WO2007105260A1 - Wind-driven power generator and construction method for the same - Google Patents

Wind-driven power generator and construction method for the same Download PDF

Info

Publication number
WO2007105260A1
WO2007105260A1 PCT/JP2006/304545 JP2006304545W WO2007105260A1 WO 2007105260 A1 WO2007105260 A1 WO 2007105260A1 JP 2006304545 W JP2006304545 W JP 2006304545W WO 2007105260 A1 WO2007105260 A1 WO 2007105260A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
wind
propeller
generator
wind power
Prior art date
Application number
PCT/JP2006/304545
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichi Tanaka
Original Assignee
Shoichi Tanaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoichi Tanaka filed Critical Shoichi Tanaka
Priority to PCT/JP2006/304545 priority Critical patent/WO2007105260A1/en
Publication of WO2007105260A1 publication Critical patent/WO2007105260A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • F03D7/0268Parking or storm protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine generator, and more particularly to a wind turbine generator excellent in wind resistance performance and economy.
  • High-power wind turbines are known to be more economical than constructing multiple small-power wind turbines.
  • a high-power wind power generator has the important advantage of being able to increase the output per unit ground area because it can use upper winds than a small-power wind power generator.
  • increasing the output of the wind turbine generator requires an increase in the propeller radius, so it is necessary to construct a tower of more than 100 meters, more preferably 150 meters.
  • the strong wind resistance measures constitute a major part of the construction cost. Even if a very large typhoon occurs only once every few decades, there is a possibility that it will occur within a few years. Therefore, it is necessary to take into account strong winds of 8 ⁇ m or more due to super-large typhoons in the construction of wind turbine towers and propeller production. Techniques in the following literature have been proposed for solving this problem.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 3— 4 9 7 6 1
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 2— 1 4 7 3 3 5
  • Patent Document 1 in a horizontal axis type wind power generator in which a wind turbine and a generator are arranged at the top of a columnar tower, a Karman vortex generated in the wake region of the columnar tower causes the tower to vibrate.
  • a cylindrical member is rotatably fitted to the tower, and a plate is projected from the outer peripheral surface of the cylindrical member to the boundary layer separation region. Since this plate protrudes toward the boundary layer separation region that occurs in the vicinity of the downstream side of the outer peripheral surface of the cylindrical member, the vortex generated in this boundary layer separation region propagates and develops, causing the tower to vibrate. Is prevented.
  • Patent Document 2 the force that inclines the tower from its root in a strong wind, and the wind force acting on the tower can be reduced by defeating it. Propose to reduce.
  • Patent Document 1 since the plate of Patent Document 1 protrudes radially outward from the outer peripheral surface of the plate, it may be expected to have an effect of suppressing the development of Karman vortices. Increases the total drag that acts on In addition, the plate itself may cause separation of the boundary layer and turbulence. As a result, it is difficult to expect the effect of reducing the collapse moment (wind drag moment) due to the total drag.
  • tilting or tilting the tower from its root during strong winds proposed in Patent Document 2 has a problem that it is difficult to increase the size of the tower because of the wind resistance acting on the pivot point of the tower. Was.
  • the problem that a large space is required around the tower, the problem that the tower tilting mechanism becomes large and complicated, and the problem that the tilting operation of the tower under strong wind is dangerous are derived,
  • each member such as a table if the cost is increased.
  • the construction cost including the tower construction cost and the wind power generation unit installation cost must be less than 10 times the annual power production and sales volume, and the total construction cost is 5 times the annual power production and sales volume. Should be less than, and more preferably less than 2 times.
  • An increase in the weight of the tower directly leads to an increase in tower construction costs, including basic construction costs, tower transportation costs, and tower startup costs.
  • the present invention has been made in view of the above problems, and is a wind excellent in economic efficiency and wind resistance. Its purpose is to provide a power generator.
  • the wind power generation apparatus of each invention described below includes a propeller, a wind power generation unit including a power generator driven by the propeller, and a columnar tower that supports the wind power generation unit. Applies to wind power generators. This type of wind turbine generator is known as a horizontal axis wind turbine generator.
  • the wind turbine generator according to the first aspect of the invention has a fish-shaped cross-section rotating member that has a streamline shape substantially equal to a shape of a fish viewed from above and is rotatably held by the table. It is said.
  • a fish-shaped cross-section rotating member refers to a shape in which fluid resistance is substantially minimum in an air flow.
  • the horizontal cross-sectional shape of the fish-shaped cross-section rotating member has a substantially symmetrical shape with the middle line in the thickness direction as the center.
  • This fish-shaped cross-section rotating member has a shape approximately equal to the shape of two plane wings combined. However, unlike an airplane wing, an increase in lift is not necessary, so a shape with a minimum drag is preferred.
  • the thickness of the fish-shaped cross-section rotating member increases continuously in the accelerated pressure reduction region from the wind upper end to the center point of the substantially cylindrical tower, and from the center point of the table to the wind lower end. It is preferable to decrease continuously in the deceleration pressure increase region.
  • the distance from the windward end to the windward end of the fish-shaped cross-section rotating member is the distance from the tower center point to the windward end. It is preferable that the distance is shorter than the length of the deceleration pressure increasing region.
  • the thickness reduction rate is reduced to suppress boundary layer separation. Because. It is preferable that the surface of the fish-shaped cross-sectional rotating member be smooth. Since the fish-shaped cross section provides a significant fluid resistance effect compared to a cylindrical member having the same cross-sectional area, the total amount of wind drag acting on the tower can be significantly reduced to, for example, less than a fraction.
  • the columnar tower can be made of, for example, a steel cylinder.
  • the multi-pole tower may be a combination of multiple poles with a small cross-sectional area instead of a single column (or cylinder).
  • the fish-shaped cross-section rotating member can be installed on each pole.
  • the spacing between the poles where each fish-shaped cross section can be freely rotated should be secured.
  • the fish-shaped cross-section rotating member that fits in the tower may be divided into a plurality of parts. For example, if you consider a 100 meter tower, you can place four fish-shaped rotary members, each about 20 meters high, in the 20 to 100 meter section of the tower. . Since the wind resistance acting on the tower is small near the ground, the effect of providing a fish-shaped cross-section rotating member is relatively small.
  • the fish-shaped cross-section rotating member can be easily attached to and detached from the table. For example, first attach the first fish-shaped section rotating member to the lower part of the tower, lift it with a lifting member such as a mouthpiece, and attach the next fish-shaped section rotating member to the lower part of the table, By repeating this process, the fish-shaped cross-section rotating member can be installed up to the top of the tower. If the above process is reversed, each fish-shaped cross-section rotating member can be removed and inspected and replaced. This is also important in raising and lowering the wind power unit, which will be described later.
  • a wind turbine generator includes a base on which the wind generator unit is mounted and fitted to the table so as to be movable up and down, and a lift device that lifts and lowers the base. Yes.
  • the wind power generation unit can be lowered during strong winds, the bending moment applied to the tower can be reduced, so the tower construction cost can be reduced.
  • the wind speed near the ground surface is relatively weak, it is possible to prevent propeller damage due to strong winds by lowering the wind power generation unit during a typhoon.
  • the wind power unit installed at the top of the tower can be lowered and repaired on the ground, making it possible to work safely.
  • a two-blade type propeller is employed, and the two-blade type propeller is held horizontally when lowered.
  • the wind power generation unit can be lowered almost to the ground level, making it easy to inspect and replace propellers and repair generators.
  • the wind power generation unit can be automatically lowered based on wind speed and typhoon information.
  • the base includes a base having a cylindrical portion that is fitted to a columnar tower so as to be movable up and down, and a deck plate portion that protrudes from the cylindrical portion in a substantially horizontal direction.
  • a wind power generation unit is fixed to the deck plate.
  • a fixture hanging from the upper end of the tower and a fixture protruding upward from the base are joined by raising the base.
  • separable link mechanisms such as train coupling mechanisms, can be employed for detachably coupling a pair of fasteners of this type.
  • the wind power unit can be raised or lowered by, for example, extending or shortening the wire that suspends the base.
  • the expansion and contraction of the wire can be controlled by a winding device provided on the top or inside of the tower or on the ground.
  • a wire suspension roller that reverses the direction of the wire should be provided at the top of the tower.
  • Such a lifting system is essentially the same as an elevator lifting system.
  • the power cable that connects the generator to the ground electrical equipment may be a power cable that is installed on the top surface of the tower and hangs from the structure that rotates with the wind power unit to the generator of the wind power unit. Is preferred. However, when the wind turbine unit is lowered for inspection and repair, it is preferable to separate the connection provided in the middle of the power cable.
  • the reinforcing wire and the power cable are arranged inside the fish-shaped cross-sectional rotating member.
  • the wind power generation unit is arranged on the windward side of the tower.
  • the balance weight is arranged on the leeward side of the tower on the base on which the wind power generation unit is mounted.
  • the balance weight can include the weight of the vertical tail located on the leeward side of the tower. This vertical tail is biased by the wind to maintain the propeller's swivel plane perpendicular to the wind direction.
  • a wind power unit is installed based on an electrical signal indicating the wind direction.
  • the base may be electrically driven.
  • a wind turbine generator includes a wind power detection device that detects whether or not the wind force exceeds a predetermined threshold value, and that when the wind force exceeds the threshold value, the rotating surface of the propeller is a wind direction. And a unit rotating device for rotating the wind power generation unit so as to be substantially parallel to each other. In this way, the cross-sectional area perpendicular to the wind direction of the propeller can be greatly reduced under strong winds such as when a typhoon is passing, greatly reducing the anti-bending moment acting on the propeller. can do. Therefore, it is possible to improve the durability of the propeller by reducing the wind resistance strength of the propeller.
  • the propeller is a two-blade type.
  • the propeller when the propeller's rotating surface is substantially parallel to the wind direction under strong winds, the propeller is placed horizontally to further reduce the wind-resistance bending moment acting on the propeller. can do.
  • the horizontal rotation of the wind power generation unit may be performed by rotating a base that is mounted with the wind power generation unit and that extends horizontally around the tower. It may be fixed and the wind power unit on the base may be rotated horizontally.
  • a wind turbine generator includes an auxiliary wing that is disposed at an outer peripheral end of the propeller and generates lift in the centripetal direction of the propeller.
  • the auxiliary wing is provided at the tip of the propeller and generates lift in the centripetal direction of the propeller, the centrifugal force of the propeller can be reduced by the lift of the auxiliary wing.
  • the drag of the auxiliary wing increases the loss.
  • this auxiliary wing can reduce the eddy current loss at the tip of the propeller, so that it can compensate for the increase in loss due to the resistance of the auxiliary wing.
  • the speed of the propeller tip is much higher than the wind speed, a significantly larger lift can be generated by a small auxiliary wing than the propeller.
  • the mass of the aileron should be reduced as much as possible.
  • a wind power generator construction method comprising: a lift-up step of vertically lifting a cylinder of a predetermined length that forms a part of the cylinder; and a next cylinder directly below the cylinder from a lateral direction.
  • the tower is constructed by repeating a shifting lateral shift step and a joining step of joining the upper end of the shifted cylinder to the lower end of the lifted cylinder.
  • FIG. 1 is a schematic side view of a wind turbine generator according to an embodiment.
  • FIG. 2 is a schematic plan view of a fish-shaped cross-section rotating member.
  • FIG. 3 is a schematic horizontal cross-sectional view showing the main part of the fish-shaped cross-section rotating member.
  • FIG. 4 is a schematic explanatory diagram showing the wind power unit and the vertical tail during strong winds.
  • FIG. 5 (a) is a partial schematic front view showing the tip of the propeller during turning, and (b) is a schematic partial side view of the tip of the propeller 42 during turning in the circumferential direction. is there.
  • Figure 6 is a side view of the tower under construction.
  • FIG. 7 is a schematic partial plan view showing the main part of the tower support device.
  • Figure 8 is a side view of the tower under construction.
  • Figure 9 is a side view of the tower under construction.
  • Figure 10 is a side view of the tower under construction.
  • Figure 11 is a side view of the tower under construction.
  • FIG. 12 (a) is a front view of the pedestal for supporting the tower during the construction of the tower, and (b) is a plan view of the pedestal for supporting the tower during the construction of the tower.
  • the wind turbine generator of this embodiment will be described with reference to a schematic side view thereof shown in FIG.
  • the wind power generator according to this embodiment includes a column-shaped tower 1 standing vertically from the ground surface GL, a base 2 fitted to the tower 1 so as to be rotatable and movable up and down, and a lifting device that lifts and lowers the base 2 3, a wind power generation unit 4 fixed to the base 2, a vertical tail 5 fixed to the rear of the base 2, and a number of fish-shaped cross sections fitted to the tower 1 so as to be rotatable and movable up and down And a rotating member 6.
  • the height of Tower 1 is about 100 meters and its radius is about 3 meters.
  • Tower 1 has a cylindrical structure, but the structure and construction method of Tower 1 will be described later.
  • the base 2 includes a cylindrical part 21 fitted to the tower 1 and a flat deck plate part 2 2 extending in a horizontal direction from the cylindrical part 21.
  • a wind power generation unit 4 is fixed to the front end of the deck plate portion 2 2, and a vertical tail 5 is fixed to the rear end of the deck plate portion 2 2.
  • the lifting device 3 includes a horizontal rotating table 3 1 supported on the upper end of the tower 1 so as to be horizontally rotatable, a wire winding device 3 2, 3 3 fixed to the horizontal rotating table 3 1, and a horizontal rotating table.
  • 3 6 is a rotating shaft of the horizontal rotating table 31.
  • the horizontal rotating table 31 is slowly rotated horizontally by the table driving device 35 below it. Since this type of table driving device incorporating a reduction motor is well known as a turntable driving mechanism, detailed description thereof is omitted.
  • the wire winding devices 3 2 and 3 3 have a speed reduction motor ⁇ and a wire winding roller 3 2 1 driven by the motor ⁇ .
  • the wire 3 2 2 hangs down from the wire winding roller 3 2 1, and the tip of the wire 3 2 2 is fixed to the wire fixing portion 2 2 1 at the upper end of the deck plate portion 2 2.
  • the cover 3 4 has a force pouch part 3 4 1 surrounding the wire hoisting devices 3 2 and 3 3, and a cylindrical skirt part 3 4 2 hanging from the lower end of the capsule part 3 4 1 to surround the upper end part of the tower 1 have.
  • the wind power generation unit 4 includes a generator 41 that is mounted and fixed at the front end of the deck plate portion 22, and a propeller 42 that is fixed to the front end of the rotating shaft of the generator 41.
  • the generator 41 may be accommodated in the nacelle.
  • Propeller 4 2 is a two-blade type.
  • the vertical tail 5 is fixed to the rear end of the deck plate portion 2 2 so as to be horizontally rotatable and extends rearward from the deck plate portion 2 2.
  • the vertical tail 5 is arranged vertically like the vertical tail 5 of the airplane.
  • a vertically extending tail support shaft (not shown) is fixed to the rear end of the deck plate section 2 2, and the vertical tail 5 is horizontally rotated about the tail support shaft. You can hold it freely.
  • Each fish-shaped cross-section rotating member 6 has a streamline shape substantially equivalent to the shape of the fish viewed from above, and is rotatably held by the tower 1.
  • the fish-shaped cross-section rotating member 6 has a height of about 20 meters, a horizontal length of about 10 meters, and a maximum thickness of about 3.2 meters.
  • the upper end opening of each fish-shaped cross-section rotating member 6 is closed by the upper plate 61, and the lower end opening is closed by the lower plate 62. Thereby, the inside of each fish-shaped cross-section rotating member 6 is sealed. Yes.
  • FIG. 2 is a schematic plan view of the fish-shaped cross-section rotating member 6.
  • the fish-shaped cross-sectional rotating member 6 is formed by joining semi-fish-shaped cross-sectional rotating members 6 a and 6 b.
  • the semi-fish-shaped cross-section rotating member 6 a and the semi-fish-shaped cross-section rotating member 6 b have a line-symmetric shape.
  • the semi-fish-shaped cross-section rotating members 6a and 6b have semi-cylindrical grooves 6 2 0, respectively.
  • a pair of grooves 6 2 0 is a complete cylindrical hole.
  • Tower 1 is fitted in this cylindrical hole.
  • the fish-shaped cross-section rotating member 6 is configured by joining the semi-fish-shaped cross-section rotating members 6 a and 6 b in this way, so that the fish-shaped cross-section rotating member 6 can be easily attached to and detached from the tower 1. This is because.
  • FIG. 3 shows a schematic horizontal cross-sectional shape showing the main part of the fish-shaped cross-section rotating member 6.
  • the fish-shaped cross-section rotating member 6 has six rollers 63. The upper and lower ends of each roller 63 are rotatably supported by the upper plate 61 and the lower plate 62. Two rollers 6 3 are arranged adjacent to the front of Tower 1, and four rollers 6 3 are arranged adjacent to the rear of Tower 1. Each roller 63 is in contact with the outer peripheral surface of the tower 1 to facilitate the horizontal rotation of the fish-shaped cross-section rotating member 6.
  • the five fish-shaped cross-section rotating members 6 stacked one above the other have a lower plate and a lower fish-shaped cross-section so that they can be horizontally rotated independently of each other.
  • the upper plate of the shape rotating member 6 may be contacted via a roller.
  • the fish-shaped cross-section rotating member 6 has a streamline shape, that is, a shape in which two upper surfaces of airplane wings are combined. That is, the upstream portion of the fish-shaped cross-section rotating member 6 has a nozzle function for increasing and decreasing the air flow, and the middle and downstream portions of the fish-shaped cross-section rotating member 6 are diffusers that increase and decrease the air flow. It has a function.
  • the thickness reduction of the downstream part and the downstream part of the fish-shaped cross-section rotating member 6 is gradually performed to prevent separation of the boundary layer. As a result, the fluid resistance of the fish-shaped cross-sectional rotating member 6 is substantially minimized.
  • the base 2 is fixed to the tower 1 at the upper end.
  • the propeller 4 2 is rotated by the wind, and the generator 4 1 generates power.
  • the generated power is sent through a power cable (not shown) to a horizontal rotation table 31 that rotates integrally with the base 2, and is sent to the ground from the horizontal rotation table 3 1 through a power cable in the tower 1.
  • the vertical tail 5 is fixed in a posture extending in the front-rear direction, and as a result, the turning surface of the propeller 42 is maintained at right angles to the wind direction.
  • the front end of the fish-shaped cross-section rotating member 6 is always located on the windward side due to the force received from the wind.
  • the lowermost fish-shaped cross-section rotating member 6 is placed on a support cylinder (not shown), thereby preventing the fish-shaped cross-section rotating member 6 from dropping.
  • FIG. 4 is a schematic explanatory view showing the wind power unit 4 and the vertical tail 5 in a strong wind state.
  • the turning surface of the propeller 42 is parallel to the direction of the wind.
  • the extending direction of the vertical tail 5 is also parallel to the direction in which the wind flows.
  • the wire hoisting devices 3 2 and 3 3 are driven again, the base 2 and the wind power generation unit 4 are further lowered, and the next fish-shaped cross-section rotating member 6 is removed from the tower 1. Thereafter, this operation is sequentially repeated to lower the base 2 to the upper surface of the base. At this time, the two-blade propeller 42 is held horizontally. The increase may be performed in the reverse manner.
  • FIGS. 5 (a) and 5 (b) an auxiliary wing 7 is attached to the tip of the propeller 42.
  • Fig. 5 (a) is a partial schematic front view showing the tip of the propeller 4'2 during turning
  • Fig. 5 (b) is a schematic partial side view of the tip of the propeller 4 2 during turning in the circumferential direction.
  • FIG. 5 (a) is a partial schematic front view showing the tip of the propeller 4'2 during turning
  • Fig. 5 (b) is a schematic partial side view of the tip of the propeller 4 2 during turning in the circumferential direction.
  • the auxiliary wing 7 has a vertical cross-sectional shape of an airplane wing when viewed from the windward side.
  • the auxiliary wing 7 that turns at high speed generates a large lift toward the center of the propeller 42. This lift reduces the centrifugal force acting on the propeller 42.
  • the auxiliary wing 7 should be made as light as possible.
  • the auxiliary wing 7 separates both sides of the propeller 42 and is known as a tip loss in the airplane wing. Suppresses the tip vortex.
  • FIG. 7 is a schematic partial plan view showing the main part of the tower-support device 8
  • Fig. 1 2 (a) is a front view of the pedestal 9 for supporting the tower during construction of the tower 1
  • Fig. 1 2 (b) is FIG. 3 is a plan view of a pedestal 9 for supporting the tower during the construction of the tower 1.
  • the tower support device 8 has a hydraulic cylinder 10 for tower lift-up and a hydraulic clamp device 11 for the cylinder clamp.
  • the reinforced concrete pedestal 9 has a square block shape, but is formed with a groove 91 that reaches one side from the center of the upper surface 90 of the pedestal 9.
  • a hydraulic cylinder 10 is accommodated in the groove portion 9 1 of the base 9.
  • Ten a is a plate that pushes the tower partial cylinder 100 fixed to the upper end of the rod of the hydraulic cylinder 10 upward.
  • a clamp device 11 is disposed above the pedestal 9.
  • the clamping device 1 1 has a pair of left and right grip plates 1 1 a and 1 1 b.
  • the grip plates 1 1 a and 1 1 b are attached to the tips of rods 1 2 a and 1 2 b of a hydraulic cylinder (not shown). It is fixed.
  • the grip plates lla and lib move back and forth in the left-right direction to grip and release the tower partial cylinder 100.
  • the gripping surfaces of the gripping plates 11a and lib have a substantially partial cylindrical shape for gripping the tower partial cylinder 100.
  • FIG. 6 shows a state where the upper tower partial cylinder 100 is gripped by the clamp device 11, and the lower tower partial cylinder 100 is mounted on the plate 10 a of the hydraulic cylinder 10.
  • the lower end surface of the upper partial cylinder for tower 100 and the upper end surface of the lower partial cylinder for tower 100 are in close contact.
  • the lower end face of the upper tower partial cylinder 100 and the upper end face of the lower tower partial cylinder 100 are integrated by welding or fastening.
  • the grip plates 1 1 a and 1 1 b are slightly retracted from the upper tower partial cylinder 1 0 0.
  • the upper tower partial cylinder 100 and the lower tower partial cylinder 100 are completely mounted on the plate 10 a.
  • the plate 1 0 a is raised.
  • the grip plates 11 a and l i b serve as guide members when the upper partial cylinder for tower 100 and the lower partial cylinder for tower 10 1 rise.
  • FIG. 7 shows a state where the lower partial cylinder for tower 1 0 1 is raised to a position where it is gripped by the gripping plates 1 1 a and 1 1 b.
  • the gripping plate 1 1 a, lib is advanced toward the lower partial cylinder for tower 1 0 1.
  • the lower tower partial cylinder 10 1 is gripped by the grip plates 1 1 a and 1 1 b.
  • plate 1 0 a is lowered to its original position.
  • the next tower partial cylinder 100 is slid on the upper surface 90 of the pedestal 9 and moved onto the plate 10 a.
  • the plate 10 a is slightly raised so that the upper end surface of the tower partial cylinder 10 0 2 is in close contact with the lower end surface of the tower partial cylinder 1 0 1, and then the tower partial cylinder 1 0 2 The upper end surface of the tower partial cylinder 1 0 1 is welded to the lower end surface of. After that, by carrying out the work process from Figure 7 onwards, Tower 1 Is completed.
  • the wind power unit 4, the base 2, the lifting device 3, and the fish-shaped cross-section rotating member 6 were attached later to the completed tower 1, but even if they were previously installed in the tower partial cylinder Good.
  • the propeller 42 is directly connected to the rotating shaft of the generator 41.
  • the propeller 42 may be connected through a speed increasing gear mechanism.
  • the vertical tail 5 is omitted, and the wind direction is detected by a sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

A lifting device (3) is placed at the upper end of a tower (1) so as to be horizontally rotatable, and the lifting device (3) lifts and lowers a wind-driven power generation unit (4). This increases safety of the wind-driven power generation unit (4) in strong wind and facilitates maintenance. Also, a rotating member (6) having a fish shape cross-section and rotating horizontally by wind is attached to the tower (1), and this reduces overturning moment on the tower (1).

