JP5560234B2 - Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method - Google Patents

Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method Download PDF

Info

Publication number
JP5560234B2
JP5560234B2 JP2011122834A JP2011122834A JP5560234B2 JP 5560234 B2 JP5560234 B2 JP 5560234B2 JP 2011122834 A JP2011122834 A JP 2011122834A JP 2011122834 A JP2011122834 A JP 2011122834A JP 5560234 B2 JP5560234 B2 JP 5560234B2
Authority
JP
Japan
Prior art keywords
state
inverted
traveling body
wheel
type traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011122834A
Other languages
Japanese (ja)
Other versions
JP2012250569A5 (en
JP2012250569A (en
Inventor
英杰 尹
稔 竹重
裕一郎 中島
快之 仙波
日出輝 梶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Technical Development Corp
Toyota Motor Corp
Original Assignee
Toyota Technical Development Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Technical Development Corp, Toyota Motor Corp filed Critical Toyota Technical Development Corp
Priority to JP2011122834A priority Critical patent/JP5560234B2/en
Publication of JP2012250569A publication Critical patent/JP2012250569A/en
Publication of JP2012250569A5 publication Critical patent/JP2012250569A5/ja
Application granted granted Critical
Publication of JP5560234B2 publication Critical patent/JP5560234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Motorcycle And Bicycle Frame (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、搭乗者や搭載物と倒立車輪型走行体との合成重心角を推定する方法、及び同方法によって制御される倒立車輪型走行体に関する。より詳細には、本発明は、倒立状態及び補助輪接地状態の両方において搭乗者や搭載物と倒立車輪型走行体との合成重心角を推定する方法、及び同方法によって制御される倒立車輪型走行体に関する。   The present invention relates to a method for estimating a composite barycentric angle of an occupant or a load and an inverted wheel type traveling body, and an inverted wheel type traveling body controlled by the method. More specifically, the present invention relates to a method for estimating a composite barycentric angle between a passenger or a load and an inverted wheel type traveling body in both an inverted state and an auxiliary wheel grounded state, and an inverted wheel type controlled by the method. Regarding the traveling body.

倒立車輪型走行体、特に倒立車輪型二輪走行体は、占有面積が小さく、小回りが利く等の理由から、例えば搭乗型倒立二輪移動ロボット等の倒立車輪型走行体の開発が近年盛んに行われてきている(例えば、特許文献1、特許文献2を参照)。かかる倒立車輪型走行体は、駆動輪の駆動により搭乗者や搭載物と倒立車輪型走行体との合成重心位置を修正して安定状態を維持しつつ移動するように制御される。このような搭乗者や搭載物と倒立車輪型走行体との合成重心位置の修正を行うためには、搭乗者や搭載物と倒立車輪型走行体との合成重心角を検知する必要がある。   Inverted wheel-type traveling bodies, particularly inverted wheel-type two-wheeled bodies, have been actively developed in recent years, for example, onboard-type inverted two-wheeled mobile robots, for example, because they occupy a small area and are easy to turn. (See, for example, Patent Document 1 and Patent Document 2). Such an inverted wheel type traveling body is controlled so as to move while maintaining a stable state by correcting the combined center of gravity of the occupant or the mounted object and the inverted wheel type traveling body by driving the driving wheel. In order to correct the combined center of gravity position of the occupant or the mounted object and the inverted wheel type traveling body, it is necessary to detect the combined center of gravity angle of the occupant or the mounted object and the inverted wheel type traveling body.

例えば、走行体の重心位置や重心角は、搭乗者の体重、体格、癖、及び障害等、並びに搭載物(例えば、荷物等)の重量及び形状等によって大きく異なるため、倒立車輪型二輪走行体の重心角も搭乗者や搭載物の性状等によって大きく異なる。従って、前述のように搭乗者や搭載物と倒立車輪型走行体との合成重心角を検知して搭乗者や搭載物と倒立車輪型走行体との合成重心位置の修正を行うには、搭乗者や搭載物にセンサを取り付ける等して、それらの重量や重心を測定し、得られた測定値に基づいて搭乗者や搭載物と倒立車輪型走行体との合成重心角を算出することが考えられる。かかる構成としては、例えば、複数のジャイロセンサと複数の傾斜センサとから構成されるセンシングユニットを用いて重心角を実測することが提案されている(例えば、特許文献3を参照)。しかしながら、かかる対応策は、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を招く虞がある点から、必ずしも好ましくない。   For example, the position of the center of gravity and the angle of center of gravity of the traveling body vary greatly depending on the weight, physique, bag, and obstacles of the occupant, and the weight and shape of the load (for example, luggage). The center-of-gravity angle of the vehicle also varies greatly depending on the characteristics of the passenger and the load. Therefore, as described above, in order to correct the position of the center of gravity of the occupant or the load and the inverted wheel type traveling body and to correct the position of the center of gravity of the occupant or the load and the inverted wheel type traveling body, It is possible to measure the weight and center of gravity of a vehicle by attaching a sensor to a person or a mounted object, and calculate the composite center of gravity angle of the passenger or the mounted object and the inverted wheel type traveling body based on the obtained measurement value. Conceivable. As such a configuration, for example, it has been proposed to actually measure the barycentric angle using a sensing unit including a plurality of gyro sensors and a plurality of inclination sensors (see, for example, Patent Document 3). However, such countermeasures are not always preferable because there is a possibility of causing concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing cost, and a complicated control system.

一方、上記のように搭乗者や搭載物と倒立車輪型走行体との合成重心角を直接測定するのではなく、例えば、走行体の加減速現象を測定し、走行体の速度偏差の大きさに基づいて目標姿勢角を補正することにより、安定な倒立走行を実現しようとする試みもなされている(例えば、特許文献2を参照)。しかしながら、このような間接的なフィードバック補正では、安定な倒立走行状態を確立するまでに過渡的な状態が存在し、例えば、制動距離を厳密に制御することが難しい等、高性能な倒立走行制御は困難であるという問題点がある。また、搭乗者や搭載物と走行体との合成重心角を、限られた既存のセンサによって正確に算出するのは困難である。   On the other hand, instead of directly measuring the composite center-of-gravity angle of the occupant or the loaded object and the inverted wheel type traveling body as described above, for example, the acceleration / deceleration phenomenon of the traveling body is measured, and the magnitude of the speed deviation of the traveling body is measured. Attempts have also been made to achieve stable inverted traveling by correcting the target posture angle based on the above (see, for example, Patent Document 2). However, with such indirect feedback correction, there is a transitional state until a stable inverted traveling state is established, and for example, it is difficult to strictly control the braking distance. Has the problem of being difficult. In addition, it is difficult to accurately calculate the combined center-of-gravity angle of the occupant or the mounted object and the traveling body using a limited number of existing sensors.

ところで、倒立車輪型走行体においては、搭乗者の乗り降りや搭載物の積み降ろしの際の安定性を確保し、転倒を防止するために、走行体の(駆動輪の)前後に補助輪が設けられる場合がある(例えば、特許文献2を参照)。この場合、補助輪が接地している状態(例えば、搭乗待ち状態や、補助輪を接地して走行する減速走行状態。以降、「補助輪接地状態」と称する)においては、補助輪が床から受ける床反力もまた走行体の重心角に影響を及ぼす。また、補助輪接地状態から、補助輪が接地せず走行体が駆動輪のみで倒立している状態(以降、「倒立状態」と称する)への遷移を連続的かつ円滑なものとするためには、補助輪接地状態における搭乗者や搭載物と走行体との合成重心角を検知する必要がある。   By the way, in the inverted wheel type traveling body, auxiliary wheels are provided before and after the driving body (drive wheel) in order to ensure stability when the passenger gets on and off and loads and unloads the load, and to prevent the vehicle from falling. (For example, refer to Patent Document 2). In this case, in a state where the auxiliary wheel is grounded (for example, in a waiting state for boarding or in a decelerating traveling state in which the auxiliary wheel is grounded, hereinafter referred to as an “auxiliary wheel grounded state”), the auxiliary wheel is separated from the floor. The floor reaction force received also affects the center of gravity angle of the traveling body. In addition, in order to make the transition from the auxiliary wheel grounding state to the state where the auxiliary wheel is not grounded and the traveling body is inverted only by the driving wheel (hereinafter referred to as “inverted state”) continuously and smoothly. Therefore, it is necessary to detect the composite barycentric angle of the occupant or the mounted object and the traveling body in the auxiliary wheel grounding state.

上記のように補助輪接地状態における搭乗者や搭載物と走行体との合成重心角を検知するためには、補助輪が床から受ける床反力を検出するセンサ等を設けることが考えられる。しかしながら、前述と同様に、かかる対応策は、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を招く虞がある点から必ずしも好ましくない。   As described above, in order to detect the combined center-of-gravity angle of the occupant or the loaded object and the traveling body in the auxiliary wheel grounding state, it is conceivable to provide a sensor or the like that detects the floor reaction force that the auxiliary wheel receives from the floor. However, as described above, such countermeasures are not always preferable because they may cause concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing cost, and a complicated control system.

従って、補助輪接地状態においても、補助輪が床から受ける床反力を検出するセンサ等を設けずに、床反力を推定して、搭乗者や搭載物と走行体との合成重心角を推定する必要がある。しかしながら、従来技術においては、倒立状態及び補助輪接地状態の両状態、特に補助輪接地状態における倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)や床反力を推定しようとする試みはなされていない。   Therefore, even when the auxiliary wheel is grounded, the floor reaction force is estimated without providing a sensor or the like for detecting the floor reaction force that the auxiliary wheel receives from the floor, and the combined barycentric angle of the occupant or the load and the traveling body is obtained. It is necessary to estimate. However, in the prior art, the center of gravity angle of the entire inverted wheel type traveling body in both the inverted state and the auxiliary wheel grounded state, particularly in the auxiliary wheel grounded state (the combined center of gravity angle of the occupant and the mounted object and the inverted wheel type traveling body) ) And ground reaction forces have not been attempted.

米国特許第5,975,225号明細書US Pat. No. 5,975,225 特開2009−201321号公報JP 2009-201321 A 米国特許第6,332,103号明細書US Pat. No. 6,332,103

前述のように、倒立車輪型走行体において、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を回避しつつ、倒立走行の制御性能の向上、補助輪接地状態から倒立状態への連続的かつ円滑な遷移の実現等を達成し得る方法を確立することが、当該技術分野において要求されている。   As described above, in an inverted wheel type traveling body, while avoiding concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing cost, and a complicated control system, the control performance of the inverted traveling is improved, and the auxiliary wheel is grounded. There is a need in the art to establish a method that can achieve a continuous and smooth transition from a state to an inverted state.

即ち、本発明の目的は、倒立車輪型走行体において、必要最小限のセンサを用いて、倒立状態及び補助輪接地状態の両状態における倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)を推定する方法並びに同方法によって制御される倒立車輪型走行体を提供することである。   That is, an object of the present invention is to use the minimum necessary sensors in an inverted wheel type traveling body, and the center-of-gravity angle of the entire inverted wheel type traveling body in both the inverted state and the auxiliary wheel grounding state (passengers and mounted objects). And an inverted wheel-type traveling body controlled by the same method.

上記目的は、
駆動輪と、
前記駆動輪の車軸によって支持される本体部と、
前記本体部に可動式に連接されたアーム部と、
前記アーム部の前記本体部とは反対側に回転可能に連接された補助輪と、
前記駆動輪を駆動する駆動輪駆動手段と、
前記アーム部を駆動するアーム駆動手段と、
前記倒立車輪型走行体の実状態を検出する検出手段と、
前記検出部によって検出される実状態と目標状態との偏差に基づいて前記駆動輪駆動部又は前記アーム駆動部を制御して、前記目標状態を達成する制御手段と、
を備え、
前記補助輪が接地せず、前記駆動輪のみで倒立する倒立状態と、
前記補助輪が接地する補助輪接地状態と、
を有する搭乗可能な倒立車輪型走行体全体の重心角推定方法であって、
前記倒立状態及び前記補助輪接地状態のそれぞれについての動力学的運動方程式に基づいて状態オブザーバを設計すること、
前記補助輪接地状態についての前記状態オブザーバの状態方程式にアフィン項を導入すること、
前記倒立状態についての前記状態オブザーバを用いて、前記倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに
前記補助輪接地状態についての前記状態オブザーバを用いて、前記補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)、前記補助輪が床から受ける床反力(f)、及び前記外乱(w)を推定すること、
を特徴とする、倒立車輪型走行体全体の重心角推定方法
によって達成される。
The above purpose is
Driving wheels,
A main body supported by the axle of the drive wheel;
An arm part movably connected to the main body part;
An auxiliary wheel rotatably connected to the opposite side of the arm portion from the body portion;
Driving wheel driving means for driving the driving wheel;
Arm driving means for driving the arm portion;
Detecting means for detecting the actual state of the inverted wheel type traveling body;
Control means for controlling the drive wheel drive unit or the arm drive unit based on a deviation between the actual state and the target state detected by the detection unit to achieve the target state;
With
An inverted state in which the auxiliary wheel is not grounded and is inverted only by the driving wheel,
An auxiliary wheel grounding state in which the auxiliary wheel is grounded;
A center-of-gravity angle estimation method for the entire boardable inverted wheel type traveling body having:
Designing a state observer based on dynamic equations of motion for each of the inverted state and the auxiliary wheel grounding state;
Introducing an affine term into the state equation of the state observer for the auxiliary wheel grounding state;
Using the state observer for the inverted state, the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the inverted state And using the state observer for the auxiliary wheel grounding state, the center of gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the auxiliary wheel grounding state Estimating the variation (Δη), the floor reaction force (f c ) that the auxiliary wheel receives from the floor, and the disturbance (w),
This is achieved by the method of estimating the center-of-gravity angle of the entire inverted wheel type traveling body.

また、上記目的は、
駆動輪と、
前記駆動輪の車軸によって支持される本体部と、
前記本体部に可動式に連接されたアーム部と、
前記アーム部の前記本体部とは反対側に回転可能に連接された補助輪と、
前記駆動輪を駆動する駆動輪駆動手段と、
前記アーム部を駆動するアーム駆動手段と、
前記倒立車輪型走行体の実状態を検出する検出手段と、
前記検出部によって検出される実状態と目標状態との偏差に基づいて前記駆動輪駆動部又は前記アーム駆動部を制御して、前記目標状態を達成する制御手段と、
を備え、
前記補助輪が接地せず、前記駆動輪のみで倒立する倒立状態と、
前記補助輪が接地する補助輪接地状態と、
を有する搭乗可能な倒立車輪型走行体であって、
前記制御手段が、
前記倒立状態及び前記補助輪接地状態のそれぞれについての動力学的運動方程式に基づいて状態オブザーバを設計すること、
前記補助輪接地状態についての前記状態オブザーバの状態方程式にアフィン項を導入すること、
前記倒立状態についての前記状態オブザーバを用いて、前記倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに
前記補助輪接地状態についての前記状態オブザーバを用いて、前記補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)、前記補助輪が床から受ける床反力(f)、及び前記外乱(w)を推定すること、
を特徴とする、倒立車輪型走行体
によって達成される。
The above purpose is
Driving wheels,
A main body supported by the axle of the drive wheel;
An arm part movably connected to the main body part;
An auxiliary wheel rotatably connected to the opposite side of the arm portion from the body portion;
Driving wheel driving means for driving the driving wheel;
Arm driving means for driving the arm portion;
Detecting means for detecting the actual state of the inverted wheel type traveling body;
Control means for controlling the drive wheel drive unit or the arm drive unit based on a deviation between the actual state and the target state detected by the detection unit to achieve the target state;
With
An inverted state in which the auxiliary wheel is not grounded and is inverted only by the driving wheel,
An auxiliary wheel grounding state in which the auxiliary wheel is grounded;
An inverted wheel-type traveling body capable of boarding,
The control means is
Designing a state observer based on dynamic equations of motion for each of the inverted state and the auxiliary wheel grounding state;
Introducing an affine term into the state equation of the state observer for the auxiliary wheel grounding state;
Using the state observer for the inverted state, the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the inverted state And using the state observer for the auxiliary wheel grounding state, the center of gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the auxiliary wheel grounding state Estimating the variation (Δη), the floor reaction force (f c ) that the auxiliary wheel receives from the floor, and the disturbance (w),
This is achieved by an inverted wheel type vehicle.

搭乗可能な倒立車輪型走行体において、新たなセンシングユニットの増設等を伴わずに、倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)、補助輪が床から受ける床反力(f)、及び外乱(w)を推定すること、が可能となる。 Changes in the center-of-gravity angle of the entire inverted wheel type traveling body due to the weight and the position of the center of gravity of the occupant or the loaded object in the inverted state, without adding a new sensing unit, etc. (Δη) and disturbance (w) are estimated, and the variation of the center-of-gravity angle of the entire inverted wheel-type traveling body (Δη) due to the mass and the position of the center of gravity of the occupant or mounted object in the auxiliary wheel grounding state, the auxiliary wheel It is possible to estimate the floor reaction force (f c ) and disturbance (w) received from the floor.

上記により、倒立車輪型走行体において、必要最小限のセンサを用いて、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を回避しつつ、倒立走行の制御性能の向上、補助輪接地状態から倒立状態への連続的かつ円滑な遷移の実現等を達成することが可能となる。   As described above, in the inverted wheel type traveling body, the control of the inverted traveling is avoided using the minimum necessary sensors while avoiding concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing cost, and a complicated control system. Improvement of performance, realization of continuous and smooth transition from the auxiliary wheel grounding state to the inverted state, and the like can be achieved.

