WO2007103331A2 - Fire rated wall structure - Google Patents
Fire rated wall structure Download PDFInfo
- Publication number
- WO2007103331A2 WO2007103331A2 PCT/US2007/005621 US2007005621W WO2007103331A2 WO 2007103331 A2 WO2007103331 A2 WO 2007103331A2 US 2007005621 W US2007005621 W US 2007005621W WO 2007103331 A2 WO2007103331 A2 WO 2007103331A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- side walls
- wall structure
- stationary portion
- web
- overcap
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims description 10
- 230000009970 fire resistant effect Effects 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 238000009432 framing Methods 0.000 description 27
- 238000005304 joining Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 10
- 238000010276 construction Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- LVDRREOUMKACNJ-BKMJKUGQSA-N N-[(2R,3S)-2-(4-chlorophenyl)-1-(1,4-dimethyl-2-oxoquinolin-7-yl)-6-oxopiperidin-3-yl]-2-methylpropane-1-sulfonamide Chemical compound CC(C)CS(=O)(=O)N[C@H]1CCC(=O)N([C@@H]1c1ccc(Cl)cc1)c1ccc2c(C)cc(=O)n(C)c2c1 LVDRREOUMKACNJ-BKMJKUGQSA-N 0.000 description 6
- 230000013011 mating Effects 0.000 description 6
- 230000007812 deficiency Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000009435 building construction Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009429 electrical wiring Methods 0.000 description 3
- 229910052602 gypsum Inorganic materials 0.000 description 3
- 239000010440 gypsum Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000009433 steel framing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/94—Protection against other undesired influences or dangers against fire
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/74—Removable non-load-bearing partitions; Partitions with a free upper edge
- E04B2/7407—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
- E04B2/7409—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts special measures for sound or thermal insulation, including fire protection
- E04B2/7411—Details for fire protection
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/72—Non-load-bearing walls of elements of relatively thin form with respect to the thickness of the wall
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/74—Removable non-load-bearing partitions; Partitions with a free upper edge
- E04B2/7407—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
- E04B2/7453—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling
- E04B2/7457—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling with wallboards attached to the outer faces of the posts, parallel to the partition
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/74—Removable non-load-bearing partitions; Partitions with a free upper edge
- E04B2/76—Removable non-load-bearing partitions; Partitions with a free upper edge with framework or posts of metal
- E04B2/766—T-connections
- E04B2/767—Connections between wall studs and upper or lower locating rails
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/74—Removable non-load-bearing partitions; Partitions with a free upper edge
- E04B2/76—Removable non-load-bearing partitions; Partitions with a free upper edge with framework or posts of metal
- E04B2/78—Removable non-load-bearing partitions; Partitions with a free upper edge with framework or posts of metal characterised by special cross-section of the frame members as far as important for securing wall panels to a framework with or without the help of cover-strips
- E04B2/7854—Removable non-load-bearing partitions; Partitions with a free upper edge with framework or posts of metal characterised by special cross-section of the frame members as far as important for securing wall panels to a framework with or without the help of cover-strips of open profile
- E04B2/789—Removable non-load-bearing partitions; Partitions with a free upper edge with framework or posts of metal characterised by special cross-section of the frame members as far as important for securing wall panels to a framework with or without the help of cover-strips of open profile of substantially U- or C- section
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/74—Removable non-load-bearing partitions; Partitions with a free upper edge
- E04B2/7407—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
- E04B2/7453—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling
- E04B2/7459—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling with telescoping posts to compensate for floor or ceiling irregularities
Definitions
- the present invention relates generally to joining systems and, more particularly, to a uniquely configured fire rated wall structure that may be used in the construction of wall assemblies such as partitioning walls and non-loading bearing curtain walls and which is specifically adapted to meet fire rating provisions found in many building codes.
- conventional wall fabrication techniques employ the use of upper and lower headers that are disposed in spaced relationship to one another.
- the upper and lower headers are attached to the ceiling and floor portions of a building structure and are interconnected with a plurality of stud members disposed in spaced, parallel relationship to one another.
- the stud members are typically connected to the top and bottom headers with mechanical fasteners such as nails, screws and the like.
- the framing which is comprised of the upper and lower headers and the stud members, may be of wooden or metallic construction. Panels such as drywall, gypsum board, sheetrock, and the like are then installed on opposing sides of the framing in order to complete the basic wall structure.
- Metallic framing systems typically employ the use of lightweight steel stud members which are generally channel shaped or U-shaped.
- the stud members are attachable at opposing ends to horizontally oriented top and bottom plate members.
- the top and bottom plate members are, in turn, secured to the building structure adjacent the ceiling and floor.
- a metallic framing system comprises a series of spaced apart steel stud members engaged to the top and bottom plate members and which includes wall board which is attached to opposing sides of the metallic faming system.
- the frames may be assembled on the ground with the top and bottom plate members being disposed in spaced apart relationship.
- the stud members are then connected to the top and bottom plates by engaging the ends of the stud with screws or other suitable fasteners.
- the metallic framing system is dependent upon fasteners for interconnecting the stud members to the top and bottom plate members, the framing system is generally structurally weak when the stud members are initially engaged to the top and bottom plate members prior to fastener installation.
- the framing system does not achieve full strength until the wall board is affixed to the frame and therefore provides insufficient rigidity until fasteners are inserted.
- Another method of securing the stud members to the top and bottom plates involve the use of a tab and slot arrangement wherein tabs disposed on extreme ends of the top and bottom plates engage corresponding slots in the stud members. Such engagement is facilitated by manually urging (i.e., with a hammer) the tabs so that they are reoriented at an angular orientation relative to the stud members which thereby locks the stud members against the top and bottom plates.
- a tab and slot arrangement wherein tabs disposed on extreme ends of the top and bottom plates engage corresponding slots in the stud members. Such engagement is facilitated by manually urging (i.e., with a hammer) the tabs so that they are reoriented at an angular orientation relative to the stud members which thereby locks the stud members against the top and bottom plates.
- Such method of interconnecting the stud members to the top and bottom plates requires additional material to form the top and bottom plates.
- the reorienting or bending of the tabs into the locking position requires additional labor and is
- the tab and slot method of connecting the stud members to the top and bottom plates is generally effective in securing such members, the amount of time required to bend the tab a total of four times for each stud member represents a significant drawback which detracts from the overall utility of this type of metallic framing system.
- Another method of constructing a metallic framing system from stud members and top and bottom plates involves the use of cooperating formations in each of the components.
- the formations consist of a securing notch formed in the walls of the mating stud member and plates.
- the walls of the plate members include an upturned lip formed at a location where the stud member mates with the top and bottom plate members.
- prior art joining method as described above generally result in a functionally-adequate metallic framing system
- prior art joining systems suffer the significant deficiency of being time-consuming and tedious to assemble.
- the nature of tab and/or slot joining systems limit the engagement of studs to predetermined positions along the upper track. This limiting feature is unacceptable in many applications such as, for example, in dry wall fit-outs which require unrestricted positioning in order to allow tradesman to overcome often encountered but unforeseen measurement discrepancies. Such measurement discrepancies may be the result of rough and inaccurate pouring of concrete walls.
- prior art joining systems suffer another significant deficiency regarding impracticality for applications having varying ceiling-to-floor measurements. In such situations, the studs with joining ends are typically.
- the top track typically incorporates flanges that are longer than standard in order to trap the engaged studs.
- the studs are intentionally cut short in order to allow for upward expansion of the stud when exposed to heat as well as to allow downward contraction or movement.
- such a system does not allow for relative movement between the studs and track.
- the studs must be left unfastened and are only supported between the track flanges which results in a relatively weak wall structure that must rely heavily upon the wallboard for load-carrying support.
- the studs are often temporarily connected much like standard wall construction in order to allow for the fitting of electrical wiring and other utilities.
- Metallic framing systems of the prior art suffer from an additional drawback associated with fire rating for interior walls. More particularly, many building codes include fire rating provisions wherein interior portions of the building must be capable of containing heat, smoke and flames of a fire.
- the wall structure is preferably constructed in such a manner as to prevent the migration of heat, smoke and flames to an adjacent room or rooms. The migration of smoke, heat and/or flames may compromise the safety of occupants and/or personal property in an adjacent room.
- Fireproof ratings are defined in terms of duration or time that a wall must be capable of containing the fire and its effects from migrating to an adjacent part of the building. Typical fire ratings may be expressed in terms of time increments such as one hour, two hours, four hours and upward and are typically imposed on certain areas of building structures including wall structures fabricated with metallic framing systems.
- the differences in expansion of the metallic framing system and the wall board is the result of differences in coefficient of thermal expansion. More particularly, because metal has a greater coefficient of thermal expansion than wall board, an increase in the temperature of the room causes the metallic framing in the vertical stud members to expand to a greater extent than the expansion of the wall board.
- a further deficiency associated with conventional wall structures is the rigid or non-adaptive nature of the wall structure to changes in ceiling height as a result of settling of the building foundation and/or building movement such as may be caused by seismic activity or creeping of load-carrying beams over time.
- the same drawbacks described above associated with relative movement between the framing system and the wall board is present in ceiling movement or building settling.