Description

明 細 書  Specification
風力発電装置及びその建設方法 技術分野 Wind power generation apparatus and construction method thereof
本発明は、 風力発電装置に関し、 特に耐風性能及び経済性に優れた風力発電装 置に関する。 技術背景  The present invention relates to a wind turbine generator, and more particularly to a wind turbine generator excellent in wind resistance performance and economy. Technical background
大出力風力発電装置は、 小出力風力発電装置を複数建設するのに比べて経済性 に優れることが知られている。 また、 大出力風力発電装置は、 小出力風力発電装 置よりも上層の風を利用できるため、 単位地上面積当たりの出力を増大できると いう重要な利点をもつ。 ただし、 風力発電装置の大出力化はプロペラ半径の増大 を必要とするため、 1 0 0メートル以上更に好適には 1 5 0メートルといったタ ヮーを建設する必要が生じる。 このような大型タヮー及び大型プロペラをもつ大 出力風力発電装置は、 耐強風対策が建設費用の主要部分を占める。 超大型台風は 数十年に一度の確率でしか発生しないとしても、 それが数年以内に発生すること 可能性は存在する。 したがって、 風力発電装置のタワーの建設やプロペラの製造 において、 超大型台風による 8◦メートル以上の強風を考慮する必要がある。 こ の問題の解決に対して下記の文献の技術が提案されている。  High-power wind turbines are known to be more economical than constructing multiple small-power wind turbines. In addition, a high-power wind power generator has the important advantage of being able to increase the output per unit ground area because it can use upper winds than a small-power wind power generator. However, increasing the output of the wind turbine generator requires an increase in the propeller radius, so it is necessary to construct a tower of more than 100 meters, more preferably 150 meters. In such a large-power wind turbine generator with a large tower and a large propeller, the strong wind resistance measures constitute a major part of the construction cost. Even if a very large typhoon occurs only once every few decades, there is a possibility that it will occur within a few years. Therefore, it is necessary to take into account strong winds of 8 ◦ m or more due to super-large typhoons in the construction of wind turbine towers and propeller production. Techniques in the following literature have been proposed for solving this problem.
特許文献 1 特開 2 0 0 3— 4 9 7 6 1  Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 3— 4 9 7 6 1
特許文献 2 特開 2 0 0 2— 1 4 7 3 3 5  Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 2— 1 4 7 3 3 5
特許文献 1は、 円柱形状のタヮ一の頂部に風車及び発電機が配置された水平軸 型の風力発電装置において、 円柱形状のタヮ一の後流領域に生じるカルマン渦が タワーを振動させるのを防止するため、 タワーに円筒部材を回動可能に嵌着し、 更にこの円筒部材の外周面から境界層剥離領域へプレートを突出させることを提 案している。 このプレートが円筒部材の外周面の下流側近傍にて生じる境界層剥 離領域へ向けて突出するため、 この境界層剥離領域で生じた渦が発達しながら伝 播し、 それによりタワーが振動するのが防止される。 特許文献 2は、 強風時にタ ヮーをその根本から傾斜させる力、 倒すことにより、 タワーに作用する風力を軽 減することを提案している。 In Patent Document 1, in a horizontal axis type wind power generator in which a wind turbine and a generator are arranged at the top of a columnar tower, a Karman vortex generated in the wake region of the columnar tower causes the tower to vibrate. In order to prevent this, it is proposed that a cylindrical member is rotatably fitted to the tower, and a plate is projected from the outer peripheral surface of the cylindrical member to the boundary layer separation region. Since this plate protrudes toward the boundary layer separation region that occurs in the vicinity of the downstream side of the outer peripheral surface of the cylindrical member, the vortex generated in this boundary layer separation region propagates and develops, causing the tower to vibrate. Is prevented. In Patent Document 2, the force that inclines the tower from its root in a strong wind, and the wind force acting on the tower can be reduced by defeating it. Propose to reduce.
しかしながら、 特許文献 1のプレートはタヮ一の外周面から径方向外側へ突出 するため、 カルマン渦の発達を抑止する効果を期待できるかもしれないが、 風が 当たる面積が増大するためプレートを通じてタワーに作用する全抗力が增大する。 また、 プレート自体が境界層の剥離させたり、 乱流を形成したりする。 その結果、 上記全抗力による倒壊モーメント (風抗力モーメント) を減少させる効果を期待 することは困難である。 次に、 特許文献 2により提案された強風時にタワーをそ の根本から傾斜乃至倒すことは、 タワーの回動支点に作用する風抗カが作用する ためタワーの大型化が困難となる問題を有していた。 その他、 タワー周囲に広い スペースが必要となる問題、 タワー傾斜機構が大型複雑となるという問題、 及び、 強風下でのタワーの傾斜動作に危険が伴うという問題も派生した、  However, since the plate of Patent Document 1 protrudes radially outward from the outer peripheral surface of the plate, it may be expected to have an effect of suppressing the development of Karman vortices. Increases the total drag that acts on In addition, the plate itself may cause separation of the boundary layer and turbulence. As a result, it is difficult to expect the effect of reducing the collapse moment (wind drag moment) due to the total drag. Next, tilting or tilting the tower from its root during strong winds proposed in Patent Document 2 has a problem that it is difficult to increase the size of the tower because of the wind resistance acting on the pivot point of the tower. Was. In addition, the problem that a large space is required around the tower, the problem that the tower tilting mechanism becomes large and complicated, and the problem that the tilting operation of the tower under strong wind is dangerous are derived,
費用さえ掛ければタヮ一などの各部材の強度を増大させることは可能である。 しかし、 風力による電力生産量には一定の限界があるため、 風力発電装置事業で は建設費用及びメンテナンス費用を低減することが非常に重要となる。 更に説明 すると、 メンテナンス費用や地代を考慮すると、 建設費用の消却は建設から少な くとも 1 0年程度で回収することが必要となる。 つまり、 タワー建設費用と風力 発電ュニット設置費用とを含む建設費用は、 年間の電力生産販売量の 1 0倍未満 とする必要があり、 タヮ一建設費用は年間の電力生産販売量の 5倍未満とする必 要があり、 更に好適には 2倍未満とされるべきである。 タワーの重量増加は、 基 礎工事費用、 タワー輸送費用、 タワー立ち上げ費用を含むタワー建設費用の増大 に直結する。 また、 同様に、 メンテナンス費用の低減も非常に重要であるが、 従 来は、 強風時にプロペラに掛かる風抗カ (風力に対するプロペラに生じる抗カ成 分) などによりプロペラが疲労破壊するのを防止するため、 プロペラの定期的な 交換や点検が重要であった。 しかし、 タワー上端に固定された風力発電ユニット の点検交換などの高所作業は非常に危険を伴い、 その分、 メンテナンス費用が増 大した。 発明の開示  It is possible to increase the strength of each member such as a table if the cost is increased. However, since there is a certain limit to the amount of power produced by wind power, it is very important to reduce construction costs and maintenance costs in the wind power generation equipment business. To explain further, in consideration of maintenance costs and land rents, it is necessary to cancel construction costs at least about 10 years after construction. In other words, the construction cost including the tower construction cost and the wind power generation unit installation cost must be less than 10 times the annual power production and sales volume, and the total construction cost is 5 times the annual power production and sales volume. Should be less than, and more preferably less than 2 times. An increase in the weight of the tower directly leads to an increase in tower construction costs, including basic construction costs, tower transportation costs, and tower startup costs. Similarly, reducing maintenance costs is also very important, but in the past, propellers have been prevented from fatigue failure due to wind resistance (proper component generated in propellers against wind power) applied to the propellers in strong winds. Therefore, periodic replacement and inspection of the propellers was important. However, high-place work such as inspection and replacement of the wind power generation unit fixed at the top of the tower is extremely dangerous, and maintenance costs have increased accordingly. Disclosure of the invention
本発明は上記問題点に鑑みなされたものであり、 経済性及び耐風性に優れた風 力発電装置を提供することをその目的としている。 The present invention has been made in view of the above problems, and is a wind excellent in economic efficiency and wind resistance. Its purpose is to provide a power generator.
以下に説明する各発明の風力発電装置は、 プロペラと、 前記プロペラにより駆 動される発電機とからなる風力発電ュ-ッ 卜と、 前記風力発電ュニットを支持す る円柱形状のタワーとを備える風力発電装置に適用される。 この種の風力発電装 置は、 水平軸型風力発電装置として知られている。  The wind power generation apparatus of each invention described below includes a propeller, a wind power generation unit including a power generator driven by the propeller, and a columnar tower that supports the wind power generation unit. Applies to wind power generators. This type of wind turbine generator is known as a horizontal axis wind turbine generator.
第 1発明の風力発電装置は、 ほぼ魚を上から見た形状に等しい流線形状を有し て前記タヮ一に回動自在に保持される魚形断面形回動部材を有することを特徴と している。 魚形断面形回動部材とは、 空気流中にて流体抵抗が略最小となる形状 を言う。 この魚形断面形回動部材の水平断面形状は、 厚さ方向中間線を中心とし て略対称形状をもつ。 この魚形断面形回動部材は、 飛行機翼を二つ合わせた形状 に略等しい形状をもつ。 ただし、 飛行機翼とは異なり、 揚力増大は不必要である ため、 抗力が略最小となる形状が好適である。 好適には、 魚形断面形回動部材の 厚さは、 風上端から略円筒状のタワーの中心点までの增速減圧領域では連続的に 増加し、 タヮ一の中心点から風下端までの減速増圧領域では連続的に減少するこ とが好ましい。 魚形断面形回動部材の風上端から風下端までの長さのうち、 風上 端からタワーの中心点までの距離すなわち增速減圧領域の長さは、 タワーの中心 点から風下端までの距離すなわち減速増圧領域の長さよりも短くされることが好 ましい。 これは、 前者は境界層剥離が生じにくい増速減圧領域であるが、 後者は 境界層剥離領域が生じやすい減速増圧領域であるため、 厚さの減少率を減らして 境界層剥離を抑止するためである。 魚形断面形回動部材の表面は平滑とされるこ とが好適である。 魚形断面は、 同一断面積の円筒部材に比べて大幅な流体抵抗現 象効果が得られるので、 タワーに掛かる風抗力の総量を大幅にたとえば数分の一 未満に低減することができる。 台風時の倒壊防止のために必要なタワーの曲げモ —メントはタヮー各部に掛かる風抗カモ一メントより大きければよいから、 風抗 力の低減は、 タワーの軽量化によるタワー建設費用の低減と、 それによる経済性 の向上を実現する。 このことは、 いままで採算が取れない地点でも風力発電装置 の設置が可能となることを意味し、 また台風通路など大型化が困難なェリァでも 大型大出力の風力発電装置が設置可能となることを意味するため、 実用上大きな 利点となる。 なお、 円柱形状のタワーはたとえば鋼製円筒で作製されることができる。 タヮ 一を単一の円柱 (又は円筒) ではなく、 小断面積円筒形状のポールを複数本組み 合わせたマルチポール型タワーとしてもよい。 この場合には魚形断面形回動部材 は各ポールにそれぞれ設置されることができる。 この場合、 各魚形断面形回動部 材が自由回動可能なポール間の間隔が確保されるべきである。 タワーに嵌着する 魚形断面形回動部材を複数部分に分割しても良い。 たとえば 1 0 0メートルのタ ヮーを考える場合、 それぞれ高さが約 2 0メートルである 4個の魚形断面形回動 部材をタワーの 2 0〜1 0 0メートルの部分に配置することができる。 タワーの 地上近傍部分には、 タワーに作用する風抗カモーメントが小さいため魚形断面形 回動部材を設ける効果は相対的に小さい。 複数の魚形断面形回動部材を設ける上 記構造では、 タヮ一への魚形断面形回動部材の取り付けや取り外しが容易となる。 たとえば、 まずタワーの下部に最初の魚形断面形回動部材を取り付け、 それを口 —プなどの引き上げ部材で引き上げ、 次の魚形断面形回動部材をタヮ一の下部に 取り付け、 以下、 このプロセスを繰り返すことによりタワーの最上部まで魚形断 面形回動部材を設置することができる。 上記プロセスを逆に行えば、 各魚形断面 形回動部材の取り外しや点検交換が可能となる。 このことは、 後述する風力発電 ュニッ 卜の昇降においても重要となる。 The wind turbine generator according to the first aspect of the invention has a fish-shaped cross-section rotating member that has a streamline shape substantially equal to a shape of a fish viewed from above and is rotatably held by the table. It is said. A fish-shaped cross-section rotating member refers to a shape in which fluid resistance is substantially minimum in an air flow. The horizontal cross-sectional shape of the fish-shaped cross-section rotating member has a substantially symmetrical shape with the middle line in the thickness direction as the center. This fish-shaped cross-section rotating member has a shape approximately equal to the shape of two plane wings combined. However, unlike an airplane wing, an increase in lift is not necessary, so a shape with a minimum drag is preferred. Preferably, the thickness of the fish-shaped cross-section rotating member increases continuously in the accelerated pressure reduction region from the wind upper end to the center point of the substantially cylindrical tower, and from the center point of the table to the wind lower end. It is preferable to decrease continuously in the deceleration pressure increase region. Of the length from the windward end to the windward end of the fish-shaped cross-section rotating member, the distance from the windward end to the center point of the tower, that is, the length of the accelerated depressurization region, is the distance from the tower center point to the windward end. It is preferable that the distance is shorter than the length of the deceleration pressure increasing region. This is a speed-increasing and depressurizing region in which the former is unlikely to cause boundary layer separation, but the latter is a decelerating and pressure increasing region in which boundary layer separation is likely to occur, so the thickness reduction rate is reduced to suppress boundary layer separation. Because. It is preferable that the surface of the fish-shaped cross-sectional rotating member be smooth. Since the fish-shaped cross section provides a significant fluid resistance effect compared to a cylindrical member having the same cross-sectional area, the total amount of wind drag acting on the tower can be significantly reduced to, for example, less than a fraction. Since the tower bending moment required to prevent collapse during a typhoon should be larger than the wind-resistant momentum applied to each part of the tower, reducing the wind-resistant force reduces the tower construction cost by reducing the weight of the tower. This will improve economic efficiency. This means that wind power generators can be installed even at locations that have not been profitable so far, and large-scale, high-output wind power generators can be installed even in areas that are difficult to enlarge, such as typhoon passages. It means a great advantage in practical use. Note that the columnar tower can be made of, for example, a steel cylinder. The multi-pole tower may be a combination of multiple poles with a small cross-sectional area instead of a single column (or cylinder). In this case, the fish-shaped cross-section rotating member can be installed on each pole. In this case, the spacing between the poles where each fish-shaped cross section can be freely rotated should be secured. The fish-shaped cross-section rotating member that fits in the tower may be divided into a plurality of parts. For example, if you consider a 100 meter tower, you can place four fish-shaped rotary members, each about 20 meters high, in the 20 to 100 meter section of the tower. . Since the wind resistance acting on the tower is small near the ground, the effect of providing a fish-shaped cross-section rotating member is relatively small. In the above-described structure in which a plurality of fish-shaped cross-section rotating members are provided, the fish-shaped cross-section rotating member can be easily attached to and detached from the table. For example, first attach the first fish-shaped section rotating member to the lower part of the tower, lift it with a lifting member such as a mouthpiece, and attach the next fish-shaped section rotating member to the lower part of the table, By repeating this process, the fish-shaped cross-section rotating member can be installed up to the top of the tower. If the above process is reversed, each fish-shaped cross-section rotating member can be removed and inspected and replaced. This is also important in raising and lowering the wind power unit, which will be described later.
第 2発明の風力発電装置は、 前記風力発電ュ-ットを搭載するとともに前記タ ヮ一に昇降自在に嵌着されたベースと、 前記ベースを昇降させる昇降装置とを有 することを特徴としている。 このようにすれば、 強風時に風力発電ユニットを下 降させることができるため、 タワーに掛かる曲げモーメントを軽減できるので、 タワー建設費用を低減することができる。 また、 地上面近傍の風速は相対的に弱 いため台風時に風力発電ュニットを降下させることにより強風によるプロペラ破 損を防止することもできる。 更に、 タワー頂部に設置した風力発電ユニットを下 降させて地上で修理することができ、 作業を安全に行うことができる。 好適には、 2枚羽根形式のプロペラが採用され、 二枚羽根形式のプロペラは下降時に水平に 保持される。 このようにすれば、 ほとんど地上面まで風力発電ユニットを降下さ せることができるため、 プロペラの点検や交換、 発電機の修理などを簡単に行う ことができ、 台風時に風力発電ュニットを地上に設けたシェルターに入れること もできる。 好適には、 風速や台風情報により風力発電ユニットを自動的に降下さ せることもできる。 A wind turbine generator according to a second aspect of the present invention includes a base on which the wind generator unit is mounted and fitted to the table so as to be movable up and down, and a lift device that lifts and lowers the base. Yes. In this way, since the wind power generation unit can be lowered during strong winds, the bending moment applied to the tower can be reduced, so the tower construction cost can be reduced. Also, since the wind speed near the ground surface is relatively weak, it is possible to prevent propeller damage due to strong winds by lowering the wind power generation unit during a typhoon. In addition, the wind power unit installed at the top of the tower can be lowered and repaired on the ground, making it possible to work safely. Preferably, a two-blade type propeller is employed, and the two-blade type propeller is held horizontally when lowered. In this way, the wind power generation unit can be lowered almost to the ground level, making it easy to inspect and replace propellers and repair generators. To put in a shelter You can also. Preferably, the wind power generation unit can be automatically lowered based on wind speed and typhoon information.
ベースは、 円柱形状のタワーに昇降自在に嵌着された円筒部と、 この円筒部部 から略水平方向へ突出するデッキプレート部とをもつベースを備えることが好適 である。 デッキプレート部には風力発電ユニットが固定される。 ベースをタワー に固定するには、 タワーの上端から垂下する固定具と、 ベースから上方へ突出す る固定具とを、 ベースを上昇させて結合することが好適である。 この種類の一対 の固定具を取り外し可能に結合のために、 たとえば列車の結合機構など、 種々公 知の分離可能リンク機構を採用することができる。  It is preferable that the base includes a base having a cylindrical portion that is fitted to a columnar tower so as to be movable up and down, and a deck plate portion that protrudes from the cylindrical portion in a substantially horizontal direction. A wind power generation unit is fixed to the deck plate. In order to fix the base to the tower, it is preferable that a fixture hanging from the upper end of the tower and a fixture protruding upward from the base are joined by raising the base. Various known separable link mechanisms, such as train coupling mechanisms, can be employed for detachably coupling a pair of fasteners of this type.
風力発電ュニッ トの昇降は、 たとえばベースをつり下げるワイヤーを延ばした り縮めたりすることにより行うことができる。 このワイヤーの伸縮は、 タワーの 頂部又は内部又は地上に設けた巻き取り装置により制御することができる。 巻き 取り装置を地上又はタワー内部に設置する場合、 タヮ一の頂部にワイヤーの向き を反転するワイヤー吊り下げローラーが設けられるべきである。 このような昇降 システムは本質的にェレベータ昇降システムと同じである。  The wind power unit can be raised or lowered by, for example, extending or shortening the wire that suspends the base. The expansion and contraction of the wire can be controlled by a winding device provided on the top or inside of the tower or on the ground. When the winding device is installed on the ground or inside the tower, a wire suspension roller that reverses the direction of the wire should be provided at the top of the tower. Such a lifting system is essentially the same as an elevator lifting system.
発電機と地上の電気設備とを接続する電力ケーブルは、 タワーの上端面に設置 されて風力発電ュニッ トとともに回動する構造体から風力発電ュニットの発電機 まで垂下する電力ケーブルを採用することが好適である。 ただし、 風力発電ュニ ットを点検修理のために下降させる場合には、 電力ケーブルの途中に設けた接続 部を分離することが好適である。  The power cable that connects the generator to the ground electrical equipment may be a power cable that is installed on the top surface of the tower and hangs from the structure that rotates with the wind power unit to the generator of the wind power unit. Is preferred. However, when the wind turbine unit is lowered for inspection and repair, it is preferable to separate the connection provided in the middle of the power cable.
タワーに魚形断面形回動部材を設ける場合、 補強ワイヤー及び電力ケーブルは 魚形断面形回動部材の内部に配置することが好適である。 好適には、 風力発電 ユニットはタワーより風上側に配置される。 この場合、 風力発電ユエットを搭載 するベースには、 タワーより風下側に位置してバランスウェイ トを配置される。 これにより、 風力発電ュニッ 卜の重量とバランスウェイ トの重量とがバランスす るため、 ベースの昇降が容易となる。 バランスウェイ トは、 タワーの風下側に配 置された垂直尾翼の重量を含むことができる。 この垂直尾翼は、 風に付勢されて プロペラの旋回面を風の方向と直角に維持するためのものである。 もちろん、 垂 直尾翼の代わりに、 風方向を示す電気信号に基づいて風力発電ュニットを搭載す るベースを電動駆動してもよい。 When the fish-shaped cross-section rotating member is provided in the tower, it is preferable that the reinforcing wire and the power cable are arranged inside the fish-shaped cross-sectional rotating member. Preferably, the wind power generation unit is arranged on the windward side of the tower. In this case, the balance weight is arranged on the leeward side of the tower on the base on which the wind power generation unit is mounted. As a result, the weight of the wind turbine unit and the weight of the balance weight are balanced, making it easy to raise and lower the base. The balance weight can include the weight of the vertical tail located on the leeward side of the tower. This vertical tail is biased by the wind to maintain the propeller's swivel plane perpendicular to the wind direction. Of course, instead of the vertical tail, a wind power unit is installed based on an electrical signal indicating the wind direction. The base may be electrically driven.
第 3発明の風力発電装置は、 風力が所定のしきい値を超えるかどうかを検出す る風力検出装置と、 風力が前記しきい値を超えた場合に前記プロペラの回転面が 風の方向と略平行となるように前記風力発電ュニッ トを回動させるュニット回動 装置とを有することを特徴としている。 このようにすれば、 台風通過時などの強 風下では、 プロペラの風方向と直角断面積を大幅に^;減することができるため、 プロペラに作用する抗カゃ曲げモ一メントを大幅に低減することができる。 した がって、 プロペラの耐風強度を低減してプロペラの耐久性を向上することができ る。 好適には、 プロペラは 2枚羽根形式とされる。 このようにすれば、 強風下に おいてプロペラの回転面が風の方向と略平行とする場合に、 プロペラを水平に配 置することにより、 プロペラに作用する風抗カゃ曲げモーメントを一層低減する ことができる。 なお、 風力発電ユニットの水平回動は、 風力発電ユニットを搭載 して水平に延在するべ一スをタワーの周囲に回動させて行ってもよく、 その代わ りに、 このベースをタワーに固定し、 ベース上の風力発電ユニッ トを水平回動さ せてもよい。  A wind turbine generator according to a third aspect of the present invention includes a wind power detection device that detects whether or not the wind force exceeds a predetermined threshold value, and that when the wind force exceeds the threshold value, the rotating surface of the propeller is a wind direction. And a unit rotating device for rotating the wind power generation unit so as to be substantially parallel to each other. In this way, the cross-sectional area perpendicular to the wind direction of the propeller can be greatly reduced under strong winds such as when a typhoon is passing, greatly reducing the anti-bending moment acting on the propeller. can do. Therefore, it is possible to improve the durability of the propeller by reducing the wind resistance strength of the propeller. Preferably, the propeller is a two-blade type. In this way, when the propeller's rotating surface is substantially parallel to the wind direction under strong winds, the propeller is placed horizontally to further reduce the wind-resistance bending moment acting on the propeller. can do. Note that the horizontal rotation of the wind power generation unit may be performed by rotating a base that is mounted with the wind power generation unit and that extends horizontally around the tower. It may be fixed and the wind power unit on the base may be rotated horizontally.
第 4発明の風力発電装置は、 前記プロペラの外周端に配置され、 前記プロペラ の求心方向に揚力を発生する補助翼を有することを特徴としている。 風力発電装 置の経済性向上において、 強風時には風力エネルギーが大きいため、 プロペラを 正常に回転させて発電を行うことが非常に重要である。 しかしながら、 風速増大 時にはプロペラ回転数が増大するため、 プロペラには大きな遠心力が作用すると いう問題がある。 この遠心力に耐えるためにプロペラの質量を増大することは、 その遠心力が更に增大することになるため、 限界がある。 この発明では、 プロぺ ラの翼端に設けられてプロペラの求心方向に揚力を発生する補助翼を有するため、 この補助翼の揚力分だけプロペラの遠心力を軽減することができる。 ただし、 補 助翼の抗力が損失を増大させる。 しかし、 この補助翼は、 プロペラの翼端の渦流 損失を低減するため、 補助翼の抗カによる損失増大を補償することができる。 な お、 プロペラ先端の速度は風速より格段に大きいため、 プロペラに比べて小型の 補助翼により格段に大きな揚力を発生することができる。 ただし、 補助翼の質量 はできるだけ軽減されるべきである。 第 5発明の風力発電装置の建設方法は、 前記タヮ一の一部をなす所定長さの円 筒を垂直にリフトアップするリフトアップ工程と、 前記円筒の直下に次の円筒を 横方向からシフ卜する横シフト工程と、 前記シフトした円筒の上端を前記リフト アップした円筒の下端に接合する接合工程と を繰り返して前記タヮーを建設す ることを特徴としている。 このようにすれば、 従来に比べて格段に簡単に風力発 電装置を建設することができ、 タワー建設費用を低減して風力発電装置建設可能 立地を増加することができる。 なお、 タワーの上端部をなす最上位の円筒の上端 に風力発電ュニットを昇降させる装置又は風力発電ュニットを設けておくと'、 風 力発電ュニット等の設置工程を容易化することができる。 図面の簡単な説明 A wind turbine generator according to a fourth aspect of the present invention includes an auxiliary wing that is disposed at an outer peripheral end of the propeller and generates lift in the centripetal direction of the propeller. In order to improve the economic efficiency of wind power generators, it is very important to generate electricity by rotating the propellers normally because the wind energy is large during strong winds. However, since the propeller rotation speed increases when the wind speed increases, there is a problem that a large centrifugal force acts on the propeller. Increasing the mass of the propeller to withstand this centrifugal force is limited because it increases the centrifugal force further. In the present invention, since the auxiliary wing is provided at the tip of the propeller and generates lift in the centripetal direction of the propeller, the centrifugal force of the propeller can be reduced by the lift of the auxiliary wing. However, the drag of the auxiliary wing increases the loss. However, this auxiliary wing can reduce the eddy current loss at the tip of the propeller, so that it can compensate for the increase in loss due to the resistance of the auxiliary wing. In addition, since the speed of the propeller tip is much higher than the wind speed, a significantly larger lift can be generated by a small auxiliary wing than the propeller. However, the mass of the aileron should be reduced as much as possible. According to a fifth aspect of the present invention, there is provided a wind power generator construction method comprising: a lift-up step of vertically lifting a cylinder of a predetermined length that forms a part of the cylinder; and a next cylinder directly below the cylinder from a lateral direction. The tower is constructed by repeating a shifting lateral shift step and a joining step of joining the upper end of the shifted cylinder to the lower end of the lifted cylinder. In this way, it is possible to construct a wind power generator much more easily than before, and it is possible to reduce the tower construction cost and increase the location where the wind power generator can be built. If a device or a wind power generation unit for raising and lowering the wind power generation unit is provided at the upper end of the uppermost cylinder forming the upper end of the tower, the installation process of the wind power generation unit and the like can be facilitated. Brief Description of Drawings
図 1は、 実施形態の風力発電装置の模式側面図である。  FIG. 1 is a schematic side view of a wind turbine generator according to an embodiment.
図 2は、 魚形断面形回動部材の模式平面図である。  FIG. 2 is a schematic plan view of a fish-shaped cross-section rotating member.
図 3は、 魚形断面形回動部材の要部を示す模式水平断面図である Τ Η 図 4は、 風力発電ュニット及び垂直尾翼の強風時の状態を示す模式説明図であ る。  FIG. 3 is a schematic horizontal cross-sectional view showing the main part of the fish-shaped cross-section rotating member. FIG. 4 is a schematic explanatory diagram showing the wind power unit and the vertical tail during strong winds.
図 5において、 (a ) は、 旋回中のプロペラの先端部を示す部分模式部分正面 図であり、 (b ) は、 旋回中のプロペラ 4 2の先端部分を周方向にみた模式部分 側面図である。  In FIG. 5, (a) is a partial schematic front view showing the tip of the propeller during turning, and (b) is a schematic partial side view of the tip of the propeller 42 during turning in the circumferential direction. is there.
図 6は、 建設中のタワーの側面図である。  Figure 6 is a side view of the tower under construction.
図 7は、 タヮー支持装置の要部を示す模式部分平面図である。  FIG. 7 is a schematic partial plan view showing the main part of the tower support device.
図 8は、 建設中のタワーの側面図である。  Figure 8 is a side view of the tower under construction.
図 9は、 建設中のタワーの側面図である。  Figure 9 is a side view of the tower under construction.
図 1 0は、 建設中のタワーの側面図である。  Figure 10 is a side view of the tower under construction.
図 1 1は、 建設中のタワーの側面図である。  Figure 11 is a side view of the tower under construction.
図 1 2において、 (a ) はタワーを建設する途中におけるタワー支持用の台座 の正面図であり、 (b ) はタワーを建設する途中におけるタワー支持用の台座の 平面図である。 発明を実施するための最良の形態 In FIG. 12, (a) is a front view of the pedestal for supporting the tower during the construction of the tower, and (b) is a plan view of the pedestal for supporting the tower during the construction of the tower. BEST MODE FOR CARRYING OUT THE INVENTION
上記説明した各発明を利用する風力発電装置の好適な実施形態を以下に説明す る。 ただし、 本発明はこの実施形態に限定解釈されるべきでなく、 他の技術を組 み合わせて実現してもよい。  A preferred embodiment of the wind power generator utilizing each of the inventions described above will be described below. However, the present invention should not be construed as being limited to this embodiment, and may be realized by combining other technologies.
この実施形態の風力発電装置を図 1に示すその模式側面図を参照して説明する。 この実施形態の風力発電装置は、 地上面 G Lから垂直に立設された 円柱形状の タワー 1と、 タワー 1に回動可能かつ昇降可能に嵌められたベース 2と、 ベース 2を昇降させる昇降装置 3と、 ベース 2に固定された風力発電ユニット 4と、 ベ ース 2の後部に固定された垂直尾翼 5と、 タワー 1に回動可能かつ昇降可能に嵌 められた多数の魚形断面形回動部材 6とを有している。  The wind turbine generator of this embodiment will be described with reference to a schematic side view thereof shown in FIG. The wind power generator according to this embodiment includes a column-shaped tower 1 standing vertically from the ground surface GL, a base 2 fitted to the tower 1 so as to be rotatable and movable up and down, and a lifting device that lifts and lowers the base 2 3, a wind power generation unit 4 fixed to the base 2, a vertical tail 5 fixed to the rear of the base 2, and a number of fish-shaped cross sections fitted to the tower 1 so as to be rotatable and movable up and down And a rotating member 6.
タヮー 1の高さは約 1 0 0メートル、 その半径は約 3メートルに設計されてい る。 タワー 1は円筒構造をもつが、 タワー 1の構造及び建設方法については後述 する。 ベース 2は、 タワー 1に嵌着された円筒部 2 1と、 円筒部 2 1から水平方 向に延在する平板形状のデッキプレート部 2 2とからなる。 デッキプレート部 2 2の前端には風力発電ュニット 4が固定され、 デッキプレート部 2 2の後端には 垂直尾翼 5が固定されている。 昇降装置 3は、 タワー 1の上端に水平回動可能に 支持される水平回動テーブル 3 1と、 水平回動テーブル 3 1に固定されたワイヤ 巻き上げ装置 3 2、 3 3と、 水平回動テーブル 3 1及びワイヤ巻き上げ装置 3 2、 3 3を囲むカバー 3 4と、 タワー 1の上端に埋設されたテーブル駆動装置 3 5と を有している。 3 6は水平回動テーブル 3 1の回転軸である。  The height of Tower 1 is about 100 meters and its radius is about 3 meters. Tower 1 has a cylindrical structure, but the structure and construction method of Tower 1 will be described later. The base 2 includes a cylindrical part 21 fitted to the tower 1 and a flat deck plate part 2 2 extending in a horizontal direction from the cylindrical part 21. A wind power generation unit 4 is fixed to the front end of the deck plate portion 2 2, and a vertical tail 5 is fixed to the rear end of the deck plate portion 2 2. The lifting device 3 includes a horizontal rotating table 3 1 supported on the upper end of the tower 1 so as to be horizontally rotatable, a wire winding device 3 2, 3 3 fixed to the horizontal rotating table 3 1, and a horizontal rotating table. 3 1 and a cover 3 4 surrounding the wire hoisting devices 3 2 and 3 3, and a table driving device 3 5 embedded in the upper end of the tower 1. 3 6 is a rotating shaft of the horizontal rotating table 31.
