついての、 ひ値から得られた推定 EC 50値を、 図 9に示す。
(実施例 6 :細胞の生体活性の評価)
ヒト肝臓由来の He pG2細胞を、 栄養培地を入れた細胞培養ゥエル中で 37 °Cにて 72時間培養した。 各ゥエルから細胞を 3個ずつ取り出し、 各細 胞を上記の四重極電極誘電泳動測定用チップに導入し、 細胞の移動距離を測 定し、 誘電泳動移動度 αを求めた。 次いで、 各ゥエルについて、 細胞内 C a 2+流入および ATPァーゼ活性を測定した。 細胞内 C a 2+流入は、 蛍光プ
ローブ F u r a— 2によって測定し、 そして AT Pァーゼ活性は、 リン酸濃 度によって測定した。 各ゥエルに由来する個々の細胞の α値と、.各ゥエルの 細胞内 C a 2+流入および ΑΤΡァーゼ活·生との関係を、 それぞれ図 1 OAお ょぴ Bに示す。 '
これらのグラフからわかるように、 α値と細胞内 C a 2+流入および ATP ァーゼ活性とは、 対応している可能性が示唆された。 細胞内 Ca 2+流入およ ぴ AT Pァーゼ活性は、 いずれも細胞膜機能に関連する指標である。 したが つて、 細胞膜の状態が α値に影響すると考えられる。
(実施例 7 : リボソームの誘電泳動)
生体微粒子モデルであるリボソームとして、 1一パルミトイルー 2—ォレ オイルホスファチジルコリン (POP C) および POP C/1—パルミ トイ ノレ一 2—ォレオイルホスファチジルグリセローノレ (POPG) を、 蛍光プロ ーブである力ルセイン (ImM) を含んだ水溶液中で、 高温水和法 (60°C、 3時閒) により調製した (粒径 2〜20 m) 。 次いで、 上記の四重極電極 誘電泳動測定用チップのキヤピラリー内を、 予め上記の緩衝液で満たした。 リボソームを含む緩衝液 100 TLを、 それぞれ上部液溜め (またはキヤピ ラリー内) にマイクロシリンジによってインジヱクトした。 キヤピラリー内 の緩衝液をシリンジポンプによって、 それぞれのリポソームを四重極電極の 位置まで移動させ、 lMV/m、 10 OH zの電荷を 25秒聞印加した。 印 加の開始前から終了まで流路を観察し、 リポソームの位置を測定した。
各リボソームについて得られた移動距離 Rの経時変化を図 1 1に示す。 移 動距離から算出した POPCからなるリボソームの誘電泳動移動度 αは 0. 00798であり、 POPCノ POPGからなるリポソームでは、 α値は 0. 01 3 1であった。 このように、 リボソームの組成によって α値が異なって いた。
産業上の利用可能性
本発明の方法によれば、 誘電泳動移動度から微粒子の表面特性および内部 構造などの微粒子の状態を一体的に測定することが可能である。 本努明の方 法によれば、 大量の試料を必要とせずに、 微粒子 1個体の分析が可能であり、 分析速度も速い。 さらに、 データベースを作成すると、 '微粒子の同定が可能 となり、 物質の推定 (判別) 可能となる。 また、 マーカー物質の添加、 接触 による損傷などがないため、 分析に供した試料を再利用でき、 分析に供した 微粒子をさらなる精密分析に供することもできる。 例えば、 同種類の粒子 (構造が同じ) の状態の違いを誘電泳動移動度で評価することが可能である。 したがって、 特に、 生体微粒子 (細胞、 細菌、 細胞膜、 リボソームなど) の 品質管理、 活性度測定、 薬効判定、 テーラーメイド医療などの分野への適用 に有用である。
Claims
1 . 微粒子の状態を測定する方法であって、
微粒子を含む試料を誘電泳動液中に導入し、 該微粒子の位置 R 0を測定す る工程;
該誘電泳動液中の該微粒子に対して不均一電界を発生させ、 t秒後の該微 粒子の位置 R tを測定する工程;
該得られた微粒子の位置 R。およぴ1 1から、 誘電泳動移動度を算出するェ 程;および
該状態と該算出された誘電泳動移動度とを相関させる工程;
を含み、
該状態が、 表面の官能基の構造、 表面の特異性、 表面の電位、 大きさ、 形 状、 活性、 内部のイオン量分布、 内部のイオン成分、 内部の組成、 およぴ内 部の構造からなる群より選択される少なくとも 1つである、
方法。
2 . 前記不均一電界が多重極電極により発生され、 該多重極電極が、 対称に 配置されている、 請求項 1に記載の方法。
3 . 前記誘電泳動液が、 垂直方向に配置された内径 1 0 / mから 5 0 0 /z m のキヤビラリ一流路內にあり、 そして前記電極が、 0 . 1 mmから 2 mmの 長さであって、 該キヤビラリ一流路に沿って配置される、 請求項 2に記載の 方法。
4 . 前記電極の表面が、 前記キヤビラリ一流路の内部に露出し、 そして該電 極を支持する壁が、 該キヤビラリ一流路から隔離されている、 請求項 3に記
載の方法。
5. 前記微粒子が、 生体微粒子である、 請求項 1から 4のいずれかに記載の 方法。
5
6. 前記測定が複数の微粒子について行われる、 請求項 1カ ら 5のいずれか に記載の方法。
7. 前記複数の微粒子の大きさおよび構造が同じである、 請求項 6に記載の L0 方法。
8. 前記複数の微粒子の状態が異なる、 請求項 7に記載の方法。 .
9. 前記相関させる工程の後に、
.5 前記複数の微粒子の状態について比較する工程;
をさらに含む、 請求項 8に記載の方法。
10. 前記状態が活性であり、 そして前記相関させる工程によって該活性が 評価される、 請求項 1から 9のいずれかに記載の方法。
!0
11. 前記微粒子の位置 Rtを測定する工程の後に、
該微粒子に刺激を与える工程;
該刺激を受けた微粒子の位置 Rsを測定する工程;および
該得られた微粒子の位置 R tお 'よび R sから、 誘電泳動移動度を算出するェ :5 程;
をさらに含む、 請求項 1から 10のいずれかに記載の方法。
12. 前記微粒子を含む試料に、 予め刺激が与えられている、 請求項 1から 10のいずれかに記載の方法。
13. 前記刺激'が薬液添加である、 請求項 11または 12に記載の方法。
14. 前記薬液の添加量が異なる、 請求項 13に記載の方法。
15. 前記生体微粒子が、 ヒト細胞である、 請求項 5から 14のいずれかに 記載の方法。
16. 前記ヒト細胞が、 肝臓由来細胞である、 請求項 15に記載の方法。
17. 前記誘電泳動液への前記試料の導入が、 インクジェットデバイス、 キ ャピラリー、 ピペット、 ピンセット、 またはディスペンサーを用いて行われ る、 請求項 1カゝら 16のいずれかに記載の方法。
18. 前記不均一電界の強度および周波数を、 時間または試料の挙動に応じ て変化させる、 請求項 1から 17のいずれかに記載の方法。
19. 前記位置 Rtまたは Rsを測定した後に、 前記微粒子を含む試料を排出 する工程をさらに含む、 請求項 1から 18のいずれかに記載の方法。
20. 前記誘電泳動移動度に基づいて状態を解析する工程をさらに含む、 請 求項 1から 19のいずれかに記載の方法。 .
21. 前記状態が、 前記微粒子の表面構造または官能基である、 請求項 1か
ら 2 0のいずれかに記載の方法。
2 2 . 請求項 1カゝら 2 1のいずれかに記載の微粒子の状態を測定する方法に 用いるための誘電泳動装置であって、
5 流路;
該流路の一部に備えられた、 不均一電界を発生させるための不均一電界発 生手段;および
該流路中の微粒子の位置を測定する手段;
を備え、
10 該不均一電界発生手段が、 該微粒子の状態の測定に十分な強度の電界を発 生し得る、 装置。
2 3 . 前記不均一電界発生手段が、 多重極電極であり、 該多重極電極が、 同 心円状対称性を有する不均一電界を発生するように対称に配置される、 請求 L5 項 2 2に記載の装置。
2 4 . さらに、 前記測定した微粒子の位置かち誘電泳動移動度を計算して、 該誘電泳動移動度から該微粒子の状態を計算するための手段を備える、 請求 項 2 2または 2 3に記載の装置。
10
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008505083A JP5186675B2 (ja) | 2006-03-10 | 2007-03-01 | 誘電泳動による微粒子の状態の測定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-065872 | 2006-03-10 | ||
JP2006065872 | 2006-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007105578A1 true WO2007105578A1 (ja) | 2007-09-20 |
Family
ID=38509406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/054498 WO2007105578A1 (ja) | 2006-03-10 | 2007-03-01 | 誘電泳動による微粒子の状態の測定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5186675B2 (ja) |
WO (1) | WO2007105578A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009284778A (ja) * | 2008-05-27 | 2009-12-10 | Canon Inc | 細胞の分離方法 |
JP2011145094A (ja) * | 2010-01-12 | 2011-07-28 | Ihi Corp | 粒子観察装置 |
JP2016133314A (ja) * | 2015-01-15 | 2016-07-25 | 学校法人立命館 | 誘電泳動法を用いた細胞の判別方法及び装置、並びに、細胞の評価方法及び装置 |
JP7061412B1 (ja) * | 2021-06-14 | 2022-04-28 | 株式会社Afiテクノロジー | 誘電体粒子推定装置及び誘電体粒子種類推定システム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102222061B1 (ko) * | 2018-08-31 | 2021-03-03 | 연세대학교 원주산학협력단 | 유전영동을 이용한 주파수의 급격한 변화를 통한 세포 종류 구분 및 특성 분석법 |
KR102221953B1 (ko) * | 2018-08-31 | 2021-03-04 | 연세대학교 원주산학협력단 | 유전영동 힘 인가변화 조절에 따른 세포의 전기분극 특성 분석법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001500252A (ja) * | 1996-07-26 | 2001-01-09 | ビーティージー・インターナショナル・リミテッド | 誘電泳動を用いて粒子をテストする装置および方法 |
JP2001242136A (ja) * | 2000-02-25 | 2001-09-07 | Japan Science & Technology Corp | キャピラリー誘電泳動法 |
JP2005059001A (ja) * | 2003-07-31 | 2005-03-10 | Cluster Technology Co Ltd | 析出方法 |
-
2007
- 2007-03-01 WO PCT/JP2007/054498 patent/WO2007105578A1/ja active Application Filing
- 2007-03-01 JP JP2008505083A patent/JP5186675B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001500252A (ja) * | 1996-07-26 | 2001-01-09 | ビーティージー・インターナショナル・リミテッド | 誘電泳動を用いて粒子をテストする装置および方法 |
JP2001242136A (ja) * | 2000-02-25 | 2001-09-07 | Japan Science & Technology Corp | キャピラリー誘電泳動法 |
JP2005059001A (ja) * | 2003-07-31 | 2005-03-10 | Cluster Technology Co Ltd | 析出方法 |
Non-Patent Citations (6)
Title |
---|
EHLEKTRON OBRAB MATER, no. 5, 1985, pages 20 - 22, XP003017813 * |
IKEDA I. ET AL.: "Measurement of dielectrophoretic mobility of single micro-particles in a flow channel", ANALYST., vol. 130, no. 10, October 2005 (2005-10-01), pages 1340 - 1342, XP003017810 * |
IKEDA Y. ET AL.: "Heimen Tajukyoku Denkyoku ni Okeru To Ketsugosei Tanpakushitsu no Yuden Eido Sokutei", BUNSEKI KAGAKU TORONKAI KOEN YOSHISHU, vol. 63RD, 2002, pages 185 + ABSTR. NO. 2P41, XP003017815 * |
KITAJIMA N. ET AL.: "Yuden Eido o Riyo shita Saibo Kassei Kaiseki Sochi no Kaihatsu", TEXTILE RESEARCH INSTITUTE OF GUNMA HEISEI 16 NENDO GYOMU HOKOKU, September 2005 (2005-09-01), pages 17 - 19, XP003017811 * |
PETHIG R. ET AL.: "Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system", ELECTROPHORESIS, July 2002 (2002-07-01), pages 2057 - 2063, XP003017812 * |
WATARAI H. ET AL.: "Migration Alalysis of Micro-Particles in Liquids Using Microscopically Designed External Fields", ANAL. SCI., vol. 20, no. 3, 10 March 2004 (2004-03-10), pages 423 - 434, XP003017814 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009284778A (ja) * | 2008-05-27 | 2009-12-10 | Canon Inc | 細胞の分離方法 |
JP2011145094A (ja) * | 2010-01-12 | 2011-07-28 | Ihi Corp | 粒子観察装置 |
JP2016133314A (ja) * | 2015-01-15 | 2016-07-25 | 学校法人立命館 | 誘電泳動法を用いた細胞の判別方法及び装置、並びに、細胞の評価方法及び装置 |
JP7061412B1 (ja) * | 2021-06-14 | 2022-04-28 | 株式会社Afiテクノロジー | 誘電体粒子推定装置及び誘電体粒子種類推定システム |
Also Published As
Publication number | Publication date |
---|---|
JP5186675B2 (ja) | 2013-04-17 |
JPWO2007105578A1 (ja) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101383004B1 (ko) | 유로 디바이스 및 그것을 포함하는 샘플 처리 장치 | |
Primiceri et al. | Cell chips as new tools for cell biology–results, perspectives and opportunities | |
US20070238112A1 (en) | Microfluidic and nanofluidic electronic devices for detecting changes in capacitance of fluids and methods of using | |
JP4105767B2 (ja) | 誘電泳動を用いて粒子をテストする装置および方法 | |
Kemna et al. | Label-free, high-throughput, electrical detection of cells in droplets | |
EP2781906B1 (en) | Method for identifying cells | |
US9506894B2 (en) | Method for controlling substance moving speed and apparatus for controlling the same | |
CA2999683A1 (en) | Microfluidic device for selection of semen | |
JP5186675B2 (ja) | 誘電泳動による微粒子の状態の測定方法 | |
JP2003107099A (ja) | 微粒子分別マイクロチップと微粒子分別装置 | |
KR100738071B1 (ko) | 농도구배발생부가 구비된 유전영동 장치, 그를 이용한물질의 분리방법 및 물질 분리의 최적 조건을 탐색하는 방법 | |
Mohd Maidin et al. | Dielectrophoresis applications in biomedical field and future perspectives in biomedical technology | |
WO2007105784A1 (ja) | 誘電泳動装置 | |
Dittami et al. | Electrically evoking and electrochemically resolving quantal release on a microchip | |
WO2008116244A1 (de) | Einrichtung, insbesondere bio-chip, zur identifizierung von mikro-organismen | |
JP3718097B2 (ja) | キャピラリー誘電泳動法 | |
RU2225446C2 (ru) | Способ определения концентрации вирусов в жидком биологическом материале и устройство для его осуществления | |
Srinivasaraghavan | Bioimpedance spectroscopy of breast cancer cells: A microsystems approach | |
JP4128084B2 (ja) | 試料の特性化方法およびその装置 | |
CN114144664B (zh) | 基于介电性质的纳米囊泡的无标记表征方法 | |
Kikkeri | Passivated-Electrode Insulator-Based Dielectrophoretic Chips for Rare Cell Analysis | |
Mansoorifar | Impedance-Based Microfluidic Platform for Quantitative Biology | |
Zhu et al. | Highly Sensitive Detection of Tumor Cell-Derived Exosomes Using Solid-State Nanopores Assisted with a Slight Salt Gradient | |
Shi | A Rapid and Label-free Method for Isolation and Characterization of Exosomes | |
Ni | Microfluidic Device for Noninvasive Cell Electrical Stimulation, Extracellular Field Potential Analysis and Surface Charge Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07715300 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2008505083 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07715300 Country of ref document: EP Kind code of ref document: A1 |