倒立状態にある、本発明の1つの実施態様に係る倒立車輪型走行体の構成を示す概略図である。It is the schematic which shows the structure of the inverted wheel type traveling body which concerns on one embodiment of this invention in an inverted state. 補助輪接地状態にある、本発明の1つの実施態様に係る倒立車輪型走行体の構成を示す概略図である。It is the schematic which shows the structure of the inverted wheel type traveling body which concerns on one embodiment of this invention in an auxiliary wheel grounding state. 倒立状態にある、本発明の1つの実施態様に係る倒立車輪型走行体についての状態オブザーバによる状態変数ベクトル推定値を実状態に収束させるフィードバックシステムを表すブロック線図である。It is a block diagram showing the feedback system which makes the state variable vector estimated value by the state observer about the inverted wheel type traveling body which concerns on one embodiment of this invention in an inverted state converge on a real state. 補助輪接地状態にある、本発明の1つの実施態様に係る倒立車輪型走行体についての状態オブザーバによる状態変数ベクトル推定値を実状態に収束させるフィードバックシステムを表すブロック線図である。It is a block diagram showing the feedback system which converges the state variable vector estimated value by the state observer about the inverted wheel type traveling body which concerns on one embodiment of this invention in an auxiliary wheel grounding state to a real state.

本発明は、搭乗可能な倒立車輪型走行体において、新たなセンシングユニットの増設等を伴わずに、倒立状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)、並びに補助輪接地状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)、補助輪が床から受ける床反力(f)、及び外乱(w)を推定する方法を提供することを目的とする。 The present invention relates to an inverted wheel-type traveling body that can be boarded, and the center-of-gravity angle of the entire inverted wheel-type traveling body caused by the mass and position of the passenger or the load in the inverted state without adding a new sensing unit or the like. Variation (Δη) and disturbance (w), and the variation of the center-of-gravity angle of the entire inverted wheel type traveling body (Δη) due to the mass and position of the passenger or the load when the auxiliary wheel is in contact with the ground, the auxiliary wheel is the floor An object of the present invention is to provide a method for estimating the floor reaction force (f c ) and disturbance (w) received from the motor.

前述のように、補助輪接地状態における倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)や床反力を推定しようとする試みはなされていない。しかしながら、本発明者は、上記目的を達成すべく鋭意研究の結果、補助輪接地状態についての状態オブザーバの状態方程式にアフィン項を導入することにより、必要最小限のセンサを用いて、補助輪接地状態における倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)のみならず、補助輪接地状態において補助輪が床から受ける床反力(f)をも推定することができることを見出した。 As described above, attempts have been made to estimate the center-of-gravity angle (composite center-of-gravity angle of the occupant or the loaded object and the inverted wheel type traveling body) and the floor reaction force in the auxiliary wheel grounded state. Absent. However, as a result of diligent research to achieve the above object, the present inventor has introduced an affine term into the state equation of the state observer for the auxiliary wheel grounding state, thereby using the minimum necessary sensor to ground the auxiliary wheel. Not only the center-of-gravity angle of the entire inverted wheel-type traveling body in the state (the composite center-of-gravity angle of the occupant or the load and the inverted wheel-type traveling body), but also the floor reaction force (f c ) that the auxiliary wheel receives from the floor when the auxiliary wheel is grounded ) Can also be estimated.

即ち、本発明の第1態様は、
駆動輪と、
前記駆動輪の車軸によって支持される本体部と、
前記本体部に可動式に連接されたアーム部と、
前記アーム部の前記本体部とは反対側に回転可能に連接された補助輪と、
前記駆動輪を駆動する駆動輪駆動手段と、
前記アーム部を駆動するアーム駆動手段と、
前記倒立車輪型走行体の実状態を検出する検出手段と、
前記検出部によって検出される実状態と目標状態との偏差に基づいて前記駆動輪駆動部又は前記アーム駆動部を制御して、前記目標状態を達成する制御手段と、
を備え、
前記補助輪が接地せず、前記駆動輪のみで倒立する倒立状態と、
前記補助輪が接地する補助輪接地状態と、
を有する搭乗可能な倒立車輪型走行体全体の重心角推定方法であって、
前記倒立状態及び前記補助輪接地状態のそれぞれについての動力学的運動方程式に基づいて状態オブザーバを設計すること、
前記補助輪接地状態についての前記状態オブザーバの状態方程式にアフィン項を導入すること、
前記倒立状態についての前記状態オブザーバを用いて、前記倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに
前記補助輪接地状態についての前記状態オブザーバを用いて、前記補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)、前記補助輪が床から受ける床反力(f)、及び前記外乱(w)を推定すること、
を特徴とする、倒立車輪型走行体全体の重心角推定方法である。
That is, the first aspect of the present invention is:
Driving wheels,
A main body supported by the axle of the drive wheel;
An arm part movably connected to the main body part;
An auxiliary wheel rotatably connected to the opposite side of the arm portion from the body portion;
Driving wheel driving means for driving the driving wheel;
Arm driving means for driving the arm portion;
Detecting means for detecting the actual state of the inverted wheel type traveling body;
Control means for controlling the drive wheel drive unit or the arm drive unit based on a deviation between the actual state and the target state detected by the detection unit to achieve the target state;
With
An inverted state in which the auxiliary wheel is not grounded and is inverted only by the driving wheel,
An auxiliary wheel grounding state in which the auxiliary wheel is grounded;
A center-of-gravity angle estimation method for the entire boardable inverted wheel type traveling body having:
Designing a state observer based on dynamic equations of motion for each of the inverted state and the auxiliary wheel grounding state;
Introducing an affine term into the state equation of the state observer for the auxiliary wheel grounding state;
Using the state observer for the inverted state, the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the inverted state And using the state observer for the auxiliary wheel grounding state, the center of gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the auxiliary wheel grounding state Estimating the variation (Δη), the floor reaction force (f c ) that the auxiliary wheel receives from the floor, and the disturbance (w),
This is a method for estimating the center-of-gravity angle of the entire inverted wheel type traveling body.

駆動輪は、同一回転軸線上に左右対称に配される(即ち、同軸の回転軸を有する)一対の車輪として構成される。倒立車輪型走行体の本体部は、駆動輪の回転軸線に対して直交する方向に傾動可能な状態で、駆動輪の車軸によって支持される。尚、左右の駆動輪のそれぞれには、駆動輪を駆動するための駆動輪駆動手段が接続されている。駆動輪駆動手段としては、当該技術分野において広く使用されている種々の駆動装置を使用することができ、例えば電動モータ等を動力源として含む駆動装置を使用することができる。   The drive wheels are configured as a pair of wheels arranged symmetrically on the same rotation axis (that is, having a coaxial rotation axis). The main body portion of the inverted wheel type traveling body is supported by the axle of the drive wheel in a state where it can tilt in a direction orthogonal to the rotation axis of the drive wheel. Drive wheel drive means for driving the drive wheels is connected to each of the left and right drive wheels. As the driving wheel driving means, various driving devices widely used in the technical field can be used. For example, a driving device including an electric motor or the like as a power source can be used.

ところで、本発明に係る倒立車輪型走行体は、搭乗者が搭乗可能な走行体である。また、当然のことながら、本発明に係る倒立車輪型走行体には、搭載物を搭載することも可能である。従って、例えば、本発明に係る倒立車輪型走行体の本体部は、搭乗者が搭乗したり、搭載物を搭載したりするための機構(例えば、座席、荷台等)を備える。   By the way, the inverted wheel type traveling body according to the present invention is a traveling body on which a passenger can board. Of course, it is also possible to mount a load on the inverted wheel type traveling body according to the present invention. Therefore, for example, the main body of the inverted wheel type traveling body according to the present invention includes a mechanism (for example, a seat, a loading platform, etc.) for the passenger to board or to mount a load.

また、本体部にはアーム部が可動式に連接されており、アーム部の他端(本体部とは反対側)には補助輪が回転可能に連接されている。アーム部は、補助輪接地状態においては同補助輪が床面に接地して、駆動輪と共に倒立車輪型走行体を支持する一方、倒立状態においては補助輪が床面に接地せず(即ち、倒立車輪型走行体の支持には寄与せず)、駆動輪のみが倒立車輪型走行体を支持するように、アーム駆動手段によって制御される。アーム駆動手段としては、当該技術分野において広く使用されている種々の駆動装置を使用することができ、例えばサーボモータ等を動力源として含む駆動装置を使用することができる。   Further, the arm portion is movably connected to the main body portion, and an auxiliary wheel is rotatably connected to the other end (the opposite side of the main body portion) of the arm portion. In the arm portion, the auxiliary wheel is grounded to the floor in the grounded state of the auxiliary wheel, and supports the inverted wheel type traveling body together with the drive wheel, while the auxiliary wheel is not grounded to the floor in the inverted state (that is, It does not contribute to the support of the inverted wheel type traveling body), and is controlled by the arm driving means so that only the driving wheel supports the inverted wheel type traveling body. As the arm driving means, various driving devices widely used in the technical field can be used. For example, a driving device including a servo motor or the like as a power source can be used.

倒立車輪型走行体の実状態を検出する検出手段としては、例えば、個々の駆動装置(例えば、駆動輪駆動手段やアーム駆動手段を構成するモータ)の回転角や回転角速度を検出するエンコーダ、本体部のピッチ角やピッチ角速度を検出するジャイロセンサ等が挙げられる。尚、本体部のピッチ角やピッチ角速度を測定するセンサとしては、ジャイロセンサに限られず、例えば、重力加速度センサや重り吊り下げ型傾斜角度計等、ピッチ角やピッチ角速度の計測に用いることができる種々の計測器を使用することができる。倒立車輪型走行体の構成は既知であるので、倒立車輪型走行体の本体部の重心角は、このようなセンサによって検出されるピッチ角に基づいて求めることができる。   The detection means for detecting the actual state of the inverted wheel type traveling body includes, for example, an encoder for detecting the rotation angle and rotation angular velocity of each drive device (for example, a motor constituting the drive wheel drive means and the arm drive means), and the main body And a gyro sensor for detecting the pitch angle and pitch angular velocity of the part. The sensor for measuring the pitch angle and pitch angular velocity of the main body is not limited to the gyro sensor, and can be used for measuring the pitch angle and pitch angular velocity, for example, a gravitational acceleration sensor or a weight suspension type tilt angle meter. Various instruments can be used. Since the configuration of the inverted wheel type traveling body is known, the barycentric angle of the main body of the inverted wheel type traveling body can be obtained based on the pitch angle detected by such a sensor.

前述のように、かかる倒立車輪型走行体は、駆動輪の駆動により搭乗者や搭載物と倒立車輪型走行体との合成重心位置を修正して安定状態を維持しつつ移動するように制御される。上記検出手段は、このような重心位置の修正を行うために、倒立車輪型走行体の実状態として、例えば、駆動輪駆動手段やアーム駆動手段を構成するモータの回転角や回転角速度、本体部のピッチ角やピッチ角速度等を検出する。このようにして検出されたピッチ角やピッチ角速度から、倒立車輪型走行体の本体部の重心角や重心角速度を算出する。   As described above, such an inverted wheel type traveling body is controlled so as to move while maintaining a stable state by correcting the position of the center of gravity of the occupant or the loaded object and the inverted wheel type traveling body by driving the driving wheel. The In order to correct the center-of-gravity position, the detection means, for example, as the actual state of the inverted wheel type traveling body, for example, the rotation angle and rotation angular velocity of the motor constituting the driving wheel driving means and the arm driving means, the main body portion The pitch angle, pitch angular velocity, etc. are detected. From the pitch angle and pitch angular velocity thus detected, the center of gravity angle and the center of gravity angular velocity of the main body of the inverted wheel type traveling body are calculated.

上記のように検出手段によって検出された倒立車輪型走行体の実状態は、例えば、検知手段から送出される出力信号として、制御手段に送られる。制御手段は、検出部によって検出される実状態と目標状態との偏差に基づいて駆動輪駆動部又はアーム駆動部を制御して、目標状態を達成する。制御手段は、例えば、制御コンピュータを含んでなり、制御コンピュータは、例えば、CPU、ROM、RAM等から構成される。制御コンピュータは、例えば、ROMに格納された制御プログラムを実行することにより、検知手段から送出される出力信号に基づいて、走行体の実状態と目標状態との偏差を算出し、走行体の目標状態を達成するための制御指令値を算出する。制御コンピュータによって算出された制御指令値は駆動輪駆動部又はアーム駆動部に出力され、同制御指令値に基づいて駆動輪又はアーム部が制御される。   The actual state of the inverted wheel type traveling body detected by the detection means as described above is sent to the control means as an output signal sent from the detection means, for example. The control means controls the drive wheel drive unit or the arm drive unit based on the deviation between the actual state and the target state detected by the detection unit to achieve the target state. The control means includes, for example, a control computer, and the control computer includes, for example, a CPU, a ROM, a RAM, and the like. For example, the control computer executes a control program stored in the ROM, calculates a deviation between the actual state of the traveling body and the target state based on the output signal sent from the detection means, A control command value for achieving the state is calculated. The control command value calculated by the control computer is output to the drive wheel drive unit or the arm drive unit, and the drive wheel or arm unit is controlled based on the control command value.

上記のように、倒立車輪型走行体において目標状態を達成するには、倒立車輪型走行体全体の重心角等を検知する必要がある。しかしながら、前述のように、本発明に係る倒立車輪型走行体は、搭乗者が搭乗可能な走行体である。かかる搭乗型走行体の重心位置や重心角は、搭乗者の体重、体格、癖、及び障害等、並びに搭載物の重量及び形状等によって大きく変動する。従って、上記のように倒立車輪型走行体全体の重心角を検知して重心位置の修正を行うには、搭乗者や搭載物にセンサを取り付ける等して、それらの重量や重心位置を測定し、得られた測定値に基づいて重心角を算出することが考えられる。   As described above, in order to achieve the target state in the inverted wheel type traveling body, it is necessary to detect the center of gravity angle or the like of the entire inverted wheel type traveling body. However, as described above, the inverted wheel type traveling body according to the present invention is a traveling body on which a passenger can board. The center-of-gravity position and center-of-gravity angle of such a riding-type traveling body greatly vary depending on the weight, physique, heel, obstacle, and the like of the occupant and the weight and shape of the loaded object. Therefore, in order to detect the center of gravity angle of the entire inverted wheel type traveling body and correct the center of gravity position as described above, the weight and the center of gravity position are measured by attaching a sensor to the passenger or the load. It is conceivable to calculate the barycentric angle based on the obtained measurement value.

しかしながら、上記のように新たなセンシングユニットの増設等による対応策は、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を招く虞がある点から、必ずしも好ましくない。また、搭乗者や搭載物に複雑なセンサを取り付けることは現実的ではなく、好ましくない。従って、本発明に係る倒立車輪型走行体全体の重心角推定方法においては、新たなセンシングユニットを増設すること無く、前述のような既存の検出手段によって検知される実状態に基づき、搭乗者や搭載物に起因する重心角の変動分を状態オブザーバを用いて推定し、倒立車輪型走行体全体の重心角を検知する。   However, countermeasures such as the addition of a new sensing unit as described above are not always preferable because they may cause concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing costs, and a complicated control system. Absent. Moreover, it is not realistic and not preferable to attach a complicated sensor to a passenger or a load. Therefore, in the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the present invention, based on the actual state detected by the existing detection means as described above without adding a new sensing unit, The fluctuation of the center of gravity caused by the mounted object is estimated using a state observer, and the center of gravity of the entire inverted wheel type traveling body is detected.

更に、本発明に係る倒立車輪型走行体は、前述のように、補助輪が床面に接地せず(即ち、倒立車輪型走行体の支持には寄与せず)、駆動輪のみが倒立車輪型走行体を支持する倒立状態と、補助輪が床面に接地して、駆動輪と共に倒立車輪型走行体を支持する補助輪接地状態との、2つの状態を有する。   Further, as described above, in the inverted wheel type traveling body according to the present invention, the auxiliary wheel does not contact the floor (that is, does not contribute to the support of the inverted wheel type traveling body), and only the driving wheel is the inverted wheel. There are two states: an inverted state that supports the traveling type body, and an auxiliary wheel grounding state that supports the inverted wheel type traveling body together with the driving wheels while the auxiliary wheels are grounded to the floor surface.

前者の倒立状態においては、種々の外乱(例えば、物理パラメータ誤差や線形化誤差による外乱)もまた走行体の駆動輪や本体部の運動方程式に影響を及ぼす。一方、後者の補助輪接地状態においては、補助輪が床から受ける床反力もまた走行体の重心角に影響を及ぼす。補助輪接地状態における安定性を向上させたり、補助輪接地状態から倒立状態への遷移を連続的かつ円滑なものとしたりするためには、補助輪接地状態における搭乗者や搭載物と走行体との合成重心角を検知する必要がある。従って、補助輪接地状態における搭乗者や搭載物と走行体との合成重心角を検知するためには、補助輪が床から受ける床反力を検出する必要がある。しかしながら、前述と同様に、床反力を検出するための新たなセンシングユニット等を増設することは、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を招く虞がある点から好ましくない。   In the former inverted state, various disturbances (for example, disturbances caused by physical parameter errors and linearization errors) also affect the driving wheels of the traveling body and the equations of motion of the main body. On the other hand, in the latter auxiliary wheel grounding state, the floor reaction force that the auxiliary wheel receives from the floor also affects the gravity center angle of the traveling body. In order to improve the stability in the auxiliary wheel grounding state and to make the transition from the auxiliary wheel grounding state to the inverted state continuous and smooth, the passenger, the load and the traveling body in the auxiliary wheel grounding state It is necessary to detect the composite centroid angle. Therefore, in order to detect the composite barycentric angle of the passenger or the load and the traveling body in the auxiliary wheel grounding state, it is necessary to detect the floor reaction force that the auxiliary wheel receives from the floor. However, as described above, adding a new sensing unit or the like for detecting a floor reaction force causes concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing cost, and a complicated control system. It is not preferable because of fear.

そこで、本発明に係る倒立車輪型走行体全体の重心角推定方法においては、床反力センサ等の新たなセンシングユニットを増設すること無く、前述のような既存の検出手段によって検知される実状態に基づき、倒立状態における外乱や補助輪接地状態において補助輪が床から受ける床反力及び外乱を、状態オブザーバを用いて推定し、倒立車輪型走行体全体の重心角を検知する。   Therefore, in the center of gravity angle estimation method for the entire inverted wheel type traveling body according to the present invention, the actual state detected by the existing detection means as described above without adding a new sensing unit such as a floor reaction force sensor. Based on the above, the state reaction force and disturbance that the auxiliary wheel receives from the floor in the inverted state and the auxiliary wheel grounding state are estimated using the state observer, and the center-of-gravity angle of the entire inverted wheel type traveling body is detected.

尚、前述のように、当該技術分野においては、倒立車輪型走行体の制御方法として種々の試みが提案されているが、本発明に係る倒立車輪型走行体全体の重心角推定方法のように、補助輪接地状態における倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)や床反力を推定して、搭乗者や搭載物と走行体との合成重心角を推定しようとする試みは従来なされていない。   As described above, in the technical field, various attempts have been proposed as a method for controlling an inverted wheel type traveling body. However, like the method of estimating the center of gravity of the entire inverted wheel type traveling body according to the present invention. Estimate the center-of-gravity angle (composite center-of-gravity angle of the occupant and the mounted object and the inverted wheel-type traveling body) and the floor reaction force when the auxiliary wheel is in contact with the ground. No attempt has been made to estimate the combined barycentric angle.

しかしながら、本発明に係る倒立車輪型走行体全体の重心角推定方法においては、倒立状態及び補助輪接地状態における倒立車輪型走行体の運動方程式に基づいて状態オブザーバをそれぞれ設計する。倒立状態については、倒立状態用のオブザーバを用いて、倒立状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定する。   However, in the method of estimating the center-of-gravity angle of the entire inverted wheel type traveling body according to the present invention, the state observer is designed based on the equation of motion of the inverted wheel type traveling body in the inverted state and the auxiliary wheel grounding state. For the inverted state, using the observer for the inverted state, the fluctuation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and position of the passenger or the load in the inverted state presume.

一方、補助輪接地状態については、前述のように、補助輪接地状態用のオブザーバの状態方程式にアフィン項が導入される。これにより、前述のような既存の検出手段によって検知される実状態に基づいて、補助輪接地状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)のみならず、補助輪が床から受ける床反力(f)及び外乱(w)をも推定することができる。即ち、アフィン項は、重力の影響、より具体的には補助輪が床から受ける床反力の影響を反映させるために、状態オブザーバに導入されるものである。 On the other hand, for the auxiliary wheel grounding state, as described above, the affine term is introduced into the state equation of the observer for the auxiliary wheel grounding state. Thus, based on the actual state detected by the existing detection means as described above, the variation of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and position of the passenger or the mounted object in the auxiliary wheel grounding state It is possible to estimate not only (Δη) but also the floor reaction force (f c ) and disturbance (w) that the auxiliary wheel receives from the floor. That is, the affine term is introduced into the state observer in order to reflect the influence of gravity, more specifically, the influence of the floor reaction force that the auxiliary wheel receives from the floor.

前述のように、当該技術分野においては本発明に係る倒立車輪型走行体全体の重心角推定方法のように補助輪接地状態についての状態オブザーバの状態方程式にアフィン項を導入するモデルはこれまでに提案されていない。本発明に係る倒立車輪型走行体全体の重心角推定方法においては、アフィン項を導入することにより、補助輪接地状態において補助輪が床から受ける床反力(f)を推定することが可能となった。これにより、本発明に係る倒立車輪型走行体全体の重心角推定方法においては、倒立状態についての状態オブザーバを用いて、倒立状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定することができることに加えて、アフィン項が導入された補助輪接地状態についての状態オブザーバを用いて、補助輪接地状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)、補助輪が床から受ける床反力(f)、及び外乱(w)をも推定することができるようになった。 As described above, in this technical field, a model that introduces an affine term into the state equation of the state observer for the auxiliary wheel grounding state as in the method for estimating the center of gravity angle of the entire inverted wheel type traveling body according to the present invention has hitherto been used. Not proposed. In the method of estimating the center-of-gravity angle of the entire inverted wheel type traveling body according to the present invention, it is possible to estimate the floor reaction force (f c ) that the auxiliary wheel receives from the floor when the auxiliary wheel is grounded by introducing the affine term. It became. Thereby, in the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the present invention, the inverted wheel type traveling caused by the mass and position of the passenger or the mounted object in the inverted state using the state observer for the inverted state. In addition to being able to estimate the fluctuation (Δη) and disturbance (w) of the center-of-gravity angle of the entire body, boarding in the auxiliary wheel grounding state using the state observer for the auxiliary wheel grounding state that introduced the affine term The variation of the center-of-gravity angle (Δη) of the entire inverted wheel type traveling body caused by the mass and position of the person or the load, the floor reaction force (f c ) that the auxiliary wheel receives from the floor, and the disturbance (w) are also estimated. I was able to do it.

従って、本発明に係る倒立車輪型走行体全体の重心角推定方法によれば、搭乗可能な倒立車輪型走行体において、新たなセンシングユニットの増設等を伴わずに、倒立状態及び補助輪接地状態の両状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)、並びに補助輪接地状態において補助輪が床から受ける床反力(f)を推定し、倒立状態及び補助輪接地状態の両状態を通じて、倒立車輪型走行体全体の重心角を制御することができる。 Therefore, according to the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the present invention, in the inverted wheel type traveling body that can be boarded, the inverted state and the auxiliary wheel grounding state can be provided without adding a new sensing unit or the like. The variation of the center of gravity angle (Δη) and disturbance (w) of the entire inverted wheel type traveling body due to the mass and position of the passenger or the load in both states, and the floor that the auxiliary wheel receives from the floor when the auxiliary wheel is grounded The reaction force (f c ) is estimated, and the center-of-gravity angle of the entire inverted wheel type traveling body can be controlled through both the inverted state and the auxiliary wheel grounding state.

その結果、本発明に係る倒立車輪型走行体全体の重心角推定方法によれば、倒立車輪型走行体において、必要最小限のセンサを用いて、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を回避しつつ、倒立走行の制御性能の向上、補助輪接地状態から倒立状態への連続的かつ円滑な遷移の実現等を達成することが可能となる。また、本発明に係る倒立車輪型走行体全体の重心角推定方法によれば、倒立車輪型走行体全体の重心角の変動分(Δη)を推定することができるので、例えば、搭乗者の乗り出しや、搭載物の引っ掛かり等の危険現象に伴う倒立車輪型走行体全体の重心角の変動を検出し、倒立車輪型走行体の転倒、搭乗者や搭載物の落下等の事態を未然に防ぐこともできる。   As a result, according to the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the present invention, in the inverted wheel type traveling body, the required size of the traveling body is increased, the weight is increased, and the manufacturing cost is reduced. While avoiding concerns such as an increase and complication of the control system, it is possible to improve the control performance of the inverted traveling, achieve a continuous and smooth transition from the auxiliary wheel grounding state to the inverted state, and the like. Further, according to the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the present invention, the variation (Δη) of the center-of-gravity angle of the entire inverted wheel type traveling body can be estimated. In addition, by detecting the change in the center of gravity angle of the entire inverted wheel type traveling body due to dangerous phenomena such as catching on the loaded object, it is possible to prevent the fall of the inverted wheel type traveling object, the fall of the passenger or the loaded object, etc. You can also.

ところで、前述のように、本発明に係る倒立車輪型走行体全体の重心角推定方法においては、倒立状態及び補助輪接地状態のそれぞれについての動力学的運動方程式に基づいて状態オブザーバが設計される。ここで、倒立状態及び補助輪接地状態のそれぞれについての状態オブザーバの設計の概略について説明する(詳細については後述する)。   By the way, as described above, in the method of estimating the center-of-gravity angle of the entire inverted wheel type traveling body according to the present invention, the state observer is designed based on the dynamic equation of motion for each of the inverted state and the auxiliary wheel grounding state. . Here, the outline of the design of the state observer for each of the inverted state and the auxiliary wheel grounding state will be described (details will be described later).

本発明の1つの実施態様において、先ず、本実施態様に係る倒立車輪型走行体の倒立状態における運動方程式が下式(8)に示す状態方程式及び出力方程式で表されるとする。   In one embodiment of the present invention, first, it is assumed that an equation of motion in an inverted state of an inverted wheel type traveling body according to this embodiment is expressed by a state equation and an output equation shown in the following equation (8).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
である。
Figure 0005560234
It is.

上記状態方程式及び出力方程式に基づき、本実施態様に係る倒立車輪型走行体の倒立状態における状態オブザーバが下式(9)に示す状態方程式及び出力方程式によって表される。   Based on the state equation and the output equation, the state observer in the inverted state of the inverted wheel type traveling body according to the present embodiment is represented by the state equation and the output equation shown in the following equation (9).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

である。 It is.

一方、本実施態様に係る倒立車輪型走行体の補助輪接地状態における運動方程式が下式(26)に示す状態方程式及び出力方程式で表されるとする。   On the other hand, it is assumed that the equation of motion of the inverted wheel type traveling body according to this embodiment in the grounded state of the auxiliary wheel is represented by the state equation and the output equation shown in the following equation (26).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

である。 It is.

上記状態方程式及び出力方程式に基づき、本実施態様に係る倒立車輪型走行体の補助輪接地状態における状態オブザーバが下式(27)に示す状態方程式及び出力方程式によって表される。   Based on the state equation and the output equation, the state observer in the auxiliary wheel grounding state of the inverted wheel type traveling body according to the present embodiment is represented by the state equation and the output equation shown in the following equation (27).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

である。 It is.

上記のように、本実施態様においては、倒立車輪型走行体の倒立状態及び補助輪接地状態における状態オブザーバを、それぞれ式(9)及び式(27)に示す状態方程式及び出力方程式によって表す。式(9)及び式(27)に含まれるシステム行列及び出力行列で構成される可観測行列は何れもフルランクであることから(詳細については後述する)、それぞれの状態オブザーバにおいてオブザーバゲインを適切に設計することにより、それぞれの状態オブザーバにおける状態変数ベクトル推定値は実状態への漸近的収束値を得ることができる。   As described above, in the present embodiment, the state observer in the inverted state and the auxiliary wheel grounding state of the inverted wheel type traveling body is expressed by the state equation and the output equation shown in the equations (9) and (27), respectively. Since the observable matrix composed of the system matrix and the output matrix included in Equation (9) and Equation (27) are both full rank (details will be described later), the observer gain is appropriately set in each state observer. Thus, the state variable vector estimation value in each state observer can obtain an asymptotic convergence value to the real state.

換言すれば、本実施態様に係る倒立車輪型走行体全体の重心角推定方法においては、式(9)及び式(27)に示す状態方程式及び出力方程式によって表わされる、それぞれ倒立状態及び補助輪接地状態における状態オブザーバを用いて、倒立状態及び補助輪接地状態における搭乗者又は搭載物の質量及び位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)、並びに補助輪接地状態において補助輪が床から受ける床反力(f)を推定する。 In other words, in the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the present embodiment, the inverted state and the auxiliary wheel grounding represented by the state equation and the output equation shown in Equation (9) and Equation (27), respectively. Using the state observer in the state, the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and position of the occupant or the loaded object in the inverted state and the auxiliary wheel ground state, and The floor reaction force (f c ) that the auxiliary wheel receives from the floor when the auxiliary wheel is in contact with the ground is estimated.

即ち、本発明の第2態様は、
前記第1態様に係る倒立車輪型走行体全体の重心角推定方法であって、前記倒立状態ついての前記状態オブザーバが下式(9)に示す状態方程式及び出力方程式によって表され、
That is, the second aspect of the present invention is
The center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the first aspect, wherein the state observer for the inverted state is represented by a state equation and an output equation represented by the following equation (9):

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

であり、
一方、前記補助輪接地状態についての前記状態オブザーバが下式(27)に示す状態方程式及び出力方程式によって表され、
And
On the other hand, the state observer for the auxiliary wheel grounding state is represented by a state equation and an output equation shown in the following equation (27),

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

であることを特徴とする、倒立車輪型走行体全体の重心角推定方法である。 This is a method for estimating the center-of-gravity angle of the entire inverted wheel type traveling body.

前述のように、本発明に係る倒立車輪型走行体全体の重心角推定方法においては、搭乗者又は搭載物の質量及び位置等に起因する倒立車輪型走行体全体の重心角の変動分(Δη)、外乱(w)、及び補助輪が床から受ける床反力(f)を既知の観測値に基づいて推定する。即ち、本発明に係る倒立車輪型走行体の運動方程式の状態変数ベクトルには、既知の変量と未知の変量とが含まれる。尚、既知の観測値としては、対象となる倒立車輪型走行体が備える検出手段の種類に応じて種々のパラメータを選択することができる。 As described above, in the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the present invention, the variation of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and position of the passenger or the load (Δη ), Disturbance (w), and floor reaction force (f c ) that the auxiliary wheel receives from the floor based on known observations. That is, the state variable vector of the equation of motion of the inverted wheel type traveling body according to the present invention includes a known variable and an unknown variable. In addition, as a known observation value, various parameters can be selected according to the kind of detection means with which the target inverted wheel type traveling body is provided.

本発明の1つの実施態様においては、倒立状態にある倒立車輪型走行体の運動方程式の状態変数ベクトルには、例えば、搭乗者や搭載物が乗る前の倒立車輪型走行体の重心角、搭乗者や搭載物が乗る前の倒立車輪型走行体の重心角速度、及び駆動輪の回転角速度という観測値に加えて、倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)の搭乗者や搭載物が乗る前の倒立車輪型走行体の重心角からの変動分(Δη)及び外乱(w)という未知の成分も含まれる。ここで、外乱としては、例えば、物理パラメータ誤差や線形化誤差による外乱が想定される。   In one embodiment of the present invention, the state variable vector of the equation of motion of the inverted wheel type traveling body in the inverted state includes, for example, the center-of-gravity angle of the inverted wheel type traveling body before the rider or the mounted object rides, In addition to the observed values of the center of gravity angular velocity of the inverted wheel type traveling body and the rotational angular velocity of the drive wheel before the passenger or the loaded object rides, the center of gravity angle of the entire inverted wheel type traveling body (passenger, loaded object and inverted wheel type traveling) An unknown component such as a variation (Δη) and a disturbance (w) from the center of gravity angle of the inverted wheel type traveling body before the rider or the mounted object on the composite body center of gravity angle) is included. Here, as the disturbance, for example, a disturbance due to a physical parameter error or a linearization error is assumed.

また、補助輪接地状態にある倒立車輪型走行体の運動方程式の状態変数ベクトルには、例えば、搭乗者や搭載物が乗る前の倒立車輪型走行体の重心角速度、駆動輪の回転角速度、及び補助輪アーム(アーム部)の回転角(q)という観測値に加えて、倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)の搭乗者や搭載物が乗る前の倒立車輪型走行体の重心角からの変動分(Δη)や補助輪接地状態において補助輪が床から受ける床反力(f)という未知の成分も含まれる。 Further, the state variable vector of the equation of motion of the inverted wheel type traveling body in the auxiliary wheel grounding state includes, for example, the gravity center angular velocity of the inverted wheel type traveling body before the rider or the mounted object rides, the rotational angular velocity of the driving wheel, and In addition to the observation value of the rotation angle (q) of the auxiliary wheel arm (arm part), the centroid angle of the entire inverted wheel type traveling body (the occupant and the occupant of the loaded object and the inverted wheel type traveling body) And an unknown component such as a variation (Δη) from the center-of-gravity angle of the inverted wheel type traveling body before the mounted object is on and a floor reaction force (f c ) that the auxiliary wheel receives from the floor when the auxiliary wheel is grounded.

即ち、本発明の第3態様は、
前記第2態様に係る倒立車輪型走行体全体の重心角推定方法であって、前記倒立状態においては状態変数ベクトルとして下式(7)を用いて前記Δη及び前記外乱wを推定し、前記補助輪接地状態においては状態変数ベクトルとして下式(25)を用いて前記Δη及び前記f、及び前記外乱wを推定し、
That is, the third aspect of the present invention is
A method of estimating a center-of-gravity angle of the entire inverted wheel type traveling body according to the second aspect, wherein the Δη and the disturbance w are estimated using the following equation (7) as a state variable vector in the inverted state, and the auxiliary In the wheel contact state, the Δη and the f c and the disturbance w are estimated using the following equation (25) as a state variable vector:

Figure 0005560234
Figure 0005560234

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

であることを特徴とする、倒立車輪型走行体全体の重心角推定方法である。 This is a method for estimating the center-of-gravity angle of the entire inverted wheel type traveling body.

上述のように、本発明の前記第1態様乃至前記第3態様に係る倒立車輪型走行体全体の重心角推定方法によれば、倒立車輪型走行体において、必要最小限のセンサを用いて、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を回避しつつ、倒立走行の制御性能の向上、補助輪接地状態から倒立状態への連続的かつ円滑な遷移の実現等を達成することが可能となる。   As described above, according to the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the first to third aspects of the present invention, in the inverted wheel type traveling body, using the minimum necessary sensors, While avoiding concerns such as increased size and weight of the vehicle, increased manufacturing costs, and complicated control systems, improved control performance of inverted driving, continuous and smooth transition from auxiliary wheel grounding to inverted state It is possible to achieve the above.

また、本発明の前記第1態様乃至前記第3態様の何れかに係る倒立車輪型走行体全体の重心角推定方法は、倒立車輪型走行体全体の重心角の変動分(Δη)を推定することができるので、重心角の変動を伴う危険現象を検出する手段としても有効である。より具体的には、例えば、倒立車輪型走行体全体の重心角(搭乗者や搭載物と倒立車輪型走行体との合成重心角)の本体部の重心角からの変動分(Δη)が予め定められた所定値よりも大きい場合に警告を発して危険現象の発生を搭乗者等に知らせることにより、倒立車輪型走行体の転倒、搭乗者や搭載物の落下等の好ましくない事態を未然に防ぐことができる。尚、上記危険現象としては、例えば、搭乗者の乗り出しや、搭載物の引っ掛かり等が挙げられる。   Further, the center of gravity angle estimation method for the entire inverted wheel type traveling body according to any one of the first to third aspects of the present invention estimates the variation (Δη) of the center of gravity angle of the entire inverted wheel type traveling body. Therefore, it is also effective as a means for detecting a dangerous phenomenon accompanied by fluctuation of the barycentric angle. More specifically, for example, the variation (Δη) from the center of gravity of the main body of the center of gravity of the entire inverted wheel type traveling body (the combined center of gravity of the occupant or the mounted object and the inverted wheel type traveling body) is previously determined. By issuing a warning and informing the passenger of the occurrence of a dangerous phenomenon when the value is larger than the predetermined value, it is possible to obviate an unfavorable situation such as a fall of an inverted wheel type traveling body or a drop of the passenger or the load. Can be prevented. In addition, as said dangerous phenomenon, a passenger's going out, the catch of a load, etc. are mentioned, for example.

即ち、本発明の第4態様は、
前記第1態様乃至前記第3態様の何れかに係る倒立車輪型走行体全体の重心角推定方法であって、前記Δηが予め定められた所定値よりも大きい場合に警告を発することを特徴とする、倒立車輪型走行体全体の重心角推定方法である。
That is, the fourth aspect of the present invention is
A method for estimating the center-of-gravity angle of the entire inverted wheel type traveling body according to any one of the first to third aspects, wherein a warning is issued when the Δη is greater than a predetermined value. This is a method of estimating the center-of-gravity angle of the entire inverted wheel type traveling body.

尚、上記警告の手段としては、例えば、ブザーや音声等の聴覚に訴えるもの、搭乗者等が使用する操作用画面における表示等の視覚に訴えるもの、及び搭乗者の座席や装着具の振動等の体感に訴えるもの等が挙げられるが、特定の構成に限定されるものではない。   The warning means include, for example, those that appeal to hearing such as a buzzer or sound, those that appeal to the visual sense such as a display on an operation screen used by the passenger, vibrations of the passenger's seat or wearing equipment, etc. However, it is not limited to a specific configuration.

ところで、本発明の前記第1態様乃至前記第4態様に係る倒立車輪型走行体全体の重心角推定方法によって制御される倒立車輪型走行体においては、上述のように、必要最小限のセンサを用いて、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を回避しつつ、倒立走行の制御性能の向上、補助輪接地状態から倒立状態への連続的かつ円滑な遷移の実現等を達成することが可能となる。また、上記のように、当該走行体は、重心角の変動を伴う危険現象を検出する手段を有することとなるので、より安全性の高い走行体となり得る。   By the way, in the inverted wheel type traveling body controlled by the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to the first to fourth aspects of the present invention, as described above, the minimum necessary sensors are provided. By using it, avoiding concerns such as larger and heavier running bodies, increased manufacturing costs, and complicated control systems, while improving the control performance of inverted traveling, continuously from the auxiliary wheel grounding state to the inverted state It becomes possible to achieve smooth transition and the like. In addition, as described above, the traveling body has means for detecting a dangerous phenomenon accompanied by fluctuations in the barycentric angle, so that it can be a safer traveling body.

即ち、本発明の第5態様は、
駆動輪と、
前記駆動輪の車軸によって支持される本体部と、
前記本体部に可動式に連接されたアーム部と、
前記アーム部の前記本体部とは反対側に回転可能に連接された補助輪と、
前記駆動輪を駆動する駆動輪駆動手段と、
前記アーム部を駆動するアーム駆動手段と、
前記倒立車輪型走行体の実状態を検出する検出手段と、
前記検出部によって検出される実状態と目標状態との偏差に基づいて前記駆動輪駆動部又は前記アーム駆動部を制御して、前記目標状態を達成する制御手段と、
を備え、
前記補助輪が接地せず、前記駆動輪のみで倒立する倒立状態と、
前記補助輪が接地する補助輪接地状態と、
を有する搭乗可能な倒立車輪型走行体であって、
前記制御手段が、
前記倒立状態及び前記補助輪接地状態のそれぞれについての動力学的運動方程式に基づいて状態オブザーバを設計すること、
前記補助輪接地状態についての前記状態オブザーバの状態方程式にアフィン項を導入すること、
前記倒立状態についての前記状態オブザーバを用いて、前記倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに
前記補助輪接地状態についての前記状態オブザーバを用いて、前記補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)、前記補助輪が床から受ける床反力(f)、及び外乱(w)を推定すること、
を特徴とする、倒立車輪型走行体である。
That is, the fifth aspect of the present invention is
Driving wheels,
A main body supported by the axle of the drive wheel;
An arm part movably connected to the main body part;
An auxiliary wheel rotatably connected to the opposite side of the arm portion from the body portion;
Driving wheel driving means for driving the driving wheel;
Arm driving means for driving the arm portion;
Detecting means for detecting the actual state of the inverted wheel type traveling body;
Control means for controlling the drive wheel drive unit or the arm drive unit based on a deviation between the actual state and the target state detected by the detection unit to achieve the target state;
With
An inverted state in which the auxiliary wheel is not grounded and is inverted only by the driving wheel,
An auxiliary wheel grounding state in which the auxiliary wheel is grounded;
An inverted wheel-type traveling body capable of boarding,
The control means is
Designing a state observer based on dynamic equations of motion for each of the inverted state and the auxiliary wheel grounding state;
Introducing an affine term into the state equation of the state observer for the auxiliary wheel grounding state;
Using the state observer for the inverted state, the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the inverted state And using the state observer for the auxiliary wheel grounding state, the center of gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the auxiliary wheel grounding state Estimating a variation (Δη), a floor reaction force (f c ) that the auxiliary wheel receives from the floor, and a disturbance (w);
An inverted wheel type traveling body characterized by the above.

また、本発明の第6態様は、
前記第5態様に係る倒立車輪型走行体であって、前記倒立状態ついての前記状態オブザーバが下式(9)に示す状態方程式及び出力方程式によって表され、
The sixth aspect of the present invention is
The inverted wheel type traveling body according to the fifth aspect, wherein the state observer for the inverted state is represented by a state equation and an output equation shown in the following equation (9):

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

であり、
一方、前記補助輪接地状態についての前記状態オブザーバが下式(27)に示す状態方程式及び出力方程式によって表され、
And
On the other hand, the state observer for the auxiliary wheel grounding state is represented by a state equation and an output equation shown in the following equation (27),

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

であることを特徴とする、倒立車輪型走行体である。 This is an inverted wheel type traveling body.

更に、本発明の第7態様は、
前記第6態様に係る倒立車輪型走行体であって、前記倒立状態においては状態変数ベクトルとして下式(7)を用いて前記Δη及び前記外乱wを推定し、前記補助輪接地状態においては状態変数ベクトルとして下式(25)を用いて前記Δη、前記f、及び前記外乱wを推定し、
Furthermore, the seventh aspect of the present invention provides
In the inverted wheel type traveling body according to the sixth aspect, the Δη and the disturbance w are estimated using the following equation (7) as a state variable vector in the inverted state, and the state in the auxiliary wheel grounding state Estimating the Δη, the f c , and the disturbance w using the following equation (25) as a variable vector:

Figure 0005560234
Figure 0005560234

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

であることを特徴とする、倒立車輪型走行体である。 This is an inverted wheel type traveling body.

また更に、本発明の第8態様は、
前記第5態様乃至前記第7態様の何れかに係る倒立車輪型走行体であって、前記Δηが予め定められた所定値よりも大きい場合に警告を発する重心角警告手段を更に備えることを特徴とする、倒立車輪型走行体である。
Still further, the eighth aspect of the present invention provides:
The inverted wheel type traveling body according to any one of the fifth aspect to the seventh aspect, further comprising barycentric angle warning means for issuing a warning when the Δη is larger than a predetermined value. And an inverted wheel type traveling body.

尚、上述の第5態様乃至前記第8態様の何れかに係る倒立車輪型走行体の構成、及び同走行体の制御において実行される重心角等の推定方法や危険状態の警告方法は、前記第1態様乃至前記第4態様に関する説明において述べたものと同様であるので、ここでの説明は割愛する。   The configuration of the inverted wheel type traveling body according to any one of the fifth aspect to the eighth aspect described above, the estimation method of the center-of-gravity angle and the like and the warning method of the dangerous state executed in the control of the traveling body are as described above. Since it is the same as that described in the description regarding the first aspect to the fourth aspect, description thereof is omitted here.

以上のように、本発明によれば、搭乗可能な倒立車輪型走行体において、新たなセンシングユニットの増設等を伴わずに、倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)、補助輪が床から受ける床反力(f)、及び外乱(w)を推定すること、が可能となる。 As described above, according to the present invention, in an inverted wheel-type traveling body that can be boarded, without the addition of a new sensing unit or the like, the vehicle is inverted due to the mass and the position of the center of gravity of the passenger or the load in the inverted state. Estimating the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire wheel-type traveling body, and the entire inverted wheel-type traveling body due to the mass and the position of the center of gravity of the occupant or the load in the grounded auxiliary wheel It is possible to estimate the variation of the barycentric angle (Δη), the floor reaction force (f c ) that the auxiliary wheel receives from the floor, and the disturbance (w).

上記により、倒立車輪型走行体において、必要最小限のセンサを用いて、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を回避しつつ、倒立走行の制御性能の向上、補助輪接地状態から倒立状態への連続的かつ円滑な遷移の実現、更には重心角の変動を伴う危険現象の防止等の利点を達成することが可能となる。   As described above, in the inverted wheel type traveling body, the control of the inverted traveling is avoided using the minimum necessary sensors while avoiding concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing cost, and a complicated control system. Advantages such as improvement of performance, realization of continuous and smooth transition from the auxiliary wheel grounding state to the inverted state, and prevention of a dangerous phenomenon accompanied by fluctuation of the center of gravity angle can be achieved.

以下、本発明の特定の実施態様に係る倒立車輪型走行体全体の重心角推定方法につき、添付図面を参照しつつ説明する。但し、以下に述べる説明はあくまで例示を目的とするものであり、本発明の範囲が以下の説明に限定されるものと解釈されるべきではない。   Hereinafter, the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to a specific embodiment of the present invention will be described with reference to the accompanying drawings. However, the following description is for illustrative purposes only, and the scope of the present invention should not be construed as being limited to the following description.

先ず、本実施例において、本発明の特定の実施態様に係る倒立車輪型走行体全体の重心角推定方法が適用される倒立車輪型走行体について説明する。図1及び図2は、前述のように、それぞれ倒立状態及び補助輪接地状態にある、本発明の1つの実施態様に係る倒立車輪型走行体の構成を示す概略図である。   First, in the present embodiment, an inverted wheel type traveling body to which the center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to a specific embodiment of the present invention is applied will be described. 1 and 2 are schematic views showing the configuration of an inverted wheel type traveling body according to one embodiment of the present invention, which is in an inverted state and an auxiliary wheel grounding state, respectively, as described above.

A1.倒立状態における倒立車輪型走行体全体の重心角
倒立状態における倒立車輪型走行体全体の重心角の推定について説明する。先ず、倒立状態における倒立車輪型走行体全体の重心角について詳しく説明する。図1に示すように、本実施態様に係る倒立車輪型走行体100の本体部120は、駆動輪110の車軸111を通って略水平方向に延びる水平部と車軸111から略鉛直方向に延びる鉛直部とからなる逆T字型の図形によって模式的に表されており、斜線が施されている。前述のように、本体部120は駆動輪110の車軸111によって支持されている。尚、鉛直部の途中に描かれている丸印mは倒立車輪型走行体100の本体部120の重心を表す。
A1. It explained estimation of the center of gravity angle of the entire inverted wheel type traveling body at the center of gravity angle inverted state of the entire inverted wheel type traveling body in the inverted state. First, the center-of-gravity angle of the entire inverted wheel type traveling body in the inverted state will be described in detail. As shown in FIG. 1, the main body 120 of the inverted wheel type traveling body 100 according to this embodiment includes a horizontal portion that extends in a substantially horizontal direction through the axle 111 of the drive wheel 110 and a vertical portion that extends in a substantially vertical direction from the axle 111. It is schematically represented by an inverted T-shaped figure made up of parts, and is hatched. As described above, the main body 120 is supported by the axle 111 of the drive wheel 110. A circle mark m 0 drawn in the middle of the vertical portion represents the center of gravity of the main body 120 of the inverted wheel type traveling body 100.

前述のように、上記水平部の両端には、それぞれ補助輪141及び142を他端に備えるアーム部131及び132が、連接部位133及び134を介して可動式に連接されている。尚、図1に示されている倒立車輪型走行体100は倒立状態にあるため、アーム部131及び132は、それぞれが備える補助輪141及び142が接地しない角度に保持されている。   As described above, the arm portions 131 and 132 having the auxiliary wheels 141 and 142 at the other end are connected to both ends of the horizontal portion via the connecting portions 133 and 134, respectively. Since the inverted wheel type traveling body 100 shown in FIG. 1 is in an inverted state, the arm portions 131 and 132 are held at an angle at which the auxiliary wheels 141 and 142 included in the arm portions 131 and 132 are not grounded.

本実施態様に係る倒立車輪型走行体100については、上記のように搭乗者150が搭乗する態様を想定して説明するが、他の実施態様に係る倒立車輪型走行体は、上記搭乗手段に代えて又は上記搭乗手段に加えて、荷物等の搭載物を搭載するための搭載手段を備えることもできる。また、本実施態様に係る倒立車輪型走行体100においては、上記のように、補助輪接地状態においては駆動輪110と共に本体部120を支持する補助輪及びアーム部が倒立車輪型走行体100の進行方向(図中、灰色の矢印にて表示)のみならず、進行方向の反対側にも設けられている。しかしながら、他の実施態様に係る倒立車輪型走行体においては、補助輪及びアーム部が倒立車輪型走行体の進行方向の前後の何れか一方の側にのみ設けられていてもよい。   The inverted wheel type traveling body 100 according to the present embodiment will be described on the assumption that the passenger 150 is boarded as described above. However, the inverted wheel type traveling body according to another embodiment is provided with the above riding means. Alternatively, or in addition to the boarding means, a loading means for loading a load such as luggage can be provided. Moreover, in the inverted wheel type traveling body 100 according to the present embodiment, as described above, the auxiliary wheel and the arm portion that support the main body 120 together with the driving wheel 110 are in the inverted wheel type traveling body 100 in the grounded auxiliary wheel state. It is provided not only in the traveling direction (indicated by a gray arrow in the figure) but also on the opposite side of the traveling direction. However, in the inverted wheel type traveling body according to another embodiment, the auxiliary wheel and the arm portion may be provided only on either one of the front and rear sides of the traveling direction of the inverted wheel type traveling body.

また、本実施態様に係る倒立車輪型走行体100は搭乗者が搭乗可能であり、搭乗者150は上記鉛直部の上端にリンク151を介してリンクされた棒状の図形として模式的に表されている。実際には、搭乗者150は、本体部120に設けられた搭乗者用シート等の搭乗手段(図示せず)に着座する等して、本実施態様に係る倒立車輪型走行体100に搭乗する。尚、同棒状の図形の他端に描かれている丸印mは搭乗者150の重心を表す(搭乗者150の質量はm)。 Further, the inverted wheel type traveling body 100 according to the present embodiment can be boarded by a passenger, and the passenger 150 is schematically represented as a bar-like figure linked to the upper end of the vertical portion via a link 151. Yes. Actually, the passenger 150 gets on the inverted wheel type traveling body 100 according to the present embodiment by sitting on a boarding means (not shown) such as a passenger seat provided in the main body 120. . Note that a circle m h drawn on the other end of the rod-shaped figure represents the center of gravity of the passenger 150 (the mass of the passenger 150 is m h ).

図1に示すもう1つの丸印mは、倒立車輪型走行体100の本体部の重心m(倒立車輪型走行体100の本体部120の質量はm)と搭乗者150の重心mとの合成重心を表す。即ち、倒立車輪型走行体100本体部120のと搭乗者150との総質量はmであり、丸印m1に位置する。図1に示すように、倒立車輪型走行体100の本体部120の重心mは鉛直方向(点線で示す)からηだけ傾いた線上にある。即ち、倒立車輪型走行体100の本体部120の重心角はηである。そこへ重心mを呈する搭乗者150が姿勢角ηにて搭乗することにより、倒立車輪型走行体100の重心は丸印mから丸印mへと変動し、倒立車輪型走行体100の重心角はηからΔηだけ変動して合成重心角(η+Δη)となった。 Another circle m 1 shown in FIG. 1 indicates the center of gravity m 0 of the main body portion of the inverted wheel type traveling body 100 (the mass of the main body portion 120 of the inverted wheel type traveling body 100 is m 0 ) and the center of gravity m of the passenger 150. Represents the combined center of gravity with h . That is, the total mass of the inverted wheel type traveling body 100 main body 120 and the occupant 150 is m 1 and is located at the circle m 1 . As shown in FIG. 1, the center of gravity m 0 of the main body 120 of the inverted wheel type traveling body 100 is on a line inclined by η from the vertical direction (indicated by a dotted line). That is, the center of gravity angle of the main body 120 of the inverted wheel type traveling body 100 is η. When an occupant 150 having a center of gravity m h rides there at an attitude angle η h , the center of gravity of the inverted wheel type traveling body 100 changes from the circle mark m 0 to the circle mark m 1 , and the inverted wheel type traveling body. The centroid angle of 100 varied from η by Δη to become a combined centroid angle (η + Δη).

A2.倒立状態における倒立車輪型走行体全体の重心角の推定原理
搭乗者150の重心mや搭乗者150が搭乗することによる倒立車輪型走行体100の重心角の変動分Δηは未知である。また、倒立車輪型走行体100の本体部120と搭乗者150との合成重心角(η+Δη)は、運動方程式を通して、倒立車輪型走行体100の動きに影響を及ぼす。このことを利用して、倒立車輪型走行体100の運動方程式と、限られた観測値とにより、未知である重心角変動分Δη(及び外乱w)を推定する。
A2. Principle of Estimating Center of Gravity Angle of Whole Inverted Wheel Type Traveling Body in Inverted State The center of gravity m h of the occupant 150 and the variation Δη of the centroid angle of the inverted wheel type traveling body 100 due to the passenger 150 getting on are unknown. The combined barycentric angle (η + Δη) between the main body 120 of the inverted wheel type traveling body 100 and the occupant 150 affects the movement of the inverted wheel type traveling body 100 through the equation of motion. Using this fact, the unknown center-of-gravity angle variation Δη (and disturbance w) is estimated from the equation of motion of the inverted wheel type traveling body 100 and the limited observation value.

A3.倒立状態における倒立車輪型走行体全体の運動方程式の導出
倒立状態においては、倒立車輪型走行体100の本体部120と搭乗者150との合成重心mを質量中心とする車輪型1リンク倒立振子として倒立車輪型走行体100をモデリングする。車輪型1リンク倒立振子の運動方程式は下式(1)で与えられる。
A3. Derivation of the equation of motion of the entire inverted wheel type traveling body in the inverted state In the inverted state, the wheel type 1 link inverted pendulum having the center of mass m 1 of the main body 120 of the inverted wheel traveling body 100 and the passenger 150 as the center of mass. The inverted wheel type traveling body 100 is modeled as follows. The equation of motion of the wheel type 1 link inverted pendulum is given by the following equation (1).

Figure 0005560234
Figure 0005560234

上式中、

Figure 0005560234
In the above formula,
Figure 0005560234

ここで、η:倒立車輪型走行体100の重心角、θ:駆動輪110の回転角、Δη:倒立車輪型走行体100の重心角の変動分、m:倒立車輪型走行体100と搭乗者150との総質量、m:駆動輪110の質量、l:合成重心の車軸111からの距離、I:倒立車輪型走行体100と搭乗者150との車軸111周りの慣性モーメント、Jml:駆動輪駆動モータ(図示せず)のロータの慣性モーメント、J:駆動輪110の軸周りの慣性モーメント、n:駆動輪駆動機構のギア比(モータ:駆動輪=1:n)、r:駆動輪110の半径、f:車軸111と本体部120との間の粘性摩擦係数、u:駆動輪駆動モータの駆動トルク値、g:重力加速度、φ:質量・重心距離・慣性モーメント・摩擦係数等からなる物理パラメータベクトル、である。 Here, η: the center of gravity angle of the inverted wheel type traveling body 100, θ: the rotation angle of the drive wheel 110, Δη: the variation of the center of gravity angle of the inverted wheel type traveling body 100, m l : boarding with the inverted wheel type traveling body 100 Total mass with the passenger 150, m 2 : mass of the driving wheel 110, l: distance of the composite center of gravity from the axle 111, I 1 : moment of inertia around the axle 111 between the inverted wheel type traveling body 100 and the passenger 150, J ml : moment of inertia of rotor of drive wheel drive motor (not shown), J 2 : moment of inertia around drive wheel 110 axis, n 1 : gear ratio of drive wheel drive mechanism (motor: drive wheel = 1: n 1 ), R: radius of the drive wheel 110, f 1 : coefficient of viscous friction between the axle 111 and the main body 120, u l : drive torque value of the drive wheel drive motor, g 0 : gravity acceleration, φ: mass / center of gravity From distance, moment of inertia, friction coefficient, etc. Physical parameter vector that is.

次に、重心角が0である点の近傍において式(1)の非線形方程式の線形近似を行う。先ず、重心角が0である点の近傍において、重心角の急激な変化が無いものとすると、   Next, linear approximation of the nonlinear equation of Expression (1) is performed in the vicinity of the point where the barycentric angle is 0. First, assuming that there is no sudden change in the centroid angle near the point where the centroid angle is 0,

Figure 0005560234
Figure 0005560234

とすることができる。従って、式(1)で表される倒立車輪型走行体100の運動方程式は、近似的に下式(2)によって表現することができる。 It can be. Therefore, the equation of motion of the inverted wheel type traveling body 100 represented by the equation (1) can be approximately expressed by the following equation (2).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

更に、M(φ)は正則であるので、下式(3)のように式(2)を整理することができる。 Furthermore, since M r (φ) is regular, the equation (2) can be rearranged as the following equation (3).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

式(3)より、本実施態様に係る倒立車輪型走行体100は、駆動輪110の駆動トルクuを加えることにより、式(3)に沿って倒立走行運動を行うことが解る。ここで、式(3)の右辺に含まれる変量Δηは、搭乗者150の質量及び重心位置(m)に起因する倒立車輪型走行体100全体の重心角の変動分(Δη)であり、既存のセンサ等の検出手段によって検出されない未知の値であることに留意されたい。 From the equation (3), it can be seen that the inverted wheel type traveling body 100 according to the present embodiment performs the inverted traveling motion along the equation (3) by applying the driving torque u 1 of the driving wheel 110. Here, the variable Δη included in the right side of the equation (3) is a variation (Δη) of the center-of-gravity angle of the entire inverted wheel type traveling body 100 due to the mass of the passenger 150 and the center-of-gravity position (m h ). Note that it is an unknown value that is not detected by a detection means such as an existing sensor.

ところで、前述のように、本実施態様に係る倒立車輪型走行体100には、必要最小限のセンサが検出手段(図示せず)として設置されている。また、倒立車輪型走行体100が備える制御手段(図示せず)は、検出手段(センサ)から得られる観測値に応じて、適切な制御入力uを生成することより、安定な倒立運動制御を行うことができる。一般的に、上記観測値は、重力加速度方向(鉛直方向)に対する搭乗者や搭載物が乗る前の倒立車輪型走行体100の重心角(倒立車輪型走行体100の本体部120のピッチ角から求められる)、倒立車輪型走行体100の重心角速度(倒立車輪型走行体100の本体部120のピッチ角速度から求められる)、本体部120(倒立車輪型走行体100)に対する駆動輪110の回転角速度であり、以下のベクトルで記述することができる。 Incidentally, as described above, the inverted wheel type traveling body 100 according to the present embodiment is provided with a minimum necessary sensor as a detecting means (not shown). Furthermore, (not shown) control means inverted wheel type traveling body 100 is provided, according to the observation values obtained from the detection means (sensor), than to generate an appropriate control input u l, stable inverted motion control It can be performed. In general, the observed value is based on the center of gravity angle of the inverted wheel type traveling body 100 before the rider or the load is on the gravity acceleration direction (vertical direction) (the pitch angle of the main body 120 of the inverted wheel type traveling body 100). Obtained), the center-of-gravity angular velocity of the inverted wheel type traveling body 100 (obtained from the pitch angular velocity of the main body portion 120 of the inverted wheel type traveling body 100), and the rotational angular velocity of the driving wheel 110 with respect to the main body portion 120 (inverted wheel type traveling body 100). And can be described by the following vectors:

Figure 0005560234
Figure 0005560234

式(4)の右辺の第2成分である倒立車輪型走行体100の本体部120の重心角速度は、例えば、倒立車輪型走行体100に設置されるジャイロセンサによって検出することができる。検出された本体部120の重心角速度を積分することにより、第1成分である倒立車輪型走行体100の本体部120の重心角を得ることができる。駆動輪110の回転角速度は、駆動輪駆動モータの回転軸に設置されるエンコーダによる観測値の近似微分により計算することができる。駆動輪110の回転角度はエンコーダにより測定することができるが、駆動輪110と床面190との間に滑り現象があるため、駆動輪110の回転角度そのものは観測値としては使用しない。   The gravity center angular velocity of the main body 120 of the inverted wheel type traveling body 100, which is the second component on the right side of the equation (4), can be detected by, for example, a gyro sensor installed on the inverted wheel type traveling body 100. By integrating the detected barycentric angular velocity of the main body 120, the barycentric angle of the main body 120 of the inverted wheel type traveling body 100, which is the first component, can be obtained. The rotational angular velocity of the drive wheel 110 can be calculated by approximate differentiation of the observation value by an encoder installed on the rotation shaft of the drive wheel drive motor. Although the rotation angle of the drive wheel 110 can be measured by an encoder, since there is a slip phenomenon between the drive wheel 110 and the floor surface 190, the rotation angle of the drive wheel 110 itself is not used as an observation value.

A4.重心変動分を推定するための基本モデルの作成
続いて、搭乗者150の質量及び重心位置(丸印m)に起因する倒立車輪型走行体100の重心角の変動分(Δη)を推定するための基本モデルを作成する。重心角の変動分(Δη)を推定する際、式(3)で表される運動方程式に含まれる物理パラメータが既知である必要がある。しかしながら、倒立車輪型走行体100の重心位置や重心角は搭乗者150の体重、体格、癖、及び障害等(荷物等の搭載物を搭載する場合は、その重量及び形状等)によって大きく変動するため、物理パラメータを正確に把握することは現実には困難である場合が多い。
A4. Creation of Basic Model for Estimating Center of Gravity Variation Subsequently, the variation (Δη) of the center of gravity angle of the inverted wheel type traveling body 100 due to the mass of the occupant 150 and the position of the center of gravity (circle mark m h ) is estimated. Create a basic model for When estimating the variation of the barycentric angle (Δη), the physical parameters included in the equation of motion represented by Equation (3) must be known. However, the position of the center of gravity and the angle of center of gravity of the inverted wheel-type traveling body 100 vary greatly depending on the weight, physique, bag, and obstacles of the occupant 150 (weight, shape, etc., when a load such as luggage is mounted). For this reason, it is often difficult to actually grasp the physical parameters accurately.

そこで、制御対象である倒立車輪型走行体100の運動方程式を表す式(3)を、物理パラメータのノミナル値を用いて、ノミナルモデルと外乱とで表現すると、下式(5)のように表現することができる。   Therefore, when the equation (3) representing the equation of motion of the inverted wheel type traveling body 100 to be controlled is expressed by the nominal model and the disturbance using the nominal value of the physical parameter, it can be expressed as the following equation (5). can do.

Figure 0005560234
Figure 0005560234

上式中、φは物理パラメータベクトルφのノミナル値、wは外乱、そしてDは外乱の入る経路である。 In the above equation, φ 0 is a nominal value of the physical parameter vector φ, w is a disturbance, and D w is a path through which the disturbance enters.

外乱wは、物理パラメータ誤差や線形化誤差による外乱を表し、駆動輪110の運動方程式には大きい値として現れる一方、倒立車輪型走行体100の運動方程式には相対的に小さい値で現れることを確認した。これにより、本実施態様においては、駆動輪110の運動方程式に入る外乱に注目し、外乱w及び外乱wの入る経路Dを以下のように規定する。 The disturbance w represents a disturbance due to a physical parameter error or a linearization error, and appears as a large value in the equation of motion of the drive wheel 110, but appears as a relatively small value in the equation of motion of the inverted wheel type traveling body 100. confirmed. Thus, in the present embodiment, focusing on the disturbance entering the equation of motion of the drive wheel 110, it is defined as follows a path D w of the start of the disturbance w and the disturbance w.

Figure 0005560234
Figure 0005560234

式(5)を用いて、制御入力としての駆動輪駆動モータのトルク値u、上述の各種センサによって検出される観測量yに基づいて、状態オブザーバを適切に設計することにより、未知変量である重心角変動分Δηを推定することができる。 By using Equation (5) and appropriately designing the state observer based on the torque value u 1 of the drive wheel drive motor as the control input and the observation amount y detected by the above-described various sensors, A certain center-of-gravity angle variation Δη can be estimated.

A5.状態オブザーバの設計
次に、状態オブザーバの設計について説明する。未知変量である重心角変動分Δη及び外乱wを推定するため、下式(7)で表される状態変数ベクトルを規定する。
A5. State Observer Design Next, the state observer design will be described. In order to estimate the center-of-gravity angle variation Δη and the disturbance w, which are unknown variables, a state variable vector expressed by the following equation (7) is defined.

Figure 0005560234
Figure 0005560234

上記のように、状態変数ベクトルの第1成分乃至第3成分は観測量であり、第4成分及び第5成分は未知な重心角変動分Δη及び外乱wである。尚、重心角変動分Δη及び外乱wは、それぞれ別個の独立変量である。   As described above, the first component to the third component of the state variable vector are observation amounts, and the fourth component and the fifth component are the unknown centroid angle variation Δη and the disturbance w. Note that the center-of-gravity angle variation Δη and the disturbance w are independent independent variables.

式(7)で表される状態変数ベクトルを用いて式(5)を変換すると、下式(8)のように表すことができる。   When the equation (5) is converted using the state variable vector represented by the equation (7), it can be expressed as the following equation (8).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

ここで、数値計算により、式(8)によって表されるシステムの可観測行列(C,A)はフルランクであることを確認した。即ち、未知変量である重心角変動分Δηを及び外乱wを含む状態変数ベクトルは、オブザーバの設計により推定可能であると判断される。   Here, it was confirmed by numerical calculation that the observable matrix (C, A) of the system represented by the equation (8) is full rank. That is, it is determined that the state variable vector including the unknown variable centroid angle variation Δη and the disturbance w can be estimated by the observer design.

ところで、状態オブザーバの役割は、式(8)に含まれるシステム行列と観測量yに基づいて、式(8)で表わされる制御対象と並行して運用し、状態変数ベクトルを推定することである。その推定値から、重心角変動分Δηを及び外乱wを得ることができる。状態オブザーバは下式(9)によって表すことができる。   By the way, the role of the state observer is to operate in parallel with the controlled object represented by equation (8) and estimate the state variable vector based on the system matrix and observation amount y included in equation (8). . From the estimated value, the center-of-gravity angle variation Δη and the disturbance w can be obtained. The state observer can be expressed by the following equation (9).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

A6.オブザーバゲインの決定
式(9)で表される状態オブザーバにおいては、出力偏差(出力ベクトルyとその推定値との差)をフィードバックすることにより、オブザーバの状態変数ベクトル推定値を、倒立車輪型走行体の実状態に収束させる。かかるフィードバックシステムを表すブロック線図を図3に示す。
A6. In the state observer represented by the equation (9) for determining the observer gain, by feeding back the output deviation (difference between the output vector y and its estimated value), the estimated state variable vector value of the observer is inverted wheel type traveling. It converges to the real state of the body. A block diagram representing such a feedback system is shown in FIG.

図3からも容易に理解されるように、状態オブザーバによる推定の収束速度は、フィードバックゲインLの大きさに影響される。フィードバックゲインLが大きいことは観測値である出力ベクトルyの重み付けが大きいことに等しく、状態オブザーバによる推定値の算出は、観測値を優先して行われることとなる。即ち、モデルの影響は小さくなり、出力偏差による推定状態の更新速度は高くなる。しかし、フィードバックゲインLを大きくすることには、観測値に含まれるノイズ等に影響され易いというデメリットが伴う。   As can be easily understood from FIG. 3, the convergence speed of the estimation by the state observer is affected by the magnitude of the feedback gain L. A large feedback gain L is equivalent to a large weighting of the output vector y that is an observed value, and the calculation of the estimated value by the state observer is performed with priority on the observed value. That is, the influence of the model is reduced, and the update speed of the estimated state due to the output deviation is increased. However, increasing the feedback gain L has a demerit that it is easily influenced by noise or the like included in the observed value.

一方、状態オブザーバのフィードバックゲインLが小さいことは観測値である出力ベクトルyの影響が小さくなることを意味する。この場合、状態オブザーバによる推定値の算出は、主に基本モデルに従うこととなり、出力偏差による推定値の更新速度が低くなるものの、観測ノイズによる影響が小さくなるため、推定精度が高くなるというメリットがある。   On the other hand, a small feedback gain L of the state observer means that the influence of the output vector y that is an observed value is small. In this case, calculation of the estimated value by the state observer mainly follows the basic model, and although the update rate of the estimated value due to the output deviation is reduced, the effect of observation noise is reduced, so that the estimation accuracy is increased. is there.

このように、状態オブザーバのフィードバックゲインLは、状態変数ベクトルの各成分の動作周波数や推定の目的に応じて適宜設定することができる。本発明に係る倒立車輪型走行体全体の重心角推定方法において用いられる状態オブザーバは、変化率の遅い重心角の変動及び定常外乱の推定を目的とするものであるので、推定の速度及び精度の両方共が高いことが要求される。従って、本実施態様においては、最適制御問題を解いてオブザーバゲインを求めることとした。以下に詳細に説明する。   As described above, the feedback gain L of the state observer can be appropriately set according to the operating frequency of each component of the state variable vector and the purpose of estimation. The state observer used in the method for estimating the center-of-gravity angle of the entire inverted wheel type traveling body according to the present invention is intended to estimate the fluctuation of the center-of-gravity angle with a slow rate of change and the steady disturbance, so that the estimation speed and accuracy can be reduced. Both are required to be high. Therefore, in this embodiment, the observer gain is obtained by solving the optimal control problem. This will be described in detail below.

オブザーバゲインの決定方法について以下に説明する。式(8)によって表される制御対象及び式(9)によって表されるオブザーバから、状態推定偏差(状態変数ベクトルxとその推定値との差)を計算する。状態推定偏差の動的方程式は下式(10)となる。   A method for determining the observer gain will be described below. A state estimation deviation (difference between the state variable vector x and its estimated value) is calculated from the controlled object represented by Expression (8) and the observer represented by Expression (9). The dynamic equation of the state estimation deviation is the following equation (10).

Figure 0005560234
Figure 0005560234

式(10)において、(A+LC)の固有値は(A+C)の固有値と等しいことから、式(8)のオブザーバゲインの設計問題は、下式(11)におけるフィードバックゲインLの設計問題と等しいと言うことができる。 In Equation (10), since the eigenvalue of (A + LC) is equal to the eigenvalue of (A T + C T L T ), the design problem of the observer gain in Equation (8) is the feedback gain L T in Equation (11) below. It can be said that it is equivalent to a design problem.

Figure 0005560234
Figure 0005560234

従って、最適なフィードバックゲインLを求めるには、下式(12)によって表される最適レギュレーション問題を解けばよいことが解る。   Therefore, it can be understood that the optimum feedback gain L can be obtained by solving the optimum regulation problem expressed by the following equation (12).

Figure 0005560234
Figure 0005560234

ここで、(Q,R)は重み行列である。(Q,R)を適当に設定することにより、状態推定偏差の収束速さと出力偏差の大きさとのトレードオフを調整することができる。このようにして得られた式(12)の最適解Lを用いて、式(10)の閉ループシステム行列の固有値を得ることができる。 Here, (Q, R) is a weight matrix. By appropriately setting (Q, R), the trade-off between the convergence speed of the state estimation deviation and the magnitude of the output deviation can be adjusted. Using the optimal solution L T of the thus obtained formula (12), can be obtained eigenvalues of the closed loop system matrix equation (10).

Figure 0005560234
Figure 0005560234

上式中、λ(*)は行列(*)の固有値を意味する。状態変数ベクトルxの各成分の収束状況に応じて、下式(14)に示すように、式(10)の偏差システムの固有値を、式(13)から得られる最適値から移動させて、望む位置に配置することもできる。   In the above equation, λ (*) means the eigenvalue of the matrix (*). Depending on the convergence state of each component of the state variable vector x, as shown in the following equation (14), the eigenvalue of the deviation system of equation (10) is moved from the optimum value obtained from equation (13) to be desired. It can also be placed in position.

Figure 0005560234
Figure 0005560234

上式中、αは設計パラメータであり、シミュレーションや予備実験結果により、状態推定偏差の各成分の収束速さに応じて適切に定めることができる。また、下式(15)に示すように、上記のように配置した固有値が得られるように、式(9)によって表される状態オブザーバのフィードバックゲインLを定めることができる。   In the above equation, α is a design parameter, and can be appropriately determined according to the convergence speed of each component of the state estimation deviation by simulation and preliminary experiment results. Further, as shown in the following equation (15), the feedback gain L of the state observer represented by the equation (9) can be determined so that the eigenvalue arranged as described above is obtained.

Figure 0005560234
Figure 0005560234

倒立状態における倒立車輪型走行体の状態オブザーバ設計の最終段階としては、上記のようにして設計された、式(15)によって表される連続系状態オブザーバを離散化することにより離散系状態オブザーバを設計し、例えば、倒立車輪型走行体の制御手段が備える制御コンピュータにて実装することとなる。   As the final stage of the state observer design of the inverted wheel type traveling body in the inverted state, the discrete state observer is discretized by discretizing the continuous state observer represented by the equation (15) designed as described above. For example, it is implemented by a control computer provided in the control means of the inverted wheel type traveling body.

以上、倒立状態における倒立車輪型走行体の状態オブザーバ設計について詳細に説明してきた。続いて、補助輪接地状態における倒立車輪型走行体全体の重心角オブザーバについて以下に詳細に説明する。   As described above, the state observer design of the inverted wheel type traveling body in the inverted state has been described in detail. Next, the center-of-gravity angle observer of the entire inverted wheel type traveling body in the auxiliary wheel grounding state will be described in detail below.

B1.補助輪接地状態における倒立車輪型走行体全体の重心角
補助輪接地状態においては、前後の補助輪又は前後の補助輪の片方が接地し、駆動輪と倒立車輪型走行体の本体部と補助輪回転アーム(アーム部)と補助輪とが、床面と共に幾何的に閉リンク系を構成し、補助輪の接地点にて床反力を受ける。図2に示す補助輪接地状態においては、図1に示す倒立状態とは異なり、進行方向(図中、灰色の矢印にて表示)の前側の補助輪が床面に接地している。即ち、図2に示す補助輪接地状態においては、補助輪回転アーム(アーム部)131が、連接部位133を中心として回転角度qだけ下向きに回転した位置にあり、補助輪141が床面190に接地している。この補助輪141の床面190への接地点においては、床面からの床反力fが鉛直方向上向きに作用している。
B1. The center of gravity angle of the entire inverted wheel type traveling body in the auxiliary wheel grounded state In the grounded auxiliary wheel grounded state, one of the front and rear auxiliary wheels or the front and rear auxiliary wheels is grounded, and the drive wheel and the main body of the inverted wheel type traveling body and the auxiliary wheel The rotating arm (arm portion) and the auxiliary wheel geometrically form a closed link system together with the floor surface, and receive a floor reaction force at the contact point of the auxiliary wheel. In the auxiliary wheel grounding state shown in FIG. 2, unlike the inverted state shown in FIG. 1, the front auxiliary wheel in the traveling direction (indicated by a gray arrow in the figure) is in contact with the floor surface. In other words, in the auxiliary wheel grounding state shown in FIG. 2, the auxiliary wheel rotating arm (arm portion) 131 is in a position rotated downward about the connecting portion 133 by the rotation angle q, and the auxiliary wheel 141 is placed on the floor surface 190. Grounded. In the ground point to the floor 190 of the auxiliary wheel 141, the floor reaction force f c from the floor acting vertically upward.

上記のように補助輪141が床面190に接地していることを除けば、図2に示す状態は図1に示す状態と基本的に同様である。即ち、図2においても、角度η+Δηは倒立車輪型走行体100の本体部120と搭乗者150との合成重心角である。厳密には、全体としての重心角は、倒立車輪型走行体100の本体部120と搭乗者150との合成重心(丸印m)を質量中心とする車輪型1リンク倒立振子の重心と補助輪回転アーム(アーム部)の重心からなる合成重心である。しかしながら、一般的には、補助輪回転アーム(アーム部)131又は132の質量は、倒立車輪型走行体100の本体部120と搭乗者150との総質量と比較して十分に小さい。従って、全体としての重心角はη+Δηとほぼ一致すると考えられる。但し、搭乗者150の質量及び重心位置(丸印m)に起因する倒立車輪型走行体100の重心角の変動分(Δη)はセンサ等の検出手段によって測定されない未知変量である。 The state shown in FIG. 2 is basically the same as the state shown in FIG. 1 except that the auxiliary wheel 141 is in contact with the floor surface 190 as described above. That is, also in FIG. 2, the angle η + Δη is a composite barycentric angle between the main body 120 of the inverted wheel type traveling body 100 and the passenger 150. Strictly speaking, the center-of-gravity angle as a whole is determined based on the center of gravity of the wheel-type 1-link inverted pendulum centering on the combined center of gravity (circle m 1 ) of the main body 120 of the inverted wheel-type traveling body 100 and the passenger 150 and the auxiliary. It is a composite center of gravity composed of the center of gravity of the wheel rotation arm (arm part). However, in general, the mass of the auxiliary wheel rotating arm (arm portion) 131 or 132 is sufficiently smaller than the total mass of the main body portion 120 and the passenger 150 of the inverted wheel type traveling body 100. Therefore, it is considered that the center-of-gravity angle as a whole substantially coincides with η + Δη. However, the variation (Δη) of the center-of-gravity angle of the inverted wheel type traveling body 100 due to the mass and the center-of-gravity position (circle mark m h ) of the passenger 150 is an unknown variable that is not measured by detection means such as a sensor.

補助輪接地状態において、重心角は変更可能である。例えば、補助輪回転アーム(アーム部)131を駆動することより、倒立車輪型走行体100の接地姿勢を変更して、重心角を調整することができる。また、駆動輪110の駆動により、倒立車輪型走行体100の本体部120の重心角を変更し、倒立車輪型走行体100全体の重心角を変更することも可能である。このようにして倒立車輪型走行体100全体の重心角を適切に調整することにより、安定な接地走行又は補助輪接地状態から倒立状態への安定な立ち上がり動作を実現することができる。   The center-of-gravity angle can be changed in the auxiliary wheel grounding state. For example, by driving the auxiliary wheel rotating arm (arm portion) 131, the grounding posture of the inverted wheel type traveling body 100 can be changed to adjust the barycentric angle. Further, it is possible to change the center-of-gravity angle of the main body 120 of the inverted wheel type traveling body 100 by driving the drive wheels 110 and to change the center-of-gravity angle of the entire inverted wheel-type traveling body 100. In this way, by properly adjusting the center-of-gravity angle of the entire inverted wheel type traveling body 100, it is possible to realize stable ground traveling or stable start-up operation from the auxiliary wheel grounding state to the inverted state.

B2.補助輪接地状態における倒立車輪型走行体全体の重心角の推定原理
補助輪接地状態における重心運動は、駆動輪110と倒立車輪型走行体100の本体部120と搭乗者150の車輪型倒立振子運動方程式及び補助輪アーム(アーム部)の回転運動方程式によって記述することができる。また、補助輪141は接地点において床面からの床反力fを受ける。床反力fは倒立車輪型走行体100の運動に影響を及ばすが、床反力センサ等の検出手段を設けない限り、床反力fは未知の変量となる。従って、補助輪接地状態においては、倒立状態と比較して更に1つの情報が不足した状態となるため、補助輪接地状態における重心の検知は、倒立状態における重心の検知よりも困難である。
B2. Principle of Estimating Center of Gravity Angle of Inverted Wheel Type Traveling Body in Auxiliary Wheel Ground State The center of gravity motion in the auxiliary wheel grounded state is the wheel type inverted pendulum motion of drive wheel 110, main body 120 of inverted wheel type traveling body 100, and passenger 150. It can be described by the equation and the rotational motion equation of the auxiliary wheel arm (arm part). The auxiliary wheel 141 is subjected to a floor reaction force f c from the floor at the ground point. Although the floor reaction force f c is to reach an effect on movement of the inverted wheel type traveling body 100, unless provided detecting means such as the floor reaction force sensor, the floor reaction force f c is the unknown variables. Therefore, in the auxiliary wheel grounding state, one piece of information is further lacking compared to the inverted state, and thus detection of the center of gravity in the auxiliary wheel grounding state is more difficult than detection of the center of gravity in the inverted state.

そこで、本実施態様においては、倒立車輪型走行体100の運動特性に基づいて、床反力センサ等の検出手段を新たに設けること無く、既存の限られた検出手段による観測値により、補助輪接地状態における倒立車輪型走行体全体の未知の重心角変動分Δη及び床反力fをそれぞれ分離して推定することを提案する。補助輪接地状態における倒立車輪型走行体全体の未知の重心角変動分Δη及び床反力fの具体的な推定手順については以下に詳細に説明する。 Therefore, in the present embodiment, based on the motion characteristics of the inverted wheel type traveling body 100, the auxiliary wheels can be obtained based on the observation values by the existing limited detection means without newly providing detection means such as a floor reaction force sensor. we propose to estimate inverted wheel type traveling body entire unknown centroid angle variation Δη in the ground state and the floor reaction force f c separated respectively. Specific estimation procedure of inverted wheel type traveling body entire unknown centroid angle variation Δη and floor reaction force f c of the auxiliary wheel contact state will be described in detail below.

B3.補助輪接地状態における倒立車輪型走行体の運動方程式の導出
補助輪が接地していない場合の補助輪回転アーム(アーム部)の運動方程式は下式(16)で表すことができる。
B3. Derivation of Equation of Motion of Inverted Wheel Type Running Body in Auxiliary Wheel Ground State The equation of motion of the auxiliary wheel rotating arm (arm portion) when the auxiliary wheel is not grounded can be expressed by the following equation (16).

Figure 0005560234
Figure 0005560234

上式中、

Figure 0005560234
In the above formula,
Figure 0005560234

ここで、η:倒立車輪型走行体100の本体部120の重心角、q:補助輪アーム(アーム部)の回転角、mLB:補助輪回転アーム(アーム部)の質量、lLB:補助輪回転アーム(アーム部)の重心からアーム回転軸までの距離、ILB:補助輪回転アーム(アーム部)の重心周りの慣性モーメント、Jm3:アーム部駆動モータ(図示せず)のロータの慣性モーメント、n:アーム部駆動機構のギア比(モータ:アーム部=1:n)、f:アーム部回転関節(連接部)のの粘性摩擦係数、u:アーム部駆動モータの駆動トルク値、g:重力加速度、φ:質量・重心距離・慣性モーメント・摩擦係数等からなる物理パラメータベクトル、である。 Where η: the center of gravity angle of the main body 120 of the inverted wheel type traveling body 100, q: the rotation angle of the auxiliary wheel arm (arm part), m LB : the mass of the auxiliary wheel rotation arm (arm part), l LB : auxiliary Distance from the center of gravity of the wheel rotation arm (arm part) to the arm rotation axis, I LB : Moment of inertia around the center of gravity of the auxiliary wheel rotation arm (arm part), J m3 : The rotor of the arm part drive motor (not shown) Moment of inertia, n 2 : gear ratio of the arm part drive mechanism (motor: arm part = 1: n 2 ), f q : viscous friction coefficient of the arm part rotary joint (joint part), u 2 : arm part drive motor Drive torque value, g 0 : gravitational acceleration, φ: physical parameter vector composed of mass, center of gravity distance, moment of inertia, coefficient of friction, and the like.

補助輪が接地していない倒立状態における倒立車輪型走行体100の本体部120及び駆動輪110の運動方程式は式(1)として既に求めた。ここで、式(1)を利用する。但し、倒立状態における平衡状態は重心が車軸111の真上にあるのに対して、補助輪接地状態における平衡状態は1つだけではなく、任意の接地姿勢を取り得る。従って、式(1)の非線形方程式を線形近似する際、その線形近似点は、本体部120の重心角を0(ゼロ)とする代わりに、ある時点での倒立車輪型走行体100の重心角ηとして、非線形関数のテーラー変換を行う。   The equations of motion of the main body 120 and the drive wheels 110 of the inverted wheel type traveling body 100 in the inverted state where the auxiliary wheels are not grounded have already been obtained as Equation (1). Here, Formula (1) is utilized. However, while the center of gravity in the equilibrium state in the inverted state is directly above the axle 111, the number of equilibrium states in the auxiliary wheel grounding state is not limited to one, and an arbitrary grounding posture can be taken. Therefore, when linearly approximating the nonlinear equation of Formula (1), the linear approximation point is that the center-of-gravity angle of the inverted wheel-type traveling body 100 at a certain time is used instead of setting the center-of-gravity angle of the main body 120 to 0 (zero). As η, Taylor conversion of the nonlinear function is performed.

Figure 0005560234
Figure 0005560234

また、倒立車輪型走行体全体の重心角の変動分Δηや本体部120の重心角η、駆動輪110の回転角θの変化率が十分に低いとすると、以下のように近似することができる。   If the change rate of the center-of-gravity angle variation Δη of the entire inverted wheel type traveling body, the center-of-gravity angle η of the main body 120, and the rotation angle θ of the drive wheel 110 are sufficiently low, the following approximation can be made. .

Figure 0005560234
Figure 0005560234

従って、式(1)で表される倒立車輪型走行体100の運動方程式は、近似的に下式(17)によって表現することができる。   Therefore, the equation of motion of the inverted wheel type traveling body 100 represented by the equation (1) can be approximately expressed by the following equation (17).

Figure 0005560234
Figure 0005560234

更に、補助輪接地状態における運動では、駆動輪110と倒立車輪型走行体100の本体部120と補助輪回転アーム(アーム部131)は、床面と共に閉リンク系を構成し、倒立車輪型走行体100の本体部120の重心角ηとアーム部131の回転角qは、下式(18)に示すように幾何学的に拘束される。   Further, in the movement in the auxiliary wheel grounding state, the driving wheel 110, the main body 120 of the inverted wheel type traveling body 100, and the auxiliary wheel rotating arm (arm unit 131) constitute a closed link system with the floor surface, and the inverted wheel type traveling is performed. The center-of-gravity angle η of the main body 120 of the body 100 and the rotation angle q of the arm 131 are geometrically constrained as shown in the following equation (18).

Figure 0005560234
Figure 0005560234

上式中、rは駆動輪110の接地点から倒立車輪型走行体100の本体部120のアーム部支持フレームの付け根(前述の水平部と鉛直部との接合点)までの距離であり、rは補助輪の半径であり、dは車軸111と補助輪回転アーム関節(連接点133)までの距離である。また、LLBは補助輪の中心から補助輪回転アーム関節(連接点133)までの距離である。 In the above equation, r 1 is the distance from the contact point of the drive wheel 110 to the base of the arm portion support frame of the main body 120 of the inverted wheel type traveling body 100 (the junction point between the horizontal portion and the vertical portion described above), r 2 is the radius of the auxiliary wheel, d is the distance to the axle 111 and the auxiliary wheel rotation arm joint (articulation point 133). Further, LLB is the distance from the center of the auxiliary wheel to the auxiliary wheel rotating arm joint (continuous contact 133).

上式(18)によって表される接地拘束条件から偏微分を求めると、その偏微分行列はヤコビ行列Jであり、補助輪の接地点において床面から受ける床反力fの入る経路である。上記ヤコビ行列Jの転置行列を下式(19)に示す。 When determining the partial differential from the ground constraint condition represented by the above formula (18), the partial derivative matrix is the Jacobian matrix J, is a path in the ground point of the auxiliary wheel enters the floor reaction force f c received from the floor . The transposed matrix of the Jacobian matrix J is shown in the following formula (19).

Figure 0005560234
Figure 0005560234

従って、補助輪接地状態における倒立車輪型走行体100の連立運動方程式は、倒立車輪型走行体100の本体部120と搭乗者150との合成重心(図2に示す丸印m)を質量中心とする車輪型1リンク倒立振子の運動方程式、駆動輪110の回転角の運動方程式としての式(17)、補助輪141のアーム部131の運動方程式としての式(16)式、及び上記ヤコビ行列Jを介して作用する床反力fから、下式(20)として表現することができる。 Therefore, the simultaneous equation of motion of the inverted wheel type traveling body 100 in the auxiliary wheel grounding state is based on the center of mass of the combined center of gravity (the circle m 1 shown in FIG. 2) of the main body 120 and the passenger 150 of the inverted wheel type traveling body 100. Equation (17) as the equation of motion of the wheel-type 1-link inverted pendulum, Equation (17) as the equation of motion of the rotation angle of the drive wheel 110, Equation (16) as the equation of motion of the arm 131 of the auxiliary wheel 141, and the Jacobian matrix floor reaction force f c acting through J, can be expressed as the following equation (20).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

下式(21)に示すように、式(20)で表される補助輪接地状態における運動方程式の慣性行列は正則である。   As shown in the following formula (21), the inertia matrix of the equation of motion in the auxiliary wheel ground contact state represented by the formula (20) is regular.

Figure 0005560234
Figure 0005560234

従って、式(20)の両辺に慣性行列の逆行列を左側から掛けると、式(20)を下式(22)として表現することができる。   Therefore, by multiplying both sides of the equation (20) by the inverse matrix of the inertia matrix from the left side, the equation (20) can be expressed as the following equation (22).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

補助輪接地状態における運動方程式(22)と倒立状態における運動方程式(3)とを比較してみると、式(22)には補助輪回転アームの角度変量q、床反力f、重力項b、及び補助輪回転アームの駆動入力uが含まれる点において、式(22)の方がより複雑になっていることがわかる。 Comparing the equation of motion (22) in the auxiliary wheel grounding state and the equation of motion (3) in the inverted state, the equation (22) shows the angular variable q, floor reaction force f c , and gravity term of the auxiliary wheel rotating arm. It can be seen that equation (22) is more complicated in that b 0 and the auxiliary wheel rotary arm drive input u 2 are included.

B4.重心変動分を推定するための基本モデルの作成
式(22)の右辺に含まれる各係数行列は、倒立車輪型走行体100の本体部120の重心角ηとアーム部131の回転角qの関数であり、η及びqの値に応じて変化する。本体部120の可動範囲は相対的に小さく、アーム部131の可動範囲も限られているため、式(22)の右辺の各係数行列中の(η,q)の値を(η,q)の変動範囲の中間点(η,q)に固定することで式(22)によって表されるシステムを下式(23)のように単純化することができる。また、物理パラメータφを正確に把握することは現実には困難である場合が多いため、物理パラメータのノミナル値を用いて、ノミナルモデルと外乱とで表現すると、式(22)を下式(23)のように表すことができる。
B4. Each coefficient matrix included in the right side of the creation formula (22) of the basic model for estimating the center of gravity variation is a function of the center of gravity angle η of the main body 120 of the inverted wheel type traveling body 100 and the rotation angle q of the arm 131. And varies depending on the values of η and q. Since the movable range of the main body 120 is relatively small and the movable range of the arm 131 is also limited, the value of (η, q) in each coefficient matrix on the right side of Equation (22) is set to (η, q). By fixing to the middle point (η 0 , q 0 ) of the fluctuation range, the system represented by the equation (22) can be simplified as the following equation (23). In addition, since it is often difficult in practice to accurately grasp the physical parameter φ, when the nominal value of the physical parameter is used to express it with a nominal model and a disturbance, the equation (22) is expressed by the following equation (23 ).

Figure 0005560234
Figure 0005560234

前述のように、上式中の(η,q)は、(η,q)の変動範囲の中間点である。また、φは物理パラメータベクトルφのノミナル値、wは外乱、Dは外乱wの入る経路である。尚、式(23)の右辺に含まれる変量Δηは、搭乗者150の質量及び重心位置(m)に起因する倒立車輪型走行体100の重心角の変動分(Δη)であり、既存のセンサ等の検出手段によって検出できない未知の値であり、また床反力fは床反力センサ等の検出手段を新たに設けない限り観測できない未知の値であることに留意されたい。 As described above, (η 0 , q 0 ) in the above equation is an intermediate point of the variation range of (η, q). Φ 0 is a nominal value of the physical parameter vector φ, w is a disturbance, and D g is a path through which the disturbance w enters. The variable Δη included in the right side of the equation (23) is a variation (Δη) of the center of gravity angle of the inverted wheel type traveling body 100 due to the mass of the passenger 150 and the center of gravity (m h ). is the unknown value can not be detected by the detecting means such as sensors, also the floor reaction force f c Note that an unknown value can not be observed unless the newly provided a detecting means such as the floor reaction force sensor.

尚、式(23)における外乱wは物理パラメータ誤差や外力外乱等による外乱を表す。本実施態様においては、倒立車輪型走行体の駆動輪の運動方程式に現れる外乱(式(23)の2行目)に注目し、外乱w及び外乱wの入る経路Dを以下のように規定する。 Note that the disturbance w in the equation (23) represents a disturbance due to a physical parameter error, an external force disturbance, or the like. In the present embodiment, paying attention to disturbances appearing in the equation of motion of the drive wheels of inverted wheel type traveling body (the second line of the formula (23)), defined as follows path D g of the start of the disturbance w and the disturbance w To do.

Figure 0005560234
Figure 0005560234

式(4)に関する記述において説明したように、倒立車輪型走行体100には必要最小限の検出手段(センサ等)が設置されている。補助輪接地状態においては、式(4)に含まれる観測値に加えて、アーム部の回転角度qをエンコーダ等の検出手段により測定することができる。尚、アーム部の回転角速度は、エンコーダ等による観測値の近似微分によって算出する。即ち、下式(24)に示すように、補助輪接地状態における既知変量は以下の通りである。   As described in the description relating to the expression (4), the inverted wheel type traveling body 100 is provided with a minimum necessary detecting means (sensor or the like). In the auxiliary wheel grounding state, in addition to the observation value included in the equation (4), the rotation angle q of the arm portion can be measured by a detecting means such as an encoder. The rotational angular velocity of the arm part is calculated by approximate differentiation of the observation value by an encoder or the like. That is, as shown in the following formula (24), the known variables in the auxiliary wheel grounding state are as follows.

Figure 0005560234
Figure 0005560234

式(23)におけるbは観測値に基づいて算出することができる。従って、補助輪接地状態における倒立車輪型走行体100の連立運動方程式(23)と、式(23)に与えられる制御トルクu及びuと、式(24)に示す観測値に基づいて状態オブザーバを設計し、未知変量である補助輪接地状態における倒立車輪型走行体全体の重心角変動分Δη及び床反力fを推定することができる。 B 0 in Equation (23) can be calculated based on the observed value. Therefore, based on the simultaneous motion equation (23) of the inverted wheel type traveling body 100 in the auxiliary wheel grounding state, the control torques u 1 and u 2 given to the equation (23), and the observation value shown in the equation (24). designing an observer can estimate the inverted wheel type traveling body of the center of gravity of the whole angle variation Δη and floor reaction force f c of the auxiliary wheel contact state is unknown variables.

B5.状態オブザーバの設計
次は、補助輪接地状態における重心オブザーバの設計を説明する。未知である倒立車輪型走行体100の重心角変動分Δη及び床反力fを推定するため、補助輪接地状態における状態変数ベクトルを下式(25)のように規定する。
B5. Next, the design of the center-of-gravity observer when the auxiliary wheel is grounded will be described. To estimate the unknown is the center of gravity angle variation Δη of inverted wheel type traveling body 100 and the floor reaction force f c, defines the state variable vector of the auxiliary wheel contact state by the following equation (25).

Figure 0005560234
Figure 0005560234

上式(25)に示すように、補助輪接地状態における状態変数ベクトルの上部3成分は既知の観測変量であり、下部3成分は未知変量である重心角変動分Δη、床反力f、及び外乱wである。即ち、上式(25)に示す状態変数ベクトルにおいて、重心角変動分Δη、床反力f、及び外乱wを分離した独立変量としている。 As shown in the above equation (25), the upper three components of the state variable vector in the auxiliary wheel grounding state are known observation variables, and the lower three components are the unknown variables centroid angle variation Δη, floor reaction force f c , And disturbance w. That is, in the state variable vector shown in the above equation (25), the gravity center angle variation Δη, the floor reaction force f c , and the disturbance w are separated independent variables.

補助輪接地状態において、オブザーバの推定速度が重心角変動分Δηの変化及び床反力fの変化より十分に速い場合は、重心角変動分Δη及び床反力fの変化率を0(ゼロ)と近似することができる。これにより、式(23)の補助輪接地状態における運動方程式は、式(25)で定義される状態変数ベクトルを用いて、下式(26)のように表現し直すことができる。 In the auxiliary wheel contact state, when the estimated velocity of the observer is sufficiently faster than the change and the change of the floor reaction force f c of the center of gravity angle variation Δη is the change rate of the center of gravity angle variation Δη and floor reaction force f c 0 ( Zero). Thus, the equation of motion in the auxiliary wheel grounding state of Equation (23) can be re-expressed as in Equation (26) below using the state variable vector defined in Equation (25).

Figure 0005560234
Figure 0005560234

上式中、   In the above formula,

Figure 0005560234
Figure 0005560234

ここで、数値計算により、式(26)によって表されるシステムの可観測行列   Here, an observable matrix of the system represented by the equation (26) by numerical calculation.

Figure 0005560234
Figure 0005560234

はフルランクであることを確認した。これにより、未知な重心角変動分Δη、床反力f、及び外乱wを含む補助輪接地状態における状態変数ベクトルは、オブザーバの設計により推定可能であると判断される。 Confirmed full rank. Thus, it is determined that the state variable vector in the ground contact state of the auxiliary wheel including the unknown center-of-gravity angle variation Δη, floor reaction force f c , and disturbance w can be estimated by the observer design.

ところで、式(26)の状態方程式にはアフィン項bが存在するため、一般的な線形システムとは異なる特殊な系となる。しかし、線形アフィンシステムの状態オブザーバ設計は一般的には見当たらない。ここで、アフイン項bが観測量の関数であることを利用して、アフィン項bをオブザーバに導入し、下式(27)のような線形アフインオブザーバを作成する。   By the way, since the affine term b exists in the state equation of Expression (26), it becomes a special system different from a general linear system. However, the state observer design for linear affine systems is generally not found. Here, by utilizing the fact that the affine term b is a function of the observation amount, the affine term b is introduced into the observer, and a linear affine observer as shown in the following equation (27) is created.

Figure 0005560234
Figure 0005560234

上式中、

Figure 0005560234
In the above formula,
Figure 0005560234

B6.オブザーバゲインの決定
式(27)で示される補助輪接地状態における状態オブザーバについても、式(9)で表される倒立状態における状態オブザーバと同様に、出力偏差(出力ベクトルとその推定値との差)をフィードバックすることにより、オブザーバの状態変数ベクトル推定値を、倒立車輪型走行体の実状態に収束させる。補助輪接地状態における、かかるフィードバックシステムを表すブロック線図を図4に示す。
B6. Similarly to the state observer in the inverted state represented by Equation (9), the output deviation (the difference between the output vector and its estimated value) is also applied to the state observer in the auxiliary wheel grounding state represented by the observer gain determination equation (27). ) Is converged to the actual state of the inverted wheel type traveling body. A block diagram representing such a feedback system in an auxiliary wheel grounding state is shown in FIG.

式(27)の線形アフィンオブザーバにおいても、オブザーバゲインを適切に設計することにより、同オブザーバから得られる状態推定値を、式(26)によって表される倒立車輪型走行体100の状態に漸近的に収束させることができる。   Also in the linear affine observer of Expression (27), by appropriately designing the observer gain, the estimated state value obtained from the observer is asymptotic to the state of the inverted wheel type traveling body 100 represented by Expression (26). Can be converged to.

オブザーバゲインの決定方法について以下に説明する。先ず、式(26)によって表される制御対象及び式(27)によって表される状態オブザーバから、状態推定偏差(状態変数ベクトルとその推定値との差)を計算する。状態推定偏差の動的方程式は下式のように表される。   A method for determining the observer gain will be described below. First, the state estimation deviation (the difference between the state variable vector and its estimated value) is calculated from the controlled object represented by Expression (26) and the state observer represented by Expression (27). The dynamic equation of state estimation deviation is expressed as follows:

Figure 0005560234
Figure 0005560234

式(27)と式(26)とから、下式(28)に示す状態推定偏差の微分方程式が得られる。   From equation (27) and equation (26), a differential equation of state estimation deviation shown in the following equation (28) is obtained.

Figure 0005560234
Figure 0005560234

上式(28)によって表される補助輪接地状態における状態推定偏差の微分方程式は、式(10)によって表される倒立状態における状態推定偏差の微分方程式と同じ形であることがわかる。従って、補助輪接地状態における状態オブザーバのゲインは、倒立状態における状態オブザーバのゲインLと同じ手順で設計するすることができる。   It can be seen that the differential equation of the state estimation deviation in the auxiliary wheel grounding state represented by the above equation (28) has the same form as the differential equation of the state estimation deviation in the inverted state represented by the equation (10). Therefore, the gain of the state observer in the auxiliary wheel grounding state can be designed in the same procedure as the gain L of the state observer in the inverted state.

補助輪接地状態における状態オブザーバのゲインを適切に設計することにより、式(27)によって表される状態オブザーバから得られる状態推定値を、式(26)によって表される倒立車輪型走行体100の状態に漸近的に収束させることができる。   By appropriately designing the gain of the state observer in the auxiliary wheel grounding state, the estimated state value obtained from the state observer represented by the equation (27) is obtained from the inverted wheel type traveling body 100 represented by the equation (26). Asymptotically converge to the state.

式(27)によって表される補助輪接地状態の状態オブザーバは、式(9)によって表される倒立状態の状態オブザーバと同様に、オブザーバゲインの大きさによって、推定状態の収束速度が定まる。つまり、状態オブザーバから得られる特性方程式の極の大きさによつて、推定の収束速度が決まる。オブザーバのゲインが大きいことは観測値の重みが大きいことに等しく、状態オブザーバにおける推定値の算出においては観測値が優先されることとなる。即ち、状態推定におけるモデルの影響は小さくなり、観測値による推定値の更新速度が高くなる。しかしながら、オブザーバのゲインが大きいと、観測値に含むノイズ等に影響され易い。   In the state observer in the auxiliary wheel grounding state represented by Expression (27), the convergence speed of the estimated state is determined by the magnitude of the observer gain, similarly to the state observer in the inverted state represented by Expression (9). That is, the estimated convergence speed is determined by the size of the pole of the characteristic equation obtained from the state observer. A large observer gain means that the weight of the observation value is large, and the observation value is given priority in the calculation of the estimated value in the state observer. That is, the influence of the model on the state estimation is reduced, and the update rate of the estimated value by the observed value is increased. However, if the gain of the observer is large, it is easily affected by noise included in the observed value.

一方、オブザーバゲインが小さいことは観測値の影響が小さくなることを意味する。この場合、オブザーバの推定値算出は主に基本モデルに従うことになり、観測値による推定値の更新速度は低くなる一方、観測ノイズの影響が弱いため、推定精度が高い。従って、補助輪接地状態の状態オブザーバのフィードバックゲインは、補助輪接地状態における状態変数ベクトルの各成分の動作周波数及び推定の目的に応じて、適宜設定することができる。本発明に係る倒立車輪型走行体全体の重心角推定方法において用いられる状態オブザーバは、変化率の遅い重心角の変動及び床反力の推定を目的とするものであるので、推定の速度及び精度の両方共が高いことが要求される。従って、本実施態様においては、最適制御問題を解いて、得られる極の近くにオブザーバの極を配置する。詳細は以下に説明する。   On the other hand, a small observer gain means that the influence of the observed value is small. In this case, the estimated value calculation of the observer mainly follows the basic model, and the update rate of the estimated value by the observed value is low, while the influence of the observation noise is weak, so the estimation accuracy is high. Therefore, the feedback gain of the state observer in the auxiliary wheel grounding state can be appropriately set according to the operating frequency of each component of the state variable vector in the auxiliary wheel grounding state and the purpose of estimation. The state observer used in the method for estimating the center-of-gravity angle of the entire inverted wheel type traveling body according to the present invention is intended to estimate the change in the center-of-gravity angle with a slow rate of change and the estimation of the floor reaction force. Both are required to be high. Therefore, in this embodiment, the optimal control problem is solved, and the observer poles are arranged near the obtained poles. Details will be described below.

式(28)によって記述される補助輪接地の状態推定偏差システムの係数行列は、   The coefficient matrix of the auxiliary wheel ground contact state estimation deviation system described by Equation (28) is

Figure 0005560234
Figure 0005560234

であり、この固有値は、 And this eigenvalue is

Figure 0005560234
Figure 0005560234

の固有値と同じであるので、式(28)のオブザーゲインの設計問題は、下式(29)のフィードバックゲインの設計問題と等しい。 Are the same as the eigenvalues, observer bar gain design problem of the formula (28) is equal to the feedback gain of the design problem of the formula (29).

Figure 0005560234
Figure 0005560234

従って、最適なフィードバックゲインを求めるには、下式(30)によって表される最適レギュレーション問題を解けばよいことが解る。   Therefore, it can be understood that the optimum feedback gain can be obtained by solving the optimum regulation problem expressed by the following equation (30).

Figure 0005560234
Figure 0005560234

ここで、   here,

Figure 0005560234
Figure 0005560234

は重み行列である。同重み行列を適当に設定することにより、状態推定偏差の収束速さと出力偏差の大きさとのトレードオフを調整することができる。このようにして得られた式(30)の最適解を用いて、式(29)の閉ループシステム行列の固有値を得ることができる。 Is a weight matrix. By appropriately setting the weight matrix, it is possible to adjust the trade-off between the convergence speed of the state estimation deviation and the magnitude of the output deviation. The eigenvalue of the closed-loop system matrix of Equation (29) can be obtained using the optimal solution of Equation (30) obtained in this way.

Figure 0005560234
Figure 0005560234

上式中、λ(*)は行列(*)の固有値を意味する。下式(32)に示すように、式(28)の偏差システムの固有値を、式(30)及び式(31)から得られる固有値から移動させて、望む位置に配置することもできる。   In the above equation, λ (*) means the eigenvalue of the matrix (*). As shown in the following equation (32), the eigenvalue of the deviation system of equation (28) can be moved from the eigenvalue obtained from equations (30) and (31) and arranged at a desired position.

Figure 0005560234
Figure 0005560234

上式中、右辺の第2項は設計パラメータであり、シミュレーションや予備実験結果により、状態推定偏差の各成分の収束速さに応じて適切に定めることができる。また、下式(33)に示すように、上記のように配置した固有値が得られるように、式(27)によって表される状態オブザーバのフィードバックゲインを定めることができる。   In the above equation, the second term on the right-hand side is a design parameter, and can be appropriately determined according to the convergence speed of each component of the state estimation deviation based on simulations and preliminary experiment results. Further, as shown in the following equation (33), the feedback gain of the state observer represented by the equation (27) can be determined so that the eigenvalue arranged as described above can be obtained.

Figure 0005560234
Figure 0005560234

以上のように設計した状態オブザーバによる推定値から、補助輪接地状態における倒立車輪型走行体100全体の重心角の変動分(Δη)及び補助輪141が床面から受ける床反力fを得ることができる。 From the estimated value according to the designed state observer as described above, to obtain a ground reaction force f c received from variation (.DELTA..eta) and the auxiliary wheel 141 the floor of the center of gravity angle of the entire inverted wheel type traveling body 100 of the auxiliary wheel contact state be able to.

補助輪接地状態における倒立車輪型走行体の状態オブザーバ設計の最終段階としては、上記のようにして設計された、式(27)によって表される連続系状態オブザーバを離散化することにより離散系状態オブザーバを設計し、例えば、倒立車輪型走行体の制御手段が備える制御コンピュータにて実装することとなる。   As the final stage of the state observer design of the inverted wheel type traveling body in the auxiliary wheel grounding state, the discrete state is obtained by discretizing the continuous state observer represented by the equation (27) designed as described above. The observer is designed and mounted, for example, by a control computer provided in the control means of the inverted wheel type traveling body.

以上、倒立状態及び補助輪接地状態における倒立車輪型走行体の状態オブザーバ設計について詳細に説明してきた。このように、本発明によれば、搭乗可能な倒立車輪型走行体において、新たなセンシングユニットの増設等を伴わずに、倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する倒立車輪型走行体全体の重心角の変動分(Δη)、補助輪が床から受ける床反力(f)、及び外乱(w)を推定すること、が可能となる。 As described above, the state observer design of the inverted wheel type traveling body in the inverted state and the auxiliary wheel grounding state has been described in detail. Thus, according to the present invention, in an inverted wheel type traveling body that can be boarded, the inverted wheel caused by the mass and the position of the center of gravity of the passenger or the load in the inverted state without adding a new sensing unit or the like. Of the center of gravity of the inverted wheel type traveling body due to the estimation of the variation (Δη) and disturbance (w) of the center of gravity angle of the entire traveling body, and the mass and the position of the center of gravity of the occupant or mounted object in the grounded auxiliary wheel It is possible to estimate the angular variation (Δη), the floor reaction force (f c ) that the auxiliary wheel receives from the floor, and the disturbance (w).

上記により、倒立車輪型走行体において、必要最小限のセンサを用いて、走行体の大型化や重量化、製造コストの増大、制御システムの複雑化等の懸念を回避しつつ、倒立走行の制御性能の向上、補助輪接地状態から倒立状態への連続的かつ円滑な遷移の実現、更には重心角の変動を伴う危険現象の防止等の利点を達成することが可能となる。   As described above, in the inverted wheel type traveling body, the control of the inverted traveling is avoided using the minimum necessary sensors while avoiding concerns such as an increase in the size and weight of the traveling body, an increase in manufacturing cost, and a complicated control system. Advantages such as improvement of performance, realization of continuous and smooth transition from the auxiliary wheel grounding state to the inverted state, and prevention of a dangerous phenomenon accompanied by fluctuation of the center of gravity angle can be achieved.

以上、本発明を説明することを目的として、特定の構成を有する倒立車輪型走行体について特定の手順にて倒立車輪型走行体全体の重心角変動分等の推定を行う幾つかの実施態様について説明してきたが、本発明の範囲は、これらの例示的な実施態様に限定されるものではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることができることは言うまでも無い。   As mentioned above, for the purpose of explaining the present invention, some embodiments for estimating the variation of the center of gravity of the entire inverted wheel type traveling body in a specific procedure for the inverted wheel type traveling body having a specific configuration. As described above, the scope of the present invention is not limited to these exemplary embodiments, and modifications can be made as appropriate within the scope of the claims and the specification. Needless to say.

100…倒立車輪型走行体、110…駆動輪、111…駆動輪車軸、120…本体部、131…アーム部(進行方向前側)、132…アーム部(進行方向後側)、133…連接部位(進行方向前側)、134…連接部位(進行方向後側)、141…補助輪(進行方向前側)、142…補助輪(進行方向後側)、150…搭乗者、151…リンク、及び190…床面。   DESCRIPTION OF SYMBOLS 100 ... Inverted wheel type traveling body, 110 ... Drive wheel, 111 ... Drive wheel axle, 120 ... Main-body part, 131 ... Arm part (front side of a moving direction), 132 ... Arm part (back side of a moving direction), 133 ... Connection part ( Traveling direction front side), 134 ... articulated part (traveling direction rear side), 141 ... auxiliary wheel (forwarding direction front side), 142 ... auxiliary wheel (traveling direction rear side), 150 ... passenger, 151 ... link, and 190 ... floor surface.

Claims (8)

駆動輪と、
前記駆動輪の車軸によって支持される本体部と、
前記本体部に可動式に連接されたアーム部と、
前記アーム部の前記本体部とは反対側に回転可能に連接された補助輪と、
前記駆動輪を駆動する駆動輪駆動手段と、
前記アーム部を駆動するアーム駆動手段と、
前記倒立車輪型走行体の実状態を検出する検出手段と、
前記検出部によって検出される実状態と目標状態との偏差に基づいて前記駆動輪駆動部又は前記アーム駆動部を制御して、前記目標状態を達成する制御手段と、
を備え、
前記補助輪が接地せず、前記駆動輪のみで倒立する倒立状態と、
前記補助輪が接地する補助輪接地状態と、
を有する搭乗可能な倒立車輪型走行体全体の重心角推定方法であって、
前記倒立状態及び前記補助輪接地状態のそれぞれについての運動方程式に基づいて状態オブザーバを設計すること、
前記補助輪接地状態についての前記状態オブザーバの状態方程式にアフィン項を導入すること、
前記倒立状態についての前記状態オブザーバを用いて、前記倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに
前記補助輪接地状態についての前記状態オブザーバを用いて、前記補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)、前記補助輪が床から受ける床反力(f)、及び外乱(w)を推定すること、
を特徴とする、倒立車輪型走行体全体の重心角推定方法。
Driving wheels,
A main body supported by the axle of the drive wheel;
An arm part movably connected to the main body part;
An auxiliary wheel rotatably connected to the opposite side of the arm portion from the body portion;
Driving wheel driving means for driving the driving wheel;
Arm driving means for driving the arm portion;
Detecting means for detecting the actual state of the inverted wheel type traveling body;
Control means for controlling the drive wheel drive unit or the arm drive unit based on a deviation between the actual state and the target state detected by the detection unit to achieve the target state;
With
An inverted state in which the auxiliary wheel is not grounded and is inverted only by the driving wheel,
An auxiliary wheel grounding state in which the auxiliary wheel is grounded;
A center-of-gravity angle estimation method for the entire boardable inverted wheel type traveling body having:
Designing a state observer based on equations of motion for each of the inverted state and the auxiliary wheel grounding state;
Introducing an affine term into the state equation of the state observer for the auxiliary wheel grounding state;
Using the state observer for the inverted state, the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the inverted state And using the state observer for the auxiliary wheel grounding state, the center of gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the auxiliary wheel grounding state Estimating a variation (Δη), a floor reaction force (f c ) that the auxiliary wheel receives from the floor, and a disturbance (w);
A center-of-gravity angle estimation method for the entire inverted wheel type traveling body, characterized by
請求項1に記載の倒立車輪型走行体全体の重心角推定方法であって、前記倒立状態ついての前記状態オブザーバが下式(9)に示す状態方程式及び出力方程式によって表され、
Figure 0005560234
上式中、
Figure 0005560234
であり、
一方、前記補助輪接地状態についての前記状態オブザーバが下式(27)に示す状態方程式及び出力方程式によって表され、
Figure 0005560234
上式中、
Figure 0005560234
であることを特徴とする、倒立車輪型走行体全体の重心角推定方法。
The center of gravity angle estimation method for the entire inverted wheel type traveling body according to claim 1, wherein the state observer for the inverted state is represented by a state equation and an output equation represented by the following equation (9):
Figure 0005560234
In the above formula,
Figure 0005560234
And
On the other hand, the state observer for the auxiliary wheel grounding state is represented by a state equation and an output equation shown in the following equation (27),
Figure 0005560234
In the above formula,
Figure 0005560234
A center-of-gravity angle estimation method for an entire inverted wheel type traveling body, characterized in that:
請求項2に記載の倒立車輪型走行体全体の重心角推定方法であって、前記倒立状態においては状態変数ベクトルとして下式(7)を用いて前記Δη及び前記外乱(w)を推定し、前記補助輪接地状態においては状態変数ベクトルとして下式(25)を用いて前記Δη、前記f、及び前記外乱(w)を推定し、
Figure 0005560234
Figure 0005560234
上式中、
Figure 0005560234
であることを特徴とする、倒立車輪型走行体全体の重心角推定方法。
The center-of-gravity angle estimation method for the entire inverted wheel type traveling body according to claim 2, wherein in the inverted state, the Δη and the disturbance (w) are estimated using the following equation (7) as a state variable vector: In the auxiliary wheel grounding state, the Δη, the f c , and the disturbance (w) are estimated using the following equation (25) as a state variable vector:
Figure 0005560234
Figure 0005560234
In the above formula,
Figure 0005560234
A center-of-gravity angle estimation method for an entire inverted wheel type traveling body, characterized in that:
請求項1乃至請求項3の何れか1項に記載の倒立車輪型走行体全体の重心角推定方法であって、前記Δηが予め定められた所定値よりも大きい場合に警告を発することを特徴とする、倒立車輪型走行体全体の重心角推定方法。   The method for estimating the center-of-gravity angle of the entire inverted wheel type traveling body according to any one of claims 1 to 3, wherein a warning is issued when the Δη is greater than a predetermined value. The center-of-gravity angle estimation method for the entire inverted wheel type traveling body. 駆動輪と、
前記駆動輪の車軸によって支持される本体部と、
前記本体部に可動式に連接されたアーム部と、
前記アーム部の前記本体部とは反対側に回転可能に連接された補助輪と、
前記駆動輪を駆動する駆動輪駆動手段と、
前記アーム部を駆動するアーム駆動手段と、
前記倒立車輪型走行体の実状態を検出する検出手段と、
前記検出部によって検出される実状態と目標状態との偏差に基づいて前記駆動輪駆動部又は前記アーム駆動部を制御して、前記目標状態を達成する制御手段と、
を備え、
前記補助輪が接地せず、前記駆動輪のみで倒立する倒立状態と、
前記補助輪が接地する補助輪接地状態と、
を有する搭乗可能な倒立車輪型走行体であって、
前記制御手段が、
前記倒立状態及び前記補助輪接地状態のそれぞれについての運動方程式に基づいて状態オブザーバを設計すること、
前記補助輪接地状態についての前記状態オブザーバの状態方程式にアフィン項を導入すること、
前記倒立状態についての前記状態オブザーバを用いて、前記倒立状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)及び外乱(w)を推定すること、並びに
前記補助輪接地状態についての前記状態オブザーバを用いて、前記補助輪接地状態における搭乗者又は搭載物の質量及び重心位置に起因する前記倒立車輪型走行体全体の重心角の変動分(Δη)、前記補助輪が床から受ける床反力(f)、及び外乱(w)を推定すること、
を特徴とする、倒立車輪型走行体。
Driving wheels,
A main body supported by the axle of the drive wheel;
An arm part movably connected to the main body part;
An auxiliary wheel rotatably connected to the opposite side of the arm portion from the body portion;
Driving wheel driving means for driving the driving wheel;
Arm driving means for driving the arm portion;
Detecting means for detecting the actual state of the inverted wheel type traveling body;
Control means for controlling the drive wheel drive unit or the arm drive unit based on a deviation between the actual state and the target state detected by the detection unit to achieve the target state;
With
An inverted state in which the auxiliary wheel is not grounded and is inverted only by the driving wheel,
An auxiliary wheel grounding state in which the auxiliary wheel is grounded;
An inverted wheel-type traveling body capable of boarding,
The control means is
Designing a state observer based on equations of motion for each of the inverted state and the auxiliary wheel grounding state;
Introducing an affine term into the state equation of the state observer for the auxiliary wheel grounding state;
Using the state observer for the inverted state, the variation (Δη) and disturbance (w) of the center-of-gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the inverted state And using the state observer for the auxiliary wheel grounding state, the center of gravity angle of the entire inverted wheel type traveling body due to the mass and the position of the center of gravity of the passenger or the load in the auxiliary wheel grounding state Estimating a variation (Δη), a floor reaction force (f c ) that the auxiliary wheel receives from the floor, and a disturbance (w);
An inverted wheel type traveling body characterized by
請求項5に記載の倒立車輪型走行体であって、前記倒立状態ついての前記状態オブザーバが下式(9)に示す状態方程式及び出力方程式によって表され、
Figure 0005560234
上式中、
Figure 0005560234
であり、
一方、前記補助輪接地状態についての前記状態オブザーバのが下式(27)に示す状態方程式及び出力方程式によって表され、
Figure 0005560234
上式中、
Figure 0005560234
であることを特徴とする、倒立車輪型走行体。
The inverted wheel type traveling body according to claim 5, wherein the state observer for the inverted state is represented by a state equation and an output equation represented by the following equation (9):
Figure 0005560234
In the above formula,
Figure 0005560234
And
On the other hand, the state observer for the auxiliary wheel grounding state is represented by the state equation and the output equation shown in the following equation (27),
Figure 0005560234
In the above formula,
Figure 0005560234
An inverted wheel type traveling body characterized by being.
請求項6に記載の倒立車輪型走行体であって、前記倒立状態においては状態変数ベクトルとして下式(7)を用いて前記Δη及び前記外乱(w)を推定し、前記補助輪接地状態においては状態変数ベクトルとして下式(25)を用いて前記Δη、前記f、及び前記外乱(w)を推定し、
Figure 0005560234
Figure 0005560234
上式中、
Figure 0005560234
であることを特徴とする、倒立車輪型走行体。
The inverted wheel type traveling body according to claim 6, wherein in the inverted state, the Δη and the disturbance (w) are estimated using the following equation (7) as a state variable vector, and in the grounded state of the auxiliary wheel: Estimates the Δη, the f c , and the disturbance (w) using the following equation (25) as a state variable vector:
Figure 0005560234
Figure 0005560234
In the above formula,
Figure 0005560234
An inverted wheel type traveling body characterized by being.
請求項5乃至請求項7の何れか1項に記載の倒立車輪型走行体であって、前記Δηが予め定められた所定値よりも大きい場合に警告を発する重心角警告手段を更に備えることを特徴とする、倒立車輪型走行体。   The inverted wheel type traveling body according to any one of claims 5 to 7, further comprising barycentric angle warning means for issuing a warning when the Δη is larger than a predetermined value. Inverted wheel-type traveling body.
JP2011122834A 2011-05-31 2011-05-31 Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method Expired - Fee Related JP5560234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122834A JP5560234B2 (en) 2011-05-31 2011-05-31 Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122834A JP5560234B2 (en) 2011-05-31 2011-05-31 Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method

Publications (3)

Publication Number Publication Date
JP2012250569A JP2012250569A (en) 2012-12-20
JP2012250569A5 JP2012250569A5 (en) 2013-10-10
JP5560234B2 true JP5560234B2 (en) 2014-07-23

Family

ID=47523818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122834A Expired - Fee Related JP5560234B2 (en) 2011-05-31 2011-05-31 Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method

Country Status (1)

Country Link
JP (1) JP5560234B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053245A1 (en) * 2013-10-10 2015-04-16 株式会社村田製作所 Pushcart
WO2015053086A1 (en) * 2013-10-11 2015-04-16 株式会社村田製作所 Pushcart
DE102017215399B4 (en) * 2017-09-04 2022-07-14 Ford Global Technologies, Llc Self balancing vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672426B2 (en) * 1996-12-19 2005-07-20 本田技研工業株式会社 Posture control device for legged mobile robot
JP4063560B2 (en) * 2002-03-18 2008-03-19 株式会社国際電気通信基礎技術研究所 Communication robot
JP4760162B2 (en) * 2005-06-29 2011-08-31 トヨタ自動車株式会社 Control method of mobile cart and mobile cart
CN100557539C (en) * 2005-07-26 2009-11-04 松下电器产业株式会社 Inverted two-wheel running type robot and control method thereof
JP4887865B2 (en) * 2005-12-14 2012-02-29 株式会社エクォス・リサーチ vehicle
JP2007237750A (en) * 2006-03-03 2007-09-20 Toyota Motor Corp Inverted pendulum type moving body
US20100017107A1 (en) * 2006-12-27 2010-01-21 Kabushikikaisha Equos Research Traveling vehicle
JP4947414B2 (en) * 2007-03-27 2012-06-06 株式会社エクォス・リサーチ vehicle
JP5024662B2 (en) * 2007-03-29 2012-09-12 株式会社エクォス・リサーチ vehicle
JP4418905B2 (en) * 2007-05-02 2010-02-24 株式会社国際電気通信基礎技術研究所 Communication robot
JP2009154256A (en) * 2007-12-27 2009-07-16 Yaskawa Electric Corp Transfer device comprising leg with wheel
JP4992754B2 (en) * 2008-02-25 2012-08-08 トヨタ自動車株式会社 Inverted wheeled mobile robot and its control method
JP5303413B2 (en) * 2009-09-24 2013-10-02 本田技研工業株式会社 Inverted pendulum type moving body control device

Also Published As

Publication number Publication date
JP2012250569A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP4600539B2 (en) TRAVEL DEVICE AND TRAVEL DEVICE CONTROL METHOD
JP4760162B2 (en) Control method of mobile cart and mobile cart
EP2093100B1 (en) Travel gear and its controlling method
US8014923B2 (en) Travel device
KR101156822B1 (en) Mobile and control method of mobile
JP5395157B2 (en) Transport vehicle and control method thereof
KR101509884B1 (en) Inverted pendulum type vehicle
WO2007129505A1 (en) Vehicle, characteristic value estimating device, and loaded article determination device
JP2008024235A (en) Vehicle
JP4888778B2 (en) vehicle
JP5959928B2 (en) Inverted pendulum type vehicle
JP2007302061A (en) Vehicle
JP6111119B2 (en) Inverted pendulum type vehicle
JP5560234B2 (en) Center of gravity angle estimation method and inverted wheel type traveling body controlled by the method
CN113031585A (en) Control device for moving body
JP5041205B2 (en) vehicle
JP5907037B2 (en) Moving body
JP2018184038A (en) Inverted pendulum type vehicle
JP5041204B2 (en) vehicle
JP5182657B2 (en) vehicle
JP2011063240A (en) Control device of inverted-pendulum control type mobile body
JP5013244B2 (en) Characteristic amount estimation device and mounted object determination device
JP5392027B2 (en) vehicle
WO2010116644A1 (en) Vehicle
JP5928071B2 (en) Moving body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees