WO2007101567A1 - Internal combustion engine with an exhaust gas turbocharger - Google Patents

Internal combustion engine with an exhaust gas turbocharger Download PDF

Info

Publication number
WO2007101567A1
WO2007101567A1 PCT/EP2007/001610 EP2007001610W WO2007101567A1 WO 2007101567 A1 WO2007101567 A1 WO 2007101567A1 EP 2007001610 W EP2007001610 W EP 2007001610W WO 2007101567 A1 WO2007101567 A1 WO 2007101567A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
turbine
engine according
exhaust gas
Prior art date
Application number
PCT/EP2007/001610
Other languages
German (de)
French (fr)
Inventor
Stephan KRÄTSCHMER
Michael Stiller
Siegfried Sumser
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2007101567A1 publication Critical patent/WO2007101567A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/226Shaping or arrangements of the sealing
    • F16K1/2261Shaping or arrangements of the sealing the sealing being arranged on the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/226Shaping or arrangements of the sealing
    • F16K1/2268Sealing means for the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0853Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in a single plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0209Check valves or pivoted valves
    • F16K27/0218Butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine having an exhaust gas turbocharger according to the preamble of claim 1.
  • the exhaust gas turbine in the exhaust line has two separate turbine flows of different sizes, via the turbine of the exhaust gas each exhaust gas can be supplied.
  • Each of the two turbine flows is supplied via an exhaust pipe with exhaust gas, which is in each case fluidically connected to a cylinder bank of the internal combustion engine.
  • the two exhaust pipes are mutually connected via a connecting line arranged therein, adjustable check valve, moreover, a further adjustable check valve is arranged in the exhaust pipe for the larger exhaust gas flow.
  • the mass flows through the exhaust pipes and the associated turbine floods can be kept separate, so that a flow equalization between the exhaust pipes or between the exhaust gas is not possible, or it is the entire exhaust gas both banks led to the smaller flow tide or it the exhaust gas from both cylinder banks is supplied with equal pressure to both the smaller and the larger turbine tide.
  • the check valves must therefore be designed so that caused by pressure pulsations gas forces no unwanted changes in setting, which can lead to leaks.
  • the invention is based on the object with simple constructive measures a supercharged internal combustion engine whose exhaust gas turbine is designed to be double-flow, to the effect that pressure pulsations in the exhaust system have no unwanted changes in setting in the exhaust gas flows to be supplied mass flows result. This should be useful to realize by means of a compact design.
  • the switching device via which the mass flow through the two turbine flows is to be set, has a blocking flap which is pivotably mounted in a switch housing and has two flap wings of equal length on both sides of the axis of rotation of the blocking flap.
  • This blocking flap is rotatably mounted in a connecting space in the switching housing, which communicates on the one hand with the two exhaust pipes and on the other hand with the two turbine flows of the exhaust gas turbine.
  • the exhaust gas of the cylinder banks of the internal combustion engine is conducted into the switching device via the two exhaust gas lines and fed therefrom, depending on the position of the blocking flap, to one of the turbine flows or to both turbine flows.
  • the blocking flap Due to the special design of the blocking flap with the two at least approximately equally long flap wings on both sides of the rotation axis of the blocking flap, a gas force compensation is achieved since the exhaust gas introduced via the exhaust lines and pressurized exhaust force the two wings in the same manner around the axis of rotation of the blocking flap, so that no resulting torque arises.
  • the exhaust gas introduced via the mouths of the exhaust pipes mixes so that a uniform pressure is applied over the surface of the blocking flap on the side of the blocking flap facing the mouth openings of the exhaust pipes. This uniform pressure prevents the formation of resulting torques. Even with pressure pulsations in the exhaust system is a uniform application of force to the blocking flap.
  • the blocking flap is advantageously designed as a rotary valve, which has a circumferential bearing in the switch housing.
  • a shaft bearing in the region of the axis of rotation may be provided, but is not required for the rotary valve.
  • About an axle-side shaft but advantageously the adjusting movement of an actuator acting on the blocking flap can be initiated.
  • the mouth openings of the exhaust pipes on the one hand and the channels to the turbine floods on the other hand are advantageously located on opposite sides in the connecting space in the switch housing.
  • the exhaust pipes and the channels of the exhaust gas flows are each separated by partitions, which are opposite each other diagonally in the switch housing. Because of this diagonally opposite position, the exhaust pipes and the channels of the exhaust gas flows are completely separated in terms of flow when the blocking flap is in a position connecting the end faces of the partitions.
  • one of the two dividing walls preferably the dividing wall arranged between the turbine passages, can expand in an anvil shape toward the connection space and delimit the connecting space in a part-circular manner, whereby a supporting and guiding surface for the blocking flap is formed.
  • the partition wall thus also has a bearing and guiding function for the blocking flap.
  • the blocking flap is enclosed by two axially spaced, fixedly connected to the blocking flap cover plates, for a flow-tight seal of the kaus nowadayss in Ensure axial direction.
  • the cover plates represent side walls of a flow channel with the blocking flap, wherein the blocking flap connects the cover plates and forms a third, the flow channel limiting side.
  • the flow channel is open and communicates depending on the rotational position of the blocking flap with the mouth openings both of the two opening into the Matts syndromem exhaust pipes and the branching, the turbine floods associated channels.
  • additional sealing or piston rings can be arranged, which ensure the seal in the axial direction and at the same time ensure the rotation of the housing side storage of the cover plates.
  • the internal combustion engine is advantageously equipped with an exhaust gas recirculation device which connects one of the two exhaust gas lines to the intake tract of the internal combustion engine.
  • the exhaust line of the smaller turbine flow is coupled to the return line, which has the advantage that when the larger exhaust gas flow is blocked, the entire exhaust gas of the internal combustion engine is supplied to the smaller exhaust gas flow and an increased exhaust back pressure is generated there. which supports the exhaust gas recirculation in the direction of intake.
  • the exhaust gas turbine is designed with variable turbine geometry for variable adjustment of the effective turbine inlet cross-section, whereby an additional degree of freedom for regulating the exhaust gas back pressure is given.
  • FIG. 1 is a schematic representation of a supercharged internal combustion engine with a dual-flow exhaust gas turbine, the exhaust gas mass flows are controllable in the turbine flows of the exhaust gas turbine via a switching device,
  • Fig. 6 in a section the switching device acc. 5, and the blocking flap in an angular position and Fig. 7 in a diagram efficiencies of the exhaust gas turbine over a voltage applied to the turbine pressure ratio ⁇ ⁇ at a constant exhaust gas turbocharger speed.
  • the designated in Figure 1 by reference numeral 100 internal combustion engine which is a diesel engine or a gasoline engine, is equipped with an exhaust gas turbocharger 20, comprising a compressor 1 in the intake tract 2 and an exhaust gas turbine 3 in the exhaust line 4, wherein the compressor wheel and the turbine wheel are rotationally coupled via a shaft 5.
  • the exhaust gas turbine 3 is equipped with two bends and has a smaller turbine flow 6 and a larger turbine flow I 1, with the turbine flows 6 and 7 differing in the flow cross section.
  • Exhaust gas from the exhaust line 4 of the internal combustion engine 100 can be supplied to the turbine wheel via both turbine flows 6 and 7.
  • the exhaust gas turbine 3 is provided with a variable turbine geometry 8, via which the effective turbine inlet cross section between a minimum storage position and a maximum opening position is variably adjustable.
  • the two turbine floods 6 and 7 are connected via exhaust pipes 22 and 23 of the exhaust line 4 with the exhaust manifolds 30 and 31 respectively of a cylinder bank 10 and 11 of the engine 100.
  • a common switching device 40 In the exhaust pipes 22 and 23 is a common switching device 40, via which the exhaust gas mass flow in each turbine flood 6 and 7 is controllable.
  • the pipe sections in the exhaust pipes 22 and 23 upstream of the switching device 40 are provided with reference numerals 35 and 36.
  • the bypass 50 Downstream of the switching device 40 branches off from the exhaust line 4 from a bypass 50, in which an adjustable bypass valve 48th is integrated.
  • the bypass 50 comprises a first bypass line 51, which branches off from the exhaust line 22 of the smaller turbine flow 6 and opens into the bypass valve 48, and a second bypass line 52, which branches in a corresponding manner from the exhaust pipe 23 of the larger turbine flow 7 and also into the bypass valve 48 opens.
  • a further bypass line 53 which branches from the bypass valve 48 and opens downstream of the exhaust gas turbine 3 in the exhaust line 4, the bypass 50 is completed.
  • the internal combustion engine 100 is also provided with an exhaust gas recirculation device, which is a return line
  • the return line 16 branches in the flow path between the switching device 40 and the exhaust gas turbine 3 from the exhaust pipe 22 of the smaller turbine flow 6 and opens downstream of a charge air cooler 14 in the intake tract second
  • All units of the internal combustion engine are adjusted as a function of state and parameters via StellSignale a control and control unit 18. This relates in particular to the switching device 40, the bypass valve 48, the variable turbine geometry 8 and the return valve 17.
  • Fig. 2 shows the switching device 40, via which the mass flows in the turbine floods 6 and 7 are controllable, in section.
  • a switch housing 41 of the switching device 40 is a connection space 42 which connects the opening into the switch housing line sections 35 and 36 of the exhaust pipes with channels 43 and 44, which are connected via further line sections with the turbine floods 6 and 7 respectively.
  • a blocking flap 45 pivotally mounted about an axis of rotation 46, wherein the axis of rotation 46 extends centrally through the center of the blocking flap 45, such that equally large flap wings 45a and 45b of the blocking flap 45 extend on both sides of the axis of rotation 46.
  • the barrier flap 45 is enclosed between two axially spaced cover plates, of which in Fig. 2, a cover plate 62 is shown with circumferentially arranged sealing ring 64.
  • the designed as a rotary slide barrier 45 is mounted on the cover plate 62 and the other, axially spaced cover plate 63 (Fig. 3) in the switch housing 41 circumferentially.
  • An anvil-shaped widening partition 61 between the channels 43 and 44 in the switch housing has a part-circular support surface on which the cover plates 62 and 63 are supported.
  • the dividing wall 61 diagonally opposite is another, narrowing partition wall 60 in the switch housing, which separates the channels for the line sections 35 and 36. Laterally of the partition 60, the mouths of the channels for the line sections 35 and 36 of wall sections of the switching housing are limited in such a way that contact points A and B can come into contact with the radially outer end faces of the blocking flap 45.
  • FIG. 2 shows an angular position for the blocking flap 45 in which the radially outer end face of the flap 45b of the blocking flap rests against the contact point B, which is located on a side wall which delimits the channel for the line section 36. In this angular position of the blocking flap 45, an inflow of exhaust gas is possible both via the line section 35 and via the line section 36.
  • the inflow exhaust gas mass flows are introduced as shown by the solid arrows in the channel 43, which communicates with the smaller turbine trough 6.
  • the second channel 44 in the switch housing 41 is shut off by the blocking flap 45, so that no exhaust gas is supplied to the larger turbine flow 7.
  • the channel 43 and the turbine trough 6 is shut off and the entire exhaust gas is conducted via the channel 44 into the larger flow trough 7 when the blocking flap 45 is in an angular position in which one of the radially outer end faces of the blocking flap at the contact point A is present.
  • the blocking flap 45 is in a vertical position, in which the end face of the dividing wall 60 is contacted by the radially outer face of a wing 45a or 45b of the blocking flap 45, then the channels in the switching housing 41 are completely separated, so that the exhaust gas mass flows are introduced via the channels assigned to the line sections 35 and 36, are not mixed and continue to flow into the associated channels 43 and 44, respectively.
  • This case corresponds to a flow separation of the turbine flows 6 and 7.
  • FIG. 3 The sectional view of Fig. 3 it can be seen that the locking flap 45 is enclosed between the axially spaced cover plates 62 and 63, which have on their outer side in each case a sealing ring 64 and 65, whereby the space between the cover plates sealed against the switching housing 41 is.
  • the composite of cover plates 62 and 63 with blocking flap 45 is rotatably mounted on a shaft 66 in the switch housing 41, wherein via the shaft 66, the applied via an actuator adjusting movement is introduced to the locking flap 45.
  • FIG. 4 shows a variant of the switching device 40, wherein a section of the switching device 40 is shown, which essentially shows the cover plates 62, 63.
  • the sealing rings 64, 65 receiving cover plates 62, 63 additionally have slip rings 67, 68, whereby leakage can be reduced.
  • a pressure compensation chamber 72 can be formed, which contributes to the reduction of the friction forces occurring.
  • the pressure compensating space 72 is the sealing ring 64; 65 partially formed bounded, so that a pressure P on opposite sides of the sealing ring 64; 65 and can partially compensate.
  • the sliding rings 67, 68 are arranged next to the sealing rings 64, 65, wherein a first side surface 69 of the sealing ring 64; 65 a second side surface 70 of the sliding ring 67; 68 is arranged opposite.
  • An outer diameter DAG of the sliding rings 67, 68 is smaller than an outer diameter DAD of the sealing rings 64, 65, wherein an inner diameter DIG of the seal rings 67, 68 is made larger than an inner diameter DID of the seal rings 64, 65.
  • a contact surface 71 smaller than the second side surface 70 is formed
  • Contact surface 71 is arranged extending from the outer diameter DAG in the direction of the inner diameter DIG.
  • a first end face 74 of the sealing ring 64; 65 and a second end face 75 of the sliding ring 67; 68 are positioned away from the switch housing 41, wherein a second annular portion 76 of the pressure compensating space 72 is formed between the first end face 73 and an opposite first cover disk wall 79.
  • a third annular region 77 of the pressure compensation chamber 72 is located between a third side surface 78 of the sealing ring 64, which is remote from the first side surface 69; 65 and an opposite second Abdeckinwandung 80 is formed.
  • the sealing rings 64, 65 and the sliding rings 67, 68 are ideally positioned in groove-shaped openings 81, 82 of the cover disks 62, 63, wherein the sliding rings 67, 68 predominantly rest unmoved due to the exhaust gas pressure in the openings 81, 82.
  • sealing rings 64, 65 and seal rings 67, 68 comparable schl formulateresistente material combinations are to be selected, which have, taking into account the high exhaust gas temperatures, for example in the Otto engine about 1050 0 C and the diesel engine 850 0 C, a high temperature strength. Furthermore, the materials should have a high resistance to oxidation, a high compressive strength and a low rate of crack propagation. have rate.
  • combinations of metallic materials and ceramic or graphite-containing materials are to be selected, in particular ceramics with silicon nitrides, silicon carbides or aluminum oxides being used as the ceramic material.
  • the switching device 40 is associated with guide devices 83, 84 for increasing the efficiency ⁇ of the exhaust gas turbine 3.
  • the Stefans syndromem 42 has a fluidly lossy zone 85, which is formed in particular in the region of the wing 45a. High flow losses can cause a reduction of the enthalpy of the exhaust gas in the turbine floods 6, 7 and thus low efficiencies of the exhaust gas turbine 3.
  • the guide devices 83, 84 which are designed projecting into the connection space 42, leakage of lossy waste gas from the zone 85 into the channels 43, 44 can be avoided.
  • the lossy exhaust gas can flow back into the region of the kausyogs 42 outside of the zone 85 via stomata 88, 89, which are arranged between 42 positioned in the kaushoffm 42 ends 87, the guide devices 83, 84 and the blocking flap.
  • stomata 88, 89 a pressure equalization between the zone 85 and the remaining Vietnameseshoffm 42 can be realized, so that the possibility of gas-force compensation is maintained.
  • the guide devices 83, 84 are fastened to a circumference of the dividing wall 61 adjoining the connecting space 42, in particular the transition between the dividing wall 61 and the guide devices 83, 84 is to perform flow-tight.
  • the guide devices 83, 84 and the partition 61 are formed as one component.
  • Flow cross sections which are arranged starting from the ends 86, 87 in the direction of the turbine wheel of the exhaust gas turbine 3, are designed by means of the guide devices 83, 84 tapering in the direction of the turbine wheel, whereby a flow acceleration to increase the efficiencies ⁇ of the exhaust gas turbine 3 by a Reduction of the tendency to detach the flow is achieved.
  • the blocking flap 45 are arranged facing inner surfaces 90, 91 of the guide devices 83, 84 opposite surfaces 92, 93 of the blocking flap 45 adapted adapted.
  • FIG. 7 shows in a diagram efficiencies of the exhaust gas turbine 3 above a pressure ratio ⁇ ⁇ applied to the exhaust gas turbine 3 at a constant exhaust gas turbocharger speed, wherein the lines marked with a dot describe the achieved efficiencies ⁇ with the switching device 40 and the guide devices 83, 84.
  • the lines marked with a cross describe the achieved efficiencies ⁇ of the switching device 40 without guide devices 83, 84.

Abstract

An internal combustion engine has an exhaust gas turbocharger which comprises an exhaust gas turbine (3) in the exhaust gas line (4) and a compressor (1) in the intake duct (2), wherein the exhaust gas turbine (3) has two separate turbine inlets (6, 7), via which exhaust gas can be fed to the turbine wheel. The mass flow through the two turbine inlets (6, 7) can be set via a switching device (40) which has, in a switching housing (41), a shut-off flap (45) pivotable about a rotation axis (46) and having two at least equally long lobes (45a, 45b) on both sides of the rotation axis (46).

Description

DaimlerChrysler AG DaimlerChrysler AG
Brennkraftmaschine mit einem AbgasturboladerInternal combustion engine with an exhaust gas turbocharger
Die Erfindung bezieht sich auf eine Brennkraftmaschine mit 'einem Abgasturbolader nach dem Oberbegriff des Anspruches 1.The invention relates to an internal combustion engine having an exhaust gas turbocharger according to the preamble of claim 1.
In der DE 103 57 925 Al wird eine Brennkraftmaschine mit einem Abgasturbolader beschrieben, dessen Abgasturbine im Abgasstrang zwei separate Turbinenfluten unterschiedlicher Größe aufweist, über die dem Turbinenrad der Abgasturbine jeweils Abgas zuführbar ist. Jede der beiden Turbinenfluten wird über eine Abgasleitung mit Abgas versorgt, die jeweils mit einer Zylinderbank der Brennkraftmaschine strömungsmechanisch verbunden ist. Stromauf der Abgasturbine sind die beiden Abgasleitungen gegenseitig über eine Verbindungsleitung mit darin angeordnetem, einstellbarem Sperrventil verbunden, darüber hinaus ist in der Abgasleitung für die größere Abgasflut ein weiteres einstellbares Sperrventil angeordnet. Je nach Stellung der Sperrventile können die Massenströme durch die Abgasleitungen und die zugeordneten Turbinenfluten separat gehalten werden, so dass ein Strömungsausgleich zwischen den Abgasleitungen bzw. zwischen den Abgasfluten nicht möglich ist, oder es wird das gesamte Abgas beider Zylinderbänke auf die kleinere Strömungsflut geleitet oder es wird das Abgas beider Zylinderbänke mit gleichem Druck sowohl der kleineren als auch der größeren Turbinenflut zugeführt . Aufgrund der hohen, vom Motor verursachten Druckpulsationen in den Abgasleitungen entstehen auf die Sperrventile einwirkende Gaskräfte, die unerwünschte Änderungen der Ventil - Position zur Folge haben können. Die Sperrventile müssen daher so ausgelegt werden, dass durch Druckpulsationen entstehende Gaskräfte keine ungewollten Einstelländerungen, die zu Leckagen führen können, bewirken.In DE 103 57 925 Al an internal combustion engine with an exhaust gas turbocharger is described, the exhaust gas turbine in the exhaust line has two separate turbine flows of different sizes, via the turbine of the exhaust gas each exhaust gas can be supplied. Each of the two turbine flows is supplied via an exhaust pipe with exhaust gas, which is in each case fluidically connected to a cylinder bank of the internal combustion engine. Upstream of the exhaust gas turbine, the two exhaust pipes are mutually connected via a connecting line arranged therein, adjustable check valve, moreover, a further adjustable check valve is arranged in the exhaust pipe for the larger exhaust gas flow. Depending on the position of the check valves, the mass flows through the exhaust pipes and the associated turbine floods can be kept separate, so that a flow equalization between the exhaust pipes or between the exhaust gas is not possible, or it is the entire exhaust gas both banks led to the smaller flow tide or it the exhaust gas from both cylinder banks is supplied with equal pressure to both the smaller and the larger turbine tide. Due to the high, caused by the engine pressure pulsations in the exhaust pipes are formed on the check valves acting gas forces that may have undesirable changes in the valve position result. The check valves must therefore be designed so that caused by pressure pulsations gas forces no unwanted changes in setting, which can lead to leaks.
Der Erfindung liegt die Aufgabe zugrunde, mit einfachen konstruktiven Maßnahmen eine aufgeladene Brennkraftmaschine, deren Abgasturbine zweiflutig ausgebildet ist, dahingehend auszubilden, dass Druckpulsationen im Abgasstrang keine unerwünschten Einstelländerungen in den den Abgasfluten zuzuleitenden Massenströmen zur Folge haben. Dies soll zweckmäßig mittels einer kompakten Ausführung zu realisieren sein.The invention is based on the object with simple constructive measures a supercharged internal combustion engine whose exhaust gas turbine is designed to be double-flow, to the effect that pressure pulsations in the exhaust system have no unwanted changes in setting in the exhaust gas flows to be supplied mass flows result. This should be useful to realize by means of a compact design.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst . Die Unteransprüche geben zweckmäßige Weiterbildungen an.This object is achieved with the features of claim 1. The dependent claims indicate expedient developments.
Erfindungsgemäß ist vorgesehen, dass die Schalteinrichtung, über die der Massenstrom durch die beiden Turbinenfluten einzustellen ist, eine in einem Schaltgehäuse schwenkbar gelagerte Sperrklappe aufweist, die zwei zumindest gleich lange Klappenflügel zu beiden Seiten der Drehachse der Sperrklappe besitzt. Diese Sperrklappe ist in einem Verbindungsraum im Schaltgehäuse drehbar gelagert, der einerseits mit den beiden Abgasleitungen und andererseits mit den beiden Turbinenfluten der Abgasturbine kommuniziert. Über die beiden Abgasleitungen wird das Abgas der Zylinderbänke der Brennkraftmaschine in die Schalteinrichtung geleitet und von dort je nach Position der Sperrklappe einer der Turbinenfluten oder beiden Turbinenfluten zugeführt. Möglich ist zum einen eine separate Zufuhr von Abgas jeder Abgasleitung in die zugehörige Turbinenflut ohne Überleitung in die jeweils andere Abgasleitung bzw. Turbinenflut oder die Sperrung einer Abgasflut und Zuleitung des gesamten Abgases beider Zylinderbänke in nur eine Turbinenflut, wobei in letzterem Fall die Zufuhr des gesamten Abgases in jede der beiden Turbinenfluten in Frage kommt. Schließlich ist in einer Zwischenposition der Sperrklappe auch ein Druckausgleich zwischen den beiden Abgasleitungen und dementsprechend die Zufuhr von Abgas in jede Turbinenflut unter gleichem Druck möglich.According to the invention, it is provided that the switching device, via which the mass flow through the two turbine flows is to be set, has a blocking flap which is pivotably mounted in a switch housing and has two flap wings of equal length on both sides of the axis of rotation of the blocking flap. This blocking flap is rotatably mounted in a connecting space in the switching housing, which communicates on the one hand with the two exhaust pipes and on the other hand with the two turbine flows of the exhaust gas turbine. The exhaust gas of the cylinder banks of the internal combustion engine is conducted into the switching device via the two exhaust gas lines and fed therefrom, depending on the position of the blocking flap, to one of the turbine flows or to both turbine flows. Possible on the one hand, a separate supply of exhaust gas of each exhaust pipe in the associated turbine flow without transfer to the other exhaust pipe or turbine flood or the blocking of an exhaust gas flow and supply of the entire exhaust gas both cylinder banks in only one turbine flood, in the latter case, the supply of the entire exhaust gas in each of the two turbine floods in question. Finally, in an intermediate position of the blocking flap, a pressure equalization between the two exhaust pipes and, accordingly, the supply of exhaust gas in each turbine flood under the same pressure possible.
Aufgrund der besonderen Ausführung der Sperrklappe mit den beiden zumindest annähernd gleich langen Klappenflügeln diesseits und jenseits der Drehachse der Sperrklappe wird eine Gaskraftkompensation erzielt, da das über die Abgasleitungen herangeführte und unter Druck stehende Abgas die beiden Flügel in gleicher Weise um die Drehachse der Sperrklappe kraftbeaufschlagt, so dass kein resultierendes Drehmoment entsteht. Im Verbindungsraum im Schaltgehäuse, in welchem die Sperrklappe schwenkbar gelagert ist, vermischt sich das über die Mündungen der Abgasleitungen herangeführte Abgas, so dass auf der den Mündungsöffnungen der Abgasleitungen zugewandten Seite der Sperrklappe ein einheitlicher Druck über die Oberfläche der Sperrklappe anliegt. Dieser einheitliche Druck verhindert die Entstehung resultierender Drehmomente. Auch bei Druckpulsationen im Abgasstrang stellt sich eine einheitliche Kraftbeaufschlagung der Sperrklappe ein. Dies hat zur Folge, dass die Sperrklappe sich ungeachtet etwaiger Druckpulsationen im Abgasstrang immer im Gleichgewicht befindet und ihre aktuelle Position beibehält. Daher kann gegebenenfalls auf eine Überwachung der Sperrklappenposition verzichtet werden, außerdem ist die Gefahr von Leckagen erheblich reduziert. Erreicht werden diese Vorteile mit einer konstruktiv einfach gestalteten und kompakten Ausführung.Due to the special design of the blocking flap with the two at least approximately equally long flap wings on both sides of the rotation axis of the blocking flap, a gas force compensation is achieved since the exhaust gas introduced via the exhaust lines and pressurized exhaust force the two wings in the same manner around the axis of rotation of the blocking flap, so that no resulting torque arises. In the connection space in the switch housing, in which the blocking flap is pivotally mounted, the exhaust gas introduced via the mouths of the exhaust pipes mixes so that a uniform pressure is applied over the surface of the blocking flap on the side of the blocking flap facing the mouth openings of the exhaust pipes. This uniform pressure prevents the formation of resulting torques. Even with pressure pulsations in the exhaust system is a uniform application of force to the blocking flap. This has the consequence that the barrier flap is always in balance regardless of any pressure pulsations in the exhaust line and maintains its current position. Therefore, it may be possible to dispense with a monitoring of the barrier flap position, also the risk of leakage is significantly reduced. Be reached These advantages with a structurally simple and compact design.
Die Sperrklappe ist vorteilhaft als Drehschieber ausgeführt, der eine umfangsseitige Lagerung im Schaltgehäuse besitzt. Eine Wellenlagerung im Bereich der Drehachse kann vorgesehen sein, ist jedoch beim Drehschieber nicht Bedingung. Über eine achsseitige Welle kann aber vorteilhaft die Stellbewegung eines auf die Sperrklappe wirkenden Stellgliedes eingeleitet werden.The blocking flap is advantageously designed as a rotary valve, which has a circumferential bearing in the switch housing. A shaft bearing in the region of the axis of rotation may be provided, but is not required for the rotary valve. About an axle-side shaft but advantageously the adjusting movement of an actuator acting on the blocking flap can be initiated.
Die Mündungsöffnungen der Abgasleitungen einerseits und der Kanäle zu den Turbinenfluten andererseits befinden sich vorteilhaft auf gegenüberliegenden Seiten im Verbindungsraum im Schaltgehäuse. Die Abgasleitungen und die Kanäle der Abgasfluten sind jeweils über Trennwände separiert, die sich diagonal im Schaltgehäuse gegenüberliegen. Aufgrund dieser diagonal gegenüberliegenden Position sind die Abgasleitungen und die Kanäle der Abgasfluten strömungstechnisch vollständig separiert, wenn die Sperrklappe in einer die Stirnseiten der Trennwände verbindenden Position steht. Zugleich kann eine der beiden Trennwände, bevorzugt die zwischen den Turbinenfluten zugeordneten Kanälen angeordnete Trennwand, sich zum Verbindungsraum hin ambossförmig erweitern und den Verbindungsraum teilkreisförmig begrenzen, wodurch eine Auflage- und Führungsfläche für die Sperrklappe gebildet wird. Über die Trennfunktion hinausgehend besitzt somit die Trennwand auch eine Lager- und Führungsfunktion für die Sperrklappe .The mouth openings of the exhaust pipes on the one hand and the channels to the turbine floods on the other hand are advantageously located on opposite sides in the connecting space in the switch housing. The exhaust pipes and the channels of the exhaust gas flows are each separated by partitions, which are opposite each other diagonally in the switch housing. Because of this diagonally opposite position, the exhaust pipes and the channels of the exhaust gas flows are completely separated in terms of flow when the blocking flap is in a position connecting the end faces of the partitions. At the same time, one of the two dividing walls, preferably the dividing wall arranged between the turbine passages, can expand in an anvil shape toward the connection space and delimit the connecting space in a part-circular manner, whereby a supporting and guiding surface for the blocking flap is formed. Beyond the separating function, the partition wall thus also has a bearing and guiding function for the blocking flap.
Gemäß einer vorteilhaften Weiterbildung ist vorgesehen, dass die Sperrklappe von zwei axial beabstandeten, fest mit der Sperrklappe verbundenen Deckscheiben eingefasst ist, die für eine strömungsdichte Abdichtung des Verbindungsräumes in Achsrichtung sorgen. Die Deckscheiben stellen Seitenwände eines Strömungskanals mit der Sperrklappe dar, wobei die Sperrklappe die Deckscheiben verbindet und eine dritte, den Strömungskanal begrenzende Seite bildet. Auf der der Sperrklappe gegenüberliegenden Seite ist der Strömungskanal geöffnet und kommuniziert je nach Drehlage der Sperrklappe mit den Mündungsöffnungen sowohl der beiden in den Verbindungsräum einmündenden Abgasleitungen als auch der verzweigenden, den Turbinenfluten zugeordneten Kanälen. Auf der äußeren Mantelfläche der Deckscheiben können zusätzliche Dicht- bzw. Kolbenringe angeordnet sein, die die Abdichtung in Axialrichtung gewährleisten und zugleich die Drehbarkeit der gehäuseseitigen Lagerung der Deckscheiben sicherstellen.According to an advantageous embodiment, it is provided that the blocking flap is enclosed by two axially spaced, fixedly connected to the blocking flap cover plates, for a flow-tight seal of the Verbindungsräumes in Ensure axial direction. The cover plates represent side walls of a flow channel with the blocking flap, wherein the blocking flap connects the cover plates and forms a third, the flow channel limiting side. On the opposite side of the barrier flap, the flow channel is open and communicates depending on the rotational position of the blocking flap with the mouth openings both of the two opening into the Verbindungsräum exhaust pipes and the branching, the turbine floods associated channels. On the outer surface of the cover plates additional sealing or piston rings can be arranged, which ensure the seal in the axial direction and at the same time ensure the rotation of the housing side storage of the cover plates.
Die Brennkraftmaschine ist vorteilhaft mit einer Abgasrückführeinrichtung ausgestattet, die eine der beiden Abgasleitungen mit dem Ansaugtrakt der Brennkraftmaschine verbindet . Insbesondere in der Ausführung mit zwei unterschiedlich großen Turbinenfluten wird die Abgasleitung der kleineren Turbinenflut mit der Rückführleitung gekoppelt, was den Vorteil aufweist, dass bei einer Sperrung der größeren Abgasflut das gesamte Abgas der Brennkraftmaschine der kleineren Abgasflut zugeführt wird und dort ein erhöhter Abgasgegendruck erzeugt wird, der die Abgasrückführung in Richtung Ansaugtrakt unterstützt. In einer weiteren vorteilhaften Ausführung ist die Abgasturbine mit variabler Turbinengeometrie zur veränderlichen Einstellung des wirksamen Turbineneintrittsquerschnittes ausgestaltet, wodurch ein zusätzlicher Freiheitsgrad zur Regulierung des Abgasgegendrucks gegeben ist.The internal combustion engine is advantageously equipped with an exhaust gas recirculation device which connects one of the two exhaust gas lines to the intake tract of the internal combustion engine. Particularly in the embodiment with two turbine flows of different sizes, the exhaust line of the smaller turbine flow is coupled to the return line, which has the advantage that when the larger exhaust gas flow is blocked, the entire exhaust gas of the internal combustion engine is supplied to the smaller exhaust gas flow and an increased exhaust back pressure is generated there. which supports the exhaust gas recirculation in the direction of intake. In a further advantageous embodiment, the exhaust gas turbine is designed with variable turbine geometry for variable adjustment of the effective turbine inlet cross-section, whereby an additional degree of freedom for regulating the exhaust gas back pressure is given.
Schließlich kann es zweckmäßig sein, die Abgasturbine mithilfe eines Bypass zu überbrücken, der ein einstellbares Bypassventil aufweist. Die Abblasung über den Bypass stellt zum einen sicher, dass die Abgasturbine nicht überlastet wird, zum anderen ist hierdurch ein weiterer Freiheitsgrad gegeben, über den Zustands- und Kenngrößen der Brennkraftmaschine bzw. der Aggregate der Brennkraftmaschine zu beeinflussen sind.Finally, it may be appropriate to bridge the exhaust turbine by means of a bypass having an adjustable bypass valve. The blowdown over the bypass poses on the one hand, for sure that the exhaust gas turbine is not overloaded, on the other hand, this provides a further degree of freedom, are influenced by the state and characteristics of the internal combustion engine or the units of the internal combustion engine.
Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:Further advantages and expedient embodiments can be taken from the further claims, the description of the figures and the drawings. Show it:
Fig. 1 eine schematische Darstellung einer aufgeladenen Brennkraftmaschine mit einer zweiflutigen Abgasturbine, wobei die Abgasmassenströme in die Turbinenfluten der Abgasturbine über eine Schalteinrichtung steuerbar sind,1 is a schematic representation of a supercharged internal combustion engine with a dual-flow exhaust gas turbine, the exhaust gas mass flows are controllable in the turbine flows of the exhaust gas turbine via a switching device,
Fig. 2 die Schalteinrichtung zur Steuerung derFig. 2, the switching device for controlling the
Massenströme in die Turbinenfluten in einer vergrößerten Schnittdarstellung,Mass flows into the turbine floods in an enlarged sectional view,
Fig. 3 die Sperrklappe der Schalteinrichtung in einerFig. 3, the blocking flap of the switching device in one
Schnittdarstellung gemäß Schnittlinie III-III aus Fig. 2,Sectional view along section line III-III of Fig. 2,
Fig. 4 in einer Schnittdarstellung eine Variante der4 is a sectional view of a variant of
Schalteinrichtung mit Dichtringen und Gleitringen,Switching device with sealing rings and sliding rings,
Fig. 5 in einem Schnitt eine weitere Variante derFig. 5 in a section a further variant of
Schalteinrichtung, und die Sperrklappe in einer senkrechten Position,Switching device, and the blocking flap in a vertical position,
Fig. 6 in einem Schnitt die Schalteinrichtung gem. Fig.5, und die Sperrklappe in einer Winkellage und Fig. 7 in einem Diagramm Wirkungsgrade der Abgasturbine über einem an der Turbine anliegenden Druckverhältnis πτ bei konstanter Abgasturboladerdrehzahl .Fig. 6 in a section the switching device acc. 5, and the blocking flap in an angular position and Fig. 7 in a diagram efficiencies of the exhaust gas turbine over a voltage applied to the turbine pressure ratio π τ at a constant exhaust gas turbocharger speed.
Die in Fig. 1 mit Bezugszeichen 100 bezeichnete Brennkraftmaschine, bei der es sich um einen Dieselmotor oder um einen Ottomotor handelt, ist mit einem Abgasturbolader 20 ausgestattet, der einen Verdichter 1 im Ansaugtrakt 2 und eine Abgasturbine 3 im Abgasstrang 4 umfasst, wobei das Verdichterrad und das Turbinenrad über eine Welle 5 drehgekoppelt sind. Die Abgasturbine 3 ist zweiflutig ausgestattet und besitzt eine kleinere Turbinenflut 6 und eine größere Turbinenflut I1 wobei sich die Turbinenfluten 6 und 7 im Strömungsquerschnitt unterscheiden. Über beide Turbinenfluten 6 und 7 ist dem Turbinenrad Abgas aus dem Abgasstrang 4 der Brennkraftmaschine 100 zuführbar. Des Weiteren ist die Abgasturbine 3 mit einer variablen Turbinengeometrie 8 versehen, über die der wirksame Turbineneintrittsquerschnitt zwischen einer minimalen Stauposition und einer maximalen Öffnungsposition veränderlich einstellbar ist.The designated in Figure 1 by reference numeral 100 internal combustion engine, which is a diesel engine or a gasoline engine, is equipped with an exhaust gas turbocharger 20, comprising a compressor 1 in the intake tract 2 and an exhaust gas turbine 3 in the exhaust line 4, wherein the compressor wheel and the turbine wheel are rotationally coupled via a shaft 5. The exhaust gas turbine 3 is equipped with two bends and has a smaller turbine flow 6 and a larger turbine flow I 1, with the turbine flows 6 and 7 differing in the flow cross section. Exhaust gas from the exhaust line 4 of the internal combustion engine 100 can be supplied to the turbine wheel via both turbine flows 6 and 7. Furthermore, the exhaust gas turbine 3 is provided with a variable turbine geometry 8, via which the effective turbine inlet cross section between a minimum storage position and a maximum opening position is variably adjustable.
Die beiden Turbinenfluten 6 und 7 sind über Abgasleitungen 22 und 23 des Abgasstranges 4 mit den Abgaskrümmern 30 bzw. 31 jeweils einer Zylinderbank 10 bzw. 11 der Brennkraftmaschine 100 verbunden. In den Abgasleitungen 22 und 23 befindet sich eine gemeinsame Schalteinrichtung 40, über die der Abgasmassenstrom in jede Turbinenflut 6 bzw. 7 steuerbar ist. Die Leitungsabschnitte in den Abgasleitungen 22 und 23 stromauf der Schalteinrichtung 40 sind mit den Bezugszeichen 35 und 36 versehen.The two turbine floods 6 and 7 are connected via exhaust pipes 22 and 23 of the exhaust line 4 with the exhaust manifolds 30 and 31 respectively of a cylinder bank 10 and 11 of the engine 100. In the exhaust pipes 22 and 23 is a common switching device 40, via which the exhaust gas mass flow in each turbine flood 6 and 7 is controllable. The pipe sections in the exhaust pipes 22 and 23 upstream of the switching device 40 are provided with reference numerals 35 and 36.
Stromab der Schalteinrichtung 40 zweigt vom Abgasstrang 4 ein Bypass 50 ab, in den ein einstellbares Bypassventil 48 integriert ist. Der Bypass 50 umfasst eine erste Bypassleitung 51, die von der Abgasleitung 22 der kleineren Turbinenflut 6 verzweigt und in das Beipassventil 48 mündet, und eine zweite Bypassleitung 52, die in entsprechender Weise von der Abgasleitung 23 der größeren Turbinenflut 7 verzweigt und ebenfalls in das Bypassventil 48 mündet. Über eine weitere Bypassleitung 53, die vom Bypassventil 48 verzweigt und stromab der Abgasturbine 3 in den Abgasstrang 4 einmündet, wird der Bypass 50 vervollständigt.Downstream of the switching device 40 branches off from the exhaust line 4 from a bypass 50, in which an adjustable bypass valve 48th is integrated. The bypass 50 comprises a first bypass line 51, which branches off from the exhaust line 22 of the smaller turbine flow 6 and opens into the bypass valve 48, and a second bypass line 52, which branches in a corresponding manner from the exhaust pipe 23 of the larger turbine flow 7 and also into the bypass valve 48 opens. Via a further bypass line 53, which branches from the bypass valve 48 and opens downstream of the exhaust gas turbine 3 in the exhaust line 4, the bypass 50 is completed.
Die Brennkraftmaschine 100 ist außerdem mit einer Abgasrückführeinrichtung versehen, die eine RückführleitungThe internal combustion engine 100 is also provided with an exhaust gas recirculation device, which is a return line
16 zwischen dem Abgasstrang 4 und dem Ansaugtrakt 2, einen in der Rückführleitung 16 angeordneten Abgaskühler 15 sowie ein unidirektionales und zweckmäßig einstellbares Rückführventil16 between the exhaust line 4 and the intake tract 2, arranged in the return line 16 exhaust gas cooler 15 and a unidirectional and appropriately adjustable return valve
17 umfasst. Die Rückführleitung 16 verzweigt im Strömungsweg zwischen der Schalteinrichtung 40 und der Abgasturbine 3 von der Abgasleitung 22 der kleineren Turbinenflut 6 und mündet stromab eines Ladeluftkühlers 14 in den Ansaugtrakt 2.17 includes. The return line 16 branches in the flow path between the switching device 40 and the exhaust gas turbine 3 from the exhaust pipe 22 of the smaller turbine flow 6 and opens downstream of a charge air cooler 14 in the intake tract second
Sämtliche Aggregate der Brennkraftmaschine werden in Abhängigkeit von Zustands- und Kenngrößen über StellSignale einer Regel- und Steuereinheit 18 eingestellt. Dies betrifft insbesondere die Schalteinrichtung 40, das Bypassventil 48, die variable Turbinengeometrie 8 sowie das Rückführventil 17.All units of the internal combustion engine are adjusted as a function of state and parameters via StellSignale a control and control unit 18. This relates in particular to the switching device 40, the bypass valve 48, the variable turbine geometry 8 and the return valve 17.
Fig. 2 zeigt die Schalteinrichtung 40, über die die Massenströme in die Turbinenfluten 6 und 7 steuerbar sind, im Schnitt. In einem Schaltgehäuse 41 der Schalteinrichtung 40 befindet sich ein Verbindungsraum 42, der die in das Schaltgehäuse einmündenden Leitungsabschnitte 35 und 36 der Abgasleitungen mit Kanälen 43 und 44 verbindet, die über weitere Leitungsabschnitte mit den Turbinenfluten 6 bzw. 7 verbunden sind. Im Verbindungsraum 42 ist eine Sperrklappe 45 um eine Drehachse 46 schwenkbar gelagert, wobei die Drehachse 46 zentral durch die Mitte der Sperrklappe 45 verläuft, derart, dass sich gleich große Klappenflügel 45a und 45b der Sperrklappe 45 zu beiden Seiten der Drehachse 46 erstrecken. Über die aktuelle Drehlage der Sperrklappe 45 ist die Massenstromzufuhr zu den Turbinenfluten 6 und 7 regulierbar. Die Sperrklappe 45 ist zwischen zwei axial beabstandeten Deckscheiben eingefasst, von denen in Fig. 2 eine Deckscheibe 62 mit umfangsseitig angeordnetem Dichtring 64 dargestellt ist.Fig. 2 shows the switching device 40, via which the mass flows in the turbine floods 6 and 7 are controllable, in section. In a switch housing 41 of the switching device 40 is a connection space 42 which connects the opening into the switch housing line sections 35 and 36 of the exhaust pipes with channels 43 and 44, which are connected via further line sections with the turbine floods 6 and 7 respectively. In the connection space 42 is a blocking flap 45 pivotally mounted about an axis of rotation 46, wherein the axis of rotation 46 extends centrally through the center of the blocking flap 45, such that equally large flap wings 45a and 45b of the blocking flap 45 extend on both sides of the axis of rotation 46. About the current rotational position of the blocking flap 45, the mass flow supply to the turbine floods 6 and 7 is adjustable. The barrier flap 45 is enclosed between two axially spaced cover plates, of which in Fig. 2, a cover plate 62 is shown with circumferentially arranged sealing ring 64.
Die als Drehschieber ausgeführte Sperrklappe 45 ist über die Deckscheibe 62 und die weitere, axial beabstandete Deckscheibe 63 (Fig. 3) im Schaltgehäuse 41 umfangsseitig gelagert. Eine sich ambossförmig erweiternde Trennwand 61 zwischen den Kanälen 43 und 44 im Schaltgehäuse weist eine teilkreisförmige Stützfläche auf, auf der sich die Deckscheiben 62 und 63 abstützen.The designed as a rotary slide barrier 45 is mounted on the cover plate 62 and the other, axially spaced cover plate 63 (Fig. 3) in the switch housing 41 circumferentially. An anvil-shaped widening partition 61 between the channels 43 and 44 in the switch housing has a part-circular support surface on which the cover plates 62 and 63 are supported.
Der Trennwand 61 diagonal gegenüberliegend befindet sich eine weitere, schmal zulaufende Trennwand 60 im Schaltgehäuse, die die Kanäle für die Leitungsabschnitte 35 und 36 separiert. Seitlich der Trennwand 60 werden die Mündungen der Kanäle für die Leitungsabschnitte 35 und 36 von Wandabschnitten des Schaltgehäuses in der Weise begrenzt, dass Kontaktpunkte A und B in Berührung mit den radial außen liegenden Stirnseiten der Sperrklappe 45 gelangen können. In Fig. 2 ist eine Winkellage für die Sperrklappe 45 eingezeichnet, in der die radial außen liegende Stirnseite des Flügels 45b der Sperrklappe am Kontaktpunkt B anliegt, der sich an einer Seitenwand befindet, die den Kanal für den Leitungsabschnitt 36 begrenzt. In dieser Winkellage der Sperrklappe 45 ist eine Einströmung von Abgas sowohl über den Leitungsabschnitt 35 als auch über den Leitungsabschnitt 36 möglich. Die einströmenden Abgasmassenströme werden wie mit den durchgezogenen Pfeilen dargestellt in den Kanal 43 eingeleitet, der mit der kleineren Turbinenflut 6 kommuniziert. Der zweite Kanal 44 im Schaltgehäuse 41 ist dagegen von der Sperrklappe 45 abgesperrt, so dass der größeren Turbinenflut 7 kein Abgas zugeführt wird. In entsprechender Weise wird der Kanal 43 und die Turbinenflut 6 abgesperrt und das gesamte Abgas über den Kanal 44 in die größere Strömungsflut 7 geleitet, wenn die Sperrklappe 45 in einer Winkelposition steht, in der eine der radial außen liegenden Stirnseiten der Sperrklappe an dem Kontaktpunkt A anliegt .The dividing wall 61 diagonally opposite is another, narrowing partition wall 60 in the switch housing, which separates the channels for the line sections 35 and 36. Laterally of the partition 60, the mouths of the channels for the line sections 35 and 36 of wall sections of the switching housing are limited in such a way that contact points A and B can come into contact with the radially outer end faces of the blocking flap 45. FIG. 2 shows an angular position for the blocking flap 45 in which the radially outer end face of the flap 45b of the blocking flap rests against the contact point B, which is located on a side wall which delimits the channel for the line section 36. In this angular position of the blocking flap 45, an inflow of exhaust gas is possible both via the line section 35 and via the line section 36. The inflow exhaust gas mass flows are introduced as shown by the solid arrows in the channel 43, which communicates with the smaller turbine trough 6. The second channel 44 in the switch housing 41, however, is shut off by the blocking flap 45, so that no exhaust gas is supplied to the larger turbine flow 7. In a corresponding manner, the channel 43 and the turbine trough 6 is shut off and the entire exhaust gas is conducted via the channel 44 into the larger flow trough 7 when the blocking flap 45 is in an angular position in which one of the radially outer end faces of the blocking flap at the contact point A is present.
Steht die Sperrklappe 45 dagegen in einer senkrechten Position, in der die Stirnseite der Trennwand 60 von der radial außen liegenden Stirnseite eines Flügels 45a oder 45b der Sperrklappe 45 kontaktiert wird, so sind die Kanäle im Schaltgehäuse 41 vollständig separiert, so dass die Abgasmassenströme, die über die den Leitungsabschnitten 35 und 36 zugeordneten Kanäle eingeleitet werden, nicht vermengt werden und jeweils in die zugeordneten Kanäle 43 bzw. 44 weiterströmen. Dieser Fall entspricht einer strömungsmäßigen Separierung der Turbinenfluten 6 und 7.On the other hand, if the blocking flap 45 is in a vertical position, in which the end face of the dividing wall 60 is contacted by the radially outer face of a wing 45a or 45b of the blocking flap 45, then the channels in the switching housing 41 are completely separated, so that the exhaust gas mass flows are introduced via the channels assigned to the line sections 35 and 36, are not mixed and continue to flow into the associated channels 43 and 44, respectively. This case corresponds to a flow separation of the turbine flows 6 and 7.
In einer Zwischenstellung der Sperrklappe 45 entweder zwischen der Spitze der Trennwand 60 und dem Kontaktpunkt A oder in einer Zwischenstellung zwischen der Trennwand 60 und dem Kontaktpunkt B - also jeweils in der Mitte der Mündungsöffnung des Kanals für den Leitungsabschnitt 35 oder des Kanals für den Leitungsabschnitt 36 - findet eine Durchmischung der herangeführten Abgasmassenströme statt, so dass ein Druckausgleich zwischen den Massenströmen erreicht wird. Zugleich sind beide abgehenden Kanäle 43 und 44 geöffnet, so dass auch den jeweiligen Turbinenfluten 6 und 7 der gleiche Druck zugeleitet wird.In an intermediate position of the blocking flap 45, either between the tip of the dividing wall 60 and the contact point A or in an intermediate position between the dividing wall 60 and the contact point B - ie in each case in the middle of the mouth opening of the channel for the line section 35 or the channel for the line section 36 - There is a thorough mixing of the supplied exhaust gas mass flows, so that a pressure equalization between the mass flows is achieved. At the same time both outgoing channels 43 and 44th open, so that the respective turbine flows 6 and 7, the same pressure is supplied.
Der Schnittdarstellung nach Fig. 3 ist zu entnehmen, dass die Sperrklappe 45 zwischen den axial beabstandeten Deckscheiben 62 und 63 eingefasst ist, die auf ihrer Außenseite jeweils einen Dichtring 64 bzw. 65 aufweisen, wodurch der Raum zwischen den Deckscheiben strömungsdicht gegenüber dem Schaltgehäuse 41 abgedichtet ist. Der Verbund aus Deckscheiben 62 und 63 mit Sperrklappe 45 ist an einer Welle 66 drehbar im Schaltgehäuse 41 gelagert, wobei über die Welle 66 die über einen Aktuator aufzubringende Stellbewegung auf die Sperrklappe 45 eingeleitet wird.The sectional view of Fig. 3 it can be seen that the locking flap 45 is enclosed between the axially spaced cover plates 62 and 63, which have on their outer side in each case a sealing ring 64 and 65, whereby the space between the cover plates sealed against the switching housing 41 is. The composite of cover plates 62 and 63 with blocking flap 45 is rotatably mounted on a shaft 66 in the switch housing 41, wherein via the shaft 66, the applied via an actuator adjusting movement is introduced to the locking flap 45.
Die Fig. 4 zeigt eine Variante der Schalteinrichtung 40, wobei ein Ausschnitt der Schalteinrichtung 40 dargestellt ist, welcher im Wesentlichen die Deckscheiben 62, 63 zeigt. Die die Dichtringe 64, 65 aufnehmenden Deckscheiben 62, 63 weisen zusätzlich Gleitringe 67, 68 auf, wodurch Leckagen reduzierbar sind. Mit Hilfe der Gleitringe 67, 68 ist ein Druckkompensationsraum 72 ausbildbar, welcher zur Reduzierung der auftretenden Reibungskräfte beiträgt. Der Druckkompensations- raum 72 ist den Dichtring 64; 65 teilweise umgrenzend ausgebildet, so dass sich ein Druck P an sich gegenüberliegenden Seiten des Dichtrings 64; 65 einstellen und sich teilweise kompensieren kann.4 shows a variant of the switching device 40, wherein a section of the switching device 40 is shown, which essentially shows the cover plates 62, 63. The sealing rings 64, 65 receiving cover plates 62, 63 additionally have slip rings 67, 68, whereby leakage can be reduced. With the aid of the sliding rings 67, 68, a pressure compensation chamber 72 can be formed, which contributes to the reduction of the friction forces occurring. The pressure compensating space 72 is the sealing ring 64; 65 partially formed bounded, so that a pressure P on opposite sides of the sealing ring 64; 65 and can partially compensate.
Zur Realisierung eines ersten ringförmigen Bereiches 73 des Druckkompensationsraumes 72 sind die Gleitringe 67, 68 neben den Dichtringen 64, 65 angeordnet, wobei eine erste Seitenfläche 69 des Dichtrings 64; 65 einer zweiten Seitenfläche 70 des Gleitrings 67; 68 gegenüberliegend angeordnet ist. Ein Außendurchmesser DAG der Gleitringe 67, 68 ist kleiner ausgebildet als ein Außendurchmesser DAD der Dichtringe 64, 65, wobei ein Innendurchmesser DIG der Gleitringe 67, 68 größer ausgestaltet ist, als ein Innendurchmesser DID der Dichtringe 64, 65. Zwischen der ersten Seitenfläche 69 und der zweiten Seitenfläche 70 ist eine Kontaktfläche 71 ausgebildet, welche kleiner ist als die zweite Seitenfläche 70, wobei die Kontaktfläche 71 sich vom Außendurchmesser DAG in Richtung des Innendurchmessers DIG erstreckend angeordnet ist .For realizing a first annular region 73 of the pressure compensating space 72, the sliding rings 67, 68 are arranged next to the sealing rings 64, 65, wherein a first side surface 69 of the sealing ring 64; 65 a second side surface 70 of the sliding ring 67; 68 is arranged opposite. An outer diameter DAG of the sliding rings 67, 68 is smaller than an outer diameter DAD of the sealing rings 64, 65, wherein an inner diameter DIG of the seal rings 67, 68 is made larger than an inner diameter DID of the seal rings 64, 65. Between the first side surface 69 and the second side surface 70, a contact surface 71 smaller than the second side surface 70 is formed Contact surface 71 is arranged extending from the outer diameter DAG in the direction of the inner diameter DIG.
Eine erste Stirnfläche 74 des Dichtrings 64; 65 und eine zweite Stirnfläche 75 des Gleitrings 67; 68 sind von dem Schaltgehäuse 41 abgewandt positioniert, wobei ein zweiter ringförmiger Bereich 76 des Druckkompensationsraumes 72 zwischen der ersten Stirnfläche 73 und einer gegenüberliegenden ersten Deckscheibenwandung 79 ausgebildet ist.A first end face 74 of the sealing ring 64; 65 and a second end face 75 of the sliding ring 67; 68 are positioned away from the switch housing 41, wherein a second annular portion 76 of the pressure compensating space 72 is formed between the first end face 73 and an opposite first cover disk wall 79.
Ein dritter ringförmiger Bereich 77 des Druckkompensations- raumes 72 ist zwischen einer von der ersten Seitenfläche 69 abgewandt angeordneten dritten Seitenfläche 78 des Dichtrings 64; 65 und einer gegenüberliegenden zweiten Deckscheibenwandung 80 ausgebildet.A third annular region 77 of the pressure compensation chamber 72 is located between a third side surface 78 of the sealing ring 64, which is remote from the first side surface 69; 65 and an opposite second Abdeckscheibenwandung 80 is formed.
Die Dichtringe 64, 65 und die Gleitringe 67, 68 sind idealerweise in nutförmigen Öffnungen 81, 82 der Deckscheiben 62, 63 positioniert, wobei die Gleitringe 67, 68 aufgrund des Abgasdruckes in den Öffnungen 81, 82 überwiegend unbewegt anliegen.The sealing rings 64, 65 and the sliding rings 67, 68 are ideally positioned in groove-shaped openings 81, 82 of the cover disks 62, 63, wherein the sliding rings 67, 68 predominantly rest unmoved due to the exhaust gas pressure in the openings 81, 82.
Für die Dichtringe 64, 65 und Gleitringe 67, 68 sind ver- schleißresistente Werkstoffpaarungen zu wählen, die, unter Berücksichtigung der hohen Abgastemperaturen von beispielsweise beim Ottomotor ca. 10500C und beim Dieselmotor ca. 8500C, eine hohe Temperaturfestigkeit aufweisen. Weiterhin sollten die Materialen eine hohe Oxidationsbeständigkeit , eine hohe Druckfestigkeit und eine geringe Rissfortschritts- rate aufweisen.For the sealing rings 64, 65 and seal rings 67, 68 comparable schleißresistente material combinations are to be selected, which have, taking into account the high exhaust gas temperatures, for example in the Otto engine about 1050 0 C and the diesel engine 850 0 C, a high temperature strength. Furthermore, the materials should have a high resistance to oxidation, a high compressive strength and a low rate of crack propagation. have rate.
Bevorzugt sind Kombinationen metallischer Werkstoffe und keramischer oder graphithaltiger Werkstoffe zu wählen, wobei als keramischer Werkstoff insbesondere Keramiken mit Siliziumnitriden, Siliziumkarbiden oder Aluminiumoxiden einzusetzen sind.Preferably, combinations of metallic materials and ceramic or graphite-containing materials are to be selected, in particular ceramics with silicon nitrides, silicon carbides or aluminum oxides being used as the ceramic material.
In einer in den Figuren 5 und 6 abgebildeten weiteren Variante der Schalteinrichtung 40 sind der Schalteinrichtung 40 Leitvorrichtungen 83, 84 zur Steigerung eines Wirkungsgrades η der Abgasturbine 3 zugeordnet . Der Verbindungsräum 42 weist eine strömungstechnisch betrachtet verlustbehaftete Zone 85 auf, welche insbesondere im Bereich des Flügels 45a ausgebildet ist. Hohen Strömungsverluste können eine Reduzierung der Enthalpie des Abgases in den Turbinenfluten 6, 7 und damit niedrige Wirkungsgrade der Abgasturbine 3 bewirken. Mit Hilfe der Leitvorrichtungen 83, 84, welche in den Verbindungsraum 42 hineinragend ausgestaltet sind, ist ein Austritt von verlustbehaftetem Abgas aus der Zone 85 in die Kanäle 43, 44 vermeidbar.In a further variant of the switching device 40 shown in FIGS. 5 and 6, the switching device 40 is associated with guide devices 83, 84 for increasing the efficiency η of the exhaust gas turbine 3. The Verbindungsräum 42 has a fluidly lossy zone 85, which is formed in particular in the region of the wing 45a. High flow losses can cause a reduction of the enthalpy of the exhaust gas in the turbine floods 6, 7 and thus low efficiencies of the exhaust gas turbine 3. With the aid of the guide devices 83, 84, which are designed projecting into the connection space 42, leakage of lossy waste gas from the zone 85 into the channels 43, 44 can be avoided.
Das verlustbehaftete Abgas kann über Spaltöffnungen 88, 89, welche zwischen im Verbindungsräum 42 positionierten Enden 86, 87 der Leitvorrichtungen 83, 84 und der Sperrklappe 45 angeordnet sind, in den Bereich des Verbindungsräumes 42 außerhalb der Zone 85 zurückströmen. Mit Hilfe der Spaltöffnungen 88, 89 ist ein Druckausgleich zwischen der Zone 85 und dem übrigen Verbindungsräum 42 realisierbar, so dass die Möglichkeit der Gaskraftkompensation weiterhin erhalten bleibt.The lossy exhaust gas can flow back into the region of the Verbindungsräumes 42 outside of the zone 85 via stomata 88, 89, which are arranged between 42 positioned in the Verbindungsräum 42 ends 87, the guide devices 83, 84 and the blocking flap. With the help of the stomata 88, 89 a pressure equalization between the zone 85 and the remaining Verbindungsräum 42 can be realized, so that the possibility of gas-force compensation is maintained.
Die Leitvorrichtungen 83, 84 sind an einem an den Verbindungsraum 42 angrenzenden Umfang der Trennwand 61 befestigt, wobei insbesondere der Übergang zwischen der Trennwand 61 und den Leitvorrichtungen 83, 84 strömungsdicht auszuführen ist. Idealerweise sind die Leitvorrichtungen 83, 84 und die Trennwand 61 als ein Bauteil ausgebildet.The guide devices 83, 84 are fastened to a circumference of the dividing wall 61 adjoining the connecting space 42, in particular the transition between the dividing wall 61 and the guide devices 83, 84 is to perform flow-tight. Ideally, the guide devices 83, 84 and the partition 61 are formed as one component.
Strömungsquerschnitte, welche ausgehend von den Enden 86, 87 in Richtung auf das Turbinenrad der Abgasturbine 3 angeordnet sind, sind mit Hilfe der Leitvorrichtungen 83, 84 in Richtung auf das Turbinenrad verjüngend ausgestaltet, wodurch eine Strömungsbeschleunigung zur Erhöhung der Wirkungsgrade η der Abgasturbine 3 durch eine Reduzierung der Ablöseneigung der Strömung erzielbar ist .Flow cross sections, which are arranged starting from the ends 86, 87 in the direction of the turbine wheel of the exhaust gas turbine 3, are designed by means of the guide devices 83, 84 tapering in the direction of the turbine wheel, whereby a flow acceleration to increase the efficiencies η of the exhaust gas turbine 3 by a Reduction of the tendency to detach the flow is achieved.
Vorteilhafterweise sind der Sperrklappe 45 zugewandt angeordnete Innenflächen 90, 91 der Leitvorrichtungen 83, 84 gegenüberliegenden Oberflächen 92, 93 der Sperrklappe 45 angepasst ausgebildet .Advantageously, the blocking flap 45 are arranged facing inner surfaces 90, 91 of the guide devices 83, 84 opposite surfaces 92, 93 of the blocking flap 45 adapted adapted.
In Fig. 7 sind in einem Diagramm Wirkungsgrade der Abgasturbine 3 über einem an der Abgasturbine 3 anliegenden Druckverhältnis πτ bei konstanter Abgasturboladerdrehzahl dargestellt, wobei die mit einem Punkt gekennzeichneten Linien die erzielten Wirkungsgrade η mit der Schaltvorrichtung 40 und den Leitvorrichtungen 83, 84 beschreiben. Die mit einem Kreuz gekennzeichneten Linien beschreiben die erzielten Wirkungsgrade η der Schaltvorrichtung 40 ohne Leitvorrichtungen 83, 84. FIG. 7 shows in a diagram efficiencies of the exhaust gas turbine 3 above a pressure ratio π τ applied to the exhaust gas turbine 3 at a constant exhaust gas turbocharger speed, wherein the lines marked with a dot describe the achieved efficiencies η with the switching device 40 and the guide devices 83, 84. The lines marked with a cross describe the achieved efficiencies η of the switching device 40 without guide devices 83, 84.

Claims

DaimlerChrysler AGPatentansprüche DaimlerChrysler AGPatent claims
1. Brennkraftmaschine mit einem Abgasturbolader, der eine Ab- gasturbine (3) im Abgasstrang (4) und einen Verdichter (1) im Ansaugtrakt (2) umfasst, wobei die Abgasturbine (3) zwei separate Turbinenfluten (6, 7) aufweist, über die dem Turbinenrad Abgas zuführbar ist, und der Massenstrom durch die beiden Turbinenfluten (6, 7) über eine Schalteinrichtung (40) einstellbar ist, dadurch gekennzeichnet, dass die Schalteinrichtung (40) in einem Schaltgehäuse (41) eine um eine Drehachse (46) schwenkbare, undurchströmbare Sperrklappe (45) mit zwei zumindest annähernd gleich langen Flügeln (45a, 45b) zu beiden Seiten der Drehachse (46) umfasst, wobei die Sperrklappe (45) in einem Verbindungs- raum (42) im Schaltgehäuse (41) gelagert und der Verbindungsraum (42) sowohl mit den beiden Turbinenfluten (6, 7) der Abgasturbine (3) als auch mit zwei Abgasleitungen (22, 23) verbunden ist, die jeweils einer Zylinderbank (10 bzw. 11) der Brennkraftmaschine (100) zugeordnet sind.1. Internal combustion engine with an exhaust gas turbocharger, the exhaust gas turbine (3) in the exhaust line (4) and a compressor (1) in the intake (2), wherein the exhaust gas turbine (3) has two separate turbine floods (6, 7) over which can be fed to the turbine wheel exhaust gas, and the mass flow through the two turbine floods (6, 7) via a switching device (40) is adjustable, characterized in that the switching device (40) in a switch housing (41) one about an axis of rotation (46) pivotable, impenetrable barrier flap (45) with two at least approximately equally long wings (45a, 45b) on both sides of the axis of rotation (46), wherein the blocking flap (45) in a connecting space (42) in the switch housing (41) stored and the connecting space (42) is connected both to the two turbine passages (6, 7) of the exhaust gas turbine (3) and to two exhaust passages (22, 23), which are each assigned to a cylinder bank (10 or 11) of the internal combustion engine (100) ,
2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass in den Verbindungsraum (42) im Schaltgehäuse (41) jeweils eine Trennwand (60) zwischen Kanälen (43, 44) der Abgasleitungen (22, 23) und zwischen Kanälen (43, 44) der Turbinenfluten (6, 7) einmündet, und dass die Trennwände (60, 61) sich diagonal gegenüberliegend im Schaltgehäuse (41) befinden.2. Internal combustion engine according to claim 1, characterized in that in the connecting space (42) in the switch housing (41) each have a partition (60) between channels (43, 44) of the exhaust pipes (22, 23) and between channels (43, 44) the turbine floods (6, 7) opens, and that the partitions (60, 61) are located diagonally opposite each other in the switch housing (41).
3. Brennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass die den Turbinenfluten (6, 7) zugeordnete Trennwand (61) sich zum Verbindungsraum (42) hin ambossförmig erweitert und den Verbindungsraum (42) teilkreisförmig begrenzt.3. Internal combustion engine according to claim 2, characterized in that the turbine flows (6, 7) associated partition wall (61) to the connection space (42) towards anvil-shaped and the connection space (42) bounded part-circular.
4. Brennkraftmaschine nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Seitenbereiche der teilkreisförmigen Erweiterung der den Turbinenfluten (6, 7) zugeordneten Trennwand (61) äußeren Begrenzungswänden der den Abgas1eitungen (22, 23) zugeordneten Kanäle (43, 44) diagonal gegenüberliegen.4. Internal combustion engine according to claim 2 or 3, characterized in that the side regions of the part-circular extension of the turbine floods (6, 7) associated partition (61) outer boundary walls of the Abgas1eitungen (22, 23) associated with channels (43, 44) are diagonally opposite ,
5. Brennkraftmaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die den Abgasleitungen (22, 23) zugeordnete Trennwand (61) zum Verbindungsräum (42) hin schmal ausgebildet ist.5. Internal combustion engine according to one of claims 2 to 4, characterized in that the exhaust pipes (22, 23) associated with the partition (61) for Verbindungsräum (42) is formed narrow.
6. Brennkraftmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die schwenkbare Sperrklappe (45) als Drehschieber mit um- fangsseitiger Lagerung ausgebildet ist.6. Internal combustion engine according to one of claims 1 to 5, characterized in that the pivotable blocking flap (45) is designed as a rotary valve with peripheral side storage.
7. Brennkraftmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Sperrklappe (45) von zwei axial beabstandeten, fest mit der Sperrklappe verbundenen Deckscheiben (62, 63) ein- gefasst ist, die im Schaltgehäuse (41) drehbar gelagert sind. 7. Internal combustion engine according to one of claims 1 to 6, characterized in that the blocking flap (45) of two axially spaced, fixedly connected to the locking flap cover plates (62, 63) is enclosed, which are rotatably mounted in the switch housing (41) ,
8. Brennkraftmaschine nach Anspruch 7, dadurch gekennzeichnet, dass auf der Außenseite der Deckscheiben (62, 63) Dichtringe (64, 65) angeordnet sind.8. Internal combustion engine according to claim 7, characterized in that on the outside of the cover plates (62, 63) sealing rings (64, 65) are arranged.
9. Brennkraftmaschine nach Anspruch 8, dadurch gekennzeichnet, dass auf der Außenseite der Deckscheiben (62, 63) Gleitringe (67, 68) angeordnet sind, welche neben den Dichtringen (64, 65) positioniert sind.9. Internal combustion engine according to claim 8, characterized in that on the outside of the cover plates (62, 63) sliding rings (67, 68) are arranged, which are positioned next to the sealing rings (64, 65).
10. Brennkraftmaschine nach Anspruch 9, dadurch gekennzeichnet, dass die Gleitringe (67, 68) kleiner ausgebildet sind als die Dichtringe (64, 65) .10. Internal combustion engine according to claim 9, characterized in that the sliding rings (67, 68) are formed smaller than the sealing rings (64, 65).
11. Brennkraftmaschine nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass jeweils ein die Dichtringe (64, 65) mindestens teilweise umgrenzender Druckkompensationsraum (72) ausbildbar ist.11. Internal combustion engine according to claim 9 or 10, characterized in that in each case one of the sealing rings (64, 65) at least partially delimiting pressure compensation chamber (72) can be formed.
12. Brennkraftmaschine nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass eine erste Seitenfläche (69) des Dichtrings (64; 65) und eine zweite Seitenfläche (70) des Gleitrings (67; 68) sich gegenüberliegend angeordnet sind, wobei eine Kontaktfläche (71) ausbildbar ist, welche kleiner als die zweite Seitenfläche (70) ist.12. An internal combustion engine according to any one of claims 8 to 11, characterized in that a first side surface (69) of the sealing ring (64; 65) and a second side surface (70) of the sliding ring (67; 68) are arranged opposite one another, wherein a contact surface (71) which is smaller than the second side surface (70) can be formed.
13. Brennkraftmaschine nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass die Trennwand (61) Leitvorrichtungen (83, 84) zur Strömungskonditionierung aufweist, wobei die Leitvorrichtungen (83, 84) in den Verbindungsraum (42) hineinragend ausgebildet sind.13. Internal combustion engine according to one of claims 2 to 12, characterized in that the partition wall (61) has guide devices (83, 84) for flow conditioning, wherein the guide devices (83, 84) projecting into the connecting space (42) are formed.
14. Brennkraftmaschine nach Anspruch 13, dadurch gekennzeichnet, dass die Leitvorrichtungen (83, 84) an einem an den Verbindungsraum (42) angrenzenden Umfang der Trennwand (61) vorgesehen sind.14. Internal combustion engine according to claim 13, characterized in that the guide devices (83, 84) on one of the connection space (42) adjacent the periphery of the partition (61) are provided.
15. Brennkraftmaschine nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Leitvorrichtungen (83, 84) eine verlustbehaftete Zone (85) des Verbindungsraumes (42) derart abtrennend ausgestaltet sind, dass ein Austritt von Abgas aus der Verlust - behafteten Zone (85) in die Kanäle (43, 44) vermeidbar ist.15. An internal combustion engine according to claim 13 or 14, characterized in that the guide devices (83, 84) a lossy zone (85) of the connecting space (42) are configured such that a separation of exhaust gas from the lossy zone (85) in the channels (43, 44) is avoidable.
16. Brennkraftmaschine nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass zwischen in den Verbindungsraum (42) hineinragenden Enden (86, 87) der Leitvorrichtungen (83, 84) und der Sperrklappe (45) Spaltöffnungen (88, 89) ausgebildet sind.16. Internal combustion engine according to one of claims 13 to 15, characterized in that between in the connecting space (42) projecting ends (86, 87) of the guide devices (83, 84) and the blocking flap (45) stomata (88, 89) are formed ,
17. Brennkraftmaschine nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass der Sperrklappe (45) zugewandt angeordnete Innenflächen (90, 91) der Leitvorrichtungen (83, 84) Oberflächen (92, 93) der Sperrklappe (45) angepasst ausgebildet sind.17. Internal combustion engine according to any one of claims 13 to 16, characterized in that the blocking flap (45) facing arranged inner surfaces (90, 91) of the guide devices (83, 84) surfaces (92, 93) of the blocking flap (45) are adapted adapted.
18. Brennkraftmaschine nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass ab den Enden (86, 87) der Leitvorrichtungen (83, 84) ausgebildete Strömungsquerschnitte sich in Richtung auf das Turbinenrad der Abgasturbine (3) verjüngend ausgebildet sind.18. Internal combustion engine according to one of claims 13 to 17, characterized in that from the ends (86, 87) of the guide devices (83, 84) formed flow cross sections in the direction of the Turbine wheel of the exhaust gas turbine (3) are tapered.
19. Brennkraftmaschine nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Schalteinrichtung (40) in den Abgaskrümmer (30, 31) integriert ist .19. Internal combustion engine according to one of claims 1 to 18, characterized in that the switching device (40) in the exhaust manifold (30, 31) is integrated.
20. Brennkraftmaschine nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Schalteinrichtung (40) in die Abgasturbine (3) integriert ist .20. Internal combustion engine according to one of claims 1 to 19, characterized in that the switching device (40) in the exhaust gas turbine (3) is integrated.
21. Brennkraftmaschine nach einem Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Turbinenfluten (6, 7) unterschiedlich groß mit verschiedenen Strömungsquerschnitten ausgebildet sind.21. Internal combustion engine according to any one of claims 1 to 20, characterized in that the turbine flows (6, 7) are designed differently sized with different flow cross sections.
22. Brennkraftmaschine nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass ein erster Strömungsquerschnitt der ersten Turbinenflut und ein zweiter Strömungsquerschnitt der zweiten Flut sich22. Internal combustion engine according to one of claims 1 to 21, characterized in that a first flow cross section of the first turbine tide and a second flow cross section of the second tide itself
23. Brennkraftmaschine nach einem Ansprüche 1 bis 22, dadurch gekennzeichnet, dass eine Abgasrückführeinrichtung vorgesehen ist, die eine Abgasleitung (22, 23), die einer Turbinenflut (6, 7) zugeordnet ist, mit dem Ansaugtrakt (2) verbindet.23. Internal combustion engine according to one of claims 1 to 22, characterized in that an exhaust gas recirculation device is provided which connects an exhaust pipe (22, 23) which is associated with a turbine flow (6, 7) with the intake tract (2).
24. Brennkraftmaschine nach einem Ansprüche 1 bis 23, dadurch gekennzeichnet, dass ein die Abgasturbine (3) überbrückender Bypass (50) mit einstellbarem Bypassventil (51) vorgesehen ist. 24. Internal combustion engine according to one of claims 1 to 23, characterized in that the exhaust gas turbine (3) bridging bypass (50) is provided with adjustable bypass valve (51).
25. Brennkraftmaschine nach einem Ansprüche 1 bis 24, dadurch gekennzeichnet, dass die Abgasturbine (3) mit variabler Turbinengeometrie (8) zur veränderlichen Einstellung des wirksamen Turbineneintrittsquerschnitts ausgestattet ist. 25. Internal combustion engine according to one of claims 1 to 24, characterized in that the exhaust gas turbine (3) is equipped with variable turbine geometry (8) for variable adjustment of the effective turbine inlet cross-section.
PCT/EP2007/001610 2006-03-01 2007-02-24 Internal combustion engine with an exhaust gas turbocharger WO2007101567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006009298A DE102006009298A1 (en) 2006-03-01 2006-03-01 Internal combustion engine with an exhaust gas turbocharger
DE102006009298.8 2006-03-01

Publications (1)

Publication Number Publication Date
WO2007101567A1 true WO2007101567A1 (en) 2007-09-13

Family

ID=38123837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/001610 WO2007101567A1 (en) 2006-03-01 2007-02-24 Internal combustion engine with an exhaust gas turbocharger

Country Status (2)

Country Link
DE (1) DE102006009298A1 (en)
WO (1) WO2007101567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356825A (en) * 2017-11-15 2020-06-30 珀金斯发动机有限公司 Exhaust flow control valve with integrated wastegate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011372A1 (en) 2009-04-17 2010-10-21 Behr Gmbh & Co. Kg Charge air duct for an internal combustion engine
DE102009045380A1 (en) * 2009-10-06 2011-04-07 Robert Bosch Gmbh driving means
DE102010008264B4 (en) 2010-02-17 2013-07-18 Meta Motoren- Und Energietechnik Gmbh Method for operating a exhaust-gas-charged internal combustion engine and internal combustion engine
DE102010010470A1 (en) 2010-03-06 2011-09-08 Daimler Ag Turbine for supercharger of e.g. diesel engine, of passenger car, has flow channel removing exhaust gas from region of outer contour and guiding downstream of turbine wheel, where inlet of channel is arranged downstream of wheel inlet
DE102012218137A1 (en) * 2012-10-04 2014-06-12 Bosch Mahle Turbo Systems Gmbh & Co. Kg Exhaust gas turbocharger for internal combustion engine of motor vehicle, has wastegate device has valve element, which is translationally adjustable, where valve element is formed in cylinder-like or plate-like shape
DE102012110873A1 (en) * 2012-11-13 2014-05-15 Firma IHI Charging Systems International GmbH Exhaust gas guide section of a turbine
WO2015004497A1 (en) * 2013-07-10 2015-01-15 Renault Trucks Turbocharged engine arrangement with exhaust gases recirculation installations and rotary flow control valve
DE102015107533A1 (en) * 2015-05-13 2016-11-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine
DE102016208162A1 (en) * 2016-05-12 2017-11-16 Continental Automotive Gmbh Exhaust gas turbocharger with a double-flow turbine and a rotary flood connection
DE102016208159B4 (en) 2016-05-12 2022-02-03 Vitesco Technologies GmbH Turbine for an exhaust gas turbocharger with a double-flow turbine housing and a valve for connecting the flows

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1502513A (en) * 1921-12-15 1924-07-22 Russell G Miller Reversing valve
DE1804606A1 (en) * 1968-08-07 1970-02-12 Augsburg Nuernberg Ag Zweignie Exhaust throttle for exhaust brakes on supercharged combustion engines
US4526004A (en) * 1983-10-25 1985-07-02 Holset Engineering Company Limited Exhaust brake valve
US4655252A (en) * 1980-03-24 1987-04-07 Krumhansl Mark U Valves
DE29917606U1 (en) * 1999-10-06 2000-05-18 Iav Gmbh Device for operating a turbocharger for internal combustion engines which can be acted upon via two separate flood channels
DE10303777A1 (en) * 2003-01-31 2004-08-12 Daimlerchrysler Ag Internal combustion engine with exhaust gas turbocharger has valve body with 2 separate different openings for communicating with exhaust gas line blow-out opening in first and second open positions
DE10357925A1 (en) 2003-12-11 2005-07-28 Daimlerchrysler Ag Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395884A (en) * 1981-02-26 1983-08-02 The Jacobs Manufacturing Company Method and apparatus for improved engine braking and operation
JPS62265422A (en) * 1986-05-13 1987-11-18 Komatsu Ltd Passage switchover device for supercharger
DE19618160C2 (en) * 1996-05-07 1999-10-21 Daimler Chrysler Ag Exhaust gas turbocharger for an internal combustion engine
DE10222917B4 (en) * 2002-05-24 2007-12-20 Man Nutzfahrzeuge Ag Charged internal combustion engine
DE102004055571A1 (en) * 2004-11-18 2006-06-08 Daimlerchrysler Ag Exhaust gas turbocharger for an internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1502513A (en) * 1921-12-15 1924-07-22 Russell G Miller Reversing valve
DE1804606A1 (en) * 1968-08-07 1970-02-12 Augsburg Nuernberg Ag Zweignie Exhaust throttle for exhaust brakes on supercharged combustion engines
US4655252A (en) * 1980-03-24 1987-04-07 Krumhansl Mark U Valves
US4526004A (en) * 1983-10-25 1985-07-02 Holset Engineering Company Limited Exhaust brake valve
DE29917606U1 (en) * 1999-10-06 2000-05-18 Iav Gmbh Device for operating a turbocharger for internal combustion engines which can be acted upon via two separate flood channels
DE10303777A1 (en) * 2003-01-31 2004-08-12 Daimlerchrysler Ag Internal combustion engine with exhaust gas turbocharger has valve body with 2 separate different openings for communicating with exhaust gas line blow-out opening in first and second open positions
DE10357925A1 (en) 2003-12-11 2005-07-28 Daimlerchrysler Ag Internal combustion engine with exhaust gas turbocharger and exhaust gas recirculation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356825A (en) * 2017-11-15 2020-06-30 珀金斯发动机有限公司 Exhaust flow control valve with integrated wastegate

Also Published As

Publication number Publication date
DE102006009298A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
WO2007101567A1 (en) Internal combustion engine with an exhaust gas turbocharger
DE2841759C2 (en) Exhaust gas turbocharger
EP1812698B1 (en) Exhaust-gas turbocharger for an internal combustion engine
EP1778966B1 (en) Internal combustion engine having an exhaust gas turbocharger and an exhaust gas recirculation system
DE102010008411B4 (en) Turbine for an exhaust gas turbocharger
DE19924228C2 (en) Multi-flow, adjustable exhaust gas turbocharger
DE102014201064B4 (en) Charged internal combustion engine with twin-flow turbine and method for operating such an internal combustion engine
DE112015005579B4 (en) TURBOCHARGER TURBINE STAGE VALVES CONTROLLED BY A SINGLE ACTUATOR
DE102009030771A1 (en) Piston engine and operating procedures
EP1570161B1 (en) Internal combustion engine comprising an exhaust gas turbocharger
DE102014201727A1 (en) Charged internal combustion engine with twin-flow turbine and method for operating such an internal combustion engine
WO2012107064A1 (en) Turbine for an exhaust gas turbocharger and exhaust gas turbocharger
DE112015006103T5 (en) ROTATING REVERSING VALVE
DE202013100774U1 (en) Charged internal combustion engine with double-flow turbine
EP1420152A2 (en) Turbocharger
DE102014208703A1 (en) Exhaust-driven turbocharged internal combustion engine with at least two turbines and method for operating such an internal combustion engine
DE102007046656A1 (en) Internal-combustion engine operating method for motor vehicle, involves supplying exhaust gases through exhaust valves, and operating one of valves in time delay with respect to other valve, where valves are operated at high speed
DE102007025437A1 (en) Process for internal combustion engine with exhaust turbocharger involves turning blocking flap to first or second angular position or any intermediate position between first/second angular positions, whereby second channel is fully open
WO2014082613A1 (en) Exhaust gas turbocharger turbine with two wheel outlet cross sections
WO2020001806A1 (en) Control device for an exhaust-gas-conducting section of a turbocharger
DE102015105219A1 (en) Regulating device for an exhaust gas guide portion of an exhaust gas turbocharger
WO2019072521A1 (en) Internal combustion engine for a motor vehicle and motor vehicle with an internal combustion engine of this type
DE102014203084A1 (en) Supercharged internal combustion engine e.g. petrol engine, has inlet openings comprising flows of turbine, where flows of turbine are connected by release of bypass in upstream of running wheel and in downstream of inlet openings
DE102019202380B4 (en) Internal combustion engine with an exhaust manifold and an exhaust gas turbocharger
DE102012014189A1 (en) Internal combustion engine has exhaust conduits to provide lower and higher pressure drop for flowing exhaust gas, and exhaust turbine whose first cross-section of flow passage is smaller than second cross-section of flow passage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07722922

Country of ref document: EP

Kind code of ref document: A1