水平回動テーブル 3 1は、 その下のテーブル駆動装置 3 5により緩慢に水平回 動される。 減速モータを内蔵するこの種のテーブル駆動装置はターンテーブル駆 動機構として周知であるため詳細な説明は省略される。 ワイヤ巻き上げ装置 3 2、 3 3は、 減速モータ Μと、 このモータ Μにより駆動されるワイヤ巻き取りローラ 3 2 1とを有している。 ワイヤ卷き取りローラ 3 2 1からワイヤ 3 2 2が垂下し ており、 ワイヤ 3 2 2の先端は、 デッキプレート部 2 2の上端のワイヤ固定部 2 2 1に固定されている。 カバー 3 4は、 ワイヤ巻き上げ装置 3 2、 3 3を囲む力 プセル部 3 4 1と、 カプセル部 3 4 1の下端からタワー 1の上端部を囲んで垂下 する円筒状のスカート部 3 4 2とを有している。 風力発電ユニッ ト 4は、 デッキプレート部 2 2の前端部に搭載、 固定された発 電機 4 1と、 発電機 4 1の回転軸の前端に固定されたプロペラ 4 2とからなる。 発電機 4 1をナセルに収容しても良い。 プロペラ 4 2は 2枚羽根形式とされてい る。 垂直尾翼 5は、 デッキプレート部 2 2の後端部に水平回動可能に固定されて デッキプレート部 2 2から後方へ延在している。 垂直尾翼 5は飛行機の垂直尾翼 5と同様、 垂直に配置されている。 垂直尾翼 5を水平回動させるには、 たとえば 垂直に延在する尾翼支持軸 (図示せず) をデッキプレート部 2 2の後端に固定し、 垂直尾翼 5をこの尾翼支持軸に水平回動自在に保持すればょレ、。 The horizontal rotating table 31 is slowly rotated horizontally by the table driving device 35 below it. Since this type of table driving device incorporating a reduction motor is well known as a turntable driving mechanism, detailed description thereof is omitted. The wire winding devices 3 2 and 3 3 have a speed reduction motor Μ and a wire winding roller 3 2 1 driven by the motor Μ. The wire 3 2 2 hangs down from the wire winding roller 3 2 1, and the tip of the wire 3 2 2 is fixed to the wire fixing portion 2 2 1 at the upper end of the deck plate portion 2 2. The cover 3 4 has a force pouch part 3 4 1 surrounding the wire hoisting devices 3 2 and 3 3, and a cylindrical skirt part 3 4 2 hanging from the lower end of the capsule part 3 4 1 to surround the upper end part of the tower 1 have. The wind power generation unit 4 includes a generator 41 that is mounted and fixed at the front end of the deck plate portion 22, and a propeller 42 that is fixed to the front end of the rotating shaft of the generator 41. The generator 41 may be accommodated in the nacelle. Propeller 4 2 is a two-blade type. The vertical tail 5 is fixed to the rear end of the deck plate portion 2 2 so as to be horizontally rotatable and extends rearward from the deck plate portion 2 2. The vertical tail 5 is arranged vertically like the vertical tail 5 of the airplane. To rotate the vertical tail 5 horizontally, for example, a vertically extending tail support shaft (not shown) is fixed to the rear end of the deck plate section 2 2, and the vertical tail 5 is horizontally rotated about the tail support shaft. You can hold it freely.
魚形断面形回動部材 6は、 ベース 2の下方に位置して合計 5枚配置されている。 各魚形断面形回動部材 6は、 ほぼ魚を上から見た形状に等しい流線形状を有して タワー 1に回動自在に保持されている。 魚形断面形回動部材 6は、 高さ約 2 0メ 一トル、 水平長さ約 1 0メートル、 最大厚さ約 3 . 2メートルである。 各魚形断 面形回動部材 6の上端開口は上板 6 1により、 下端開口は下板 6 2により閉鎖さ れ、 これにより、 各魚形断面形回動部材 6の内部は密閉されている。  A total of five fish-shaped cross-section rotating members 6 are arranged below the base 2. Each fish-shaped cross-section rotating member 6 has a streamline shape substantially equivalent to the shape of the fish viewed from above, and is rotatably held by the tower 1. The fish-shaped cross-section rotating member 6 has a height of about 20 meters, a horizontal length of about 10 meters, and a maximum thickness of about 3.2 meters. The upper end opening of each fish-shaped cross-section rotating member 6 is closed by the upper plate 61, and the lower end opening is closed by the lower plate 62. Thereby, the inside of each fish-shaped cross-section rotating member 6 is sealed. Yes.
魚形断面形回動部材 6の更なる詳細を図 2を参照して説明する。 図 2は、 魚形 断面形回動部材 6の模式平面図である。 魚形断面形回動部材 6は、 半魚形断面形 回動部材 6 a、 6 bを接合して形成されている。 半魚形断面形回動部材 6 aと半 魚形断面形回動部材 6 bとは線対称形状を有する。 半魚形断面形回動部材 6 a、 6 bはそれぞれ半円筒形の溝部 6 2 0をもち、 半魚形断面形回動部材 6 a、 6 b を接合することにより、 一対の溝部 6 2 0は完全な円筒孔となる。 この円筒孔に はタワー 1が嵌められる。 魚形断面形回動部材 6をこのように半魚形断面形回動 部材 6 a、 6 bを接合して構成するのは、 タワー 1への魚形断面形回動部材 6の 脱着を容易とするためである。  Further details of the fish-shaped cross-section rotating member 6 will be described with reference to FIG. FIG. 2 is a schematic plan view of the fish-shaped cross-section rotating member 6. The fish-shaped cross-sectional rotating member 6 is formed by joining semi-fish-shaped cross-sectional rotating members 6 a and 6 b. The semi-fish-shaped cross-section rotating member 6 a and the semi-fish-shaped cross-section rotating member 6 b have a line-symmetric shape. The semi-fish-shaped cross-section rotating members 6a and 6b have semi-cylindrical grooves 6 2 0, respectively. By joining the semi-fish-shaped cross-section rotating members 6a and 6b, a pair of grooves 6 2 0 is a complete cylindrical hole. Tower 1 is fitted in this cylindrical hole. The fish-shaped cross-section rotating member 6 is configured by joining the semi-fish-shaped cross-section rotating members 6 a and 6 b in this way, so that the fish-shaped cross-section rotating member 6 can be easily attached to and detached from the tower 1. This is because.
魚形断面形回動部材 6の要部を示す模式水平断面形状を図 3に示す。 魚形断面 形回動部材 6は、 6個のローラー 6 3を有している。 各ローラー 6 3の上端と下 端とは、 上板 6 1及び下板 6 2に回転自在に支持されている。 二つのローラー 6 3は、 タワー 1の前方に隣接配置され、 4つのローラー 6 3はタワー 1の後方に 隣接配置されている。 各ローラー 6 3はタワー 1の外周面に接触して、 魚形断面 形回動部材 6の水平回動を容易としている。 上下に積み重ねられた 5枚の魚形断面形回動部材 6は、 互いに独立に水平回動 可能なように、 上側の魚形断面形回動部材 6の下板と、 下側の魚形断面形回動部 材 6の上板とはローラーを介して接触してもよい。 魚形断面形回動部材 6は、 流 線形状すなわち飛行機の翼の上面を二つ合わせた形状を有している。 すなわち、 魚形断面形回動部材 6の上流部は空気流を減圧增速するノズル機能を有し、 魚形 断面形回動部材 6の中流部及び下流部は空気流を增圧減速するディフューザ機能 を有している。 魚形断面形回動部材 6の最大厚さ部位よりも下流の中流部及び下 流部の厚さの減少は境界層剥離防止のために徐々に実施される。 これにより、 魚 形断面形回動部材 6の流体抵抗は略最小となる。 FIG. 3 shows a schematic horizontal cross-sectional shape showing the main part of the fish-shaped cross-section rotating member 6. The fish-shaped cross-section rotating member 6 has six rollers 63. The upper and lower ends of each roller 63 are rotatably supported by the upper plate 61 and the lower plate 62. Two rollers 6 3 are arranged adjacent to the front of Tower 1, and four rollers 6 3 are arranged adjacent to the rear of Tower 1. Each roller 63 is in contact with the outer peripheral surface of the tower 1 to facilitate the horizontal rotation of the fish-shaped cross-section rotating member 6. The five fish-shaped cross-section rotating members 6 stacked one above the other have a lower plate and a lower fish-shaped cross-section so that they can be horizontally rotated independently of each other. The upper plate of the shape rotating member 6 may be contacted via a roller. The fish-shaped cross-section rotating member 6 has a streamline shape, that is, a shape in which two upper surfaces of airplane wings are combined. That is, the upstream portion of the fish-shaped cross-section rotating member 6 has a nozzle function for increasing and decreasing the air flow, and the middle and downstream portions of the fish-shaped cross-section rotating member 6 are diffusers that increase and decrease the air flow. It has a function. The thickness reduction of the downstream part and the downstream part of the fish-shaped cross-section rotating member 6 is gradually performed to prevent separation of the boundary layer. As a result, the fluid resistance of the fish-shaped cross-sectional rotating member 6 is substantially minimized.
次に、 図 1〜図 3に示す風力発電装置の動作を以下に説明する。 ただし、 以下 の説明では、 ベース 2はタワー 1に上端部に固定されている。 風によりプロペラ 4 2が回転し、 発電機 4 1が発電する。 発電電力は、 ベース 2と一体に回転する 水平回動テーブル 3 1に電力ケーブル (図示せず) を通じて送られ、 水平回動テ 一ブル 3 1からタワー 1内の電力ケーブルを通じて地上に送られる。 垂直尾翼 5 は前後方向に延在する姿勢にて固定されており、 その結果、 プロペラ 4 2の旋回 面は風の方向と直角に維持される。 魚形断面形回動部材 6の前端は風から受ける 力により常に風上側に位置する。 なお、 最下位の魚形断面形回動部材 6は、 図示 しない支持筒の上に載置されており、 これにより、 各魚形断面形回動部材 6の落 下が防止されている。  Next, the operation of the wind turbine generator shown in FIGS. 1 to 3 will be described below. However, in the following description, the base 2 is fixed to the tower 1 at the upper end. The propeller 4 2 is rotated by the wind, and the generator 4 1 generates power. The generated power is sent through a power cable (not shown) to a horizontal rotation table 31 that rotates integrally with the base 2, and is sent to the ground from the horizontal rotation table 3 1 through a power cable in the tower 1. The vertical tail 5 is fixed in a posture extending in the front-rear direction, and as a result, the turning surface of the propeller 42 is maintained at right angles to the wind direction. The front end of the fish-shaped cross-section rotating member 6 is always located on the windward side due to the force received from the wind. The lowermost fish-shaped cross-section rotating member 6 is placed on a support cylinder (not shown), thereby preventing the fish-shaped cross-section rotating member 6 from dropping.
許容最大風速を超える風速範囲では、 水平回動テーブル 3 1を回動させること により水平回動テーブル 3 1と一体にリンクされたベース 2を図 4に示す位置ま で水平回動させる。 図 4は風力発電ュニット 4及び垂直尾翼 5の強風時の状態を 示す模式説明図である。 プロペラ 4 2の旋回面は風が流れる方向と平行とされて いる。 また、 垂直尾翼 5の延在方向もも風が流れる方向と平行とされている。 こ れにより、 風力発電ュニット 4及び垂直尾翼 5に対する風抗力によりタワー 1に 作用する回転モーメント (倒壊モーメント) は大幅に低減される。  In the wind speed range exceeding the allowable maximum wind speed, the base 2 linked integrally with the horizontal turntable 31 is horizontally turned to the position shown in FIG. 4 by turning the horizontal turntable 31. FIG. 4 is a schematic explanatory view showing the wind power unit 4 and the vertical tail 5 in a strong wind state. The turning surface of the propeller 42 is parallel to the direction of the wind. The extending direction of the vertical tail 5 is also parallel to the direction in which the wind flows. As a result, the rotational moment (collapse moment) acting on the tower 1 due to the wind drag on the wind power generation unit 4 and the vertical tail 5 is greatly reduced.
超大型台風の通過時など、 風の方向が頻繁に変化し、 かつ、 風速も非常に大き い場合、 風力発電ユニット 4は地上近傍まで交差される。 この方法を以下に説明 する。 まず、 ベース 2と水平回動テーブル 3 1とを結合するリンク結合を解除し ワイヤ巻き上げ装置 3 2、 3 3を駆動してベース 2及び風力発電ュニット 4を降 下させる。 この降下により、 各魚形断面形回動部材 6も降下する。 最下位の魚形 断面形回動部材 6が地上に設けた後述の台座の上面まで降下すると、 その二つの 半魚形断面形回動部材 6 a、 6 bの接合を解除して最下位の魚形断面形回動部材 6をタワー 1から取り外す。 次に、 ワイヤ巻き上げ装置 3 2、 3 3を再び駆動し て、 ベース 2及び風力発電ユニット 4を更に降下させ、 次の魚形断面形回動部材 6をタワー 1から取り外す。 以下、 順次この動作を繰り返して、 ベース 2を台座 の上面まで降下させる。 この時、 二枚羽根のプロペラ 4 2は水平に保持されてい る。 上昇は上記と逆に行えばよい。 When the wind direction changes frequently and the wind speed is very high, such as during the passage of a very large typhoon, the wind power generation unit 4 is crossed to near the ground. This method is described below. First, release the link connection that connects the base 2 and the horizontal rotating table 3 1. The wire hoisting devices 3 2 and 3 3 are driven to lower the base 2 and the wind power generation unit 4. By this descent, each fish-shaped cross-section rotating member 6 is also lowered. When the lowermost fish-shaped cross-section rotating member 6 is lowered to the upper surface of the pedestal described later provided on the ground, the joining of the two semi-fish-shaped cross-section rotating members 6a, 6b is released and the lowermost Remove the fish-shaped cross-section rotating member 6 from the tower 1. Next, the wire hoisting devices 3 2 and 3 3 are driven again, the base 2 and the wind power generation unit 4 are further lowered, and the next fish-shaped cross-section rotating member 6 is removed from the tower 1. Thereafter, this operation is sequentially repeated to lower the base 2 to the upper surface of the base. At this time, the two-blade propeller 42 is held horizontally. The increase may be performed in the reverse manner.
図 5 ( a ) 、 図 5 ( b ) に示すように、 プロペラ 4 2の先端には補助翼 7が取 り付けられている。 図 5 ( a ) は、 旋回中のプロペラ 4 ' 2の先端部を示す部分模 式部分正面図、 図 5 ( b ) は、 旋回中のプロペラ 4 2の先端部分を周方向にみた 模式部分側面図である。  As shown in FIGS. 5 (a) and 5 (b), an auxiliary wing 7 is attached to the tip of the propeller 42. Fig. 5 (a) is a partial schematic front view showing the tip of the propeller 4'2 during turning, and Fig. 5 (b) is a schematic partial side view of the tip of the propeller 4 2 during turning in the circumferential direction. FIG.
図 5 ( a ) に示すように、 補助翼 7は、 風上側からみた場合に、 飛行機翼の垂 直断面形状を有している。 これにより、 高速旋回する補助翼 7は、 ほぼプロペラ 4 2の中心に向けて大きな揚力を発生する。 この揚力はプロペラ 4 2に作用する 遠心力を軽減する。 なお、 補助翼 7はできるだけ軽量に製作されるべきである。 また、 図 5 -( b ) に示すように、 補助翼 7は、 プロペラ 4 2の両面を分離するた め、 飛行機翼において翼端損失として知られている。 翼端渦流を抑止する。 次に、 図 6〜図 1 2を参照してこの実施形態におけるタワー 1の建設方法を説 明する。 図 6、 図 8〜図 1 1は、 建設中のタワー 1の側面図である。 図 7はタヮ —支持装置 8の要部を示す模式部分平面図、 図 1 2 ( a ) はタワー 1を建設する 途中におけるタワー支持用の台座 9の正面図、 図 1 2 ( b ) はタワー 1を建設す る途中におけるタワー支持用の台座 9の平面図である。  As shown in FIG. 5 (a), the auxiliary wing 7 has a vertical cross-sectional shape of an airplane wing when viewed from the windward side. As a result, the auxiliary wing 7 that turns at high speed generates a large lift toward the center of the propeller 42. This lift reduces the centrifugal force acting on the propeller 42. The auxiliary wing 7 should be made as light as possible. As shown in Fig. 5- (b), the auxiliary wing 7 separates both sides of the propeller 42 and is known as a tip loss in the airplane wing. Suppresses the tip vortex. Next, a method for constructing the tower 1 in this embodiment will be described with reference to FIGS. Figures 6 and 8 to 11 are side views of the tower 1 under construction. Fig. 7 is a schematic partial plan view showing the main part of the tower-support device 8, Fig. 1 2 (a) is a front view of the pedestal 9 for supporting the tower during construction of the tower 1, and Fig. 1 2 (b) is FIG. 3 is a plan view of a pedestal 9 for supporting the tower during the construction of the tower 1.
タワー支持装置 8は、 タワーリフトアップのための油圧シリンダ 1 0と、 タヮ 一クランプのための油圧式のクランプ装置 1 1とを有している。 図 1 2 ( a ) に 示すように、 鉄筋コンクリート製の台座 9は、 角形ブロック形状であるが、 台座 9の上面 9 0の中央部から一側面に達する溝部 9 1が形成されている。 図 6に示 すように、 この台座 9の溝部 9 1には油圧シリンダ 1 0が収容されている。 1 0 aは油圧シリンダ 1 0のロッド上端に固定されたタワー用部分円筒 1 0 0を上方 へ押すプレートである。 図 6、 図 7に示すように、 台座 9の上方には、 クランプ 装置 1 1が配置されている。 クランプ装置 1 1は、 左右一対の把持プレート 1 1 a、 1 1 bをも.ち、 把持プレート 1 1 a、 1 1 bは、 図示しない油圧シリンダの ロッド 1 2 a、 1 2 bの先端に固定されている。 把持プレート l l a、 l i bは 左右方向に進退してタヮー用部分円筒 1 0 0を把持したり離したりする。 把持プ レート 1 1 a、 l i bの把持面は、 タヮー用部分円筒 1 0 0を把持するために略 部分円筒形状となっている。 The tower support device 8 has a hydraulic cylinder 10 for tower lift-up and a hydraulic clamp device 11 for the cylinder clamp. As shown in FIG. 12 (a), the reinforced concrete pedestal 9 has a square block shape, but is formed with a groove 91 that reaches one side from the center of the upper surface 90 of the pedestal 9. As shown in FIG. 6, a hydraulic cylinder 10 is accommodated in the groove portion 9 1 of the base 9. Ten a is a plate that pushes the tower partial cylinder 100 fixed to the upper end of the rod of the hydraulic cylinder 10 upward. As shown in FIGS. 6 and 7, a clamp device 11 is disposed above the pedestal 9. The clamping device 1 1 has a pair of left and right grip plates 1 1 a and 1 1 b. The grip plates 1 1 a and 1 1 b are attached to the tips of rods 1 2 a and 1 2 b of a hydraulic cylinder (not shown). It is fixed. The grip plates lla and lib move back and forth in the left-right direction to grip and release the tower partial cylinder 100. The gripping surfaces of the gripping plates 11a and lib have a substantially partial cylindrical shape for gripping the tower partial cylinder 100.
図 6は、 上側のタワー用部分円筒 1 0 0がクランプ装置 1 1により把持され、 下側のタワー用部分円筒 1 0 1が油圧シリンダ 1 0のプレート 1 0 aに搭載され た状態を示す。 上側のタワー用部分円筒 1 0 0の下端面と下側のタワー用部分円 筒 1 0 1の上端面とは密着している。 この状態にて、 上側のタワー用部分円筒 1 0 0の下端面と下側のタヮー用部分円筒 1 0 1の上端面とは溶接されてあるいは 締結されて一体化される。 次に、 把持プレート 1 1 a、 1 1 bを上側のタワー用 部分円筒 1 0 0から少し後退させる。 これにより、 上側のタワー用部分円筒 1 0 0と下側のタヮ一用部分円筒 1 0 1とはプレート 1 0 a上に完全に搭載される。 次に、 プレート 1 0 aを上昇させる。 この時、 把持プレート 1 1 a、 l i bは上 側のタワー用部分円筒 1 0 0や下側のタワー用部分円筒 1 0 1が上昇する際のガ ィ ド部材をなす。  FIG. 6 shows a state where the upper tower partial cylinder 100 is gripped by the clamp device 11, and the lower tower partial cylinder 100 is mounted on the plate 10 a of the hydraulic cylinder 10. The lower end surface of the upper partial cylinder for tower 100 and the upper end surface of the lower partial cylinder for tower 100 are in close contact. In this state, the lower end face of the upper tower partial cylinder 100 and the upper end face of the lower tower partial cylinder 100 are integrated by welding or fastening. Next, the grip plates 1 1 a and 1 1 b are slightly retracted from the upper tower partial cylinder 1 0 0. Thereby, the upper tower partial cylinder 100 and the lower tower partial cylinder 100 are completely mounted on the plate 10 a. Next, the plate 1 0 a is raised. At this time, the grip plates 11 a and l i b serve as guide members when the upper partial cylinder for tower 100 and the lower partial cylinder for tower 10 1 rise.
図 7は、 下側のタワー用部分円筒 1 0 1が把持プレート 1 1 a、 1 1 bにより 把持される位置まで上昇した状態を示す。 次に、 把持プレート 1 1 a、 l i bを 下側のタワー用部分円筒 1 0 1に向けて前進させる。 これにより、 下側のタワー 用部分円筒 1 0 1は把持プレート 1 1 a、 1 1 bにより把持される。 次に、 図 9 に示すように、 プレート 1 0 aを元の位置まで降下させる。 次に、 図 1 0に示す ように、 次のタワー用部分円筒 1 0 2を台座 9の上面 9 0上をスライ ドさせてプ レート 1 0 aの上まで移動させる。 次に、 プレート 1 0 aを少し上昇させて、 タ ヮー用部分円筒 1 0 2の上端面をタワー用部分円筒 1 0 1の下端面に同軸に密着 させ、 その後でタワー用部分円筒 1 0 2の下端面にタワー用部分円筒 1 0 1の上 端面を溶接する。 その後、 図 7以降の作業工程を実施することにより、 タワー 1 が完成される。 FIG. 7 shows a state where the lower partial cylinder for tower 1 0 1 is raised to a position where it is gripped by the gripping plates 1 1 a and 1 1 b. Next, the gripping plate 1 1 a, lib is advanced toward the lower partial cylinder for tower 1 0 1. As a result, the lower tower partial cylinder 10 1 is gripped by the grip plates 1 1 a and 1 1 b. Next, as shown in Fig. 9, plate 1 0 a is lowered to its original position. Next, as shown in FIG. 10, the next tower partial cylinder 100 is slid on the upper surface 90 of the pedestal 9 and moved onto the plate 10 a. Next, the plate 10 a is slightly raised so that the upper end surface of the tower partial cylinder 10 0 2 is in close contact with the lower end surface of the tower partial cylinder 1 0 1, and then the tower partial cylinder 1 0 2 The upper end surface of the tower partial cylinder 1 0 1 is welded to the lower end surface of. After that, by carrying out the work process from Figure 7 onwards, Tower 1 Is completed.
タヮー 1が完成された後、 把持プレ一ト 1 1 a、 1 1 bがタワー 1をクランプ した状態にて、 油圧シリンダ 1 0を台座 9の溝部 9 1から取り外し、 代わりに基 礎用部分円筒 (図示せず) を横方向へ移動させて、 溝部 9 1内のタワー 1と同軸 に配置する。 その後、 把持プレート 1 1 a、 l i bを少しゆるめる。 これにより、 タワー 1の下端面は基礎用部分円筒の上端面に密着し、 それらは溶接される。 次 に、 基礎用部分円筒は台座 9の溝部 9 1に投入された生コンクリートにより台座 After the tower 1 is completed, with the gripping plates 1 1 a and 1 1 b clamped the tower 1, remove the hydraulic cylinder 10 from the groove 9 1 of the base 9 and replace it with the basic partial cylinder. (Not shown) is moved laterally and placed coaxially with tower 1 in groove 9 1. Then loosen the gripping plates 1 1 a and l i b slightly. As a result, the lower end surface of the tower 1 is brought into close contact with the upper end surface of the foundation partial cylinder, and they are welded. Next, the partial cylinder for the foundation is pedestal made of ready-mixed concrete placed in the groove 9 1 of the pedestal 9.
9と一体化され、 その結果、 タワー 1は台座 9に固定される。 As a result, tower 1 is fixed to pedestal 9.
上記実施形態では、 風力発電ュニット 4やベース 2や昇降装置 3や魚形断面形 回動部材 6は完成したタワー 1に後で取り付けたが、 あらかじめタワー用部分円 筒に設置しておいてもよい。 また、 タワー 1の建設前、 又は建設後に配置されて 各タヮー用部分円筒を貫通する高張力ワイヤをタワー 1の完成後に締め上げてタ ヮ一 1の剛性を強化してもよレ、。  In the above embodiment, the wind power unit 4, the base 2, the lifting device 3, and the fish-shaped cross-section rotating member 6 were attached later to the completed tower 1, but even if they were previously installed in the tower partial cylinder Good. In addition, it is possible to reinforce the rigidity of tower 1 by tightening the high-tensile wire that is placed before or after construction of tower 1 and penetrates the partial cylinder for each tower after tower 1 is completed.
上記実施例では、 プロペラ 4 2は発電機 4 1の回転軸に直結したが、 増速ギヤ 機構を通じて結合してもよいことは当然である。 その他、 垂直尾翼 5を省略して 風方向をセンサにより検出し、 このセンサの出力信号により水平回動テーブル 3 In the above embodiment, the propeller 42 is directly connected to the rotating shaft of the generator 41. However, it is a matter of course that the propeller 42 may be connected through a speed increasing gear mechanism. In addition, the vertical tail 5 is omitted, and the wind direction is detected by a sensor.
1を回動させてもよい。 産業上の利用可能性 1 may be rotated. Industrial applicability
経済的に耐風性能に優れた風力発電装置を提供することにより、 二酸化炭素排 出量が少ないエネルギー生産を行うことができる。  By providing a wind power generator that is economically excellent in wind resistance, energy production with low carbon dioxide emissions can be achieved.

Claims

請求の範囲 The scope of the claims
1 . プロペラと、 前記プロペラにより駆動される発電機とからなる風力発電ュニ ットと、 前記風力発電ュニットを支持する円柱形状のタワーとを備える風力発電 装置において、  1. A wind turbine generator comprising: a wind power generator unit including a propeller, a generator driven by the propeller, and a cylindrical tower that supports the wind generator unit;
ほぼ魚を上から見た形状に等しい流線形状を有して前記タワーに回動自在に保 持される魚形断面形回動部材を有することを特徴とする風力発電装置。  A wind turbine generator having a fish-shaped cross-section rotating member having a streamline shape substantially equal to a shape of a fish viewed from above and rotatably held by the tower.
2. プロペラと、 前記プロペラにより駆動される発電機とからなる風力発電ュニ ットと、 前記風力発電ュニットを支持する円柱形状のタワーとを備える風力発電 装置において、 2. A wind turbine generator comprising: a wind turbine unit comprising a propeller; a generator driven by the propeller; and a cylindrical tower that supports the wind turbine unit.
前記風力発電ュニッ トを搭載するとともに前記タヮ一に昇降自在に嵌着された ベースと、  A base on which the wind power unit is mounted and fitted to the table so as to be movable up and down;
前記ベースを昇降させる昇降装置とを有することを特徴とする風力発電装置。  A wind power generator comprising a lifting device for lifting and lowering the base.
3. プロペラと、 前記プロペラにより駆動される発電機とからなる風力発電ュニ ットと、 前記風力発電ュニットを支持する円柱形状のタワーとを備える風力発電 装置において、 3. A wind turbine generator comprising a propeller, a wind power generator unit including a generator driven by the propeller, and a cylindrical tower that supports the wind generator unit,
風力が所定のしきい値を超えるかどうかを検出する風力検出装置と、 風力が前記しきい値を超えた場合に前記プロペラの回転面が風の方向と略平行 となるように前記風力発電ュニットを回動させるュニット回動装置とを有するこ とを特徴とする風力発電装置。  A wind power detection device for detecting whether or not the wind force exceeds a predetermined threshold; and when the wind force exceeds the threshold, the wind power generation unit is configured such that a rotating surface of the propeller is substantially parallel to a wind direction. A wind power generator comprising a unit rotating device for rotating the unit.
4. プロペラと、 前記プロペラにより駆動される発電機とからなる風力発電ュニ ットと、 前記風力発電ュニットを支持する円柱形状のタワーとを備える風力発電 装置において、 4. A wind power generator comprising a propeller, a wind power generation unit including a generator driven by the propeller, and a cylindrical tower that supports the wind power unit.
前記プロペラの外周端に配置され、 前記プロペラの求心方向に揚力を発生する 補助翼を有することを特徴とする風力発電装置。  A wind turbine generator having an auxiliary wing disposed at an outer peripheral end of the propeller and generating lift in a centripetal direction of the propeller.
5. プロペラと、 前記プロペラにより駆動される発電機とからなる風力発電ュニ ットと、 前記風力発電ュ-ットを支持する円柱形状のタワーとを備える風力発電 装置の建設方法において、 5. Wind power unit comprising a propeller and a generator driven by the propeller And a wind turbine generator having a cylindrical tower that supports the wind power unit,
前記タワーの一部をなす所定長さの円筒を垂直にリフトアップするリフトアツ プ工程と、  A lift-up process for vertically lifting a cylinder of a predetermined length forming a part of the tower;
前記円筒の直下に次の円筒を横方向からシフトする横シフト工程と、  A lateral shift step of shifting the next cylinder from the lateral direction directly below the cylinder;
前記シフトした円筒の上端を前記リフトアップした円筒の下端に接合する接合 工程と、  A joining step of joining the upper end of the shifted cylinder to the lower end of the lifted cylinder;
を繰り返して前記タワーを建設することを特徴とする風力発電装置の建設方法,  The construction method of the wind power generator characterized by constructing the tower by repeating
PCT/JP2006/304545 2006-03-02 2006-03-02 Wind-driven power generator and construction method for the same WO2007105260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304545 WO2007105260A1 (en) 2006-03-02 2006-03-02 Wind-driven power generator and construction method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304545 WO2007105260A1 (en) 2006-03-02 2006-03-02 Wind-driven power generator and construction method for the same

Publications (1)

Publication Number Publication Date
WO2007105260A1 true WO2007105260A1 (en) 2007-09-20

Family

ID=38509110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304545 WO2007105260A1 (en) 2006-03-02 2006-03-02 Wind-driven power generator and construction method for the same

Country Status (1)

Country Link
WO (1) WO2007105260A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484962A (en) * 2010-10-28 2012-05-02 Calsand Ltd Shroud or fairing for window turbine
WO2012156352A1 (en) * 2011-05-18 2012-11-22 Dipl.-Ing. Werner Nophut Gmbh Wind turbine system
WO2015001148A1 (en) * 2013-07-05 2015-01-08 Pacadar S.A.U. Assembly method and device for wind turbine towers
CN110345020A (en) * 2019-07-28 2019-10-18 米建军 A kind of tower fairing and application apparatus
CN110360049A (en) * 2019-08-05 2019-10-22 米建军 A kind of horizontal axis wind-driven generator
CN113374646A (en) * 2021-06-16 2021-09-10 重庆大学 Light steel concrete prestressing force combination formula wind power tower section of thick bamboo and wind power tower thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456573U (en) * 1987-10-01 1989-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456573U (en) * 1987-10-01 1989-04-07

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484962A (en) * 2010-10-28 2012-05-02 Calsand Ltd Shroud or fairing for window turbine
WO2012156352A1 (en) * 2011-05-18 2012-11-22 Dipl.-Ing. Werner Nophut Gmbh Wind turbine system
WO2015001148A1 (en) * 2013-07-05 2015-01-08 Pacadar S.A.U. Assembly method and device for wind turbine towers
CN110345020A (en) * 2019-07-28 2019-10-18 米建军 A kind of tower fairing and application apparatus
WO2021017939A1 (en) * 2019-07-28 2021-02-04 米建军 Tower flow straightening apparatus and application method
CN110360049A (en) * 2019-08-05 2019-10-22 米建军 A kind of horizontal axis wind-driven generator
WO2021023004A1 (en) * 2019-08-05 2021-02-11 米建军 Horizontal shaft wind-driven power generator
CN113374646A (en) * 2021-06-16 2021-09-10 重庆大学 Light steel concrete prestressing force combination formula wind power tower section of thick bamboo and wind power tower thereof

Similar Documents

Publication Publication Date Title
AU2009260465B2 (en) Wind diverter
CN101943127B (en) Wind collecting vertical type wind power generating system
ES2322000B1 (en) A METHOD FOR MOUNTING THE ROTOR OF AN AIRBRUSHER.
JP2007198354A (en) Wind power generation device and its constructing method
US7750492B1 (en) Bearingless floating wind turbine
WO2012165444A1 (en) Natural energy extraction apparatus
JP2019528402A (en) Method and apparatus for performing maintenance on wind turbine components
US20120131876A1 (en) Hoisting nacelle and tower
CN102277878A (en) Floating foundation and construction method thereof
WO2007105260A1 (en) Wind-driven power generator and construction method for the same
JPS58501780A (en) A wind power generator comprising at least one blade rotatable around an axis of rotation
CN102128138A (en) Multilayer stacking combined vertical type wind power generation system
CN206735647U (en) A kind of big part of offshore wind turbine is from maintenance type more changing device
CN101988468B (en) Sea vertical axis hoistable combined type generating platform
WO2019101106A1 (en) Power device for increasing low flow rate
CN105736221A (en) Modularized ocean energy power generation device
CN103511187A (en) Wind gathering type wind power generation device
CN203770026U (en) Wind gathering type wind power generation device
CN102650270A (en) Rapid mounting method of wind driven generator on sea
CN109826753B (en) Strong wind resistant offshore power generation device
CN203684191U (en) Fan construction system of offshore intertidal zone
WO2011026256A1 (en) System and method for high altitude wind power generation
CN213740908U (en) Knotting prevention device for steel wire rope of gate of hydropower station
CN102297088B (en) Vertical type multilayer wind power generation system fixed jointly by foundation platform and framework steel cable
ES2377258B1 (en) VERTICAL SHAFT TURBINE WIND AEROGENERATOR WITH NITROGEN HYDRAULIC ENERGY ACCUMULATOR.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06728812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06728812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP