WO2007102295A1 - 医療用画像処理装置及び医療用画像処理方法 - Google Patents

医療用画像処理装置及び医療用画像処理方法 Download PDF

Info

Publication number
WO2007102295A1
WO2007102295A1 PCT/JP2007/052346 JP2007052346W WO2007102295A1 WO 2007102295 A1 WO2007102295 A1 WO 2007102295A1 JP 2007052346 W JP2007052346 W JP 2007052346W WO 2007102295 A1 WO2007102295 A1 WO 2007102295A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
dimensional model
image processing
group
medical image
Prior art date
Application number
PCT/JP2007/052346
Other languages
English (en)
French (fr)
Inventor
Ryoko Inoue
Hideki Tanaka
Hirokazu Nishimura
Kenji Nakamura
Miho Sawa
Original Assignee
Olympus Medical Systems Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp. filed Critical Olympus Medical Systems Corp.
Priority to EP07714002.8A priority Critical patent/EP1992273B1/en
Priority to CN2007800046978A priority patent/CN101378692B/zh
Publication of WO2007102295A1 publication Critical patent/WO2007102295A1/ja
Priority to US12/204,375 priority patent/US8165367B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30028Colon; Small intestine

Definitions

  • the present invention relates to a medical image processing apparatus and a medical image processing method, and more particularly to a medical image processing apparatus and a medical image processing method capable of detecting a raised shape in a three-dimensional model of a living tissue in a body cavity. Is.
  • An endoscope system configured to include an endoscope, a medical image processing apparatus, and the like is widely used in the medical field and the like.
  • the endoscope system is formed by, for example, an insertion portion that is inserted into a body cavity as a living body, an objective optical system that is disposed at a distal end portion of the insertion portion, and an image formed by the objective optical system.
  • An endoscope including an imaging unit that captures an image of a body cavity and outputs it as an imaging signal, and displays the image of the body cavity on a monitor as a display unit based on the imaging signal
  • a medical image processing apparatus for performing processing for the purpose. Then, based on the image in the body cavity displayed on the monitor or the like as the display unit, the user observes the organ or the like as the subject in the body cavity, for example.
  • an endoscope system having the above-described configuration can also take an image of a digestive tract mucous membrane such as a large intestine as a subject in a body cavity. Therefore, the user can comprehensively observe various findings such as the color of the mucous membrane, the shape of the lesion, and the fine structure of the mucosal surface.
  • a two-dimensional image including an image of a biological tissue such as a fold of the large intestine or a polyp as an image of a biological tissue having a raised shape imaged by an endoscope is a field of view of the endoscope.
  • the invisible region in the above-described two-dimensional image is generally called occlusion and is a region where it is difficult to estimate an accurate three-dimensional model. Therefore, in the part where the occlusion of the two-dimensional image occurs, for example, there is no estimation result at the corresponding position of the three-dimensional model based on the two-dimensional image, or the three-dimensional image based on the two-dimensional image. An unreliable estimation result may be calculated at the corresponding position in the model.
  • US Patent Application No. 20030223627 A method for detecting a lesion such as a polyp is obtained by observation using, for example, CT (Computed Tomog rapy). This method is assumed to be applied to a 3D model that does not generate occlusion. Therefore, the method for detecting a lesion site such as a polyp proposed in US Patent Application No. 20030223627 is, for example, a two-dimensional image having an occlusion portion obtained by observation using an endoscope. When applied to a 3D model estimated on the basis of this, the detection accuracy of a lesion site such as a polyp is lowered. As a result, when an object is observed while using an endoscope system that adopts the method power proposed in US Patent Application No. 20030223627, the burden on the user to find a diseased site such as a polyp There is a problem that becomes large.
  • CT Computer Tomog rapy
  • the present invention has been made in view of the above-described points, and in the case where observation is performed using a three-dimensional model estimated based on a two-dimensional image having occlusion, a polyp by a user, etc.
  • the burden on the user by preventing oversight of the lesion site It is an object of the present invention to provide a medical image processing apparatus and a medical image processing method capable of reducing the above-mentioned problem.
  • a first medical image processing apparatus includes a three-dimensional model estimation unit that estimates a three-dimensional model of a biological tissue based on a two-dimensional image of the biological tissue in the body cavity that is input.
  • a shape feature amount calculation unit that calculates a shape feature amount of each botacell included in the three-dimensional model of the biological tissue, and a three-dimensional model is included in each of the botasels included in the three-dimensional model of the biological tissue based on the shape feature amount.
  • a three-dimensional shape extraction unit that extracts a first voxel group estimated as a predetermined shape, and a ridge that detects the first botacell group as a botacell group that forms a raised shape in the three-dimensional model of the biological tissue. And a shape detection unit.
  • the second medical image processing apparatus further includes an area detection unit that detects a visible area and an invisible area in the input two-dimensional image in the first medical image processing apparatus. It is characterized by having.
  • the area detection unit acquires information on a line structure in the input two-dimensional image, and The visible region and the invisible region are separated from each other by detecting the boundary portion based on the line structure information.
  • a fourth medical image processing apparatus is the second or third medical image processing apparatus, and further, the three-dimensional model estimation unit is provided for each botacel estimated in the visible region. Based on the above, a botasel is added to a predetermined position of the invisible region.
  • the predetermined position is detected by the region detection unit from each of the botasels estimated in the visible region.
  • the position is symmetrical with respect to the boundary portion.
  • a sixth medical image processing apparatus provides the first to fifth medical image processing apparatuses.
  • the predetermined shape is a convex shape.
  • a seventh medical image processing apparatus is the first medical image processing apparatus, wherein the three-dimensional shape extraction unit is a piece of music in the three-dimensional model of the biological tissue.
  • the three-dimensional shape extraction unit is a piece of music in the three-dimensional model of the biological tissue.
  • the second one which is the one where the 3D model is estimated as a convex shape
  • the third one which is the one where the 3D model is estimated as a ridge shape
  • detecting the second and third button cell groups when the second and third button cell groups are within a predetermined range. It is characterized in that it is extracted as one botacell group.
  • An eighth medical image processing apparatus is the second medical image processing apparatus, wherein the three-dimensional shape extraction unit is a piece of music in a three-dimensional model of the living tissue.
  • the three-dimensional shape extraction unit is a piece of music in a three-dimensional model of the living tissue.
  • the second one which is the one where the 3D model is estimated as a convex shape
  • the third one which is the one where the 3D model is estimated as a ridge shape
  • a second botacell group existing in the invisible region and the second botacell group existing in the visible region are detected within a predetermined range.
  • the botacell group and the third botacell group are extracted as the first botacell group.
  • a ninth medical image processing apparatus is the seventh or eighth medical image processing apparatus, wherein the three-dimensional shape extraction unit is located in the invisible region. Whether or not the second button cell group and the second button cell group existing in the visible region are within a predetermined range, the average coordinate of the second button cell group and the average coordinate of the third button cell group It is characterized by determining based on the distance between.
  • a tenth medical image processing apparatus is the second or third medical image processing apparatus, and further, the shape feature amount calculating unit is only in each of the botasels in the visible region, The shape feature amount is calculated.
  • An eleventh medical image processing apparatus is the third medical image processing apparatus, wherein the shape feature amount calculation unit is information related to a boatel that exists in a peripheral region of one buttonel. Based on the area buttonel information, the shape feature amount of the one buttonel is calculated, and the buttonel including the boundary part is present in the peripheral area. In the case of detection, it is characterized in that the peripheral buttonel information used for calculating the shape feature amount of the one buttonel is reduced.
  • a first medical image processing method includes a three-dimensional model estimation step for estimating a three-dimensional model of a living tissue based on a two-dimensional image of the image of the living tissue in the body cavity.
  • a shape feature amount calculating step for calculating a shape feature amount of each botasel included in the three-dimensional model of the biological tissue, and a three-dimensional model among the botasels included in the three-dimensional model of the biological tissue based on the shape feature amount.
  • a three-dimensional shape extraction step for extracting a first bocellel group estimated as a predetermined shape, and a bulge for detecting the first bocellel group as a botacell group constituting a bulge shape in the three-dimensional model of the biological tissue. And a shape detection step.
  • the second medical image processing method further includes a region detection step of detecting a visible region and an invisible region in the input two-dimensional image in the first medical image processing method. It is characterized by having.
  • the region detection step acquires information of a line structure in the input two-dimensional image, By detecting the boundary portion based on the information on the line structure, the visible region and the invisible region are separated from each other at the boundary portion.
  • a fourth medical image processing method is the second or third medical image processing method, and the three-dimensional model estimation step is performed by estimating V in the visible region. Based on each button cell, the button cell is added to a predetermined position in the invisible region.
  • the predetermined position is detected by the region detection step from each botacell estimated in the visible region. It is characterized by a position that is symmetric with respect to the boundary.
  • a sixth medical image processing method is characterized in that, in the first to fifth medical image processing methods, the predetermined shape is a convex shape.
  • a seventh medical image processing method is the first medical image processing method, wherein the three-dimensional shape extraction step includes a single curved plane in the three-dimensional model of the living tissue.
  • the second botacell group which is a three-dimensional model estimated as a convex shape
  • the third one a three-dimensional model is estimated as a ridge-shaped shape.
  • the second and third button cell groups are within a predetermined range, the second and third button cell groups are connected to each other. Extracting as a Botacel group.
  • An eighth medical image processing method is the second medical image processing method, wherein the three-dimensional shape extraction step includes a single curved plane in the three-dimensional model of the living tissue.
  • the second botacell group which is a three-dimensional model estimated as a convex shape, and the third one, a three-dimensional model is estimated as a ridge-shaped shape.
  • the third and second botacell groups existing in the invisible area are within a predetermined range, the second botacell group and The third button cell group is extracted as the first button cell group.
  • a ninth medical image processing method is the seventh or eighth medical image processing method, and further, the three-dimensional shape extraction step is the third medical image existing in the invisible region. Whether or not the second button cell group existing in the visible region is within a predetermined range, and the average coordinates of the second button cell group and the average of the third button cell group The determination is based on the distance between the coordinates.
  • a tenth medical image processing method is the second or third medical image processing method, and further, the shape feature amount calculating step is performed for each botacel in the visible region. ⁇ ⁇ The shape feature value is calculated only in a short time.
  • the shape feature amount calculating step is information relating to a voxel existing in a peripheral region of one botagel. Calculates the shape feature quantity of the one button cell based on the peripheral area button cell information, and calculates the shape feature quantity of the one button cell when it is detected that the button cell including the boundary exists in the peripheral area. Peripheral buttons used when It is characterized by reducing cell information.
  • FIG. 1 is a diagram showing an example of the overall configuration of an endoscope system in which a medical image processing apparatus according to an embodiment of the present invention is used.
  • FIG. 2 is a schematic diagram showing a state where the endoscope of FIG. 1 is inserted into a tubular organ.
  • FIG. 3 is a schematic diagram showing images of tubular organs and living tissue imaged by an endoscope in the state of FIG. 2.
  • FIG. 4 is a flowchart showing a procedure of processing performed by the medical image processing apparatus of FIG. 1 when extracting an edge portion in a two-dimensional image of a biological tissue image according to the first embodiment.
  • FIG. 5 is a flowchart showing a procedure of processing performed by the medical image processing apparatus in FIG. 1 when a surface portion in a two-dimensional image of a biological tissue image is extracted in the first embodiment.
  • FIG. 6 is a flowchart showing a procedure of processing performed by the medical image processing apparatus in FIG. 1 when detecting a raised shape in a three-dimensional model of biological tissue in the first embodiment.
  • FIG. 7 is a diagram showing an example of a three-dimensional model of biological tissue estimated by the medical image processing apparatus of FIG.
  • FIG. 8 is a view when the three-dimensional model of the biological tissue of FIG. 7 is viewed from other directions.
  • FIG. 9 is a diagram showing a boundary approximation plane in the three-dimensional model of the biological tissue of FIGS. 7 and 8.
  • FIG. 10 is a diagram showing an example when a mirror image based on the boundary approximation plane shown in FIG. 9 is added to the three-dimensional model of the biological tissue of FIGS. 7 and 8.