- a wall structure which employs the use of metallic framing and which is specifically configured to provide a desired fire rating despite differences in the mechanical properties (i.e., coefficient of thermal expansion) of the components that make up the wall structure. More specifically, there exists a need in the art for a fire rated wall structure which includes an expansion joint that allows the metallic framing underlying the wall structure to move dynamically in response to heat and/or building movement without compromising the integrity of the wall board which covers the steel frame such that noxious fumes, smoke, flames and/or heat from a fire cannot migrate through voids or cracks created in the wall board.
- the wall structure of the present invention includes an expansion joint which allows for relative vertical movement of the metallic components of the steel framing and the non-metallic panel member that is secured to the steel framing.
- the wall structure includes a top and bottom track and at least one stud member.
- the top and bottom tracks are preferably disposed in spaced and parallel relation to one another and may be mounted to a floor and a ceiling of a building.
- At least one of the stud members is interconnected to the top and bottom tracks.
- stud members are generally provided in spaced intervals along the top and bottom track in order to provide a means for connecting the panel members such as drywall to the wall structure.
- Each of the top and bottom tracks generally has a channel shaped cross section with opposing terminus ends. Furthermore, each one of the top and bottom tracks comprises a planar web defined by a pair of opposing longitudinal edges. A pair of opposing and inwardly directed male protrusions is integrally formed with and extends continuously along respective ones of the longitudinal edges. The male protrusions preferably have a V-shaped cross section. Each of the top and bottom tracks additionally comprises a pair of substantially flat side walls which are preferably integrally formed with and which extend outwardly from a respective one of the male protrusions. The side walls are preferably oriented perpendicularly relative to the web. In addition, the top and bottom tracks are preferably oriented such that the side walls thereof face one another.
- the stud member of the wall structure may be adapted to be transversely interconnected to the top and bottom tracks and is generally oriented in perpendicular relationship thereto. Similar to the configuration of the top and bottom tracks, the stud member may also have a channel shape cross-section with an opposing pair of terminus ends.
- the stud member includes a telescopic mechanism comprising a slip extension slideably engaged to a stationary portion.
- the stud member comprises the slip extension and the stationary portion.
- the telescopic mechanism is adapted to allow for changes in the length of the stud member. More particularly, the telescopic mechanism allows the stud member to be either lengthened or shortened in order to accommodate changes in spacing occurring between the top and bottom tracks in the installed wall structure. Such changes may occur during differential heating and/or cooling of the metallic structure comprised of the top and bottom tracks and stud member and the non- metallic nature of the panel member, typically comprised of drywall and/or gypsum board and the like.
- Each of the slip extension and stationary portion preferably has a channel shaped cross-section with opposing terminus ends. Specific features are incorporated into at least one of the terminus ends of each the slip extension and stationary portion to facilitate engagement with the top and bottom tracks. More specifically, at least one of the terminus ends of the slip extension and stationary portion includes a pair of opposed and inwardly directly female recesses formed in side walls of the slip extension and stationary portions. Each female recess, preferably has a V-shaped cross-section formed complementary to the V-shaped cross-section of the male recesses. In this manner, the female recesses are adapted to receive a respective one of the male protrusions formed in the top and bottom tracks.
- the web 18 of the stationary portion 46 may include at least one opening 48 sized and configured to accommodate a utility conduit to provide a means to route electrical wiring, plumbing, and the like through the wall structure 10.
- the wall structure may further comprise an elongate top overcap secured in abutting relationship to the top track.
- the top overcap preferably has a channel shaped cross-section including a substantially flat planar web with planar side walls extending perpendicularly outwardly from the web.
- a pair of opposing male protrusions are preferably integrally formed in respective ones of the side walls of the top overcap.
- the male protrusions extend continuously along a length of the side walls and are preferably configured with a V-shaped cross-section.
- the top overcap is preferably configured such that at least one of the side walls thereof at least partially overlaps the top track side wall and is disposed in spaced relation thereto.
- the top overcap is configured such that the male protrusion is disposed in contacting relationship to an outer surface of the panel member in order to provide sealing engagement therewith.
- the top overcap is preferably configured as a unitary structure wherein the web, side walls and male protrusions are integrally formed.
- the stud member is configured to allow for expansion and contraction of the wall structure due to the inclusion of a slot formed in the slip extension. More specifically, the slot is formed in at least one of the side walls of the slip extension and is configured to allow a fastener to extend thereinto such that relative sliding motion between the slip extension and the stationary portion may freely occur.
- a panel member may be connectively mounted to the bottom track and a stationary portion. Importantly, the panel member is also disposed in non- connective overlapping relationship to the slip extension and to the top track in order to provide relative movement thereof between the panel member and the slip extension and top track.
- the panel member may be secured to the wall structure through the use of a plurality of fasteners extending into the side walls of the bottom track and stationary portion. At least one of the fasteners extends through the panel member and into the stationary portion side wall and passing through the slot.
- the slot formed in the slip extension allows for relative sliding motion between the slip extension and the stud member such that the stud member may be lengthened and shortened to accommodate changes in spacing between the top and bottom tracks. Such spacing changes may occur due to heating caused by a fire and as a result of differences in coefficient of thermal expansion between the metallic components (i.e., comprised of the top and bottom tracks and stud member) and the non-metallic components (i.e., the panel member).
- Figure 1 is a perspective view of a fire rated wall structure of the present invention and illustrating a stud member disposed on an end thereof;
- Figure 2 is a perspective view of the wall structure and illustrating a top track, a bottom track, and the stud member comprised of a slip extension and a stationary portion arid further illustrating a panel member secured to the bottom track and stationary portion;
- Figure 3 is an exploded perspective view of the wall structure illustrating the interconnectivity of the stud member, the top and bottom tracks and the panel member;
- Figure 4 is a side view of the wall structure taken along the lines 4-4 of Figure
- Figure 5 is a plan view of a portion of the wall structure showing a slot formed in the slip extension and illustrating a fastener extending through the stationary portion of the stud member and entering the slot in an overlapping portion of the stud member;
- Figure 6 is a partially exploded perspective view of the wall structure and further illustrating a top overcap mounted in overlapping relationship to the top track;
- Figure 7 is a partially exploded perspective view of the wall structure illustrating a stud overcap as may be mounted on the stud member;
- Figure 8 is an enlarged partial side view of the top overcap mounted on the top track and illustrating a gap formed between an upper edge of the panel member and the top overcap;
- Figure 9 is an enlarged partial side view of the wall structure illustrating the top overcap having a pair of V-shaped male protrusions which are configured to sealingly bear against the panel member;
- Figure 10 is a perspective view of the wall, structure illustrating the interconnectivity of the stud overcap mounted to the stud member and further illustrating an aperture formed in a side wall of the stud overcap and through which a fastener may extend;
- Figure 11 is a partial plan view of the wall structure illustrating the stud overcap and the relative positioning thereof upon a stud member and further illustrating the relative positioning of the aperture of the stud overcap with respect to the slot formed in the slip extension; and
- Figure 12 is a side view of the wall structure and illustrating the relative positioning of the stud overcap with respect to the slip extension and stationary portion of the stud member.
- a fire rated wall structure 10 which is specifically adapted to compensate for expansion or retraction in the overall height of the wall structure 10 such as may occur when the wall structure 10 is heated due to a fire occurring within a building.
- the wall structure 10 of the present invention allows for relative sliding movement between a panel member 62 covering the wall structure 10 and an upper portion of the steel frame against which the panel member 62 is abutted. In this manner, the upper portion of the wall structure 10 may expand in relation to the panel member 62.
- the fire rated wall structure 10 having the essential components illustrated therein. More particularly, the wall structure 10 broadly comprises a top track 16 and a bottom track 14 disposed in spaced parallel relation to one another. Figures 1-3 further illustrate a single stud member 34 oriented transversely to the top and bottom tracks 16, 14 and interconnecting such top and bottom tracks 16, 14. Although a single stud member 34 shown in Figures 1-3, it should be noted that as is typical in wall construction practices, a plurality of stud members 34 are typically spaced on center along the top and bottom tracks 16, 14 at pre-determined intervals such as at 16" and 24" intervals.
- the stud members 34 may be conveniently located at any position along the top and bottom track 16, 14 members.
- the wall structure 10 of the present invention may be adapted for fabrication of various types of building walls such as partitioning walls and non-load bearing curtain walls.
- various other types of walls may be constructed using the wall structure 10 of the present invention.
- the top and bottom tracks 16, 14 may each be adapted to be positioned along a surface such as along respective ones of a floor and a ceiling.
- each of the top and bottom tracks 16, 14 are preferably disposed in spaced parallel relation to one another wherein each of the top and bottom tracks 16, 14 has a channel shaped cross- section with opposing terminus ends 26. More specifically, each one of the top and bottom tracks 16, 14 comprises a planar and substantially flat web 18 which is defined by a pair of opposing, parallel longitudinal edges 22.
- each of the male protrusions 28 preferably has a V-shaped cross-section as best seen in Figure 4.
- each of the male protrusions 28 is comprised of upper and lower inclined surfaces 30, 32 that collectively form the V- shaped notches.
- each of the top and bottom tracks 16, 14 further comprises a pair of substantially flat and planar side walls 24 which are preferably integrally formed with and which extend outwardly from a respective one of the male protrusions 28. As can be seen in Figure 4, the side walls 24 are generally oriented in perpendicular relation to the web 18.
- the top and bottom tracks 16, 14 are oriented such that the side walls 24 of the top tracks 16 face toward the side walls 24 of the bottom track 14.
- the stud member 34 may be conveniently installed within the channel shaped cross-sections of the top and bottom tracks 16, 14.
- the stud member 34 is adapted to be transversely interconnected to the top and bottom tracks 16, 14 and is preferably disposed in perpendicular relation thereto although the stud member 34 may be oriented in any angular orientation with respect to the top and bottom tracks 16, 14.
- the stud member 34 also has a channel shaped cross-section with an opposing pair of terminus ends 26.
- the stud member 34 includes an expansion joint 12 in the form of a telescopic mechanism 36 which is comprised of a slip extension 38 which is at least partially nested and slideably received within a stationary portion 46.
- both the slip extension 38 and stationary portion 46 comprise the stud member 34.
- the stud member 34 Due to the slideable nature of the slip extension 38 within the stationary portion 46, the stud member 34 is adapted to allow for changes in length of the stud member 34.
- the telescopic mechanism 36 is adapted to allow the stud member 34 to be lengthened or shorted in order to accommodate changes in spacing between the top and bottom tracks 16, 14. As was earlier mentioned, such changes in spacing may occur due to heating of the wall structure 10 which in turn results in heating and expansion of the metallic framing comprised of the top and bottom tracks 16, 14 and stud members 34.
- such heating of the wall structure 10 results in a differential in the amount with which the metallic wall structure 10 increases in length with respect to the increase in length of the panel member 62 covering the metallic wall structure 10.
- the coefficient of thermal expansion of metal is different than the coefficient of thermal expansion of wall board materials from which the panel member 62 is constructed. More specifically, commonly used panel members 62 such as drywall and gypsum board have a much lower coefficient of thermal expansion. Therefore, upon heating of the wall structure 10, the metallic structure increases at a greater length than the panel member 62.
- the 36 in the stud member 34 accommodates such differential heating such that the metallic structure can increase in length while the panel member 62 remains permanently affixed to a lower portion of the wall structure 10 and is only slideably disposed against an upper portion of the wall structure 10.
- the stud member 34 comprised of the slip extension 38 and stationary portion 46.
- the slip extension 38 is specifically configured to be slideably received within the stationary portion 46.
- Each one of the slip extension 38 and stationary portions 46 is constructed with a channel shaped cross-section and each has opposing terminus ends 26.
- One of the terminus ends 26 of the slip extension 38 is adapted to be secured to the top track 16.
- one of the terminus ends 26 of the stationary portion 46 is adapted to be secured to the bottom track 14.
- the above- recited arrangement of the slip extension 38 and stationary portion 46 may be flopped such that the slip extension 38 may be connected to the bottom track 14 while the stationary portion 46 may be connected to the top track 16.
- each of the slip extension 38 and stationary portions 46 generally comprises a substantially flat and planar web 18 which is defined by a pair of opposing, parallel arranged longitudinal edges 22. Integrally formed with the web 18 is a pair of substantially flat and planar side walls 24 which extend generally perpendicularly outwardly from the web 18 along the longitudinal edges 22. Each of the side walls 24 defines an opposing pair of side edges 68 which are oriented generally perpendicularly relative to the longitudinal edges 22.
- a pair of inwardly directed flanges 42 may be provided on each one of the side walls 24 of the slip extension 38 and stationary portion 46.
- At least one of the side edges 68 of the slip extension 38 includes a pair of opposing, parallel and inwardly directed female recesses 52.
- the female recesses 52 of the slip extension 38 is formed in the side walls 24 along the side edges 68.
- Each female recess 52 has a generally V-shaped cross-section which is adapted to receive a respective one of the male protrusions 28 formed within the top and/or bottom tracks 16, 14.
- at least one of the terminus ends 26 of the stationary portion 46 includes a pair of opposing and inwardly directed female recesses 52 formed along the side edges 68.
- Each of the female recesses 52 formed in the stationary portion 46 preferably has a V-shaped cross-section which is also adapted to receive a respective one of the male protrusions 28 of the top and/or bottom tracks 16, 14.
- the stud member 34 is adapted to be engaged and interconnect the top and bottom tracks 16, 14 due to the mating of the female recesses 52 with the male protrusions 28.
- FIG. 4 shown is the side view of the wall structure 10 where can be seen a plurality of stop features 50 formed on the web 18 of the stationary portion 46.
- the stop features 50 are generally shown as V-shaped configurations and are disposed in spaced relation to one another.
- the stop features 50 are configured to engage the slip extension 38 of the stud member 34 in order to maintain a desired axial or longitudinal placement relative thereto.
- the stop features 50 are preferably integrally formed with the web 18 as raised protrusions extending inwardly so as to engage the web 18 of the slip extension 38 and/or a lower terminus end 26 of the slip extension 38.
- the stop features 50 may additionally be formed on the slip extension 38 or on both the slip extension 38 and stationary portion 46.
- a tab 40 which may be formed on a lower one of the terminus ends 26 of the slip extension 38 in order to aid the manual slideable movement of the slip extension 38 within the stationary portion 46.
- each of the male protrusions 28 and female recesses 52 has a V- shaped cross-section and which are sized and configured to nest within one another.
- a fastener 64 such as a self-tapping sheet metal screw or other suitable fastener 64 may be extended through the male protrusion 28 and into the female recess 52 in order to permanently connect the stud member 34 to the top and bottom tracks 16, 14.
- countersunk screws are preferably used in order to provide a smooth, flush and unobstructed surface against which the panel member 62 may be mounted to the wall structure 10.
- the V-shaped cross-section of the male protrusions 28 and female recesses 52 facilitates such flush mounting of the screws in order to complete the assembly of the metallic framing portions of the wall structure 10.
- the slip extension 38 which includes a slot 44 formed in at least one of the side walls 24 thereof.
- the slot 44 is configured to allow a fastener 64 (i.e., such as a sheet metal screw) to extend thereinto in order to allow uninhibited relative sliding motion between the slip extension 38 and the stationary portion 46 of the stud member 34.
- the slot 44 may be a generally oval shaped cutout formed in a central portion of the side wall 24 of the slip extension 38.
- the slot 44 may comprise any number of cutouts formed in the side wall 24.
- the slot 44 may have a generally rectangular or square configuration or a generally rounded configuration.
- the fastener 64 which secures an upper portion of the panel member 62 to the non-moveable stationary portion 46 of the stud member 34, is inserted so as to pass through a central location of the slot 44.
- the upper portion of the wall structure 10 comprising the top track 16 and the slip extension 38 may move downwardly relative to the stationary portion 46 such as may occur in extremely cold temperatures.
- the top track 16 and slip extension 38 may move upwardly without effecting the panel member 62. Such upward movement may occur during extreme heating of the metallic structure such as may be caused by a fire adjacent or in the room within which the wall structure 10 is located.
- the slip extension 38 may have any length and may have an overall length of about 8" while the slot 44 may have a length of about 2.5".
- the slot 44 may be located at a distance of about 1.5" from a lower terminus end 26 of the slip extension 38.
- the slot 44 and overall length of the slip extension 38 may be provided in a wide variety of sizes and relative locations.
- fasteners 64 may be inserted through the wall member and into the side walls 24 of the lower track along a lower edge of the panel member 62. Fasteners 64 may likewise be extended through the panel member 62 and into the side walls 24 of the stationary portion 46.
- an uppermost one of the fasteners 64 for securing the wall panel to the wall structure 10 is located to extend through the slot 44. Installation of fasteners 64 into the slip extension 38 above or below the location of the slot 44 would inhibit free movement of the upper portion of the wall structure 10 (i.e., the slip extension 38 and top track 16) relative to the lower portion of the wall structure 10 (i.e., stationary portion 46 and bottom track 14).
- the upper edge of the panel member 62 is only disposed in non-connective and overlapping relationship to the slip extension 38 and the top track 16.
- the wall structure 10 allows the slip extension 38 and top track 16 to move relative to the panel member 62 such as may occur during heating of the wall structure 10 such as in a fire.
- the panel member 62 is therefore connectably mounted to the bottom track 14 and a stationary portion 46 but is non-connectively disposed against the slip extension 38 and top track 16.
- the slot 44 allows for relative sliding motion between the slip extension 38 and the stud member 34 such that the stud member 34 may be lengthened and shortened to accommodate changes in spacing between the top and bottom tracks 16, 14.
- FIGs 6 and 8-9 shown is the wall structure 10 having an elongate top overcap 58 which may be secured in overlapping relationship to the top track 16.
- the top overcap 58 is comprised of a web 18 having a pan- of side walls 24 extending generally perpendicularly outwardly therefrom.
- Each one of the side walls 24 includes at least one elongate male protrusion 28 formed along the side walls 24 on an edge thereof opposite the longitudinal edges 22 of the web 18.
- the male protrusions 28 are preferably inwardly directed and are also integrally formed with the side walls 24 of the top overcap 58.
- the male protrusions 28 are generally V-shaped and extend continuously along respective ones of the longitudinal edges 22.
- the male protrusions 28 are formed in the side walls 24 of the top overcap 58 and extend downwardly in overlapping relationship to the top track 16 and/or the panel member 62.
- fire resistant capability is provided to the wall structure 10 due to the overlapping relationship of the top overcap 58 with the panel member 62. More particularly, such fire resistance is enhance due to the male protrusions 28 of the top overcap 58.
- the male protrusions 28 are configured to slidably bear against an outer surface of the panel member 62 in order to prevent passage of smoke and/or heat along an upper portion of the wall structure 10.
- the web 18, side walls 24 and male protrusions 28 of the top overcap 58 are integrally formed such that the top overcap
- 58 comprises a unitary structure of generally elongate configuration.
- top overcap 58 is spaced apart so as to allow the male protrusions 28 to bear against outer surfaces of panel members 62 mounted on opposing sides of the wall structure 10.
- FIG. 9 An alternative configuration of the top overcap 58 is shown in Figure 9 wherein the side walls 24 thereof include a pair of the male protrusions 28 formed in the side wall 24.
- the male protrusions 28 are generally V-shaped cross-sections and are disposed in side-by-side arrangement and extending continuously along a length of the side wall
- the top overcap 58 is sized and configured such that at least one of the top overcap 58 male protrusions 28 slidingly bears against an outer surface of the panel member 62.
- the panel member 62 includes an upper edge which is preferably disposed in spaced relation to the top overcap 58 web 18.
- a gap 70 is thereby defined between the web 18 of the top overcap 58 and the upper edge of the panel member 62.
- such gap 70 allows for contraction of the stud member 34 relative to the lower track such as may occur in an extreme reduction in temperature.
- the gap 70 thereby prevents contact between the panel member 62 and top overcap 58 which could otherwise result in buckling and/or damage to the panel member 62 and thereby compromise the sealing capability of the wall structure 10.
- the gap 70 is preferably about 3 A" between the upper edge of the panel member 62 and the top overcap 58 web 18.
- Fire resistant capabilities of the wall structure 10 may be further enhanced by the installation of a compound 60 within the gap 70.
- the compound 60 is preferably a fire resistant or fire retardant compound 60 in order to resist heat and allow for appropriate expansion of the metal framing structure.
- the top overcap 58 comprises a substantially flat and planar web 18 which defines a pair of opposing, parallel longitudinal edges 22. Extending perpendicularly outwardly from the web 18 is a pair of substantially flat and planar side walls 24 which are preferably integrally formed with the web 18.
- the top overcap 58 further includes a pair of opposing parallel and inwardly directed male protrusions 28 integrally formed in respective ones of the side walls 24. Such male protrusions 28 extend continuously along the side walls 24 in spaced relation to respective ones of the longitudinal edges 22. As was earlier mentioned, each male protrusion 28 preferably has a V-shaped cross-section.
- the top overcap 58 is preferably configured such that at least one of the side walls 24 at least partially overlaps 66 the top track 16 side wall 24. Furthermore, the top overcap 58 preferably defines a width between the side walls 24 that is compatible to the width across opposing panel members 62 installed on each side of the wall structure 10. More specifically, the top overcap 58 is preferably configured such that the male protrusions 28 of the side walls 24 and the top overcap 58 slidingly bear against the outer surface of the panel member 62 to provide sealing of the wall structure 10.
- the wall structure 10 which may further comprise a stud overcap 54 and which may be mounted to the stationary portion 46 of the stud member 34.
- the stud overcap 54 is preferably disposed in non-connective overlapping relationship to the slip extension
- the stud overcap 54 comprises a web 18 having a pair of side walls 24 extending perpendicularly outwardly therefrom.
- the stud overcap 54 is generally a channel shaped cross-section.
- the stud overcap 54 is connected to the stud member 34 at the stationary portion 46 and, more particularly, may utilize at least one mechanical fastener 64 to interconnect a side wall 24 of the stud overcap 54 to a side wall 24 of the stationary portion 46 of the stud member 34.
- the stud overcap 54 may further include an aperture 56 shown in Figures 7 and 10-11 as a generally square shaped cutout. Although any shape may be provided for the aperture 56, the aperture 56 is preferably sized and positioned relative to the slot 44 such that a fastener 64 may be passed through the stationary portion 46 side wall 24 and extended into the slot 44. In this manner, the stud overcap 54 may be securely mounted to the stud member 34 without inhibiting relative axial movement of the slip extension 38 within the stationary portion 46.
- the 62 may thereby be fastened to the panel member 62 shown in Figure 11 by inserting the fastener 64 through the panel member 62 and into the portion of the side wall 24 adjacent the stud member 34.
- the top track 16 and bottom track 16, 14 are initially disposed in spaced relationship to one another.
- the top and bottom tracks 16, 14 may be positioned along a flat surface such as a floor in accordance with measurements between a floor and ceiling to which the wall structure 10 is to be assembled.
- the top track 16 and bottom track 14 may be mounted along respective ones of the floor and ceiling and in general alignment with one another.
- Mechanical fasteners 64 may be extended through the webs 18 of the top and bottom tracks 16, 14 and into respective ones of the floor and ceiling in order to secure the top and bottom tracks 16, 14 thereto.
- one of the slip extensions 38 may be slidably inserted within one of the stationary portions 46 such that the female recesses 52 formed on opposing terminus ends 26 of the stud member 34 may be engaged to the male protrusions 28 formed along the top and bottom tracks 16, 14.
- the stud members 34 are oriented in generally transverse or perpendicular placement relative to the top and bottom tracks 16, 14. Due to the slideable nature of the slip extension 38 relative to the stationary portion 46, the stud member 34 may be adjusted to the particular spacing between the top and bottom tracks 16, 14 in ordsr to accommodate variations in floor to ceiling height such as may be caused by construction defects and/or building settling.
- the telescopic mechanism 36 incorporated into each of the stud members 34 allow for extension and retraction of the slip extension 38 relative to the stationary portion 46 in order to adjust the length of the stud member 34 to suit the floor to ceiling height.
- the top overcap 58 is disposed in general abutting relationship with the top track 16 such that the respective webs 18 are in contacting engagement.
- the panel member 62 may then be mounted on the wall structure 10 such that a lower edge of the panel member 62 is secured to the side wall 24 of the bottom track 14 via a plurality of spaced apart fasteners 64.
- fasteners 64 may be extended through the panel member 62 and into the side wall 24 of the stationary portion 46 in order to non-moveably affix the panel member 62 to the stud member 34 and bottom track 14.
- at least one mechanical fastener 64 may be extended through the panel member 62 and passing through the side wall 24 of the stationary portion 46 such that the fastener 64 extends into the slot 44 formed in the slip extension 38.
- the panel member 62 is preferably sized and configured such that an upper edge thereof is disposed in spaced relation to the web 18 of the top overcap 58.
- the gap 70 defined between the upper edge of the panel member 62 and the web 18 of the top overcap 58 is such that a fire resistant compound 60 may be inserted thereto.
- a fire resistant compound 60 additionally includes elastic properties to accommodate relative movement between the upper edge of the panel member 62 and the top overcap 58.
- the top overcap 58 is preferably of a width such that the male protrusions 28 formed along the side walls 24 of the top overcap 58 are disposed in continuous contact with the panel member 62.
- the stud overcap 54 may be installed on the stud member 34 as shown in Figures 7 and 10 prior to installation of the panel member 62.
- the aperture 56 of the stud overcap 54 is preferably aligned with the slot
- projections 20 may optionally be provided in the web 18 of the bottom track 14. Such projections 20 may be in the form of knurls or bumps formed on an exposed side of the web 18 and are preferably configured to function as gripping features that can engage an upper and/or lower terminus end 26 of the stud member 34. The projections 20 may be punched from the bottom side of the web 18 although other metal forming methods may be utilized in order to produce the protrusions. As is better described in commonly-owned U.S. Application No.
- projections 20 are configured to prevent sliding, slipping and/or general migration of an upper or lower terminus end 26 of the stud member 34.
- projections 20 may be additionally formed in the web 18 of the top track 16. It should be noted that the height, size, spacing and number of projections 20 per unit area may be adjusted in order to provide the desired amount of frictional and gripping effect between the bottom and top tracks 14, 16 and the stud members 34. Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of the present invention and is not intended to serve as limitation of alternative devices within the spirit and scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07752334A EP1994237A4 (en) | 2006-03-08 | 2007-03-06 | Fire rated wall structure |
CA002647054A CA2647054A1 (en) | 2006-03-08 | 2007-03-06 | Fire rated wall structure |
AU2007224043A AU2007224043A1 (en) | 2006-03-08 | 2007-03-06 | Fire rated wall structure |
BRPI0708695-4A BRPI0708695A2 (en) | 2006-03-08 | 2007-03-06 | fire rated wall structure |
JP2008558340A JP5156889B2 (en) | 2006-03-08 | 2007-03-06 | Firewall structure |
MX2008011348A MX2008011348A (en) | 2006-03-08 | 2007-03-06 | Fire rated wall structure. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78009906P | 2006-03-08 | 2006-03-08 | |
US60/780,099 | 2006-03-08 | ||
US11/483,791 | 2006-07-10 | ||
US11/483,791 US20070209306A1 (en) | 2006-03-08 | 2006-07-10 | Fire rated wall structure |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007103331A2 true WO2007103331A2 (en) | 2007-09-13 |
WO2007103331A3 WO2007103331A3 (en) | 2008-11-13 |
Family
ID=38475476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/005621 WO2007103331A2 (en) | 2006-03-08 | 2007-03-06 | Fire rated wall structure |
Country Status (10)
Country | Link |
---|---|
US (1) | US20070209306A1 (en) |
EP (1) | EP1994237A4 (en) |
JP (1) | JP5156889B2 (en) |
KR (1) | KR20090031497A (en) |
AU (1) | AU2007224043A1 (en) |
BR (1) | BRPI0708695A2 (en) |
CA (1) | CA2647054A1 (en) |
MX (1) | MX2008011348A (en) |
RU (1) | RU2008139909A (en) |
WO (1) | WO2007103331A2 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009026464A2 (en) * | 2007-08-22 | 2009-02-26 | California Expanded Metal Products Company | Fire-rated wall construction product |
EP2090705A1 (en) | 2008-02-13 | 2009-08-19 | Profilform A/S | A track and stud framing system for a drywall construction |
US7681365B2 (en) | 2007-10-04 | 2010-03-23 | James Alan Klein | Head-of-wall fireblock systems and related wall assemblies |
US7752817B2 (en) | 2007-08-06 | 2010-07-13 | California Expanded Metal Products Company | Two-piece track system |
US7866108B2 (en) | 2007-10-04 | 2011-01-11 | Klein James A | Head-of-wall fireblock systems and related wall assemblies |
US8151526B2 (en) | 2007-10-04 | 2012-04-10 | Klein James A | Head-of-wall fireblock systems and related wall assemblies |
US8938922B2 (en) | 2009-09-21 | 2015-01-27 | California Expanded Metal Products Company | Wall gap fire block device, system and method |
US8973319B2 (en) | 2007-08-06 | 2015-03-10 | California Expanded Metal Products Company | Two-piece track system |
US9045899B2 (en) | 2012-01-20 | 2015-06-02 | California Expanded Metal Products Company | Fire-rated joint system |
US9127454B2 (en) | 2007-08-22 | 2015-09-08 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
US9290932B2 (en) | 2010-04-08 | 2016-03-22 | California Expanded Metal Products Company | Fire-rated wall construction product |
US9523193B2 (en) | 2012-01-20 | 2016-12-20 | California Expanded Metal Products Company | Fire-rated joint system |
US9683364B2 (en) | 2010-04-08 | 2017-06-20 | California Expanded Metal Products Company | Fire-rated wall construction product |
US9752318B2 (en) | 2015-01-16 | 2017-09-05 | California Expanded Metal Products Company | Fire blocking reveal |
US9879421B2 (en) | 2014-10-06 | 2018-01-30 | California Expanded Metal Products Company | Fire-resistant angle and related assemblies |
US9909298B2 (en) | 2015-01-27 | 2018-03-06 | California Expanded Metal Products Company | Header track with stud retention feature |
US10000923B2 (en) | 2015-01-16 | 2018-06-19 | California Expanded Metal Products Company | Fire blocking reveal |
US10077550B2 (en) | 2012-01-20 | 2018-09-18 | California Expanded Metal Products Company | Fire-rated joint system |
US10184246B2 (en) | 2010-04-08 | 2019-01-22 | California Expanded Metal Products Company | Fire-rated wall construction product |
US10563399B2 (en) | 2007-08-06 | 2020-02-18 | California Expanded Metal Products Company | Two-piece track system |
US10689842B2 (en) | 2018-03-15 | 2020-06-23 | California Expanded Metal Products Company | Multi-layer fire-rated joint component |
US10753084B2 (en) | 2018-03-15 | 2020-08-25 | California Expanded Metal Products Company | Fire-rated joint component and wall assembly |
AU2017429029B2 (en) * | 2017-08-21 | 2020-09-10 | Beijing New Building Materials Public Limited Company | Wall unit, assembly-type wall and method for installing same |
US10914065B2 (en) | 2019-01-24 | 2021-02-09 | California Expanded Metal Products Company | Wall joint or sound block component and wall assemblies |
US11111666B2 (en) | 2018-08-16 | 2021-09-07 | California Expanded Metal Products Company | Fire or sound blocking components and wall assemblies with fire or sound blocking components |
US11162259B2 (en) | 2018-04-30 | 2021-11-02 | California Expanded Metal Products Company | Mechanically fastened firestop flute plug |
US11268274B2 (en) | 2019-03-04 | 2022-03-08 | California Expanded Metal Products Company | Two-piece deflection drift angle |
US11466449B2 (en) | 2007-08-22 | 2022-10-11 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
US20240052627A1 (en) * | 2020-06-01 | 2024-02-15 | Hyperframe, Inc. | Wall stud acoustic performance |
US11920343B2 (en) | 2019-12-02 | 2024-03-05 | Cemco, Llc | Fire-rated wall joint component and related assemblies |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080178782A1 (en) * | 2007-01-26 | 2008-07-31 | Frobosilo Raymond C | Wall construction |
US8061099B2 (en) * | 2009-05-19 | 2011-11-22 | Tsf Systems, Llc | Vertical deflection extension end member |
US8950132B2 (en) * | 2010-06-08 | 2015-02-10 | Innovative Building Technologies, Llc | Premanufactured structures for constructing buildings |
US20110296778A1 (en) * | 2010-06-08 | 2011-12-08 | Collins Arlan E | Pre-manufactured utility wall |
US9027307B2 (en) | 2010-06-08 | 2015-05-12 | Innovative Building Technologies, Llc | Construction system and method for constructing buildings using premanufactured structures |
CA2801287C (en) | 2010-06-08 | 2018-03-20 | Arlan E. Collins | Lift-slab construction system and method for constructing multi-story buildings using pre-manufactured structures |
US20120144774A1 (en) * | 2010-12-09 | 2012-06-14 | Andrews William J | Fire rated wall structure |
SG11201400556VA (en) * | 2011-09-23 | 2014-04-28 | Ilia Morozov | An adjustable wall stud |
US8826599B2 (en) * | 2012-02-10 | 2014-09-09 | Specified Technologies Inc. | Insulating gasket construction for head-of-wall joints |
US8997424B1 (en) * | 2012-10-27 | 2015-04-07 | Convergent Market Research, Inc. | Structural wall panel for use in light-frame construction and method of construction employing structural wall panels |
KR101481790B1 (en) * | 2013-07-03 | 2015-01-12 | 삼아디오시스템 주식회사 | Fire wall assembly and bracket structure for the same |
WO2016032538A1 (en) | 2014-08-30 | 2016-03-03 | Innovative Building Technologies, Llc | Diaphragm to lateral support coupling in a structure |
CN105593448B (en) | 2014-08-30 | 2017-06-09 | 创新建筑科技公司 | Interface between floor panel and panelling track |
WO2016032537A1 (en) | 2014-08-30 | 2016-03-03 | Innovative Building Technologies, Llc | A prefabricated wall panel for utility installation |
CA2895307C (en) | 2014-08-30 | 2018-07-31 | Arlan Collins | Prefabricated demising and end walls |
EP3186561B1 (en) | 2014-08-30 | 2020-11-25 | Innovative Building Technologies LLC | Floor and ceiling panel for use in buildings |
WO2017156014A1 (en) | 2016-03-07 | 2017-09-14 | Innovative Building Technologies, Llc | Waterproofing assemblies and prefabricated wall panels including the same |
JP6806784B2 (en) | 2016-03-07 | 2021-01-06 | イノベイティブ ビルディング テクノロジーズ,エルエルシー | Floor and ceiling panels for floor systems that do not include building slabs |
JP6786617B2 (en) | 2016-03-07 | 2020-11-18 | イノベイティブ ビルディング テクノロジーズ,エルエルシー | Prefabricated partition wall with external conduit engagement features |
JP6820939B2 (en) | 2016-03-07 | 2021-01-27 | イノベイティブ ビルディング テクノロジーズ,エルエルシー | Pre-assembled wall panels for public installation |
US9790686B1 (en) * | 2016-08-10 | 2017-10-17 | United States Gypsum Company | Triangular stud shaft wall system |
US11486150B2 (en) | 2016-12-20 | 2022-11-01 | Clarkwestern Dietrich Building Systems Llc | Finishing accessory with backing strip |
US11098475B2 (en) | 2017-05-12 | 2021-08-24 | Innovative Building Technologies, Llc | Building system with a diaphragm provided by pre-fabricated floor panels |
US10323428B2 (en) | 2017-05-12 | 2019-06-18 | Innovative Building Technologies, Llc | Sequence for constructing a building from prefabricated components |
US10724228B2 (en) | 2017-05-12 | 2020-07-28 | Innovative Building Technologies, Llc | Building assemblies and methods for constructing a building using pre-assembled floor-ceiling panels and walls |
US10487493B2 (en) | 2017-05-12 | 2019-11-26 | Innovative Building Technologies, Llc | Building design and construction using prefabricated components |
WO2019091540A1 (en) * | 2017-11-13 | 2019-05-16 | Knauf Gips Kg | Profile and construction element set for arranging a component for a drywall construction, and drywall formed therewith |
CN110241948B (en) * | 2019-05-22 | 2020-09-08 | 安徽森泰木塑集团股份有限公司 | Modular wall shifting and fixing mode |
CN112031263B (en) * | 2020-08-21 | 2022-06-10 | 台州学院 | Anti assembled blast wall that splits of combatting earthquake |
US11885138B2 (en) | 2020-11-12 | 2024-01-30 | Clarkwestern Dietrich Building Systems Llc | Control joint |
USD1026252S1 (en) | 2020-11-12 | 2024-05-07 | Clarkwestern Dietrich Building Systems Llc | Control joint |
US12031326B2 (en) * | 2022-03-23 | 2024-07-09 | Changda Construction Technology Co., Ltd. | Structural energy-saving, heat-insulated and decorative integrated plate and manufacturing method therefor |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3125193A (en) * | 1964-03-17 | Movable partition systems | ||
US2225574A (en) * | 1940-12-17 | Framing and furring structure for | ||
US2058386A (en) * | 1932-10-20 | 1936-10-20 | Johns Manville | Wall assembly |
US2173721A (en) * | 1938-09-09 | 1939-09-19 | Cons Expanded Metal Companies | Wall construction |
US2333289A (en) * | 1943-04-06 | 1943-11-02 | Hopeman Bros Inc | Ship joiner bulkhead |
US2796158A (en) * | 1947-10-22 | 1957-06-18 | Johns Manville | Wall assembly |
US2843725A (en) * | 1955-03-24 | 1958-07-15 | Smith Corp A O | Box section and method of making |
US2966708A (en) * | 1956-10-29 | 1961-01-03 | Joseph O Theriot | Stud anchor plate |
US3217452A (en) * | 1961-06-28 | 1965-11-16 | Melvin A Steele | Wall and partition construction |
US3234697A (en) * | 1961-12-22 | 1966-02-15 | Andrew J Toti | Awning construction |
US3312032A (en) * | 1963-07-05 | 1967-04-04 | Ames Taping Tool Systems Mfg C | Metal stud and panel |
US3160280A (en) * | 1963-08-12 | 1964-12-08 | Gen Electric | Device for mounting apparatus |
US3332197A (en) * | 1964-06-30 | 1967-07-25 | James L Hinkle | Interlocked structural assemblies and stiffeners therefor |
US3397495A (en) * | 1966-01-19 | 1968-08-20 | Angeles Metal Trim Co | Partition wall with yieldable cap members |
BE756345A (en) * | 1969-09-18 | 1971-03-01 | Naegele Feinmaschinenbau | PROCESS FOR MANUFACTURING AND FIXING OF LIMITING ELEMENTS OF SLIDING CLOSURES AND DEVICE FOR IMPLEMENTING THE PROCESS |
US3685863A (en) * | 1969-10-30 | 1972-08-22 | Hans Oetiker | Structural elements |
US3690082A (en) * | 1970-02-24 | 1972-09-12 | Futuristic Building Products I | Door frame |
US3665837A (en) * | 1970-05-13 | 1972-05-30 | Chicago Metallic Corp | Lineal air diffuser bar |
US3719980A (en) * | 1970-06-10 | 1973-03-13 | Bussel P Van | Method of making a peripherally grooved sheet metal article |
US3753328A (en) * | 1971-06-08 | 1973-08-21 | W Papsco | Method of installing modular wall construction |
US3753324A (en) * | 1971-12-10 | 1973-08-21 | J Puccio | Metal stud assembly |
AU475452B2 (en) * | 1972-03-13 | 1974-09-12 | Whisson, H.J. | Fabricated partitions |
CA965217A (en) * | 1972-10-26 | 1975-04-01 | Domtar Limited | Partition mounting |
US3861103A (en) * | 1973-03-02 | 1975-01-21 | Robert R Rasmussen | Partitioning arrangement for high rise buildings |
US3845601A (en) * | 1973-10-17 | 1974-11-05 | Bethlehem Steel Corp | Metal wall framing system |
US4018020A (en) * | 1973-11-01 | 1977-04-19 | Roblin Industries, Inc. | Modular wall construction |
US4074487A (en) * | 1974-01-28 | 1978-02-21 | Kaiser Steel Corporation | Multi-story wall framing system and method |
US4038799A (en) * | 1975-04-30 | 1977-08-02 | Frigitemp Corporation | Joiner bulkhead method and apparatus |
US4019291A (en) * | 1975-10-14 | 1977-04-26 | American Store Equipment Corporation | Wall system |
US4272930A (en) * | 1975-11-04 | 1981-06-16 | Roy H. Smith, Jr. | Modular housing system |
US4397127A (en) * | 1980-09-22 | 1983-08-09 | Donn, Incorporated | Extendable stud for partition walls or the like |
NZ210863A (en) * | 1985-01-17 | 1988-03-30 | Onteam Ltd | Wall frame: interconnected metal studs and plates |
US4854096A (en) * | 1986-04-14 | 1989-08-08 | Smolik Robert A | Wall assembly |
US4709517A (en) * | 1986-06-02 | 1987-12-01 | Architectural Wall Systems, Inc. | Floor-to-ceiling wall system |
US4757657A (en) * | 1986-06-02 | 1988-07-19 | Architectural Wall Systems, Inc. | Floor-to-ceiling wall system |
US4734971A (en) * | 1987-01-12 | 1988-04-05 | Aro Metal Stamping Co., Inc. | Method of mechanically crimping overlapping sheet metal |
US4760682A (en) * | 1987-05-05 | 1988-08-02 | S & K Enterprises Inc. | Tubular rack beam and method of making same |
US4798029A (en) * | 1987-11-30 | 1989-01-17 | Fibergrate Corporation | Hold-down clamp |
EP0321183B1 (en) * | 1987-12-16 | 1992-03-11 | Alexandros Karytinos | Building frame construction |
JPH03129031A (en) * | 1989-05-08 | 1991-06-03 | Uniframes Ltd | Metal floor beam |
US5081813A (en) * | 1990-02-27 | 1992-01-21 | Allied Constructions Pty. Limited | Metal wall frame structure |
US5040345A (en) * | 1990-04-27 | 1991-08-20 | Gilmour Michael F | Stud clip for allowing vertical floating movement of a floor or roof structure |
US5079884A (en) * | 1990-06-04 | 1992-01-14 | National Gypsum Company | Extendible interconnected Z-studs |
US5127760A (en) * | 1990-07-26 | 1992-07-07 | Brady Todd A | Vertically slotted header |
US5095678A (en) * | 1991-01-23 | 1992-03-17 | Steelway Housing | Structural stud |
US5203132A (en) * | 1991-09-17 | 1993-04-20 | Smolik Robert A | Wall assembly |
JP2745171B2 (en) * | 1991-10-03 | 1998-04-28 | 株式会社フジタ | Fire protection unit |
US5222335A (en) * | 1992-06-26 | 1993-06-29 | Anthony Petrecca | Metal track system for metal studs |
US5285615A (en) * | 1992-10-26 | 1994-02-15 | Angeles Metal Systems | Thermal metallic building stud |
US5720138A (en) * | 1992-11-12 | 1998-02-24 | Johnson; David L. | Metallic wall framing, method and apparatus for producing same |
US5394665A (en) * | 1993-11-05 | 1995-03-07 | Gary Johnson | Stud wall framing construction |
US5755066A (en) * | 1993-12-02 | 1998-05-26 | Becker; Duane William | Slip track assembly |
US5497591A (en) * | 1994-01-11 | 1996-03-12 | Mitek Holdings, Inc. | Metal wall framing |
US5596859A (en) * | 1994-09-20 | 1997-01-28 | Horton; Jim W. | Metal wall stud |
US5592796A (en) * | 1994-12-09 | 1997-01-14 | Landers; Leroy A. | Thermally-improved metallic framing assembly |
US5600991A (en) * | 1995-02-10 | 1997-02-11 | Ogihara America Corporation | Stretch controlled forming mechanism and method for forming multiple gauge welded blanks |
US5649688A (en) * | 1995-02-17 | 1997-07-22 | Baker; Neill E. | Railings with continuous spacers |
IT1280293B1 (en) * | 1995-03-23 | 1998-01-08 | Sapim Amada Spa | PROCEDURE FOR THE REALIZATION OF REINFORCEMENT PROFILES ON SHEET PANELS |
US5797233A (en) * | 1995-12-29 | 1998-08-25 | Hascall; Karl B. | Pre-spaced time-saving track for mounting studs for construction of drywall and other wall surfaces |
US5685121A (en) * | 1996-02-16 | 1997-11-11 | Defrancesco; Frank | Metal stud |
JP3741474B2 (en) * | 1996-02-23 | 2006-02-01 | 株式会社小松製作所 | Bending order selection method and selection apparatus for bending machine |
US5729950A (en) * | 1996-04-03 | 1998-03-24 | Hardy Industries, Inc. | All-metal reinforcing building frame |
US5735100A (en) * | 1996-10-07 | 1998-04-07 | 527233 B.C. Ltd. | Folding telescopic prefabricated framing units for non-load-bearing walls |
US20040055232A1 (en) * | 1997-09-11 | 2004-03-25 | Roger Jette | Raised floor system and support apparatus |
US6032504A (en) * | 1997-10-16 | 2000-03-07 | Cosma International Inc. | Draw stamping die for stamping body panels for motor vehicles |
US6029334A (en) * | 1997-12-02 | 2000-02-29 | Unova Ip Corp. | Hemming method and apparatus |
US5930968A (en) * | 1997-12-24 | 1999-08-03 | Pullam; Billy D. | Interlocking stubs |
US5950385A (en) * | 1998-03-11 | 1999-09-14 | Herren; Thomas R. | Interior shaft wall construction |
US6023898A (en) * | 1998-06-01 | 2000-02-15 | Ground Star, Llc | Metal frame building construction |
AUPP418498A0 (en) * | 1998-06-17 | 1998-07-09 | Rudduck, Dickory | Improved stud |
US6119430A (en) * | 1998-09-25 | 2000-09-19 | Nicholls; J. Robert | Method and apparatus for an adjustable building stud |
US6374558B1 (en) * | 1999-04-16 | 2002-04-23 | Matt Surowiecki | Wall beam and stud |
US20040083665A1 (en) * | 1999-04-16 | 2004-05-06 | Surowiecki Matt F. | Structural walls |
AUPQ052199A0 (en) * | 1999-05-21 | 1999-06-17 | Wiltin Pty Ltd | Joining arrangements for structural members |
US6983569B1 (en) * | 1999-08-09 | 2006-01-10 | Zev Rosenberg | Modular metal wall framing system |
US6609285B1 (en) * | 1999-10-01 | 2003-08-26 | Herman Miller, Inc. | Process for manufacturing a support |
US6401423B1 (en) * | 2000-02-10 | 2002-06-11 | B & D Industries | Deflector track tabs for positioning studs along the track |
US6568138B1 (en) * | 2000-05-10 | 2003-05-27 | Exterior Systems, Inc. | Framing system and related framing section assembly |
US6418682B1 (en) * | 2000-08-21 | 2002-07-16 | Bailey Metal Products Limited | Non-structural steel studs |
US6920734B2 (en) * | 2000-08-31 | 2005-07-26 | Dietrich Industries, Inc. | Bridging system for off-module studs |
US6453627B1 (en) * | 2000-10-10 | 2002-09-24 | Timothy Powers | Skirt assembly for manufactured housing units |
US6792733B2 (en) * | 2001-05-16 | 2004-09-21 | Flex-Ability Concepts, L.L.C. | Deflection clip |
US6647691B2 (en) * | 2001-06-15 | 2003-11-18 | Duane William Becker | Track arrangement for supporting wall studs; method; and, wall framework assembly |
US20060144009A1 (en) * | 2001-06-20 | 2006-07-06 | Attalla Anthony P | Metal framing member with off site manufactured locking tabs |
US20030033770A1 (en) * | 2001-08-20 | 2003-02-20 | Harel Kenneth N. | Drywall bead with knurled paper flaps |
US6609344B2 (en) * | 2001-11-21 | 2003-08-26 | Eluterio Saldana | Connectors, tracks and system for smooth-faced metal framing |
US6871470B1 (en) * | 2002-01-17 | 2005-03-29 | Donie Stover | Metal stud building system and method |
US20030145537A1 (en) * | 2002-02-05 | 2003-08-07 | Geoff Bailey | Metal building stud and brick tie for a hybrid metal and timber framed building system |
DE10208537A1 (en) * | 2002-02-27 | 2003-09-11 | Bosch Gmbh Robert | wiper arm |
GB0212734D0 (en) * | 2002-05-31 | 2002-07-10 | Lafarge Plasterboard Ltd | Wall stud |
DE10233008A1 (en) * | 2002-07-20 | 2004-02-12 | Nothelfer Gmbh | Process for material flow control when deep-drawing sheet metal and deep-drawing tool |
US6748705B2 (en) * | 2002-08-21 | 2004-06-15 | Leszek Orszulak | Slotted M-track support |
US6997026B2 (en) * | 2002-12-12 | 2006-02-14 | Engel Industries, Inc. | Quick change metal stud to hemmed track roll forming system |
NO326411B1 (en) * | 2003-03-24 | 2008-12-01 | Johnny Espenes | Universal Bracket. |
US20050034408A1 (en) * | 2003-07-30 | 2005-02-17 | Joseph Palumbo | Metal stud wall packaging system |
US7137768B2 (en) * | 2003-10-10 | 2006-11-21 | Illinois Tool Works Inc | Fastener assembly |
US7445682B2 (en) * | 2004-09-29 | 2008-11-04 | Ged Intergrated Solution, Inc. | Window component stock transferring |
US20060096192A1 (en) * | 2004-11-05 | 2006-05-11 | Daudet Larry R | Building construction components |
US7451573B2 (en) * | 2005-02-25 | 2008-11-18 | Leszek Orszulak | Slotted M-track beam structures and related wall assemblies |
US20060283130A1 (en) * | 2005-06-07 | 2006-12-21 | William Andrews | Structural members with gripping features and joining arrangements therefor |
US20070011971A1 (en) * | 2005-07-14 | 2007-01-18 | Sitkiewicz Christopher P | Wall framing assembly and method of securing a stud to a header or footer |
-
2006
- 2006-07-10 US US11/483,791 patent/US20070209306A1/en not_active Abandoned
-
2007
- 2007-03-06 WO PCT/US2007/005621 patent/WO2007103331A2/en active Application Filing
- 2007-03-06 EP EP07752334A patent/EP1994237A4/en not_active Withdrawn
- 2007-03-06 CA CA002647054A patent/CA2647054A1/en not_active Abandoned
- 2007-03-06 BR BRPI0708695-4A patent/BRPI0708695A2/en not_active IP Right Cessation
- 2007-03-06 KR KR1020087024530A patent/KR20090031497A/en not_active Application Discontinuation
- 2007-03-06 RU RU2008139909/03A patent/RU2008139909A/en not_active Application Discontinuation
- 2007-03-06 JP JP2008558340A patent/JP5156889B2/en not_active Expired - Fee Related
- 2007-03-06 MX MX2008011348A patent/MX2008011348A/en not_active Application Discontinuation
- 2007-03-06 AU AU2007224043A patent/AU2007224043A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of EP1994237A4 * |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8973319B2 (en) | 2007-08-06 | 2015-03-10 | California Expanded Metal Products Company | Two-piece track system |
US10227775B2 (en) | 2007-08-06 | 2019-03-12 | California Expanded Metal Products Company | Two-piece track system |
US9995039B2 (en) | 2007-08-06 | 2018-06-12 | California Expanded Metal Products Company | Two-piece track system |
US10563399B2 (en) | 2007-08-06 | 2020-02-18 | California Expanded Metal Products Company | Two-piece track system |
US11041306B2 (en) | 2007-08-06 | 2021-06-22 | California Expanded Metal Products Company | Two-piece track system |
US7752817B2 (en) | 2007-08-06 | 2010-07-13 | California Expanded Metal Products Company | Two-piece track system |
US9739054B2 (en) | 2007-08-06 | 2017-08-22 | California Expanded Metal Products Company | Two-piece track system |
US11560712B2 (en) | 2007-08-06 | 2023-01-24 | Cemco, Llc | Two-piece track system |
US11773587B2 (en) | 2007-08-06 | 2023-10-03 | Cemco, Llc | Two-piece track system |
US9290934B2 (en) | 2007-08-06 | 2016-03-22 | California Expanded Metal Products Company | Two-piece track system |
US9739052B2 (en) | 2007-08-22 | 2017-08-22 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
US9481998B2 (en) | 2007-08-22 | 2016-11-01 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
US10214901B2 (en) | 2007-08-22 | 2019-02-26 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
WO2009026464A2 (en) * | 2007-08-22 | 2009-02-26 | California Expanded Metal Products Company | Fire-rated wall construction product |
US9127454B2 (en) | 2007-08-22 | 2015-09-08 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
US11802404B2 (en) | 2007-08-22 | 2023-10-31 | Cemco, Llc | Fire-rated wall and ceiling system |
US11466449B2 (en) | 2007-08-22 | 2022-10-11 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
WO2009026464A3 (en) * | 2007-08-22 | 2009-05-22 | California Expanded Metal Prod | Fire-rated wall construction product |
US9637914B2 (en) | 2007-08-22 | 2017-05-02 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
US7617643B2 (en) | 2007-08-22 | 2009-11-17 | California Expanded Metal Products Company | Fire-rated wall construction product |
US10011983B2 (en) | 2007-08-22 | 2018-07-03 | California Expanded Metal Products Company | Fire-rated wall and ceiling system |
US7866108B2 (en) | 2007-10-04 | 2011-01-11 | Klein James A | Head-of-wall fireblock systems and related wall assemblies |
US8056293B2 (en) | 2007-10-04 | 2011-11-15 | Klein James A | Head-of-wall fireblock systems and related wall assemblies |
US8136314B2 (en) | 2007-10-04 | 2012-03-20 | James A Klein | Head-of-wall fireblocks |
US8151526B2 (en) | 2007-10-04 | 2012-04-10 | Klein James A | Head-of-wall fireblock systems and related wall assemblies |
US7814718B2 (en) | 2007-10-04 | 2010-10-19 | Klein James A | Head-of-wall fireblocks |
US7681365B2 (en) | 2007-10-04 | 2010-03-23 | James Alan Klein | Head-of-wall fireblock systems and related wall assemblies |
EP2090705A1 (en) | 2008-02-13 | 2009-08-19 | Profilform A/S | A track and stud framing system for a drywall construction |
US9371644B2 (en) | 2009-09-21 | 2016-06-21 | California Expanded Metal Products Company | Wall gap fire block device, system and method |
US9931527B2 (en) | 2009-09-21 | 2018-04-03 | California Expanded Metal Products Company | Wall gap fire block device, system and method |
US11141613B2 (en) | 2009-09-21 | 2021-10-12 | California Expanded Metal Products Company | Wall gap fire block device, system and method |
US10406389B2 (en) | 2009-09-21 | 2019-09-10 | California Expanded Metal Products Company | Wall gap fire block device, system and method |
US9616259B2 (en) | 2009-09-21 | 2017-04-11 | California Expanded Metal Products Company | Wall gap fire block device, system and method |
US8938922B2 (en) | 2009-09-21 | 2015-01-27 | California Expanded Metal Products Company | Wall gap fire block device, system and method |
US11896859B2 (en) | 2009-09-21 | 2024-02-13 | Cemco, Llc | Wall gap fire block device, system and method |
US10184246B2 (en) | 2010-04-08 | 2019-01-22 | California Expanded Metal Products Company | Fire-rated wall construction product |
US9290932B2 (en) | 2010-04-08 | 2016-03-22 | California Expanded Metal Products Company | Fire-rated wall construction product |
US9683364B2 (en) | 2010-04-08 | 2017-06-20 | California Expanded Metal Products Company | Fire-rated wall construction product |
US11060283B2 (en) | 2010-04-08 | 2021-07-13 | California Expanded Metal Products Company | Fire-rated wall construction product |
US11905705B2 (en) | 2010-04-08 | 2024-02-20 | Cemco, Llc | Fire-rated wall construction product |
US9523193B2 (en) | 2012-01-20 | 2016-12-20 | California Expanded Metal Products Company | Fire-rated joint system |
US9045899B2 (en) | 2012-01-20 | 2015-06-02 | California Expanded Metal Products Company | Fire-rated joint system |
US11898346B2 (en) | 2012-01-20 | 2024-02-13 | Cemco, Llc | Fire-rated joint system |
US10900223B2 (en) | 2012-01-20 | 2021-01-26 | California Expanded Metal Products Company | Fire-rated joint system |
US9458628B2 (en) | 2012-01-20 | 2016-10-04 | California Expanded Metal Products Company | Fire-rated joint system |
US10246871B2 (en) | 2012-01-20 | 2019-04-02 | California Expanded Metal Products Company | Fire-rated joint system |
US10077550B2 (en) | 2012-01-20 | 2018-09-18 | California Expanded Metal Products Company | Fire-rated joint system |
US9879421B2 (en) | 2014-10-06 | 2018-01-30 | California Expanded Metal Products Company | Fire-resistant angle and related assemblies |
US10000923B2 (en) | 2015-01-16 | 2018-06-19 | California Expanded Metal Products Company | Fire blocking reveal |
US9752318B2 (en) | 2015-01-16 | 2017-09-05 | California Expanded Metal Products Company | Fire blocking reveal |
US9909298B2 (en) | 2015-01-27 | 2018-03-06 | California Expanded Metal Products Company | Header track with stud retention feature |
AU2017429029B2 (en) * | 2017-08-21 | 2020-09-10 | Beijing New Building Materials Public Limited Company | Wall unit, assembly-type wall and method for installing same |
US11421417B2 (en) | 2018-03-15 | 2022-08-23 | California Expanded Metal Products Company | Fire-rated joint component and wall assembly |
US10954670B2 (en) | 2018-03-15 | 2021-03-23 | California Expanded Metal Products Company | Multi-layer fire-rated joint component |
US10753084B2 (en) | 2018-03-15 | 2020-08-25 | California Expanded Metal Products Company | Fire-rated joint component and wall assembly |
US11866932B2 (en) | 2018-03-15 | 2024-01-09 | Cemco, Llc | Fire-rated joint component and wall assembly |
US10689842B2 (en) | 2018-03-15 | 2020-06-23 | California Expanded Metal Products Company | Multi-layer fire-rated joint component |
US11162259B2 (en) | 2018-04-30 | 2021-11-02 | California Expanded Metal Products Company | Mechanically fastened firestop flute plug |
US11933042B2 (en) | 2018-04-30 | 2024-03-19 | Cemco, Llc | Mechanically fastened firestop flute plug |
US11111666B2 (en) | 2018-08-16 | 2021-09-07 | California Expanded Metal Products Company | Fire or sound blocking components and wall assemblies with fire or sound blocking components |
US11873636B2 (en) | 2018-08-16 | 2024-01-16 | Cemco, Llc | Fire or sound blocking components and wall assemblies with fire or sound blocking components |
US11280084B2 (en) | 2019-01-24 | 2022-03-22 | California Expanded Metal Prod ucts Company | Wall joint or sound block component and wall assemblies |
US11891800B2 (en) | 2019-01-24 | 2024-02-06 | Cemco, Llc | Wall joint or sound block component and wall assemblies |
US10914065B2 (en) | 2019-01-24 | 2021-02-09 | California Expanded Metal Products Company | Wall joint or sound block component and wall assemblies |
US11268274B2 (en) | 2019-03-04 | 2022-03-08 | California Expanded Metal Products Company | Two-piece deflection drift angle |
US11920344B2 (en) | 2019-03-04 | 2024-03-05 | Cemco, Llc | Two-piece deflection drift angle |
US11920343B2 (en) | 2019-12-02 | 2024-03-05 | Cemco, Llc | Fire-rated wall joint component and related assemblies |
US20240052627A1 (en) * | 2020-06-01 | 2024-02-15 | Hyperframe, Inc. | Wall stud acoustic performance |
Also Published As
Publication number | Publication date |
---|---|
JP5156889B2 (en) | 2013-03-06 |
MX2008011348A (en) | 2009-02-11 |
RU2008139909A (en) | 2010-04-20 |
KR20090031497A (en) | 2009-03-26 |
BRPI0708695A2 (en) | 2011-06-07 |
EP1994237A2 (en) | 2008-11-26 |
US20070209306A1 (en) | 2007-09-13 |
EP1994237A4 (en) | 2009-12-02 |
WO2007103331A3 (en) | 2008-11-13 |
AU2007224043A1 (en) | 2007-09-13 |
JP2009529108A (en) | 2009-08-13 |
CA2647054A1 (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070209306A1 (en) | Fire rated wall structure | |
US7168219B2 (en) | Support apparatuses and jambs for windows and doors and methods of constructing same | |
US9157232B2 (en) | Adjustable head-of-wall insulation construction for use with wider wall configurations | |
US4545166A (en) | Ceiling insulation system | |
US6871470B1 (en) | Metal stud building system and method | |
US8826599B2 (en) | Insulating gasket construction for head-of-wall joints | |
CA1176425A (en) | Extendable stud for partition walls or the like | |
US5943838A (en) | Metal stud with bendable tab channel support | |
US8074416B2 (en) | Structural members with gripping features and joining arrangements therefor | |
US20160102454A1 (en) | Free span ceiling grid system | |
CA2803439C (en) | Insulating gasket construction for head-of-wall joints | |
SK533188A3 (en) | Wall panel | |
US20120144774A1 (en) | Fire rated wall structure | |
CN101426986A (en) | Fire rated wall structure | |
US4080766A (en) | Demountable partition structure | |
US9103108B2 (en) | Drywall backing connector for steel studs | |
US9752332B2 (en) | Molding members for movable partition systems and header structures and components thereof, and related methods of installation | |
JPH0553907B2 (en) | ||
US20240159053A1 (en) | Interlocking framing | |
US20240240457A1 (en) | Adjustable metal framing system and connecton | |
JPH0364028B2 (en) | ||
JP2000248662A (en) | Plate and partitioning apparatus | |
CA2838351A1 (en) | Slotted track |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2647054 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2008/011348 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008558340 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007752334 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007224043 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4048/KOLNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087024530 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2008139909 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780014120.5 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2007224043 Country of ref document: AU Date of ref document: 20070306 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0708695 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080908 |