WO2007100148A1 - Inverted pendulum type movable body - Google Patents

Inverted pendulum type movable body Download PDF

Info

Publication number
WO2007100148A1
WO2007100148A1 PCT/JP2007/054487 JP2007054487W WO2007100148A1 WO 2007100148 A1 WO2007100148 A1 WO 2007100148A1 JP 2007054487 W JP2007054487 W JP 2007054487W WO 2007100148 A1 WO2007100148 A1 WO 2007100148A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
auxiliary wheel
leg
auxiliary leg
angle
Prior art date
Application number
PCT/JP2007/054487
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Yamamoto
Toshiharu Miyazaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2007100148A1 publication Critical patent/WO2007100148A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/12Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with variable number of ground engaging wheels, e.g. with some wheels arranged higher than others, or with retractable wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62HCYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
    • B62H1/00Supports or stands forming part of or attached to cycles
    • B62H1/02Articulated stands, e.g. in the shape of hinged arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider

Definitions

  • the present invention relates to an inverted moving body.
  • the present invention relates to an oval rotating body (for example, «, a sphere, etc.) and its time ⁇ times!
  • the present invention relates to an inverted »type moving body having a stand main body supported so as to be freely tiltable around, and relates to an inverted type moving body in which a cart body is inverted by driving a fringe swirling around a floor.
  • the “inverted type moving body” means that the center of gravity of the main body of the fountain is located above the rotating shaft of the rotating body, and the rotating body can be controlled to sleep and the body power and standing state can be maintained. No moving body. Background
  • the inverted moving body turns the trolley body upside down by subjecting the rotating body in contact with the floor surface to saddle control (ie, inverted control). Stopping the inversion of the book can force the stand to turn upside down.
  • a moving body has been developed that allows the main body to be in an inverted state while the inversion control of the ⁇ : is stopped (for example, JP 2004-291799 A).
  • the moving body disclosed in Japanese Patent Application Laid-Open No. 2004-291799 is provided with an assisting wheel attached to the base body so as to be movable up and down, and an actuator for raising and lowering the auxiliary wheel.
  • the auxiliary wheels are moved up and down by an actuator, and are arranged at a position that does not contact the floor so as not to obstruct the movement of the carriage during the inversion control.
  • the auxiliary wheel is placed at the position where it can be swung with the floor surface.
  • the platform body can maintain the stable inverted state. Disclosure of the Invention
  • the traveling iS ⁇ of the moving body is 0 mZ s
  • the platform 3 ⁇ 4 ⁇ ⁇ in the direction of movement ⁇ The tilt angle of the body is 0 °, and the platform and the floor are ⁇ Yes, the lift of the auxiliary wheel, m
  • the descending angle is set. For this reason, when the state of the moving body when the auxiliary wheel is lowered is consistent with 3 ⁇ 4 ⁇ , the auxiliary wheel is lowered to suitably worm on the surface of the auxiliary wheel. As a result, the moving body can be supported in a stable state.
  • the state of the moving body when the auxiliary wheel is lowered does not match the case of the auxiliary wheel, and the inverted state may become unstable when the auxiliary wheel is lowered.
  • the inversion control is also performed when the auxiliary wheel is lowered. Therefore, in practice, the traveling habit will not be O m./s, and the angle of inclination of the base will not be 0 degrees.
  • the auxiliary wheel is lowered when the vehicle stops: ⁇ means that the running speed is 0 ⁇ ⁇ s and 0 degrees. Therefore, if the auxiliary wheel is lowered in such a situation, all the auxiliary wheels will not worm on the floor at the same timing.
  • the inverted state of the base will become unstable due to the third part.
  • the base body and the floor surface do not become ⁇ f (ie, the base body body is inverted and the floor surface force s is tilted, so Even if the body and the floor surface are inconsistent with each other, the main body (the standing state becomes unstable).
  • An object of the present invention is to provide a technique capable of preventing a moving body (a standing state from becoming unstable when lowering an auxiliary wheel.
  • the moving body of the present invention includes a rotating body having a circular cross section and a base body that can be tilted around the rotator of the rotating body.
  • This moving body controls the rotating body that has been transversal on the floor surface by controlling it vertically, so that the base ⁇ : body is turned over in an inverted state.
  • the moving body includes a first auxiliary leg that is extendable from the base body to the floor, a first auxiliary wheel that is rotatably attached to the first auxiliary leg, and a first auxiliary leg.
  • a first auxiliary wheel device having a first telescopic actuator for extending and retracting is disposed on the front side of the carriage body in the moving body traveling direction.
  • the moving body includes a second auxiliary leg that is extendable from the base ⁇ body toward the floor side, a second auxiliary wheel that is rotatably attached to the second auxiliary leg, and a second auxiliary leg.
  • a second auxiliary wheel device having a second telescopic actuator for extending / contracting the auxiliary leg is disposed on the rear side of the moving body of the body. Then, the first and second auxiliary wheel devices can stand and extend / extend / extend the auxiliary leg.
  • This moving body can change the lifting and lowering amounts of the first and second auxiliary wheels and ⁇ or ascending ⁇ by independently changing the yarn ⁇ and ⁇ or the extension ⁇ of the first and second auxiliary legs. Can be changed. For this reason, this moving body can lift and lower the MTe auxiliary wheel according to the state of the moving body. As a result, this moving body can turn the auxiliary wheel to the floor surface while keeping the main spring body in a stable inverted state. ' As the “rotating body”, one or more ⁇ s arranged on the same axis can be used, or a sphere can be used.
  • “Rotating body” is a sphere or one 3 ⁇ 4: In 3 ⁇ 4, auxiliary wheel devices are provided at four locations on the floor of the rotating body around the reversal point in the traveling direction of the moving body. S-preferred. Supporting the main body of the dolly can be supported stably by supporting the main body from four directions.
  • the “rotary body” is two or more wheels, at least one auxiliary wheel device is provided before and after the moving body, respectively.
  • auxiliary wheel is not limited to the eaves, but may be any device that can move the mortar body with respect to the floor surface in a state of force S contact between the auxiliary wheel and the floor surface. Therefore, even a sphere corresponds to the “auxiliary wheel” described above.
  • first telescopic actuator and the “second telescopic actuator”
  • various types of actuators such as motors, 3 ⁇ 4E, and hydraulic actuators can be used.
  • the first auxiliary wheel device may further include a first elevation angle actuator that changes the elevation of the first auxiliary leg.
  • the second auxiliary wheel device may further include a second elevation angle actuator that changes the elevation angle of the second auxiliary leg.
  • the first and second auxiliary wheel devices are preferably capable of raising and lowering the angle of the auxiliary leg, respectively.
  • the moving body can change the elevation angle of the auxiliary wheel by changing the elevation angle of the first and second auxiliary legs. For this reason, it is possible to move the auxiliary wheels to the floor surface by reducing the movement of the auxiliary legs and lowering the auxiliary wheels with a sickle according to the situation of the moving body.
  • first elevation angle actuator and the “second elevation angle actuator”, for example, an actuator using a motor or hydraulic pressure can be used.
  • the upper moving body further comprises: (1) a platform in the direction of gravity; ⁇ means for measuring the tilt angle of the body; (2) measuring means for measuring 3 ⁇ 4g of the main body of the carriage; and (3) a floor on the base body. And a controller for controlling the first and second auxiliary wheel devices, and at least one of measuring means for measuring the inclination angle of the surface. Then, based on the measurement result measured by the measuring means, the controller determines at least one of the extension amount, extension / contraction and elevation angle of the first auxiliary leg, and at least one of the extension amount, extension / contraction separation and elevation angle of the second auxiliary leg. Control one.
  • the first and second support legs can be expanded or contracted according to either the up-and-down angle. Is done. For this reason, the auxiliary wheel can be lowered in a more stable state.
  • the upper moving body had the first and second auxiliary legs telescopic.
  • the book The invention may be such that only the elevation angle of the first auxiliary leg and the second auxiliary leg is adjusted.
  • another moving body of the present invention includes a rotating body having a circular cross section and a base body that is supported by tilting around the rotating shaft of the rotating body. This moving body turns the base body upside down by «controlling the rotating body».
  • the moving body includes a first auxiliary leg rotatably attached to the base body, a first auxiliary wheel rotatably attached to the first auxiliary leg, and a first auxiliary leg for rotating the first auxiliary leg.
  • a first auxiliary wheel device having an elevation angle actuator is disposed on the front side of the moving body of the body.
  • the movable body includes a second auxiliary leg that is rotatably attached to the main spring body, a second auxiliary wheel that is rotatably attached to the second auxiliary leg, and the second auxiliary leg.
  • a second auxiliary wheel device having a second lifting angle actuator to be moved is arranged on the rear side of the moving body of the base body.
  • Each of the first and second auxiliary wheel devices is characterized by being able to stand up and adjust the elevation angle of the auxiliary leg.
  • This moving object can also be used to support the younger sister's face while keeping the stand body in a stable inverted state.
  • FIG. 1 is a front view of the moving body according to the present example.
  • FIG. 2 is a side view of the moving body according to the present example.
  • FIG. 3 is an excerpt diagram for explaining the auxiliary wheel device for a moving body according to this example.
  • FIG. 4 is an excerpt illustrating the auxiliary wheel device for a moving body according to this example.
  • FIG. 5 is an excerpt illustrating the auxiliary wheel device for a moving body according to the present embodiment.
  • FIG. 6 is an excerpt illustrating the auxiliary wheel device for a moving body according to the present embodiment.
  • Figure 7 is a model of the moving body and the auxiliary wheel system.
  • Figure 8 shows the configuration of the control system of this male example.
  • Fig. 9 is a flowchart showing the processing procedure of the controller of this example.
  • FIG. 10 is a diagram for explaining still another example of the auxiliary wheel device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the controller controls the motor that takes $ 3 ⁇ 4.
  • the controller inputs the deviation of the moving object's eye position, the target deviation, and the vertical fungus.
  • the controller outputs a control command value to the motor so as to reduce these deviations and t-tilt angle.
  • Form 2 The controller stops the inversion control of the base after the auxiliary wheel contacts the floor. On the other hand, the controller extends and / or rotates the auxiliary legs so that the base body is horizontal with respect to the moving direction. “Horizontal with respect to the moving direction” means a state in which the center of gravity of the base ⁇ body is positioned in the vertical direction of: and the state where the upper surface force S of the base body is horizontal. That is, after the auxiliary wheel is wormed, it controls the fountain body by controlling the extension / rotation angle of the auxiliary leg.
  • Mode 3 The controller controls the motor that operates the auxiliary wheel device so that when the auxiliary wheel is wormed on the floor surface, the controller is moved from the state where it has been lowered to just before and just before reaching the auxiliary wheel force sister surface.
  • Auxiliary wheel force s Extend and retract and Z or rotate the auxiliary leg in two stages until it turns to the floor.
  • FIG. 2 is a front view of the moving body
  • FIG. 2 is a partially broken side view of the moving body. In both figures, the state force S with the auxiliary wheel removed from the floor is shown.
  • the moving body 70 includes a base body 10 and supports 14 and 15 attached to the base body 10 so as to be freely rotatable.
  • the carriage 10 is constituted by a carriage upper plate 10 b, a carriage lower plate 10 a, and a carriage side plate 10 c force connecting the carriage upper plate 10 b and the carriage lower plate 10 a.
  • the sensors 40 0, 4 1, which are provided later, are installed on W of the carriage upper plate 10 b.
  • Auxiliary wheel devices 2 1, 2 2, which will be described in detail later, are installed on the bottom plate 10 a of the carriage.
  • bearing portions 1 2 and 13 are disposed at the approximate center on the lower cart plate 10a.
  • ⁇ 3 ⁇ 4 1 6, 17 are rotatably supported on the bearing portions 1 2, 1 3.
  • a wheel 14 is attached to one end of an axle 16 as ⁇ "f" in FIG.
  • a motor 18 that can rotate in the forward and reverse directions is attached to the other end of the axle 16. For this reason, when the motor 18 force S rotates in the forward or reverse direction; ⁇ 1 6 rotates in the forward or reverse direction. As a result, 3 ⁇ 4 14 also rotates in the positive direction or direction.
  • 3 ⁇ 43 ⁇ 4 15 is attached to one end of il 7. The other end of il 7 has a motor 19 that can rotate in the IB ⁇ direction.
  • the example 17 force S rotates in the forward direction or the reverse direction.
  • ⁇ 15 also rotates in the forward direction or direction (hereinafter, the direction in which both wheels 14 and 15 rotate and move in the forward direction is the front side in the traveling direction of the moving body; The direction in which 4 and 15 both rotate and move in the ⁇ direction is called the rear side of the moving body).
  • the moving body 70 is under image control: ⁇ , the motors 18 and 19 are controlled by a controller 50 (shown in FIG. 8).
  • a gyro sensor 20 is attached to the lower surface of the cart lower plate 10 a and is lowered.
  • Jie mouth sensor 2 0 Force S detected tilt spring body 1 0 angle is input to controller 50.
  • the controller 50 controls the motors 18 and 19 so that the itH angle 3 ⁇ 4 of the main spring body 10 becomes “0”.
  • the base body 10 0 force S is in an inverted state.
  • the auxiliary wheel devices 2 1 and 2 2 disposed on the lower cart 10 a will be described.
  • the auxiliary wheel device 21 is attached to the main body 10 (at the front side of the moving body 70 in the traveling direction).
  • the auxiliary wheel device 2 2 is attached to the rear of the fountain body 10 (the rear side of the moving body 70 in the traveling direction).
  • the auxiliary wheel device 21 will be described.
  • the auxiliary wheel device 21 is composed of an auxiliary leg 2 1 b and an extension mechanism (2 3, 2 5, 2 7, 2 9) that changes the expansion and contraction 43 ⁇ 4 ⁇ ⁇ of the auxiliary leg 2 1 b. .
  • a spherical auxiliary wheel 2 1 a is attached to the tip of the auxiliary leg 2 1 b.
  • the base end of the auxiliary leg 2 1 b is connected to the lift (2 3, 2 5, 2 7, 2 9).
  • the ascending mechanism (2 3, 2 5, 2 7, 2 9) is provided with a motor 23 for changing the elevation angle of the auxiliary leg 2 1 b.
  • the motor 23 is installed on the upper surface of the cart lower plate 10 a.
  • a rotating plate 2 5 is attached to the rotating shaft 2 3 a of the motor 2 3.
  • the rotary plate 2 5 also rotates
  • a slider 2 7 is slidably attached to the rotary plate 2 5. Slider 2 7
  • the bearing part force S is not shown in the figure.
  • the auxiliary part 2 1 b is rotatably supported by this bearing part.For this reason, it is anti-25 force S times » ⁇
  • the auxiliary leg 2 1 b turns! Rt ". As a result, the elevation of the auxiliary leg 2 1 b can be changed.
  • the rotation amount of the motor 23 is detected by the encoder 23 3a (shown in FIG. 8). Time 4 detected by the encoder 2 3 a is input to the controller 50.
  • the controller 50 calculates the angle of the auxiliary leg 2 1 b (that is, the elevation angle of the auxiliary leg 2 1 b) over the base unit body 10 from the rotation detected by the encoder 2 3 a.
  • the motor 23 is controlled based on the angle. As a result, the raising / lowering angular force S of the auxiliary leg 21b is controlled.
  • ⁇ ⁇ 10 d is formed at the center of the cart lower plate 10 a. This prevents the auxiliary leg 21b from interfering with the cart bottom plate 10a when changing the elevation angle of the auxiliary leg 21b.
  • an I thread s is formed on the outer peripheral surface of the auxiliary leg 21 b. Screws are formed on the support 3 1 fixed to the rotating plate 25. The male screw of the auxiliary leg 2 1 b is screwed with the female screw of the supporting member 3 1. Auxiliary leg 2 1 b Force When S rotates, auxiliary leg 2 1 b slides up and down with respect to support 3 1. For this reason, the auxiliary wheel 2 1 a attached to the tip of the auxiliary leg 21 b also slides up and down.
  • the auxiliary leg 2 1 b is connected to the motor 2 9!
  • the motor 29 rotates
  • the auxiliary leg 2 1 b rotates.
  • the auxiliary leg 2 1 b force S rotates
  • the auxiliary leg 2 1 b slides up and down with respect to the support 3 1 (that is, the extension force S of the auxiliary leg 2 1 b changes).
  • the auxiliary wheel 2 1 a attached to the auxiliary leg 2 1 b also moves up and down SrT.
  • Motor 2 9 rotation and rotation Stlt Detected by DA 29a (shown in Figure 8).
  • the rotation and rotation detected by the encoder 29a are input to the controller 50.
  • the controller 50 calculates the expansion / contraction speed and expansion / contraction speed of the auxiliary leg 21b with respect to the cart body 10 from the rotation 4/3 rotation degree detected by the encoder 29a.
  • the controller 50 controls the motor 29 so that the calculated expansion / contraction amount and expansion / contraction force S have desired values.
  • Auxiliary wheel device 22 is also provided with an auxiliary leg 22 b and an elevating mechanism (24, 26, 28, 30) that changes the expansion and contraction of the auxiliary leg 22 b in the same manner as the auxiliary wheel device 21 that has been adjusted. It is configured.
  • An auxiliary wheel 22a which is a sphere, is attached to the tip of the auxiliary leg 22b. The base end of the auxiliary leg 22b is connected to the ascending (24, 26, 28, 30).
  • the lifting rod that changes the lifting and lifting angle of the auxiliary leg 22b includes the motor 24 that changes the lifting angle of the auxiliary leg 22b, the rotation 26 attached to the turn 24a of the motor 24, and the rotating plate 26.
  • These motor 24, revolution 526, slider 28, support 32, and motor 30 have the same configuration as the motor 23, rotating plate 25, slider 27, support 31 and motor 29 of the auxiliary wheel device 21 described above. is there. For this reason, further explanation is omitted here.
  • the wisteria and the force force of the base body 10 are calculated from the rotational speeds of the motors 18 and 19.
  • the number of rotations of the motors 18, 19 is detected by encoders 18a, 19a (shown in FIG. 8).
  • the detected rotational speeds of motors 18, 19 are input to the controller 50.
  • the controller 50 calculates the evacuation and calorie avoidance of the main spring body 10 from the input rotational speeds of the motors 18 and 19.
  • the angle of inclination in the direction of the trolley body 10 is measured according to the following column. That is, as shown in FIG. 1, the support members 33 and 34 are fixed at the approximate center in the front-rear direction of the cart lower plate 10 a T®.
  • the struts 33 and 34 are rotatably supported by a turn 35. In a state where the rotating shaft 35 is supported by the support members 33 and 34, the rotating shaft 35 is disposed perpendicular to the cores 14 and 15.
  • an eave 36 is fixed at the approximate center of the rotating shaft 35.
  • the pendulum 36 has an appropriate weight so that the pendulum 36 always faces the direction of gravity.
  • An encoder 37 is attached to one end of the rotation 3 ⁇ 435.
  • the encoder 37 measures the rotation angle 0 of the pendulum 36 (that is, the rotation angle of the rotating shaft 35). With encoder 37 36 fresh times detected! ⁇ ⁇ is input to controller 50.
  • the oblique angle 0 in the ⁇ direction of the platform 10 is obtained by the rotation angle ⁇ i of »36 detected by the encoder 37. That is, trolley body 10 is moving at a constant speed ⁇ , 3 ⁇ 4
  • ⁇ 36 is in the direction of gravity.
  • the rotation ⁇ i of the pendulum 36 becomes the tilt angle ⁇ in the direction of the base 10. Therefore, the rotation angle ⁇ 1 of the pendulum 36 detected by the encoder 37 is in the direction of the cart body 10 ⁇ t3 ⁇ 4 bevel angle 0.
  • the base; »10 forces 3 ⁇ 4t @ X is: ⁇ ,» 36 is subject to the inertia ⁇ .
  • the controller 50 calculates the addition / separation of the moving body 70 from the deviation of the rotational speeds of the motors 18, 19 detected by the encoders 18a, 19a.
  • the controller 50 determines the inertia acting on 36 from the calculated correction, and calculates »36 times based on the inertia.
  • the tilt angle of the floor relative to the main body 10 is measured by sensors 40 and 41 that measure a one-dimensional distance.
  • Sensors 40 and 41 are mounted on the top plate 10b of the carriage. Sensors 40 and 41 measure the distance from the carriage upper plate 10b to the floor in the vehicle longitudinal direction.
  • the sensor 40 detects the distance h from the front lower surface of the carriage upper plate 10b to the floor surface.
  • Sensor 41 detects the Sg3 ⁇ 4 h 2 to the floor from the rear of the TB of the carriage top plate 10 b.
  • Eg hh 2 detected by the sensors 40 and 41 is input to the controller 50.
  • the controller 50 calculates the jaw beveled floor that from Sgl h have h 2 is input to the base # 0 (carriage top plate 10 b).
  • the controller 50 calculates the tilt angle that crosses in the direction of the floor surface from both values. be able to.
  • FIG. 8 is a block diagram showing the configuration of the control system of the moving body 70.
  • the moving body 70 is controlled by the controller 50.
  • the controller 50 mainly includes (1) inversion control and movement control of the moving body by controlling the motors 18 and 19, and (2) the auxiliary legs 21b and 22b by controlling the motors 23 and 24.
  • the lift angle is controlled and (3) the auxiliary legs 21 b and 22 b are controlled by controlling the motors 29 and 30 and the stretched yarn f * 3 ⁇ 4 and the stretched 3 ⁇ 4 P are performed.
  • a gyro sensor 20 is connected to the controller 50.
  • the controller 50 receives the output of the gyro sensor 20 (the low inclination angle s of the base 10).
  • the motors 18 and 19 that rotate the wheels 14 and 15 are replaced.
  • the controller 50 is provided with encoders 18a, 19 & which detect the rotation amounts of the motors 18 and 19.
  • the rotation amount of the motors 18 and 19 detected by the encoders 18a and 19a is input to the controller 50.
  • the controller 50 calculates 53 ⁇ 4 of the position of ⁇ 3 ⁇ 4 ⁇ of the moving body 70 based on the detected values inputted from the encoders 18 a and 19 a forces.
  • the deviation of the target position and the current position given by the position deviation IJ, the deviation of the current deviation, the deviation given by the deviation, the deviation of 3 ⁇ 43 ⁇ 43 ⁇ 43 ⁇ 4, and the tilt angle detected by the gyro sensor 20 are “0”.
  • the control method disclosed in Japanese Patent Application Laid-Open No. 2004-291 799 can be used for the wholesale method of the motors 18 and 19 by the controller 50, more detailed description will be given here. Is omitted.
  • the controller 50 has motors 23 and 24. Further, the controller 50 is provided with encoders 23 a and 24 a force S for detecting rotations of the motors 23 and 24. The amount of rotation of the motors 23 and 24 detected by the encoders 23a and 24a is input to the controller 50.
  • the controller 50 controls the lifting angle of the 2 lb and 22 b catching feet: ⁇ , the controller 50 first determines the state of the moving body 70 detected by the encoders 18 a and 19 a, the encoder 37 and the sensors 40 and 41, etc. (Base; ⁇ wisteria of main body 10, tilt angle in the direction of movement of the main body 10 and tilt angle of the floor surface in the base plate body 10) decide.
  • the controller 50 calculates the actual lift angle of the auxiliary legs 2 lb and 22 b based on the rotation amount input from the encoders 23 a and 24 a, and the lift angle (that is, the actual lift angle determined)
  • the torque command value is output to the motors 23 and 24 to achieve the target operation.
  • the controller 50 has motors 29 and 30. Also, the controller 50 is sold with encoders 29 a and 30 a that detect the rotation amounts of the motors 29 and 30. The amount of rotation of the motors 29 and 30 detected by the encoders 29a and 30a is input to the controller 50. The extension and contraction of the auxiliary legs 21 b and 22 b «I ⁇ Contract; ⁇ The controller 50 controls the moving body 70 detected by the encoders 18 a and 19 a, the encoder 37, the sensors 40 and 41, etc.
  • the controller 50 calculates the actual expansion / contraction tension and the expansion / contraction tension of the motor 29 and 30 so that the actual expansion / contraction force S and the determined expansion / contraction boat (target ⁇ ) are obtained.
  • the actual extension and contraction of the auxiliary legs 2 lb and 22 b are calculated based on the times input from 30 a, and the controller so determines the actual extension and contraction MS.
  • the torque command value is output to the motors 29 and 30 so that the contraction contraction 3 ⁇ 4 ⁇ (target value) is obtained.
  • the moving body 70 makes the auxiliary wheels 2 la and 22 a contact the floor surface in two steps. Therefore, it is possible to lower the auxiliary wheels 21a and 22a.Therefore, the time from the start of the auxiliary wheels 2la, 22a to the simulation of the floor surface is reduced by lowering the first stage quickly. In the second stage, the lowering of the second stage is slow, so that the power of the auxiliary wheel 21 a, 22 a is reduced. , 22 a force S It can prevent the moving body 70 from becoming unstable when it touches the floor surface.
  • FIG. 3 shows a state where the auxiliary wheels 21 a and 22 a are lifted and the base 10 is traveling while being inverted.
  • FIG. 4 shows a state where the auxiliary wheels 2 1 a and 22 a are held on the floor surface which is horizontal in the direction of the platform ⁇ ⁇ : body 10 force.
  • FIG. 5 shows a state where the auxiliary wheels 2 la and 22a are in contact with the floor surface horizontal in the 3 ⁇ 4 ⁇ direction.
  • Fig. 6 shows the state in which the auxiliary wheels 2la, 22a are turned to the heel slope with the basin body 10 on the slope.
  • the controller 5 ⁇ uses the input values of the encoders 18a, 19a, encoder 37 and sensors 40, 41 to determine the speed of the truck body 10,
  • the inclination angle in the moving direction of 10 and the oblique angle of the floor surface from 3 ⁇ 4 to r in the platform 10 are calculated.
  • the controller 50 has the calculated tilt of the main body 10 3 ⁇ 4i, base ⁇ : tilt angle and base 3 ⁇ 4H in the moving direction of the body 10;
  • W body 1 Determine the torque command value to be output to motors 23, 24, 29, and 30.
  • the base body 10 force S the level of the auxiliary wheel 2 la, 22 a on the floor surface that is horizontal in the moving direction and the horizontal direction in the moving direction
  • the elevation angles of 21b and 22b are left at their initial values (that is, as shown in Fig. 3).
  • the controller 50 has a motor so that the expansion / contraction amount of the auxiliary leg 21 b is equal to the expansion f
  • the torque command value is output to 29 and 30. As the motors 29 and 30 rotate based on the torque command value output from the controller 50, the auxiliary legs 21b and 22b extend and contact wheels 21a and 22a force S contact the floor surface. (The state shown in Figure 4).
  • the base »body 10 forces S is horizontal in the direction of movement, and the auxiliary wheel is flipped to the floor surface in the direction of movement in the state, or on the heel slope as shown in Fig.
  • the base in the ⁇ : body 10 force to rotate the auxiliary wheel to the surface ⁇ is the controller 50, the boat of the base body 10 calculated, the tilt angle and the base ⁇ ⁇ body in the direction of movement Determine the expansion / contraction amount of the auxiliary legs 21b and 22b, the expansion / contraction boat and the descending angle from the slant angle (at around ⁇ ).
  • the controller 50 motors based on the determined expansion / contraction amount, expansion / contraction 3 ⁇ 4g3 ⁇ 4 and elevation angle.
  • the torque command value is output to 23, 24, 29, 30 and the auxiliary wheel 21a, 22a is applied to the power plane.
  • the extension is extended and the extension is extended as the extension amount becomes longer, and the extension is increased.
  • the extension is increased while the extension amount is reduced and the extension is reduced.
  • the expansion and contraction 3 ⁇ 4S is reduced, so that the auxiliary wheels 2 la and 22 a can be swung to the floor almost simultaneously, and in the example shown in FIG.
  • the carriage body 10 can be placed horizontally with respect to the direction of gravity. Status Returned. This Yotsute, the center of gravity 60 of the moving body 70 is positioned vertically in ⁇ 16, 17, it is possible to maintain a more stable ⁇ .
  • the controller 50 calculates the tilt angle in the moving direction of the body 10 from the h 2 detected by the sensors 40 and 41. Next, the controller 50 determines the extension H43 ⁇ 4 and the elevation angle of the auxiliary legs 2 lb and 22 b so that the base body 10 becomes horizontal from the calculated oblique angle. Finally, the controller 50 The torque command value is output to the motors 23, 24, 29, and 30 based on the expansion and contraction angles of 21b and 22b. As a result, the motors 23, 24, 29, and 30 are powered, and the main body 10 is returned to 7K flat (state shown in Fig. 7 (c)).
  • the controller 50 first receives an auxiliary wheel device lowering command from an internal or external remote control device (step S 1).
  • the controller 50 tilts the moving body 70 based on the input values of the encoders 18a, 19a, the encoder 37, and the sensors 40, 41 (in the direction of gravity of the carriage body 10). (Tilt angle), the speed of the moving body 70, and the floor surface 3 ⁇ 4 ⁇ the body angle is calculated (step S2). This makes the controller 50 the most stable for the current situation.
  • the position of the auxiliary wheel 2 la, 22 a can be determined (that is, the expansion / contraction angle of the auxiliary leg 21 b, 22 b and the elevation angle can be determined).
  • the controller 5 ⁇ determines the amount of expansion / contraction of the auxiliary legs 2 lb and 22 b, the elevation angle and the contraction speed until just before the auxiliary wheels 21 a and '22 a hit the floor (step) S 3). Then, the controller 50 outputs torque command values to the motors 23, 24, 29, and 30 (step S4). As a result, the auxiliary legs 2 lb and 22b start to expand and contract and rotate.
  • step S4 the controller 50 determines the lift angle and the lift amount of each auxiliary wheel 21a and 22a in step S3. It is determined whether the force reaches the target amount ⁇ (Step S5). The lift angle and lift amount are the target amounts: ⁇ (YES in step S5), go to step S6. On the other hand, when the elevation angle and the elevation amount are not the target amounts (NO in step S5), the process returns to step S2 and the processing from step S2 is repeated. As a result, the auxiliary wheels 21a and 22a are lowered to a position immediately before contacting the floor surface.
  • step S6 the controller 50 calculates the inclination and speed of the moving body 70 and the inclination angle of the floor surface based on the input values of the encoders 18a and 19a, the encoder 37, and the sensors 40 and 41. . As a result, the controller 50 can determine the positions of the auxiliary wheels 21 a and 22 a that can maintain the most stable ⁇ according to the current situation.
  • step S7 the controller 50 determines the expansion / contraction amount, the elevation angle and the expansion / contraction speed of the auxiliary legs 21b, 22b until the auxiliary wheels 2la, 22a are translocated to the floor.
  • step S8 the controller 50 outputs a torque command value to the motors 23, 24, 29, 3 ° (step S8).
  • the auxiliary legs 21 b and 22 b further extend and rotate and rotate.
  • the controller 50 determines whether the lifting angle and the descending amount of each auxiliary wheel 21a, 22a is the target amount. (Step S9).
  • the lift and drop are the target determined in step S7: f ⁇ (YES in step S9) proceeds to step S10.
  • step S9 the process returns to step S6 and the process of step S6 force is repeated.
  • the auxiliary wheels 2 la and 22 a are lowered to a position where they are in contact with the floor surface.
  • step S9 auxiliary wheel 21a, 22a force S
  • controller 50 determines the inclination angle of base 10 in the direction of movement and the inclination angle of the floor surface toward base 10 in the moving direction.
  • the controller 50 determines whether or not the tilt angle of 3 ⁇ 4 ⁇ in the moving direction of the base body 10 is “0” (that is, the base body 10 force S is horizontal).
  • step S11 When the tilt angle of the main body 10 with respect to the heavy load direction is "0" (YES in step S11), the controller 50 stops the auxiliary wheel devices 21, 22 The tilt angle in the direction of movement of the base 10 does not become “0” ( ⁇ in step S11), and go to step S12.
  • step S12 the controller 50 moves the auxiliary leg 2 lb, 22 b to extend, raise and lower so that the moving body 70 (that is, the base body 10) is horizontal to the direction.
  • the contract is decided (step S12).
  • the controller 50 outputs torque command values to the motors 23, 24, 29, and 30 (step S13).
  • the auxiliary legs 21b and 22b start to expand and contract, and the base 10 is returned to be horizontal in the direction.
  • step S14 the controller 50 raises the auxiliary wheels 21a, 22a! It is determined whether or not the amount of precipitation has reached the target amount determined in step S12 (step S14).
  • the controller 50 stops the auxiliary wheels 21 and 22.
  • the process returns to step S10 and the processing from step S10 is repeated. Accordingly, the assisting wheel devices 21 and 22 are beaten until they become horizontal with respect to the base »body 10 force S moving direction.
  • the auxiliary wheel devices 21 and 22 force S are defined independently, and the auxiliary wheel 21 a and 22 a force S are rotated with respect to the moving body 70. Moves and descends to hold insects on the floor. Also, the angle of inclination of the platform 10 and the angle of inclination of the floor relative to the cart body 10 are measured, and the angle of inclination of the auxiliary wheel device 21 '22 is measured based on this measurement. The stretching speed and descending angle are controlled. 'The moving body 70 is in a stable state depending on the floor condition. a, 22 a can be wormed on the floor.
  • auxiliary wheels 2 la and 22 a are made to have worms on the floor, the positions of the auxiliary wheels 21 a and 22 a are just before the floor surface is touched, and the two positions from the immediately preceding position to the floor surface are contacted. Lower in stages. In this way, by slowly controlling the wrinkles that turn on the auxiliary wheel 21a, 22a force floor, it is possible to relieve the seed at the time of contact angle Ek "T to the auxiliary wheel 21a, 22a force sister surface. And can prevent instability.
  • auxiliary legs 21b and 22b are used to raise the table; ⁇ : the body 10 is returned to the horizontal direction.
  • Mobile body 70 force S Can be in a stable state. For this reason, even when the auxiliary wheels 2 la and 22 a are used, the moving body 70 can be made more stable than before.
  • the moving body 70 that has been subjected to 6 can also move the floor surface with the auxiliary wheels 2 l a and 22 a being wormed on the floor surface.
  • the inversion control of the moving body 70 can be stopped, and the auxiliary wheels 21a, 22a can be supported so as to maintain the stand 10: body 10 force S in an inverted state.
  • the extension / contraction of the auxiliary legs 21b, 22b is controlled according to the angle of the inclined surface. I prefer it.
  • the base 10 can be kept horizontal with respect to the moving direction even when the mobile body 70 runs on the slope S.
  • the male auxiliary wheel device controlled the stretching, stretching and raising / lowering angles of the auxiliary legs.
  • only the elevation angle of the auxiliary leg may be controlled by the auxiliary wheel device.
  • FIG. 10 is an excerpt drawing for explaining the auxiliary wheel devices 101 and 102.
  • the lifting force of the auxiliary wheel 1 O la, 102 a s only by the rotation of the auxiliary legs 101 b, 102 b. »Will be '
  • FIG. 10 (a) shows a state in which the movable body performs the inversion control by raising the collars 101a and 102a of the auxiliary wheel devices 101 and 102 from the floor force.
  • Figure 10 (b) shows a state in which auxiliary wheels 101a and 102a are placed on a floor surface horizontal in the direction of movement.
  • FIG. 10 (c) shows a state in which the auxiliary wheels 101a and 102a are made to be wormed on the floor surface which is not horizontal in one force direction 110 and which is horizontal in the force direction.
  • Fig. 10 (d) shows a table »body 10 ⁇ on a slope where auxiliary wheels 101a and 102a are brought into contact! Indicates ⁇ .
  • the moving body does not use the auxiliary wheels 101a, 102a.
  • Raise a from the floor auxiliary wheel 1 O la, 102 a force S Close to the floor that does not translocate.
  • 'Auxiliary wheel 1 O la, 102 a is wormed on the floor surface. »The rotation and the amount of rotation of the auxiliary legs 101 b, 10 2 b are controlled according to the state of the body 10 and the floor surface. Is done.
  • the auxiliary wheel 1 Ola, 102a can be transferred to the floor almost simultaneously.
  • the auxiliary wheels 101a and 102a can be lowered to the floor surface while the cart body 10 is in a stable state.
  • an auxiliary wheel device is provided on the front, back, left and right of the base and the front; Measurement—The front and back, left and right of the body of the dolly (which can be controlled based on the time, the auxiliary wheel device can be controlled. By measuring the inclination of the front and back and left and right of the body, the body is kept in a stable state. The auxiliary wheel can be lowered.
  • the number of auxiliary wheels can be determined as appropriate so that the main body can be stably inverted.
  • an actuator that uses hydraulic power or hydraulic pressure can be used as the actuator that changes the extension 1 * of the auxiliary leg.
  • an actuator that changes the elevation angle of the auxiliary leg can also be used, such as 1 / £ or an actuator that uses hydraulic pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Manipulator (AREA)
  • Handcart (AREA)

Abstract

An inverted pendulum type movable body of which the inverted state can be prevented from becoming unstable when auxiliary wheels are lowered. Auxiliary wheel devices (21, 22) having auxiliary legs (21b, 22b) are disposed at the front and rear of a carriage body (10) in the advancing direction. Motors (23, 24) for adjusting the lifting angles of the auxiliary legs (21b, 22b) and motors (29, 30) for adjusting the extension degrees and/or the extension speeds of the legs (21b, 22b) are mounted on the auxiliary wheel devices. Consequently, the extension degrees and/or the extension speeds of the auxiliary legs (21b, 22b) can be adjusted independently of each other.

Description

明細書 倒立鮮型移動体 本出願は、 2006年 3月 3日に出願された日本国特許出願第 2006— 058571号に 基づく 1»権を主張する。その出願の全ての内容はこの明細書中に参照により援用されて 、る  Description Inverted Fresh Type Mobile Body This application claims a 1 »right based on Japanese Patent Application No. 2006-058571 filed on March 3, 2006. The entire contents of that application are incorporated herein by reference.
技術分野 Technical field
本発明は、倒立 型移動体に関する。 詳しくは、 本発明は、 麵円形の回転体 (例えば、 «、 球等) と、 その回^^の回^!周りに傾動自在に支持される台家本体を有する倒立 » 型移動体に関し、床面に纖虫した回^:を駆 frfることで台車本体を倒立状態にSfする倒立 型の移動体に関する。 ここで、 「倒立 型移動体」 とは、 台泉本体の重心が回転体の回 転軸より上方に位置し、回転体を,睡制御し 、と台 体力,立状態を維持することができ ない移動体をいう。 背景賺  The present invention relates to an inverted moving body. In detail, the present invention relates to an oval rotating body (for example, «, a sphere, etc.) and its time ^^ times! The present invention relates to an inverted »type moving body having a stand main body supported so as to be freely tiltable around, and relates to an inverted type moving body in which a cart body is inverted by driving a fringe swirling around a floor. Here, the “inverted type moving body” means that the center of gravity of the main body of the fountain is located above the rotating shaft of the rotating body, and the rotating body can be controlled to sleep and the body power and standing state can be maintained. No moving body. Background
倒立 型の移動体は、床面に接触した回転体を聽制御 (すなわち倒立制御) することで 台車本体を倒立状態に^ rる。回 本の倒立輔卸を停止すると台家本体が倒立状態を醫す ること力でき する。回^:の倒立制御を停止している間も台; ^本体が倒立状態を糸歸す ることができる移動体が開発されている (ィ列えば、 特開 2004— 291799号)。  The inverted moving body turns the trolley body upside down by subjecting the rotating body in contact with the floor surface to saddle control (ie, inverted control). Stopping the inversion of the book can force the stand to turn upside down. A moving body has been developed that allows the main body to be in an inverted state while the inversion control of the ^: is stopped (for example, JP 2004-291799 A).
特開 2004— 291799号に開示された移動体は、台 体に対して昇降自在に取付け られた捕助輪と、 その補助輪を昇降させるァクチユエ一タを備えている。補助輪は、 ァクチュ エータにより昇降し、倒立制御時には台車の移動の邪魔にならないよう床面と接触しなレヽ位置 に配置されている。 倒立制御停止時には、補助輪は、床面と翻 EH "る位置に配置される。 補助 輪が床面と徽 る位置に配置されることで、台韩体が倒立状態を安定して保つことができ る。 発明の開示 The moving body disclosed in Japanese Patent Application Laid-Open No. 2004-291799 is provided with an assisting wheel attached to the base body so as to be movable up and down, and an actuator for raising and lowering the auxiliary wheel. The auxiliary wheels are moved up and down by an actuator, and are arranged at a position that does not contact the floor so as not to obstruct the movement of the carriage during the inversion control. When the inverted control is stopped, the auxiliary wheel is placed at the position where it can be swung with the floor surface. By placing the auxiliary wheel at a position opposite to the floor surface, the platform body can maintain the stable inverted state. Disclosure of the Invention
Mした従来の移動体では、移動体の走行 iS^が 0 m.Z s、動方向に ¾~Τる台^:体の傾 斜角が 0度、 台 体と床面とが ϊであるという謝是で、補助輪の昇降量、 m 降角が設定されている。 このため、 補助輪下降時の移動体の状態が ¾ ^件と一 »る ^に は、 補助輪を下降させることで補助輪妹面に好適に纖虫する。 これにより、移動体を安定し た状態で支 it ることができる。 In the case of a conventional moving body, the traveling iS ^ of the moving body is 0 mZ s, the platform ¾ ~ Τ in the direction of movement ^: The tilt angle of the body is 0 °, and the platform and the floor are ϊ Yes, the lift of the auxiliary wheel, m The descending angle is set. For this reason, when the state of the moving body when the auxiliary wheel is lowered is consistent with ¾ ^^, the auxiliary wheel is lowered to suitably worm on the surface of the auxiliary wheel. As a result, the moving body can be supported in a stable state.
しかしながら、 実際には、 補助輪下降時の移動体の状態が Ιίί^件と一 ることはなく、 補助輪を下降させたときに倒立状態が不安定となる がある。 例えば、 この種の移動体では 、 補助輪を下降させる際も倒立制御 ίお ΐわれる。 そのため、 実際には走行赚が O m./ sとな らず、 台 体の惧斜角も 0度とならない。 また、 、停止時に補助輪を下降させる:^は、 走行 ¾¾¾び傾きは 0 π κ s及び 0度とならなレヽ。 したがつて、 このような状況で補助輪が下 降されると、全ての補助輪が同一のタイミングで床面と攝虫することはなレ、。 一部の補助輪の みが床面と纖 ると、その ¾ の によって台 体の倒立状態が不安定となってしまう 。 あるいは、 床面力 s傾いているために台 本体と床面とが ^ fとならない (すなわち、 台 家本体は倒立制御されており、床面力 s傾レ、てレヽるために台¾:体と床面とが 亍とならなレ、場 合) にも、 台家本体 (^立状態が不安定化する。 However, in reality, the state of the moving body when the auxiliary wheel is lowered does not match the case of the auxiliary wheel, and the inverted state may become unstable when the auxiliary wheel is lowered. For example, with this type of moving body, the inversion control is also performed when the auxiliary wheel is lowered. Therefore, in practice, the traveling habit will not be O m./s, and the angle of inclination of the base will not be 0 degrees. In addition, the auxiliary wheel is lowered when the vehicle stops: ^ means that the running speed is 0 π κ s and 0 degrees. Therefore, if the auxiliary wheel is lowered in such a situation, all the auxiliary wheels will not worm on the floor at the same timing. If only some of the auxiliary wheels come in contact with the floor surface, the inverted state of the base will become unstable due to the third part. Alternatively, because the floor surface force s is tilted, the base body and the floor surface do not become ^ f (ie, the base body body is inverted and the floor surface force s is tilted, so Even if the body and the floor surface are inconsistent with each other, the main body (the standing state becomes unstable).
本発明は ± ζϋした事情を鑑みてなされたもめである。 本発明の目的は、補助輪を下降させる 際に、移動体 (^立状態が不安定な状態となることを防止することができる技術を るこ とである。  The present invention has been made in view of the circumstances of ± ζ. An object of the present invention is to provide a technique capable of preventing a moving body (a standing state from becoming unstable when lowering an auxiliary wheel.
本発明の移動体は、 断面円形の回転体と、 その回転体の回繊周りに傾動自在に辦される 台 体を有してレヽる。 この移動体は、床面に翻虫した回転体を,垂制御することで台 φφ:体 を倒立状態に糸勝する。 この移動体には、 台 »体から床面側に向かって伸縮自在とされた第 1補助脚と、 その第 1補助脚に回転自在に取付けられた第 1補助輪と、 第 1補助脚を伸縮させ る第 1伸縮ァクチユエ一タを有する第 1補助輪装置が台車本体の移動体進行方向前側に配置 されている。 また、 この移動体には、 台 ¾Φ体から床面側に向かって伸縮自在とされた第 2補 助脚と、 その第 2補助脚に回転自在に取付けられた第 2補助輪と、 第 2補助脚を伸縮させる第 2伸縮ァクチユエータを有する第 2補助輪装置が台^:体の移動体進行方向後側に配置され ている。 そして、 第 1及び第 2補助輪装置は、 それぞ 虫立して補助脚の伸 ϋ¾び/又は伸 縮 ^を できる。 '  The moving body of the present invention includes a rotating body having a circular cross section and a base body that can be tilted around the rotator of the rotating body. This moving body controls the rotating body that has been transversal on the floor surface by controlling it vertically, so that the base φφ: body is turned over in an inverted state. The moving body includes a first auxiliary leg that is extendable from the base body to the floor, a first auxiliary wheel that is rotatably attached to the first auxiliary leg, and a first auxiliary leg. A first auxiliary wheel device having a first telescopic actuator for extending and retracting is disposed on the front side of the carriage body in the moving body traveling direction. Further, the moving body includes a second auxiliary leg that is extendable from the base ΦΦ body toward the floor side, a second auxiliary wheel that is rotatably attached to the second auxiliary leg, and a second auxiliary leg. A second auxiliary wheel device having a second telescopic actuator for extending / contracting the auxiliary leg is disposed on the rear side of the moving body of the body. Then, the first and second auxiliary wheel devices can stand and extend / extend / extend the auxiliary leg. '
この移動体は、第 1及び第 2の補助脚の伸糸 ϋ及び Ζ又は伸縮聽を独立して変化させるこ とで、 第 1及び第 2の補助輪の昇降量及び Ζ又は昇^^を変化させることができる。 このた め、 この移動体は、移動体の状態に応じた昇降 び昇 MTe補助輪を下降させることがで きる。 これによつて、 この移動体は、 台泉本体を安定な倒立状態に保ちながら補助輪を床面に 翻虫させることができる。 ' なお、 「回転体」 には、 同軸上に配された 1以上の^を用いることができ、 あるいは、 球 体を用いることができる。 「回転体」 が球体あるいは 1つの ¾である: ¾には、 回転体の床 面の翻虫点を中心として移動体の進行方向前後左右の 4箇所に補助輪装置が設けられている こと力 S好ましレヽ。 補助 台家本体を 4方向から支財ることで、 台車本体を安定して支える ことができる。 また、 「回転体」 が 2以上の車輪である場合には、 移動体の進行方向前後にそ れぞ; 少なくとも 1つの補助輪装置が設けられてレ、ること力 s好ましレ、。 This moving body can change the lifting and lowering amounts of the first and second auxiliary wheels and Ζ or ascending ^^ by independently changing the yarn ϋ and Ζ or the extension 聽 of the first and second auxiliary legs. Can be changed. For this reason, this moving body can lift and lower the MTe auxiliary wheel according to the state of the moving body. As a result, this moving body can turn the auxiliary wheel to the floor surface while keeping the main spring body in a stable inverted state. ' As the “rotating body”, one or more ^ s arranged on the same axis can be used, or a sphere can be used. “Rotating body” is a sphere or one ¾: In ¾, auxiliary wheel devices are provided at four locations on the floor of the rotating body around the reversal point in the traveling direction of the moving body. S-preferred. Supporting the main body of the dolly can be supported stably by supporting the main body from four directions. In addition, when the “rotary body” is two or more wheels, at least one auxiliary wheel device is provided before and after the moving body, respectively.
また、 「補助輪」 は、 雜には限られず、 補助輪と床面と力 S接触した状態で台鉢体を床面 に対して移動させることができるものであればよレ、。 したがって、 球体であっても上記 「補助 輪」 に相当する。  In addition, the “auxiliary wheel” is not limited to the eaves, but may be any device that can move the mortar body with respect to the floor surface in a state of force S contact between the auxiliary wheel and the floor surface. Therefore, even a sphere corresponds to the “auxiliary wheel” described above.
また、 「第 1伸縮ァクチユエータ」 と 「第 2伸縮ァクチユエータ」 には、 種々のァクチユエ ータ例えば、 モータや ¾E、 油圧を利用したァクチユエ一タ等を用いることができる。  For the “first telescopic actuator” and the “second telescopic actuator”, various types of actuators such as motors, ¾E, and hydraulic actuators can be used.
上記移動体においては、第 1補助輪装置は、第 1補助脚の昇降 を変ィ匕させる第 1昇降角ァ クチユエータをさらに有することができる。 第 2補助輪装置は、第 2補助脚の昇降角を変化さ せる第 2昇降角ァクチユエータをさらに有す ことができる。 そして、第 1及び第 2補助輪装 置は、 それぞ; h虫立して補助脚の昇降角を できることが好ましレ、。  In the above moving body, the first auxiliary wheel device may further include a first elevation angle actuator that changes the elevation of the first auxiliary leg. The second auxiliary wheel device may further include a second elevation angle actuator that changes the elevation angle of the second auxiliary leg. The first and second auxiliary wheel devices are preferably capable of raising and lowering the angle of the auxiliary leg, respectively.
この移動体は、 第 1及び第 2補助脚の昇降角を変化させることで、補助輪の昇降角を変える ことができる。 このため、補助脚の動作の自由度力 曽し、 移動体の状況により応じた鎌で捕 助輪を下降させて、 補助輪を床面に翻虫させることができる。  The moving body can change the elevation angle of the auxiliary wheel by changing the elevation angle of the first and second auxiliary legs. For this reason, it is possible to move the auxiliary wheels to the floor surface by reducing the movement of the auxiliary legs and lowering the auxiliary wheels with a sickle according to the situation of the moving body.
なお、 「第 1昇降角ァクチユエータ」 と 「第 2昇降角ァクチユエータ」 には、 種々のァクチ ユエータを用いることができ、 例えば、 モータや 油圧を利用したァクチユエ一タ等を用 いることができる。  It should be noted that various actuators can be used for the “first elevation angle actuator” and the “second elevation angle actuator”, for example, an actuator using a motor or hydraulic pressure can be used.
上 動体は、 さらに、 (1 ) 重力方向に る台;^体の ί 斜角を測定する手段と (2 ) 台車本体の ¾gを測定する測定手段と (3 ) 台 本体に ¾~rる床面の傾斜角を測定する測定手 段のうちの少なくとも一つと、 第 1及び第 2補助輪装置を制御するコントローラと、 をさらに 備えることができる。 そして、 コントローラは、 測定手段で測定された測 诘果に基づいて、 第 1補助脚の伸縮量と伸縮 と昇降角の少なくとも 1つと、第 2補助脚の伸縮量と伸縮離 と昇降角の少なくとも 1つを制御する。  The upper moving body further comprises: (1) a platform in the direction of gravity; ^ means for measuring the tilt angle of the body; (2) measuring means for measuring ¾g of the main body of the carriage; and (3) a floor on the base body. And a controller for controlling the first and second auxiliary wheel devices, and at least one of measuring means for measuring the inclination angle of the surface. Then, based on the measurement result measured by the measuring means, the controller determines at least one of the extension amount, extension / contraction and elevation angle of the first auxiliary leg, and at least one of the extension amount, extension / contraction separation and elevation angle of the second auxiliary leg. Control one.
このような構成によると、 測定手段によって測定された結果 (すなわち、 台 ΐ^:体の状態) に基づいて、 第 1及び第 2捕助脚の伸縮 伸縮髓ゃ昇降角のいずれかカ淛御される。 この ため、 より安定した状態で補助輪の下降が可能となる。  According to such a configuration, based on the result measured by the measuring means (ie, table ^: body condition), the first and second support legs can be expanded or contracted according to either the up-and-down angle. Is done. For this reason, the auxiliary wheel can be lowered in a more stable state.
なお、 上 動体は、 第 I補助脚及び第 2補助脚を伸縮自在としていた。 しかしながら、 本 発明は、 第 1補助脚と第 2補助脚の昇降角のみを することにしてもよレ、。 The upper moving body had the first and second auxiliary legs telescopic. However, the book The invention may be such that only the elevation angle of the first auxiliary leg and the second auxiliary leg is adjusted.
すなわち、本発明の他の移動体は、 断面円形の回転体と、 その回転体の回転軸周りに傾動自 在に支持される台 ¾^体を有して 、る。 この移動体は、 回転体を «制御することで台 »体 を倒立状態に, する。 この移動体には、 台 本体に回動自在に取付けられた第 1補助脚と、 その第 1補助脚に回転自在に取付けられた第 1補助輪と、第 1補助脚を回動させる第 1昇降角 ァクチユエータを有する第 1補助輪装置が台^;体の移動体進行方向前側に配置されてレ、る。 また、 この移動体には、 台泉本体に回動自在に取付けられた第 2補助脚と、 その第 2補助脚に 回転自在に取付けられた第 2補助輪と、第 2補助脚を回動させる第 2昇降角ァクチユエータを 有する第 2補助輪装置が台 »体の移動体進行方向後側に配置されている。 そして、第 1及び 第 2補助輪装置は、 それぞ 虫立して補助脚の昇降角を調整できることを特徴とする。  That is, another moving body of the present invention includes a rotating body having a circular cross section and a base body that is supported by tilting around the rotating shaft of the rotating body. This moving body turns the base body upside down by «controlling the rotating body». The moving body includes a first auxiliary leg rotatably attached to the base body, a first auxiliary wheel rotatably attached to the first auxiliary leg, and a first auxiliary leg for rotating the first auxiliary leg. A first auxiliary wheel device having an elevation angle actuator is disposed on the front side of the moving body of the body. In addition, the movable body includes a second auxiliary leg that is rotatably attached to the main spring body, a second auxiliary wheel that is rotatably attached to the second auxiliary leg, and the second auxiliary leg. A second auxiliary wheel device having a second lifting angle actuator to be moved is arranged on the rear side of the moving body of the base body. Each of the first and second auxiliary wheel devices is characterized by being able to stand up and adjust the elevation angle of the auxiliary leg.
この移動体によっても、台林体を安定な倒立状態に保ちながら補助 妹面に擲 るこ とができる。 図面の簡単な説明  This moving object can also be used to support the younger sister's face while keeping the stand body in a stable inverted state. Brief Description of Drawings
図 1は、 本 例に係る移動体の正面図である。 FIG. 1 is a front view of the moving body according to the present example.
図 2は、 本«例に係る移動体の側面図である。 FIG. 2 is a side view of the moving body according to the present example.
図 3は、 本 «例に係る移動体の補助輪装置を説明する抜粋図である。 FIG. 3 is an excerpt diagram for explaining the auxiliary wheel device for a moving body according to this example.
図 4は、 本¾例に係る移動体の補助輪装置を説明する抜粋図である。 FIG. 4 is an excerpt illustrating the auxiliary wheel device for a moving body according to this example.
図 5は、 本実施例に係る移動体の補助輪装置を説明する抜粋図である。 FIG. 5 is an excerpt illustrating the auxiliary wheel device for a moving body according to the present embodiment.
図 6は、 本実施例に係る移動体の補助輪装置を説明する抜粋図である。 FIG. 6 is an excerpt illustrating the auxiliary wheel device for a moving body according to the present embodiment.
図 7は、 移動体の台 体と補助輪装置に関してモデル化した図である。 Figure 7 is a model of the moving body and the auxiliary wheel system.
図 8は、 本雄例の制御系の構成を;^ H 能プロック図である。 Figure 8 shows the configuration of the control system of this male example.
図 9は、 本 例の制御コントローラの処理手順を示すフローチヤ一トである。 Fig. 9 is a flowchart showing the processing procedure of the controller of this example.
図 1 0は、 補助輪装置の 1»幾構のさらに他の例を説明する図である。 発明を実施するための最良の形態 FIG. 10 is a diagram for explaining still another example of the auxiliary wheel device. BEST MODE FOR CARRYING OUT THE INVENTION
下記の実施例に記載の ίΤ術の主要な糊敫について列記する。  The main glues for printing techniques described in the examples below are listed.
(形態 1 ) コントローラは、 $¾を職するモータを制御する。 コントローラには、移動体 の目衞 i置の偏差、 目標 の偏差及 縦斗角菌カ s入力される。 コントローラは、 これらの 偏差及 t斜角 を小さくするようにモータに制御指令値を出力する。  (Form 1) The controller controls the motor that takes $ ¾. The controller inputs the deviation of the moving object's eye position, the target deviation, and the vertical fungus. The controller outputs a control command value to the motor so as to reduce these deviations and t-tilt angle.
(形態 2 ) コントローラは、 補助輪が床面に接触した後は台 体の倒立制御を停止する。 一方、 コントローラは、台家本体が動方向に対して水平となるように補助脚を伸縮及び/又 は回動させる。 「動方向に対して水平」 は、 台 ¾Φ体の重心が: の鉛直方向に位置する状 態をいい、 台家本体の上面力 S水平となる状態である。 すなわち、補助輪が纖虫した後は、補助 脚の伸 び/又は回動角度を制御することで、 台泉本体の を制御する。 (Form 2) The controller stops the inversion control of the base after the auxiliary wheel contacts the floor. On the other hand, the controller extends and / or rotates the auxiliary legs so that the base body is horizontal with respect to the moving direction. “Horizontal with respect to the moving direction” means a state in which the center of gravity of the base ΦΦ body is positioned in the vertical direction of: and the state where the upper surface force S of the base body is horizontal. That is, after the auxiliary wheel is wormed, it controls the fountain body by controlling the extension / rotation angle of the auxiliary leg.
(形態 3 ) コントローラは、補助輪装置を するモータを制御することにより補助輪を床 面に擻虫させる際、補助輪力妹面に擲 ¾1 "る直前までと、直前まで下降させた状態から補助輪 力 s床面に翻 るまでの 2段階に分けて、 補助脚を伸縮及び Z又は回動させる。  (Mode 3) The controller controls the motor that operates the auxiliary wheel device so that when the auxiliary wheel is wormed on the floor surface, the controller is moved from the state where it has been lowered to just before and just before reaching the auxiliary wheel force sister surface. Auxiliary wheel force s Extend and retract and Z or rotate the auxiliary leg in two stages until it turns to the floor.
(実施例)  (Example)
本発明を難化した一雄例を図面に基づレヽて説明する。 まず、移動体の漏白彌成につい て図 1及び図 2を参照して説明する。 ここで、 図; 動体の正面図、 図 2は同移動体の一部 破断側面図である。 両図においては、 補助輪を床面に撤虫させた状態力 S示されている。  An example of the present invention that makes the present invention difficult will be described with reference to the drawings. First, the leakage of the moving body will be described with reference to FIGS. FIG. 2 is a front view of the moving body, and FIG. 2 is a partially broken side view of the moving body. In both figures, the state force S with the auxiliary wheel removed from the floor is shown.
図 1及び図 2に示すように移動体 7 0は、台家本体 1 0と、台»体 1 0に回転自在に取付 けられた輔 1 4 , 1 5を備えている。 台 体 1 0は、 台車上板 1 0 bと、 台車下板 1 0 a と、台車上板 1 0 bと台車下板 1 0 aを連結する台車側板 1 0 c力ら構成されている。 台車上 板 1 0 bの Wには後财るセンサ 4 0 , 4 1力 ¾己設されている。 台車下板 1 0 a上には、後 で詳 る補助輪装置 2 1 , 2 2力 ¾己設されている。  As shown in FIGS. 1 and 2, the moving body 70 includes a base body 10 and supports 14 and 15 attached to the base body 10 so as to be freely rotatable. The carriage 10 is constituted by a carriage upper plate 10 b, a carriage lower plate 10 a, and a carriage side plate 10 c force connecting the carriage upper plate 10 b and the carriage lower plate 10 a. The sensors 40 0, 4 1, which are provided later, are installed on W of the carriage upper plate 10 b. Auxiliary wheel devices 2 1, 2 2, which will be described in detail later, are installed on the bottom plate 10 a of the carriage.
図 2に示すように、 台車下板 1 0 a上の略中央には軸受け部 1 2 , 1 3が配設されてレヽる。 軸受け部 1 2 , 1 3には^ ¾ 1 6 , 1 7が回転自在に支持されている。 図 1に^ "f"ように、車 軸 1 6の一端には車輪 1 4が取付けられている。車軸 1 6の他端には正逆方向に回転可能なモ ータ 1 8が取付けられて 、る。 このため、モータ 1 8力 S正方向又は 向に回転すると;^由 1 6が正方向又は逆方向に回転する。 これによつて ¾ 1 4も正方向又は 向に回転する。 同 様に、 il 7の一端には ¾¾ 1 5が取付けられている。 il 7の他端には IB^向に回転 可能なモータ 1 9が取付けられている。 このため、モータ 1 9が正方向又は逆方向に回転する と¾¾ 1 7力 S正方向又は逆方向に回転する。 これによつて^ 1 5も正方向又は 向に回転 する (以下、車輪 1 4, 1 5が共に正方向に回転して移動する方向を移動体の進行方向前側と レ、い、 ; ¾ 1 4, 1 5が共に^^向に回転して移動する方向を移動体の進行方向後側という) 。移動体 7 0が,画制御されている:^ には、 モータ 1 8, 1 9は、 コントローラ 5 0 (図 8 に図示) により «制御される。 台車下板 1 0 aの下面には、 ジャイロセンサ 2 0が取付けら れてレヽる。 ジャィ口センサ 2 0力 S検出した台泉本体 1 0のィ 斜角 は、 コントローラ 5 0に 入力される。 コントローラ 5 0は、 台泉本体 1 0の itH角 ¾ が 「 0」 となるようにモータ 1 8 , 1 9を睡制御する。 これにより、 台 本体 1 0力 S倒立状態を麟している。 次に、 台車下板 1 0 a上に配設された補助輪装置 2 1 , 2 2を説明する。 図 2に示すように 、 補助輪装置 2 1は台車本体 1 0の ΐϋ¾· -(移動体 7 0の進行方向前側) に取付けられている。 補助輪装置 2 2は台泉本体 1 0の後方 (移動体 7 0の進行方向後側) に取付けられている。 ま ず、 補助輪装置 2 1につレ、て説明する。 As shown in FIG. 2, bearing portions 1 2 and 13 are disposed at the approximate center on the lower cart plate 10a. ^ ¾ 1 6, 17 are rotatably supported on the bearing portions 1 2, 1 3. A wheel 14 is attached to one end of an axle 16 as ^ "f" in FIG. A motor 18 that can rotate in the forward and reverse directions is attached to the other end of the axle 16. For this reason, when the motor 18 force S rotates in the forward or reverse direction; ^ 1 6 rotates in the forward or reverse direction. As a result, ¾ 14 also rotates in the positive direction or direction. Similarly, ¾¾ 15 is attached to one end of il 7. The other end of il 7 has a motor 19 that can rotate in the IB ^ direction. For this reason, when the motor 19 rotates in the forward direction or the reverse direction, the example 17 force S rotates in the forward direction or the reverse direction. As a result, ^ 15 also rotates in the forward direction or direction (hereinafter, the direction in which both wheels 14 and 15 rotate and move in the forward direction is the front side in the traveling direction of the moving body; The direction in which 4 and 15 both rotate and move in the ^^ direction is called the rear side of the moving body). The moving body 70 is under image control: ^, the motors 18 and 19 are controlled by a controller 50 (shown in FIG. 8). A gyro sensor 20 is attached to the lower surface of the cart lower plate 10 a and is lowered. Jie mouth sensor 2 0 Force S detected tilt spring body 1 0 angle is input to controller 50. The controller 50 controls the motors 18 and 19 so that the itH angle ¾ of the main spring body 10 becomes “0”. As a result, the base body 10 0 force S is in an inverted state. Next, the auxiliary wheel devices 2 1 and 2 2 disposed on the lower cart 10 a will be described. As shown in FIG. 2, the auxiliary wheel device 21 is attached to the main body 10 (at the front side of the moving body 70 in the traveling direction). The auxiliary wheel device 2 2 is attached to the rear of the fountain body 10 (the rear side of the moving body 70 in the traveling direction). First, the auxiliary wheel device 21 will be described.
補助輪装置 2 1は、補助脚 2 1 bと、 その補助脚 2 1 bの伸縮 4¾Ό ^降角を変化させる昇 降機構 ( 2 3 , 2 5, 2 7, 2 9 ) によって構成されている。 補助脚 2 1 bの先端には球体で ある補助輪 2 1 aが取付けられている。 補助脚 2 1 bの基端は昇醉纖 ( 2 3 , 2 5, 2 7, 2 9 ) に接続されている。  The auxiliary wheel device 21 is composed of an auxiliary leg 2 1 b and an extension mechanism (2 3, 2 5, 2 7, 2 9) that changes the expansion and contraction 4¾Ό ^ of the auxiliary leg 2 1 b. . A spherical auxiliary wheel 2 1 a is attached to the tip of the auxiliary leg 2 1 b. The base end of the auxiliary leg 2 1 b is connected to the lift (2 3, 2 5, 2 7, 2 9).
昇«構 (2 3, 2 5 , 2 7 , 2 9 ) は、 補助脚 2 1 bの昇降角を変化させるためのモータ 2 3を備えてレ、る。 モータ 2 3は、 台車下板 1 0 aの上面に酉己設されてレ、る。モータ 2 3の回 転軸 2 3 aには回転板 2 5が取付けられている。モータ 2 3が回転して回転軸 2 3 aが回転す ると、 回転板 2 5も回 |¾1 "る。 回転板 2 5にはスライダ 2 7がスライド可能に取付けられてい る。 スライダ 2 7には図示しなレ、軸受け部力 S設けられている。 この軸受け部には、 ネ助月却 2 1 bが回転自在に支持されている。 このため、 反2 5力 S回 »τΤると、 補助脚 2 1 bが回!rt" る。 これによつて補助脚 2 1 bの昇醜を変化させることができる。  The ascending mechanism (2 3, 2 5, 2 7, 2 9) is provided with a motor 23 for changing the elevation angle of the auxiliary leg 2 1 b. The motor 23 is installed on the upper surface of the cart lower plate 10 a. A rotating plate 2 5 is attached to the rotating shaft 2 3 a of the motor 2 3. When the motor 2 3 rotates and the rotary shaft 2 3 a rotates, the rotary plate 2 5 also rotates | ¾1 ". A slider 2 7 is slidably attached to the rotary plate 2 5. Slider 2 7 The bearing part force S is not shown in the figure.The auxiliary part 2 1 b is rotatably supported by this bearing part.For this reason, it is anti-25 force S times »τ The auxiliary leg 2 1 b turns! Rt ". As a result, the elevation of the auxiliary leg 2 1 b can be changed.
モータ 2 3の回転量は、 エンコーダ 2 3 a (図 8に図示) によって検出される。 エンコーダ 2 3 aで検出された回^ 4はコントローラ 5 0に入力される。 コントローラ 5 0は、 ェンコ一 ダ 2 3 aで検出された回転量から台家本体 1 0に财る補助脚 2 1 bの角度 (すなわち、補助 脚 2 1 bの昇降角) を算出し、 その角度に基づいてモータ 2 3を制御する。 これによつて、補 助脚 2 1 bの昇降角力 S制御される。  The rotation amount of the motor 23 is detected by the encoder 23 3a (shown in FIG. 8). Time 4 detected by the encoder 2 3 a is input to the controller 50. The controller 50 calculates the angle of the auxiliary leg 2 1 b (that is, the elevation angle of the auxiliary leg 2 1 b) over the base unit body 10 from the rotation detected by the encoder 2 3 a. The motor 23 is controlled based on the angle. As a result, the raising / lowering angular force S of the auxiliary leg 21b is controlled.
なお、 図 1に示すように、 台車下板 1 0 aの中央に ί 冓 1 0 dが形成されている。 これによ り、補助脚 2 1 bの昇降角の変化をさせるときに補助脚 2 1 bと台車下板 1 0 aとが干渉しな いようになっている。  In addition, as shown in FIG. 1, ί 冓 10 d is formed at the center of the cart lower plate 10 a. This prevents the auxiliary leg 21b from interfering with the cart bottom plate 10a when changing the elevation angle of the auxiliary leg 21b.
また、補助脚 2 1 bの外周面に « Iネジカ s形成されている。 回転板 2 5に固定された支材 3 1に ネジが形成されている。 補助脚 2 1 bの雄ネジは支材 3 1の雌ネジと螺合している。 補助脚 2 1 b力 S回転すると、支材 3 1に対して補助脚 2 1 bが上下方向にスライドする。 この ため、 補助脚 2 1 bの先端に取付けられた補助輪 2 1 aも上下方向にスライドする。 In addition, an I thread s is formed on the outer peripheral surface of the auxiliary leg 21 b. Screws are formed on the support 3 1 fixed to the rotating plate 25. The male screw of the auxiliary leg 2 1 b is screwed with the female screw of the supporting member 3 1. Auxiliary leg 2 1 b Force When S rotates, auxiliary leg 2 1 b slides up and down with respect to support 3 1. For this reason, the auxiliary wheel 2 1 a attached to the tip of the auxiliary leg 21 b also slides up and down.
補助脚 2 1 bの にはモータ 2 9力接続されて!/ヽる。モータ 2 9が回転すると補助脚 2 1 bが回転する。 ネ甫助脚 2 1 b力 S回転すると、支材 3 1に対して補助脚 2 1 bが上下方向にスラ ィドする (すなわち、 補助脚 2 1 bの伸驢カ S変化する)。 これによつて、 補助脚 2 1 bに取 付けられた補助輪 2 1 aも上下方向に移 SrTる。モータ 2 9の回転 び回 Stltはェンコ一 ダ 29 a (図 8に図示) によって検出される。 エンコーダ 29 aで検出された回 ¾¾¾び回転 はコントローラ 50に入力される。 コントローラ 50は、エンコーダ 29 aで検出された 回転 4¾び回 塞度から台車本体 10に対する補助脚 21 bの伸縮 4¾び伸縮速度を算出す る。 コントローラ 50は、その算出した伸縮量及び伸縮 力 S所望の値となるようにモータ 2 9を制御する。 The auxiliary leg 2 1 b is connected to the motor 2 9! When the motor 29 rotates, the auxiliary leg 2 1 b rotates. When the auxiliary leg 2 1 b force S rotates, the auxiliary leg 2 1 b slides up and down with respect to the support 3 1 (that is, the extension force S of the auxiliary leg 2 1 b changes). As a result, the auxiliary wheel 2 1 a attached to the auxiliary leg 2 1 b also moves up and down SrT. Motor 2 9 rotation and rotation Stlt Detected by DA 29a (shown in Figure 8). The rotation and rotation detected by the encoder 29a are input to the controller 50. The controller 50 calculates the expansion / contraction speed and expansion / contraction speed of the auxiliary leg 21b with respect to the cart body 10 from the rotation 4/3 rotation degree detected by the encoder 29a. The controller 50 controls the motor 29 so that the calculated expansion / contraction amount and expansion / contraction force S have desired values.
次に、補助輪装置 22について説明する。 補助輪装置 22も、 ±¾ϋした補助輪装置 21と同 様に、補助脚 22 bと、 その補助脚 22 bの伸縮颜 醜を変ィ匕させる昇降機構 (24, 26, 28, 30) によって構成されている。補助脚 22 bの先端には球体である補助輪 22 aが取付けられてレヽる。 補助脚 22bの基端は昇 (24, 26, 28, 30) に接続さ れている。  Next, the auxiliary wheel device 22 will be described. Auxiliary wheel device 22 is also provided with an auxiliary leg 22 b and an elevating mechanism (24, 26, 28, 30) that changes the expansion and contraction of the auxiliary leg 22 b in the same manner as the auxiliary wheel device 21 that has been adjusted. It is configured. An auxiliary wheel 22a, which is a sphere, is attached to the tip of the auxiliary leg 22b. The base end of the auxiliary leg 22b is connected to the ascending (24, 26, 28, 30).
補助脚 22 bの伸糸 び昇降角を変化させる昇降謹は、補助脚 22 bの昇降角を変化さ せるモータ 24と、モータ 24の回 24 aに取付けられた回 反 26と、 回転板 26上を スライドするスライダ 28と、 回転板 26上に固定された支材 32と、補助脚 22 bの伸縮量 を変化させるモータ 30によって構成されている。 これらモータ 24、 回^ 526、 スライダ 28、支ネす 32、 モータ 30は、 上述した補助輪装置 21のモータ 23、 回転板 25、 スライ ダ 27、支材 31、 モータ 29のそれぞれと同一構成である。 そのため、 ここでは、 これ以上 の説明にっレ、ては省略する。  The lifting rod that changes the lifting and lifting angle of the auxiliary leg 22b includes the motor 24 that changes the lifting angle of the auxiliary leg 22b, the rotation 26 attached to the turn 24a of the motor 24, and the rotating plate 26. A slider 28 that slides upward, a support member 32 fixed on the rotating plate 26, and a motor 30 that changes the amount of expansion / contraction of the auxiliary leg 22b. These motor 24, revolution 526, slider 28, support 32, and motor 30 have the same configuration as the motor 23, rotating plate 25, slider 27, support 31 and motor 29 of the auxiliary wheel device 21 described above. is there. For this reason, further explanation is omitted here.
次に、台家本体 10の離、 台泉本体 10の動方向に る惧斜角及び台 本体 10に対 する床面の候斜角の測 法にっレ、て説明する。  Next, a description will be given of the measurement of the separation angle of the pedestal main body 10, the inclination angle of the movement direction of the fountain main body 10, and the slope angle of the floor surface relative to the pedestal main body 10.
台韩体 10の藤と力ロ¾¾は、 モータ 18, 19の回転数から算出される。 モータ 18, 19の回転'数はエンコーダ 18 a、 19 a (図 8に図示) により検出される。 検出されたモー タ 18, 1 9の各回転数はコントローラ 50に入力される。 コントローラ 50は、入力された モータ 18, 19の各回転数から台泉本体 10の聽及ひカロ避を算出する。  The wisteria and the force force of the base body 10 are calculated from the rotational speeds of the motors 18 and 19. The number of rotations of the motors 18, 19 is detected by encoders 18a, 19a (shown in FIG. 8). The detected rotational speeds of motors 18, 19 are input to the controller 50. The controller 50 calculates the evacuation and calorie avoidance of the main spring body 10 from the input rotational speeds of the motors 18 and 19.
台車本体 10の 方向に ¾Ι~Τる傾斜角は下記の欄によって測定される。すなわち、 図 1 に示すように、台車下板 10 a T®の前後方向の略中央部には支材 33, 34が固定されてレヽ る。 その支材 33, 34には回 35が回転自在に支持されている。 回転軸 35が支材 33 , 34に支持された状態では、 回転軸 35は輔 14, 15に対して垂直に配されている。 図 2に良く示されるように、回転軸 35の略中央には軒 36が固定されている。移動体 70が 等速で運動している場合には、振子 36が常に重力方向を向くように、振子 36は適度な重さ を有している。 回^ ¾35の一端には、エンコーダ 37が取付けられている。 エンコーダ 37 は、 振子 36の回転角 0 (すなわち、 回車云軸 35の回転角) を測定する。 エンコーダ 37で 検出された鮮36の回!^ θ はコントローラ 50に入力される。 The angle of inclination in the direction of the trolley body 10 is measured according to the following column. That is, as shown in FIG. 1, the support members 33 and 34 are fixed at the approximate center in the front-rear direction of the cart lower plate 10 a T®. The struts 33 and 34 are rotatably supported by a turn 35. In a state where the rotating shaft 35 is supported by the support members 33 and 34, the rotating shaft 35 is disposed perpendicular to the cores 14 and 15. As well shown in FIG. 2, an eave 36 is fixed at the approximate center of the rotating shaft 35. When the moving body 70 is moving at a constant speed, the pendulum 36 has an appropriate weight so that the pendulum 36 always faces the direction of gravity. An encoder 37 is attached to one end of the rotation ¾35. The encoder 37 measures the rotation angle 0 of the pendulum 36 (that is, the rotation angle of the rotating shaft 35). With encoder 37 36 fresh times detected! ^ θ is input to controller 50.
台韩体 10の≤Λ方向に る候斜角 0は、エンコーダ 37で検出された » 36の回転 角 Θ iによって取得される。 すなわち、 台車本体 10が等速運動をしている^、 ¾|÷36は 重力方向に向いている。 振子 36の回 Θ iが台 体 1 0の 方向に る ί 斜角 Θと なる。 したがつて、 エンコーダ 37で検出された振子 36の回転角 θ 1が台車本体 10の 方向に る {t¾斜角 0となる。 一方、 台; »体 10力 ¾t@Xは している:^、 »36に は加 による慣 ½Λが作用する。 まず、 コントローラ 50は、 エンコーダ 18 a, 19 aよ り検出されたモータ 18, 19の回転数の偏差から、 移動体 70の加離を算出する。 次に、 コントローラ 50は、算出された加聽から 36に作用する慣 を決定し、その慣¾¾ による » 36の回 を算出する。この回 2とエンコーダ 37で検出された 3 6の回^ により、 コントローラ 50は、 台;^本体 10の £Λ方向に る惧斜角 0 (= θ ,-θ2) を算出する。 The oblique angle 0 in the ≤Λ direction of the platform 10 is obtained by the rotation angle Θ i of »36 detected by the encoder 37. That is, trolley body 10 is moving at a constant speed ^, ¾ | ÷ 36 is in the direction of gravity. The rotation Θ i of the pendulum 36 becomes the tilt angle Θ in the direction of the base 10. Therefore, the rotation angle θ 1 of the pendulum 36 detected by the encoder 37 is in the direction of the cart body 10 {t¾ bevel angle 0. On the other hand, the base; »10 forces ¾t @ X is: ^,» 36 is subject to the inertia ΛΛ. First, the controller 50 calculates the addition / separation of the moving body 70 from the deviation of the rotational speeds of the motors 18, 19 detected by the encoders 18a, 19a. Next, the controller 50 determines the inertia acting on 36 from the calculated correction, and calculates »36 times based on the inertia. The controller 50 calculates the angle of inclination 0 (= θ, −θ 2 ) of the base body 10 in the £ Λ direction by this time 2 and the 36 times detected by the encoder 37.
台隼本体 10に対する床面の ί 斜角は、 1次元の距離を計測するセンサ 40, 41によって 測定される。 センサ 40, 41は台車上板 10 bの に取付けられている。 センサ 40, 4 1は、車両前後方向に台車上板 10bから床面までの距離を測定する。 センサ 40は台車上板 10 bの前方の下面から床面までの距離 h を検出する。 センサ 41は台車上板 10 bの後方 の TBから床面までの Sg¾ h2を検出する。 センサ 40, 41によって検出された Eg佳 h h 2は、 コントローラ 50に入力される。 コントローラ 50は、 入力された Sgl hい h2から台 # 0 (台車上板 10 b) に る床面の條斜角を算出する。 台鉢体 10に ¾ "る床面 の慨斜角と台 本体 10の 方向に る傾斜角がわかると、 コントローラ 50は、 両者の 値から床面の 方向に交汁る傲斜角を算出することができる。 The tilt angle of the floor relative to the main body 10 is measured by sensors 40 and 41 that measure a one-dimensional distance. Sensors 40 and 41 are mounted on the top plate 10b of the carriage. Sensors 40 and 41 measure the distance from the carriage upper plate 10b to the floor in the vehicle longitudinal direction. The sensor 40 detects the distance h from the front lower surface of the carriage upper plate 10b to the floor surface. Sensor 41 detects the Sg¾ h 2 to the floor from the rear of the TB of the carriage top plate 10 b. Eg hh 2 detected by the sensors 40 and 41 is input to the controller 50. The controller 50 calculates the jaw beveled floor that from Sgl h have h 2 is input to the base # 0 (carriage top plate 10 b). When the tilt angle of the floor surface of the basin body 10 and the tilt angle in the direction of the base body 10 are known, the controller 50 calculates the tilt angle that crosses in the direction of the floor surface from both values. be able to.
次に、 _ ζϋしたように構成される移動体 70の制御系の構成につ!/ヽて説明する。 図 8は、移 動体 70の制御系の構成を示すブロック図である。  Next, the configuration of the control system of the moving body 70 configured as described above will be described. FIG. 8 is a block diagram showing the configuration of the control system of the moving body 70.
図 8に示すように、移動体 70の制御はコントローラ 50で行われる。 コントローラ 50は 、 主に、 ( 1 ) モータ 18 , 19を制御することによる移動体の倒立制御及ひ移動制御と、 ( 2 ) モータ 23, 24を制御することによる補助脚 21 b, 22 bの昇降角の制御と、 ( 3 ) モ ータ 29, 30を制御することによる補助脚 21 b, 22 bの伸糸 f*¾び伸縮 ¾ の Pを行 う。  As shown in FIG. 8, the moving body 70 is controlled by the controller 50. The controller 50 mainly includes (1) inversion control and movement control of the moving body by controlling the motors 18 and 19, and (2) the auxiliary legs 21b and 22b by controlling the motors 23 and 24. The lift angle is controlled and (3) the auxiliary legs 21 b and 22 b are controlled by controlling the motors 29 and 30 and the stretched yarn f * ¾ and the stretched ¾ P are performed.
( 1 ) 移動体 70の倒立制御及ひ稀制御  (1) Inverted control and rare control of moving object 70
コントローラ 50にはジャイロセンサ 20が摸続されている。 コントローラ 50にはジャィ 口センサ 20の出力 (台 本体 10の低斜角 力 s入力される。 コントローラ 50には、車 輪 14, 15を 1¾¾するモータ 18, 19が換続されている。 さらに、 コントローラ 50には 、 モータ 18, 19の回転量を検出するエンコーダ 18 a, 1 9 &が されている。 コント ローラ 50には、 エンコーダ 18 a, 19 aで検出されたモータ 18, 19の回転量が入力さ れる。 A gyro sensor 20 is connected to the controller 50. The controller 50 receives the output of the gyro sensor 20 (the low inclination angle s of the base 10). The motors 18 and 19 that rotate the wheels 14 and 15 are replaced. Further, the controller 50 is provided with encoders 18a, 19 & which detect the rotation amounts of the motors 18 and 19. The rotation amount of the motors 18 and 19 detected by the encoders 18a and 19a is input to the controller 50.
移動体 70の倒立制御及び移動制御を行う場合、 コントローラ 50は、 エンコーダ 18 a , 19 a力、ら入力される検出値に基づいて移動体 70の ξ¾ϊの位 ひ 在の 5¾ を算出する。 そして、位置偏差 IJ途与えられた目標位置と現在位置の偏 と繊偏差 リ途与えられた 目標 と¾¾¾¾の偏 とジャイロセンサ 20で検出された俱斜角 が 「0」 となるよ うに、 モータ 18, 1 9にトルク指令値を出力する。 ジャィ口センサ 20で検出された慨斜角 碰が 「0」 となるようにモータ 18, 19が制御されるため、移動体 70の倒立状態が維持 される。 なお、 コントローラ 50によるモータ 18, 19の 卸方法につ!/、ては、 特開 200 4-291 799号に開示した制御方法を用いることができるため、 ここでは、 これ以上の詳 細な説明は省略する。  When performing the inversion control and the movement control of the moving body 70, the controller 50 calculates 5¾ of the position of ξ¾ 移動 of the moving body 70 based on the detected values inputted from the encoders 18 a and 19 a forces. The deviation of the target position and the current position given by the position deviation IJ, the deviation of the current deviation, the deviation given by the deviation, the deviation of ¾¾¾¾, and the tilt angle detected by the gyro sensor 20 are “0”. Outputs torque command value to 18, 19 Since the motors 18 and 19 are controlled so that the tilt angle で detected by the jay sensor 20 becomes “0”, the moving body 70 is maintained in an inverted state. In addition, since the control method disclosed in Japanese Patent Application Laid-Open No. 2004-291 799 can be used for the wholesale method of the motors 18 and 19 by the controller 50, more detailed description will be given here. Is omitted.
( 2 ) 補助脚 21 b, 22bの昇降角の制御 '  (2) Control of lifting angle of auxiliary legs 21 b, 22b ''
コントローラ 50にはモータ 23, 24が されている。 また、 コントローラ 50には、 モータ 23, 24の回! ¾を検出するエンコーダ 23 a, 24 a力 S されている。 コント口 —ラ 50には、 エンコーダ 23 a, 24 aで検出されたモータ 23, 24の回転量が入力され る。 捕助脚 2 l b, 22 bの昇降角の制御を行う:^、 コントローラ 50は、 まず、 ェンコ一 ダ 18 a, 19 a、 エンコーダ 37及びセンサ 40, 41等によって検出された移動体 70の 状態(台;^本体 10の藤、 台束本体 10の動方向に财る俱斜角及び台鉢体 10に る床面の 斜角) に応じて、補助脚 2 l b, 22 bの昇降角を決定する。 次いで、 コントロー ラ 50は、エンコーダ 23 a, 24 aから入力される回転量に基づいて補助脚 2 l b, 22 b の実際の昇降角を算出し、実際の昇降角が決定された昇降角 (すなわち、 目標働 となるよう にモータ 23, 24にトルク指令値を出力する。  The controller 50 has motors 23 and 24. Further, the controller 50 is provided with encoders 23 a and 24 a force S for detecting rotations of the motors 23 and 24. The amount of rotation of the motors 23 and 24 detected by the encoders 23a and 24a is input to the controller 50. The controller 50 controls the lifting angle of the 2 lb and 22 b catching feet: ^, the controller 50 first determines the state of the moving body 70 detected by the encoders 18 a and 19 a, the encoder 37 and the sensors 40 and 41, etc. (Base; ^ wisteria of main body 10, tilt angle in the direction of movement of the main body 10 and tilt angle of the floor surface in the base plate body 10) decide. Next, the controller 50 calculates the actual lift angle of the auxiliary legs 2 lb and 22 b based on the rotation amount input from the encoders 23 a and 24 a, and the lift angle (that is, the actual lift angle determined) The torque command value is output to the motors 23 and 24 to achieve the target operation.
(3) 補助脚 21 b, 22 bの伸縮量及 申縮繊の制御  (3) Control of extension and contraction of auxiliary legs 21 b and 22 b and shrinkage
コントローラ 50にはモータ 29, 30が されている。 また、'コントローラ 50には、 モータ 29, 30の回転量を検出するエンコーダ 29 a, 30 aが擦売されている。 コント口 —ラ 50には、 エンコーダ 29 a, 30 aで検出されたモータ 29, 30の回転量が入力され る。 補助脚 21 b, 22bの伸縮 «I ^申縮; ^の制御を行う ± 、 コントローラ 50は、 ま ず、 エンコーダ 18 a, 19 a, エンコーダ 37及びセンサ 40, 41等によって検出された 移動体 70の状態 (台泉本体 10の髓、台束本体 10の 1力方向に るィ 斜角及び台鉢 体 10に ¾ "る床面 <¾{ 斜角) に応じて補助脚 2 l b, 22 bの伸縮 4¾Ό ^申縮 を決定す る。 まず、補助輪 21 a, 22 a力 S床面に翻 る直前までの補助脚 2 l b, 22 bの伸縮量 及 IK申縮速度を決定する。 コントローラ 50は、 エンコーダ 29 a, 30 aから入力された回 隠に基づいて補助脚 21 b' 22 bの実際の伸縮毅び伸縮體を算出する。 そして、 コン トローラ 50は、実際の伸縮 申縮藤力 S決定された伸 申縮艇 (目標 ίί) とな るようにモータ 29, 30にトルク指令値を出力する。 次に、床面に纖 る直前の位置から 床面に翻虫するまでの補助脚 21 b, 22 bの伸縮量及び伸縮藏を決定する。 コントローラ 50は、 ェンコ ダ 29 a, 30 aから入力された回 に基づいて補助脚 2 l b, 22 bの 実際の伸 及 申縮藤を算出する。 そして、 コントローラ soは、 実際の伸縮量及 申縮 MSが決定された伸縮 申縮 ¾ ^ (目標値) となるようにモータ 29, 30にトルク指令 値を出力する。 本移動体 70は、補助輪 2 l a, 22 aを床面に接触させる 、 2段階に分 けて補助輪 21 a, 22 aを下降させることができる。 したがって、 1段階目は早く下降させ ることにより、補助輪 2 l a, 22 aの»開始から床面に擬 "るまでの時間を^ tl "るこ とができる。 また、 2段階目は遅く下降させることで、ネ甫助輪 21 a, 22 a力 S床面に撤虫し た際の纏を和らげる。補助輪 21 a, 22 a力 S床面に纖 した際に、移動体 70が不安定に ならないようにすることができる。 The controller 50 has motors 29 and 30. Also, the controller 50 is sold with encoders 29 a and 30 a that detect the rotation amounts of the motors 29 and 30. The amount of rotation of the motors 29 and 30 detected by the encoders 29a and 30a is input to the controller 50. The extension and contraction of the auxiliary legs 21 b and 22 b «I ^ Contract; ^ The controller 50 controls the moving body 70 detected by the encoders 18 a and 19 a, the encoder 37, the sensors 40 and 41, etc. (Tail spring main body 10 heel, stand bundle main body 10 in one force direction Determine the expansion / contraction of the auxiliary legs 2 lb, 22 b 4¾Ό ^ contraction according to the floor surface <¾ {oblique angle) of the body 10. First, the auxiliary wheels 21 a, 22 a force S are applied to the floor surface. Determine the amount of expansion and contraction of the auxiliary leg 2 lb, 22 b and the IK contraction speed immediately before the controller 50. The controller 50 determines the auxiliary leg 21 b '22 b based on the concealment input from the encoders 29 a, 30 a. The controller 50 calculates the actual expansion / contraction tension and the expansion / contraction tension of the motor 29 and 30 so that the actual expansion / contraction force S and the determined expansion / contraction boat (target ίί) are obtained. Next, determine the amount of expansion and contraction of the auxiliary legs 21 b and 22 b from the position immediately before entering the floor to the transversal to the floor, and the controller 50 uses the encoder 29 a, The actual extension and contraction of the auxiliary legs 2 lb and 22 b are calculated based on the times input from 30 a, and the controller so determines the actual extension and contraction MS. The torque command value is output to the motors 29 and 30 so that the contraction contraction ¾ ^ (target value) is obtained.The moving body 70 makes the auxiliary wheels 2 la and 22 a contact the floor surface in two steps. Therefore, it is possible to lower the auxiliary wheels 21a and 22a.Therefore, the time from the start of the auxiliary wheels 2la, 22a to the simulation of the floor surface is reduced by lowering the first stage quickly. In the second stage, the lowering of the second stage is slow, so that the power of the auxiliary wheel 21 a, 22 a is reduced. , 22 a force S It can prevent the moving body 70 from becoming unstable when it touches the floor surface.
ここで、補助輪 2 l a, 22 aを床面に翻 させる時に、 コントローラ 50によって行われ るネ甫助 P2 l , 22 bの伸,縮量、伸縮速 ¾O ^降角の制御例の概要について説明しておく 。 図 3〜図 6は補助輪装置 21, 22の動作を説明するための一部抜粋図である。 図 3は補助 輪 21 a , 22 aを上昇させて台^ φ:体 10を倒立制御しながら走行している状態を示してい る。図4は台^ Φ:体 10力 方向に水平な状態で 方向に水平な床面に対して補助輪21 a, 22 aを擁虫させた状態を示してレ、る。 図 5は台 »体 10力動方向に水平でな!、状態 で ¾Λ方向に水平な床面に対して補助輪 2 la, 22aを接触させた状態を示している。 図 6 は台鉢体 10が頃斜面上にある状態で補助輪 2 l a, 22 aを俱斜面に翻 させた状態を示 している。 Here, the outline of the control example of the expansion / contraction amount and the expansion / contraction speed of the net assist P2 l, 22 b performed by the controller 50 when the auxiliary wheels 2 la, 22 a are turned to the floor surface. Let me explain. 3 to 6 are partial excerpts for explaining the operation of the auxiliary wheel devices 21 and 22. FIG. 3 shows a state where the auxiliary wheels 21 a and 22 a are lifted and the base 10 is traveling while being inverted. FIG. 4 shows a state where the auxiliary wheels 2 1 a and 22 a are held on the floor surface which is horizontal in the direction of the platform ^ Φ: body 10 force. FIG. 5 shows a state where the auxiliary wheels 2 la and 22a are in contact with the floor surface horizontal in the ¾Λ direction. Fig. 6 shows the state in which the auxiliary wheels 2la, 22a are turned to the heel slope with the basin body 10 on the slope.
補助輪 21 a, 22 aを床面に纖虫させるには、 コントローラ 5 Όは、 エンコーダ 18 a, 19 a、 エンコーダ 37及びセンサ 40, 41の入力値より、 台車本体 10の速度、 台車本体 In order to place the auxiliary wheels 21a, 22a on the floor surface, the controller 5 、 uses the input values of the encoders 18a, 19a, encoder 37 and sensors 40, 41 to determine the speed of the truck body 10,
10の動方向に る傾斜角及び台¾*体 10に ¾~rる床面の候斜角を算出する。 コント口 ーラ 50は、算出された台車本体 10の 及ひ加 ¾i 、 台^:体 10の動方向に ¾H "る傾 斜角及び台; W体 1
Figure imgf000012_0001
モータ 23, 24, 29, 30に出 力するトルク指令値を決定する。 例えば、 図 4に示すように、 台 »体 10力 S動方向に水平な状態で動方向に水平な床面 に補助輪 2 l a, 22 aを翻虫させる齢は、 コントローラ 50は、 補助脚 21 b, 22 bの 昇降角を初期値のまま (すなわち、 図 3の状態のまま) とする。 コントローラ 50は、 補助脚 21 bの伸縮量と補助脚 22 bの伸f|»とが同一で、補助脚 21 bの伸縮 と補助脚 22 b の伸縮 ¾!Sが同一となるように、 モータ 29, 30にトルク指令値を出力する。 コントローラ 50から出力されたトルク指令値に基づレ、てモータ 29, 30が回転することで、補助脚 21 b, 22bが伸長し、捕助輪 21 a, 22 a力 S床面に接触する (図 4に示す状態)。
The inclination angle in the moving direction of 10 and the oblique angle of the floor surface from ¾ to r in the platform 10 are calculated. The controller 50 has the calculated tilt of the main body 10 ¾i, base ^: tilt angle and base ¾H in the moving direction of the body 10; W body 1
Figure imgf000012_0001
Determine the torque command value to be output to motors 23, 24, 29, and 30. For example, as shown in Fig. 4, the base body 10 force S the level of the auxiliary wheel 2 la, 22 a on the floor surface that is horizontal in the moving direction and the horizontal direction in the moving direction The elevation angles of 21b and 22b are left at their initial values (that is, as shown in Fig. 3). The controller 50 has a motor so that the expansion / contraction amount of the auxiliary leg 21 b is equal to the expansion f | »of the auxiliary leg 22 b, and the expansion / contraction of the auxiliary leg 21 b is equal to the expansion / contraction of the auxiliary leg 22 b. The torque command value is output to 29 and 30. As the motors 29 and 30 rotate based on the torque command value output from the controller 50, the auxiliary legs 21b and 22b extend and contact wheels 21a and 22a force S contact the floor surface. (The state shown in Figure 4).
一方、図 5に示すように台 »体 10力 S動方向に水平でなレ、状態で動方向に水平な床面 に補助輪を翻虫させる 、 あるいは、図 6に示すように俱斜面上にある台^:体 10力 斗 面に補助輪を翻 ¾させる ^は、 コントローラ 50は、算出された台韩体 10の艇、 動 方向に ¾ϋ "る慨斜角及び台^ φ体に る床面 (^頃斜角から、補助脚 21 b, 22 bの伸縮量 、 伸縮艇及 降角を決定する。 次に、 決定された伸縮量、 伸縮 ¾g¾び昇降角に基づいて コントローラ 50よりモータ 23, 24, 29, 30にトルク指令値が出力され、 補助輪 21 a, 22 a力妹面に擲^"る。例えば、 図 5';1 ^す例では、補助脚 21 bの昇降角を小さくす る一方で伸«を長くし、 伸縮量が長くなるのに応じて伸縮; ^を大きくする。 一方、補助脚 22 bについては、昇 を大きくする一方で伸縮量を短くし、伸縮量が短くなるのに応じて 伸縮 ¾Sを小さくする。 これによつて、補助輪 2 l a, 22 aを略同時に床面に翻もさせるこ とができる。 また、 図 6に示す例では、補助脚 21 bの昇降角は変更することなく、補助脚 2 1 bの伸 *を短くし、伸縮量が短くなるのに応じて伸縮 を小さくする。 また、補助脚 2 2 bの昇降角を大きくすると共に伸 を長くし、伸縮量が長くなるのに応じて伸縮 を大 きくする。 これによつて、移動体 70力 S傲斜面上にあっても、 台^:体 10を動方向に対し て水平な状態とし、 補助輪 21 a, 22 aを俱斜面に略同時に擬虫させることができる。 なお、 台韩体 10力 S動方向に水平でなレヽ状態で補助輪 21 a, 22 aを床面に擲 させ †W^ (図 5の:!^) は、 補助脚 2 l b, 22 bの昇 及! ^申縮量を制御することで、 台車 本体 10が重力方向に対して水平な状態に戻される。 これによつて、移動体 70の重心 60が 雜 16, 17の鉛直 に位置し、 より安定した^^を保つことができる。  On the other hand, as shown in Fig. 5, the base »body 10 forces S is horizontal in the direction of movement, and the auxiliary wheel is flipped to the floor surface in the direction of movement in the state, or on the heel slope as shown in Fig. The base in the ^: body 10 force to rotate the auxiliary wheel to the surface ^ is the controller 50, the boat of the base body 10 calculated, the tilt angle and the base ^ φ body in the direction of movement Determine the expansion / contraction amount of the auxiliary legs 21b and 22b, the expansion / contraction boat and the descending angle from the slant angle (at around ^). Next, the controller 50 motors based on the determined expansion / contraction amount, expansion / contraction ¾g¾ and elevation angle. The torque command value is output to 23, 24, 29, 30 and the auxiliary wheel 21a, 22a is applied to the power plane. For example, in the example shown in Fig. 5 '; On the other hand, the extension is extended and the extension is extended as the extension amount becomes longer, and the extension is increased. ^ On the other hand, for the auxiliary leg 22 b, the extension is increased while the extension amount is reduced and the extension is reduced. As the distance becomes shorter, the expansion and contraction ¾S is reduced, so that the auxiliary wheels 2 la and 22 a can be swung to the floor almost simultaneously, and in the example shown in FIG. Without changing the elevation angle of 21 b, shorten the extension * of the auxiliary leg 21 b, and decrease the expansion / contraction as the expansion / contraction amount decreases, and increase the elevation angle of the auxiliary leg 2 2 b. As the amount of expansion / contraction increases, the expansion / contraction increases as the amount of expansion / contraction increases. Auxiliary wheels 21a, 22a can be imitated almost simultaneously on the heel slope with the horizontal state, and the auxiliary wheels 21a, 22a can be placed in a horizontal state in the horizontal direction of the platform 10 forces S.擲 W ^ (Fig. 5:! ^) Is lifted by the auxiliary leg 2 lb, 22 b! ^ By controlling the amount of contraction, the carriage body 10 can be placed horizontally with respect to the direction of gravity. Status Returned. This Yotsute, the center of gravity 60 of the moving body 70 is positioned vertically in 雜 16, 17, it is possible to maintain a more stable ^^.
すなわち、 図 7に示すように、 台 体 10が 方向に水平でなレヽ状態で補助輪 21 a, 22 a力 S床面に翻虫すると (図 7 (a) の状態→ (b) の状態)、 コントローラ 50は、 セン サ 40, 41で検出された瞧 hい h 2から台^ φ:体 10の動方向に财る傾 角を算出す る。 次に、 コントローラ 50は、算出した 斜角より台 »体 10が水平になるよう補助脚 2 l b, 22 bの伸 H4¾び昇降角を決定する。最後に、 コントローラ 50は、決定した補助脚 21 b, 22bの伸縮 び昇降角に基づレ、て、 モータ 23, 24, 29, 30にトルク指令 値を出力する。 これによつて、 各モータ 23, 24, 29, 30力 され、 台家本体 10が 7K平に戻される (図 7 (c) の状態)。 That is, as shown in Fig. 7, when the body 10 is in a horizontal state in the horizontal direction, the auxiliary wheels 21a, 22a force S will be transferred to the floor (state of Fig. 7 (a) → state of (b) ), The controller 50 calculates the tilt angle in the moving direction of the body 10 from the h 2 detected by the sensors 40 and 41. Next, the controller 50 determines the extension H4¾ and the elevation angle of the auxiliary legs 2 lb and 22 b so that the base body 10 becomes horizontal from the calculated oblique angle. Finally, the controller 50 The torque command value is output to the motors 23, 24, 29, and 30 based on the expansion and contraction angles of 21b and 22b. As a result, the motors 23, 24, 29, and 30 are powered, and the main body 10 is returned to 7K flat (state shown in Fig. 7 (c)).
次に、補助輪 21 a, 22 aを昇降制御する際にコントローラ 50で難される処理につ 1'ヽ て図 9を参照して説明する。 ' 図 9に示すように、 コントローラ 50は、 まず、補助輪装置下降指令を内部又は外部の遠隔 制御装置より受信する (ステップ S l)。 コントローラ 50は、 補助輪装置下降指令を受信す ると、 エンコーダ 18 a, 19 a, エンコーダ 37及びセンサ 40, 41の入力値に基づいて 、 移動体 70の傾き (台車本体 10の重力方向に する傾斜角)、 移動体 70の速度、 床面の 台 ¾ ^体に ¾ "るィ 斜角を算出する (ステップ S 2)。 これにより、 コントローラ 50は、 現 在の状況に合った最も安定した を保つことができる;^ な補助輪 2 l a, 22 aの位置を 決定することができる (すなわち、補助脚 21 b, 22bの伸縮 4¾び昇降角を決定すること ができる)。  Next, processing that is difficult by the controller 50 when the auxiliary wheels 21a and 22a are controlled to be lifted and lowered will be described with reference to FIG. 'As shown in FIG. 9, the controller 50 first receives an auxiliary wheel device lowering command from an internal or external remote control device (step S 1). When the controller 50 receives the auxiliary wheel device lowering command, the controller 50 tilts the moving body 70 based on the input values of the encoders 18a, 19a, the encoder 37, and the sensors 40, 41 (in the direction of gravity of the carriage body 10). (Tilt angle), the speed of the moving body 70, and the floor surface ¾ ^ the body angle is calculated (step S2). This makes the controller 50 the most stable for the current situation. The position of the auxiliary wheel 2 la, 22 a can be determined (that is, the expansion / contraction angle of the auxiliary leg 21 b, 22 b and the elevation angle can be determined).
次に、 コントローラ 5◦は、ネ甫助輪 21 a,' 22 aが床面に撫 る直前までの、 補助脚 2 l b, 22 bの伸縮量、 昇降角及 申縮速度を決定する (ステップ S 3)。 そして、 コント口 ーラ 50は、 モータ 23, 24, 29, 30のそれぞれにトルク指令値を出力する (ステップ S 4)。 これにより、 補助脚 2 l b, 22bが伸縮及び回動を開始する。 Next, the controller 5 ◦ determines the amount of expansion / contraction of the auxiliary legs 2 lb and 22 b, the elevation angle and the contraction speed until just before the auxiliary wheels 21 a and '22 a hit the floor (step) S 3). Then, the controller 50 outputs torque command values to the motors 23, 24, 29, and 30 (step S4). As a result, the auxiliary legs 2 lb and 22b start to expand and contract and rotate.
ステップ S 4でモータ 23, 24, 29, 30にトルク指令値が出力されると、 コント口一 ラ 50は、各補助輪 21 a, 22 aの昇降角及び昇降量がステップ S 3で决定した目標量にな つた力 ^かを判定する (ステップ S 5)。 昇降角及び昇降量が目標量となっている:^ (ステ ップ S 5で YES) は、 ステップ S 6に進む。 一方、昇降角及び昇降量が目標量となっていな い場合(ステップ S 5で NO) は、 ステップ S 2に戻って、 ステップ S 2からの処理を繰り返 す。 これによつて、 補助輪 21 a, 22 aは、床面に接触する直前の位置まで下降される。 ステップ S 6では、 コントローラ 50は、 エンコーダ 18 a, 19 a、 エンコーダ 37, セ ンサ 40, 41の入力値に基づ ヽて、移動体 70の傾き及び速度、 床面の ί斜角を算出する。 これにより、 コントローラ 50は、現在の状況に合った最も安定した^^を保つことができる な補助輪 21 a, 22 aの位置を判断することができる。  When the torque command value is output to the motors 23, 24, 29, and 30 in step S4, the controller 50 determines the lift angle and the lift amount of each auxiliary wheel 21a and 22a in step S3. It is determined whether the force reaches the target amount ^ (Step S5). The lift angle and lift amount are the target amounts: ^ (YES in step S5), go to step S6. On the other hand, when the elevation angle and the elevation amount are not the target amounts (NO in step S5), the process returns to step S2 and the processing from step S2 is repeated. As a result, the auxiliary wheels 21a and 22a are lowered to a position immediately before contacting the floor surface. In step S6, the controller 50 calculates the inclination and speed of the moving body 70 and the inclination angle of the floor surface based on the input values of the encoders 18a and 19a, the encoder 37, and the sensors 40 and 41. . As a result, the controller 50 can determine the positions of the auxiliary wheels 21 a and 22 a that can maintain the most stable ^^ according to the current situation.
次に、 コントローラ 50は、 補助輪 2 l a, 22 aが床面に翻虫するまでの、補助脚 21 b , 22bの伸縮量、 昇降角及ぴ伸縮速度を決定する (ステップ S 7)。 そして、 コントローラ 50は、 モータ 23, 24, 29, 3◦にトルク指令値を出力する (ステップ S 8)。 これに よって、 補助脚 21 b, 22bが伸縮及ぴ回動をさらに進む。 ステップ S 8でモータ 23, 24, 29, 30にトルク指令値が出力されると、 コントロー ラ 50は、各補助輪 21 a, 22 aの昇降角及 降量が目標量になった力^かを判定する ( ステップ S 9)。 昇降角及 降量がステップ S 7で決定した目標量となっている:f^ (ステ ップ S 9で YES) は、 ステップ S 10に進む。一方、昇降角及び昇隨が目標量となってい ない (ステップ S 9で NO) は、 ステップ S 6に戻って、 ステップ S 6力 の処理を繰り 返す。 これによつて、 補助輪 2 l a, 22 aは、床面に接角 る位置まで下降される。 Next, the controller 50 determines the expansion / contraction amount, the elevation angle and the expansion / contraction speed of the auxiliary legs 21b, 22b until the auxiliary wheels 2la, 22a are translocated to the floor (step S7). Then, the controller 50 outputs a torque command value to the motors 23, 24, 29, 3 ° (step S8). As a result, the auxiliary legs 21 b and 22 b further extend and rotate and rotate. When the torque command value is output to the motors 23, 24, 29, 30 in step S8, the controller 50 determines whether the lifting angle and the descending amount of each auxiliary wheel 21a, 22a is the target amount. (Step S9). The lift and drop are the target determined in step S7: f ^ (YES in step S9) proceeds to step S10. On the other hand, if the elevation angle and the elevation are not the target amounts (NO in step S9), the process returns to step S6 and the process of step S6 force is repeated. As a result, the auxiliary wheels 2 la and 22 a are lowered to a position where they are in contact with the floor surface.
ステップ S 9で補助輪 21 a, 22 a力 S床面に擲虫すると、 コントローラ 50は、動方向 に る台 体 10の傲斜角及び台 体 10に¾"^る床面の傾斜角を測定する (ステップ 次に、 コントローラ 50は、 台»体 10の動方向に ¾~Τる惧斜角が 「0」 となる (すな わち、 台 体 10力 S水平となる) 力 かを判定する (ステップ S 11)。 台»体 10の重 力方向に対する ί¾斜角が 「0」 となる (ステップ S 11で YES)、 コントローラ 50は 、 補助輪装置 21, 22の,藝を停止する。 台家本体 10の動方向に る俱斜角が 「0」 とならない ί (ステップ S 11で ΝΟ)、 ズテツプ S 12に進む。  In step S9, auxiliary wheel 21a, 22a force S When the worm is applied to the floor surface, controller 50 determines the inclination angle of base 10 in the direction of movement and the inclination angle of the floor surface toward base 10 in the moving direction. (Step Next, the controller 50 determines whether or not the tilt angle of ¾ ~ in the moving direction of the base body 10 is “0” (that is, the base body 10 force S is horizontal). Judgment (step S11) When the tilt angle of the main body 10 with respect to the heavy load direction is "0" (YES in step S11), the controller 50 stops the auxiliary wheel devices 21, 22 The tilt angle in the direction of movement of the base 10 does not become “0” (ί in step S11), and go to step S12.
ステップ S 12に進むと、 コン 'トローラ 50は、 移動体 70 (すなわち、 台»体 10) が 方向に対して水平となるよう補助脚 2 l b, 22 bの伸縮量、昇醜及 Ό«ί申縮 を決定 する (ステップ S 12)。 そして、 コントローラ 50は、 モータ 23, 24, 29, 30にト ルク指令値を出力する (ステップ S 13)。 これにより、 補助脚 21 b, 22bが伸縮及び回 動を開始し、 台 体 10が 方向に水平となるように戻される。  Proceeding to step S12, the controller 50 moves the auxiliary leg 2 lb, 22 b to extend, raise and lower so that the moving body 70 (that is, the base body 10) is horizontal to the direction. The contract is decided (step S12). Then, the controller 50 outputs torque command values to the motors 23, 24, 29, and 30 (step S13). As a result, the auxiliary legs 21b and 22b start to expand and contract, and the base 10 is returned to be horizontal in the direction.
ステップ S 13でモータ 23, 24, 29, 30にトルク指令値が出力されると、 コント口 ーラ 50は、各補助輪 21 a, 22 aの昇!^及 降量がステップ S 12で決定した目標量 になったカ否かを判定する (ステップ S 14)。 昇降角及び昇降量が目標量となっている (ス テツプ S 14で Y E S ) は、 コントローラ 50は、補助輪装置 21, 22の瞧を停止す る。 一方、昇降角及び昇降量が目標量となっていない (ステップ S 14で N〇) 場合は、 ステ ップ S 10に戻って、 ステップ S 10からの処理を繰り返す。 これによつて、捕助輪装置 21 , 22は、 台 »体 10力 S動方向に対して水平になるまで藝される。  When the torque command value is output to the motors 23, 24, 29, 30 in step S13, the controller 50 raises the auxiliary wheels 21a, 22a! It is determined whether or not the amount of precipitation has reached the target amount determined in step S12 (step S14). When the elevation angle and the elevation amount are the target amounts (YES in step S14), the controller 50 stops the auxiliary wheels 21 and 22. On the other hand, if the elevation angle and the elevation amount are not the target amounts (NO in step S14), the process returns to step S10 and the processing from step S10 is repeated. Accordingly, the assisting wheel devices 21 and 22 are beaten until they become horizontal with respect to the base »body 10 force S moving direction.
した説明から明ら力なように、本実施例の移動体 70では、補助輪装置 21, 22力 S独 立して画され、補助輪 21 a, 22 a力 S移動体 70に対して回動及 降することによって 床面に擁虫する。 また、台 体 10の ¾¾、動方向に る惧斜角及び台車本体 10に対 する床面の惧斜角を測定し、 この測;¾果に基づいて補助輪装置 21' 22の伸¾*、 伸縮速 度及 降角が制御される。'移動体 70は、床面の状況に応じて、安定した状態で補助輪 21 a, 22 aを床面に纖虫させることができる。 また、補助輪 2 l a, 22 aを床面に繊虫させ る 、補助輪 21 a, 22 aの位置を床面に擲 る直前までと、 直前の位置から床面に接 触するまでの二段階に分けて下降させる。 このように、補助輪 21 a, 22 a力床面に翻 る赚を遅く制御することにより、補助輪 21 a, 22 a力妹面に接角 Ek"Tる際の種 を和らげ ることができ、 不安定な状態を防ぐことができる。 As is clear from the above description, in the moving body 70 of the present embodiment, the auxiliary wheel devices 21 and 22 force S are defined independently, and the auxiliary wheel 21 a and 22 a force S are rotated with respect to the moving body 70. Moves and descends to hold insects on the floor. Also, the angle of inclination of the platform 10 and the angle of inclination of the floor relative to the cart body 10 are measured, and the angle of inclination of the auxiliary wheel device 21 '22 is measured based on this measurement. The stretching speed and descending angle are controlled. 'The moving body 70 is in a stable state depending on the floor condition. a, 22 a can be wormed on the floor. In addition, the auxiliary wheels 2 la and 22 a are made to have worms on the floor, the positions of the auxiliary wheels 21 a and 22 a are just before the floor surface is touched, and the two positions from the immediately preceding position to the floor surface are contacted. Lower in stages. In this way, by slowly controlling the wrinkles that turn on the auxiliary wheel 21a, 22a force floor, it is possible to relieve the seed at the time of contact angle Ek "T to the auxiliary wheel 21a, 22a force sister surface. And can prevent instability.
また、補助輪 21 a, 22 aが床面に接触した後、補助脚 21 b, 22bを»することで 台;^:体 10を 方向に対して水平に戻す。移動体 70力 S安定した状態となることができる 。 このため、補助輪 2 l a, 22 aを使用した状態でも、移動体 70が sこれまでより安定し た状態に,することができる。  In addition, after the auxiliary wheels 21a and 22a contact the floor, the auxiliary legs 21b and 22b are used to raise the table; ^: the body 10 is returned to the horizontal direction. Mobile body 70 force S Can be in a stable state. For this reason, even when the auxiliary wheels 2 la and 22 a are used, the moving body 70 can be made more stable than before.
なお、 6した移動体 70は、補助輪 2 l a, 22 aを床面に擞虫させた状態で床面を移動 させることもできる。 この 、移動体 70の倒立制御を停止し、補助輪 21 a, 22 aによ つて台^:体 10力 S倒立状態を保つように支えることができる。 これによつて、移動体 70が カロ纖する時でも、 台車本体 10力 S動方向に対して水平に保たれ、 台韩体 10の が傾 くことを防止することができる。  Note that the moving body 70 that has been subjected to 6 can also move the floor surface with the auxiliary wheels 2 l a and 22 a being wormed on the floor surface. Thus, the inversion control of the moving body 70 can be stopped, and the auxiliary wheels 21a, 22a can be supported so as to maintain the stand 10: body 10 force S in an inverted state. Thereby, even when the moving body 70 is swelled, the carriage body 10 is kept horizontal with respect to the 10-force S-movement direction, and the tilt of the carriage body 10 can be prevented.
また、補助輪 21 a, 22 a力妹面に擲虫した状態で傾斜面を走行させる時は、傾斜面の角 度に応じて補助脚 21 b, 22bの伸縮 *¾U ^降角を制御することが好ましレ、。 これ,によつ て、移動体 70力 S俱斜面を走 る際も、台 体 10を動方向に対して水平に保つことが できる。  Also, when running on an inclined surface with worms on the auxiliary wheels 21a, 22a, the extension / contraction of the auxiliary legs 21b, 22b is controlled according to the angle of the inclined surface. I prefer it. As a result, the base 10 can be kept horizontal with respect to the moving direction even when the mobile body 70 runs on the slope S.
した雄例の補助輪装置は、補助脚の伸縫、伸縮 及び昇降角を制御した。 し力し ながら、本発明の は、補助輪装置によって補助脚の昇降角のみを制御するようにしてもよ レ、。 このような補助輪装置の例を、 図 10を参照して説明する。 図 10は、補助輪装置 101 , 102を説明するための" ¾抜粋図である。 この例では、補助輪 1 O l a, 102 aの昇降 力 s補助脚 101 b, 102 bの回動のみにより »される。 ' The male auxiliary wheel device controlled the stretching, stretching and raising / lowering angles of the auxiliary legs. However, in the present invention, only the elevation angle of the auxiliary leg may be controlled by the auxiliary wheel device. An example of such an auxiliary wheel device will be described with reference to FIG. FIG. 10 is an excerpt drawing for explaining the auxiliary wheel devices 101 and 102. In this example, the lifting force of the auxiliary wheel 1 O la, 102 a s only by the rotation of the auxiliary legs 101 b, 102 b. »Will be '
図 10 (a) は補助輪装置 101, 102のネ麵輪 101 a, 102 aを床面力ら上昇させ 、 移動体が倒立制御を行っている状態を示している。 図 10 (b) は 方向に水平な台車本 体 110力 動方向に水平な床面に補助輪 101 a, 102aを擲虫させた状態を示してい る。 図 10 (c) は 1力方向に水平でない台鉢体 110力 動方向に水平な床面に補助輪 101 a, 102 aを繊虫させた状態を示している。 図 10 (d) は台 »体 10カ^斜面上 で補助輪 101 a, 102 aを接触させた:!^を示している。  FIG. 10 (a) shows a state in which the movable body performs the inversion control by raising the collars 101a and 102a of the auxiliary wheel devices 101 and 102 from the floor force. Figure 10 (b) shows a state in which auxiliary wheels 101a and 102a are placed on a floor surface horizontal in the direction of movement. FIG. 10 (c) shows a state in which the auxiliary wheels 101a and 102a are made to be wormed on the floor surface which is not horizontal in one force direction 110 and which is horizontal in the force direction. Fig. 10 (d) shows a table »body 10 ^ on a slope where auxiliary wheels 101a and 102a are brought into contact! Indicates ^.
図 10 ( a ) に示すように、 移動体が補助輪 101 a, 102 aを使用しなレ、齢には、補 助脚 101 b, 102 bを回動して補助輪 1 O l a, 102 aを床面より上昇させ、補助輪 1 O l a, 102 a力 S床面に翻虫しなレ 置に ί親している。 一方、 '補助輪 1 O l a, 102 a を床面に擲虫させる は、 台 »体 10の状態、床面の状態に応じて補助脚 101 b, 10 2 bの回動 び回動量が制御される。 これによつて、補助輪 1 O l a, 102aを略同時 に床面に翻虫させることができる。 また、 台車本体 10を安定した状態のまま補助輪 101 a , 102 aを床面に下降させることができる。 ' このように、補助脚 101 b, 102 bの回動のみにより補助輪 101 a, 102 aを昇降 させる棚を採用すると、補助脚 101 b, 102bを伸縮させる機構を省くことができるた め、 移動体の重量を軽くすることができる。 As shown in Fig. 10 (a), the moving body does not use the auxiliary wheels 101a, 102a. Raise a from the floor, auxiliary wheel 1 O la, 102 a force S Close to the floor that does not translocate. On the other hand, 'Auxiliary wheel 1 O la, 102 a is wormed on the floor surface. »The rotation and the amount of rotation of the auxiliary legs 101 b, 10 2 b are controlled according to the state of the body 10 and the floor surface. Is done. As a result, the auxiliary wheel 1 Ola, 102a can be transferred to the floor almost simultaneously. Further, the auxiliary wheels 101a and 102a can be lowered to the floor surface while the cart body 10 is in a stable state. '' In this way, if a shelf that raises and lowers the auxiliary wheels 101a and 102a only by turning the auxiliary legs 101b and 102b is adopted, the mechanism for extending and retracting the auxiliary legs 101b and 102b can be omitted. The weight of the moving body can be reduced.
以上、本発明のいくつかの具体例を詳細に説明したが、 これらは例示にすぎず、特 fPf青求の 範囲を限定するものではなレヽ。特 Iff冑求の範囲に記載の 術には、以上に例示した具体例を様 々に変形、 変更したもの力 S含まれる。  As described above, some specific examples of the present invention have been described in detail, but these are only examples and do not limit the scope of the special fPf blue demand. The technique described in the scope of the special Iff claim includes the force S that is obtained by variously modifying and changing the specific examples illustrated above.
例えば、 _hiした実施例では、台 体の進行方向の傾きのみを測定していた。 しかしなが ら、 に代えて球体を用いた齢等には、台 体の前後左右に補助輪装置を設けると共に 台; ^体の前後左右 co{頃きを測定する。測定—した台車本体の前後左右 (^頃きに基づレ、て補助輪 装置を制御することができる。 台韩体の前後左右の傾きを測定することで、台 体を安定 した状態に保ちながら補助輪を下降させることができる。  For example, in the embodiment that was _hi, only the inclination of the moving direction of the base was measured. However, for the age of using a sphere instead of, an auxiliary wheel device is provided on the front, back, left and right of the base and the front; Measurement—The front and back, left and right of the body of the dolly (which can be controlled based on the time, the auxiliary wheel device can be controlled. By measuring the inclination of the front and back and left and right of the body, the body is kept in a stable state. The auxiliary wheel can be lowered.
また、補助輪の数は、台家本体が安定して倒立状態を糸歸できるよう適宜決定することがで きる。  In addition, the number of auxiliary wheels can be determined as appropriate so that the main body can be stably inverted.
また、補助脚の伸¾1*を変化させるァクチユエータには、モータ以外にも^ ΐや油圧を利用 したァクチユエータを用いることができる。 同様に、補助脚の昇降角を変化させるァクチユエ ータにも、 ¾1£や油圧を利用したァクチユエータを用いることができる。  In addition to the motor, an actuator that uses hydraulic power or hydraulic pressure can be used as the actuator that changes the extension 1 * of the auxiliary leg. Similarly, an actuator that changes the elevation angle of the auxiliary leg can also be used, such as 1 / £ or an actuator that uses hydraulic pressure.
また、本明細書または図面に説明した技術要素は、単独であるレヽは各種の組合せによって技 休 有用性を発^ るものであり、 出願時の請求項記載の組^:に限定されるものではなレ、。 また、本明細書または図面に例示した謹は、複数目的を同時に達^ rるものであり、 そのう ちの一つの目的を ϋ ^すること自体で ίΤ術的有用性を持つものである。  In addition, the technical elements described in this specification or the drawings may be useful for technical suspension by various combinations, and are limited to the combinations described in the claims at the time of filing. Well then ... In addition, the example illustrated in the present specification or the drawings achieves a plurality of purposes at the same time, and having one of the purposes per se has a technical usefulness.

Claims

請求の範囲 The scope of the claims
1 . 断面円形の回転体と、 その回転体の回»周りに傾動自在に支持される台家本体と、 を 有し、床面に擁虫した回転体を駆動制御することで台 体を倒立状態に «する倒; 型 の移動体において、 1. A rotating body having a circular cross section and a base body supported to be rotatable around the rotating body of the rotating body, and the body is inverted by driving and controlling the rotating body held on the floor surface. In a movable body of type
台 体の移動体進行方向前側に配置されており、台 体から床面側に向かって伸縮自在 とされた第 1補助脚と、 その第 1補助脚に回転自在に取付けられた第 1補助輪と、第 1補助脚 を伸縮させる第 1伸縮ァクチユエータと、 を有する第 1補助輪装置と、  The first auxiliary leg, which is arranged in front of the moving body in the moving direction of the base and can be extended and contracted from the base toward the floor, and the first auxiliary wheel rotatably attached to the first auxiliary leg A first telescopic actuator for extending and contracting the first auxiliary leg, and a first auxiliary wheel device having
台 体の移動体進行方向後側に配置されており、台車本体から床面側に向かって伸縮自在 とされた第 2補助脚と、その第 2補助脚に回転自在に取付けられた第 2捕助輪と、第 2補助脚 を伸縮させる第 2伸縮ァクチユエータと、 を有する第 2補助輪装置と、 を備えており、 第 1及び第 2補助輪装置は、それぞ t ^虫立して補助脚の伸纖及び Z又は伸縮艇を譲で きることを |敫とする倒立 型移動 ί本。  The second auxiliary leg, which is arranged on the rear side of the moving body in the moving direction of the carriage and is telescopic from the carriage main body toward the floor, and the second catch attached to the second auxiliary leg rotatably. An auxiliary wheel, a second telescopic actuator for extending and contracting the second auxiliary leg, and a second auxiliary wheel device having the first and second auxiliary wheel devices, respectively Inverted-type moving book that extends leg extension and can yield Z or telescopic boat.
2. 第 1補助輪装置は、第 1補助脚の昇降角を変ィ匕させる第 1昇降角ァクチユエータをさら に有しており、 2. The first auxiliary wheel device further includes a first elevation angle actuator that changes the elevation angle of the first auxiliary leg,
第 2補助輪装置は、第 2補助脚の昇降角を変化させる第 2昇降角ァクチユエータをさらに有 しており、  The second auxiliary wheel device further includes a second elevation angle actuator for changing the elevation angle of the second auxiliary leg,
第 1及び第 2補助輪装置は、それそ 虫立して補助脚の昇献を霞できることを樹数とす る請求の範囲第 1項に記載の倒立 型移動体。  The inverted moving body according to claim 1, wherein the first and second auxiliary wheel devices are such that the number of trees is such that they can stand up and encourage the auxiliary leg to be contributed.
3. ( 1 )動方向に财る台 本体の惧斜角を測定する測定手段と (2 ) 台泉本体の献 を測定する測定手段と (3 ) 台 体に ¾ "る床面の傲斜角を測定する測定手段のうちの少な くとも一つと、 第 1及び第 2補助輪装置を制御するコントローラと、 をさらに備えており、 そのコントローラは、測定手段で測定された測; ^果に基づレ、て、第 1補助脚の伸 と伸 縮; USと昇^^の少なくとも 1つと、第 2補助脚の伸 i »と伸縮 ¾ ^と昇降角の少なくとも 1 つを制御することを糊敫とする請求の範囲第 2項に言 Β¾の倒 i»型移動体。 3. (1) Measuring means for measuring the inclination angle of the main body in the moving direction; (2) Measuring means for measuring the angle of the main spring body; and (3) Inclination of the floor surface of the main body. At least one of measuring means for measuring the angle, and a controller for controlling the first and second auxiliary wheel devices, the controller measuring the measurement measured by the measuring means; Based on the extension and extension of the first auxiliary leg; to control at least one of US and ascending ^^, extension of the second auxiliary leg i »and extension ¾ ^ and at least one of the elevation angles An inverted i »-type moving body as defined in claim 2 of the claim.
4. 断面円形の回転体と、 その回転体の回歸由周りに傾動自在に支持される台^体と、 を 有し、床面に劍虫した回転体を駆動制御することで台 本体を倒立状態に糸歸する倒立鮮型 の移動体にぉレヽて、 ' 台泉本体の移動体進行方向前側に配置されており、台 体に回動自在に取付けられた第 1 ネ煮助脚と、その第 1補助脚に回転自在に取付けられた第 1補助輪と、第 1補助脚を回動させる 第 1回動角ァクチユエータと、 を有する第 1補助輪装置と、 4. A rotating body with a circular cross-section and a base body that is tiltably supported around the rotating body of the rotating body, and the base body is inverted by driving and controlling the rotating body that is wormed on the floor surface. When you touch an inverted fresh type moving body that is in the state, A first auxiliary support leg, which is disposed on the front side of the main body in the moving direction of the moving body and is rotatably attached to the main body; and a first auxiliary wheel which is rotatably attached to the first auxiliary leg. A first rotation angle actuator for rotating the first auxiliary leg, and a first auxiliary wheel device having:
台;^体の移動体進行方向後側に配置されており、台:^:体に回動自在に取付けられた第 2 補助脚と、その第 2補助脚に回転自在に取付けられた第 2補助輪と、第 2補助脚を回動させる 第 2回動角ァクチユエータと、 を有する第 2補助輪装置と、 を備えており、  Base: ^ Located on the rear side of the moving body of the body, base: ^: Second auxiliary leg pivotally attached to the body, and second auxiliary leg rotatably attached to the second auxiliary leg An auxiliary wheel, a second rotation angle actuator for rotating the second auxiliary leg, and a second auxiliary wheel device having:
第 1及び第 2補助輪装置は、それぞ 虫立して補助脚の回動角を纖できることを 敷とす る倒立鮮型移動体。  Each of the first and second auxiliary wheel devices is an inverted fresh type moving body on which the insects can stand and the rotation angle of the auxiliary leg can be reduced.
PCT/JP2007/054487 2006-03-03 2007-03-01 Inverted pendulum type movable body WO2007100148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-058571 2006-03-03
JP2006058571A JP2007237750A (en) 2006-03-03 2006-03-03 Inverted pendulum type moving body

Publications (1)

Publication Number Publication Date
WO2007100148A1 true WO2007100148A1 (en) 2007-09-07

Family

ID=38459234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054487 WO2007100148A1 (en) 2006-03-03 2007-03-01 Inverted pendulum type movable body

Country Status (2)

Country Link
JP (1) JP2007237750A (en)
WO (1) WO2007100148A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519481A (en) * 1991-07-15 1993-01-29 Mitsubishi Paper Mills Ltd Planographic printing plate
JP2009073281A (en) * 2007-09-19 2009-04-09 Equos Research Co Ltd Vehicle
JP2009101789A (en) * 2007-10-22 2009-05-14 Toyota Motor Corp Inversion type movable body and its control method
JP2010274759A (en) * 2009-05-28 2010-12-09 Toyota Motor Corp Travelling device, method for controlling the same, and control program
ITTO20100682A1 (en) * 2010-08-05 2012-02-06 Carrozzeria 71 S R L TRANSFORMATION GROUP APPLICABLE BY MEANS OF LOCOMOTION "SEGWAY" (R)
WO2012136798A1 (en) * 2011-04-05 2012-10-11 Ulrich Kahlert Two-wheel battery-powered vehicle
JP2014151721A (en) * 2013-02-06 2014-08-25 Toyo Parts Kk Wheel Walker
EP2979964A1 (en) * 2010-02-26 2016-02-03 Segway Inc. Apparatus and method for control of a vehicle
KR20190136100A (en) * 2015-10-01 2019-12-09 항저우 시크 인텔리전트 테크놀러지 컴퍼니., 리미티드 Human-machine interaction body-sensing vehicle
KR20190137164A (en) * 2015-10-10 2019-12-10 항저우 시크 인텔리전트 테크놀러지 컴퍼니., 리미티드 All-attitude human-machine interaction vehicle cross-reference to related applications

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092683B2 (en) * 2007-10-22 2012-12-05 トヨタ自動車株式会社 Inverted wheel type moving body and control method thereof
JP4681016B2 (en) 2008-03-10 2011-05-11 株式会社豊田中央研究所 Inverted pendulum type wheel moving body
JP4982655B2 (en) * 2008-05-30 2012-07-25 国立大学法人宇都宮大学 Inverted pendulum type moving body and educational materials
US8170780B2 (en) * 2008-11-06 2012-05-01 Segway, Inc. Apparatus and method for control of a vehicle
JP5157838B2 (en) * 2008-11-12 2013-03-06 株式会社エクォス・リサーチ vehicle
JP5104731B2 (en) * 2008-11-12 2012-12-19 株式会社エクォス・リサーチ vehicle
CN102036874B (en) 2008-11-27 2013-09-18 丰田自动车株式会社 Mobile body and control method therefor
JP5003716B2 (en) 2009-04-17 2012-08-15 トヨタ自動車株式会社 Traveling apparatus and control method thereof
JP5321637B2 (en) * 2011-04-21 2013-10-23 トヨタ自動車株式会社 Traveling apparatus and control method thereof
JP5560234B2 (en) * 2011-05-31 2014-07-23 トヨタテクニカルディベロップメント株式会社 Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method
DE102014113278B4 (en) * 2014-09-15 2016-08-25 Freee Mobility Gmbh Support system, electronically self-balanced wheelchair, method of controlling a support system and conversion kit
DE102016116370A1 (en) 2016-09-01 2018-03-01 Fabio Giuseppe Gulino Self-balancing transport device, in particular wheelchair with support device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514680A (en) * 1996-07-17 2000-11-07 デカ・プロダクツ・リミテッド・パートナーシップ Fall prevention mechanism
JP2003276665A (en) * 2002-03-20 2003-10-02 Honda Motor Co Ltd Motorcycle with auxiliary wheel
JP2004074814A (en) * 2002-08-09 2004-03-11 Matsushita Electric Works Ltd Moving equipment for man
JP2004217170A (en) * 2003-01-17 2004-08-05 Sony Corp Two-wheeled vehicle and car body braking device
JP2004243845A (en) * 2003-02-13 2004-09-02 Toyota Motor Corp Moving vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514680A (en) * 1996-07-17 2000-11-07 デカ・プロダクツ・リミテッド・パートナーシップ Fall prevention mechanism
JP2003276665A (en) * 2002-03-20 2003-10-02 Honda Motor Co Ltd Motorcycle with auxiliary wheel
JP2004074814A (en) * 2002-08-09 2004-03-11 Matsushita Electric Works Ltd Moving equipment for man
JP2004217170A (en) * 2003-01-17 2004-08-05 Sony Corp Two-wheeled vehicle and car body braking device
JP2004243845A (en) * 2003-02-13 2004-09-02 Toyota Motor Corp Moving vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519481A (en) * 1991-07-15 1993-01-29 Mitsubishi Paper Mills Ltd Planographic printing plate
JP2009073281A (en) * 2007-09-19 2009-04-09 Equos Research Co Ltd Vehicle
JP2009101789A (en) * 2007-10-22 2009-05-14 Toyota Motor Corp Inversion type movable body and its control method
US8958976B2 (en) 2009-05-28 2015-02-17 Toyota Jidosha Kabushiki Kaisha Traveling apparatus, control method therefor, and control program
JP2010274759A (en) * 2009-05-28 2010-12-09 Toyota Motor Corp Travelling device, method for controlling the same, and control program
EP2979964A1 (en) * 2010-02-26 2016-02-03 Segway Inc. Apparatus and method for control of a vehicle
ITTO20100682A1 (en) * 2010-08-05 2012-02-06 Carrozzeria 71 S R L TRANSFORMATION GROUP APPLICABLE BY MEANS OF LOCOMOTION "SEGWAY" (R)
WO2012017335A1 (en) * 2010-08-05 2012-02-09 Carrozzeria 71 S.R.L. Conversion assembly to be applied to a "segway" ® or the like transporter
WO2012136798A1 (en) * 2011-04-05 2012-10-11 Ulrich Kahlert Two-wheel battery-powered vehicle
US9156516B2 (en) 2011-04-05 2015-10-13 Ulrich Kahlert Two-wheeled battery-powered vehicle
JP2014151721A (en) * 2013-02-06 2014-08-25 Toyo Parts Kk Wheel Walker
KR20190136100A (en) * 2015-10-01 2019-12-09 항저우 시크 인텔리전트 테크놀러지 컴퍼니., 리미티드 Human-machine interaction body-sensing vehicle
KR102434528B1 (en) 2015-10-01 2022-08-19 항저우 시크 인텔리전트 테크놀러지 컴퍼니., 리미티드 Human-machine interaction body-sensing vehicle
KR20190137164A (en) * 2015-10-10 2019-12-10 항저우 시크 인텔리전트 테크놀러지 컴퍼니., 리미티드 All-attitude human-machine interaction vehicle cross-reference to related applications
KR102428624B1 (en) 2015-10-10 2022-08-03 항저우 시크 인텔리전트 테크놀러지 컴퍼니., 리미티드 All-attitude human-machine interaction vehicle cross-reference to related applications

Also Published As

Publication number Publication date
JP2007237750A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
WO2007100148A1 (en) Inverted pendulum type movable body
US10525784B2 (en) Self-leveling mechanism and method for wheeled mobility device
JP3749232B2 (en) Step elevation method, cart and wheelchair
JP6621979B2 (en) Method for controlling the articulated rotary folding ladder of a rescue vehicle
JP4197052B1 (en) Leg wheel type moving mechanism
US8881590B2 (en) Balancing device
JP6167352B2 (en) Moving trolley
WO2015040879A1 (en) Vehicle for high-elevation work, vehicle attitude adjustment system for vehicle for high-elevation work, vehicle attitude adjustment method for vehicle for high-elevation work, and swiveling method for high-elevation work structure of vehicle high-elevation work
KR20150138748A (en) Stair-climbing robot and control method thereof
BR112020008507B1 (en) AUTOMATICALLY GUIDED VEHICLE SUPPLIED WITH FORKS TO MOVE A TILE SUPPORT STRUCTURE
JP4275199B2 (en) Boom control device for work equipment
JP5469914B2 (en) Boom work vehicle operation control device
JP2000062657A (en) Self-traveling type staircase moving device
JP7038352B2 (en) Step movement control method for moving objects
KR20220011827A (en) Support Apparatus
JP2002179400A (en) Elevating device
CN114889725B (en) Stable supporting method and device for quadruped robot
JP2015202910A (en) Fork lift
WO2022190667A1 (en) Passenger boarding bridge
JP4618955B2 (en) ELECTR CONTROL DEVICE AND ITS CONTROL METHOD
JP4772323B2 (en) Non-stop operation control device for boom work vehicle
JP2007261730A (en) Workpiece holding device
JP4648710B2 (en) Non-stop operation control device for boom work vehicle
JP3712568B2 (en) Work vehicle operation restriction device
JP2001063642A (en) Carrying vehicle for going up/down stairs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715289

Country of ref document: EP

Kind code of ref document: A1