  • FIG. 10 is a diagram showing an example when a mirror image based on the boundary approximation plane shown in FIG. 9 is added to the three-dimensional model of the biological tissue of FIGS. 7 and 8.
  • FIG. 10 is a diagram showing an example when a mirror image based on the boundary approximation plane shown in FIG. 9 is added to the three-dimensional model of the biological tissue of FIGS. 7 and 8.
  • FIG. 11 is a diagram showing an example of an outline of processing performed by the medical image processing apparatus in FIG. 1 when detecting a raised shape in a three-dimensional model of biological tissue in the second embodiment.
  • FIG. 12 shows an example different from FIG. 11 in the outline of the processing performed by the medical image processing apparatus in FIG. 1 when detecting a raised shape in a three-dimensional model of biological tissue in the second embodiment.
  • FIG. 13 is a view showing an example different from FIGS. 7 and 8 of the three-dimensional model of biological tissue estimated by the medical image processing apparatus of FIG.
  • FIG. 14 In the third embodiment, the ridge shape in a three-dimensional model of living tissue is detected.
  • 1 is a flowchart showing a procedure of processing performed by the medical image processing apparatus in FIG.
  • FIG. 15 is a diagram showing an example of the positional relationship between the average coordinate A of the botel cell group estimated as a convex shape and the average coordinate B of the botel cell group estimated as a ridge shape in the three-dimensional model of the biological tissue of FIG. .
  • FIG. 1 to FIG. 10 relate to the first embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of an overall configuration of an endoscope system in which the medical image processing apparatus according to the present embodiment is used.
  • FIG. 2 is a schematic view showing a state when the endoscope of FIG. 1 is inserted into a tubular organ.
  • FIG. 3 is a schematic diagram showing images of a tubular organ and a living tissue imaged by an endoscope in the state of FIG.
  • FIG. 4 is a flowchart showing a procedure of processing performed by the medical image processing apparatus in FIG. 1 when extracting an edge portion in a two-dimensional image of a biological tissue image in the first embodiment.
  • FIG. 1 is a diagram illustrating an example of an overall configuration of an endoscope system in which the medical image processing apparatus according to the present embodiment is used.
  • FIG. 2 is a schematic view showing a state when the endoscope of FIG. 1 is inserted into a tubular organ.
  • FIG. 3 is
  • FIG. 5 is a flowchart showing a procedure of processing performed by the medical image processing apparatus in FIG. 1 when extracting a surface portion in a two-dimensional image of a biological tissue image in the first embodiment.
  • FIG. 6 is a flowchart illustrating a procedure of processing performed by the medical image processing apparatus in FIG. 1 when detecting a raised shape in a three-dimensional model of biological tissue in the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a three-dimensional model of a biological tissue estimated by the medical image processing apparatus of FIG.
  • FIG. 8 is a view when the three-dimensional model of the biological tissue of FIG. 7 is viewed from another direction.
  • FIG. 9 is a diagram showing a boundary approximation plane in the three-dimensional model of the biological tissue of FIGS.
  • FIG. 10 is a diagram showing an example of a case where a mirror image based on the boundary approximate plane shown in FIG. 9 is added to the three-dimensional model of the biological tissue shown in FIGS.
  • the endoscope system 1 includes a medical observation apparatus 2 that captures an image of a subject and outputs a two-dimensional image of the image of the subject, a personal computer, and the like. Medical processing that performs image processing on the video signal of the two-dimensional image output from the observation device 2 and outputs the video signal after the image processing as an image signal
  • the main part includes an image processing device 3 and a monitor 4 that displays an image based on an image signal output from the medical image processing device 3.
  • the medical observation device 2 is inserted into a body cavity, images the subject in the body cavity and outputs it as an imaging signal, and the subject imaged by the endoscope 6
  • the signal processing is performed on the imaging signal output from the endoscope 6 to generate a two-dimensional image.
  • a camera control unit (hereinafter abbreviated as CCU) 8 that outputs as a video signal, and a monitor that displays the image of the subject imaged by the endoscope 6 based on the video signal of the two-dimensional image that also outputs CCU 8 power 9
  • the principal part is comprised.
  • the endoscope 6 includes an insertion portion 11 that is inserted into a body cavity, and an operation portion 12 that is provided on the proximal end side of the insertion portion 11. Further, a light guide 13 for transmitting illumination light supplied from the light source device 7 is passed through a portion from the proximal end side in the insertion portion 11 to the distal end portion 14 on the distal end side in the insertion portion 11. ing.
  • the light guide 13 has a distal end side disposed at the distal end portion 14 of the endoscope 6 and a rear end side connected to the light source device 7. Since the light guide 13 has such a configuration, the illumination light supplied from the light source device 7 is transmitted by the light guide 13 and then provided on the distal end surface of the distal end portion 14 of the insertion portion 11. Not illuminating window force is also emitted. Then, illumination light is emitted from an illumination window (not shown) to illuminate a living tissue or the like as a subject.
  • an objective optical system 15 attached to an observation window (not shown) adjacent to an illumination window (not shown) and an imaging position of the objective optical system 15 are arranged.
  • An imaging unit 17 having an imaging device 16 constituted by a CCD (charge coupled device) or the like is provided. With such a configuration, the subject image formed by the objective optical system 15 is captured by the imaging element 16 and then output as an imaging signal.
  • the image sensor 16 is connected to the CCU 8 via a signal line.
  • the image sensor 16 is driven based on the drive signal output from the CCU 8 and outputs an image signal corresponding to the captured subject image to the CCU 8.
  • the imaging signal input to the CCU 8 is a signal (not shown) provided in the CCU 8.
  • the signal is processed by the signal processing circuit, and then converted into a two-dimensional image video signal and output.
  • the video signal of the two-dimensional image output from the CCU 8 is output to the monitor 9 and the medical image processing device 3.
  • an image of the subject based on the video signal output from the CCU 8 is displayed on the monitor 9 as a two-dimensional image.
  • the medical image processing apparatus 3 performs an AZD conversion on the video signal of the two-dimensional image output from the medical observation apparatus 2, and outputs the image input section 21 from the image input section 21.
  • CPU 22 as a central processing unit that performs image processing on a video signal to be processed, a processing program storage unit 23 in which a processing program related to the image processing is written, a video signal output from the image input unit 21, and the like
  • an information storage unit 25 for storing calculation results and the like in the image processing performed by the CPU 22.
  • the medical image processing apparatus 3 includes a storage device interface 26, a hard disk 27 as a storage device that stores image data and the like as image processing results of the CPU 22 via the storage device interface 26, Based on the image data as the image processing result of the CPU 22, a display processing unit 28 performs a display process for displaying the image data on the monitor 4 and outputs the image data after the display process as an image signal. And an input operation unit 29 composed of a keyboard or the like that allows a user to input parameters for image processing performed by the CPU 22 and operation instructions for the medical image processing apparatus 3. The monitor 4 displays an image based on the image signal output from the display processing unit 28.
  • the image input unit 21, the CPU 22, the processing program storage unit 23, the image storage unit 24, the information storage unit 25, the storage device interface 26, the display processing unit 28, and the input operation unit 29 of the medical image processing apparatus 3 are connected to each other via a data bus 30.
  • the user inserts the insertion portion 11 of the endoscope 6 into a tubular organ 31 such as the large intestine, for example.
  • a tubular organ 31 such as the large intestine
  • an image of the living tissue 31A which is a lesion site existing on the inner wall of the tubular organ 31
  • the imaging unit 17 provided at the distal end portion 14. Images are taken as shown in Fig. 3.
  • the image of the weaving 31A is output to the CCU 8 as an imaging signal.
  • the CCU 8 converts the imaging signal as a video signal of a two-dimensional image by performing signal processing on the imaging signal output from the imaging device 16 of the imaging unit 17 in a signal processing circuit (not shown). Output.
  • the monitor 9 displays the images of the tubular organ 31 and the living tissue 31A as a two-dimensional image as shown in FIG. 3, for example, based on the video signal output from the CCU 8. Further, the CCU 8 outputs a video signal of a two-dimensional image obtained by performing signal processing on the imaging signal output from the imaging device 16 of the imaging unit 17 to the medical image processing apparatus 3.
  • the video signal of the two-dimensional image output to the medical image processing device 3 is AZD converted by the image input unit 21 and then input to the CPU 22.
  • the CPU 22 performs, for example, the following processing based on the video signal of the two-dimensional image output from the image input unit 21 and the processing program written in the processing program storage unit 23. Extracting the edge portion of the living tissue 31A in the two-dimensional image
  • the CPU 22 applies, for example, a bandpass filter to the red component of the two-dimensional image to thereby generate the two-dimensional image. All edges included in are extracted (step Sl in Fig. 4).
  • the CPU 22 having a function as a region detection unit fine-line all the extracted edge portions (step S2 in FIG. 4), and at the same time, out of all the edge portions that have been thin-line aligned,
  • the length L of the edge part E is calculated (step S3 in FIG. 4). Further, the CPU 22 determines whether or not the length L of one edge portion E is longer than the threshold value thLl and shorter than the threshold value thL2.
  • step S4 in FIG. 4 when the CPU 22 detects that the length L force of one edge portion E is a length equal to or shorter than a predetermined threshold thLl, or is equal to or larger than the threshold thL2 (step S4 in FIG. 4), The process shown in step S11 of FIG. 4 described later is performed.
  • the CPU 22 obtains a normal NCc subtracted from the midpoint Cc of one edge portion E. Next, N normals NCn subtracted from each control point Cn are acquired (step S6 in FIG. 4). Thereafter, the CPU 22 detects the number Na of the N normals NCn that intersect the normal NCc (step S7 in FIG. 4).
  • the CPU 22 determines whether or not the number Na of the N normals NCn that intersect with the normal NCc is greater than the threshold value tha. Then, when the CPU 22 having the function as a region detection unit detects that the number Na intersects with the normal NCc is larger than the threshold value tha (step S8 in FIG. 4), the pixel group included in one edge portion E It is determined that ip is a pixel group included in the edge portion of the living tissue 31 A, and the value of the variable edge (i) in each pixel included in the pixel group ip is set to ON (step S9 in FIG. 4).
  • the CPU 22 detects that the number Na of crossing the normal NCc is less than or equal to the threshold value tha (step S8 in FIG. 4), the pixel group ip included in one edge portion E is determined as the biological tissue. It is determined that the pixel group is not included in the edge portion of 31 A, and the value of the variable edge (i) in each pixel of the pixel group ip is set to OFF (step S10 in FIG. 4).
  • the CPU 22 having a function as a region detection unit performs the above-described processing, so that the visible region and the invisible region in the two-dimensional image are invisible at the pixel group in which the value of the variable edge (i) is ON. Judge that the area is separated.
  • the CPU 22 determines whether or not the processing has been completed for all the extracted edge portions.
  • step S11 in FIG. 4 When the CPU 22 detects that the processing has not been completed for all the extracted edge portions (step S11 in FIG. 4), the CPU 22 performs the steps in FIG. Steps S3 to S10 in Fig. 4 are performed. In addition, when the CPU 22 detects that the processing has been completed for all the extracted edge portions (step S11 in FIG. 4), a series of steps for extracting the edge portions of the living tissue 31A in the two-dimensional image are performed. The process ends.
  • the CPU 22 obtains each edge of the two-dimensional image as a processing result obtained by performing a series of processes for extracting the edge portion of the living tissue 31A in the two-dimensional image.
  • the value of the variable edge (i) in the pixel group ip included in the section is temporarily stored in the information storage section 25.
  • the CPU 22 Based on the value of the variable edge (i) stored in the information storage unit 25 and the processing program written in the processing program storage unit 23, the CPU 22 performs, for example, the processing shown in FIG. Then, the surface portion of the living tissue 31A in the two-dimensional image is extracted by performing the processing described below.
  • the CPU 22 acquires a thin line of one edge portion E in which the variable e dge (i) is ON (FIG. 5). Step S21). Thereafter, the CPU 22 acquires points at both ends of the thin line of the one edge portion E whose variable edge (i) is ON (step S22 in FIG. 5).
  • the CPU 22 is surrounded by a fine line of one edge portion E in which the variable edge (i) is ON and a line connecting the points at both ends of the fine line acquired in step S22 of Fig. 5 described above.
  • the pixel group jp is a visible region in the two-dimensional image of the living tissue 31A, that is, a pixel group included in the surface portion of the living tissue 31A, and the variable omote (j ) Is set to ON (step S23 in Fig. 5).
  • the CPU 22 determines whether or not processing has been completed for all edge portions for which the variable edge (i) is ON. If the CPU 22 detects that processing has not been completed for all edge portions for which the variable edge (i) is ON (step S24 in FIG. 5), the other edge is detected.
  • step S24 in FIG. 5 the processing has been completed for all edge portions for which the variable edge (i) is ON.
  • step S24 in FIG. 5 a series of steps for extracting the surface portion of the living tissue 31A in the two-dimensional image is performed. The process ends.
  • the CPU 22 applies each surface portion of the two-dimensional image as a processing result obtained by performing a series of processes for extracting the surface portion of the living tissue 31A in the two-dimensional image described above.
  • the value of the variable omote (j) in the included pixel group jp is temporarily stored in the information storage unit 25.
  • the CPU 22 having a function as a three-dimensional model estimation unit converts, for example, luminance information of the video signal of the two-dimensional image output from the image input unit 21 by a process such as geometric conversion. Based on this, image processing for acquiring image data necessary for estimating the three-dimensional model of the tubular organ 31 and the living tissue 31A is performed. In other words, the CPU 22 generates a button cell corresponding to each pixel in the two-dimensional image, for example, by a process such as geometric transformation, and uses the image for estimating the three-dimensional model. Acquired as image data. In other words, the pixel group ip and the pixel group jp are converted into the botacell group ib and the botacell group jb by the processing described above.
  • the CPU 22 uses a plane including a botacell group jb whose variable omote (j) is ON as image data for estimating the three-dimensional model of the living tissue 31A shown in FIG.
  • the data of the biological tissue surface portion 31a and the data of the biological tissue boundary portion 3 lb which is a plane including the botacell group ib whose variable edge (i) is ON are obtained.
  • the living tissue 31A is estimated as a three-dimensional model having a shape as shown in FIG. 7, for example, when the z-axis direction is the visual field direction during observation with the endoscope 6.
  • the biological tissue 31 A estimated as a three-dimensional model having a shape as shown in FIG. 7 by performing the above-described processing is, for example, as shown in FIG.
  • An invisible region 31c is provided in the region as shown.
  • the CPU 22 performs the following process based on the data on the surface 3 la of the living tissue and the data on the boundary 31b of the living tissue, thereby performing the tertiary processing of the invisible region 31c of the living tissue 31A.
  • the raised shape in the three-dimensional model of the estimated living tissue 31A is detected.
  • the CPU 22 includes the largest number of the respective botasels included in the botacell group ib of the biological tissue boundary portion 3 lb.
  • An approximate plane 31d which is a plane, for example, a plane as shown in FIG. 9, is calculated (step S31 in FIG. 6).
  • the CPU 22 adds a new botasel to a predetermined position in the invisible region 31c based on the data of the biological tissue surface portion 31a. Specifically, the CPU 22 determines, based on the data of the biological tissue surface portion 3 la, a position that is symmetrical with respect to the approximate plane 31d from each of the button cells of the biological yarn and woven surface portion 3 la as the predetermined position. Add new botasel (step S32 in Fig. 6).
  • the living tissue 31A is obtained by, for example, the living tissue surface portion 31a and the living tissue back surface portion generated as a mirror image of the living tissue surface portion 3la as shown in FIG. It is estimated as a three-dimensional model having 3 le. That is, the above-described three-dimensional model of the invisible region 31c of the living tissue 31A is estimated as the living tissue back surface portion 31e.
  • the CPU 22 estimates a three-dimensional model of the tubular organ 31 and the living tissue 31A.
  • the following processing is further performed on each of the P number of botasels, which are all the botasels obtained as image data.
  • Shapelndex value and Curvedness value can be calculated by using a method similar to the method described in US Patent Application No. 20030223627, for example. For this reason, in the present embodiment, the description of the calculation method of the Shapelndex value and the Curvedness value in one botasel Bi is omitted.
  • the CPU 22 having a function as a three-dimensional shape extraction unit compares the Shapelndex value SBi with a preset threshold value Sth of the Shapelndex value, and also compares the Curvedness value CBi with the preset Curvedness value. Compare with the threshold value Cth.
  • the CPU 22 extracts a group of botasels in which the three-dimensional model is estimated to be a convex shape by performing the above-described process. Perform the process to be issued.
  • the threshold value Sth is set as 0.9
  • step S36 when the CPU 22 having the function as the raised shape detection unit detects that the Shapelndex value SBi is larger than the threshold value Sth and the Curvedness value CBi is larger than the threshold value Cth (step S36 in FIG. 6), the CPU 22 Is determined to be a part of the raised shape, and the value of the variable ryuuki (Bi) in the one button cell Bi is set to ON (step S37 in FIG. 6).
  • the CPU 22 applies a character string or coloring for indicating that the living tissue 31A has a raised shape to a three-dimensional model having a button cell whose ryuuki (Bi) value is ON.
  • Control for superimposing the three-dimensional model on the display processing unit 28 is performed.
  • the monitor 4 displays a three-dimensional model of the tubular organ 31 and the living tissue 31A so that the user can easily find the living tissue 31A having the raised shape.
  • the CPU 22 detects each pixel on the two-dimensional image that exists at a position corresponding to the position of each of the button cells based on the position of each of the button cells whose ryuuki (Bi) value is ON.
  • the display processing unit 28 may be controlled to superimpose a character string, coloring, or the like for indicating that the tissue 31A has a raised shape on the two-dimensional image having the pixels.
  • the medical image processing apparatus 3 can prevent the user from overlooking a lesion site such as a polyp by performing the above-described series of processing, thereby reducing the burden on the user. Can be reduced.
  • 11 and 12 relate to the second embodiment of the present invention. Note that detailed description of portions having the same configuration as in the first embodiment is omitted. Further, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. Furthermore, the configuration of the endoscope system 1 used in the present embodiment is the same as that in the first embodiment.
  • FIG. 11 is a diagram showing an example of an outline of processing performed by the medical image processing apparatus in FIG. 1 when detecting a raised shape in a three-dimensional model of biological tissue in the second embodiment.
  • FIG. 12 shows a raised shape in a three-dimensional model of biological tissue in the second embodiment.
  • FIG. 12 is a diagram showing an example different from FIG. 11 of an outline of processing performed by the medical image processing apparatus of FIG. 1 when detecting a state.
  • the Shapelndex value and the Curvedness value as the shape feature amount are calculated based on two values of the Gaussian curvature and the average curvature. Value. Therefore, the CPU 22 may perform processing by calculating two values of the Gaussian curvature and the average curvature as the shape feature quantity instead of the two values of the Shapelndex value and the Curvedness value. In this case, the CPU 22 performs the process described below as a process corresponding to the process shown in step S35 in FIG. 6 described in the first embodiment.
  • the CPU 22 having a function as a shape feature quantity calculation unit uses, for example, MXMXM botacell groups including the first one as the peripheral botacell information that is information related to the botacell existing in the peripheral area of one bocellel.
  • the local plane equation of the local region is calculated.
  • the CPU 22 having a function as a shape feature quantity calculation unit calculates the Gaussian curvature and the average curvature of the first boat cell included in the M X M X M number of button cell groups based on the peripheral voxel information.
  • the CPU 22 generates a local plane equation of the local region having 5 ⁇ 5 ⁇ 5 botacell group forces including a desired first botacell. And the Gaussian curvature and the average curvature of the desired first vessel cell are calculated based on the peripheral buttonacell information.
  • the CPU 22 having a function as a shape feature quantity calculation unit includes at least one of the botacells included in the botacell group ib in which the variable edge (i) is ON included in the local region. If it is detected, the local plane equation of the local region composed of, for example, KXKXK (K ⁇ ) button cell groups including the second button cell is calculated as the peripheral button cell information. Then, the CPU 22 having a function as a shape feature quantity calculation unit calculates a Gaussian curvature and an average curvature of the second boat cell included in the K X K X K number of button cells based on the peripheral button cell information.
  • the CPU 22 generates a local plane equation of the local region having 3 ⁇ 3 ⁇ 3 button cell group forces including a desired second button cell. And the Gaussian curvature and the average curvature of the desired second vessel cell are calculated on the basis of the peripheral buttonacell information.
  • the CPU 22 can extract more botasels that constitute a part of the raised shape by performing the above-described processing.
  • the medical image processing apparatus 3 can prevent the user from overlooking a lesion such as a polyp, thereby reducing the burden on the user and improving the detection accuracy of the lesion. Can do.
  • the CPU 22 does not calculate the shape feature amount of the invisible region 31c in which the reliability of the estimation result is relatively low in the above-described processing for the three-dimensional model of the living tissue 31A, and the estimation result A process of calculating only the shape feature amount in the vicinity of the biological tissue surface portion 31a and the biological tissue boundary portion 3 lb, which are relatively high in reliability, may be performed.
  • the medical image processing apparatus 3 of the present embodiment can detect a lesion site such as a polyp with higher accuracy.
  • FIG. 13, FIG. 14 and FIG. 15 relate to a third embodiment of the present invention. Note that detailed description of portions having the same configuration as in the first embodiment is omitted. In addition, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. Furthermore, the configuration of the endoscope system 1 used in the present embodiment is the same as that in the first embodiment.
  • FIG. 13 is a diagram showing an example different from FIGS. 7 and 8 of the three-dimensional model of biological tissue estimated by the medical image processing apparatus of FIG.
  • FIG. 14 is a flowchart showing a procedure of processing performed by the medical image processing apparatus in FIG. 1 when detecting a raised shape in a three-dimensional model of biological tissue in the third embodiment.
  • FIG. 15 shows the positional relationship between the average coordinate A of the botacel group estimated as a convex shape and the average coordinate B of the botacell group estimated as a ridge shape in the three-dimensional model of the biological tissue in FIG. It is a figure which shows an example.
  • the CPU 22 performs processing for estimating the biological tissue back surface portion 3 le as a three-dimensional model of the invisible region 31c of the biological yarn and tissue 31A (for example, the virtual tissue exists in a position symmetric with respect to the approximate plane 31d from each botacell of the biological tissue surface portion 31a without performing the processing shown in step S32 of FIG. It is also possible to calculate the shape feature value of each of the botacels and determine whether or not the force has a raised shape at the position based on the calculated shape feature value.
  • the CPU 22 estimates the three-dimensional model from the two-dimensional image of the living tissue 31 A, for example, processing based on luminance information is performed as described in the description of the first embodiment. . Therefore, when the boundary portion (edge portion) between the visible region and the invisible region in the two-dimensional image of the living tissue 31A has darker luminance information than usual, the living tissue 31A has an actual shape. Even if it has a convex shape, it has a ridge shape in the invisible region that exists in the z-axis direction as the visual field direction (or the lumen center direction) during observation with the endoscope 6, for example, as shown in FIG. May be estimated as a three-dimensional model of a simple shape.
  • the CPU 22 detects whether or not the living tissue 31A estimated as the three-dimensional model has a raised shape by performing the processing described below.
  • the CPU 22 compares the Shapelndex value SBj with the preset Shapelndex value threshold value Sthl, and compares the Curvedness value CBj with the preset Curvedness value threshold value Cthl.
  • the CPU 22 selects the botacell group in which the three-dimensional model is estimated as a convex shape. Perform the extraction process.
  • the threshold value Sthl is set to 0.9
  • the threshold value Cthl is set to Assume that it is set as 0.2.
  • the CPU 22 detects that the Shapelndex value SBj is larger than the threshold value Sthl and the Curvednes s value CBj is larger than the threshold value Cthl (step S44 in FIG. 14), the CPU 22 sets one bot-cell Bj to the raised shape. It is determined that it is a candidate for a part of the botacel, and the one box The value of the variable ryuukil (Bj) in Le Bi is set to ON (step S45 in Fig. 14).
  • the Shapelndex value SBj is compared with the preset shapelndex value threshold Sth2.
  • the threshold value Sth2 is set to 0.75 in order to detect the living tissue 31A having the ridge shape as the raised shape.
  • step S48 Q is not satisfied
  • step S49 the CPU 22 performs processing for adding 1 to the variable j (step S49 in Fig. 14).
  • step S48 from step S42 of step 14 is performed again.
  • step S51 in Fig. 14 When the CPU 22 detects that the distance L is greater than or equal to the threshold thL (step S51 in Fig. 14), the botacell group in which the variable ryuukil (Bj) is ON and the button in which the variable ryuuki2 (Bj) is ON. A curved plane with a group of celels is judged not to be a botcell that constitutes a raised shape, and processing is performed to turn off the value of the variable ryuukil (Bj) or the variable ryuuki2 (Bj) in each of the Q voxenoles ( After step S52 in FIG. 14, the series of processing is terminated.
  • CPU2 2 shows that when it is detected that the distance L is smaller than the threshold thL (step S51 in FIG. 14), there is a botacell group in which the variable ry uukil (Bj) is ON and a botacell group in which the variable ryuuki2 (Bj) is ON.
  • the curved plane is determined to be a button cell that constitutes the raised shape, and the series of processing ends with the value of the variable ryuukil (Bj) or the variable ryuuki2 (Bj) in each of the Q button cells being ON.
  • the CPU 22 can more accurately detect a polyp or the like, which is a lesion site having a raised shape.
  • the CPU 22 performs a series of processes of the present embodiment, so that in addition to a lesion portion (polyp or the like) that protrudes in a substantially hemispherical shape, an oversight by the user is relatively likely to occur, for example, a substantially semi-cylindrical portion. It is also possible to detect a diseased site (polyp, etc.) raised with As a result, the medical image processing apparatus 3 according to the present embodiment can reduce the burden on the user by preventing the user from overlooking a lesion site such as a polyp.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Endoscopes (AREA)
  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 本発明の医療用画像処理装置は、入力される体腔内の生体組織の像の二次元画像に基づき、該生体組織の三次元モデルを推定する三次元モデル推定部と、前記生体組織の三次元モデルが有する各ボクセルの形状特徴量を算出する形状特徴量算出部と、前記形状特徴量に基づき、前記生体組織の三次元モデルが有する各ボクセルのうち、三次元モデルが所定の形状として推定された第1のボクセル群を抽出する三次元形状抽出部と、前記第1のボクセル群を、前記生体組織の三次元モデルにおける隆起形状を構成するボクセル群として検出する隆起形状検出部とを有する。

Description

明 細 書
医療用画像処理装置及び医療用画像処理方法
技術分野
[0001] 本発明は、医療用画像処理装置及び医療用画像処理方法に関し、特に、体腔内 の生体組織の三次元モデルにおける隆起形状を検出可能な医療用画像処理装置 及び医療用画像処理方法に関するものである。
背景技術
[0002] 内視鏡及び医療用画像処理装置等を具備して構成される内視鏡システムは、医療 分野等において広く用いられている。具体的には、内視鏡システムは、例えば、生体 としての体腔内に挿入される挿入部と、該揷入部の先端部に配置された対物光学系 と、該対物光学系により結像された体腔内の像を撮像して撮像信号として出力する 撮像部とを有して構成される内視鏡と、該撮像信号に基づき、表示部としてのモニタ 等に該体腔内の像を画像表示させるための処理を行う医療用画像処理装置とを具 備して構成されている。そして、ユーザは、表示部としてのモニタ等に画像表示され た体腔内の像に基づき、例えば、体腔内における被写体としての臓器等の観察を行
[0003] また、前述した構成を具備する内視鏡システムは、体腔内における被写体として、 例えば、大腸等の消化管粘膜の像を撮像することもまた可能である。そのため、ユー ザは、例えば、粘膜の色調、病変の形状及び粘膜表面の微細な構造等の様々な所 見を総合的に観察することができる。
[0004] さらに、近年においては、内視鏡により撮像された被写体の像の撮像信号に応じた 二次元画像のデータに基づき、該被写体の三次元モデルを生成することが可能であ る、例えば、日本国特開平 11— 337845号公報に記載されているような内視鏡装置 が提案されている。
[0005] 一方、三次元モデルにおいてポリープ等の病変部位を検出するための方法として 、例えば、 Shapelndex及び Curvednessといった、曲率に基づく形状特徴量を用い つつ該三次元モデルの形状の評価を行うことにより、該三次元モデルにおける病変 部位を検出可能である、 US Patent Application No. 20030223627に記載 されて ヽる方法が提案されて 、る。
[0006] 特に、内視鏡により撮像された隆起形状を有する生体組織の像としての、例えば、 大腸のひだまたはポリープ等の生体組織の像を含む二次元画像は、該内視鏡の視 野方向に対して不可視領域を含む場合が多い。そして、前述した二次元画像におけ る不可視領域は、一般的にォクルージョンと呼ばれており、正確な三次元モデルの 推定が困難な領域である。そのため、二次元画像のォクルージョンが発生している部 分においては、例えば、該二次元画像に基づく三次元モデルの対応する位置に推 定結果が存在しない、または、該二次元画像に基づく三次元モデルの対応する位置 に信頼性の低い推定結果が算出されるといったことが起こり得る。
[0007] その結果、従来の画像処理としての、例えば、日本国特開平 11— 337845号公報 の内視鏡装置において行われている画像処理により推定された被写体の三次元モ デルが用いられつつ該被写体の観察が行われた場合、ユーザがポリープ等の病変 部位を見つける際の負担が大きくなつてしまうと 、う課題が生じて 、る。
[0008] また、 US Patent Application No. 20030223627【こお!ヽて提案されて!ヽる ポリープ等の病変部位を検出するための方法は、例えば、 CT (Computed Tomog rapy)を用いた観察により得られる、ォクルージョンとなる部分が発生しない三次元モ デルに対する適用を想定した方法である。そのため、 US Patent Application No. 20030223627において提案されているポリープ等の病変部位を検出するた めの方法は、例えば、内視鏡を用いた観察により得られる、ォクルージョンとなる部分 を有する二次元画像に基づいて推定された三次元モデルに対して適用された場合 に、ポリープ等の病変部位の検出精度が低下してしまう。その結果、 US Patent A pplication No. 20030223627において提案されている方法力採用された内視 鏡システムが用いられつつ被写体の観察が行われた場合、ユーザがポリープ等の病 変部位を見つける際の負担が大きくなつてしまうという課題が生じている。
[0009] 本発明は、前述した点に鑑みてなされたものであり、ォクルージョンを有する二次元 画像に基づ 、て推定された三次元モデルを用いて観察が行われる場合に、ユーザ によるポリープ等の病変部位の見落としを防止可能であることにより、ユーザの負担 を軽減させることのできる医療用画像処理装置及び医療用画像処理方法を提供す ることを目的としている。
発明の開示
課題を解決するための手段
[0010] 本発明における第 1の医療用画像処理装置は、入力される体腔内の生体組織の像 の二次元画像に基づき、該生体組織の三次元モデルを推定する三次元モデル推定 部と、前記生体組織の三次元モデルが有する各ボタセルの形状特徴量を算出する 形状特徴量算出部と、前記形状特徴量に基づき、前記生体組織の三次元モデルが 有する各ボタセルのうち、三次元モデルが所定の形状として推定された第 1のボクセ ル群を抽出する三次元形状抽出部と、前記第 1のボタセル群を、前記生体組織の三 次元モデルにおける隆起形状を構成するボタセル群として検出する隆起形状検出 部と、を有することを特徴とする。
[0011] 本発明における第 2の医療用画像処理装置は、前記第 1の医療用画像処理装置 において、さらに、入力される前記二次元画像における可視領域と不可視領域とを 検出する領域検出部を有することを特徴とする。
[0012] 本発明における第 3の医療用画像処理装置は、前記第 2の医療用画像処理装置 において、前記領域検出部は、入力される前記二次元画像における線構造の情報 を取得するとともに、前記線構造の情報に基づいて境界部を検出することにより、該 境界部を境に前記可視領域と前記不可視領域とが分かれているとすることを特徴と する。
[0013] 本発明における第 4の医療用画像処理装置は、前記第 2または第 3の医療用画像 処理装置において、さらに、前記三次元モデル推定部は、前記可視領域において推 定した各ボタセルに基づき、前記不可視領域の所定の位置にボタセルを添加するこ とを特徴とする。
[0014] 本発明における第 5の医療用画像処理装置は、前記第 4の医療用画像処理装置 において、前記所定の位置は、前記可視領域において推定した各ボタセルから、前 記領域検出部が検出した境界部に対して対称となる位置であることを特徴とする。
[0015] 本発明における第 6の医療用画像処理装置は、前記第 1乃至第 5の医療用画像処 理装置において、前記所定の形状は、凸型形状であることを特徴とする。
[0016] 本発明における第 7の医療用画像処理装置は、前記第 1の医療用画像処理装置 において、さらに、前記三次元形状抽出部は、前記生体組織の三次元モデルにお ける一の曲平面が有するボタセル群のうち、三次元モデルが凸型形状として推定さ れたボタセル群である第 2のボタセル群と、三次元モデルが尾根型形状として推定さ れたボタセル群である第 3のボタセル群とを検出するとともに、該第 2のボタセル群と 該第 3のボタセル群とが所定の範囲内に存在する場合に、該第 2のボタセル群と該第 3のボタセル群とを前記第 1のボタセル群として抽出することを特徴とする。
[0017] 本発明における第 8の医療用画像処理装置は、前記第 2の医療用画像処理装置 において、さらに、前記三次元形状抽出部は、前記生体組織の三次元モデルにお ける一の曲平面が有するボタセル群のうち、三次元モデルが凸型形状として推定さ れたボタセル群である第 2のボタセル群と、三次元モデルが尾根型形状として推定さ れたボタセル群である第 3のボタセル群とを検出するとともに、前記不可視領域に存 在する該第 3のボタセル群と前記可視領域に存在する該第 2のボタセル群とが所定 の範囲内に存在する場合に、該第 2のボタセル群と該第 3のボタセル群とを前記第 1 のボタセル群として抽出することを特徴とする。
[0018] 本発明における第 9の医療用画像処理装置は、前記第 7または第 8の医療用画像 処理装置において、さらに、前記三次元形状抽出部は、前記不可視領域に存在す る該第 3のボタセル群と前記可視領域に存在する該第 2のボタセル群とが所定の範 囲内に存在するか否かを、前記第 2のボタセル群の平均座標と、前記第 3のボタセル 群の平均座標との間の距離に基づいて判定することを特徴とする。
[0019] 本発明における第 10の医療用画像処理装置は、前記第 2または第 3の医療用画 像処理装置において、さらに、前記形状特徴量算出部は、前記可視領域における各 ボタセルにおいてのみ、前記形状特徴量を算出することを特徴とする。
[0020] 本発明における第 11の医療用画像処理装置は、前記第 3の医療用画像処理装置 において、前記形状特徴量算出部は、一のボタセルの周辺領域に存在するボタセル に関する情報である周辺領域ボタセル情報に基づいて該一のボタセルの形状特徴 量を算出するとともに、前記境界部を含むボタセルが該周辺領域内に存在することを 検知した場合、該一のボタセルの形状特徴量を算出する際に用いる周辺ボタセル情 報を減らすことを特徴とする。
[0021] 本発明における第 1の医療用画像処理方法は、入力される体腔内の生体組織の像 の二次元画像に基づき、該生体組織の三次元モデルを推定する三次元モデル推定 ステップと、前記生体組織の三次元モデルが有する各ボタセルの形状特徴量を算出 する形状特徴量算出ステップと、前記形状特徴量に基づき、前記生体組織の三次元 モデルが有する各ボタセルのうち、三次元モデルが所定の形状として推定された第 1 のボタセル群を抽出する三次元形状抽出ステップと、前記第 1のボタセル群を、前記 生体組織の三次元モデルにおける隆起形状を構成するボタセル群として検出する隆 起形状検出ステップと、を有することを特徴とする。
[0022] 本発明における第 2の医療用画像処理方法は、前記第 1の医療用画像処理方法 において、さらに、入力される前記二次元画像における可視領域と不可視領域とを 検出する領域検出ステップを有することを特徴とする。
[0023] 本発明における第 3の医療用画像処理方法は、前記第 2の医療用画像処理方法 において、前記領域検出ステップは、入力される前記二次元画像における線構造の 情報を取得するとともに、前記線構造の情報に基づいて境界部を検出することにより 、該境界部を境に前記可視領域と前記不可視領域とが分かれて 、るとすることを特 徴とする。
[0024] 本発明における第 4の医療用画像処理方法は、前記第 2または第 3の医療用画像 処理方法において、さらに、前記三次元モデル推定ステップは、前記可視領域にお V、て推定した各ボタセルに基づき、前記不可視領域の所定の位置にボタセルを添カロ することを特徴とする。
[0025] 本発明における第 5の医療用画像処理方法は、前記第 4の医療用画像処理方法 において、前記所定の位置は、前記可視領域において推定した各ボタセルから、前 記領域検出ステップが検出した境界部に対して対称となる位置であることを特徴とす る。
[0026] 本発明における第 6の医療用画像処理方法は、前記第 1乃至第 5の医療用画像処 理方法において、前記所定の形状は、凸型形状であることを特徴とする。 [0027] 本発明における第 7の医療用画像処理方法は、前記第 1の医療用画像処理方法 において、さらに、前記三次元形状抽出ステップは、前記生体組織の三次元モデル における一の曲平面が有するボタセル群のうち、三次元モデルが凸型形状として推 定されたボタセル群である第 2のボタセル群と、三次元モデルが尾根型形状として推 定されたボタセル群である第 3のボタセル群とを検出するとともに、該第 2のボタセル 群と該第 3のボタセル群とが所定の範囲内に存在する場合に、該第 2のボタセル群と 該第 3のボタセル群とを前記第 1のボタセル群として抽出することを特徴とする。
[0028] 本発明における第 8の医療用画像処理方法は、前記第 2の医療用画像処理方法 において、さらに、前記三次元形状抽出ステップは、前記生体組織の三次元モデル における一の曲平面が有するボタセル群のうち、三次元モデルが凸型形状として推 定されたボタセル群である第 2のボタセル群と、三次元モデルが尾根型形状として推 定されたボタセル群である第 3のボタセル群とを検出するとともに、前記不可視領域 に存在する該第 3のボタセル群と前記可視領域に存在する該第 2のボタセル群とが 所定の範囲内に存在する場合に、該第 2のボタセル群と該第 3のボタセル群とを前記 第 1のボタセル群として抽出することを特徴とする。
[0029] 本発明における第 9の医療用画像処理方法は、前記第 7または第 8の医療用画像 処理方法において、さらに、前記三次元形状抽出ステップは、前記不可視領域に存 在する該第 3のボタセル群と前記可視領域に存在する該第 2のボタセル群とが所定 の範囲内に存在するか否かを、前記第 2のボタセル群の平均座標と、前記第 3のボタ セル群の平均座標との間の距離に基づいて判定することを特徴とする。
[0030] 本発明における第 10の医療用画像処理方法は、前記第 2または第 3の医療用画 像処理方法において、さらに、前記形状特徴量算出ステップは、前記可視領域にお ける各ボタセルにぉ ヽてのみ、前記形状特徴量を算出することを特徴とする。
[0031] 本発明における第 11の医療用画像処理方法は、前記第 3の医療用画像処理方法 において、前記形状特徴量算出ステップは、一のボタセルの周辺領域に存在するボ クセルに関する情報である周辺領域ボタセル情報に基づいて該一のボタセルの形状 特徴量を算出するとともに、前記境界部を含むボタセルが該周辺領域内に存在する ことを検知した場合、該一のボタセルの形状特徴量を算出する際に用いる周辺ボタ セル情報を減らすことを特徴とする。
図面の簡単な説明
[図 1]本発明の実施形態に係る医療用画像処理装置が用いられる内視鏡システムの 全体構成の一例を示す図。
[図 2]図 1の内視鏡が管状器官内に挿入された場合の状態を示す模式図。
[図 3]図 2の状態において、内視鏡により撮像される管状器官及び生体組織の像を示 す模式図。
[図 4]第 1の実施形態にぉ 、て、生体組織の像の二次元画像におけるエッジ部を抽 出する場合に、図 1の医療用画像処理装置が行う処理の手順を示すフローチャート
[図 5]第 1の実施形態において、生体組織の像の二次元画像における表面部を抽出 する場合に、図 1の医療用画像処理装置が行う処理の手順を示すフローチャート。
[図 6]第 1の実施形態において、生体組織の三次元モデルにおける隆起形状を検出 する場合に、図 1の医療用画像処理装置が行う処理の手順を示すフローチャート。
[図 7]図 1の医療用画像処理装置により推定された、生体組織の三次元モデルの一 例を示す図。
[図 8]図 7の生体組織の三次元モデルを他の方向カゝら見た場合の図。
[図 9]図 7及び図 8の生体組織の三次元モデルにおける境界近似平面を示す図。
[図 10]図 7及び図 8の生体組織の三次元モデルにおいて、図 9に示す境界近似平面 に基づく鏡像が添加された場合の一例を示す図。
[図 11]第 2の実施形態において、生体組織の三次元モデルにおける隆起形状を検 出する場合に、図 1の医療用画像処理装置が行う処理の概要の一例を示す図。
[図 12]第 2の実施形態において、生体組織の三次元モデルにおける隆起形状を検 出する場合に、図 1の医療用画像処理装置が行う処理の概要の、図 11とは異なる例 を示す図。
[図 13]図 1の医療用画像処理装置により推定された生体組織の三次元モデルの、図 7及び図 8とは異なる例を示す図。
[図 14]第 3の実施形態にお ヽて、生体組織の三次元モデルにおける隆起形状を検 出する場合に、図 1の医療用画像処理装置が行う処理の手順を示すフローチャート
[図 15]図 13の生体組織の三次元モデルにおいて、凸型形状と推定されたボタセル 群の平均座標 A及び尾根型形状と推定されたボタセル群の平均座標 Bの位置関係 の一例を示す図。
発明を実施するための最良の形態
[0033] 以下、図面を参照して本発明の実施の形態を説明する。
[0034] (第 1の実施形態)
図 1から図 10は、本発明の第 1の実施形態に係るものである。図 1は、本実施形態 に係る医療用画像処理装置が用いられる内視鏡システムの全体構成の一例を示す 図である。図 2は、図 1の内視鏡が管状器官内に挿入された場合の状態を示す模式 図である。図 3は、図 2の状態において、内視鏡により撮像される管状器官及び生体 組織の像を示す模式図である。図 4は、第 1の実施形態において、生体組織の像の 二次元画像におけるエッジ部を抽出する場合に、図 1の医療用画像処理装置が行う 処理の手順を示すフローチャートである。図 5は、第 1の実施形態において、生体組 織の像の二次元画像における表面部を抽出する場合に、図 1の医療用画像処理装 置が行う処理の手順を示すフローチャートである。図 6は、第 1の実施形態において、 生体組織の三次元モデルにおける隆起形状を検出する場合に、図 1の医療用画像 処理装置が行う処理の手順を示すフローチャートである。図 7は、図 1の医療用画像 処理装置により推定された、生体組織の三次元モデルの一例を示す図である。図 8 は、図 7の生体組織の三次元モデルを他の方向から見た場合の図である。図 9は、 図 7及び図 8の生体組織の三次元モデルにおける境界近似平面を示す図である。図 10は、図 7及び図 8の生体組織の三次元モデルにおいて、図 9に示す境界近似平 面に基づく鏡像が添加された場合の一例を示す図である。
[0035] 内視鏡システム 1は、図 1に示すように、被写体を撮像するとともに、該被写体の像 の二次元画像を出力する医療用観察装置 2と、パーソナルコンピュータ等により構成 され、医療用観察装置 2から出力される二次元画像の映像信号に対して画像処理を 行うとともに、該画像処理を行った後の映像信号を画像信号として出力する医療用 画像処理装置 3と、医療用画像処理装置 3から出力される画像信号に基づく画像を 表示するモニタ 4とを有して要部が構成されて 、る。
[0036] また、医療用観察装置 2は、体腔内に挿入されるとともに、該体腔内の被写体を撮 像して撮像信号として出力する内視鏡 6と、内視鏡 6により撮像される被写体を照明 するための照明光を供給する光源装置 7と、内視鏡 6に対する各種制御を行うととも に、内視鏡 6から出力される撮像信号に対して信号処理を行い、二次元画像の映像 信号として出力するカメラコントロールユニット(以降、 CCUと略記する) 8と、 CCU8 力も出力される二次元画像の映像信号に基づき、内視鏡 6により撮像された被写体 の像を画像表示するモニタ 9とを有して要部が構成されている。
[0037] 内視鏡 6は、体腔内に挿入される挿入部 11と、挿入部 11の基端側に設けられた操 作部 12とを有して構成されている。また、挿入部 11内の基端側から、挿入部 11内の 先端側の先端部 14にかけての部分には、光源装置 7から供給される照明光を伝送 するためのライトガイド 13が揷通されている。
[0038] ライトガイド 13は、先端側が内視鏡 6の先端部 14に配置されるとともに、後端側が 光源装置 7に接続される。ライトガイド 13がこのような構成を有することにより、光源装 置 7から供給される照明光は、ライトガイド 13により伝送された後、挿入部 11の先端 部 14の先端面に設けられた、図示しない照明窓力も出射される。そして、図示しない 照明窓から照明光が出射されることにより、被写体としての生体組織等が照明される
[0039] 内視鏡 6の先端部 14には、図示しない照明窓に隣接する図示しない観察窓に取り 付けられた対物光学系 15と、対物光学系 15の結像位置に配置され、例えば、 CCD (電荷結合素子)等により構成される撮像素子 16とを有する撮像部 17が設けられて いる。このような構成により、対物光学系 15により結像された被写体の像は、撮像素 子 16により撮像された後、撮像信号として出力される。
[0040] 撮像素子 16は、信号線を介して CCU8に接続されている。そして、撮像素子 16は 、 CCU8から出力される駆動信号に基づいて駆動するとともに、 CCU8に対し、撮像 した被写体の像に応じた撮像信号を出力する。
[0041] また、 CCU8に入力された撮像信号は、 CCU8の内部に設けられた図示しない信 号処理回路において信号処理されることにより、二次元画像の映像信号として変換さ れて出力される。 CCU8から出力された二次元画像の映像信号は、モニタ 9及び医 療用画像処理装置 3に対して出力される。これにより、モニタ 9には、 CCU8から出力 される映像信号に基づく被写体の像が二次元の画像として表示される。
[0042] 医療用画像処理装置 3は、医療用観察装置 2から出力される二次元画像の映像信 号に対し、 AZD変換を行って出力する画像入力部 21と、画像入力部 21から出力さ れる映像信号に対して画像処理を行う、中央演算処理装置としての CPU22と、該画 像処理に関する処理プログラムが書き込まれた処理プログラム記憶部 23と、画像入 力部 21から出力される映像信号等を記憶する画像記憶部 24と、 CPU22が行う画像 処理における演算結果等を記憶する情報記憶部 25とを有する。
[0043] また、医療用画像処理装置 3は、記憶装置インターフェース 26と、記憶装置インタ 一フェース 26を介して CPU22の画像処理結果としての画像データ等を記憶する、 記憶装置としてのハードディスク 27と、 CPU22の画像処理結果としての画像データ に基づき、該画像データをモニタ 4に画像表示するための表示処理を行うとともに、 該表示処理を行った後の画像データを画像信号として出力する表示処理部 28と、 C PU22が行う画像処理におけるパラメータ及び医療用画像処理装置 3に対する操作 指示をユーザが入力可能な、キーボード等により構成される入力操作部 29とを有す る。そして、モニタ 4は、表示処理部 28から出力される画像信号に基づく画像を表示 する。
[0044] なお、医療用画像処理装置 3の画像入力部 21、 CPU22、処理プログラム記憶部 2 3、画像記憶部 24、情報記憶部 25、記憶装置インターフェース 26、表示処理部 28 及び入力操作部 29は、データバス 30を介して相互に接続されている。
[0045] 次に、内視鏡システム 1の作用について説明を行う。
[0046] まず、ユーザは、図 2に示すように、例えば、大腸等である管状器官 31内に内視鏡 6の挿入部 11を挿入する。そして、ユーザにより挿入部 11が管状器官 31に挿入され ると、例えば、管状器官 31の内壁に存在する病変部位である生体組織 31Aの像が、 先端部 14に設けられた撮像部 17により、図 3に示すような像として撮像される。そし て、図 3に示すような像として撮像部 17により撮像された、管状器官 31及び生体組 織 31Aの像は、撮像信号として CCU8に対して出力される。
[0047] CCU8は、図示しない信号処理回路において、撮像部 17の撮像素子 16から出力 される撮像信号に対して信号処理を行うことにより、該撮像信号を二次元画像の映像 信号として変換して出力する。そして、モニタ 9は、 CCU8から出力される映像信号に 基づき、管状器官 31及び生体組織 31 Aの像を、例えば、図 3に示すような二次元の 画像として表示する。また、 CCU8は、撮像部 17の撮像素子 16から出力される撮像 信号に対して信号処理を行うことにより得られた二次元画像の映像信号を、医療用 画像処理装置 3に対して出力する。
[0048] 医療用画像処理装置 3に対して出力された二次元画像の映像信号は、画像入力 部 21において AZD変換された後、 CPU22に入力される。
[0049] CPU22は、画像入力部 21から出力された二次元画像の映像信号と、処理プログ ラム記憶部 23に書き込まれた処理プログラムとに基づき、例えば、以降に述べるよう な処理を行うことにより、該二次元画像における生体組織 31Aのエッジ部を抽出する
[0050] まず、 CPU22は、画像入力部 21から出力された二次元画像の映像信号に基づき 、例えば、該二次元画像の赤色成分に対してバンドパスフィルタを適用することにより 、該二次元画像に含まれる全てのエッジ部を抽出する(図 4のステップ Sl)。
[0051] その後、領域検出部としての機能を有する CPU22は、抽出した全てのエッジ部を 細線ィ匕する(図 4のステップ S2)とともに、細線ィ匕した該全てのエッジ部のうち、一の エッジ部 Eの長さ Lを算出する(図 4のステップ S3)。さらに、 CPU22は、一のエッジ 部 Eの長さ Lが、閾値 thLlより長ぐかつ、閾値 thL2より短いか否かの判断を行う。
[0052] そして、 CPU22は、一のエッジ部 Eの長さ L力 所定の閾値 thLl以下の長さである こと、または、閾値 thL2以上であることを検出した場合(図 4のステップ S4)、後述す る図 4のステップ S 11に示す処理を行う。また、 CPU22は、一のエッジ部 Eの長さ が 、閾値 thLlより長ぐかつ、閾値 thL2より短いことを検出した場合(図 4のステップ S4 )、該一のエッジ部 Eを制御点 Cn(n= l, 2, · ··, N)により N等分する(図 4のステップ S5)。
[0053] さらに、 CPU22は、一のエッジ部 Eの中点 Ccから引いた法線 NCcを取得するととも に、各制御点 Cnから引いた N本の法線 NCnを取得する(図 4のステップ S6)。その 後、 CPU22は、 N本の法線 NCnのうち、法線 NCcと交わるものの本数 Naを検出す る(図 4のステップ S 7)。
[0054] また、 CPU22は、 N本の法線 NCnのうち、法線 NCcと交わるものの本数 Naが、閾 値 thaより多いか否かの判断を行う。そして、領域検出部としての機能を有する CPU 22は、法線 NCcと交わるものの本数 Naが閾値 thaより多いことを検出した場合(図 4 のステップ S8)、一のエッジ部 Eに含まれるピクセル群 ipを生体組織 31 Aのエッジ部 に含まれるピクセル群であると判断し、該ピクセル群 ipが有する各ピクセルにおける 変数 edge (i)の値を ONとする(図 4のステップ S9)。さらに、そして、 CPU22は、法 線 NCcと交わるものの本数 Naが閾値 tha以下であることを検出した場合(図 4のステ ップ S8)、一のエッジ部 Eに含まれるピクセル群 ipを生体組織 31 Aのエッジ部に含ま れるピクセル群ではな 、と判断し、該ピクセル群 ipが有する各ピクセルにおける変数 edge (i)の値を OFFとする(図 4のステップ S 10)。
[0055] 換言すると、領域検出部としての機能を有する CPU22は、前述した処理を行うこと により、変数 edge (i)の値が ONであるピクセル群を境に、二次元画像における可視 領域と不可視領域とが分かれていると判断する。
[0056] CPU22は、抽出した全てのエッジ部に対し、処理が完了したか否かを判断する。
そして、 CPU22は、抽出した全てのエッジ部に対しての処理が完了していないことを 検出した場合(図 4のステップ S11)、他の一のエッジ部に対し、前述した、図 4のステ ップ S3から図 4のステップ S10までの処理を行う。また、 CPU22は、抽出した全ての エッジ部に対しての処理が完了したことを検出した場合(図 4のステップ S11)、二次 元画像における生体組織 31Aのエッジ部を抽出するための一連の処理を終了する。
[0057] その後、 CPU22は、前述した、二次元画像における生体組織 31 Aのエッジ部を抽 出するための一連の処理を行うことにより得た処理結果としての、二次元画像の各ェ ッジ部に含まれるピクセル群 ipにおける変数 edge (i)の値を、情報記憶部 25に一時 的に記憶させる。
[0058] CPU22は、情報記憶部 25に記憶された変数 edge (i)の値と、処理プログラム記憶 部 23に書き込まれた処理プログラムとに基づき、例えば、前述した図 4に示す処理を 行った後、さらに以降に述べるような処理を行うことにより、該二次元画像における生 体組織 31 Aの表面部を抽出する。
[0059] まず、 CPU22は、情報記憶部 25に記憶された変数 edge (i)の値に基づき、変数 e dge (i)が ONである一のエッジ部 Eの細線を取得する(図 5のステップ S21)。その後 、 CPU22は、変数 edge (i)が ONである一のエッジ部 Eの細線における両端の点を 取得する(図 5のステップ S22)。
[0060] そして、 CPU22は、変数 edge (i)が ONである一のエッジ部 Eの細線と、前述した 図 5のステップ S22において取得した該細線の両端の点を結んだ線とに囲まれるピク セル群 jpを、生体組織 31 Aの二次元画像における可視領域、すなわち、生体組織 3 1Aの表面部に含まれるピクセル群であるとし、該ピクセル群 jpが有する各ピクセルに おける変数 omote (j)を ONとする(図 5のステップ S23)。
[0061] CPU22は、変数 edge (i)が ONである全てのエッジ部に対し、処理が完了したか 否かを判断する。そして、 CPU22は、変数 edge (i)が ONである全てのエッジ部に対 しての処理が完了していないことを検出した場合(図 5のステップ S 24)、他の一のェ ッジ部に対し、前述した、図 5のステップ S21から図 5のステップ S23までの処理を行 う。また、 CPU22は、抽出した全てのエッジ部に対しての処理が完了したことを検出 した場合(図 5のステップ S 24)、二次元画像における生体組織 31Aの表面部を抽出 するための一連の処理を終了する。
[0062] その後、 CPU22は、前述した、二次元画像における生体組織 31 Aの表面部を抽 出するための一連の処理を行うことにより得た処理結果としての、二次元画像の各表 面部に含まれるピクセル群 jpにおける変数 omote (j)の値を、情報記憶部 25に一時 的に記憶させる。
[0063] そして、三次元モデル推定部としての機能を有する CPU22は、例えば、幾何学的 な変換等の処理により、画像入力部 21から出力された二次元画像の映像信号の輝 度情報等に基づき、管状器官 31及び生体組織 31Aの三次元モデルを推定する際 に必要となる画像データを取得するための画像処理を行う。換言すると、 CPU22は 、例えば、幾何学的な変換等の処理により、二次元画像における各ピクセルに対応 するボタセルを生成するとともに、該ボクセルを、三次元モデルを推定するための画 像データとして取得する。すなわち、ピクセル群 ip及びピクセル群 jpは、前述した処 理により、ボタセル群 ib及びボタセル群 jbとして変換される。
[0064] CPU22は、前述した処理により、図 3に示した生体組織 31 Aの三次元モデルを推 定するための画像データとして、変数 omote (j)が ONであるボタセル群 jbを含む平 面である生体組織表面部 31aのデータと、変数 edge (i)が ONであるボタセル群 ibを 含む平面である生体組織境界部 3 lbのデータとを得る。これにより、生体組織 31 A は、例えば、 z軸方向を内視鏡 6による観察時の視野方向とした場合、図 7に示すよう な形状を有する三次元モデルとして推定される。
[0065] ところで、以上までの処理が行われることにより、図 7に示すような形状を有する三 次元モデルとして推定された生体組織 31 Aは、 X軸方向から見た場合、例えば、図 8 に示すような領域に不可視領域 31cを有する。 CPU22は、生体組織表面部 3 laの データと、生体組織境界部 31bのデータとに基づき、さら〖こ、以降に述べるような処 理を行うことにより、生体組織 31 Aの不可視領域 31cの三次元モデルを推定するとと もに、推定した生体組織 31Aの三次元モデルにおける隆起形状を検出する。
[0066] まず、 CPU22は、処理プログラム記憶部 23に書き込まれた処理プログラムと、生体 組織境界部 31bのデータとに基づき、生体組織境界部 3 lbのボタセル群 ibが有する 各ボタセルを最も多く含む平面である、例えば、図 9に示すような平面である、近似平 面 31dを算出する(図 6のステップ S31)。
[0067] 次に、 CPU22は、生体組織表面部 31aのデータに基づき、不可視領域 31cの所 定の位置に新しいボタセルを添加する。具体的には、 CPU22は、生体組織表面部 3 laのデータに基づき、前記所定の位置として、生体糸且織表面部 3 laが有する各ボタ セルから、近似平面 31dに対して対称となる位置に新しいボタセルを添加する(図 6 のステップ S32)。 CPU22が前述した処理を行うことにより、生体組織 31Aは、例え ば、図 10に示すような、生体組織表面部 31aと、該生体組織表面部 3 laの鏡像とし て生成された生体組織裏面部 3 leとを有する三次元モデルとして推定される。すな わち、前述した、生体組織 31 Aの不可視領域 31cの三次元モデルは、生体組織裏 面部 31eとして推定される。
[0068] その後、 CPU22は、管状器官 31及び生体組織 31 Aの三次元モデルを推定する ための画像データとして得た全てのボタセルである、 P個のボタセル各々に対し、以 降に述べるような処理をさらに行う。
[0069] 形状特徴量算出部としての機能を有する CPU22は、変数 iを 1に設定した(図 6の ステップ S33)後、 P個のボタセルのうち、一のボタセルである Bi (i= l, 2, · ··, P—1 , P)を抽出するとともに(図 6のステップ S34)、該一のボタセル Biにおける形状特徴 量として、 Shapelndex値 SBi及び Curvedness値 CBiを算出する(図 6のステップ S 35)。
[0070] なお、前述した Shapelndex値及び Curvedness値は、例えば、 US Patent Ap plication No. 20030223627に記載されている方法と同様の方法を用いることに より算出可能である。そのため、本実施形態においては、一のボタセル Biにおける S hapelndex値及び Curvedness値の算出方法に関しては、説明を省略する。
[0071] さらに、三次元形状抽出部としての機能を有する CPU22は、 Shapelndex値 SBiと 、予め設定された Shapelndex値の閾値 Sthとの比較を行うとともに、 Curvedness 値 CBiと、予め設定された Curvedness値の閾値 Cthとの比較を行う。換言すると、 C PU22は、前述した処理を行うことにより、生体組織 31 Aが隆起形状である力否かを 検出するための処理として、三次元モデルが凸型形状と推定されたボタセル群を抽 出する処理を行う。なお、図 6に示す一連の処理においては、隆起形状として凸型形 状を有する生体組織 31Aを検出するために、例えば、閾値 Sthは 0. 9として設定さ れているとし、また、閾値 Cthは 0. 2として設定されているとする。
[0072] そして、隆起形状検出部としての機能を有する CPU22は、 Shapelndex値 SBiが 閾値 Sthより大きく、かつ、 Curvedness値 CBiが閾値 Cthより大きいことを検出した 場合(図 6のステップ S36)、一のボタセル Biを隆起形状の一部を構成するボタセル であると判断し、該一のボタセル Biにおける変数 ryuuki(Bi)の値を ONとする(図 6 のステップ S37)。
[0073] また、 CPU22は、 Shapelndex値 SBiが閾値 Sth以下であること、または、 Curved ness値 CBiが閾値 Cth以下であることを検出した場合(図 6のステップ S36)、一のボ クセル Biを隆起形状の一部を構成するボタセルではな ヽと判断し、該一のボタセル B iにおける変数 ryuuki(Bi)の値を OFFとする(図 6のステップ S38)。 [0074] その後、 CPU22は、 P個のボタセル全てにおいて、前述した処理が行われたかどう 力 すなわち、変数 i=Pであるか否かの判定を行う。
[0075] そして、 CPU22は、 i=Pではないことを検知した場合(図 6のステップ S39)、変数 i に 1をカ卩える処理を行った(図 6のステップ S40)後、前述した、図 6のステップ S34力 らステップ S39に示す処理を再度行う。
[0076] また、 CPU22は、 i=Pであることを検知した場合(図 6のステップ S39)、生体組織 31Aの三次元モデルにおける隆起形状を検出するための一連の処理を完了する。
[0077] そして、 CPU22は、例えば、 ryuuki (Bi)の値が ONであるボタセルを有する三次 元モデルにぉ 、て、生体組織 31Aが隆起形状であることを示すための文字列または 着色等を該三次元モデルに重畳させるような制御を表示処理部 28に対して行う。こ れにより、モニタ 4には、隆起形状を有する生体組織 31 Aをユーザが容易に発見可 能であるような、管状器官 31及び生体組織 31 Aの三次元モデルが画像表示される。
[0078] また、 CPU22は、 ryuuki (Bi)の値が ONである各ボタセルの位置に基づき、該各 ボタセルの位置に対応する位置に存在する二次元画像上の各ピクセルを検出すると ともに、生体組織 31Aが隆起形状であることを示すための文字列または着色等を、 該各ピクセルを有する該二次元画像に重畳させるような制御を表示処理部 28に対し て行うものであっても良い。
[0079] 本実施形態の医療用画像処理装置 3は、以上に述べた一連の処理を行うことによ り、ユーザによるポリープ等の病変部位の見落としを防止可能であることにより、ユー ザの負担を軽減させることができる。
[0080] (第 2の実施形態)
図 11及び図 12は、本発明の第 2の実施形態に係るものである。なお、第 1の実施 形態と同様の構成を持つ部分については、詳細説明は省略する。また、第 1の実施 形態と同様の構成要素については、同一の符号を用いて説明は省略する。さらに、 本実施形態に用いる内視鏡システム 1の構成は、第 1の実施形態と同様である。
[0081] 図 11は、第 2の実施形態において、生体組織の三次元モデルにおける隆起形状を 検出する場合に、図 1の医療用画像処理装置が行う処理の概要の一例を示す図で ある。図 12は、第 2の実施形態において、生体組織の三次元モデルにおける隆起形 状を検出する場合に、図 1の医療用画像処理装置が行う処理の概要の、図 11とは異 なる例を示す図である。
[0082] 第 1の実施形態の説明において述べた一連の処理の際に算出される、形状特徴量 としての Shapelndex値及び Curvedness値は、ガウス曲率及び平均曲率の 2つの 値に基づいて算出される値である。そのため、 CPU22は、 Shapelndex値及び Cur vedness値の 2つの値の代わりに、ガウス曲率及び平均曲率の 2つの値を形状特徴 量として算出して処理を行うものであっても良い。そして、その場合、 CPU22は、第 1 の実施形態において述べた、図 6のステップ S35に示す処理に相当する処理として、 以降に記す内容の処理を行う。
[0083] 形状特徴量算出部としての機能を有する CPU22は、一のボタセルの周辺領域に 存在するボタセルに関する情報である周辺ボタセル情報として、例えば、第 1のボタ セルを含む M X M X M個のボタセル群からなる局所領域の局所平面方程式を算出 する。そして、形状特徴量算出部としての機能を有する CPU22は、前記周辺ボクセ ル情報に基づき、前記 M X M X M個のボタセル群に含まれる前記第 1のボタセルの ガウス曲率及び平均曲率を算出する。
[0084] 具体的には、 CPU22は、例えば、図 11に示すように、所望の第 1のボタセルを含 む 5 X 5 X 5個のボタセル群力 なる前記局所領域の局所平面方程式を周辺ボクセ ル情報として算出するとともに、該周辺ボタセル情報に基づき、該所望の第 1のボタ セルのガウス曲率及び平均曲率を算出する。
[0085] また、形状特徴量算出部としての機能を有する CPU22は、変数 edge (i)が ONで あるボタセル群 ibに含まれる各ボタセルのうち、少なくとも 1個のボタセルが前記局所 領域内に含まれていることを検知した場合、さらに、周辺ボタセル情報として、例えば 、第 2のボタセルを含む K X K X K個 (K< Μ)のボタセル群からなる前記局所領域の 局所平面方程式を算出する。そして、形状特徴量算出部としての機能を有する CPU 22は、前記周辺ボタセル情報に基づき、前記 K X K X K個のボタセル群に含まれる 前記第 2のボタセルのガウス曲率及び平均曲率を算出する。
[0086] 具体的には、 CPU22は、例えば、図 12に示すように、所望の第 2のボタセルを含 む 3 X 3 X 3個のボタセル群力 なる前記局所領域の局所平面方程式を周辺ボクセ ル情報として算出するとともに、該周辺ボタセル情報に基づき、該所望の第 2のボタ セルのガウス曲率及び平均曲率を算出する。
[0087] CPU22は、前述した処理を行うことにより、隆起形状の一部を構成するボタセルを より多く抽出することができる。その結果、本実施形態の医療用画像処理装置 3は、 ユーザによるポリープ等の病変部位の見落としを防止可能であることにより、ユーザ の負担を軽減させるとともに、該病変部位の検出精度を向上させることができる。
[0088] なお、 CPU22は、前述した、生体組織 31 Aの三次元モデルに対する処理におい て、推定結果の信頼性が比較的低い不可視領域 31cの形状特徴量を算出すること なぐかつ、推定結果の信頼性が比較的高い、可視領域である生体組織表面部 31a 及び生体組織境界部 3 lb近傍の形状特徴量のみを算出する処理を行うものであつ ても良い。その場合、本実施形態の医療用画像処理装置 3は、ポリープ等の病変部 位をより精度良く検出することができる。
[0089] (第 3の実施形態)
図 13、図 14及び図 15は、本発明の第 3の実施形態に係るものである。なお、第 1 の実施形態と同様の構成を持つ部分については、詳細説明は省略する。また、第 1 の実施形態と同様の構成要素については、同一の符号を用いて説明は省略する。さ らに、本実施形態に用いる内視鏡システム 1の構成は、第 1の実施形態と同様である
[0090] 図 13は、図 1の医療用画像処理装置により推定された生体組織の三次元モデルの 、図 7及び図 8とは異なる例を示す図である。図 14は、第 3の実施形態において、生 体組織の三次元モデルにおける隆起形状を検出する場合に、図 1の医療用画像処 理装置が行う処理の手順を示すフローチャートである。図 15は、図 13の生体組織の 三次元モデルにお!、て、凸型形状と推定されたボタセル群の平均座標 A及び尾根 型形状と推定されたボタセル群の平均座標 Bの位置関係の一例を示す図である。
[0091] 第 1の実施形態の説明において述べた一連の処理において、 CPU22は、生体糸且 織 31 Aの不可視領域 31cの三次元モデルとしての生体組織裏面部 3 leを推定する ための処理(図 6のステップ S32に示す処理)を行うことなぐ例えば、生体組織表面 部 31aが有する各ボタセルから、近似平面 31dに対称となる位置に仮想的に存在す る各ボタセルの形状特徴量を算出するとともに、算出した該形状特徴量に基づき、該 位置に隆起形状が存在する力否かの判定を行うものであっても良い。
[0092] ところで、 CPU22が生体組織 31 Aの二次元画像から三次元モデルを推定する際 には、第 1の実施形態の説明において述べたように、例えば、輝度情報に基づく処 理が行われる。そのため、生体組織 31 Aの二次元画像における可視領域と不可視 領域との境界部分 (エッジ部)が通常に比べて暗めの輝度情報を有している場合、生 体組織 31Aは、実際の形状が凸型形状であったとしても、内視鏡 6による観察時の 視野方向(または管腔中心方向)としての z軸方向に存在する不可視領域に尾根型 形状を有する、例えば、図 13に示すような形状の三次元モデルとして推定される可 能性がある。
[0093] そのような場合、 CPU22が以降に記す処理を行うことにより、三次元モデルとして 推定された生体組織 31Aが隆起形状であるか否かが検出される。
[0094] まず、 CPU22は、変数 jを 1に設定した(図 14のステップ S41)後、三次元モデルに おける一の曲平面が有する Q個のボタセルのうち、一のボタセルである Bj (j = l, 2, · ··, Q- l, Q)を抽出するとともに(図 14のステップ S42)、該一のボタセル Bjにおけ る形状特徴量として、 Shapelndex値 SBj及び Curvedness値 CBjを算出する(図 14 のステップ S43)。
[0095] さらに、 CPU22は、 Shapelndex値 SBjと、予め設定された Shapelndex値の閾値 Sthlとの比較を行うとともに、 Curvedness値 CBjと、予め設定された Curvedness 値の閾値 Cthlとの比較を行う。換言すると、 CPU22は、前述した処理を行うことによ り、生体組織 31Aが隆起形状であるか否かを検出するための処理として、三次元モ デルが凸型形状と推定されたボタセル群を抽出する処理を行う。なお、図 14に示す 一連の処理においては、隆起形状として凸型形状を有する生体組織 31Aを検出す るために、例えば、閾値 Sthlは 0. 9として設定されているとし、また、閾値 Cthlは 0 . 2として設定されているとする。
[0096] そして、 CPU22は、 Shapelndex値 SBjが閾値 Sthlより大きぐかつ、 Curvednes s値 CBjが閾値 Cthlより大きいことを検出した場合(図 14のステップ S44)、一のボタ セル Bjを隆起形状の一部を構成するボタセルの候補であると判断し、該一のボクセ ル Biにおける変数 ryuukil (Bj)の値を ONとする(図 14のステップ S45)。
[0097] また、 CPU22は、 Shapelndex値 SBjが閾値 Sthl以下である力、または、 Curved ness値 CBjが閾値 Cthl以下であることを検出した場合(図 14のステップ S44)、さら に、 Shapelndex値 SBjと、予め設定された Shapelndex値の閾値 Sth2との比較を 行う。なお、図 14に示す一連の処理においては、隆起形状として尾根型形状を有す る生体組織 31Aを検出するために、例えば、閾値 Sth2は 0. 75として設定されてい るとする。
[0098] CPU22は、 Shapelndex値 SBjが閾値 Sth2より大きいことを検出した場合(図 14 のステップ S46)、該一のボタセル Biにおける変数 ryuuki2 (Bj)の値を ONとする(図 14のステップ S47)。
[0099] その後、 CPU22は、三次元モデルにおける一の曲平面が有する一の曲平面 Q個 のボタセル全てにおいて、前述した処理が行われたかどうか、すなわち、変数 j = Qで ある力否かの判定を行う。
[0100] そして、 CPU22は、 j = Qではないことを検知した場合(図 14のステップ S48)、変 数 jに 1を加える処理を行った(図 14のステップ S49)後、前述した、図 14のステップ S 42力らステップ S48に示す処理を再度行う。
[0101] また、 CPU22は、 j = Qであることを検知した場合(図 14のステップ S48)、例えば、 図 15に示すような、変数 ryuukil (Bj)が ONであるボタセル群の平均座標 A (XI, Y 1, Z1)と、変数 ryuuki2 (Bj)が ONであるボタセル群の平均座標 B (X2, Y2, Z2)と の間の距離 Lを算出する(図 14のステップ S50)。その後、 CPU22は、変数 ryuukil (Bj)が ONであるボタセル群と、変数 ryuuki2 (Bj)が ONであるボタセル群とが所定 の範囲内に存在するか否かを、距離 Lと、 AB間の距離の閾値 thLとの比較を行うこと により判定する。
[0102] CPU22は、距離 Lが閾値 thL以上であることを検知した場合(図 14のステップ S 51 )、変数 ryuukil (Bj)が ONであるボタセル群及び変数 ryuuki2 (Bj)が ONであるボ クセル群を有する一の曲平面を、隆起形状を構成するボタセルではないと判断し、 Q 個のボクセノレ各々における変数 ryuukil (Bj)または変数 ryuuki2 (Bj)の値を OFF とする処理を行った(図 14のステップ S52)後、一連の処理を終了する。また、 CPU2 2は、距離 Lが閾値 thLより小さいことを検知した場合(図 14のステップ S51)、変数 ry uukil (Bj)が ONであるボタセル群及び変数 ryuuki2 (Bj)が ONであるボタセル群を 有する一の曲平面を、隆起形状を構成するボタセルであると判断し、 Q個のボタセル 各々における変数 ryuukil (Bj)または変数 ryuuki2 (Bj)の値を ONとしたまま一連 の処理を終了する。これにより、 CPU22は、隆起形状を有する病変部位である、ポリ ープ等をより精度良く検出することができる。特に、 CPU22は、本実施形態の一連の 処理を行うことにより、略半球状に隆起した病変部位 (ポリープ等)に加え、ユーザに よる見落としが比較的生じやすい、例えば、略半円柱状の部位を有して隆起した病 変部位 (ポリープ等)の検出もまた行うことができる。その結果、本実施形態の医療用 画像処理装置 3は、ユーザによるポリープ等の病変部位の見落としを防止可能であ ることにより、ユーザの負担を軽減させることができる。
[0103] なお、本発明は、上述した各実施形態に限定されるものではなぐ発明の趣旨を逸 脱しな 、範囲内にお 、て種々の変更や応用が可能であることは勿論である。
[0104] 本出願は、 2006年 3月 8日に日本国に出願された特願 2006— 63233号を優先 権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の 範囲、図面に引用されたものとする。

Claims

請求の範囲
[1] 入力される体腔内の生体組織の像の二次元画像に基づき、該生体組織の三次元 モデルを推定する三次元モデル推定部と、
前記生体組織の三次元モデルが有する各ボタセルの形状特徴量を算出する形状 特徴量算出部と、
前記形状特徴量に基づき、前記生体組織の三次元モデルが有する各ボタセルのう ち、三次元モデルが所定の形状として推定された第 1のボタセル群を抽出する三次 元形状抽出部と、
前記第 1のボタセル群を、前記生体組織の三次元モデルにおける隆起形状を構成 するボタセル群として検出する隆起形状検出部と、
を有することを特徴とする医療用画像処理装置。
[2] さらに、入力される前記二次元画像における可視領域と不可視領域とを検出する 領域検出部を有することを特徴とする請求項 1に記載の医療用画像処理装置。
[3] 前記領域検出部は、入力される前記二次元画像における線構造の情報を取得す るとともに、前記線構造の情報に基づいて境界部を検出することにより、該境界部を 境に前記可視領域と前記不可視領域とが分かれているとすることを特徴とする請求 項 2に記載の医療用画像処理装置。
[4] さらに、前記三次元モデル推定部は、前記可視領域にお!、て推定した各ボタセル に基づき、前記不可視領域の所定の位置にボタセルを添加することを特徴とする請 求項 2または請求項 3に記載の医療用画像処理装置。
[5] 前記所定の位置は、前記可視領域にぉ 、て推定した各ボタセルから、前記領域検 出部が検出した境界部に対して対称となる位置であることを特徴とする請求項 4に記 載の医療用画像処理装置。
[6] 前記所定の形状は、凸型形状であることを特徴とする請求項 1乃至請求項 5のいず れかーに記載の医療用画像処理装置。
[7] さらに、前記三次元形状抽出部は、前記生体組織の三次元モデルにおける一の曲 平面が有するボタセル群のうち、三次元モデルが凸型形状として推定されたボタセル 群である第 2のボタセル群と、三次元モデルが尾根型形状として推定されたボタセル 群である第 3のボタセル群とを検出するとともに、該第 2のボタセル群と該第 3のボクセ ル群とが所定の範囲内に存在する場合に、該第 2のボタセル群と該第 3のボタセル群 とを前記第 1のボタセル群として抽出することを特徴とする請求項 1に記載の医療用 画像処理装置。
[8] さらに、前記三次元形状抽出部は、前記生体組織の三次元モデルにおける一の曲 平面が有するボタセル群のうち、三次元モデルが凸型形状として推定されたボタセル 群である第 2のボタセル群と、三次元モデルが尾根型形状として推定されたボタセル 群である第 3のボタセル群とを検出するとともに、前記不可視領域に存在する該第 3 のボタセル群と前記可視領域に存在する該第 2のボタセル群とが所定の範囲内に存 在する場合に、該第 2のボタセル群と該第 3のボタセル群とを前記第 1のボタセル群と して抽出することを特徴とする請求項 2に記載の医療用画像処理装置。
[9] さらに、前記三次元形状抽出部は、前記不可視領域に存在する該第 3のボタセル 群と前記可視領域に存在する該第 2のボタセル群とが所定の範囲内に存在するか否 かを、前記第 2のボタセル群の平均座標と、前記第 3のボタセル群の平均座標との間 の距離に基づいて判定することを特徴とする請求項 7または請求項 8に記載の医療 用画像処理装置。
[10] さらに、前記形状特徴量算出部は、前記可視領域における各ボタセルにおいての み、前記形状特徴量を算出することを特徴とする請求項 2または請求項 3に記載の医 療用画像処理装置。
[11] 前記形状特徴量算出部は、一のボタセルの周辺領域に存在するボタセルに関する 情報である周辺領域ボタセル情報に基づいて該一のボタセルの形状特徴量を算出 するとともに、前記境界部を含むボタセルが該周辺領域内に存在することを検知した 場合、該一のボタセルの形状特徴量を算出する際に用 、る周辺ボタセル情報を減ら すことを特徴とする請求項 3に記載の医療用画像処理装置。
[12] 入力される体腔内の生体組織の像の二次元画像に基づき、該生体組織の三次元 モデルを推定する三次元モデル推定ステップと、
前記生体組織の三次元モデルが有する各ボタセルの形状特徴量を算出する形状 特徴量算出ステップと、 前記形状特徴量に基づき、前記生体組織の三次元モデルが有する各ボタセルのう ち、三次元モデルが所定の形状として推定された第 1のボタセル群を抽出する三次 元形状抽出ステップと、
前記第 1のボタセル群を、前記生体組織の三次元モデルにおける隆起形状を構成 するボタセル群として検出する隆起形状検出ステップと、
を有することを特徴とする医療用画像処理方法。
[13] さらに、入力される前記二次元画像における可視領域と不可視領域とを検出する 領域検出ステップを有することを特徴とする請求項 12に記載の医療用画像処理方 法。
[14] 前記領域検出ステップは、入力される前記二次元画像における線構造の情報を取 得するとともに、前記線構造の情報に基づいて境界部を検出することにより、該境界 部を境に前記可視領域と前記不可視領域とが分かれているとすることを特徴とする 請求項 13に記載の医療用画像処理方法。
[15] さらに、前記三次元モデル推定ステップは、前記可視領域にぉ 、て推定した各ボタ セルに基づき、前記不可視領域の所定の位置にボタセルを添加することを特徴とす る請求項 13または請求項 14に記載の医療用画像処理方法。
[16] 前記所定の位置は、前記可視領域にぉ 、て推定した各ボタセルから、前記領域検 出ステップが検出した境界部に対して対称となる位置であることを特徴とする請求項 15に記載の医療用画像処理方法。
[17] 前記所定の形状は、凸型形状であることを特徴とする請求項 12乃至請求項 16の Vヽずれか一に記載の医療用画像処理方法。
[18] さらに、前記三次元形状抽出ステップは、前記生体組織の三次元モデルにおける 一の曲平面が有するボタセル群のうち、三次元モデルが凸型形状として推定された ボタセル群である第 2のボタセル群と、三次元モデルが尾根型形状として推定された ボタセル群である第 3のボタセル群とを検出するとともに、該第 2のボタセル群と該第 3 のボタセル群とが所定の範囲内に存在する場合に、該第 2のボタセル群と該第 3のボ クセル群とを前記第 1のボタセル群として抽出することを特徴とする請求項 12に記載 の医療用画像処理方法。
[19] さらに、前記三次元形状抽出ステップは、前記生体組織の三次元モデルにおける 一の曲平面が有するボタセル群のうち、三次元モデルが凸型形状として推定された ボタセル群である第 2のボタセル群と、三次元モデルが尾根型形状として推定された ボタセル群である第 3のボタセル群とを検出するとともに、前記不可視領域に存在す る該第 3のボタセル群と前記可視領域に存在する該第 2のボタセル群とが所定の範 囲内に存在する場合に、該第 2のボタセル群と該第 3のボタセル群とを前記第 1のボ クセル群として抽出することを特徴とする請求項 13に記載の医療用画像処理方法。
[20] さらに、前記三次元形状抽出ステップは、前記不可視領域に存在する該第 3のボタ セル群と前記可視領域に存在する該第 2のボタセル群とが所定の範囲内に存在する か否かを、前記第 2のボタセル群の平均座標と、前記第 3のボタセル群の平均座標と の間の距離に基づいて判定することを特徴とする請求項 18または請求項 19に記載 の医療用画像処理方法。
[21] さらに、前記形状特徴量算出ステップは、前記可視領域における各ボタセルにお いてのみ、前記形状特徴量を算出することを特徴とする請求項 13または請求項 14 に記載の医療用画像処理方法。
[22] 前記形状特徴量算出ステップは、一のボタセルの周辺領域に存在するボタセルに 関する情報である周辺領域ボタセル情報に基づいて該一のボタセルの形状特徴量 を算出するとともに、前記境界部を含むボタセルが該周辺領域内に存在することを検 知した場合、該一のボタセルの形状特徴量を算出する際に用いる周辺ボタセル情報 を減らすことを特徴とする請求項 14に記載の医療用画像処理方法。
PCT/JP2007/052346 2006-03-08 2007-02-09 医療用画像処理装置及び医療用画像処理方法 WO2007102295A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07714002.8A EP1992273B1 (en) 2006-03-08 2007-02-09 Medical image processing device and medical image processing method
CN2007800046978A CN101378692B (zh) 2006-03-08 2007-02-09 医疗用图像处理装置及医疗用图像处理方法
US12/204,375 US8165367B2 (en) 2006-03-08 2008-09-04 Medical image processing apparatus and medical image processing method having three-dimensional model estimating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-063233 2006-03-08
JP2006063233A JP4981335B2 (ja) 2006-03-08 2006-03-08 医療用画像処理装置及び医療用画像処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/204,375 Continuation US8165367B2 (en) 2006-03-08 2008-09-04 Medical image processing apparatus and medical image processing method having three-dimensional model estimating

Publications (1)

Publication Number Publication Date
WO2007102295A1 true WO2007102295A1 (ja) 2007-09-13

Family

ID=38474737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052346 WO2007102295A1 (ja) 2006-03-08 2007-02-09 医療用画像処理装置及び医療用画像処理方法

Country Status (4)

Country Link
EP (1) EP1992273B1 (ja)
JP (1) JP4981335B2 (ja)
CN (1) CN101378692B (ja)
WO (1) WO2007102295A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821146B (zh) * 2023-04-26 2023-11-01 國立中正大學 用於偵測組織出血之影像分析方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390813B2 (ja) * 2008-09-02 2014-01-15 東急建設株式会社 空間情報表示装置及び支援装置
JP5658931B2 (ja) 2010-07-05 2015-01-28 オリンパス株式会社 画像処理装置、画像処理方法、および画像処理プログラム
JP5160699B2 (ja) * 2011-01-24 2013-03-13 オリンパスメディカルシステムズ株式会社 医療機器
JP6608165B2 (ja) * 2015-05-12 2019-11-20 国立大学法人京都大学 画像処理装置及び方法、並びにコンピュータプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337845A (ja) * 1998-05-25 1999-12-10 Mitsubishi Electric Corp 内視鏡装置
JP2005506140A (ja) * 2001-10-16 2005-03-03 ザ・ユニバーシティー・オブ・シカゴ コンピュータ支援の3次元病変検出方法
JP2005177477A (ja) * 2003-12-15 2005-07-07 Siemens Ag カテーテル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337845A (ja) * 1998-05-25 1999-12-10 Mitsubishi Electric Corp 内視鏡装置
JP2005506140A (ja) * 2001-10-16 2005-03-03 ザ・ユニバーシティー・オブ・シカゴ コンピュータ支援の3次元病変検出方法
JP2005177477A (ja) * 2003-12-15 2005-07-07 Siemens Ag カテーテル装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG Y.-J. ET AL.: "A new tissue segmentation algorithm in 3d data based on boundary model and local character structure", PROCEEDINGS. SPIE-THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 6044, 2005, pages 60441J.1 - 60441J.6, XP003017616 *
See also references of EP1992273A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821146B (zh) * 2023-04-26 2023-11-01 國立中正大學 用於偵測組織出血之影像分析方法

Also Published As

Publication number Publication date
EP1992273B1 (en) 2014-05-21
CN101378692A (zh) 2009-03-04
CN101378692B (zh) 2010-09-29
JP2007236629A (ja) 2007-09-20
JP4981335B2 (ja) 2012-07-18
EP1992273A1 (en) 2008-11-19
EP1992273A4 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
US8515141B2 (en) Medical image processing apparatus and method for detecting locally protruding lesion
JP4902735B2 (ja) 医療用画像処理装置及び医療用画像処理方法
US7830378B2 (en) Medical image processing apparatus and medical image processing method
US8165367B2 (en) Medical image processing apparatus and medical image processing method having three-dimensional model estimating
JP4994737B2 (ja) 医療用画像処理装置及び医療用画像処理方法
US8639002B2 (en) Medical image processing apparatus and method for controlling medical image processing apparatus
EP1994876B1 (en) Medical image processing apparatus and medical image processing method
JP5078486B2 (ja) 医療用画像処理装置及び医療用画像処理装置の作動方法
WO2007102295A1 (ja) 医療用画像処理装置及び医療用画像処理方法
WO2007102296A1 (ja) 医療用画像処理装置及び医療用画像処理方法
WO2008044365A1 (fr) Dispositif de traitement d&#39;image médicale et procédé de traitement d&#39;image médicale
JP2008023266A (ja) 医療用画像処理装置及び医療用画像処理方法
JP5148096B2 (ja) 医療用画像処理装置及び医療用画像処理装置の作動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780004697.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007714002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE