WO2007099994A1 - Novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol utilizing these materials - Google Patents

Novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol utilizing these materials Download PDF

Info

Publication number
WO2007099994A1
WO2007099994A1 PCT/JP2007/053739 JP2007053739W WO2007099994A1 WO 2007099994 A1 WO2007099994 A1 WO 2007099994A1 JP 2007053739 W JP2007053739 W JP 2007053739W WO 2007099994 A1 WO2007099994 A1 WO 2007099994A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
dna
activity
seq
transformant
Prior art date
Application number
PCT/JP2007/053739
Other languages
French (fr)
Japanese (ja)
Inventor
Tozo Nishiyama
Noriyuki Kizaki
Yoshihiko Yasohara
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2007099994A1 publication Critical patent/WO2007099994A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)

Definitions

  • Novel carbonyl reductase its gene, vector, transformant, and method for producing optically active alcohol using them
  • Optically active alcohols such as (R) — 1 — (3,4-dimethoxyphenyl) — 2 — propanol are useful compounds as synthetic raw materials and intermediates for agricultural chemicals and pharmaceuticals.
  • As a method of asymmetrically reducing 3,4_dimethoxyphenylacetone to produce (R) — 1- (3,4-dimethoxyphenyl) 1 2-propanol There is known a reduction method using cells of microorganisms belonging to the genus of media and Pseudomonas (Patent Document 1).
  • Patent Document 1 Patent No. 3587569
  • the present invention is a method using a microorganism of Patent Document 1 described above and a novel carbonyl reductase, a gene thereof, a vector containing the gene, and transformation using the vector, which are different from the enzymes disclosed in Non-Patent Document 1. It is an object of the present invention to provide a method for producing an optically active alcohol using the transformed transformant. Means for solving the problem
  • the present invention has one or more of the following features.
  • [0005] (1) One feature of the present invention is the following DNA (a) or (b).
  • polypeptide comprising an amino acid sequence showing 80% homology (identity) with the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, and asymmetric 3,4-dimethoxyphenylacetone A polypeptide having an activity of reducing to form (R) -l- (3,4-dimethoxyphenyl) -2-propanol.
  • Another feature of the present invention is that a compound encoded by the DNA according to any one of (1), (2), and (4) and having a carbonyl group is reduced.
  • Another feature of the present invention is encoded by the DNA described in either (2) or (4), and asymmetrically reduces 3,4-dimethoxyphenylacetone.
  • Another feature of the present invention is a vector comprising the DNA according to any one of (1), (2), and (4).
  • Another feature of the present invention is the vector according to claim 7, further comprising DNA encoding a polypeptide having glucose dehydrogenase activity.
  • Another feature of the present invention is a transformant obtained by transforming a host cell with the vector according to any one of (7) and (8).
  • polypeptide according to (3), (5) or (6), or the transformant according to (9) or (10) A method for producing an optically active alcohol, characterized by reacting with a compound having a ru group.
  • the present invention provides a novel carbonyl reductase, its gene, a vector containing the gene, a transformant transformed with the vector, and a method for producing an optically active alcohol using them.
  • FIG. 1 shows a production method and structure of a recombinant vector pNPSG as an embodiment of the present invention.
  • polypeptide of the present invention a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 of the sequence listing encoded by the base sequence shown in SEQ ID NO: 1 of the sequence listing can be mentioned.
  • a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing It has a certain degree of homology (identity) with the peptide, and asymmetrically reduces 3,4-dimethoxyphenyl ketone, and (R) — 1- (3, 4-dimethoxyphenyl) 1)
  • a polypeptide having an activity to produce 2-propanol is equivalent to the polypeptide and is included in the present invention.
  • sequence homology is obtained when, for example, two amino acid sequences are compared and analyzed using the homology search program FASTA (WR Pearson & DJ Lipman PNAS (1988) 85: 2444-2448). Represented by the Identity value for.
  • FASTA WR Pearson & DJ Lipman PNAS (1988) 85: 2444-2448.
  • the homology with the polypeptide is 80% or more, preferably 90% or more, more preferably May include polypeptides that are 95% or more.
  • the substrate specificity of dehydrogenases belonging to this category 3 is 4 to 16 carbon atoms. It has only been reported to have a reducing activity against ⁇ -ketoesters such as 3-ketosil CoA (Akio Kobayashi et al, J. Biochem. (1996) 119 775-782). Based on the technical common knowledge of those skilled in the art, the polypeptide of the embodiment of the present invention showing high homology with a 3-hydroxylacyl CoA dehydrogenase belonging to Category 3 is significantly different in structure from ⁇ -ketoesters. In general, asymmetric reduction of dimethoxyphenylacetone cannot be achieved.
  • the "polypeptide" of the present invention is, for example, a DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence IJ shown in SEQ ID NO: 1 in the sequence listing. After ligation to an appropriate vector, it is obtained by introducing it into an appropriate host cell and expressing it.
  • amino acid substitution is performed on a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. It can also be obtained by causing insertions, deletions or additions.
  • the number of amino acids causing substitution, insertion, deletion or addition is not limited as long as the activity of the polypeptide of the embodiment is not lost, but it is preferably 50 amino acids or less, more preferably 30 No more than amino acids, more preferably no more than 10 amino acids, most preferably no more than 5.
  • the microorganism that is the origin of the polypeptide of the present invention is not particularly limited, and examples thereof include bacteria belonging to the genus Pseudomonas, which is particularly preferred, as Pseudomonas' Sulle (Pseudomonas ⁇ ⁇ ⁇ ii) List NBRC 13596 shares.
  • the microorganisms can be obtained from the Biological Genetic Resource Department (NBRC: Kiyotsutsu Kazusa 2_5 -8 Chiba Prefecture), National Institute of Biotechnology, Biotechnology Division, National Institute for Product Evaluation and Technology (NBRC).
  • Isolation of the polypeptide from the microorganism that is the source of the polypeptide of the present invention can be carried out by appropriately combining known protein purification methods. For example, it can be implemented as follows. First, the microorganism is cultured in an appropriate medium, and centrifuged from the culture solution. Or, the cells are collected by filtration. The obtained cells are crushed by a physical method using an ultrasonic breaker or glass beads, and then the cell residue is removed by centrifugation to obtain a cell-free extract.
  • the polypeptide of the present invention is isolated from the cell-free extract.
  • the “DNA” of the present invention is asymmetric with a DNA encoding a polypeptide having an activity of reducing a compound having a carbonyl group to produce an optically active alcohol, preferably 3,4-dimethoxyphenylacetone. It is a DNA that encodes a polypeptide having the activity of reducing and producing (R) -1- (3,4-dimethoxyphenyl) -2-propanol.
  • Any untranslated region may be included as long as it can express the polypeptide.
  • a person skilled in the art can obtain the DNA of the present invention from a microorganism that is the origin of the polypeptide by a known method. For example, the DNA of the present invention can be obtained by the method shown below.
  • the isolated polypeptide of the present invention is digested with an appropriate endopeptidase, and the resulting peptide fragment is fractionated by reverse phase HPLC. Then, for example, a part or all of the amino acid sequences of these peptide fragments are determined by ABI492 type sequencer (Applied Biosystems).
  • a PCR (Polymerase Chain Reaction) primer for amplifying a part of DNA encoding the polypeptide is synthesized.
  • chromosomal DNA of the microorganism that is the origin of the polypeptide is prepared by a conventional DNA isolation method, for example, the method of Visser et al. (Appl. Microbiol. Biotechnol., 53, 415 (2000)).
  • PCR is performed using the PCR primers described above, a part of the DNA encoding the polypeptide is amplified, and the nucleotide sequence is determined.
  • ABI373A DNA Sequencer Applied Biosystems
  • a DNA containing the base sequence shown in SEQ ID NO: 1 in the Sequence Listing can be mentioned. Further, it has a base sequence in which one or several bases are substituted, inserted, deleted and / or added in SEQ ID NO: 1, and 3,4-dimethoxyphenylacetone is asymmetrically reduced.
  • (R) -1- (3,4-dimethoxyphenyl) -2-DNA encoding a polypeptide having activity to produce propanol is included in the present invention.
  • the “several bases” is not limited as long as the polypeptide encoded by DNA does not lose the above activity, but is preferably 150 bases or less, more preferably 100 bases or less, and even more preferably 50 No more than bases, most preferably no more than 25 bases.
  • polypeptide comprising the base sequence represented by SEQ ID NO: 1 having a homology of 80% or more, preferably 90% or more, more preferably 95% or more and having the above activity.
  • DNA encoding a tide is included in the present invention.
  • DNA of the present invention is a DNA that hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing, and asymmetric with 3,4-dimethoxyphenylacetone.
  • the DNA of the present invention also includes a DNA that encodes a polypeptide having an activity of being reduced to form (R) -1- (3,4-dimethoxyphenyl) -2-propanol.
  • a DNA encoding a polypeptide having the above is also included in the DNA of the present invention.
  • a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing and a DNA that hybridizes under stringent conditions include colony'hybridization method, plaque'hybridizer. DN consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing when the hybridization method or Southern hybridization method is performed. A force A DNA that specifically forms a hybrid.
  • the stringent conditions are, for example, 75 mM trisodium citrate, 750 mM sodium chloride, 0.5% sodium dodecyl sulfate, 0.1% ushi serum albumin, 0.1% polyvinylinole.
  • the stringent conditions are, for example, 75 mM trisodium citrate, 750 mM sodium chloride, 0.5% sodium dodecyl sulfate, 0.1% ushi serum albumin, 0.1% polyvinylinole.
  • 15 mM trisodium citrate 150 mM sodium chloride
  • washing is performed at 65 ° C.
  • the washing is performed at 65 ° C. using an aqueous solution composed of 1.5 mM trisodium citrate, 15 mM sodium chloride, and 0.1% sodium dodecyl sulfate.
  • the “vector” of the present invention is not particularly limited as long as it can express the gene encoded by the DNA in a suitable host cell.
  • examples of such vectors include plasmid vectors, phage vectors, cosmid vectors, and shuttle vectors capable of exchanging genes with other host strains can also be used.
  • Such vectors usually contain regulatory elements such as lacUV5 promoter, trp promoter, trc promoter, tac promoter, lpp promoter, tufB promoter, recA promoter, pL promoter, etc., and are operable with the DNA of the present invention. It can be suitably used as an expression vector comprising an expression unit linked to the. For example, PUCN18 described later can be used preferably.
  • the regulatory elements include functional promoters and any associated transcription elements (eg, Enhancer, CCAAT box, TATA box, SPI site, etc.).
  • operably linked means that a gene regulatory force such as a promoter that regulates the expression of a gene, an enhancer, etc. is linked in a state capable of operating in a host cell.
  • a gene regulatory force such as a promoter that regulates the expression of a gene, an enhancer, etc.
  • the type and kind of the control factor can vary depending on the host.
  • a plasmid pNPS described later in which the DNA shown in SEQ ID NO: 1 is introduced into the above pUCN18 can be mentioned (see Example 3).
  • Examples of the “host cell” described in the present specification include bacteria, yeast, filamentous fungi, plant cells, animal cells and the like, but Escherichia coli, which is preferred by bacteria from the introduction and expression efficiency, is particularly preferable.
  • the vector containing the DNA of the present invention can be introduced into a host cell by a known method. When Escherichia coli is used as a host cell, the vector can be introduced into the host cell by using, for example, a commercially available coli HB101 recombinant cell (manufactured by Takara Bio Inc.).
  • the “transformant” of the present invention can be obtained by incorporating DNA encoding the polypeptide of the present invention into the vector and introducing it into a host cell.
  • the “transformant” of the present invention includes not only cultured cells but also processed products thereof.
  • treated products include, for example, cells treated with a surfactant or an organic solvent, dried cells, disrupted cells, crude cell extracts, etc., and those obtained by immobilizing them by known means. This means that as long as the activity of asymmetrically reducing 3,4-dimethoxyphenylacetone to produce (R) — 1- (3,4-dimethoxyphenol) —2_propanol remains included.
  • Culture of the transformant of the present invention can be performed using a normal liquid nutrient medium containing a carbon source, a nitrogen source, inorganic salts, organic nutrients and the like as long as it grows.
  • Examples of the transformant of the present invention include coli HBlOl (pNPS) described later (see Example 5).
  • Method for producing optically active alcohol is a transformant comprising a compound having a carboxy group serving as a substrate and a polypeptide of the present invention or DNA encoding the polypeptide in a suitable solvent. Can be added. If necessary, a coenzyme such as NADH may be added.
  • an aqueous solvent may be used, or an aqueous solvent and an organic solvent may be mixed and used.
  • the organic solvent include toluene, ethyl acetate, n-butyl acetate, hexane, isopropanol, diisopropyl ether, methanol, acetone, dimethyl sulfoxide and the like.
  • the reaction is carried out at a temperature of 10 ° C to 70 ° C, for example, and the pH of the reaction solution is maintained at 4 to 10 for example.
  • the reaction can be carried out batchwise or continuously. In the case of a batch system, the reaction substrate is added at a charge concentration of, for example, 0.1% to 70% (w / v).
  • Examples of the “compound having a carbonyl group” as a substrate include, for example, 3, 4-dimethoxyphenylacetone and the like, which are reduced under the above reaction conditions and converted into “optically active alcohol” If it is, it will not be specifically limited.
  • Optically active alcohols generated by the reaction can be purified by a conventional method. For example, a reaction solution containing optically active alcohols produced in the reaction is extracted with an organic solvent such as ethyl acetate or toluene, and the organic solvent is distilled off under reduced pressure, followed by distillation, recrystallization, chromatography, etc. It can refine
  • an organic solvent such as ethyl acetate or toluene
  • the compound having the carbonyl group By contacting and reacting the polypeptide of the present invention, a compound having a carbonyl group, and a coenzyme such as NADH as necessary, the compound having the carbonyl group is reduced asymmetrically. Optically active alcohols can be produced. At this time, as the reaction proceeds, coenzymes such as NADH are converted to oxidized forms. At this time, a polypeptide having the ability to convert this oxidized coenzyme into a reduced form (hereinafter referred to as coenzyme regeneration ability) and a compound serving as a substrate for the polypeptide are converted to the polypeptide of the present invention. The amount of coenzyme used can be reduced by carrying out the reaction in the presence of.
  • polypeptide having coenzyme regeneration ability examples include hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, glucose 6-phosphate dehydrogenase, and gnolecose dehydrogenase.
  • glucose dehydrin enzyme is used.
  • An example of a transformant containing both the DNA encoding the polypeptide of the present invention and the DNA encoding a polypeptide capable of coenzyme regeneration is obtained by transforming coli HB101 with the above-described pNPSG.
  • Examples thereof include coli HBlOl (pNPSG) described later (see Example 5).
  • the culture of a transformant containing both the DNA encoding the polypeptide of the present invention and the DNA encoding the polypeptide having the coenzyme regeneration ability is a normal carbon source as long as it grows. , Using a liquid nutrient medium containing nitrogen sources, inorganic salts, organic nutrients, etc.
  • the above reaction composition contains a polypeptide having a coenzyme regenerating ability (for example, glucose dehydrogenation).
  • Enzyme and its substrate compound (eg, dalcose) are further added.
  • Optically active alcohols can be produced in the same manner using a transformant containing both the DNA encoding the polypeptide of the present invention and the DNA encoding a polypeptide having coenzyme regeneration ability.
  • the polypeptides of the present invention are produced by combining the polypeptide of the present invention and a polypeptide having a coenzyme regenerating ability.
  • a transformant containing both a DNA encoding a peptide and a DNA encoding a polypeptide having a coenzyme regeneration ability or a processed product thereof a polypeptide having a coenzyme regeneration ability (for example, glucose
  • a polypeptide having a coenzyme regeneration ability for example, glucose
  • the polypeptide of the present invention can be efficiently produced, and by using it, for example, (R) — 1 — (3,4-dimethoxyphenyl) )
  • An excellent method for producing useful optically active alcohols including 2_propanol is provided (see Example 7).
  • the reduction activity for 3,4-dimethoxyphenylacetone was obtained by adding 2 mM substrate 3,4-dimethoxy to lOOmM phosphate buffer (pH 6.5) containing 0.4% (v / v) dimethylol sulfoxide. Add siphenylacetone, 0.167 mM coenzyme NADH, and crude enzyme 30. It was calculated from the rate of decrease in absorbance at a wavelength of 340 nm when reacted with C for 1 minute. Under this reaction condition, the activity to oxidize 1 / i mol NADH to NAD per minute is defined as limit.
  • Bacteria were collected from the culture broth by centrifugation and washed with 0.85% aqueous sodium chloride solution.
  • the cells are suspended in a 40 mM phosphate buffer (pH 7.5) containing a protease inhibitor cocktail (Roche), crushed using a SONIFIER250 ultrasonic crusher (BRANSON), and then centrifuged. The cell residue was removed to obtain a cell-free extract.
  • the cell-free extract obtained above was treated at 45 ° C. for 20 minutes, and then the insoluble fraction was removed by centrifugation to obtain a heat-treated cell-free extract.
  • Ammonium sulfate was added to the heat-treated cell-free extract obtained above to a final concentration of 1 M and stirred for 1 hour, and then the precipitate was removed by centrifugation. Ammonium sulfate was added to the supernatant to a final concentration of 3M, and after stirring for 1 hour, a precipitate was obtained by centrifugation. This precipitate was dissolved in 40 mM phosphate buffer (pH 7.5) and dialyzed overnight against the same buffer.
  • the active fraction of the ammonium sulfate fraction was applied to a DEAE-TOYOPEARL 650M (Tosohichi Co., Ltd.) column (30 ml) pre-equilibrated with 40 mM phosphate buffer (pH 7.5) to elute the active fraction. .
  • the active fractions, 10 mM phosphate buffer solution (P H7. 5) was dialyzed overnight at, 10 mM phosphate buffer (pH7. 5) (manufactured by Tosoh Corporation) DEAE-TOYOPEARL 650M, previously equilibrated with The column was applied to a column (30 ml) to adsorb the active fraction. After washing the strength ram with the same buffer, the active fraction was eluted with a NaCl linear gradient (from 0 M to 0.2 M).
  • the active fraction obtained by Phenyl-TOYOPEARL column chromatography was applied to a Blue Sepharose 6 Fast Flow (Amersham Biosciences) column (2 ml) pre-equilibrated with 10 mM phosphate buffer (pH 7.5). The active fraction was adsorbed. After washing the column with the same buffer, the active fraction was eluted with NaCl stepwise (from 0M to 2M every 0.2M) to obtain a purified preparation of a single polypeptide by electrophoresis.
  • the purified polypeptide obtained in Example 1 was denatured in the presence of 8M urea, and then digested with achromobacterium-derived ricinoleendopeptidase (manufactured by Wako Pure Chemical Industries, Ltd.). The amino acid sequence of the obtained peptide fragment was converted to ABI492. Type protein sequencer (manufactured by PerkinElmer).
  • Primer 1 5 ′ —ATGCARATHMGNGAYAARGT— 3 ′ (SEQ ID NO: 3 in the sequence listing) for amplifying a part of the gene encoding the polypeptide by PCR based on the DNA sequence predicted from this amino acid sequence
  • Primer 2 5′—GTCATNACNCGDATNCCRAA—3 ′ (SEQ ID NO: 4 in the sequence listing) was synthesized.
  • the chromosomal DNA of Pseudomonas stutzeri NBRC135 96 strain prepared above was completely digested with restriction enzyme Pstl, and the resulting mixture of DNA fragments was intramolecularly cyclized with T4 ligase.
  • Pstl restriction enzyme
  • T4 ligase T4 ligase
  • Example 2 Obtained in Example 2 using primer 3: 5'—GGGAGAGCCATATGCAGATTCGCGACAAGGTA— 3 ′ (sequence table 1J number 6) and primer 4: 5′-TCTCTGGAATTCTCACTTGGCGGCCATGC GCAA-3 ′ (sequence number 7 in the sequence table) Pseudomonas ⁇ ⁇ ⁇ ⁇ Perform PCR using the chromosomal DNA of NBRC13596 strain as a saddle.
  • SEQ ID NO: 2 in the sequence listing shows the amino acid sequence encoded by the gene consisting of the base sequence shown in SEQ ID NO: 1.
  • PCR was performed using Pyrobest DNA Polymerase (manufactured by Takara Bio Inc.) as a DNA polymerase, and the reaction conditions were in accordance with the instruction manual.
  • the DNA fragment obtained by the above PCR was digested with Ndel and EcoRI, and the 185th T of plasmid pUCNl8 (pUC18 (manufactured by Takara Bio Inc.) was changed to A by PCR to change the Ndel substrate.
  • the plasmid was newly introduced with the Ndel site by modifying the GC of positions 471 to 472 to TG, and inserted between the Ndel recognition site downstream of the lac promoter and the EcoRI recognition site.
  • a replacement vector pNPS was constructed.
  • the description of the 185th chome and the 471_472th 0th used here was in accordance with the description of 0611: 6 & 1 ⁇ Accession No. L09136.
  • Primer 5 5 '-CAGGAGCTCTAAGGAGGTTAACAATGTATAAAG-3' (SEQ ID NO: 8 in the sequence listing) and primer 6: 3 '_CACGGATCCTTATCCGCGTCCTGCTTGG 1 5' (SEQ ID NO: 9 in the sequence listing) were used to create plasmid pGDKl (Eur. J. Biochem., 186, 389 (1989), which can be obtained and prepared by those skilled in the art), and the glucose is dehydrogenase derived from Bacillus megaterium IAM 1030 (hereinafter referred to as GDH). ) Obtain double-stranded DNA with a ribosome binding sequence of E. coli 5 bases upstream from the start codon of the gene, a Sacl recognition site added just before it, and a BamHI recognition site added just after the stop codon. did.
  • coli HB101 complex cell manufactured by Takara Bio Inc. was transformed to obtain £ coli HBlOl (pNPS).
  • YT medium tryptone 1.6%, yeast extract 1.0% NaCl 0.5% pH 7.0
  • the cells were collected by centrifugation and suspended in 5 ml of lOOmM phosphate buffer (pH 6.5).
  • GDH activity was measured by adding glucose 0 ⁇ 1340, coenzyme NAD 2 mM, and crude enzyme solution to 1M Tris-HCl buffer ( ⁇ 8 ⁇ 0) and reacting at 25 ° C for 1 minute, and increasing the absorbance at a wavelength of 340 nm. Calculated from speed. Under these reaction conditions, the enzyme activity that reduces 1 / i mol of NAD to NADH per minute was defined as limit.
  • Example 7 Production of (R) -1 mono (3,4-dimethoxyphenyl) 2-propanol using a transformant To 1 ml of E coli HBlOl (pNPSG) culture solution cultured in the same manner as in Example 6, 10 mg of dalcose, 5 mg of NADlmg, 3,4 dimethoxyphenenoreacese was added and stirred at 30 ° C for 20 hours. .
  • reaction solution was extracted with ethyl acetate, and the obtained organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by centrifugation and distilling off the organic solvent under reduced pressure, (R) -1- (3,4-dimethoxyphenyl) -1-propanol was obtained by TLC. The optical purity of this product is 98.3. /. It was ee.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The object is to provide a method for producing (R)-1-(3,4-dimethoxyphenyl)-2-propanol with good efficiency. Thus, disclosed are: a polypeptide which is isolated from Pseudomonas stutzeri and is capable of reducing 3,4-dimethoxyphenylacetone asymmetrically to produce (R)-1-(3,4-dimethoxyphenyl)-2-propanol; DNA encoding the polypeptide; a transformant capable of producing the polypeptide; and a method for production of an optically active alcohol by reducing a carbonyl compound using the polypeptide or the transformant.

Description

明 細 書  Specification
新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、および それらを利用した光学活性アルコールの製造方法  Novel carbonyl reductase, its gene, vector, transformant, and method for producing optically active alcohol using them
技術分野  Technical field
[0001] 本発明は、新規カルボニル還元酵素、その遺伝子、その遺伝子を含むベクター、 そのベクターで形質転換された形質転換体、およびそれらを利用した光学活性アル コールの製造方法に関する。 背景技術  The present invention relates to a novel carbonyl reductase, its gene, a vector containing the gene, a transformant transformed with the vector, and a method for producing an optically active alcohol using them. Background art
[0002] (R) _ 1 _ (3, 4—ジメトキシフヱニル) _ 2 _プロパノール等の光学活性アルコー ノレは、農薬、医薬品等の合成原料及び中間体として有用な化合物である。 3, 4_ジ メトキシフエニルアセトンを不斉的に還元し、(R)— 1— (3, 4—ジメトキシフエエル)一 2—プロパノールを製造する方法としては、ァシピア属、キャンディダ 'インターメディ ァおよびシユードモナス属に属する微生物の菌体を用いた還元方法が知られている ( 特許文献 1)。また、レイフソニァ属由来のアルコールデヒドロゲナーゼが 3, 4一ジメト キシフエニルアセトンを不斉的に還元し、 (R)— 1— (3, 4—ジメトキシフエ二ル)一 2 —プロパノールを生成することが知られている(非特許文献 1)。  Optically active alcohols such as (R) — 1 — (3,4-dimethoxyphenyl) — 2 — propanol are useful compounds as synthetic raw materials and intermediates for agricultural chemicals and pharmaceuticals. As a method of asymmetrically reducing 3,4_dimethoxyphenylacetone to produce (R) — 1- (3,4-dimethoxyphenyl) 1 2-propanol, There is known a reduction method using cells of microorganisms belonging to the genus of media and Pseudomonas (Patent Document 1). Also, the alcohol dehydrogenase derived from the genus Leifsonia asymmetrically reduces 3,4-dimethoxyphenylacetone to produce (R) -1- (3,4-dimethoxyphenyl) -1-2-propanol. Is known (Non-Patent Document 1).
特許文献 1:特許第 3587569号  Patent Document 1: Patent No. 3587569
非特許文献 1 : Kousuke Inoue et al,Tetrahedron: Asymmetry (2005) 16, 253 9- 2549  Non-Patent Document 1: Kousuke Inoue et al, Tetrahedron: Asymmetry (2005) 16, 253 9-2549
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明は、上記特許文献 1の微生物を用いた方法および非特許文献 1に開示の酵 素とは異なる、新規カルボニル還元酵素、その遺伝子、その遺伝子を含むベクター、 そのベクターで形質転換された形質転換体、およびそれらを利用した光学活性アル コールの製造方法を提供することを課題とする。 課題を解決するための手段 [0003] The present invention is a method using a microorganism of Patent Document 1 described above and a novel carbonyl reductase, a gene thereof, a vector containing the gene, and transformation using the vector, which are different from the enzymes disclosed in Non-Patent Document 1. It is an object of the present invention to provide a method for producing an optically active alcohol using the transformed transformant. Means for solving the problem
[0004] 本発明は、以下の 1又は複数の特徴を有する。 [0005] (1)本発明の一つの特徴は、以下の(a)又は(b)の DNAである。 [0004] The present invention has one or more of the following features. [0005] (1) One feature of the present invention is the following DNA (a) or (b).
(a)配列表の配列番号 1に示す塩基配列を含む DNA;  (a) DNA comprising the base sequence shown in SEQ ID NO: 1 in the sequence listing;
(b)配列表の配列番号 1に示す塩基配列と相補的な塩基配列を含む DNAとストリン ジェントな条件下でハイブリダィズし、かつ、カルボ二ル基を有する化合物を還元し、 光学活性アルコールを生成する活性を有するポリペプチドをコードする DNA。  (b) Hybridizing with DNA containing a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing under stringent conditions and reducing a compound having a carbonyl group to produce an optically active alcohol DNA encoding a polypeptide having the activity of
[0006] (2)本発明の別の特徴は、以下の(a)又は(b)の DNAである。  (2) Another feature of the present invention is the following DNA (a) or (b):
(a)配列表の配列番号 1に示す塩基配列を含む DNA;  (a) DNA comprising the base sequence shown in SEQ ID NO: 1 in the sequence listing;
(b)配列表の配列番号 1に示す塩基配列と相補的な塩基配列を含む DNAとストリン ジヱントな条件下でハイブリダィズし、かつ、 3, 4—ジメトキシフヱニルアセトンを不斉 的に還元し、(R) _ l _ (3, 4—ジメトキシフエニル) _ 2_プロパノールを生成する活 性を有するポリペプチドをコードする DNA。  (b) Hybridizes under stringent conditions with DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing and asymmetrically reduces 3,4-dimethoxyphenylacetone. , (R) _l_ (3,4-dimethoxyphenyl) _2_DNA encoding a polypeptide having an activity to produce propanol.
[0007] (3)本発明の別の特徴は、以下の(a)又は(b)のポリペプチドである。  [0007] (3) Another feature of the present invention is the following polypeptide (a) or (b).
(a)配列表の配列番号 2に示すアミノ酸配列を含むポリペプチド;  (a) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing;
(b)配列表の配列番号 2に示すアミノ酸配列と 80%以上の相同性(同一性)を示すァ ミノ酸配列からなるポリペプチドであり、かつ、 3, 4—ジメトキシフエニルアセトンを不 斉的に還元し、 (R) - l - (3, 4ージメトキシフエ二ル)ー2—プロパノールを生成する 活性を有するポリペプチド。  (b) A polypeptide comprising an amino acid sequence showing 80% homology (identity) with the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, and asymmetric 3,4-dimethoxyphenylacetone A polypeptide having an activity of reducing to form (R) -l- (3,4-dimethoxyphenyl) -2-propanol.
[0008] (4)本発明の別の特徴は、(3)記載のポリペプチドをコードする DNAである。  [0008] (4) Another feature of the present invention is DNA encoding the polypeptide according to (3).
[0009] (5)本発明の別の特徴は、(1)、 (2)、又は(4)のいずれかに記載の DNAに、コード され、かつ、カルボ二ル基を有する化合物を還元し、光学活性アルコールを生成する 活性を有するポリペプチドである。 [0009] (5) Another feature of the present invention is that a compound encoded by the DNA according to any one of (1), (2), and (4) and having a carbonyl group is reduced. A polypeptide having an activity of producing optically active alcohols.
[0010] (6)本発明の別の特徴は、(2)又は(4)のいずれかに記載の DNAにコードされ、か つ、 3, 4—ジメトキシフエ二ルアセトンを不斉的に還元し、(R)— 1— (3, 4—ジメトキ シフヱ二ル)— 2—プロパノールを生成する活性を有するポリペプチド。 [0010] (6) Another feature of the present invention is encoded by the DNA described in either (2) or (4), and asymmetrically reduces 3,4-dimethoxyphenylacetone. , (R) — 1— (3, 4-Dimethoxy diphenyl) — a polypeptide having activity to produce 2-propanol.
[0011] (7)本発明の別の特徴は、(1)、 (2)、又は(4)のいずれかに記載の DNAを含むベ クタ一である。 [0011] (7) Another feature of the present invention is a vector comprising the DNA according to any one of (1), (2), and (4).
[0012] (8)本発明の別の特徴は、グルコース脱水素酵素活性を有するポリペプチドをコー ドする DNAをさらに含む、請求項 7に記載のベクターである。 [0013] (9)本発明の別の特徴は、(7)又は(8)のいずれかに記載のベクターにより、前記 ベクターにより宿主細胞を形質転換して得られる形質転換体である。 [8] Another feature of the present invention is the vector according to claim 7, further comprising DNA encoding a polypeptide having glucose dehydrogenase activity. [0013] (9) Another feature of the present invention is a transformant obtained by transforming a host cell with the vector according to any one of (7) and (8).
[0014] (10)本発明の別の特徴は、前記宿主細胞が大腸菌である(9)記載の形質転換体 である。  (10) Another feature of the present invention is the transformant according to (9), wherein the host cell is Escherichia coli.
[0015] (11)本発明の別の特徴は、(3)、(5)または(6)に記載のポリペプチド、又は、 (9) または(10)に記載の形質転換体を、カルボ二ル基を有する化合物と反応させること を特徴とする光学活性アルコールの製造方法である。  (11) Another feature of the present invention is that the polypeptide according to (3), (5) or (6), or the transformant according to (9) or (10) A method for producing an optically active alcohol, characterized by reacting with a compound having a ru group.
[0016] 本発明のその他の特徴およびその効果は、以下の実施形態、実施例、図面等によ つて明らかにされる。  [0016] Other features and effects of the present invention will become apparent from the following embodiments, examples, drawings, and the like.
発明の効果  The invention's effect
[0017] 本発明により、新規カルボニル還元酵素、その遺伝子、その遺伝子を含むベクター 、そのベクターで形質転換された形質転換体、およびそれらを利用した光学活性ァ ルコールの製造方法が提供される。  The present invention provides a novel carbonyl reductase, its gene, a vector containing the gene, a transformant transformed with the vector, and a method for producing an optically active alcohol using them.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]図 1は、本発明の実施形態としての組換えベクター pNPSGの作製法および構 造を示す。  [0018] FIG. 1 shows a production method and structure of a recombinant vector pNPSG as an embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明を、実施形態を用いて詳細に説明する。本発明はこれらにより限定さ れるものではない。  Hereinafter, the present invention will be described in detail using embodiments. The present invention is not limited by these.
[0020] 1.ポリペプチド  [0020] 1. Polypeptide
本発明の「ポリペプチド」は、カルボ二ル基を有する化合物を還元し、光学活性アル コールを生成する活性を有するポリペプチド、好ましくは 3, 4—ジメトキシフヱニルァ セトンを不斉的に還元し、(R) _ l _ (3, 4—ジメトキシフエニル) _ 2_プロパノール を生成する活性を有するポリペプチドである。このようなポリペプチドは、当該活性を 有する微生物などの生物から単離することができる。  The “polypeptide” of the present invention is asymmetrically produced by reducing a compound having a carbonyl group and producing an optically active alcohol, preferably 3,4-dimethoxyphenylaceton. It is a polypeptide having the activity of reducing to produce (R) _l_ (3,4-dimethoxyphenyl) _2_propanol. Such a polypeptide can be isolated from organisms such as microorganisms having the activity.
[0021] 本発明のポリペプチドの実施形態としては、配列表の配列番号 1に示す塩基配列 によってコードされる、配列表の配列番号 2に示すアミノ酸配列からなるポリペプチド を挙げることができる。また、配列表の配列番号 2に示すアミノ酸配列からなるポリぺ プチドと一定値以上の相同性(同一性)を有し、かつ、 3, 4—ジメトキシフエ二ルァセ トンを不斉的に還元し、(R)— 1— (3, 4—ジメトキシフエ二ル)一 2—プロパノールを 生成する活性を有するポリペプチドは、当該ポリペプチドと同等であり、本発明に含 まれる。 [0021] As an embodiment of the polypeptide of the present invention, a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 of the sequence listing encoded by the base sequence shown in SEQ ID NO: 1 of the sequence listing can be mentioned. In addition, a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. It has a certain degree of homology (identity) with the peptide, and asymmetrically reduces 3,4-dimethoxyphenyl ketone, and (R) — 1- (3, 4-dimethoxyphenyl) 1) A polypeptide having an activity to produce 2-propanol is equivalent to the polypeptide and is included in the present invention.
[0022] ここで配列の相同性は、例えば、相同性検索プログラム FASTA (W.R. Pearson & D.J. Lipman P.N.A.S. (1988) 85:2444-2448)を用いて 2つのアミノ酸配列を比較解析 した場合に、配列全体に対する Identityの値で表される。配列表の配列番号 2に示 すアミノ酸配列からなるポリペプチドと一定値以上の相同性を有するポリペプチドとし ては、当該ポリペプチドとの相同性が 80%以上、好ましくは 90%以上、より好ましくは 95%以上であるポリペプチドを挙げることができる。  [0022] Here, the sequence homology is obtained when, for example, two amino acid sequences are compared and analyzed using the homology search program FASTA (WR Pearson & DJ Lipman PNAS (1988) 85: 2444-2448). Represented by the Identity value for. As a polypeptide having a homology of a certain value or more with a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, the homology with the polypeptide is 80% or more, preferably 90% or more, more preferably May include polypeptides that are 95% or more.
[0023] 従来、 3, 4—ジメトキシフヱニルアセトンを不斉的に還元し、 (R) _ 1 _ (3, 4—ジメ トキシ) _ 2 _プロパノールを生成する活性を有するポリペプチドとして、レイフソニァ 属由来のアルコールデヒドロゲナーゼが報告されている(上述の非特許文献 1: Kous uke Inoue et al, Tetrahedron : Asymmetry (2005) 16 2539—2549)。し力し、このポリぺ プチドと本発明の実施形態のポリペプチドとのアミノ酸配列の相同性は 33. 5%であ り、本発明の実施形態のポリペプチドとは本質的に異なる。  [0023] Conventionally, as a polypeptide having an activity to asymmetrically reduce 3,4-dimethoxyphenylacetone to produce (R) _ 1 _ (3, 4-dimethoxy) _ 2 _propanol, Alcohol dehydrogenase derived from the genus Leifsonia has been reported (Non-patent Document 1: Kous uke Inoue et al, Tetrahedron: Asymmetry (2005) 16 2539-2549). However, the amino acid sequence homology between this polypeptide and the polypeptide of the present embodiment is 33.5%, which is essentially different from the polypeptide of the present embodiment.
[0024] 配列表の配列番号 2に示すアミノ酸配列を、上記の相同性検索プログラム FASTA を用いて相同性検索をしたところ、シユードモナス'プチダ由来の 3—ヒドロキシァシ ル CoAデヒドロゲナーゼと約 73%の相同性を示した。 3—ヒドロキシァシル CoAデヒ ドロゲナーゼには、分類 1—多機能タンパクで、炭素数 12〜: 16のヒドロキシァシル C oAに対する活性が高い、分類 2—分子量約 35, 000で、炭素数 6のヒドロキシァシル CoAに対する活性が高レ、、分類 3 _分子量約 28, 000で、炭素数 14のヒドロキシァ シノレ CoAに対する活性が高レ、、とレ、つた性質の異なる 3種類の酵素の存在が知られ ている(Akio Kobayashi et al, J. Biochem. (1996) 119 775—782、 Shuichi Furuta et al, Biochimica Biophysica Acta (1997) 1350 317 - 324、 Joseph J. Barycki et al, Biochem istry (1999) 38 5786-5798)。本発明の実施形態のポリペプチドは、前記の分類 3に 属する 3—ヒドロキシアシノレ CoAデヒドロゲナーゼと約 73%の相同性を示している。し かし、この分類 3に属するデヒドロゲナーゼの基質特異性については、炭素数 4〜16 の 3—ケトァシル CoAといった βケトエステル類に対する還元活性を有していることが 報告されているのみである(Akio Kobayashi et al, J. Biochem. (1996) 119 775-782) 。当業者の技術常識に基づけば、分類 3に属する 3—ヒドロキシァシル CoAデヒドロ ゲナーゼと高い相同性を示す本発明の実施形態のポリペプチドが、 βケトエステル 類とは構造が大きく異なる 3, 4—ジメトキシフエニルアセトンを不斉的に還元すること は ¾|到できないのが一般的である。 [0024] A homology search of the amino acid sequence shown in SEQ ID NO: 2 of the Sequence Listing using the above-described homology search program FASTA revealed that it was approximately 73% homologous to the 3-hydroxyacyl CoA dehydrogenase derived from Pseudomonas putida. showed that. 3—Hydroxylacyl CoA dehydrogenase is a class 1—multifunctional protein with high activity against hydroxyacyl CoA with 12 to 16 carbon atoms, class 2—approximately 35,000 molecular weight, 6 carbon atoms. Has high activity against hydroxyacil CoA, classification 3_molecular weight about 28,000, high activity against hydroxyacinole CoA with 14 carbon atoms, and 3 types of enzymes with different properties (Akio Kobayashi et al, J. Biochem. (1996) 119 775-782, Shuichi Furuta et al, Biochimica Biophysica Acta (1997) 1350 317-324, Joseph J. Barycki et al, Biochem istry (1999 ) 38 5786-5798). The polypeptide of the embodiment of the present invention exhibits about 73% homology with 3-hydroxyasinole CoA dehydrogenase belonging to the above-mentioned class 3. However, the substrate specificity of dehydrogenases belonging to this category 3 is 4 to 16 carbon atoms. It has only been reported to have a reducing activity against β-ketoesters such as 3-ketosil CoA (Akio Kobayashi et al, J. Biochem. (1996) 119 775-782). Based on the technical common knowledge of those skilled in the art, the polypeptide of the embodiment of the present invention showing high homology with a 3-hydroxylacyl CoA dehydrogenase belonging to Category 3 is significantly different in structure from β-ketoesters. In general, asymmetric reduction of dimethoxyphenylacetone cannot be achieved.
[0025] 本発明の「ポリペプチド」は、例えば、先述の、配列表の配列番号 1に示す塩基配 歹 IJと相補的な塩基配列からなる DNAとストリンジェントな条件下でハイブリダィズする DNAを適当なベクターに連結した後、適当な宿主細胞に導入して発現させることに より得られる。また、例 ば、 Current Protocols in Molecular Biology (John Wiley and Sons, Inc., 1989)等に記載の公知の方法に従い、配列表の配列番号 2に示すアミノ 酸配列からなるポリペプチドに、アミノ酸の置換、揷入、欠失又は付加を生じさせるこ とによっても取得できる。置換、挿入、欠失又は付加を生じさせるアミノ酸の数は、実 施形態のポリペプチドが備える活性が失われない限り、その個数は制限されないが、 好ましくは 50アミノ酸以下であり、より好ましくは 30アミノ酸以下、さらに好ましくは 10 アミノ酸以下、最も好ましくは、 5個以下である。  [0025] The "polypeptide" of the present invention is, for example, a DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence IJ shown in SEQ ID NO: 1 in the sequence listing. After ligation to an appropriate vector, it is obtained by introducing it into an appropriate host cell and expressing it. In addition, for example, according to a known method described in Current Protocols in Molecular Biology (John Wiley and Sons, Inc., 1989) and the like, amino acid substitution is performed on a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. It can also be obtained by causing insertions, deletions or additions. The number of amino acids causing substitution, insertion, deletion or addition is not limited as long as the activity of the polypeptide of the embodiment is not lost, but it is preferably 50 amino acids or less, more preferably 30 No more than amino acids, more preferably no more than 10 amino acids, most preferably no more than 5.
[0026] 本発明のポリペプチドの起源となる微生物は、特に限定されないが、例えばシユー ドモナス (Pseudomonas)属に属するバクテリアが挙げられ、特に好ましレ、ものとして はシユードモナス 'スッッッエリ (Pseudomonas ^ϋί^ή) NBRC 13596株を挙げる ことができる。当該微生物は、独立行政法人製品評価技術基盤機構バイオテクノロジ 一本部 生物遺伝資源部門(NBRC :干 292-0818 千葉県木更津巿かずさ鎌足 2_5 -8)より入手することができる。  [0026] The microorganism that is the origin of the polypeptide of the present invention is not particularly limited, and examples thereof include bacteria belonging to the genus Pseudomonas, which is particularly preferred, as Pseudomonas' Sulle (Pseudomonas ^ ϋί ^ ii) List NBRC 13596 shares. The microorganisms can be obtained from the Biological Genetic Resource Department (NBRC: Kiyotsutsu Kazusa 2_5 -8 Chiba Prefecture), National Institute of Biotechnology, Biotechnology Division, National Institute for Product Evaluation and Technology (NBRC).
[0027] 本発明のポリペプチドの起源となる微生物を培養するための培地としては、その微 生物が増殖する限り、通常の、炭素源、窒素源、無機塩類、有機栄養素などを含む 液体栄養培地を用いることができる。  [0027] As a medium for culturing the microorganism that is the source of the polypeptide of the present invention, as long as the microorganism grows, a normal liquid nutrient medium containing a carbon source, a nitrogen source, inorganic salts, organic nutrients, etc. Can be used.
[0028] 本発明のポリペプチドの起源となる微生物からの該ポリペプチドの単離は、公知の 蛋白質精製法を適当に組み合わせて用いることにより実施できる。例えば、以下のよ うに実施できる。まず、当該微生物を適当な培地で培養し、培養液から遠心分離、あ るいは、濾過により菌体を集める。得られた菌体を、超音波破碎機、あるいは、グラス ビーズ等を用いた物理的手法で破砕した後、遠心分離にて菌体残さを除き、無細胞 抽出液を得る。そして、塩析 (硫酸アンモニゥム沈殿、リン酸ナトリウム沈殿など)、溶 媒沈殿 (アセトン又はエタノールなどによる蛋白質分画沈殿法)、透析、ゲル濾過クロ マトグラフィー、イオン交換クロマトグラフィー、逆相クロマトグラフィー、限外濾過等の 手法を単独で、又は組み合わせて用いることにより、該無細胞抽出液から本発明の ポリペプチドを単離する。 [0028] Isolation of the polypeptide from the microorganism that is the source of the polypeptide of the present invention can be carried out by appropriately combining known protein purification methods. For example, it can be implemented as follows. First, the microorganism is cultured in an appropriate medium, and centrifuged from the culture solution. Or, the cells are collected by filtration. The obtained cells are crushed by a physical method using an ultrasonic breaker or glass beads, and then the cell residue is removed by centrifugation to obtain a cell-free extract. And salting out (ammonium sulfate precipitation, sodium phosphate precipitation, etc.), solvent precipitation (protein fraction precipitation with acetone or ethanol, etc.), dialysis, gel filtration chromatography, ion exchange chromatography, reverse phase chromatography, By using a technique such as ultrafiltration alone or in combination, the polypeptide of the present invention is isolated from the cell-free extract.
[0029] 2. DNA  [0029] 2. DNA
本発明の「DNA」は、カルボ二ル基を有する化合物を還元し、光学活性アルコール を生成する活性を有するポリペプチドをコードする DNA、好ましくは 3, 4—ジメトキシ フエニルアセトンを不斉的に還元し、(R)— 1— (3, 4—ジメトキシフエ二ル)— 2—プ ロパノールを生成する活性を有するポリペプチドをコードする DNAであり、後述する 方法に従って導入された宿主細胞内で該ポリペプチドを発現し得るものであればい かなるものでもよぐ任意の非翻訳領域を含んでいてもよい。該ポリペプチドが取得で きれば、該ポリペプチドの起源となる微生物より、当業者であれば公知の方法で本発 明の DNAを取得できる。例えば、以下に示した方法で本発明の DNAを取得できる  The “DNA” of the present invention is asymmetric with a DNA encoding a polypeptide having an activity of reducing a compound having a carbonyl group to produce an optically active alcohol, preferably 3,4-dimethoxyphenylacetone. It is a DNA that encodes a polypeptide having the activity of reducing and producing (R) -1- (3,4-dimethoxyphenyl) -2-propanol. In a host cell introduced according to the method described below, Any untranslated region may be included as long as it can express the polypeptide. If the polypeptide can be obtained, a person skilled in the art can obtain the DNA of the present invention from a microorganism that is the origin of the polypeptide by a known method. For example, the DNA of the present invention can be obtained by the method shown below.
[0030] まず、単離された本発明のポリペプチドを適当なエンドべプチダーゼを用いて消化 し、生じたペプチド断片を逆相 HPLCにより分取する。そして、例えば、 ABI492型プ 口ティンシークェンサ一(Applied Biosystems社製)により、これらのペプチド断片 のアミノ酸配列の一部又は全部を決定する。 [0030] First, the isolated polypeptide of the present invention is digested with an appropriate endopeptidase, and the resulting peptide fragment is fractionated by reverse phase HPLC. Then, for example, a part or all of the amino acid sequences of these peptide fragments are determined by ABI492 type sequencer (Applied Biosystems).
[0031] このようにして得られたアミノ酸配列情報をもとにして、該ポリペプチドをコードする D NAの一部を増幅するための PCR (Polymerase Chain Reaction)プライマーを合成す る。次に、通常の DNA単離法、例えば、 Visser等の方法(Appl. Microbiol. Biotechn ol., 53, 415 (2000))により、該ポリペプチドの起源となる微生物の染色体 DNAを調製 する。この染色体 DNAを铸型として、先述の PCRプライマーを用いて PCRを行い、 該ポリペプチドをコードする DNAの一部を増幅し、その塩基配列を決定する。塩基 配列の決定は、例えば、 ABI373A型 DNA Sequencer (Applied Biosystems 社製)等を用いて行うことができる。 [0031] Based on the amino acid sequence information thus obtained, a PCR (Polymerase Chain Reaction) primer for amplifying a part of DNA encoding the polypeptide is synthesized. Next, chromosomal DNA of the microorganism that is the origin of the polypeptide is prepared by a conventional DNA isolation method, for example, the method of Visser et al. (Appl. Microbiol. Biotechnol., 53, 415 (2000)). Using this chromosomal DNA as a saddle, PCR is performed using the PCR primers described above, a part of the DNA encoding the polypeptide is amplified, and the nucleotide sequence is determined. For example, ABI373A DNA Sequencer (Applied Biosystems) Etc.).
[0032] 該ポリペプチドをコードする DNAの一部の塩基配列が明らかになれば、例えば、 i — PCR法(Nucl. Acids Res., 16, 8186 (1988))によりその全体の配列を決定すること ができる。 [0032] Once the partial nucleotide sequence of the DNA encoding the polypeptide is clarified, for example, i—PCR method (Nucl. Acids Res., 16, 8186 (1988)) is used to determine the entire sequence. be able to.
[0033] このようにして得られる本発明の DNAの実施形態としては、配列表の配列番号 1に 示す塩基配列を含む DNAを挙げることができる。また、配列番号 1において 1若しく は数個の塩基が置換、揷入、欠失および/または付加された塩基配列を有し、かつ 3, 4—ジメトキシフエニルアセトンを不斉的に還元し、(R)— 1— (3, 4—ジメトキシフ ヱ二ル)— 2—プロパノールを生成する活性を有するポリペプチドをコードする DNA は、本発明に含まれる。 「数個の塩基」とは、 DNAによってコードされるポリペプチド が上記活性を失わない限り、その個数は制限されないが、好ましくは 150塩基以下 であり、より好ましくは 100塩基以下、さらに好ましくは 50塩基以下、最も好ましくは、 25塩基以下である。  [0033] As an embodiment of the DNA of the present invention thus obtained, a DNA containing the base sequence shown in SEQ ID NO: 1 in the Sequence Listing can be mentioned. Further, it has a base sequence in which one or several bases are substituted, inserted, deleted and / or added in SEQ ID NO: 1, and 3,4-dimethoxyphenylacetone is asymmetrically reduced. , (R) -1- (3,4-dimethoxyphenyl) -2-DNA encoding a polypeptide having activity to produce propanol is included in the present invention. The “several bases” is not limited as long as the polypeptide encoded by DNA does not lose the above activity, but is preferably 150 bases or less, more preferably 100 bases or less, and even more preferably 50 No more than bases, most preferably no more than 25 bases.
[0034] また、配列番号 1で示される塩基配列と 80%以上、好ましくは 90%以上、より好まし くは 95%以上の相同性を有する塩基配列からなり、かつ上記活性を有するポリぺプ チドをコードする DNAは、本発明に含まれる。  [0034] Further, a polypeptide comprising the base sequence represented by SEQ ID NO: 1 having a homology of 80% or more, preferably 90% or more, more preferably 95% or more and having the above activity. DNA encoding a tide is included in the present invention.
[0035] さらに、配列表の配列番号 1に示す塩基配列と相補的な塩基配列からなる DNAと ストリンジヱントな条件下でハイブリダィズする DNAであって、かつ、 3, 4—ジメトキシ フエニルアセトンを不斉的に還元し、(R)— 1— (3, 4—ジメトキシフエ二ル)— 2—プ ロパノールを生成する活性を有するポリペプチドをコードする DNAも本発明の DNA に包含される。さらに、配列番号 1に示す塩基配列と相補的な塩基配列からなる DN Aとストリンジヱントな条件下でハイブリダィズする DNAであって、かつ、カルボニル 基を有する化合物を還元し、光学活性アルコールを生成する活性を有するポリぺプ チドをコードする DNAも本発明の DNAに包含される。  [0035] Furthermore, it is a DNA that hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing, and asymmetric with 3,4-dimethoxyphenylacetone. The DNA of the present invention also includes a DNA that encodes a polypeptide having an activity of being reduced to form (R) -1- (3,4-dimethoxyphenyl) -2-propanol. Furthermore, it is DNA that hybridizes under stringent conditions with DNA consisting of a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 1 and has an activity of reducing a compound having a carbonyl group to produce an optically active alcohol. A DNA encoding a polypeptide having the above is also included in the DNA of the present invention.
[0036] 配列表の配列番号 1に示す塩基配列と相補的な塩基配列からなる DNAと、ストリン ジヱントな条件下でハイブリダィズする DNAとは、コロニ一'ハイブリダィゼーシヨン法 、プラーク 'ハイブリダィゼーシヨン法、あるいはサザンハイブリダィゼーシヨン法等を 実施した際、配列表の配列番号 1に示す塩基配列と相補的な塩基配列からなる DN A力 特異的にハイブリッドを形成する DNAを言う。 [0036] A DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing and a DNA that hybridizes under stringent conditions include colony'hybridization method, plaque'hybridizer. DN consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing when the hybridization method or Southern hybridization method is performed. A force A DNA that specifically forms a hybrid.
[0037] ここで、ストリンジ工ントな条件とは、例えば、 75mMクェン酸三ナトリウム、 750mM 塩化ナトリウム、 0· 5%ドデシル硫酸ナトリウム、 0· 1%ゥシ血清アルブミン、 0. 1%ポ リビニノレピロリドン、および、 0. l%Ficoll 400 (アマシャムバイオサイエンス株式会 社製)の組成からなる水溶液中、 65°Cでハイブリダィズさせた後に、 15mMクェン酸 三ナトリウム、 150mM塩ィ匕ナトリウム、および 0. 1 %ドデシル硫酸ナトリウムの組成か らなる水溶液を用いて、 60°Cで洗浄が行われる条件を言う。好ましくは、上記条件で ハイブリダィズさせた後に、 15mMクェン酸三ナトリウム、 150mM塩化ナトリウム、お よび 0. 1%ドデシノレ硫酸ナトリウムの組成からなる水溶液を用いて、 65°Cで洗浄が 行われる条件であり、より好ましくは、 1. 5mMクェン酸三ナトリウム、 15mM塩化ナト リウム、および 0. 1 %ドデシル硫酸ナトリウムの組成からなる水溶液を用いて、 65°Cで 洗浄が行われる条件である。  Here, the stringent conditions are, for example, 75 mM trisodium citrate, 750 mM sodium chloride, 0.5% sodium dodecyl sulfate, 0.1% ushi serum albumin, 0.1% polyvinylinole. After hybridization at 65 ° C in an aqueous solution composed of pyrrolidone and 0.1% Ficoll 400 (Amersham Biosciences), 15 mM trisodium citrate, 150 mM sodium chloride, and 0. The conditions under which cleaning is performed at 60 ° C using an aqueous solution composed of 1% sodium dodecyl sulfate. Preferably, after hybridization under the above conditions, washing is performed at 65 ° C. using an aqueous solution composed of 15 mM trisodium citrate, 150 mM sodium chloride, and 0.1% sodium dodecinole sulfate. More preferably, the washing is performed at 65 ° C. using an aqueous solution composed of 1.5 mM trisodium citrate, 15 mM sodium chloride, and 0.1% sodium dodecyl sulfate.
[0038] 本明細書において記述されている、上記 DNAの単離、および後述するベクターの 調製、形質転換等の遺伝子操作は、特に明記しない限り、 Molecular Cloning 2nd Ed ition (Cold Spring Harbor Laboratory Press, 1989)等の成書に記載されている方法に より実施できる。また、本明細書の記述に用いられる%は、特に断りのない限り、 % ( w/ V)を思味する。  [0038] Unless otherwise specified, the isolation of the above-described DNA described in this specification and the genetic manipulation such as vector preparation and transformation described below are described in Molecular Cloning 2nd Edition (Cold Spring Harbor Laboratory Press, 1989) and the like. Further,% used in the description of the present specification assumes% (w / V) unless otherwise specified.
[0039] 3.ベクター  [0039] 3. Vector
本発明の「ベクター」は、適当な宿主細胞内で前記 DNAがコードする遺伝子を発 現できるものであれば、特に限定されない。このようなベクターとしては、例えば、プラ スミドベクター、ファージベクター、コスミドベクターなどが挙げられ、さらに、他の宿主 株との間での遺伝子交換が可能なシャトルベクターも使用できる。  The “vector” of the present invention is not particularly limited as long as it can express the gene encoded by the DNA in a suitable host cell. Examples of such vectors include plasmid vectors, phage vectors, cosmid vectors, and shuttle vectors capable of exchanging genes with other host strains can also be used.
[0040] このようなベクターは、通常、 lacUV5プロモーター、 trpプロモーター、 trcプロモー ター、 tacプロモーター、 lppプロモーター、 tufBプロモーター、 recAプロモーター、 p Lプロモーター等の制御因子を含み、本発明の DNAと作動可能に連結された発現 単位を含む発現ベクターとして好適に使用できる。例えば、後述する PUCN18が好 適に使用できる。  [0040] Such vectors usually contain regulatory elements such as lacUV5 promoter, trp promoter, trc promoter, tac promoter, lpp promoter, tufB promoter, recA promoter, pL promoter, etc., and are operable with the DNA of the present invention. It can be suitably used as an expression vector comprising an expression unit linked to the. For example, PUCN18 described later can be used preferably.
[0041] 前記制御因子は、機能的プロモーター及び、任意の関連する転写要素(例えばェ ンハンサー、 CCAATボックス、 TATAボックス、 SPI部位など)を有する塩基配列を いう。 [0041] The regulatory elements include functional promoters and any associated transcription elements (eg, Enhancer, CCAAT box, TATA box, SPI site, etc.).
[0042] 上記の「作動可能に連結」という用語は、遺伝子の発現を調節するプロモーター、 ェンハンサ一等の種々の調節エレメントと遺伝子力 S、宿主細胞中で作動し得る状態 で連結されることをいう。制御因子のタイプ及び種類が、宿主に応じて変わり得ること は、当業者に周知の事項である。本発明のベクターの例としては、上記 pUCN18に 配列番号 1に示す DNAを導入した、後述するプラスミド pNPSを挙げることができる( 実施例 3参照)。  [0042] The term "operably linked" above means that a gene regulatory force such as a promoter that regulates the expression of a gene, an enhancer, etc. is linked in a state capable of operating in a host cell. Say. It is well known to those skilled in the art that the type and kind of the control factor can vary depending on the host. As an example of the vector of the present invention, a plasmid pNPS described later in which the DNA shown in SEQ ID NO: 1 is introduced into the above pUCN18 can be mentioned (see Example 3).
[0043] 4.宿主細胞  [0043] 4. Host cells
本明細書内に記載される「宿主細胞」としては、細菌、酵母、糸状菌、植物細胞、動 物細胞などが挙げられるが、導入及び発現効率から細菌が好ましぐ大腸菌が特に 好ましい。本発明の DNAを含むベクターは、公知の方法により宿主細胞に導入でき る。宿主細胞として大腸菌を用いる場合、例えば、市販の coli HB101コンビテ ントセル (タカラバイオ社製)を用いることにより、当該ベクターを宿主細胞に導入でき る。  Examples of the “host cell” described in the present specification include bacteria, yeast, filamentous fungi, plant cells, animal cells and the like, but Escherichia coli, which is preferred by bacteria from the introduction and expression efficiency, is particularly preferable. The vector containing the DNA of the present invention can be introduced into a host cell by a known method. When Escherichia coli is used as a host cell, the vector can be introduced into the host cell by using, for example, a commercially available coli HB101 recombinant cell (manufactured by Takara Bio Inc.).
[0044] 5.形質転換体  [0044] 5. Transformant
本発明の「形質転換体」は、本発明のポリペプチドをコードする DNAを、前記べク ターに組み込み、これを宿主細胞に導入することにより得られる。なお、本発明の「形 質転換体」は、培養菌体は言うまでもなぐその処理物も含まれる。ここで言う処理物 とは、例えば、界面活性剤や有機溶媒で処理した細胞、乾燥細胞、破砕処理した細 胞、細胞の粗抽出液等のほか、公知の手段でそれらを固定化したものを意味し、 3, 4—ジメトキシフエ二ルアセトンを不斉的に還元し、(R)— 1— (3, 4—ジメトキシフエ二 ノレ)— 2_プロパノールを生成する活性が残存する限りはこれに含まれる。本発明の 形質転換体の培養は、それが増殖する限り、通常の、炭素源、窒素源、無機塩類、 有機栄養素などを含む液体栄養培地を用いて実施できる。  The “transformant” of the present invention can be obtained by incorporating DNA encoding the polypeptide of the present invention into the vector and introducing it into a host cell. The “transformant” of the present invention includes not only cultured cells but also processed products thereof. As used herein, treated products include, for example, cells treated with a surfactant or an organic solvent, dried cells, disrupted cells, crude cell extracts, etc., and those obtained by immobilizing them by known means. This means that as long as the activity of asymmetrically reducing 3,4-dimethoxyphenylacetone to produce (R) — 1- (3,4-dimethoxyphenol) —2_propanol remains included. Culture of the transformant of the present invention can be performed using a normal liquid nutrient medium containing a carbon source, a nitrogen source, inorganic salts, organic nutrients and the like as long as it grows.
[0045] 本発明の形質転換体の例としては、後述する coli HBlOl (pNPS)が挙げら れる(実施例 5参照)。  [0045] Examples of the transformant of the present invention include coli HBlOl (pNPS) described later (see Example 5).
[0046] 6.光学活性アルコールの製造方法 本発明の「光学活性アルコール類の製造」は、適当な溶媒中に、基質となるカルボ 二ル基を有する化合物と、本発明のポリペプチド又は該ポリペプチドをコードする DN Aを含む形質転換体とを添加することにより実施できる。必要に応じて、 NADH等の 補酵素を添加してもよい。 [0046] 6. Method for producing optically active alcohol “Production of optically active alcohols” of the present invention is a transformant comprising a compound having a carboxy group serving as a substrate and a polypeptide of the present invention or DNA encoding the polypeptide in a suitable solvent. Can be added. If necessary, a coenzyme such as NADH may be added.
[0047] 反応には水系溶媒を用いてもよいし、水系の溶媒と有機系の溶媒とを混合して用 いてもよい。有機系溶媒としては、例えば、トルエン、酢酸ェチル、酢酸 n_プチル、 へキサン、イソプロパノール、ジイソプロピルエーテル、メタノーノレ、アセトン、ジメチル スルホキシド等が挙げられる。反応は例えば 10°C〜70°Cの温度で行われ、反応液 の pHは例えば 4〜: 10に維持する。反応は、バッチ方式あるいは連続方式で実施で きる。バッチ方式の場合、反応基質は例えば 0. 1 %から 70% (w/v)の仕込み濃度 で添加される。 [0047] For the reaction, an aqueous solvent may be used, or an aqueous solvent and an organic solvent may be mixed and used. Examples of the organic solvent include toluene, ethyl acetate, n-butyl acetate, hexane, isopropanol, diisopropyl ether, methanol, acetone, dimethyl sulfoxide and the like. The reaction is carried out at a temperature of 10 ° C to 70 ° C, for example, and the pH of the reaction solution is maintained at 4 to 10 for example. The reaction can be carried out batchwise or continuously. In the case of a batch system, the reaction substrate is added at a charge concentration of, for example, 0.1% to 70% (w / v).
[0048] 基質となる「カルボ二ル基を有する化合物」としては、例えば、 3, 4—ジメトキシフヱ ニルアセトン等が挙げられる力 上述の反応条件において還元され、「光学活性アル コール」に変換されるものであれば、特に限定されない。  [0048] Examples of the “compound having a carbonyl group” as a substrate include, for example, 3, 4-dimethoxyphenylacetone and the like, which are reduced under the above reaction conditions and converted into “optically active alcohol” If it is, it will not be specifically limited.
[0049] 上述の反応条件において、 3, 4 ジメトキシフヱニルアセトンを基質とした場合、(R ) 1 (3, 4—ジメトキシフエ二ル) 2 プロパノールが得られる。  [0049] Under the above reaction conditions, when 3,4 dimethoxyphenylacetone is used as a substrate, (R 1) 1 (3,4-dimethoxyphenyl) 2 propanol is obtained.
[0050] 反応で生じた光学活性アルコール類は、常法により精製できる。例えば、反応で生 じた光学活性アルコール類を含む反応液を、酢酸ェチル、トルエン等の有機溶媒で 抽出し、有機溶媒を減圧下で留去した後、蒸留、再結晶、又は、クロマトグラフィー等 の処理を行うことにより、精製できる。  [0050] Optically active alcohols generated by the reaction can be purified by a conventional method. For example, a reaction solution containing optically active alcohols produced in the reaction is extracted with an organic solvent such as ethyl acetate or toluene, and the organic solvent is distilled off under reduced pressure, followed by distillation, recrystallization, chromatography, etc. It can refine | purify by processing.
[0051] 7.光学活性アルコールの製造方法の変形例  [0051] 7. Modification of production method of optically active alcohol
本発明のポリペプチド、カルボ二ル基を有する化合物、および、必要に応じて NAD H等の補酵素を接触させ、反応させることにより、当該カルボ二ル基を有する化合物 を不斉的に還元し、光学活性アルコール類を製造することができる。この時、当該反 応の進行に伴い、 NADH等の補酵素は酸化型に変換される。このとき、この酸化型 の補酵素を還元型に変換する能力(以後、補酵素再生能と呼ぶ)を有するポリぺプ チド、および、当該ポリペプチドの基質となる化合物を、本発明のポリペプチドと共存 させて当該反応を行うことにより、補酵素の使用量を削減できる。 [0052] 補酵素再生能を有するポリペプチドとしては、例えば、ヒドロゲナーゼ、ギ酸脱水素 酵素、アルコール脱水素酵素、アルデヒド脱水素酵素、グルコース 6—リン酸脱水 素酵素およびグノレコース脱水素酵素などを使用できる。好適には、グルコース脱水 素酵素が使用される。 By contacting and reacting the polypeptide of the present invention, a compound having a carbonyl group, and a coenzyme such as NADH as necessary, the compound having the carbonyl group is reduced asymmetrically. Optically active alcohols can be produced. At this time, as the reaction proceeds, coenzymes such as NADH are converted to oxidized forms. At this time, a polypeptide having the ability to convert this oxidized coenzyme into a reduced form (hereinafter referred to as coenzyme regeneration ability) and a compound serving as a substrate for the polypeptide are converted to the polypeptide of the present invention. The amount of coenzyme used can be reduced by carrying out the reaction in the presence of. [0052] Examples of the polypeptide having coenzyme regeneration ability include hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, glucose 6-phosphate dehydrogenase, and gnolecose dehydrogenase. . Preferably, glucose dehydrin enzyme is used.
[0053] 本発明のポリペプチドをコードする DNA及び補酵素再生能を有するポリペプチド をコードする DNAの両者が組込まれたベクターの例としては、前記発現ベクター pN PSにバシラス ·メガテリゥム由来のグルコース脱水素酵素遺伝子を導入した、後述す る pNPSGが挙げられる(実施例 4参照)。  [0053] Examples of vectors in which both the DNA encoding the polypeptide of the present invention and the DNA encoding the polypeptide having coenzyme regeneration ability are incorporated include the above-described expression vector pNPS and glucose dehydration derived from Bacillus megaterium Examples include pNPSG, which will be described later, into which an enzyme gene has been introduced (see Example 4).
[0054] 本発明のポリペプチドをコードする DNAおよび補酵素再生能を有するポリペプチド をコードする DNAの両者を含む形質転換体は、本発明のポリペプチドをコードする DNAおよび、補酵素再生能を有するポリペプチドをコードする DNAの両者を、同一 のベクターに組み込み、これを宿主細胞に導入することにより得られるほか、これら 2 種の DNAを不和合性グループの異なる 2種のベクターにそれぞれ組み込み、それら 2種のベクターを同一の宿主細胞に導入することによつても得られる。本発明のポリ ペプチドをコードする DNA、および、補酵素再生能を有するポリペプチドをコードす る DNAの両者を含む形質転換体の例としては、前記 pNPSGで coli HB101 を形質転換して得られる、後述する coli HBlOl (pNPSG)が挙げられる(実施 例 5参照)。  [0054] A transformant containing both a DNA encoding the polypeptide of the present invention and a DNA encoding a polypeptide having a coenzyme regeneration ability has a DNA encoding the polypeptide of the present invention and a coenzyme regeneration ability. In addition to incorporating both of the DNAs encoding the polypeptides in the same vector and introducing them into host cells, these two types of DNA are incorporated into two different vectors of different incompatibility groups, They can also be obtained by introducing the two vectors into the same host cell. An example of a transformant containing both the DNA encoding the polypeptide of the present invention and the DNA encoding a polypeptide capable of coenzyme regeneration is obtained by transforming coli HB101 with the above-described pNPSG. Examples thereof include coli HBlOl (pNPSG) described later (see Example 5).
[0055] 本発明のポリペプチドをコードする DNAと補酵素再生能を有するポリペプチドをコ ードする DNAの両者を含む形質転換体の培養は、それが増殖する限り、通常の、炭 素源、窒素源、無機塩類、有機栄養素などを含む液体栄養培地を用いて実施できる  [0055] The culture of a transformant containing both the DNA encoding the polypeptide of the present invention and the DNA encoding the polypeptide having the coenzyme regeneration ability is a normal carbon source as long as it grows. , Using a liquid nutrient medium containing nitrogen sources, inorganic salts, organic nutrients, etc.
[0056] 本発明のポリペプチドと、補酵素再生能を有するポリペプチドを組み合わせて光学 活性アルコール類を製造する場合は、上記反応組成に、補酵素再生能を有するポリ ペプチド (例えば、グルコース脱水素酵素)と、その基質となる化合物(例えば、ダル コース)をさらに添カ卩する。本発明のポリペプチドをコードする DNA、および、補酵素 再生能を有するポリペプチドをコードする DNAの両者を含む形質転換体を使用して も、同様に光学活性アルコール類を製造することができる。とりわけ、本発明のポリぺ プチドをコードする DNA、および、補酵素再生能を有するポリペプチドをコードする DNAの両者を含む形質転換体、又は、その処理物を用いる場合は、補酵素再生能 を有するポリペプチド(例えば、グルコース脱水素酵素)を別途添加する必要がなぐ 光学活性アルコール類の製造をより効率良く行うことができる。 [0056] When an optically active alcohol is produced by combining the polypeptide of the present invention and a polypeptide having a coenzyme regenerating ability, the above reaction composition contains a polypeptide having a coenzyme regenerating ability (for example, glucose dehydrogenation). Enzyme) and its substrate compound (eg, dalcose) are further added. Optically active alcohols can be produced in the same manner using a transformant containing both the DNA encoding the polypeptide of the present invention and the DNA encoding a polypeptide having coenzyme regeneration ability. In particular, the polypeptides of the present invention. When a transformant containing both a DNA encoding a peptide and a DNA encoding a polypeptide having a coenzyme regeneration ability or a processed product thereof, a polypeptide having a coenzyme regeneration ability (for example, glucose The production of optically active alcohols can be performed more efficiently.
[0057] 以上のように、本発明に従えば、本発明のポリペプチドの効率的生産が可能であり 、それを利用することにより、例えば (R) _ 1 _ (3, 4—ジメトキシフエニル) _ 2_プロ パノールを始めとする、有用な光学活性アルコール類の優れた製造法が提供される (実施例 7参照)。 [0057] As described above, according to the present invention, the polypeptide of the present invention can be efficiently produced, and by using it, for example, (R) — 1 — (3,4-dimethoxyphenyl) ) An excellent method for producing useful optically active alcohols including 2_propanol is provided (see Example 7).
実施例  Example
[0058] 以下、実施例で本発明を詳細に説明するが、本発明はこれらにより限定されるもの ではない。なお、以下の実施例において用いた組み換え DNA技術に関する詳細な 操作方法などは、次の成書に記載されている:  [0058] Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. In addition, the detailed operation method related to the recombinant DNA technology used in the following examples is described in the following document:
Molecularし lonmg 2nd Edition (し old Spring Harbor Laboratory Press, 1989)、 Curren t Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscien ce)  Molecular lonmg 2nd Edition (old Spring Harbor Laboratory Press, 1989), Current Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscien ce)
[0059] (実施例 1)ポリペプチドの精製  [Example 1] Purification of polypeptide
以下の方法に従って、シユードモナス*スッッッエリ(Pseudomonas stutzeri) NB RC13596株より、 3, 4—ジメトキシフエ二ルアセトンを不斉的に還元して(R)— 1— ( 3, 4—ジメトキシフヱニル) _ 2_プロパノールを生成する活性を有するポリペプチド を分離し、単一に精製した。特に断りのない限り、精製操作は 4°Cで行った。  According to the following method, 3,4-dimethoxyphenylacetone was asymmetrically reduced from Pseudomonas stutzeri (Pseudomonas stutzeri) NB RC13596 (R) — 1- (3,4-dimethoxyphenyl) _ Polypeptides with activity to produce 2_propanol were isolated and purified to a single. Unless otherwise specified, purification operations were performed at 4 ° C.
[0060] 3, 4—ジメトキシフエニルアセトンに対する還元活性は、 0. 4% (v/v)のジメチノレ スルホキシドを含む lOOmMリン酸緩衝液(pH6. 5)に、 2mMの基質 3, 4—ジメトキ シフエニルアセトン、 0. 167mMの補酵素 NADH、および粗酵素を添加し、 30。Cで 1分間反応させた際の、波長 340nmにおける吸光度の減少速度から算出した。本反 応条件において、 1分間に 1 /i molの NADHを NADに酸化する活性を、 limitと定 我し 7こ。  [0060] The reduction activity for 3,4-dimethoxyphenylacetone was obtained by adding 2 mM substrate 3,4-dimethoxy to lOOmM phosphate buffer (pH 6.5) containing 0.4% (v / v) dimethylol sulfoxide. Add siphenylacetone, 0.167 mM coenzyme NADH, and crude enzyme 30. It was calculated from the rate of decrease in absorbance at a wavelength of 340 nm when reacted with C for 1 minute. Under this reaction condition, the activity to oxidize 1 / i mol NADH to NAD per minute is defined as limit.
[0061] (微生物の培養)  [0061] (Cultivation of microorganisms)
5Lジャーフアーメンター(丸菱バイオェンジ社製)に、肉エキス 10g、ペプトン 15g、 酵母エキス 5g、塩ィ匕ナトリウム 3g、アデ力ノール LG— 109 (日本油脂製) 0. lg (レ、ず れも 1L当たり)の組成からなる液体培地 (pH6) 3Lを調製し、 120°Cで 20分間蒸気 殺菌をおこなった。この培地に、予め同培地にて前培養しておいたシユードモナス' スッッッエリ(Pseudomonas ^ϋί^ΙΪ) NBRC13596株の培養液を 30ml接種し、攪 拌回転数 400rpm、通気量 0. 9NL/min、 25°Cで 37時間培養を行った。 To 5L jar mentor (manufactured by Maruhishi Bio-Engy), meat extract 10g, peptone 15g, Prepare 3 L of liquid medium (pH 6) with a composition of 5 g yeast extract, 3 g sodium salt, 3 g Ade-Kinol LG-109 (manufactured by NOF Corporation) and 0.1 g (Les, per liter), 120 ° C And steam sterilized for 20 minutes. This medium was inoculated with 30 ml of the culture solution of Pseudomonas ϋ CBRC 596RC previously cultured in the same medium, stirring speed 400 rpm, aeration rate 0.9 NL / min, 25 Culturing was carried out at ° C for 37 hours.
[0062] (無細胞抽出液の調製)  [0062] (Preparation of cell-free extract)
上記の培養液から遠心分離により菌体を集め、 0. 85%塩ィ匕ナトリウム水溶液を用 いて菌体を洗浄した。この菌体を、プロテアーゼインヒビターカクテル(Roche社製) 入りの 40mMリン酸緩衝液(pH7. 5)に懸濁し、 SONIFIER250型超音波破砕機( BRANSON社製)を用いて破砕した後、遠心分離にて菌体残渣を除き、無細胞抽 出液を得た。  Bacteria were collected from the culture broth by centrifugation and washed with 0.85% aqueous sodium chloride solution. The cells are suspended in a 40 mM phosphate buffer (pH 7.5) containing a protease inhibitor cocktail (Roche), crushed using a SONIFIER250 ultrasonic crusher (BRANSON), and then centrifuged. The cell residue was removed to obtain a cell-free extract.
[0063] (熱処理)  [0063] (Heat treatment)
上記で得た無細胞抽出液を、 45°Cで 20分間処理した後、遠心分離にて不溶画分 を除き、熱処理した無細胞抽出液を得た。  The cell-free extract obtained above was treated at 45 ° C. for 20 minutes, and then the insoluble fraction was removed by centrifugation to obtain a heat-treated cell-free extract.
[0064] (硫安分画) [0064] (Ammonium sulfate fraction)
上記で得た熱処理した無細胞抽出液に、終濃度 1Mになるように硫酸アンモニゥム を添加し 1時間攪拌後、遠心分離により沈殿を除去した。この上清に終濃度 3Mにな るように硫酸アンモニゥムを添加し、 1時間攪拌後、遠心分離により沈殿を取得した。 この沈殿を 40mMリン酸緩衝液(pH7. 5)に溶解し、同一緩衝液で 1夜透析した。  Ammonium sulfate was added to the heat-treated cell-free extract obtained above to a final concentration of 1 M and stirred for 1 hour, and then the precipitate was removed by centrifugation. Ammonium sulfate was added to the supernatant to a final concentration of 3M, and after stirring for 1 hour, a precipitate was obtained by centrifugation. This precipitate was dissolved in 40 mM phosphate buffer (pH 7.5) and dialyzed overnight against the same buffer.
[0065] (DEAE— TO YOPEARLカラムクロマトグラフィー) [0065] (DEAE— TO YOPEARL column chromatography)
硫安分画の活性画分を、 40mMリン酸緩衝液(pH7. 5)で予め平衡化した DEAE -TOYOPEARL 650M (東ソ一株式会社製)カラム(30ml)に供し、活性画分を 溶出させた。この活性画分を、 10mMリン酸緩衝液 (PH7. 5)で 1夜透析した後、 10 mMリン酸緩衝液(pH7. 5)で予め平衡化した DEAE—TOYOPEARL 650M ( 東ソー株式会社製)カラム(30ml)に供し、活性画分を吸着させた。同一緩衝液で力 ラムを洗浄した後、 NaClのリニアグラジェント(0Mから 0. 2Mまで)により活性画分を 溶出させた。 The active fraction of the ammonium sulfate fraction was applied to a DEAE-TOYOPEARL 650M (Tosohichi Co., Ltd.) column (30 ml) pre-equilibrated with 40 mM phosphate buffer (pH 7.5) to elute the active fraction. . The active fractions, 10 mM phosphate buffer solution (P H7. 5) was dialyzed overnight at, 10 mM phosphate buffer (pH7. 5) (manufactured by Tosoh Corporation) DEAE-TOYOPEARL 650M, previously equilibrated with The column was applied to a column (30 ml) to adsorb the active fraction. After washing the strength ram with the same buffer, the active fraction was eluted with a NaCl linear gradient (from 0 M to 0.2 M).
[0066] (Phenyl— TOYOPEARLカラムクロマトグラフィー) DEAE— TOYOPEARLカラムクロマトグラフィーにより得られた活性画分に終濃 度 0· 8Mとなるよう硫酸アンモニゥムを溶解し、 0. 8Mの硫酸アンモニゥムを含む 10 mMリン酸緩衝液(ρΗ7· 5)で予め平衡化した Phenyl— TOYOPEARL 650M ( 東ソー株式会社製)カラム(4ml)に供し、活性画分を吸着させた。同一緩衝液でカラ ムを洗浄した後、硫酸アンモニゥムのリニアグラジェント(0. 8Mから 0Mまで)により 活性画分を溶出させた。活性画分を集め、 10mMリン酸緩衝液 (pH7. 5)にて 1夜 透析を行った。 [0066] (Phenyl— TOYOPEARL column chromatography) DEAE—dissolve ammonium sulfate in the active fraction obtained by TOYOPEARL column chromatography to a final concentration of 0.8 M, and pre-load with 10 mM phosphate buffer (ρΗ7.5) containing 0.8 M ammonium sulfate. The column was applied to an equilibrated Phenyl-TOYOPEARL 650M (Tosoh Corp.) column (4 ml) to adsorb the active fraction. After washing the column with the same buffer, the active fraction was eluted with a linear gradient of ammonium sulfate (from 0.8 M to 0 M). The active fraction was collected and dialyzed overnight against 10 mM phosphate buffer (pH 7.5).
Phenyl—TOYOPEARLカラムクロマトグラフィーにより得られた活性画分を、 10 mMリン酸緩衝液(pH7. 5)で予め平衡化した Blue Sepharose6 Fast Flow (ァ マシャムバイオサイエンス株式会社製)カラム(2ml)に供し、活性画分を吸着させた。 同一緩衝液でカラムを洗浄した後、 NaClのステップワイズ(0Mから 2Mまで 0. 2Mご と)により活性画分を溶出させ、電気泳動的に単一なポリペプチドの精製標品を得た The active fraction obtained by Phenyl-TOYOPEARL column chromatography was applied to a Blue Sepharose 6 Fast Flow (Amersham Biosciences) column (2 ml) pre-equilibrated with 10 mM phosphate buffer (pH 7.5). The active fraction was adsorbed. After washing the column with the same buffer, the active fraction was eluted with NaCl stepwise (from 0M to 2M every 0.2M) to obtain a purified preparation of a single polypeptide by electrophoresis.
[0068] (実施例 2) 遺伝子のクローニング [0068] (Example 2) Gene cloning
(PCRプライマーの作成)  (Create PCR primers)
実施例 1で得られた精製ポリペプチドを 8M尿素存在下で変性した後、ァクロモバク ター由来のリシノレエンドべプチダーゼ (和光純薬工業株式会社製)で消化し、得られ たペプチド断片のアミノ酸配列を ABI492型プロテインシーケンサー(パーキンエル マー社製)により決定した。このアミノ酸配列から予想される DNA配列に基づき、該 ポリペプチドをコードする遺伝子の一部を PCRにより増幅するためのプライマー 1: 5' —ATGCARATHMGNGAYAARGT— 3' (配列表の配列番号 3)、および、プライマー 2: 5'— GTCATNACNCGDATNCCRAA— 3' (配列表の配列番号 4)を合成した。  The purified polypeptide obtained in Example 1 was denatured in the presence of 8M urea, and then digested with achromobacterium-derived ricinoleendopeptidase (manufactured by Wako Pure Chemical Industries, Ltd.). The amino acid sequence of the obtained peptide fragment was converted to ABI492. Type protein sequencer (manufactured by PerkinElmer). Primer 1: 5 ′ —ATGCARATHMGNGAYAARGT— 3 ′ (SEQ ID NO: 3 in the sequence listing) for amplifying a part of the gene encoding the polypeptide by PCR based on the DNA sequence predicted from this amino acid sequence, and Primer 2: 5′—GTCATNACNCGDATNCCRAA—3 ′ (SEQ ID NO: 4 in the sequence listing) was synthesized.
[0069] (PCRによる遺伝子の増幅) [0069] (Amplification of gene by PCR)
実施例 1と同様に培養したシユードモナス 'スッッッエリ (Pseudomonas stutzeri) NBRC13596株の菌体力、ら G NOME DNA KIT (B- BI〇 gene社製)を用レヽ、取り扱レヽ 説明書に従って染色体 DNAを抽出した。次に、上記で調製した DNAプライマー 1 および 2を用レ、、得られた染色体 DNAを铸型として PCRを行ったところ、 目的遺伝 子の一部と考えられる約 0. 6kbpの DNA断片が増幅された。 PCRは、 DNAポリメラ —ゼとして TaKaRa Ex Taq (タカラバイオ社製)を用いて行レ、、反応条件はその取 り扱い説明書に従った。この DNA断片を铸型として、 ABI PRISM Dye Termin ator Cycle Sequencing Ready Reaction Kit (Perkin Elmer社製)およひ ABI 373A DNA Sequencer (Perkin Elmer社製)を用いてその塩基配列を 解析した。その結果判明した塩基配列を、配列表の配列番号 5に示した。 Pseudomonas stutzeri cultivated in the same manner as in Example 1 NBRC13596 strain cell strength, et al. G NOME DNA KIT (manufactured by B-BIo gene) was used, and chromosomal DNA was extracted according to the handling instructions. . Next, PCR was performed using the DNA primers 1 and 2 prepared above and the resulting chromosomal DNA as a saddle. A DNA fragment of about 0.6 kbp, which is considered to be part of the offspring, was amplified. PCR was performed using TaKaRa Ex Taq (manufactured by Takara Bio Inc.) as a DNA polymerase, and the reaction conditions were in accordance with the handling instructions. Using this DNA fragment as a cage, its nucleotide sequence was analyzed using ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) and ABI 373A DNA Sequencer (Perkin Elmer). The nucleotide sequence found as a result is shown in SEQ ID NO: 5 in the sequence listing.
[0070] (i一 PCR法による目的遺伝子の全長配列の決定)  [0070] (i Determination of the full-length sequence of the gene of interest by one PCR method)
上記で調製したシユードモナス 'スッッッエリ (Pseudomonas stutzeri) NBRC135 96株の染色体 DNAを、制限酵素 Pstlで完全消化し、得られた DNA断片の混合物 を T4リガーゼにより分子内環化させた。これを铸型として用い、 i一 PCR法(Nucl. Aci ds Res., 16, 8186 (1988))により、上述の配列番号 5に示す塩基配列を含む遺伝子 の全塩基配列を決定した。その結果を配列表の配列番号 1に示した。 i一 PCRは、 D NAポリメラ一ゼとして TaKaRa Ex Taq (タカラバイオ社製)を用いて行い、反応条 件はその取り扱い説明書に従った。  The chromosomal DNA of Pseudomonas stutzeri NBRC135 96 strain prepared above was completely digested with restriction enzyme Pstl, and the resulting mixture of DNA fragments was intramolecularly cyclized with T4 ligase. Using this as a saddle type, the entire base sequence of the gene containing the base sequence shown in SEQ ID NO: 5 was determined by i-PCR method (Nucl. Acids Res., 16, 8186 (1988)). The results are shown in SEQ ID NO: 1 in the sequence listing. i-PCR was performed using TaKaRa Ex Taq (manufactured by Takara Bio Inc.) as a DNA polymerase, and the reaction conditions were in accordance with the instruction manual.
[0071] (実施例 3) 発現ベクターの構築  (Example 3) Construction of expression vector
プライマー 3 : 5'— GGGAGAGCCATATGCAGATTCGCGACAAGGTA— 3' (配列 表の酉己歹 1J番号 6)とプライマー 4: 5' -TCTCTGGAATTCTCACTTGGCGGCCATGC GCAA- 3' (配列表の配列番号 7)を用い、実施例 2で得たシユードモナス'スッッツエ リ (Pseudomonas ^ϋί^ιΐ) NBRC13596株の染色体 DNAを铸型として PCRを行 つに。  Obtained in Example 2 using primer 3: 5'—GGGAGAGCCATATGCAGATTCGCGACAAGGTA— 3 ′ (sequence table 1J number 6) and primer 4: 5′-TCTCTGGAATTCTCACTTGGCGGCCATGC GCAA-3 ′ (sequence number 7 in the sequence table) Pseudomonas ^ ϋί ^ ιΐ Perform PCR using the chromosomal DNA of NBRC13596 strain as a saddle.
[0072] その結果、配列表の配列番号 1に示す塩基配列からなる遺伝子の開始コドン部分 に Ndel認識部位が付加され、かつ終始コドンの直後に EcoRI認識部位が付加され た二本鎖 DNAを得た。配列表の配列番号 2は、配列番号 1に示す塩基配列からなる 遺伝子によってコードされるアミノ酸配列を示す。 PCRは、 DNAポリメラ一ゼとして、 Pyrobest DNA Polymerase (タカラバイオ社製)を用いて行レ、、反応条件はその 取り扱い説明書に従った。  [0072] As a result, a double-stranded DNA in which an Ndel recognition site was added to the start codon portion of the gene consisting of the base sequence shown in SEQ ID NO: 1 in the sequence listing and an EcoRI recognition site was added immediately after the termination codon was obtained. It was. SEQ ID NO: 2 in the sequence listing shows the amino acid sequence encoded by the gene consisting of the base sequence shown in SEQ ID NO: 1. PCR was performed using Pyrobest DNA Polymerase (manufactured by Takara Bio Inc.) as a DNA polymerase, and the reaction conditions were in accordance with the instruction manual.
[0073] 上記の PCRで得られた DNA断片を Ndel及び EcoRIで消化し、プラスミド pUCNl 8 (PCR法により pUC18 (タカラバイオ社製)の 185番目の Tを Aに改変して Ndelサ イトを破壊し、更に 471— 472番目の GCを TGに改変することにより新たに Ndelサイ トを導入したプラスミド)の lacプロモーターの下流の Ndel認識部位と EcoRI認識部 位の間に挿入し、組換えベクター pNPSを構築した。なお、ここで用いた 185番目の 丁、及び、471 _472番目の0〇の記載は、0611:6&1^ Accession No. L09136 の記載に従った。 [0073] The DNA fragment obtained by the above PCR was digested with Ndel and EcoRI, and the 185th T of plasmid pUCNl8 (pUC18 (manufactured by Takara Bio Inc.) was changed to A by PCR to change the Ndel substrate. The plasmid was newly introduced with the Ndel site by modifying the GC of positions 471 to 472 to TG, and inserted between the Ndel recognition site downstream of the lac promoter and the EcoRI recognition site. A replacement vector pNPS was constructed. In addition, the description of the 185th chome and the 471_472th 0th used here was in accordance with the description of 0611: 6 & 1 ^ Accession No. L09136.
[0074] m4) グルコース脱フ k 貴ィ云 さらに す^現,ベクターのネ冓 ^  [0074] m4) Glucose deflation
プライマー 5: 5' - CAGGAGCTCTAAGGAGGTTAACAATGTATAAAG - 3' (配列 表の配列番号 8)と、プライマー 6 : 3' _CACGGATCCTTATCCGCGTCCTGCTTGG 一 5' (配列表の配列番号 9)を用い、プラスミド pGDKl (Eur. J. Biochem., 186, 389 ( 1989)に記載の方法で当業者が取得及び調製可能)を铸型として PCRを行い、バシ ラス'メガテリゥム (Bacillus megaterium) IAM 1030株由来のグルコース脱水素酵素( 以後、 GDHと呼ぶ)遺伝子の開始コドンから 5塩基上流に大腸菌のリボゾーム結合 配列が、さらにその直前に Sacl認識部位が付加され、かつ、終止コドンの直後に Ba mHI認識部位が付加された、二本鎖 DNAを取得した。  Primer 5: 5 '-CAGGAGCTCTAAGGAGGTTAACAATGTATAAAG-3' (SEQ ID NO: 8 in the sequence listing) and primer 6: 3 '_CACGGATCCTTATCCGCGTCCTGCTTGG 1 5' (SEQ ID NO: 9 in the sequence listing) were used to create plasmid pGDKl (Eur. J. Biochem., 186, 389 (1989), which can be obtained and prepared by those skilled in the art), and the glucose is dehydrogenase derived from Bacillus megaterium IAM 1030 (hereinafter referred to as GDH). ) Obtain double-stranded DNA with a ribosome binding sequence of E. coli 5 bases upstream from the start codon of the gene, a Sacl recognition site added just before it, and a BamHI recognition site added just after the stop codon. did.
[0075] 得られた DNA断片を Saclおよび BamHIで消化し、実施例 3記載のプラスミド pNP Sの lacプロモーターの下流の Sacl認識部位と BamHI認識部位の間に挿入し、組換 えベクター pNPSGを構築した。 pNPSGの作製法および構造を図 1に示す。図中、 RPS geneは本発明のポリペプチドをコードする遺伝子を表す。  [0075] The obtained DNA fragment was digested with Sacl and BamHI and inserted between the Sacl recognition site downstream of the lac promoter of plasmid pNP S described in Example 3 and the BamHI recognition site to construct a recombination vector pNPSG. did. Figure 1 shows the pNPSG production method and structure. In the figure, RPS gene represents a gene encoding the polypeptide of the present invention.
[0076] (実施例 5) 形質転換体の作製  (Example 5) Production of transformant
実施例 3で構築した組換えベクター pNPSを用いて、 coli HB101コンビテン トセル (タカラバイオ社製)を形質転換し、 £ coli HBlOl (pNPS)を得た。  Using the recombinant vector pNPS constructed in Example 3, coli HB101 complex cell (manufactured by Takara Bio Inc.) was transformed to obtain £ coli HBlOl (pNPS).
[0077] また、同様に、実施例 4で構築した組換えベクター pNPSGを用いて、 I coH H B101コンビテントセル(タカラバイオ社製)を形質転換し、 £ coli HBlOKpNPS G)を得た。  [0077] Similarly, using the recombinant vector pNPSG constructed in Example 4, I coH H B101 competent cells (manufactured by Takara Bio Inc.) were transformed to obtain £ coli HBlOKpNPS G).
[0078] ェシエリヒア ·コリ(Escherichia coli) HB101の菌学的性晳は、「BI〇CHEMICALS F OR LIFE SCIENCE」(東洋紡績株式会社、 1993年、 116 _ 119頁)およびその他種 々の公知文献に記載されており当業者に周知である。上記ェシヱリヒア'コリ(Mieii chia coli) HB101 (pNPS)及びェシエリヒア 'コリ(Escherichia coli.) HB101 (pNPSG )は、遺伝子組換えによって特定の酵素を産生し得る性質以外は、ェシエリヒア'コリ([0078] The bacteriological properties of Escherichia coli HB101 are described in "BI 0 CHEMICALS F OR LIFE SCIENCE" (Toyobo Co., Ltd., 1993, pages 116 to 119) and various other known literatures. Are described and well known to those skilled in the art. The above Escherichia coli HB101 (pNPS) and Escherichia coli HB101 (pNPSG) ), Except for the ability to produce specific enzymes by genetic recombination,
Escherichia coli) HB101と同様の菌学的件晳を有する。 Escherichia coli) Has the same mycological characteristics as HB101.
[0079] me) 开 云! ^本における ¾ί云チの ,  [0079] me) Kai Yun! ^ ¾ί
実施例 5で得た 2種の形質転換体、および、ベクタープラスミド pUCN18を含む形 質転換体である £ coli HB101 (pUCN18) (比較例)のそれぞれを、 200 x gZ mlのアンピシリンを含む 2 X YT培地(トリプトン 1. 6%、イーストエキス 1. 0% NaCl 0. 5% pH7. 0) 5mlに接種し、 37°Cで 24時間振盪培養した。遠心分離により菌体 を集め、 5mlの lOOmMリン酸緩衝液(pH6. 5)に懸濁した。これを、 UH— 50型超 音波ホモゲナイザー(SMT社製)を用いて破砕した後、遠心分離により菌体残渣を 除去し、無細胞抽出液を得た。この無細胞抽出液の 3 4—ジメトキシフエニルァセト ン還元活性、および、 GDH活性を測定し、比活性として表したものを、表 1に示した。  Each of the two transformants obtained in Example 5 and a transformant containing the vector plasmid pUCN18, £ coli HB101 (pUCN18) (comparative example), were mixed with 2 X containing 200 x gZ ml of ampicillin. YT medium (tryptone 1.6%, yeast extract 1.0% NaCl 0.5% pH 7.0) was inoculated into 5 ml, and cultured with shaking at 37 ° C for 24 hours. The cells were collected by centrifugation and suspended in 5 ml of lOOmM phosphate buffer (pH 6.5). This was crushed using a UH-50 type ultrasonic homogenizer (manufactured by SMT), and the cell residue was removed by centrifugation to obtain a cell-free extract. Table 1 shows the specific activity of the 34-dimethoxyphenylacetone reducing activity and GDH activity of this cell-free extract.
[0080] 表 1:無細胞抽出液の比活性  [0080] Table 1: Specific activity of cell-free extracts
[0081] [表 1]  [0081] [Table 1]
3, 4—ジメトキシフエ二ルアセトン 3, 4-Dimethoxyphenylacetone
菌株名 GDH活性(U/mg) の還元活性(U/mg) Strain name GDH activity (U / m g) of reducing activity (U / mg)
E. co!i HB101 (pUCN18) N.D. N.D. E. co! I HB101 (pUCN18) N.D.N.D.
E. coM HBI OKpNPS) 0.01 N.D.E. coM HBI OKpNPS) 0.01 N.D.
E. co!i HBI OKpNPSG) 0.01 99.6E. co! I HBI OKpNPSG) 0.01 99.6
N.D. ; not detectable N.D .; not detectable
[0082] 表 1に示すように、実施例 5で得られた 2種の形質転換体のいずれにおいても、 3, 4—ジメトキシフヱニルアセトン還元活性の発現が認められた。また、 GDH遺伝子を 含す fE. coli HBIOKpNPSG)では、 GDHの発現も認められた。 [0082] As shown in Table 1, in both of the two transformants obtained in Example 5, expression of 3,4-dimethoxyphenylacetone reducing activity was observed. In addition, GDH expression was also observed in fE. Coli HBIOKpNPSG) containing the GDH gene.
[0083] 3, 4—ジメトキシフヱニルアセトン還元活性は、実施例 1に記載の方法で測定した。  [0083] The 3,4-dimethoxyphenylacetone reduction activity was measured by the method described in Example 1.
GDH活性は、 1Mトリス塩酸緩衝液(ρΗ8· 0)に、グルコース 0· 1Μ、補酵素 NAD2 mM、および粗酵素液を添加して 25°Cで 1分間反応を行い、波長 340nmにおける 吸光度の増加速度より算出した。この反応条件において、 1分間に 1 /i molの NAD を NADHに還元する酵素活性を limitと定義した。  GDH activity was measured by adding glucose 0 · 1340, coenzyme NAD 2 mM, and crude enzyme solution to 1M Tris-HCl buffer (ρΗ8 · 0) and reacting at 25 ° C for 1 minute, and increasing the absorbance at a wavelength of 340 nm. Calculated from speed. Under these reaction conditions, the enzyme activity that reduces 1 / i mol of NAD to NADH per minute was defined as limit.
[0084] (実施例 7) 形質転換体を用いた (R)— 1一(3, 4—ジメトキシフエニル) 2—プロ パノールの製造 実施例 6と同様に培養した E coli HBlOl (pNPSG)の培養液 lmlに、ダルコ ース 10mg、 NADlmg, 3, 4 ジメトキシフエニノレアセ卜ン 5mgを添カロし、 30oCで 20 時間攪拌した。 (Example 7) Production of (R) -1 mono (3,4-dimethoxyphenyl) 2-propanol using a transformant To 1 ml of E coli HBlOl (pNPSG) culture solution cultured in the same manner as in Example 6, 10 mg of dalcose, 5 mg of NADlmg, 3,4 dimethoxyphenenoreacese was added and stirred at 30 ° C for 20 hours. .
[0085] 反応終了後、反応液を酢酸ェチルで抽出し、得られた有機層を無水硫酸ナトリウム で乾燥した。遠心によって硫酸ナトリウムを除去し、減圧下有機溶媒を留去したのち 、 TLCによって、(R)— 1— (3, 4—ジメトキシフエニル)一2—プロパノールを得た。こ のものの光学純度は、 98. 3。/。eeであった。  [0085] After completion of the reaction, the reaction solution was extracted with ethyl acetate, and the obtained organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate by centrifugation and distilling off the organic solvent under reduced pressure, (R) -1- (3,4-dimethoxyphenyl) -1-propanol was obtained by TLC. The optical purity of this product is 98.3. /. It was ee.
[0086] (R) _ 1 _ (3, 4—ジメトキシフヱニル) _ 2 _プロパノールの光学純度の測定は、高 速液体クロマトクロマトグラフィー(カラム:ダイセルィ匕学工業株式会社製 CHIRALP AK AD-H QD4. 6mm X 250mm)、溶離液: n—へキサン/エタノール = 95Z5 、流速: lmlZmin、検出: 254nm、カラム温度:室温)を用いて行った。  [0086] The optical purity of (R) _ 1 _ (3,4-dimethoxyphenyl) _ 2 _ propanol was measured by high-speed liquid chromatography (column: CHIRALP AK AD- H QD4.6 (6 mm × 250 mm), eluent: n-hexane / ethanol = 95Z5, flow rate: lmlZmin, detection: 254 nm, column temperature: room temperature).
[0087] (実施例 8) ポリペプチドの某晳特 ¾'卜牛  [0087] (Example 8) Polypeptide ¾'cochlea
0. 2% (v/v)のジメチルスルフォキシドを含む lOOmMリン酸緩衝液(ρΗ6· 5)に 、基質となるカルボ二ルイ匕合物を終濃度 lmM、補酵素 NADHを終濃度 0. 167mM となるようそれぞれ溶解した。これに、実施例 1で調製した精製ポリペプチドを適当量 添加し、 30°Cで 3分間反応を行った。当該反応液の波長 340nmにおける吸光度の 減少速度から、各カルボニル化合物に対する還元活性を算出し、これを 3, 4 ジメト キシフヱニルアセトンに対する活性を 100%とした場合の相対値で表し、表 2に示し た。表 2から明らかなように本発明のポリペプチドは、広範なカルボニル化合物に対し て還元活性を示した。  0. In lOOmM phosphate buffer (ρΗ6 · 5) containing 2% (v / v) dimethyl sulfoxide, the final concentration of carbohydrate compound as the substrate is lmM and the coenzyme NADH is 0. Each was dissolved to 167 mM. An appropriate amount of the purified polypeptide prepared in Example 1 was added thereto, and the reaction was performed at 30 ° C for 3 minutes. From the rate of decrease in absorbance of the reaction solution at a wavelength of 340 nm, the reduction activity for each carbonyl compound was calculated and expressed as a relative value when the activity for 3,4 dimethoxyphenylacetone was 100%. It was shown to. As is clear from Table 2, the polypeptide of the present invention showed reducing activity against a wide range of carbonyl compounds.
[0088] 表 2:カルボニル化合物に対する還元活性  [0088] Table 2: Reduction activity for carbonyl compounds
[0089] [表 2] 兀基質 相対活性 (%) [0089] [Table 2] 兀 Substrate Relative activity (%)
3,4-ジメ卜キシフエニルアセトン 100 ベンゾィル酢酸ェチル 1 1 1 2 ジァセチル 1 4393,4-Dimethoxyphenylacetone 100 Ethyl benzoyl acetate 1 1 1 2 Diacetyl 1 439
3-クロ口一 2,4-ペンタジオン 40563-black mouth 1,4-pentadione 4056
2 -ォクタノン 523 2 -Octanon 523
2 -ピリジン力ルバアルデヒド 981  2-pyridine power rubaaldehyde 981

Claims

請求の範囲 The scope of the claims
[1] 以下の(a)又は(b)の DNA:  [1] DNA of (a) or (b) below:
(a)配列表の配列番号 1に示す塩基配列を含む DNA;  (a) DNA comprising the base sequence shown in SEQ ID NO: 1 in the sequence listing;
(b)配列表の配列番号 1に示す塩基配列と相補的な塩基配列を含む DNAとストリン ジェントな条件下でハイブリダィズし、かつ、カルボ二ル基を有する化合物を還元し、 光学活性アルコールを生成する活性を有するポリペプチドをコードする DNA。  (b) Hybridizing with DNA containing a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing under stringent conditions and reducing a compound having a carbonyl group to produce an optically active alcohol DNA encoding a polypeptide having the activity of
[2] 以下の(a)又は(b)の DNA:  [2] DNA of (a) or (b) below:
(a)配列表の配列番号 1に示す塩基配列を含む DNA;  (a) DNA comprising the base sequence shown in SEQ ID NO: 1 in the sequence listing;
(b)配列表の配列番号 1に示す塩基配列と相補的な塩基配列を含む DNAとストリン ジヱントな条件下でハイブリダィズし、かつ、 3, 4—ジメトキシフヱニルアセトンを不斉 的に還元し、(R)— 1— (3, 4—ジメトキシフエ二ル)— 2—プロパノールを生成する活 性を有するポリペプチドをコードする DNA。  (b) Hybridizes under stringent conditions with DNA containing a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing and asymmetrically reduces 3,4-dimethoxyphenylacetone. , (R) -1-(3, 4-Dimethoxyphenyl)-DNA encoding a polypeptide having an activity to produce 2-propanol.
[3] 以下の(a)又は(b)のポリペプチド:  [3] The following polypeptide (a) or (b):
(a)配列表の配列番号 2に示すアミノ酸配列を含むポリペプチド;  (a) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing;
(b)配列表の配列番号 2に示すアミノ酸配列と 80%以上の相同性(同一性)を示すァ ミノ酸配列からなるポリペプチドであり、かつ、 3, 4—ジメトキシフエニルアセトンを不 斉的に還元し、(R) _ l _ (3, 4—ジメトキシフヱニル) _ 2_プロパノールを生成する 活性を有するポリペプチド。  (b) A polypeptide comprising an amino acid sequence showing 80% homology (identity) with the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, and asymmetric 3,4-dimethoxyphenylacetone Which has the activity of reducing it to produce (R) _l_ (3,4-dimethoxyphenyl) _2_propanol.
[4] 請求項 3記載のポリペプチドをコードする DNA。  [4] DNA encoding the polypeptide according to claim 3.
[5] 請求項 1、 2又は 4のいずれかに記載の DNAにコードされ、かつ、カルボ二ル基を 有する化合物を還元し、光学活性アルコールを生成する活性を有するポリペプチド。  [5] A polypeptide having the activity of reducing the compound encoded by the DNA according to any one of claims 1, 2 and 4 and having a carbonyl group to produce an optically active alcohol.
[6] 請求項 2又は 4のいずれかに記載の DNAにコードされ、かつ、 3, 4—ジメトキシフ ェニルアセトンを不斉的に還元し、(R)— 1— (3, 4—ジメトキシフエ二ル)— 2—プロ パノールを生成する活性を有するポリペプチド。 [6] It is encoded by the DNA of claim 2 and 4, and 3,4-dimethoxyphenylacetone is asymmetrically reduced to give (R) —1- (3,4-dimethoxyphenyl). E) A polypeptide having the activity of producing 2-propanol.
[7] 請求項 1、 2又は 4のいずれかに記載の DNAを含むベクター。 [7] A vector comprising the DNA according to any one of claims 1, 2 and 4.
[8] グノレコース脱水素酵素活性を有するポリペプチドをコードする DNAをさらに含む、 請求項 7に記載のベクター。 [8] The vector according to claim 7, further comprising DNA encoding a polypeptide having gnolecose dehydrogenase activity.
[9] 請求項 7〜8のいずれかに記載のベクターにより宿主細胞を形質転換して得られる 形質転換体。 [9] Obtained by transforming a host cell with the vector according to any one of claims 7 to 8. Transformant.
[10] 前記宿主細胞が大腸菌である請求項 9記載の形質転換体。  10. The transformant according to claim 9, wherein the host cell is E. coli.
[11] 請求項 3、 5または 6に記載のポリペプチド、又は、請求項 9または 10に記載の形質 転換体を、カルボ二ル基を有する化合物と反応させることを特徴とする光学活性アル コールの製造方法。  [11] An optically active alcohol, comprising reacting the polypeptide according to claim 3, 5 or 6 or the transformant according to claim 9 or 10 with a compound having a carbonyl group. Manufacturing method.
PCT/JP2007/053739 2006-03-02 2007-02-28 Novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol utilizing these materials WO2007099994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-057000 2006-03-02
JP2006057000 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007099994A1 true WO2007099994A1 (en) 2007-09-07

Family

ID=38459095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053739 WO2007099994A1 (en) 2006-03-02 2007-02-28 Novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol utilizing these materials

Country Status (1)

Country Link
WO (1) WO2007099994A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063843A1 (en) 2010-11-09 2012-05-18 株式会社カネカ Halogenated indenones and method for producing optically active indanones or optically active indanols by using same
US8404461B2 (en) 2009-10-15 2013-03-26 SK Biopharmaceutical Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
US8501436B2 (en) 2009-06-22 2013-08-06 Sk Biopharmaceuticals Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] COPELAND A. ET AL., XP003017352, Database accession no. (AALM01000019) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501436B2 (en) 2009-06-22 2013-08-06 Sk Biopharmaceuticals Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
US8404461B2 (en) 2009-10-15 2013-03-26 SK Biopharmaceutical Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
US9068207B2 (en) 2009-10-15 2015-06-30 Sk Biopharmaceuticals Co. Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
US9434970B2 (en) 2009-10-15 2016-09-06 Sk Biopharmaceuticals Co., Ltd. Method for preparation of carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl ester
WO2012063843A1 (en) 2010-11-09 2012-05-18 株式会社カネカ Halogenated indenones and method for producing optically active indanones or optically active indanols by using same

Similar Documents

Publication Publication Date Title
JP4746548B2 (en) Novel carbonyl reductase, its gene, and its use
JP4757804B2 (en) Novel carbonyl reductase, its gene, and its use
JP4510351B2 (en) Novel carbonyl reductase, its gene, and its use
JP5261172B2 (en) Method for producing erythro or threo-2-amino-3-hydroxypropionic ester, novel carbonyl reductase, gene, vector, transformant thereof, and method for producing optically active alcohol using them
WO2003078634A1 (en) Novel carbonyl reductase, gene encoding it and process for producing optically active alcohols using the same
JP4414337B2 (en) Novel carbonyl reductase, its gene, and its use
JPWO2007094178A1 (en) Novel (S, S) -butanediol dehydrogenase, gene thereof, and use thereof
JP5308163B2 (en) Novel alcohol dehydrogenase, its gene, vector, transformant, and method for producing optically active alcohol using them
JP5005672B2 (en) Novel carbonyl reductase, gene thereof, and method for producing optically active alcohol using them
WO2007099994A1 (en) Novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol utilizing these materials
JP4426437B2 (en) Novel carbonyl reductase, its gene, and its use
JP5284947B2 (en) Novel amidase, gene thereof, vector, transformant, optically active carboxylic acid amide and method for producing optically active carboxylic acid using them
JP5761641B2 (en) Method for producing (R) -3-quinuclidinol
JP4880859B2 (en) Novel carbonyl reductase, its gene, and its use
JPWO2005123921A1 (en) Novel glycerol dehydrogenase, its gene, and use thereof
JP4796323B2 (en) Novel carbonyl reductase, its gene, and its use
JP4651203B2 (en) Novel glutaminase and method for producing the same
JP2010279272A (en) New carbonyl reductase; gene, vector, and transformant thereof; and method for producing optically active alcohol by utilization of them
JP2003061668A (en) New glycerol dehydrogenase and method for utilizing the same
WO2008047819A1 (en) Novel ester hydrolase, gene encoding the same, and use thereof
JP3496640B2 (en) Oxidoreductase, gene encoding the enzyme, transformant containing the enzyme gene, and method for producing the enzyme
JP2005027552A (en) New method for producing optically active 2-hydroxymethyl-3-arylpropionic acid
JPWO2005005648A1 (en) Process for producing novel optically active carboxylic acids
WO2005044973A2 (en) NOVEL ACETOACETYL-CoA REDUCTASE AND PROCESS FOR PRODUCING OPTICALLY ACTIVE ALCOHOL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP