WO2007099651A1 - Apparatus for marine production - Google Patents

Apparatus for marine production Download PDF

Info

Publication number
WO2007099651A1
WO2007099651A1 PCT/JP2006/304541 JP2006304541W WO2007099651A1 WO 2007099651 A1 WO2007099651 A1 WO 2007099651A1 JP 2006304541 W JP2006304541 W JP 2006304541W WO 2007099651 A1 WO2007099651 A1 WO 2007099651A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
ocean
ocean current
deep
water
Prior art date
Application number
PCT/JP2006/304541
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichi Tanaka
Original Assignee
Shoichi Tanaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoichi Tanaka filed Critical Shoichi Tanaka
Priority to PCT/JP2006/304541 priority Critical patent/WO2007099651A1/en
Publication of WO2007099651A1 publication Critical patent/WO2007099651A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/047Liquid pumps for aquaria
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein

Definitions

  • the present invention relates to a marine production apparatus arranged in the ocean.
  • Patent Document 1 Japanese Patent Laid-Open No. 200 1-323430
  • Patent Document 2 Japanese Patent Laid-Open No. 200 1-336479
  • Patent Document 3 Japanese Patent Laid-Open No. 6-225664
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-295939
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-273836
  • Patent Document 6 Japanese Patent Laid-Open No. 8_42275
  • Patent Document 7 JP-A-8-332994
  • Patent Document 1 proposes that a plate is disposed obliquely in the middle layer of the ocean where the ocean current flows, and the direction in which the ocean current flows is changed upward.
  • Patent Document 2 proposes that a cylinder with a length of 500 meters or more is placed on the ocean and the upper part of the cylinder is heated indirectly by ocean surface water to reduce its specific gravity and lift deep sea water from the bottom of the cylinder. is doing.
  • almost all ocean-type carbon dioxide absorption technologies remain at the idea stage.
  • the second reason is that the deep seawater lift-up device has low economic production efficiency despite the necessity of the above-mentioned marine environment resistance performance. Even if a part of the cost can be recovered by producing and selling useful marine life using the lifted deep ocean water, the marine production equipment can withstand the above-mentioned collision problems and wave problems of ships and large fish. It is difficult to cover the installation and maintenance costs of
  • the technology for the upward deflection in the ocean current direction of the middle ocean layer by the inclined plate arranged in the middle ocean layer proposed in Patent Document 1 is the middle layer released upward from the oblique plate.
  • the problem is that the velocity energy in the rising direction of the ocean current rapidly disappears immediately after being discharged from the oblique plate as a vortex or turbulent flow due to contact with the powerful ocean current that flows horizontally, However, it was difficult to reach the surface of the ocean several hundreds of meters above the ocean.
  • the method of lifting the deep ocean water by indirectly heating the top of the cylinder with ocean surface water proposed in Patent Document 2 is used to increase the flow rate of the deep ocean water to be lifted up.
  • An object of the present invention is to provide an offshore production device and a maintenance device thereof that can solve the above difficult problems and are easy to construct and maintain.
  • a first invention for solving the above-mentioned problems is a marine production apparatus arranged at least in the surface layer of the ocean, a deep water outlet opening in the surface layer of the ocean through which the ocean current flows, and a quiet port in the deep layer of the ocean.
  • a deep water urging device connected to a deep water flow inlet and a deep water flow outlet of the water pump to urge the deep sea water in the water pump upward based on the energy of the sea current; And a movement restricting device for restricting movement of the water pump and the deep water urging device.
  • the present invention lifts the deep ocean water in the pumping pipe by applying the energy of the sea current to the pumping mechanism provided in the pumping pipe standing in the ocean current.
  • almost inexhaustible ocean current energy can be used to lift the deep ocean water in the pumping pipe, so the deep ocean water can be lifted up to the ocean surface at low cost and efficiently with a simple device. Can be used.
  • the ocean surface layer refers to a depth of less than 50 meters, and the ocean depth refers to a depth of 1550 meters or more, more preferably 20.0 meters or more.
  • the movement restricting device is a rope having one end fixed to the seabed.
  • a base that is arranged on the seabed and that fixes the bottom of a rigid pumping pipe can also constitute this movement restriction device.
  • This rope can be fixed to the seabed through a damper device in order to reduce the influence of wave force acting on the upper part of the current-increasing pipe and pumped-up pipe.
  • the apparatus has a seaweed growing device arranged behind the deep water outlet of the pumping pipe to grow seaweed.
  • This seaweed growing device is composed of a net extending behind the deep water outlet of the pumping pipe.
  • the opening of this net can be very large.
  • solar energy and carbon dioxide can be efficiently recovered in the ocean surface layer.
  • it has a fish tank that is disposed behind the deep water outlet of the pumping pipe and holds fish and shellfish inside. In this way, since a large amount of plankton can be supplied to the fish tank, it is possible to increase the production of the necessary types of fish while minimizing the fish-holding feed.
  • a fish tank can be composed of an underwater space covered by a net, for example.
  • the fish tank can also serve as a seaweed growing device. In other words, the net constituting the fish tank can be used as a seaweed root fixing member.
  • the deep water urging device connects the intake port disposed in the deep layer portion and opening in a direction to receive the dynamic pressure of the ocean current, and the intake port and the deep water inlet port of the pumping pipe.
  • a connecting tube portion that narrows from the intake port toward the deep water inlet of the pumping pipe.
  • the deep water urging device includes a water outlet that is disposed in the surface layer portion and opens in a direction not subjected to the dynamic pressure of the ocean current, the water outlet, and a deep water outlet of the pump pipe. And a connecting cylinder part for connecting the two. In this way, deep ocean water in the connecting cylinder is sucked toward the water discharge port due to the ejector effect of the ocean current around the water discharge port, so a large amount of deep sea water can be lifted up with a simple mechanism. Can do.
  • the deep water urging device includes an ocean current inlet that is arranged in the surface layer portion and into which the ocean current flows in, and an ocean current outlet from which the ocean current flows out.
  • a current intensifier pipe that speeds up the current and lowers the internal water pressure relative to the external water pressure, and the water outlet communicates with the current intensifier pipe. In this way, the pressure reduction effect of the deep water outlet of the pumping pipe can be improved, so that the deep sea water lift-up capability can be improved.
  • the ocean current accelerating pipe the ocean current flowing from the ocean current inlet is accelerated and depressurized by the nozzle structure. In this way, the lift-up capability of deep ocean water can be improved with a simple static structure.
  • the pumping pipe has a substantially fish-shaped cross section. The fish-shaped section head is located upstream of the ocean current and the tail is located downstream of the ocean current.
  • the resistance of the pumping pipe against the ocean current can be greatly reduced, so that the cost of a movement regulating device that regulates the movement of the pumping pipe due to the ocean current, such as anchors and ropes, can be significantly reduced.
  • the pumping pipe is configured by joining two butterfly-shaped pipes having a semi-fish cross section. This facilitates the production of the pumping pipe.
  • the pumping pipe has a specific gravity of less than 1. As a result, it is possible to satisfactorily prevent the horizontal direction of the pumped pipe from being pushed by the ocean current.
  • the current intensifier tube has a specific gravity of less than 1. This will cause the low The ocean current intensifier tube can be easily held at a predetermined depth.
  • the deep water outlet of the pumping pipe discharges the deep water upward from the horizontal direction. In this way, even if the deep water outlet at the upper end of the pumping pipe is placed deeper than the sea surface, the deep sea water can reach near the sea surface where the amount of solar radiation is large. It is possible to prevent damage to the pumping pipe, etc.
  • the fish tank has a fish tank that extends behind a deep water outlet of the pumping pipe, and the fish tank has a rigid structure that extends substantially perpendicular to the ocean current direction so that the ocean current can flow into the upstream of the ocean current.
  • Existing net In this way, a large-scale fish tank can be constructed while reducing the effects of ocean currents and waves on the fish tank.
  • a sensor installed near the upper part of the pumping pipe to detect the approach of a large obstacle
  • an alarm device installed near the upper part of the pumping pipe to issue an alarm
  • an output signal of the sensor And a control device that instructs the warning device to output an alarm when the approach of the large obstacle is detected.
  • Large obstacles include ships and large fish.
  • an underwater ultrasonic sensor known as a sonar can be used as a sensor for detecting a large obstacle.
  • an underwater ultrasonic sensor known as a sonar can be used.
  • radio, light emission, airborne sound or underwater sound can be used. In this way, it is possible to reduce the probability that a ship or large fish will collide with the pumped pipe and damage it. In this way, the power consumption of the alarm device can be reduced in the ocean where power production is not easy.
  • a second invention that solves the above-described problem is a marine production apparatus that is disposed at least in the surface layer of the ocean, and includes a fish-holding space partition that has a large number of openings and partitions an internal fish-holding space;
  • a fish escape prevention device is provided that is fixed to the fish holding space partition and emits sound waves toward the periphery of the fish holding space.
  • the directional sound wave a frequency with high fish repellent effect such as an ultrasonic wave is suitable.
  • an electricity supply apparatus as a fish escape prevention apparatus.
  • This energization device has a pair of electrodes arranged with a predetermined gap in the opening, and a direct current or an alternating current is passed between the electrode pairs to prevent fish from approaching. In this way, net replacement costs can be reduced.
  • the electric power required to generate sonic energy can be produced using ocean current and wave energy.
  • a marine fish holding layer is formed by surrounding a marine area with a fine-grained fishing net, for example, several kilometers in radius, the fishing net is broken by waves and driftwood, or marine organisms adhere to the fishing net. As a result, there is a problem that the fishing net sinks.
  • the fish escape prevention device can output the sound wave or current steadily and completely at a constant interval. For example, it is possible to output only 0.1 second in 5 seconds. As a result, the required power can be greatly reduced.
  • a large number of ultrasonic radiation devices and electrode pairs arranged around the fish holding space compartment as a fish escape prevention device can output sound waves or currents simultaneously, but at different timings. . In this way, the electrical sample can be reduced in size. It can also have a lasting effect on fish in the fish holding space compartment.
  • the structure constituting the marine production apparatus is a rope, and a large number of ultrasonic radiation devices provided at predetermined intervals are provided in the mouth. Each ultrasonic radiation device emits directional ultrasonic waves so as to surround the fish holding space.
  • the structures that make up the marine production equipment are arranged in parallel with a predetermined distance from each other, and each is a conductive rope with electrodes arranged at regular intervals. A voltage is applied between the electrodes of the pair of ropes. This causes the current to flow in the seawater between the electrodes, and the fish avoids this current. In this way, the net part directly under the sea surface is subject to great fatigue due to waves.
  • a fish escape detection sensor that is fixed to the fish holding space compartment and detects the escape behavior of the fish from the fish holding space, and an output of the fish escape detection sensor And a control device that commands the operation of the fish escape prevention device when the escape behavior of the fish is detected based on the signal.
  • a normal ultrasonic fish finder can be used as the fish escape detection sensor.
  • a sound emitter can also serve as part of a sound sensor. Net replacement frequency can be reduced. It is possible to allow the fish to enter without radiating this powerful ultrasonic wave or current when the fish enters the fish tank in the net, but there is a problem that harmful fish such as sea bream enter the fish holding space. Arise.
  • a third invention for solving the above-mentioned problems is a marine production apparatus arranged at least in the surface layer of the ocean, a sensor for detecting the magnitude of wave energy and the approach of a large obstacle, and the sinking of the marine production apparatus. And a sedimentation control device that commands the sedimentation device to settle in at least one of a case where it is determined that the wave energy exceeds a predetermined threshold and a case where it is determined that the large obstacle has approached, It is characterized by having As a sensor for detecting the magnitude of wave energy, for example, a pressure sensor installed on the surface of an underwater structure can be employed.
  • the underwater structure such as a fish tank is submerged to prevent its breakage, and when the waves are small, the pipe is raised. It can release deep ocean water to the ocean surface where solar energy density is high, and can raise the fish tank to the ocean surface where abundance of plankton is produced.
  • the settling force of the settling device can be generated by the ocean current force acting on the upper part of the pumping pipe and the wings installed in the current speed increasing pipe. In other words, by adjusting the angle between the ocean current direction and the chord direction of the wing (so-called angle of attack), the wing resistance and lift of the wing subjected to the ocean current change, so Can be adjusted.
  • the change in the angle of attack can be realized, for example, by the displacement of the center of gravity due to the movement of fluid contained in the upper part of the ocean current intensifier pipe or pump pipe or in the wing.
  • it can be realized by adjusting the buoyancy acting on the upper part of the pumping pipe and the ocean current speed increasing pipe, or by adjusting the rotation amount of the rope winder to adjust the length of the rope that fixes the current speed increasing pipe to the seabed. it can.
  • Sensors that detect the magnitude of wave energy include the top of ocean current boosters and pumps.
  • a pressure sensor arranged in the section can be used. When the wave energy acting on these pipes is large, the pressure fluctuation detected by the pressure sensor becomes large. Therefore, when the pressure fluctuation exceeds a predetermined level, it can be determined that the wave is large.
  • the average pressure detected by this pressure sensor is proportional to the depth of the sensor from the sea level, so the amount of sedimentation can also be detected.
  • the marine production apparatus according to the second aspect of the invention can also be used for sacrifice.
  • an underwater ultrasonic distance measuring device such as a normal sonar can be used.
  • FIG. 1 is a schematic vertical side view showing a deep sea water lift-up device according to an embodiment.
  • Fig. 2 is a schematic vertical sectional view of the water intake device.
  • Fig. 3 is a schematic horizontal sectional view of the water intake device.
  • Fig. 4 is a schematic front view of the upper half of the water intake device as seen from the front.
  • Fig. 5 is a schematic horizontal cross-sectional view of a pumping pipe.
  • Fig. 6 is a schematic vertical sectional view of the water discharge device.
  • Fig. 7 is a schematic partial front view of the water discharge device.
  • Fig. 8 is a block diagram showing an alarm device for avoiding access to ships or large fish.
  • FIG. 9 is a block diagram showing the settling device of the deep sea water lift-up device.
  • FIG. 10 is a schematic perspective view of a fish tank and seaweed growing apparatus.
  • FIG. 11 is a schematic plan view showing a fish escape prevention device.
  • FIG. 12 is a schematic front view showing a part of the side wall of the fish escape prevention device.
  • FIG. 13 is a block diagram showing an ultrasonic radiation device which is a fish escape prevention device.
  • FIG. 1 is a schematic diagram for explaining the marine production apparatus of the present invention.
  • This marine production equipment Is a deep sea water lift-up device, which has a water intake device 1, a pumping pipe 2, a water discharge device 3, and a rope (movement restriction device) 4. Has been placed.
  • the lower end of the rope 4 is fixed to an anchor (not shown) fixed to the seabed, and the upper end of the rope 4 is fixed to the water intake device 1 and the water discharge device 3.
  • 5 is the ocean surface
  • 6 is the ocean current
  • the arrow indicates the direction of the ocean current.
  • the water intake device 1 is disposed in the deep part of the ocean as a deep water urging device.
  • the seawater area below 50 meters above sea level is called the surface layer
  • the seawater area deeper than 200 meters below sea level is called the deep layer.
  • Deep seawater is called deep water or deep ocean water.
  • the specific gravity of the intake device 1 is less than 1, and the intake device 1 is subjected to a force F 3 that is a combination of buoyancy F 1 and anti-flow F 2 against ocean current 60.
  • buoyancy refers to the difference in force obtained by subtracting gravity from true buoyancy.
  • the water intake device 1 has a water intake 1 1 that opens toward the upstream side of the ocean current 60. Deep water 6 0 a that flows into intake port 1 1 is pushed into the pumping pipe 2 through the inside of the intake port 1 1 by its own dynamic pressure, rises inside the pumping pipe 2, and is discharged into the water discharge device 3 To reach.
  • the total density of pumping pipe 2 including internal deep water 60 a is less than 1.
  • the intake device 1 is subjected to a force F6, which is a combination of buoyancy F4 and anti-current F5 against ocean current 60.
  • a force F6 which is a combination of buoyancy F4 and anti-current F5 against ocean current 60.
  • the bending force applied to the pumping pipe 2 can be reduced, so that the bending rigidity of the pumping pipe 2 can be reduced.
  • 2 1 is the deep water inlet of the pump 2
  • 2 2 is the deep water outlet of the pump 2.
  • the water discharge device (sea current intensifier tube) 3 is a so-called ejector device disposed in the surface layer of the ocean, and constitutes a deep water urging device referred to in the present invention.
  • the specific gravity of the water discharger 3 is less than 1, and the water discharger 3 is subjected to a force F9, which is a combination of the buoyancy F7 and the resistance F8 against the ocean current 60.
  • the water discharge device 3 has a current outlet 31 that opens toward the upstream side of the ocean current 60 and a current outlet 3 2 that opens toward a substantially downstream side of the ocean current 60.
  • the ocean current flowing into the water discharge device 3 from the ocean current inlet 31 is decompressed and accelerated by the nozzle structure formed inside the water discharge device 3.
  • the outlet portion of the water discharge device 3 may have a diffuser structure.
  • the deep water outlet 2 2 of the pump 2 Since the deep water outlet 2 2 of the pump 2 is connected to the decompressed interior of the water discharge device 3, the deep ocean water in the pump 2 is transferred from the deep water outlet 2 2 of the pump 2 to the inside of the water discharge device 3. Sucked out.
  • the current outlet 3 2 of the water discharge device 3 blows the ocean current taken from the inlet 3 1 and the deep ocean water drawn from the pump pipe 2 obliquely upward. put out. This is because the nutrients are blown directly under the sea surface where plankton production efficiency is high, and the influence of waves on the ocean current intensifier is reduced.
  • the direction of the rope 4 connected to the water intake device 1 is defined by the direction of the force F 3
  • the direction of the rope 4 connected to the water discharge device 3 is defined by the direction of the force F 9. It is economical that the rope 4 connected to the intake device 1 and the rope 4 connected to the water discharge device 3 are connected to the same anchor.
  • the pump pipe 2 may also be fixed with the rope 4.
  • the structure of the water intake device 1 will be described with reference to FIGS. 2 is a schematic vertical cross-sectional view of the water intake device 1
  • FIG. 3 is a schematic horizontal cross-sectional view of the water intake device 1
  • FIG. 4 is a schematic front view of the upper half of the water intake device 1 as viewed from the front.
  • Intake device 1 includes intake port 1 1 that opens toward the upstream side of ocean current 60 so that the dynamic pressure of ocean current 60 is applied to pump 2 as much as possible, and from this intake port 1 1 to the rear.
  • the guide vanes 1 3 and 1 4 are arranged almost parallel to the direction of the ocean current due to the ocean current, and the ocean current with the maximum flow is pushed into the intake 1 1.
  • the guide wings 1 3 and 1 4 have the same function of maintaining the attitude of the water intake device 1 as the vertical tail of an airplane.
  • the attitude of the intake device 1 is defined by the buoyancy F 1 of the intake device 1, the anti-load F 2, the force applied to the intake device 1 from the pump pipe 2, the pulling force of the rope, and the point of action of these forces.
  • the design of these forces is a mechanical problem that can be easily solved, and the attitude of the intake 1 is maintained to maximize the intake of deep sea water into the intake 1 1.
  • the cross-sectional area in the direction perpendicular to the ocean current direction of the lava tube portion 1 2 is continuously narrowed backward, and the outlet of the trumpet tube portion (connecting tube portion) 1 2 is the deep water inlet of the pumped tube 2 2 1 Are connected to As a result, the speed of deep ocean water entering the pumping pipe 2 from the deep water inlet 21 of the pumping pipe 2 increases.
  • FIG. 5 is a schematic horizontal cross-sectional view of the pumping pipe 2.
  • the pumping pipe 2 is composed of a tube made of polyethylene-coated steel sheets with fastening ribs at both ends, and the horizontal cross section of the pumping pipe 2 has a fish shape. This greatly reduces drag against ocean currents.
  • the pump pipe 2 is shown in section A—A in Fig. 5. It is made by fastening two half-fish-shaped plates with a split shape.
  • 2 3 is a rib arranged in the pumping pipe 2, and the ribs 2 3 maintain the shape of the pumping pipe 2 against the negative pressure applied to the pumping pipe 2. In this way, it is possible to transport semi-fished plates in a stacked manner, thereby reducing transportation costs.
  • FIG. 6 is a schematic vertical sectional view of the water discharge device 3
  • FIG. 7 is a schematic partial front view of the water discharge device 3 seen from the upstream side of the ocean current.
  • the water discharger 3 has a current-increasing pipe 33 that communicates an upstream current inlet 31 and a downstream current outlet 32.
  • the upstream portion of the ocean current speed increasing pipe 3 3 has a nozzle portion 3 4 that narrows from the ocean current inlet 3 1 to the downstream side.
  • the nozzle portion 3 4 increases the speed of the ocean current flowing from the ocean current inlet 31, and the inside of the nozzle portion 3 4 is depressurized by this speed increase.
  • An air chamber 35 for generating buoyancy and a deep water chamber 36 for accumulating deep ocean water are formed above the nozzle portion 34.
  • the nozzle part 3 4, the air chamber 3 5, and the deep water chamber 3 6 extend long in the horizontal direction perpendicular to the direction of the ocean current as shown in FIG.
  • the lower end of the deep water chamber 3 6 is connected to the deep water outlet 2 2 of the pump 2.
  • a water discharge cylinder part 3 7 protruding into the nozzle part 3 4 is fixed, and a water discharge opening 3 8 is provided at the downstream end of the water discharge pipe part 37.
  • the ocean current 6 0 flowing into the nozzle 3 4 from the ocean current inlet 3 1 is accelerated and depressurized due to the reduction in the cross-sectional area of the nozzle 3 4 and passes through the outer periphery of the water discharge cylinder 3 7, and then the rear It is bent obliquely upward and discharged obliquely upward from the ocean current outlet 32. Due to the pressure reduction of the nozzle part 34, the deep water 60 a in the water discharge cylinder part 37 is sucked backward from the water discharge port 38. As a result, the deep water chamber 36 flows from the deep water outlet 22 of the pumping pipe 2 through the deep water chamber 36 into the water discharge cylinder portion 37. Denoted at 39 is a deflecting blade that is arranged near the deep water outlet 22 and deflects the ocean current and the deep water 60a exiting from the nozzle 34 and obliquely upward.
  • An alarm device 5 for avoiding the approach of a ship or large fish to the above-mentioned deep sea water lift-up device will be described with reference to FIG.
  • One or more alarm devices 5 are fixed to the upper end of the water discharge device 3 and periodically radiate ultrasonic waves in the direction of the water tank, and detect ultrasonic waves reflected from ships and large fish.
  • the computing device 52 Based on the ultrasonic signal received by the ultrasonic sensor 51, the computing device 52 that determines the approach of the ship or large fish by calculating the size and position of the ship or large fish, and the ship or large fish Check for approach It has alarm devices 5 3 and 5 4 that radiate ultrasonic energy or audible frequency acoustic energy into the water and emit sound and flashing signals from buoys floating on the sea surface.
  • the water discharger 3 is equipped with a generator connected to a turbine driven by ocean currents, various batteries including seawater batteries, and a wave energy generator. It is preferable that the generated power is temporarily stored in the battery. Since the detection principle of the ultrasonic sensor 51 can be the same as that of a conventionally known ultrasonic fish finder, further explanation is omitted. As a result, a warning is issued to the other party when a ship or a large fish approaches, and collision with the deep sea water lift-up device can be avoided. Instead of issuing an alarm, the subsidence device described below may be operated to cause the deep sea water lift-up device or a device attached thereto to sink.
  • the settling device 6 of the above-mentioned deep sea water lift-up device will be described with reference to FIG.
  • This settling device 6 has a pressure sensor 61, a calculation device 6 2, a hoisting motor 6 3, and a rope take-up drum 6 4. These devices 6:! To 6 4 are fixed to the water discharge device 3. It has been determined.
  • the pressure sensor 61 is fixed to the upper end surface of the water discharge device 3 or a rod body protruding upward, and detects the water pressure.
  • the arithmetic device 62 detects the magnitude of the fluctuation of the water pressure detected by the pressure sensor 61, that is, the absolute value of the difference between the minimum value and the maximum value of the water pressure within a predetermined time. If the constant threshold value is exceeded, it can be determined that the waves are large. In other words, if the wave is large, the amount of fluctuation in the detected pressure of the pressure sensor 61 increases, so that the wave energy can be estimated using this phenomenon. Further, when the water discharge device 3 sinks, the fluctuation of the detected pressure acting on the pressure sensor 61 decreases, so that the water discharge device 3 can stop settling. Further, if the absolute value of the difference becomes smaller than the second threshold value, the water discharge device 3 is raised because the wave is small.
  • the depth of the water discharge device 3 can be determined based on the average value of the pressure detected by the pressure sensor 61.
  • the arithmetic device 62 drives the hoisting motor 63 and winds the rope hoisting drum 64 connected to the hoisting motor 63.
  • the rope scraping drum 6 4 scrapes the rope 4 and the water discharge device 3 sinks.
  • the arithmetic device 6 2 rotates the winding motor 6 3 in the reverse direction and pulls out the rope 4 from the rope winding drum 6 4. This The water discharge device 3 is raised by its own buoyancy.
  • the hoisting motor 63 preferably has a rope lock mechanism for restraining the rope 4 when it does not rotate. It is preferable that the water intake device 1 is also moved up and down in synchronism with the same principle as when the water discharge device 3 is moved up and down.
  • the water discharge device 3 may be provided with a rotatable horizontal blade.
  • the resistance and lift that the horizontal wing receives from the ocean current changes, so the direction of the force acting on the water discharge device 3 changes and the subsidence depth can be adjusted.
  • a rope winder may be used to lengthen the upstream end rope 4 of the water discharge device 3 or shorten the downstream end rope 4.
  • a damper may be provided on the rope 4 in order to mitigate the wave energy acting on the water discharge device 3 and the like.
  • a sonar ultrasonic underwater distance detection device
  • This sona is used to measure the position of ships and large fish around the deep sea water lift-up device.
  • Arithmetic device 62 determines the possibility of ships and large fish approaching and colliding from changes in the measured position, and commands the submersion of the deep sea water lift-up device when the collision probability is high. This subsidence control can be used not only for the deep ocean water lift-up device but also for the sedimentation control of fish tanks installed in the vicinity of the deep ocean water lift-up device.
  • FIG. 10 is a schematic perspective view of the fish tank / seaweed growing device 7.
  • the holding and settling control of the fish tank / seaweed growing device 7 is the same as that of the water discharging device 3, and the description thereof is omitted.
  • the fish tank and seaweed growing device 7 has a rigid wall portion 7 1 on the upstream side of a rigid structure that extends substantially perpendicular to the direction of the ocean current so that the ocean current can flow in on the upstream side of the ocean current 60, and on the downstream side of the ocean current 60.
  • the rigid wall 7 2 on the downstream side of the rigid structure that extends substantially at right angles to the ocean current direction and the net 7 3 that connects the rigid wall portions 7 1 and 7 2 and extends in the ocean current direction
  • the rigid wall portion 7 1 is formed by assembling a number of polyethylene-coated steel pipes 7 1 1, 7 1 2, 7 1 3 extending in a direction perpendicular to the ocean current direction.
  • 7 1 1 is a polyethylene-coated steel pipe extending in the horizontal direction
  • 7 1 2 is a polyethylene-coated steel pipe extending in the vertical direction
  • 7 1 3 is diagonal A polyethylene-coated steel pipe extending in the direction.
  • the rigid wall portion 7 2 is formed by assembling a number of polyethylene-coated steel pipes 7 2 1, 7 2 2, 7 2 3 extending in a direction perpendicular to the ocean current direction.
  • 7 2 1 is a polyethylene-coated steel pipe extending in the horizontal direction
  • 7 2 2 is a polyethylene-coated steel pipe extending in the vertical direction
  • 7 2 3 is a polyethylene-coated steel pipe extending in an oblique direction.
  • Polyethylene-coated steel pipe 7 1 1 of rigid wall 7 1 and polyethylene-coated steel pipe 7 2 1 of rigid wall 7 2 are connected by a number of ropes 7 3 0, and polyethylene-coated steel pipe of rigid wall 7 1 7 1 2 and the polyethylene-coated steel pipe 7 2 2 of the rigid wall portion 7 2 are connected by a number of ports 1 3 1.
  • Each rope 7 3 0 is connected by a horizontal rope 7 3 2
  • each rope 7 3 1 is connected by a horizontal rope 7 3 3 to form a net 7 3.
  • the rigid walls 7 1 and 7 2 and the net 7 3 constitute a fish tank / seaweed growing device 7 having a fish holding space inside.
  • the upstream rigid wall portion 71 is fastened to an anchor at the seabed by a rope or fastened to the water discharge device 3 in the same manner as the water discharge device 3 of the deep sea water lift-up device.
  • the net 73 and the downstream rigid wall 7 2 are disposed downstream of the rigid wall 71 by the ocean current.
  • the mouth group 7 3 0 constituting the bottom of the fish tank / seaweed growing device 7 also serves as a seagrass fixing base on which the roots of seagrass are established.
  • Fig. 1 1 is a schematic plan view showing a fish escape prevention device provided along the side wall of the fish tank and seaweed growing device 7 (part of the fish holding space compartment) 70.
  • Fig. 1 2 is a fish escape prevention device. It is a model front view which shows a part of side wall part of an installation.
  • Reference numeral 8 denotes a directional ultrasonic radiation device fixed to the side wall portion 70 of the fish tank / seaweed growing device 7, and power is supplied from a cable extending along the side wall portion.
  • the arrow indicates the direction of ultrasonic radiation. That is, the ultrasonic radiation device 8 radiates ultrasonic waves in the extending direction of the side wall part 70. Accordingly, it is possible to prevent the fish from escaping from the fish holding space S inside the fish tank / seaweed growing device 7 beyond the side wall portion 70 of the fish tank / seaweed growing device 7 to the outside.
  • a similar structure is also arranged on the upper and lower end surfaces of the fish holding space S as the remainder of the fish holding space compartment, thereby preventing fish from escaping from the fish holding space S to the outside.
  • the arrangement of the ultrasonic radiation device 8 on the upper end surface of the fish holding space S can be omitted.
  • An electrode may be provided on each of the two ropes arranged in parallel, and a current may be passed between these electrodes to prevent fish from escaping.
  • 7 7 is a rope that forms the side wall of the fish tank / seaweed growing device 7.
  • sound waves of a specific wavelength for example, iruka killer whales may be emitted.
  • a large number of electrodes may be provided on a single rope at a predetermined interval, and energization may be performed between adjacent electrodes.
  • the control of the ultrasonic radiation device 8, which is a fish escape prevention device, will be described with reference to the block diagram shown in FIG.
  • the fish escape prevention device 9 includes a sonar 9 1 for detecting the presence of fish in the side wall portion 70 of the fish tank and seaweed growing device 7 and the vicinity of the upper end surface and the lower end surface, and a fish holding space based on the output signal of the sonar 9 1. It is determined whether or not there are fish in the vicinity of the compartment, and if it is determined that there is a fish in the vicinity of the fish holding space compartment, the control device 9 2 that instructs the ultrasonic radiation device 8 to emit ultrasonic waves, And a sound wave emitting device 8. Sonar 9 1 emits directional ultrasound,
  • the ultrasonic wave reflected from the object is detected and converted to a signal voltage, which is output to the controller 92.
  • the control device 92 determines that there is a fish in the vicinity of the fish holding space partition when the magnitude of the signal voltage corresponding to the reflected ultrasonic wave within a predetermined time from the radiation time exceeds a predetermined level. Command the radiation device 8 to emit ultrasonic waves. However, because there is an ultrasonic wave that is fixedly reflected due to the presence of ropes and nets, the controller 92 can subtract the signal voltage corresponding to the reflected ultrasonic wave of a certain magnitude from the input signal voltage. Good. This makes it possible to realize an inexpensive and large-capacity fish tank while saving power in the ocean where stable power production is not easy.
  • the amount of reflected ultrasound from a fish far away from the sonar 9 1 is smaller than the amount of reflected ultrasound from a nearby fish, so the control unit 9 2 depends on the distance from the sonar 9 1 to the fish.
  • the input signal voltage (amount of reflected ultrasound) may be corrected.
  • a large number of sonars 9 1 may be distributed and each sonar 9 1 may control only the nearby ultrasonic radiation device 8. 651

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

A water intake unit (1), which is located in the deep layer area of the sea, and a water discharge unit (3), which is located in the surface layer area of the sea, are fixed to the sea bottom. The water intake unit (1) is in the shape of a duct pipe into the opening of which the seawater flows. The water discharge unit (3) has an opening toward the flow-out direction of the seawater. Owing to this structure, the deep seawater is lifted up via a pumping pipe (2) connecting the water intake unit (1) to the water discharge unit (3) and nutrient salts are supplied in a large amount to the surface area of the sea. Owing to photosynthesis, carbon dioxide is fixed as planktons. Thus, useful marine organisms can be grown by using these planktons.

Description

明 細 書  Specification
海洋生産装置  Marine production equipment
技術分野 Technical field
本発明は、 海洋に配置された海洋生産装置に関する。 技術背景  The present invention relates to a marine production apparatus arranged in the ocean. Technical background
近年における大気中の二酸化炭素濃度の増大による海面上昇問題は、 人類が解 決すべき深刻な問題として認識されつつある。 その一つの解決案として、 大気中 の二酸化炭素濃度低減のために、 豊富な栄養塩類を含む海洋深層水を海洋表層部 にリフトアップしてそのプランク トン生産量を増大するとともに大気中の二酸化 炭素濃度を削減することが提案されている。 この方法を海洋深層水リフトアップ 装置をいうものとする。  In recent years, the problem of sea level rise due to an increase in the concentration of carbon dioxide in the atmosphere has been recognized as a serious problem for humankind to solve. As one solution, to reduce atmospheric carbon dioxide concentration, deep-sea water containing abundant nutrients is lifted up to the surface of the ocean to increase its plankton production and carbon dioxide in the atmosphere. It has been proposed to reduce the concentration. This method shall refer to the deep sea water lift-up device.
この技術分野の先行技術として次の技術が提案されている。  The following techniques have been proposed as prior art in this technical field.
特許文献 1 特開 200 1—323430号  Patent Document 1 Japanese Patent Laid-Open No. 200 1-323430
特許文献 2 特開 200 1— 336479号  Patent Document 2 Japanese Patent Laid-Open No. 200 1-336479
特許文献 3 特開平 6— 225664号公報  Patent Document 3 Japanese Patent Laid-Open No. 6-225664
特許文献 4 特開 2000— 295939号公報  Patent Document 4 Japanese Unexamined Patent Publication No. 2000-295939
特許文献 5 特開 2000— 273836号公報  Patent Document 5 Japanese Unexamined Patent Publication No. 2000-273836
特許文献 6 特開平 8 _42275号公報  Patent Document 6 Japanese Patent Laid-Open No. 8_42275
特許文献 7 特開平 8— 332994号公報  Patent Document 7 JP-A-8-332994
特許文献 1は、 海流が流れる海洋の中層部にプレートを斜めに配置して海流が 流れる方向を上方へ変化させることを提案している。 特許文献 2は、 500メー トル以上の長さの筒を海洋に立て、 筒上部を海洋表層水により間接加熱すること によりその比重を軽く して筒下部から海洋深層水をリフトアップすることを提案 している。 しかしながら、 ほとんどすべての海洋型二酸化炭素吸収技術はアイデ ァ段階にとどまっている。  Patent Document 1 proposes that a plate is disposed obliquely in the middle layer of the ocean where the ocean current flows, and the direction in which the ocean current flows is changed upward. Patent Document 2 proposes that a cylinder with a length of 500 meters or more is placed on the ocean and the upper part of the cylinder is heated indirectly by ocean surface water to reduce its specific gravity and lift deep sea water from the bottom of the cylinder. is doing. However, almost all ocean-type carbon dioxide absorption technologies remain at the idea stage.
第 1の理由は、 海洋の表層部に設置されるこの種の大規模海洋生産装置は、 そ の設置自体は浮力を利用できるために比較的容易であるものの、 海洋環境特有の 問題である、 船舶や大型魚類の衝突問題、 波浪問題により、 海洋生産装置の設置 及び維持コス トがそれぞれ巨額となるためである。 波浪問題に関しては、 特許文 献 3は海洋生産装置を沈降させることを提案している。 The first reason is that this type of large-scale marine production equipment installed on the surface of the ocean is a problem unique to the marine environment, although the installation itself is relatively easy due to the use of buoyancy. This is because the cost of installing and maintaining the marine production equipment is huge due to the collision problem and the wave problem of ships and large fish. Regarding the wave problem, patent text Offer 3 proposes to sink the marine production equipment.
第 2の理由は、 海洋深層水リフトアップ装置は、 上記耐海洋環境性能を必要と するにもかかわらず、 その経済的生産効率が低い点が挙げられる。 リフトアップ した海洋深層水を用いて有用な海洋生物を生産し、 販売することにより費用の一 部は回収できたとしても、 上記した船舶や大型魚類の衝突問題や波浪問題に耐え 得る海洋生産装置の設置及び維持費用を賄うことは困難である。  The second reason is that the deep seawater lift-up device has low economic production efficiency despite the necessity of the above-mentioned marine environment resistance performance. Even if a part of the cost can be recovered by producing and selling useful marine life using the lifted deep ocean water, the marine production equipment can withstand the above-mentioned collision problems and wave problems of ships and large fish. It is difficult to cover the installation and maintenance costs of
上記したように、 二酸化炭素消費型海洋生産装置としての海洋深層水リフトァ ップ装置は、 現在の技術レベルでは経済性を改善することが必要である。 経済性 の改善は、 装置をできるだけ長期に使用することと、 単位費用当たりの経済効果 (二酸化炭素排出権の経済的価値を含む) を増大させる点に依存する。  As mentioned above, deep-sea water lift-up devices as carbon dioxide-consuming ocean production devices need to be economically improved at the current technology level. The economic improvement depends on using the equipment for as long as possible and increasing the economic effect per unit cost (including the economic value of carbon footprint).
この観点から見た場合に、 特許文献 1が提案する海洋の中層部に配置される斜 めプレートによる海洋中層部の海流方向の上方への偏向技術は、 斜めプレートか ら上方へ放出された中層部の海流の上昇方向への速度エネルギーが水平方向へ流 れる強力な海流との接触により渦や乱流として斜めプレートから排出された直後 に急速に消失してしまう問題、 中層部の斜めプレー卜まで海洋の深層部からの深 層水をほとんど誘導することができないという問題をもち、 海洋深層水を数百メ 一トル上方の海洋の表層部まで到達させるのは困難であった。 また、 特許文献 2 が提案する筒上部を海洋表層水により間接加熱して海洋深層水をリフトアップす る方法は、 リフトアップする海洋深層水の流量の増大のために筒内部の海洋深層 水と海洋深層水との間の移動熱量を大幅に増大させる必要があるため、 並びに、 海洋の表層部の間接熱交換器に対して上記した独特の海洋環境問題 (衝突問題、 波浪問題 (竜巻を含む) ) を考慮する必要があるため、 大規模な実用化が困難で あつに。  From this point of view, the technology for the upward deflection in the ocean current direction of the middle ocean layer by the inclined plate arranged in the middle ocean layer proposed in Patent Document 1 is the middle layer released upward from the oblique plate. The problem is that the velocity energy in the rising direction of the ocean current rapidly disappears immediately after being discharged from the oblique plate as a vortex or turbulent flow due to contact with the powerful ocean current that flows horizontally, However, it was difficult to reach the surface of the ocean several hundreds of meters above the ocean. In addition, the method of lifting the deep ocean water by indirectly heating the top of the cylinder with ocean surface water proposed in Patent Document 2 is used to increase the flow rate of the deep ocean water to be lifted up. Because it is necessary to greatly increase the amount of heat transferred to the deep ocean water, and to the indirect heat exchanger of the ocean surface layer, the unique marine environmental problems (including collision problems, wave problems (including tornadoes) ))) Must be taken into account, making large-scale practical application difficult.
更に、 海洋深層水リフトアップ装置の経済性向上のために、 大規模な魚保持装 置を配置することも考えられるが、 このような大規模な魚保持装置は、 海洋深層 水リフトアップ装置と同じく上記海洋環境問題をもっという問題があった。 波浪 による破損を回避するため海洋生産装置を沈降させることは有益であるが、 海洋 では天候急変が普通であり、 その海洋生産装置の沈降管理が困難であった。 発明の開示 本発明は、 上記解決困難な問題を解決して建設及び維持が容易な海洋生産装置 及びその保全装置を提供することをその目的としている。 Furthermore, in order to improve the economic efficiency of the deep sea water lift-up device, it is conceivable to arrange a large-scale fish holding device. There was also a problem of the above marine environment problem. Although it is beneficial to sink the marine production equipment in order to avoid damage caused by waves, sudden changes in weather are common in the ocean, making it difficult to manage the sedimentation of the marine production equipment. Disclosure of the invention An object of the present invention is to provide an offshore production device and a maintenance device thereof that can solve the above difficult problems and are easy to construct and maintain.
上記課題を解決する第 1発明は、 海洋の少なくとも表層部に配置される海洋生 産装置において、 海流が流れる前記海洋の表層部に開口する深層水流出口と、 前 記海洋の深層部に閑口する深層水流入口と、 前記表層部と前記深層部との間に配 置されて前記深層水流入口から流入した前記海洋深層水を上方へ揚水した後、 前 記深層水流出口から排出させる筒部とを有する揚水管と、 前記揚水管の深層水流 入口及び深層水流出口に連結されて前記海流のエネルギーに基づいて前記揚水管 内の前記海洋深層水を上方に付勢する深層水付勢装置と、 前記揚水管及び深層水 付勢装置の移動を規制する移動規制装置とを備えることを特徴としている。 すな わち、 この発明は、 海流中に立設された揚水管に設けた揚水機構に海流エネルギ 一を作用させて揚水管中の海洋深層水のリフトアップを行う。 このようにすれば、 ほとんど無尽蔵な海流エネルギーを揚水管中の海洋深層水のリフトアップに用い ることができるため、 簡単な装置にて海洋深層水を海洋の表面部までローコスト かつ効率よく リフトアップして利用することができる。  A first invention for solving the above-mentioned problems is a marine production apparatus arranged at least in the surface layer of the ocean, a deep water outlet opening in the surface layer of the ocean through which the ocean current flows, and a quiet port in the deep layer of the ocean. A deep water inflow port, and a cylindrical part that is disposed between the surface layer part and the deep layer part and pumps the deep sea water flowing in from the deep water inflow port upward, and then discharges it from the deep water outlet. A deep water urging device connected to a deep water flow inlet and a deep water flow outlet of the water pump to urge the deep sea water in the water pump upward based on the energy of the sea current; And a movement restricting device for restricting movement of the water pump and the deep water urging device. In other words, the present invention lifts the deep ocean water in the pumping pipe by applying the energy of the sea current to the pumping mechanism provided in the pumping pipe standing in the ocean current. In this way, almost inexhaustible ocean current energy can be used to lift the deep ocean water in the pumping pipe, so the deep ocean water can be lifted up to the ocean surface at low cost and efficiently with a simple device. Can be used.
好適な態様において、 海洋の表層部は、 水深 5 0メートル未満を言い、 海洋の 深層部は水深 1 5 0メートル以上更に好適には 2 0 0メートル以上を言う。 好適 な態様において、 移動規制装置は、 一端が海底に固定されたロープとされる。 そ の他、 海底に配置され、 剛体からなる揚水管の底部を固定するベースもこの移動 規制装置を構成することができる。 海流増速管や揚水管の上部に作用する波力の 影響を低減するため、 このロープはダンバ装置を通じて海底に固定されることが できる。 好適な態様において、 前記揚水管の深層水流出口の後方に配置されて海 草を生育させる海草生育装置を有する。 この海草生育装置は、 揚水管の深層水流 出口の後方へ海流により延在するネットにより構成される。 なお、 このネットの 開口は非常に大きくてよい。 これにより、 海洋表層部において、 太陽エネルギー 及び二酸化炭素を効率よく回収することができる。 好適な態様において、 前記揚 水管の深層水流出口の後方に配置されて内部に魚や貝類を保持する魚槽を有する。 このようにすれば、 大量のプランク トンを魚槽に供給できるので魚保持飼料を最 小限としつつ必要な種類の魚の生産を増加することができる。 魚槽は、 たとえば ネットにより覆われる海中スペースにより構成されることができる。 好適な態様 において、 魚槽は、 海草生育装置を兼ねることができる。 すなわち、 魚槽の構成 するネットを海草の根の定着部材とすることができる。 In a preferred embodiment, the ocean surface layer refers to a depth of less than 50 meters, and the ocean depth refers to a depth of 1550 meters or more, more preferably 20.0 meters or more. In a preferred embodiment, the movement restricting device is a rope having one end fixed to the seabed. In addition, a base that is arranged on the seabed and that fixes the bottom of a rigid pumping pipe can also constitute this movement restriction device. This rope can be fixed to the seabed through a damper device in order to reduce the influence of wave force acting on the upper part of the current-increasing pipe and pumped-up pipe. In a preferred embodiment, the apparatus has a seaweed growing device arranged behind the deep water outlet of the pumping pipe to grow seaweed. This seaweed growing device is composed of a net extending behind the deep water outlet of the pumping pipe. The opening of this net can be very large. As a result, solar energy and carbon dioxide can be efficiently recovered in the ocean surface layer. In a preferred embodiment, it has a fish tank that is disposed behind the deep water outlet of the pumping pipe and holds fish and shellfish inside. In this way, since a large amount of plankton can be supplied to the fish tank, it is possible to increase the production of the necessary types of fish while minimizing the fish-holding feed. A fish tank can be composed of an underwater space covered by a net, for example. Preferred embodiment The fish tank can also serve as a seaweed growing device. In other words, the net constituting the fish tank can be used as a seaweed root fixing member.
好適な態様において、 前記深層水付勢装置は、 前記深層部に配置されて前記海 流の動圧を受ける方向へ開口する取水口と、 前記取水口と前記揚水管の深層水流 入口とを接続する連結筒部とを有し、 前記連結筒部は、 前記取水口から前記揚水 管の深層水流入口へ向けて細くなつている。 このようにすれば、 揚水管の深層水 流入口に海流の動圧を増倍して作用させることができ、 簡素な機構にて大量の海 洋深層水をリフトアップすることができる。  In a preferred aspect, the deep water urging device connects the intake port disposed in the deep layer portion and opening in a direction to receive the dynamic pressure of the ocean current, and the intake port and the deep water inlet port of the pumping pipe. A connecting tube portion that narrows from the intake port toward the deep water inlet of the pumping pipe. In this way, the dynamic pressure of the ocean current can be increased and acted on the deep water inlet of the pumping pipe, and a large amount of deep ocean water can be lifted with a simple mechanism.
好適な態様において、 前記深層水付勢装置は、 前記表層部に配置されて前記海 流の動圧を受けない方向へ開口する放水口と、 前記放水口と前記揚水管の深層水 流出口とを接続する連結筒部とを有する。 このようにすれば、 連結筒部内の海洋 深層水は、 放水口周囲の前記海流のェゼクタ効果により放水口へ向けて吸引され るため、 簡素な機構にて大量の海洋深層水をリフトアップすることができる。 好適な態様において、 前記深層水付勢装置は、 前記表層部に配置されて前記海 流が流入する海流流入口、 及び、 前記海流が流出する海流流出口を有して内部の 前記海流を外部の海流よりも增速して内部の水圧を外部の水圧よりも相対的に低 下させる海流増速管を有し、 前記放水口は、 前記海流増速管に連通する。 このよ うにすれば、 揚水管の深層水流出口の圧力減少効果を向上することができるため、 海洋深層水のリフトアップ能力を向上することができる。 海流增速管は、 海流流 入口から流入した海流は、 ノズル構造により増速減圧される。 このようにすれば、 簡素な静止構造により、 海洋深層水のリフトアツプ能力を向上することができる。 好適な態様において、 前記揚水管は、 略魚形断面を有する。 魚形断面の頭部は 海流の上流側に、 尾部は海流の下流側に配置される。 これにより、 海流に対する 揚水管の抗カを大幅に削減することができるので、 海流による揚水管の移動を規 制する移動規制装置、 たとえばアンカー及びロープの費用を大幅に低減すること ができる。 好適な態様において、 前記揚水管は、 半魚形断面を有する樋状管を二 枚突き合わせて接合して構成される。 これにより、 揚水管の製造が容易となる。 好適な態様において、 前記揚水管は比重が 1未満とされる。 これにより、 揚水 管の姿勢が海流に押されて水平方向へ寝るのを良好に防止することができる。 好 適な態様において、 前記海流増速管は比重が 1未満とされる。 これにより、 ロー プにより海流増速管を所定深度に容易に保持することができる。 In a preferred aspect, the deep water urging device includes a water outlet that is disposed in the surface layer portion and opens in a direction not subjected to the dynamic pressure of the ocean current, the water outlet, and a deep water outlet of the pump pipe. And a connecting cylinder part for connecting the two. In this way, deep ocean water in the connecting cylinder is sucked toward the water discharge port due to the ejector effect of the ocean current around the water discharge port, so a large amount of deep sea water can be lifted up with a simple mechanism. Can do. In a preferred aspect, the deep water urging device includes an ocean current inlet that is arranged in the surface layer portion and into which the ocean current flows in, and an ocean current outlet from which the ocean current flows out. A current intensifier pipe that speeds up the current and lowers the internal water pressure relative to the external water pressure, and the water outlet communicates with the current intensifier pipe. In this way, the pressure reduction effect of the deep water outlet of the pumping pipe can be improved, so that the deep sea water lift-up capability can be improved. In the ocean current accelerating pipe, the ocean current flowing from the ocean current inlet is accelerated and depressurized by the nozzle structure. In this way, the lift-up capability of deep ocean water can be improved with a simple static structure. In a preferred embodiment, the pumping pipe has a substantially fish-shaped cross section. The fish-shaped section head is located upstream of the ocean current and the tail is located downstream of the ocean current. As a result, the resistance of the pumping pipe against the ocean current can be greatly reduced, so that the cost of a movement regulating device that regulates the movement of the pumping pipe due to the ocean current, such as anchors and ropes, can be significantly reduced. In a preferred embodiment, the pumping pipe is configured by joining two butterfly-shaped pipes having a semi-fish cross section. This facilitates the production of the pumping pipe. In a preferred embodiment, the pumping pipe has a specific gravity of less than 1. As a result, it is possible to satisfactorily prevent the horizontal direction of the pumped pipe from being pushed by the ocean current. In a preferred embodiment, the current intensifier tube has a specific gravity of less than 1. This will cause the low The ocean current intensifier tube can be easily held at a predetermined depth.
好適な態様において、 前記揚水管の深層水流出口は前記深層水を水平方向より 上向きに放出する。 このようにすれば、 揚水管の上端部に設けられた深層水流出 口を海面より深く配置しても、 日射光量が大きい海面近傍に海洋深層水を到達さ せることができるため、 波浪などによる揚水管などの破損を防止することができ る。  In a preferred embodiment, the deep water outlet of the pumping pipe discharges the deep water upward from the horizontal direction. In this way, even if the deep water outlet at the upper end of the pumping pipe is placed deeper than the sea surface, the deep sea water can reach near the sea surface where the amount of solar radiation is large. It is possible to prevent damage to the pumping pipe, etc.
好適な態様において、 前記揚水管の深層水流出口の後方に延在する魚槽を有し、 前記魚槽は、 海流上流側にて海流流入可能に海流方向と略直角に延在する剛構造 の上流側の剛性壁部と、 海流下流側にて海流流出可能に海流方向と略直角に延在 する剛構造の下流側の剛性壁部と、 前記両剛性壁部を連結して海流方向に延在す るネットとを有する。 このようにすれば、 魚槽への海流や波浪の影響を低減しつ つ大規模な魚槽を構成することができる。  In a preferred embodiment, the fish tank has a fish tank that extends behind a deep water outlet of the pumping pipe, and the fish tank has a rigid structure that extends substantially perpendicular to the ocean current direction so that the ocean current can flow into the upstream of the ocean current. A rigid wall portion on the upstream side, a rigid wall portion on the downstream side of a rigid structure that extends substantially perpendicular to the ocean current direction so that the ocean current can flow out on the downstream side of the ocean current, and the rigid wall portions connected to each other to extend in the ocean current direction. Existing net. In this way, a large-scale fish tank can be constructed while reducing the effects of ocean currents and waves on the fish tank.
好適な態様において、 前記揚水管の上部近傍に設置されて大型障害物の接近を 検出するセンサと、 前記揚水管の上部近傍に設置されて警報を発する警報装置と、 前記センサの出力信号に基づいて前記大型障害物の接近を検出した場合に前記警 報装置に警報出力を指令する制御装置とを有する。 大型障害物としては、 船舶や 大型魚類が挙げられる。 大型障害物を検出するセンサとしてはソナ一として公知 の水中超音波センサを採用することができる。 警報としては、 無線又は発光又は 空中音波又は水中音波を採用することができる。 このようにすれば、 船舶又は大 型魚類が揚水管に衝突してそれを破損させるの確率を低減することができる。 ま た、 このようにすれば、 電力生産が容易でない海洋において、 警報装置の消費電 力を低減することができる。  In a preferred aspect, a sensor installed near the upper part of the pumping pipe to detect the approach of a large obstacle, an alarm device installed near the upper part of the pumping pipe to issue an alarm, and an output signal of the sensor And a control device that instructs the warning device to output an alarm when the approach of the large obstacle is detected. Large obstacles include ships and large fish. As a sensor for detecting a large obstacle, an underwater ultrasonic sensor known as a sonar can be used. As an alarm, radio, light emission, airborne sound or underwater sound can be used. In this way, it is possible to reduce the probability that a ship or large fish will collide with the pumped pipe and damage it. In this way, the power consumption of the alarm device can be reduced in the ocean where power production is not easy.
上記課題を解決する第 2発明は、 海洋の少なくとも表層部に配置される海洋生 産装置において、 多数の開口を有して内部の魚保持空間を区画する魚保持スぺー ス区画体と、 前記魚保持スペース区画体に固定されて前記魚保持空間の周囲に向 けて音波を放射する魚脱出防止装置を有することを特徴としている。 このように すれば、 波浪などによる破損や海洋生物が付着するネットの必要量を低減しつつ、 大規模な魚槽を実現することができる。 なお、 指向性音波としては、 魚の忌避効 果が高い周波数たとえば超音波が好適である。  A second invention that solves the above-described problem is a marine production apparatus that is disposed at least in the surface layer of the ocean, and includes a fish-holding space partition that has a large number of openings and partitions an internal fish-holding space; A fish escape prevention device is provided that is fixed to the fish holding space partition and emits sound waves toward the periphery of the fish holding space. In this way, it is possible to realize a large-scale fish tank while reducing the necessary amount of nets to which marine organisms adhere and damage caused by waves. As the directional sound wave, a frequency with high fish repellent effect such as an ultrasonic wave is suitable.
なお、 魚脱出防止装置として通電装置を用いてもよい。 この通電装置は、 前記 開口における所定のギヤップを隔てて配置された一対の電極対をもち、 この電極 対間に直流電流又は交流電流を流すことにより、 魚の近接を阻止する。 このよう にすれば、 ネット交換費用を低減することができる。 音波エネルギー発生に必要 な電力は、 海流や波力のエネルギーを用いて生産することができる。 更に説明す ると、 目が細かい漁網によりたとえば半径数キロメ一トルといった海域を囲んで 海洋魚保持層を構成する際に、 波浪や流木により漁網が破れたり、 漁網に海洋生 物が付着したりして漁網が沈降する不具合が生じる。 また、 一端が海底に固定さ れたロープによりこの漁網を海流中に保持する場合、 ロープと漁網との接合部に は漁網に作用する海流抗カ全体が作用し、 同様に漁網の上流部は、 自己に作用す る海流抗カに加えて漁網の下流部に作用する海流抗力に耐える必要がある。 つま り、 海流中にて大型の海洋魚槽を静止させる場合、 漁網の強度を大幅に増大させ る必要があり、 設置、 交換費用が増大する。 これに対して、 この発明によれば、 漁網を簡単な構造とすることができるため、 海流抗カゃ波浪エネルギーによる漁 網の破損や疲労を大幅に低減するとともに、 その設置、 交換費用を大幅に低減す ることができる。 In addition, you may use an electricity supply apparatus as a fish escape prevention apparatus. This energization device is It has a pair of electrodes arranged with a predetermined gap in the opening, and a direct current or an alternating current is passed between the electrode pairs to prevent fish from approaching. In this way, net replacement costs can be reduced. The electric power required to generate sonic energy can be produced using ocean current and wave energy. To further explain, when a marine fish holding layer is formed by surrounding a marine area with a fine-grained fishing net, for example, several kilometers in radius, the fishing net is broken by waves and driftwood, or marine organisms adhere to the fishing net. As a result, there is a problem that the fishing net sinks. In addition, when this fishing net is held in the ocean current by a rope fixed at one end to the seabed, the entire ocean current resistance acting on the fishing net acts at the junction between the rope and the fishing net, and the upstream portion of the fishing net also It is necessary to withstand the ocean current drag acting on the downstream part of the fishing net in addition to the ocean current defense acting on itself. In other words, when a large marine fish tank is stationary in the ocean current, the strength of the fishing net needs to be significantly increased, which increases installation and replacement costs. On the other hand, according to the present invention, since the fishing net can have a simple structure, the damage and fatigue of the fishing net due to the ocean current anti-cave wave energy are greatly reduced, and the installation and replacement costs are greatly increased. Can be reduced.
好適な態様において、 魚脱出防止装置は、 一定インタバルにて完結的に上記音 波又は電流を定常的に出力することができる。 たとえば、 5秒間に 0 . 1秒間だ け出力を行うことができる。 これにより、 必要電力を大幅に低減することができ る。 また、 魚脱出防止装置として魚保持スペース区画体の周囲に多数配置されて いる超音波放射装置や電極対は同時に音波又は電流を出力するのではなく、 時間 的に異なるタイミングで出力することができる。 このようにすれば、 電¾¾を小型 化することができる。 また、 魚保持スペース区画体内の魚に持続的な影響を与え ることができる。  In a preferred embodiment, the fish escape prevention device can output the sound wave or current steadily and completely at a constant interval. For example, it is possible to output only 0.1 second in 5 seconds. As a result, the required power can be greatly reduced. In addition, a large number of ultrasonic radiation devices and electrode pairs arranged around the fish holding space compartment as a fish escape prevention device can output sound waves or currents simultaneously, but at different timings. . In this way, the electrical sample can be reduced in size. It can also have a lasting effect on fish in the fish holding space compartment.
好適な態様において、 海洋生産装置を構成する構造物はロープとされ、 この口 —プに所定間隔で設けられた多数の超音波放射装置が設けられる。 各超音波放射 装置は、 魚保持空間を囲むように指向性の超音波を放射する。 その他、 海洋生産 装置を構成する構造物は互いに所定間隔を隔てて平行配置され、 それぞれ一定間 隔にて電極が配置された導電性ロープとされる。 一対のロープの電極間には電圧 が印加される。 これにより電極間の海水中に電流が流れるため、 魚はこの電流を 忌避する。 このようにすれば、 波浪などによる疲労が大きい海面直下のネット部 分を省略することができるため、 好適な態様において、 前記魚保持スペース区画 体に固定されて前記魚保持スペースからの魚の脱出行動を検出する魚脱出検出セ ンサと、 前記魚脱出検出センサの出力信号に基づいて前記魚の脱出行動を検出し た場合に前記魚脱出防止装置の作動を指令する制御装置とを有する。 このように すれば、 安定な電力生産が容易でない海洋において省電力をはかりつつ安価で大 容量の魚槽を実現することができる。 魚脱出検出センサとしては、 通常の超音波 魚群探知機を用いることができる。 音波放射器が音波センサの一部を兼ねること もできる。 ネット交換頻度を低減することができる。 魚がネット内の魚槽に侵入 する場合にこの強力超音波や電流を放射せず、 魚の侵入を許可することも可能で あるが、 鮫などの有害魚類が魚保持空間に侵入するという問題が生じる。 In a preferred embodiment, the structure constituting the marine production apparatus is a rope, and a large number of ultrasonic radiation devices provided at predetermined intervals are provided in the mouth. Each ultrasonic radiation device emits directional ultrasonic waves so as to surround the fish holding space. In addition, the structures that make up the marine production equipment are arranged in parallel with a predetermined distance from each other, and each is a conductive rope with electrodes arranged at regular intervals. A voltage is applied between the electrodes of the pair of ropes. This causes the current to flow in the seawater between the electrodes, and the fish avoids this current. In this way, the net part directly under the sea surface is subject to great fatigue due to waves. In a preferred embodiment, a fish escape detection sensor that is fixed to the fish holding space compartment and detects the escape behavior of the fish from the fish holding space, and an output of the fish escape detection sensor And a control device that commands the operation of the fish escape prevention device when the escape behavior of the fish is detected based on the signal. In this way, it is possible to realize an inexpensive and large-capacity fish tank while saving power in the ocean where stable power production is not easy. A normal ultrasonic fish finder can be used as the fish escape detection sensor. A sound emitter can also serve as part of a sound sensor. Net replacement frequency can be reduced. It is possible to allow the fish to enter without radiating this powerful ultrasonic wave or current when the fish enters the fish tank in the net, but there is a problem that harmful fish such as sea bream enter the fish holding space. Arise.
上記課題を解決する第 3発明は、 海洋の少なくとも表層部に配置される海洋生 産装置において、 波力エネルギーの大きさ及び大型障害物の接近を検出するセン ザと、 前記海洋生産装置の沈降を行う沈降装置と、 前記波力エネルギーが所定し きい値を超えると判定した場合及び前記大型障害物が接近したと判定した場合の 少なくとも一方において、 前記沈降装置に沈降を指令する沈降制御装置とを備え ることを特徴としている。 波力エネルギーの大きさを検出するセンサとしては、 たとえば水中構造物の表面に設置された圧力センサを採用することができる。 こ れにより、 波浪が大きい場合や大型障害物が接近する場合に揚水管ゃ魚槽などの 水中構造物を沈降させてその破損を防止し、 波浪が小さい場合には揚水管などを 上昇させて太陽エネルギー密度が高い海洋表層部へ海洋深層水を放出したり、 魚 槽をプランクトン生産が豊富な海洋表層部に上昇させることができる。 沈降装置 の沈降力は、 揚水管の上部や海流増速管に設置された翼部に作用する海流力によ り発生させることができる。 つまり、 海流方向と翼の弦方向との角度 (いわゆる 迎え角) を調整することにより海流を受ける翼の抗カと揚力とが変化するため、 海流增速管や揚水管の上部の深さを調整することができる。 迎え角の変化は、 た とえば海流増速管や揚水管の上部や翼内部に収容された流体の移動による重心位 置の変位により実現できる。 その他、 揚水管の上部や海流増速管に作用する浮力 を調整したり、 海流増速管を海底に固定するロープの長さをロープ巻き取り機の 回転量を調節することにより実現することができる。  A third invention for solving the above-mentioned problems is a marine production apparatus arranged at least in the surface layer of the ocean, a sensor for detecting the magnitude of wave energy and the approach of a large obstacle, and the sinking of the marine production apparatus. And a sedimentation control device that commands the sedimentation device to settle in at least one of a case where it is determined that the wave energy exceeds a predetermined threshold and a case where it is determined that the large obstacle has approached, It is characterized by having As a sensor for detecting the magnitude of wave energy, for example, a pressure sensor installed on the surface of an underwater structure can be employed. As a result, when waves are large or large obstacles are approaching, the underwater structure such as a fish tank is submerged to prevent its breakage, and when the waves are small, the pipe is raised. It can release deep ocean water to the ocean surface where solar energy density is high, and can raise the fish tank to the ocean surface where abundance of plankton is produced. The settling force of the settling device can be generated by the ocean current force acting on the upper part of the pumping pipe and the wings installed in the current speed increasing pipe. In other words, by adjusting the angle between the ocean current direction and the chord direction of the wing (so-called angle of attack), the wing resistance and lift of the wing subjected to the ocean current change, so Can be adjusted. The change in the angle of attack can be realized, for example, by the displacement of the center of gravity due to the movement of fluid contained in the upper part of the ocean current intensifier pipe or pump pipe or in the wing. In addition, it can be realized by adjusting the buoyancy acting on the upper part of the pumping pipe and the ocean current speed increasing pipe, or by adjusting the rotation amount of the rope winder to adjust the length of the rope that fixes the current speed increasing pipe to the seabed. it can.
波力エネルギーの大きさを検出するセンサとしては、 海流増速管や揚水管の上 部に配置された圧力センサを用いることができる。 これらの管に作用する波カェ ネルギ一が大きいと、 圧力センサが検出する圧力変動が大きくなるため、 圧力変 動の大きさが所定レベルを超える場合に波浪が大きいと判定することができる。 また、 この圧力センサが検出する平均圧力はこのセンサの海面からの深さに比例 するため、 沈降量も検出することができる。 この第 2発明の海洋生産装置は、 生 け簀などにも利用することができる。 大型障害物の接近を検出するセンサは、 通 常のソナ一のような水中超音波距離測定装置を採用することができる。 図面の簡単な説明 Sensors that detect the magnitude of wave energy include the top of ocean current boosters and pumps. A pressure sensor arranged in the section can be used. When the wave energy acting on these pipes is large, the pressure fluctuation detected by the pressure sensor becomes large. Therefore, when the pressure fluctuation exceeds a predetermined level, it can be determined that the wave is large. In addition, the average pressure detected by this pressure sensor is proportional to the depth of the sensor from the sea level, so the amount of sedimentation can also be detected. The marine production apparatus according to the second aspect of the invention can also be used for sacrifice. As a sensor for detecting the approach of a large obstacle, an underwater ultrasonic distance measuring device such as a normal sonar can be used. Brief Description of Drawings
図 1は、 実施例の海洋深層水リフトァップ装置を示す模式縦側面図である。 図 2は、 取水装置の模式垂直断面図である。  FIG. 1 is a schematic vertical side view showing a deep sea water lift-up device according to an embodiment. Fig. 2 is a schematic vertical sectional view of the water intake device.
図 3は、 取水装置の模式水平断面図である。  Fig. 3 is a schematic horizontal sectional view of the water intake device.
図 4は、 取水装置の上半分を正面から見た模式正面図である。  Fig. 4 is a schematic front view of the upper half of the water intake device as seen from the front.
図 5は、 揚水管の模式水平断面図である。  Fig. 5 is a schematic horizontal cross-sectional view of a pumping pipe.
図 6は、 放水装置の模式垂直断面図である。  Fig. 6 is a schematic vertical sectional view of the water discharge device.
図 7は、 放水装置の模式部分正面図である。  Fig. 7 is a schematic partial front view of the water discharge device.
図 8は、 船舶又は大型魚類の接近回避のための警報装置を示すプロック図であ る。  Fig. 8 is a block diagram showing an alarm device for avoiding access to ships or large fish.
図 9は、 海洋深層水リフトアップ装置の沈降装置を示すブロック図である。 図 1 0は、 魚槽兼海草生育装置の模式斜視図である。  Fig. 9 is a block diagram showing the settling device of the deep sea water lift-up device. FIG. 10 is a schematic perspective view of a fish tank and seaweed growing apparatus.
図 1 1は、 魚脱出防止装置を示す模式平面図である。  FIG. 11 is a schematic plan view showing a fish escape prevention device.
図 1 2は、 魚脱出防止装置の側壁部の一部を示す模式正面図である。  FIG. 12 is a schematic front view showing a part of the side wall of the fish escape prevention device.
図 1 3は、 魚脱出防止装置である超音波放射装置を示すブロック図である。  FIG. 13 is a block diagram showing an ultrasonic radiation device which is a fish escape prevention device.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
上記説明した本発明の海洋生産装置の好適実施態様を以下に説明する。 ただし、 本発明は、 以下の実施態様に限定されないことはもちろんである。  A preferred embodiment of the above-described marine production apparatus of the present invention will be described below. However, the present invention is not limited to the following embodiments.
(全体構造)  (Overall structure)
図 1は、 この発明の海洋生産装置を説明する模式図である。 この海洋生産装置 は海洋深層水リフトアップ装置であって、 取水装置 1と、 揚水管 2と、 放水装置 3と、 ロープ (移動規制装置) 4とを有しており、 海流中に斜めに立った状態に て配置されている。 ロープ 4の下端は、 図示しない海底に固定されたアンカーに 固定され、 ロープ 4の上端は、 取水装置 1及び放水装置 3に固定されている。 5 は海面であり、 6は海流であり、 矢印は海流が流れる方向を示す。 FIG. 1 is a schematic diagram for explaining the marine production apparatus of the present invention. This marine production equipment Is a deep sea water lift-up device, which has a water intake device 1, a pumping pipe 2, a water discharge device 3, and a rope (movement restriction device) 4. Has been placed. The lower end of the rope 4 is fixed to an anchor (not shown) fixed to the seabed, and the upper end of the rope 4 is fixed to the water intake device 1 and the water discharge device 3. 5 is the ocean surface, 6 is the ocean current, and the arrow indicates the direction of the ocean current.
取水装置 1は、 深層水付勢装置として海洋の深層部に配置されている。 この明 細書では、 海面 5 0より 5 0メートル未満の海水領域を表層部、 海面下 2 0 0メ 一トルより深い海水領域を深層部と呼ぶ。 深層部の海水を深層水又は海洋深層水 と呼ぶ。 取水装置 1め比重は 1未満とされ、 取水装置 1には浮力 F 1と海流 6 0 に対する抗カ F 2とを合成した力 F 3が作用している。 なお、 この明細書では、 浮力は、 真の浮力から重力を減算した力の差を言うものとする。 取水装置 1は、 海流 6 0の上流側に向けて開口する取水口 1 1をもつ。 取水口 1 1に流入した深 層水 6 0 aは、 自己の動圧により取水口 1 1の内部を通って揚水管 2内に押し込 まれ、 揚水管 2の内部を上昇し、 放水装置 3に到達する。  The water intake device 1 is disposed in the deep part of the ocean as a deep water urging device. In this specification, the seawater area below 50 meters above sea level is called the surface layer, and the seawater area deeper than 200 meters below sea level is called the deep layer. Deep seawater is called deep water or deep ocean water. The specific gravity of the intake device 1 is less than 1, and the intake device 1 is subjected to a force F 3 that is a combination of buoyancy F 1 and anti-flow F 2 against ocean current 60. In this specification, buoyancy refers to the difference in force obtained by subtracting gravity from true buoyancy. The water intake device 1 has a water intake 1 1 that opens toward the upstream side of the ocean current 60. Deep water 6 0 a that flows into intake port 1 1 is pushed into the pumping pipe 2 through the inside of the intake port 1 1 by its own dynamic pressure, rises inside the pumping pipe 2, and is discharged into the water discharge device 3 To reach.
揚水管 2は、 内部の深層水 6 0 aを含む全体の比重が 1未満とされている。 取 水装置 1には浮力 F 4と海流 6 0に対する抗カ F 5とを合成した力 F 6が作用し ている。 力 F 6の方向を揚水管 2の長さ方向と略等しくすることにより、 揚水管 2に掛かる曲げカを低減できるため、 揚水管 2の曲げ剛性を小さくすることがで きる。 2 1は揚水管 2の深層水流入口、 2 2は揚水管 2の深層水流出口である。 放水装置 (海流増速管) 3は、 海洋の表層部に配置されたいわゆるェゼクタ装 置であり本発明で言う深層水付勢装置を構成している。 放水装置 3の比重は 1未 満とされ、 放水装置 3には浮力 F 7と海流 6 0に対する抗カ F 8とを合成した力 F 9が作用している。 放水装置 3は、 海流 6 0の上流側に向けて開口する海流流 入口 3 1と、 海流 6 0の略下流側に向けて開口する海流流出口 3 2とを有する。 海流流入口 3 1から放水装置 3の内部に流入した海流は放水装置 3の内部に形成 されたノズル構造により減圧増速される。 放水装置 3の出口部をディフューザ構 造としてもよい。 揚水管 2の深層水流出口 2 2は放水装置 3の減圧された内部に 連結されているため、 揚水管 2内の海洋深層水は、 揚水管 2の深層水流出口 2 2 から放水装置 3の内部に吸い出される。 放水装置 3の海流流出口 3 2は、 入口 3 1から取り込んだ海流と、 揚水管 2から吸い込んだ海洋深層水を斜め上方へ吹き 出す。 これはプランク トン生産効率が高い海面直下に栄養塩類を吹き上げるとと もに、 海流増速管に対する波浪の影響を軽減するためである。 The total density of pumping pipe 2 including internal deep water 60 a is less than 1. The intake device 1 is subjected to a force F6, which is a combination of buoyancy F4 and anti-current F5 against ocean current 60. By making the direction of the force F 6 substantially equal to the length direction of the pumping pipe 2, the bending force applied to the pumping pipe 2 can be reduced, so that the bending rigidity of the pumping pipe 2 can be reduced. 2 1 is the deep water inlet of the pump 2, and 2 2 is the deep water outlet of the pump 2. The water discharge device (sea current intensifier tube) 3 is a so-called ejector device disposed in the surface layer of the ocean, and constitutes a deep water urging device referred to in the present invention. The specific gravity of the water discharger 3 is less than 1, and the water discharger 3 is subjected to a force F9, which is a combination of the buoyancy F7 and the resistance F8 against the ocean current 60. The water discharge device 3 has a current outlet 31 that opens toward the upstream side of the ocean current 60 and a current outlet 3 2 that opens toward a substantially downstream side of the ocean current 60. The ocean current flowing into the water discharge device 3 from the ocean current inlet 31 is decompressed and accelerated by the nozzle structure formed inside the water discharge device 3. The outlet portion of the water discharge device 3 may have a diffuser structure. Since the deep water outlet 2 2 of the pump 2 is connected to the decompressed interior of the water discharge device 3, the deep ocean water in the pump 2 is transferred from the deep water outlet 2 2 of the pump 2 to the inside of the water discharge device 3. Sucked out. The current outlet 3 2 of the water discharge device 3 blows the ocean current taken from the inlet 3 1 and the deep ocean water drawn from the pump pipe 2 obliquely upward. put out. This is because the nutrients are blown directly under the sea surface where plankton production efficiency is high, and the influence of waves on the ocean current intensifier is reduced.
取水装置 1に接続されるロープ 4の方向は、 力 F 3の方向により規定され、 放 水装置 3に接続されるロープ 4の方向は力 F 9の方向により規定される。 取水装 置 1に接続されるロープ 4と、 放水装置 3に接続されるロープ 4とは同じアンカ 一に接続されることが経済的である。 揚水管 2もロープ 4にて固定してもよい。 取水装置 1の構造を図 2〜図 4を参照して説明する。 図 2は取水装置 1の模式 垂直断面図、 図 3は取水装置 1の模式水平断面図、 図 4は取水装置 1の上半分を 正面から見た模式正面図である。  The direction of the rope 4 connected to the water intake device 1 is defined by the direction of the force F 3, and the direction of the rope 4 connected to the water discharge device 3 is defined by the direction of the force F 9. It is economical that the rope 4 connected to the intake device 1 and the rope 4 connected to the water discharge device 3 are connected to the same anchor. The pump pipe 2 may also be fixed with the rope 4. The structure of the water intake device 1 will be described with reference to FIGS. 2 is a schematic vertical cross-sectional view of the water intake device 1, FIG. 3 is a schematic horizontal cross-sectional view of the water intake device 1, and FIG. 4 is a schematic front view of the upper half of the water intake device 1 as viewed from the front.
取水装置 1は、 海流 6 0の動圧が揚水管 2に最大限に掛かるように海流 6 0の 上流側に向けて開口する取水口 1 1と、 この取水口 1 1から後方へへ向けて次第 に狭く形成された角錐形のラッパ管部 1 2と、 ラッパ管部 1 2の上端面から上方 へ伸びる案内翼 1 3と、 ラッパ管部 1 2の下端面から下方へ伸びる案内翼 1 4と を有している。 案内翼 1 3、 1 4は、 海流により海流が流れる方向とほぼ平行に 配置され、 これにより最大流量の海流が取水口 1 1に押し込まれる。 すなわち、 案内翼 1 3、 1 4は飛行機の垂直尾翼と同様の取水装置 1の姿勢保持機能をもつ。 飛行機の水平尾翼と同様、 水平方向に伸びる案内翼を取水装置 1に設けてもよレ、。 これにより取水装置 1の姿勢は更に安定する。 取水装置 1の姿勢は、 取水装置 1 の浮力 F l、 抗カ F 2、 揚水管 2から取水装置 1に掛かる力、 及びロープの引つ 張り力と、 これらの力の作用点により規定されるが、 これらの力の設計自体は容 易に解決可能な機械工学上の問題であり、 取水装置 1の姿勢は取水口 1 1への海 洋深層水の取り込みを最大限とするように維持されることができる。 ラツバ管部 1 2の海流方向と直角な方向の断面積は後方へ向けて連続的に狭くなっており、 ラッパ管部 (連結管部) 1 2の出口は揚水管 2の深層水流入口 2 1に連結されて いる。 これにより、 揚水管 2の深層水流入口 2 1から揚水管 2内に入る海洋深層 水の速度は増大する。  Intake device 1 includes intake port 1 1 that opens toward the upstream side of ocean current 60 so that the dynamic pressure of ocean current 60 is applied to pump 2 as much as possible, and from this intake port 1 1 to the rear. A gradually narrowed pyramid-shaped trumpet tube portion 12, a guide blade 13 extending upward from the upper end surface of the trumpet tube portion 12, and a guide blade extending downward from the lower end surface of the trumpet tube portion 1 2 1 4 And have. The guide vanes 1 3 and 1 4 are arranged almost parallel to the direction of the ocean current due to the ocean current, and the ocean current with the maximum flow is pushed into the intake 1 1. In other words, the guide wings 1 3 and 1 4 have the same function of maintaining the attitude of the water intake device 1 as the vertical tail of an airplane. As with the horizontal tail of an airplane, you can install a guide wing that extends horizontally in the water system 1. Thereby, the posture of the water intake device 1 is further stabilized. The attitude of the intake device 1 is defined by the buoyancy F 1 of the intake device 1, the anti-load F 2, the force applied to the intake device 1 from the pump pipe 2, the pulling force of the rope, and the point of action of these forces. However, the design of these forces is a mechanical problem that can be easily solved, and the attitude of the intake 1 is maintained to maximize the intake of deep sea water into the intake 1 1. Can. The cross-sectional area in the direction perpendicular to the ocean current direction of the lava tube portion 1 2 is continuously narrowed backward, and the outlet of the trumpet tube portion (connecting tube portion) 1 2 is the deep water inlet of the pumped tube 2 2 1 Are connected to As a result, the speed of deep ocean water entering the pumping pipe 2 from the deep water inlet 21 of the pumping pipe 2 increases.
揚水管 2の構造を図 5を参照して説明する。 図 5は揚水管 2の模式水平断面図 である。 揚水管 2は両端に締結用のリブをもつポリェチレン被覆鋼板からなるチ ユーブにより構成されており、 揚水管 2の水平断面は魚形となっている。 これに より、 海流に対する抗力が大幅に低減される。 揚水管 2は、 図 5の A— A断面で 分断した形状の半魚形板を 2枚締結してなる。 2 3は揚水管 2内に配置されたリ ブであり、 リブ 2 3は揚水管 2に掛かる負圧に対抗して揚水管 2の形状を維持し ている。 このようにすれば、 半魚形板を積層して輸送できるため、 輸送コストを 減らすことができる。 The structure of the pumping pipe 2 will be described with reference to FIG. FIG. 5 is a schematic horizontal cross-sectional view of the pumping pipe 2. The pumping pipe 2 is composed of a tube made of polyethylene-coated steel sheets with fastening ribs at both ends, and the horizontal cross section of the pumping pipe 2 has a fish shape. This greatly reduces drag against ocean currents. The pump pipe 2 is shown in section A—A in Fig. 5. It is made by fastening two half-fish-shaped plates with a split shape. 2 3 is a rib arranged in the pumping pipe 2, and the ribs 2 3 maintain the shape of the pumping pipe 2 against the negative pressure applied to the pumping pipe 2. In this way, it is possible to transport semi-fished plates in a stacked manner, thereby reducing transportation costs.
放水装置 3の構造を図 6を参照して説明する。 図 6は放水装置 3の模式垂直断 面図、 図 7は海流上流側からみた放水装置 3の模式部分正面図である。  The structure of the water discharge device 3 will be described with reference to FIG. 6 is a schematic vertical sectional view of the water discharge device 3, and FIG. 7 is a schematic partial front view of the water discharge device 3 seen from the upstream side of the ocean current.
放水装置 3は、 上流側の海流流入口 3 1と、 下流側の海流流出口 3 2とを連通 する海流增速管 3 3を有している。 海流增速管 3 3の上流部は、 海流流入口 3 1 から下流側へ狭くなるノズル部 3 4を有している。 ノズル部 3 4は海流流入口 3 1から流入した海流を増速し、 この増速によりノズル部 3 4内は減圧される。 ノ ズル部 3 4の上部には浮力を発生させるための空気室 3 5と、 海洋深層水を蓄積 する深層水室 3 6とが形成されている。 ノズル部 3 4、 空気室 3 5及び深層水室 3 6は、 図 7に示すように海流の向きと直角な水平方向へ長く延在している。 深 層水室 3 6の下端は揚水管 2の深層水流出口 2 2に連結されている。 揚水管 2の 深層水流出口 2 2には、 ノズル部 3 4内へ突出する放水筒部 3 7が固定され、 放 水筒部 3 7の下流端には放水口 3 8が設けられている。  The water discharger 3 has a current-increasing pipe 33 that communicates an upstream current inlet 31 and a downstream current outlet 32. The upstream portion of the ocean current speed increasing pipe 3 3 has a nozzle portion 3 4 that narrows from the ocean current inlet 3 1 to the downstream side. The nozzle portion 3 4 increases the speed of the ocean current flowing from the ocean current inlet 31, and the inside of the nozzle portion 3 4 is depressurized by this speed increase. An air chamber 35 for generating buoyancy and a deep water chamber 36 for accumulating deep ocean water are formed above the nozzle portion 34. The nozzle part 3 4, the air chamber 3 5, and the deep water chamber 3 6 extend long in the horizontal direction perpendicular to the direction of the ocean current as shown in FIG. The lower end of the deep water chamber 3 6 is connected to the deep water outlet 2 2 of the pump 2. At the deep water outlet 22 of the pumping pipe 2, a water discharge cylinder part 3 7 protruding into the nozzle part 3 4 is fixed, and a water discharge opening 3 8 is provided at the downstream end of the water discharge pipe part 37.
海流流入口 3 1からノズル部 3 4に流入した海流 6 0は、 ノズル部 3 4の断面 積の減少により、 増速減圧されて放水筒部 3 7の外周を通過し、 その後、 後方か つ斜め上方へ曲げられて海流流出口 3 2から斜め上方へ放出される。 ノズル部 3 4の減圧により、 放水筒部 3 7内の深層水 6 0 aは放水口 3 8から後方へ吸い出 される。 これにより、 深層水室 3 6は、 揚水管 2の深層水流出口 2 2から深層水 室 3 6を通じて放水筒部 3 7へ流入する。 3 9は、 深層水流出口 2 2近傍に配置 されてノズル部 3 4から出た海流及び深層水 6 0 aを斜め上方へ偏向する偏向翼 である。  The ocean current 6 0 flowing into the nozzle 3 4 from the ocean current inlet 3 1 is accelerated and depressurized due to the reduction in the cross-sectional area of the nozzle 3 4 and passes through the outer periphery of the water discharge cylinder 3 7, and then the rear It is bent obliquely upward and discharged obliquely upward from the ocean current outlet 32. Due to the pressure reduction of the nozzle part 34, the deep water 60 a in the water discharge cylinder part 37 is sucked backward from the water discharge port 38. As a result, the deep water chamber 36 flows from the deep water outlet 22 of the pumping pipe 2 through the deep water chamber 36 into the water discharge cylinder portion 37. Denoted at 39 is a deflecting blade that is arranged near the deep water outlet 22 and deflects the ocean current and the deep water 60a exiting from the nozzle 34 and obliquely upward.
上記した海洋深層水リフトアップ装置への船舶又は大型魚類の接近を回避する ための警報装置 5を図 8を参照して説明する。 この警報装置 5は、 放水装置 3の 上端に 1乃至複数固定されて略水苹方向へ超音波を定期的に放射し、 船舶や大型 魚類から反射した超音波を検出する超音波センサ 5 1と、 超音波センサ 5 1が受 け取った超音波信号に基づいて、 船舶又は大型魚類の大きさ、 位置を演算するこ とによりそれらの接近を判定する演算装置 5 2と、 船舶又は大型魚類の接近を検 出した場合に超音波周波数又は可聴周波数の音響エネルギーを水中に放射し、 力 つ、 音響や点滅信号を海面に浮かべたブイから放射する警報装置 5 3、 5 4とを 有している。 これらの装置への電力給電のために、 海流により駆動されるタービ ンに連結された発電機や、 海水電池を含む各種電池や波浪エネルギー発電装置な どが放水装置 3に装備される。 発電電力はバッテリに一時的に蓄電されることが 好適である。 超音波センサ 5 1の検出原理は従来周知の超音波式魚群探知機と同 じとすることができるため、 更なる説明を省略する。 これにより、 船舶や大型魚 類の接近時に相手に警報を発するため、 海洋深層水リフトアップ装置への衝突を 回避することができる。 警報を発する代わりに、 後述する沈降装置を作動させて 海洋深層水リフトアップ装置やそれに付帯する装置を沈降させてもよい。 An alarm device 5 for avoiding the approach of a ship or large fish to the above-mentioned deep sea water lift-up device will be described with reference to FIG. One or more alarm devices 5 are fixed to the upper end of the water discharge device 3 and periodically radiate ultrasonic waves in the direction of the water tank, and detect ultrasonic waves reflected from ships and large fish. Based on the ultrasonic signal received by the ultrasonic sensor 51, the computing device 52 that determines the approach of the ship or large fish by calculating the size and position of the ship or large fish, and the ship or large fish Check for approach It has alarm devices 5 3 and 5 4 that radiate ultrasonic energy or audible frequency acoustic energy into the water and emit sound and flashing signals from buoys floating on the sea surface. In order to supply power to these devices, the water discharger 3 is equipped with a generator connected to a turbine driven by ocean currents, various batteries including seawater batteries, and a wave energy generator. It is preferable that the generated power is temporarily stored in the battery. Since the detection principle of the ultrasonic sensor 51 can be the same as that of a conventionally known ultrasonic fish finder, further explanation is omitted. As a result, a warning is issued to the other party when a ship or a large fish approaches, and collision with the deep sea water lift-up device can be avoided. Instead of issuing an alarm, the subsidence device described below may be operated to cause the deep sea water lift-up device or a device attached thereto to sink.
上記した海洋深層水リフトアツプ装置の沈降装置 6を図 9を参照して説明する。 この沈降装置 6は、 圧力センサ 6 1と、 演算装置 6 2と、 巻き上げモータ 6 3と、 ロープ巻き取り ドラム 6 4とを有し、 これらの装置 6 :!〜 6 4は放水装置 3に固 定されている。 圧力センサ 6 1は、 放水装置 3の上端面又はその上方に突出する 棒体に固定されて、 水圧を検出する。  The settling device 6 of the above-mentioned deep sea water lift-up device will be described with reference to FIG. This settling device 6 has a pressure sensor 61, a calculation device 6 2, a hoisting motor 6 3, and a rope take-up drum 6 4. These devices 6:! To 6 4 are fixed to the water discharge device 3. It has been determined. The pressure sensor 61 is fixed to the upper end surface of the water discharge device 3 or a rod body protruding upward, and detects the water pressure.
演算装置 6 2は、 圧力センサ 6 1が検出した水圧の変動の大きさすなわち、 所 定時間内の水圧の最小値と最大値との差の絶対値を検出し、 この差の絶対値が所 定しきい値を超えたら波浪が大きいと判定することができる。 つまり、 波浪が大 きいと、 圧力センサ 6 1の検出圧力の変動量が大きくなるので、 この現象を利用 して波浪エネルギーを推定することができる。 また、 放水装置 3が沈降すると、 圧力センサ 6 1に作用する検出圧力の変動が減少するため、 放水装置 3の沈降を 停止することができる。 更に、 上記差の絶対値が第 2のしきい値より小さくなつ たら波浪が小さいとして放水装置 3を上昇させる。 これにより、 波浪が大きいと きのみ、 放水装置 3を沈降させてその破損を防止することができる。 また、 圧力 センサ 6 1の検出圧力の平均値により放水装置 3の深度を判定することもできる。 演算装置 6 2は、 波浪が大きいと判定した場合には卷き上げモータ 6 3を駆動し てこの巻き上げモータ 6 3と連結されたロープ卷き取り ドラム 6 4を巻き上げる。 これにより、 ロープ卷き取り ドラム 6 4はロープ 4を卷き取り、 放水装置 3は沈 降する。 演算装置 6 2は、 波浪が小さいと判定した場合には巻き上げモータ 6 3 を逆回転させてロープ卷き取り ドラム 6 4からロープ 4を引き出す。 これにより、 放水装置 3は自己の浮力により上昇する。 巻き上げモータ 6 3は回転しない場合 にロープ 4を拘束するロープロック機構を備えることが好ましい。 なお、 放水装 置 3を昇降させると同じ原理で、 取水装置 1も同期して昇降させることが好適で ある。 The arithmetic device 62 detects the magnitude of the fluctuation of the water pressure detected by the pressure sensor 61, that is, the absolute value of the difference between the minimum value and the maximum value of the water pressure within a predetermined time. If the constant threshold value is exceeded, it can be determined that the waves are large. In other words, if the wave is large, the amount of fluctuation in the detected pressure of the pressure sensor 61 increases, so that the wave energy can be estimated using this phenomenon. Further, when the water discharge device 3 sinks, the fluctuation of the detected pressure acting on the pressure sensor 61 decreases, so that the water discharge device 3 can stop settling. Further, if the absolute value of the difference becomes smaller than the second threshold value, the water discharge device 3 is raised because the wave is small. As a result, only when the waves are large, it is possible to sink the water discharge device 3 and prevent its breakage. In addition, the depth of the water discharge device 3 can be determined based on the average value of the pressure detected by the pressure sensor 61. When it is determined that the wave is large, the arithmetic device 62 drives the hoisting motor 63 and winds the rope hoisting drum 64 connected to the hoisting motor 63. As a result, the rope scraping drum 6 4 scrapes the rope 4 and the water discharge device 3 sinks. When it is determined that the wave is small, the arithmetic device 6 2 rotates the winding motor 6 3 in the reverse direction and pulls out the rope 4 from the rope winding drum 6 4. This The water discharge device 3 is raised by its own buoyancy. The hoisting motor 63 preferably has a rope lock mechanism for restraining the rope 4 when it does not rotate. It is preferable that the water intake device 1 is also moved up and down in synchronism with the same principle as when the water discharge device 3 is moved up and down.
沈降装置 6の変形例として、 放水装置 3に回動可能な水平翼を設けてもよい。 この水平翼を回動させると、 海流から水平翼が受ける抗カ及び揚力が変化するた め、 放水装置 3に作用する力の方向が変化し、 沈降深さを調節することができる。 なお、 水平翼を回動させる代わりに、 ロープ巻き取り機を用いて、 放水装置 3の 上流端のロープ 4を長くするか、 下流端のロープ 4を短くしてもよい。 これによ り、 海流に対する取水装置 1の迎え角が変化するため、 同様の作用により放水装 置 3の深さを調整することができる。 なお、 放水装置 3などに作用する波浪エネ ルギーを緩和するため、 ロープ 4にダンパを設けてもよい。  As a modification of the settling device 6, the water discharge device 3 may be provided with a rotatable horizontal blade. When this horizontal wing is rotated, the resistance and lift that the horizontal wing receives from the ocean current changes, so the direction of the force acting on the water discharge device 3 changes and the subsidence depth can be adjusted. Instead of rotating the horizontal blade, a rope winder may be used to lengthen the upstream end rope 4 of the water discharge device 3 or shorten the downstream end rope 4. As a result, the angle of attack of the water intake device 1 with respect to the ocean current changes, so that the depth of the water discharge device 3 can be adjusted by the same action. Note that a damper may be provided on the rope 4 in order to mitigate the wave energy acting on the water discharge device 3 and the like.
沈降装置 6の変形例として、 圧力センサ 6 1をソナー (超音波水中距離検出装 置) を採用してもよい。 このソナ一により海洋深層水リフトアップ装置の周辺に 存在する船舶や大型魚類の位置を計測する。 演算装置 6 2は、 計測した位置の変 化から船舶や大型魚類が接近して衝突する可能性を判定し、 衝突可能性が高い場 合に、 海洋深層水リフトアップ装置の沈降を指令する。 なお、 この沈降制御は、 海洋深層水リフトアツプ装置のみでなく、 この海洋深層水リフトアツプ装置近傍 に設置される魚槽の沈降制御にも利用することができる。  As a modification of the settling device 6, a sonar (ultrasonic underwater distance detection device) may be employed as the pressure sensor 61. This sona is used to measure the position of ships and large fish around the deep sea water lift-up device. Arithmetic device 62 determines the possibility of ships and large fish approaching and colliding from changes in the measured position, and commands the submersion of the deep sea water lift-up device when the collision probability is high. This subsidence control can be used not only for the deep ocean water lift-up device but also for the sedimentation control of fish tanks installed in the vicinity of the deep ocean water lift-up device.
放水装置 3の下流側には、 海洋生産装置である魚槽兼海草生育装置 7が配置さ れている。 魚槽兼海草生育装置 7を図 1 0を参照して説明する。 図 1 0は魚槽兼 海草生育装置 7の模式斜視図である。 魚槽兼海草生育装置 7の保持及び沈降制御 は、 放水装置 3と同様であるため、 その説明は省略する。  On the downstream side of the water discharge device 3, a fish tank and seaweed growing device 7 which is an ocean production device is arranged. The fish tank and seaweed growing apparatus 7 will be described with reference to FIG. FIG. 10 is a schematic perspective view of the fish tank / seaweed growing device 7. The holding and settling control of the fish tank / seaweed growing device 7 is the same as that of the water discharging device 3, and the description thereof is omitted.
魚槽兼海草生育装置 7は、 海流 6 0の上流側にて海流流入可能に海流方向と略 直角に延在する剛構造の上流側の剛性壁部 7 1と、 海流 6 0の下流側にて海流流 出可能に海流方向と略直角に延在する剛構造の下流側の剛性壁部 7 2と、 剛性壁 部 7 1、 7 2を連結して海流方向に延在するネット 7 3とを有する。 '剛性壁部 7 1は、 それぞれ海流方向と直角方向に延在する多数のポリエチレン被覆鋼管 7 1 1、 7 1 2、 7 1 3を組み立ててなる。 7 1 1は水平方向に延在するポリェチレ ン被覆鋼管、 7 1 2は垂直方向に延在するポリエチレン被覆鋼管、 7 1 3は斜め 方向に延在するポリエチレン被覆鋼管である。 The fish tank and seaweed growing device 7 has a rigid wall portion 7 1 on the upstream side of a rigid structure that extends substantially perpendicular to the direction of the ocean current so that the ocean current can flow in on the upstream side of the ocean current 60, and on the downstream side of the ocean current 60. The rigid wall 7 2 on the downstream side of the rigid structure that extends substantially at right angles to the ocean current direction and the net 7 3 that connects the rigid wall portions 7 1 and 7 2 and extends in the ocean current direction Have 'The rigid wall portion 7 1 is formed by assembling a number of polyethylene-coated steel pipes 7 1 1, 7 1 2, 7 1 3 extending in a direction perpendicular to the ocean current direction. 7 1 1 is a polyethylene-coated steel pipe extending in the horizontal direction, 7 1 2 is a polyethylene-coated steel pipe extending in the vertical direction, and 7 1 3 is diagonal A polyethylene-coated steel pipe extending in the direction.
剛性壁部 7 2は、 それぞれ海流方向と直角方向に延在する多数のポリエチレン 被覆鋼管 7 2 1、 7 2 2、 7 2 3を組み立ててなる。 7 2 1は水平方向に延在す るポリエチレン被覆鋼管、 7 2 2は垂直方向に延在するポリエチレン被覆鋼管、 7 2 3は斜め方向に延在するポリエチレン被覆鋼管である。 The rigid wall portion 7 2 is formed by assembling a number of polyethylene-coated steel pipes 7 2 1, 7 2 2, 7 2 3 extending in a direction perpendicular to the ocean current direction. 7 2 1 is a polyethylene-coated steel pipe extending in the horizontal direction, 7 2 2 is a polyethylene-coated steel pipe extending in the vertical direction, and 7 2 3 is a polyethylene-coated steel pipe extending in an oblique direction.
剛性壁部 7 1のポリエチレン被覆鋼管 7 1 1と剛性壁部 7 2のポリエチレン被 覆鋼管 7 2 1とは多数のロープ 7 3 0により接続され、 剛性壁部 7 1のポリェチ レン被覆鋼管 7 1 2と剛性壁部 7 2のポリエチレン被覆鋼管 7 2 2とは多数の口 ープ 1 3 1により接続されている。 各ロープ 7 3 0は横ロープ 7 3 2により接続 され、 各ロープ 7 3 1は横ロープ 7 3 3により接続されて、 ネット 7 3を構成し ている。 剛性壁部 7 1、 7 2及びネット 7 3は、 内部に魚保持空間をもつ魚槽兼 海草生育装置 7を構成している。 上流側の剛性壁部 7 1は、 海洋深層水リフトァ ップ装置の放水装置 3と同様にロープにより海底のアンカーに締結されるか、 放 水装置 3に締結されている。 ネット 7 3及び下流側の剛性壁部 7 2、 海流により 剛性壁部 7 1の下流側に配置される。 魚槽兼海草生育装置 7の底面を構成する口 ープ 7 3 0は、 海草の根が定着する海草定着ベースを兼ねている。  Polyethylene-coated steel pipe 7 1 1 of rigid wall 7 1 and polyethylene-coated steel pipe 7 2 1 of rigid wall 7 2 are connected by a number of ropes 7 3 0, and polyethylene-coated steel pipe of rigid wall 7 1 7 1 2 and the polyethylene-coated steel pipe 7 2 2 of the rigid wall portion 7 2 are connected by a number of ports 1 3 1. Each rope 7 3 0 is connected by a horizontal rope 7 3 2, and each rope 7 3 1 is connected by a horizontal rope 7 3 3 to form a net 7 3. The rigid walls 7 1 and 7 2 and the net 7 3 constitute a fish tank / seaweed growing device 7 having a fish holding space inside. The upstream rigid wall portion 71 is fastened to an anchor at the seabed by a rope or fastened to the water discharge device 3 in the same manner as the water discharge device 3 of the deep sea water lift-up device. The net 73 and the downstream rigid wall 7 2 are disposed downstream of the rigid wall 71 by the ocean current. The mouth group 7 3 0 constituting the bottom of the fish tank / seaweed growing device 7 also serves as a seagrass fixing base on which the roots of seagrass are established.
魚槽兼海草生育装置 7に設けた魚脱出装置を図 1 1、 図 1 2を参照して説明す る。 図 1 1は魚槽兼海草生育装置 7の側壁部 (魚保持スペース区画体の一部) 7 0に沿って設けられた魚脱出防止装置を示す模式平面図、 図 1 2は魚脱出防止装 置の側壁部の一部を示す模式正面図である。  The fish escape device installed in the fish tank / seaweed growing device 7 will be described with reference to FIGS. Fig. 1 1 is a schematic plan view showing a fish escape prevention device provided along the side wall of the fish tank and seaweed growing device 7 (part of the fish holding space compartment) 70. Fig. 1 2 is a fish escape prevention device. It is a model front view which shows a part of side wall part of an installation.
8は、 魚槽兼海草生育装置 7の側壁部 7 0に固定された指向性の超音波放射装 置であり、 この側壁部に沿って延在するケーブルから給電されている。 矢印は超 音波放射方向を示す。 すなわち、 超音波放射装置 8は、 側壁部 7 0の延在方向へ 超音波を放射する。 これにより、 魚槽兼海草生育装置 7の内部の魚保持スペース Sから魚槽兼海草生育装置 7の側壁部 7 0を超えて外部へ魚が逃げ出すのを防止 することができる。 魚保持スペース Sの上端面及び下端面にも同様の構造が魚保 持スペース区画体の残部として配置されており、 これにより、 魚が魚保持スぺー ス Sから外部に脱出するのが防止される。 また、 海洋生物の付着や交換費用が大 きい漁網維持費用の低減も可能となる。 なお、 魚保持スペース Sの上端面への超 音波放射装置 8の配置は省略可能である。 また、 超音波放射装置 8の代わりに、 平行配置された 2本のロープにそれぞれ電極を設け、 これらの電極間に電流を流 して、 魚の脱出を防止してもよい。 7 7は魚槽兼海草生育装置 7の側壁部をなす ロープである。 なお、 超音波の代わりに、 特定波長の音波たとえばィルカゃシャ チの発生声を放射してもよい。 あるいは、 一本のロープに所定間隔を隔てて多数 の電極を設け、 互いに隣接する電極間で通電を行ってもよい。 Reference numeral 8 denotes a directional ultrasonic radiation device fixed to the side wall portion 70 of the fish tank / seaweed growing device 7, and power is supplied from a cable extending along the side wall portion. The arrow indicates the direction of ultrasonic radiation. That is, the ultrasonic radiation device 8 radiates ultrasonic waves in the extending direction of the side wall part 70. Accordingly, it is possible to prevent the fish from escaping from the fish holding space S inside the fish tank / seaweed growing device 7 beyond the side wall portion 70 of the fish tank / seaweed growing device 7 to the outside. A similar structure is also arranged on the upper and lower end surfaces of the fish holding space S as the remainder of the fish holding space compartment, thereby preventing fish from escaping from the fish holding space S to the outside. The In addition, fishing net maintenance costs can be reduced due to the high cost of attaching and replacing marine organisms. The arrangement of the ultrasonic radiation device 8 on the upper end surface of the fish holding space S can be omitted. Also, instead of the ultrasonic radiation device 8, An electrode may be provided on each of the two ropes arranged in parallel, and a current may be passed between these electrodes to prevent fish from escaping. 7 7 is a rope that forms the side wall of the fish tank / seaweed growing device 7. Instead of ultrasonic waves, sound waves of a specific wavelength, for example, iruka killer whales may be emitted. Alternatively, a large number of electrodes may be provided on a single rope at a predetermined interval, and energization may be performed between adjacent electrodes.
魚脱出防止装置である超音波放射装置 8の制御を図 1 3に示すプロック図を参 照して説明する。  The control of the ultrasonic radiation device 8, which is a fish escape prevention device, will be described with reference to the block diagram shown in FIG.
魚脱出防止装置 9は、 魚槽兼海草生育装置 7の側壁部 7 0や上端面及び下端面 近傍の魚の存在を検出するソナー 9 1と、 このソナー 9 1の出力信号に基づいて 魚保持スペース区画体近傍に魚が存在するか否かを判定し、 魚保持スペース区画 体近傍に魚が存在すると判定した場合に超音波放射装置 8に超音波放射を指令す る制御装置 9 2と、 超音波放射装置 8とからなる。 ソナー 9 1は、 指向性超音波 を放射し、  The fish escape prevention device 9 includes a sonar 9 1 for detecting the presence of fish in the side wall portion 70 of the fish tank and seaweed growing device 7 and the vicinity of the upper end surface and the lower end surface, and a fish holding space based on the output signal of the sonar 9 1. It is determined whether or not there are fish in the vicinity of the compartment, and if it is determined that there is a fish in the vicinity of the fish holding space compartment, the control device 9 2 that instructs the ultrasonic radiation device 8 to emit ultrasonic waves, And a sound wave emitting device 8. Sonar 9 1 emits directional ultrasound,
対象で反射した超音波を検出して信号電圧に変換し、 制御装置 9 2に出力する。 制御装置 9 2は、 放射時点から所定時間内における反射超音波に対応する信号電 圧の大きさが所定レベルを超える場合に魚保持スペース区画体近傍に魚が存在す ると判定し、 超音波放射装置 8に超音波放射を指令する。 ただし、 ロープや網な どの存在のために、 固定的に反射する超音波が存在するため、 制御装置 9 2は、 一定大きさの反射超音波に相当する信号電圧を入力信号電圧から差し引いてもよ い。 これにより、 安定な電力生産が容易でない海洋において省電力をはかりつつ 安価で大容量の魚槽を実現することができる。 The ultrasonic wave reflected from the object is detected and converted to a signal voltage, which is output to the controller 92. The control device 92 determines that there is a fish in the vicinity of the fish holding space partition when the magnitude of the signal voltage corresponding to the reflected ultrasonic wave within a predetermined time from the radiation time exceeds a predetermined level. Command the radiation device 8 to emit ultrasonic waves. However, because there is an ultrasonic wave that is fixedly reflected due to the presence of ropes and nets, the controller 92 can subtract the signal voltage corresponding to the reflected ultrasonic wave of a certain magnitude from the input signal voltage. Good. This makes it possible to realize an inexpensive and large-capacity fish tank while saving power in the ocean where stable power production is not easy.
なお、 ソナー 9 1から遠く離れた魚体からの反射超音波量は、 近くの魚体から の反射超音波量よりも小さくなるため、 制御置 9 2は、 ソナー 9 1から魚体まで の距離に応じて、 入力信号電圧 (反射超音波の量) を補正するようにしてもよレ、。 その他、 魚の位置の変化から魚が魚保持スペースから魚保持スペース区画体に接 近中か、 あるいは外部海洋から魚保持スペース区画体へ接近中かを判別し、 後者 の場合には超音波放射を停止して、 魚を魚保持スペースに取り込むようにしても よい。 なお、 多数のソナー 9 1を分散配置し、 各ソナー 9 1が近傍の超音波放射 装置 8だけを制御するようにしてもよい。 651 The amount of reflected ultrasound from a fish far away from the sonar 9 1 is smaller than the amount of reflected ultrasound from a nearby fish, so the control unit 9 2 depends on the distance from the sonar 9 1 to the fish. The input signal voltage (amount of reflected ultrasound) may be corrected. In addition, it is determined whether the fish is approaching the fish holding space compartment from the fish holding space, or approaching the fish holding space compartment from the external ocean based on the change in the position of the fish. You may stop and take the fish into the fish holding space. A large number of sonars 9 1 may be distributed and each sonar 9 1 may control only the nearby ultrasonic radiation device 8. 651
PCT/JP2006/304541 産業上の利用可能性  PCT / JP2006 / 304541 Industrial applicability
地球温暖化を経済的に防止する装置を経済的に運営することができる  Can economically operate equipment that economically prevents global warming

Claims

請求の範囲 The scope of the claims
1 . 海洋の少なくとも表層部に配置される海洋生産装置において、  1. In marine production equipment placed at least on the surface of the ocean,
海流が流れる前記海洋の表層部に開口する深層水流出口と、 前記海洋の深層部 に開口する深層水流入口と、 前記表層部と前記深層部との間に配置されて前記深 層水流入口から流入した前記海洋深層水を上方へ揚水した後、 前記深層水流出口 から排出させる筒部とを有する揚水管と、  A deep water outlet opening in the surface layer of the ocean through which an ocean current flows, a deep water inlet opening in the deep layer of the ocean, and an inflow from the deep water inlet arranged between the surface layer and the deep layer portion A pumping pipe having a cylindrical portion that is discharged from the deep water outlet after pumping the deep sea water upward.
前記揚水管の深層水流入口及び深層水流出口に連結されて前記海流のエネルギ 一に基づいて前記揚水管内の前記海洋深層水を上方に付勢する深層水付勢装置と、 前記揚水管及び深層水付勢装置の移動を規制する移動規制装置と、  A deep water urging device connected to a deep water inlet and a deep water outlet of the pumping pipe to urge the deep seawater in the pumping pipe upward based on energy of the ocean current; and the pumping pipe and the deep water A movement restriction device for restricting movement of the biasing device;
を備えることを特徴とする海洋生産装置。  A marine production apparatus comprising:
2 . 請求項 1記載の海洋生産装置において、  2. The marine production apparatus according to claim 1,
前記深層水付勢装置は、 前記深層部に配置されて前記海流の動圧を受ける方向 へ開口する取水口と、 前記取水口と前記揚水管の深層水流入口とを接続する連結 筒部とを有し、 前記連結筒部は、 前記取水口から前記揚水管の深層水流入口へ向 けて細くなつている海洋生産装置。  The deep water urging device includes: a water intake opening disposed in the deep water portion and opening in a direction to receive the dynamic pressure of the ocean current; and a connecting tube portion connecting the water intake and the deep water water flow inlet of the pumping pipe. The connecting cylinder part is an offshore production device that narrows from the intake port toward the deep water inlet of the pumping pipe.
3 . 請求項 1記載の海洋生産装置において、  3. The marine production apparatus according to claim 1,
前記深層水付勢装置は、 前記表層部に配置されて前記海流の動圧を受けない方 向へ開口する放水口と、 前記放水口と前記揚水管の深層水流出口とを接続する連 結筒部とを有する海洋生産装置。  The deep water urging device is connected to the water outlet that is disposed in the surface layer portion and opens in a direction not receiving the dynamic pressure of the ocean current, and a connecting cylinder that connects the water outlet and the deep water outlet of the pumping pipe. And a marine production apparatus.
4 . 請求項 3記載の海洋生産装置において、  4. In the marine production apparatus according to claim 3,
前記深層水付勢装置は、 前記表層部に配置されて前記海流が流入する海流流入 口、 及び、 前記海流が流出する海流流出口を有して内部の前記海流を外部の海流 よりも増速して内部の水圧を外部の水圧よりも相対的に低下させる海流増速管を 有し、 前記放水口は、 前記海流増速管に連通する海洋生産装置。  The deep water urging device has a current inlet that is arranged in the surface layer and into which the ocean current flows, and a current outlet from which the ocean current flows out, and the inner ocean current is accelerated more than the outer ocean current. And an ocean current speed increasing pipe that lowers the internal water pressure relative to the external water pressure, wherein the water outlet is in communication with the current speed increasing pipe.
5 . 請求項 1記載の海洋生産装置において、  5. The marine production apparatus according to claim 1,
前記揚水管は、 略魚形断面を有する海洋生産装置。  The pumping pipe is a marine production apparatus having a substantially fish-shaped cross section.
6 . 請求項 1記載の海洋生産装置において、  6. In the marine production apparatus according to claim 1,
前記揚水管の深層水流出口の後方に延在する魚槽を有し、 前記魚槽は、 海流上 流側にて海流流入可能に海流方向と略直角に延在する剛構造の上流側の剛性壁部 と、 海流下流側にて海流流出可能に海流方向と略直角に延在する剛構造の下流側 の剛性壁部と、 前記両剛性壁部を連結して海流方向に延在するネットとを有する 海洋生産装置。 A fish tank extending behind a deep water outlet of the pumping pipe, and the fish tank has an upstream stiffness of a rigid structure extending substantially perpendicular to the ocean current direction so that the ocean current can be introduced on the upstream side of the ocean current The wall and the downstream side of the rigid structure that extends at a right angle to the ocean current direction so that the ocean current can flow out at the downstream side of the ocean current A marine production apparatus comprising: a rigid wall portion; and a net extending in the ocean current direction by connecting the two rigid wall portions.
7 . 請求項 1記載の海洋生産装置において、  7. The marine production apparatus according to claim 1,
前記揚水管の上部近傍に設置されて大型障害物の接近を検出するセンサと、 前記揚水管の上部近傍に設置されて警報を発する警報装置と、  A sensor installed near the upper part of the pumping pipe to detect the approach of a large obstacle, an alarm device installed near the upper part of the pumping pipe and issuing an alarm,
前記センサの出力信号に基づいて前記大型障害物の接近を検出した場合に前記 警報装置に警報出力を指令する制御装置と、  A control device that instructs the alarm device to output an alarm when an approach of the large obstacle is detected based on an output signal of the sensor;
を有する海洋生産装置。  With marine production equipment.
8 . 海洋の少なくとも表層部に配置される海洋生産装置において、  8. In marine production equipment placed at least on the surface of the ocean,
多数の開口を有して內部の魚保持空間を区画する魚保持スペース区画体と、 前記魚保持スペース区画体に固定されて前記魚保持空間の周囲に向けて音波を 放射する魚脱出防止装置を有することを特徴とする海洋生産装置。  A fish holding space partition body having a plurality of openings and partitioning a fish holding space in a buttock; and a fish escape prevention device that is fixed to the fish holding space partition body and emits sound waves toward the periphery of the fish holding space. A marine production apparatus comprising:
9 . 請求項 8記載の海洋生産装置において、  9. The marine production apparatus according to claim 8,
前記魚保持スペース区画体に固定されて前記魚保持スペースからの魚の脱出行 動を検出する魚脱出検出センサと、  A fish escape detection sensor that is fixed to the fish holding space compartment and detects the escape behavior of the fish from the fish holding space;
前記魚脱出検出センサの出力信号に基づいて前記魚の脱出行動を検出した場合 に前記魚脱出防止装置の作動を指令する制御装置とを有する海洋生産装置。 A marine production apparatus comprising: a control device that commands operation of the fish escape prevention device when the fish escape behavior is detected based on an output signal of the fish escape detection sensor.
1 0 . 請求項 9記載の海洋生産装置において、 1 0. In the marine production apparatus according to claim 9,
前記制御装置は、 前記魚脱出検出センサの出力信号に基づいて外部の魚が前記 水槽に侵入することを検出した場合に前記魚脱出防止装置の作動を禁止する海洋 生産装置。  The said control apparatus is a marine production apparatus which prohibits the operation | movement of the said fish escape prevention apparatus, when it detects that an external fish penetrate | invades into the said tank based on the output signal of the said fish escape detection sensor.
1 1 . 海洋の少なくとも表層部に配置される海洋生産装置において、  1 1. In marine production equipment placed at least on the surface of the ocean,
波力エネルギーの大きさ及び大型障害物の接近を検出するセンサと、 前記海洋生産装置の沈降を行う沈降装置と、  A sensor for detecting the magnitude of wave energy and the approach of a large obstacle, a settling device for sinking the marine production device,
前記波力エネルギーが所定しきレ、値を超えると判定した場合及ぴ前記大型障害 物が接近したと判定した場合の少なくとも一方において、 前記沈降装置に沈降を 指令する沈降制御装置と、  A settling control device that commands the settling device to settling in at least one of a case where it is determined that the wave energy exceeds a predetermined threshold value and a case where it is determined that the large obstacle has approached;
を備えることを特徴とする海洋生産装置。  A marine production apparatus comprising:
PCT/JP2006/304541 2006-03-02 2006-03-02 Apparatus for marine production WO2007099651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304541 WO2007099651A1 (en) 2006-03-02 2006-03-02 Apparatus for marine production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304541 WO2007099651A1 (en) 2006-03-02 2006-03-02 Apparatus for marine production

Publications (1)

Publication Number Publication Date
WO2007099651A1 true WO2007099651A1 (en) 2007-09-07

Family

ID=38458774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304541 WO2007099651A1 (en) 2006-03-02 2006-03-02 Apparatus for marine production

Country Status (1)

Country Link
WO (1) WO2007099651A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312765A (en) * 2018-06-27 2021-02-02 横河电机株式会社 Marine biological resource production method and marine biological resource production device
CN112535157A (en) * 2020-11-30 2021-03-23 重庆市水产科学研究所 Fish pumping machine
CN113396890A (en) * 2021-07-19 2021-09-17 重庆交通大学 Protection device is driven with fish to reef blasting under water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106239A (en) * 1982-12-07 1984-06-19 海洋科学技術センタ− Artifical flow-out apparatus in deep water
JPS6339529A (en) * 1986-08-05 1988-02-20 旭化成株式会社 Eutrophication of surface water
JP2715253B2 (en) * 1994-03-14 1998-02-18 鹿島建設株式会社 Upwelling generator
JPH1098973A (en) * 1996-09-30 1998-04-21 Teruo Kinoshita Marine plankton culture unit
JP2002306016A (en) * 2001-04-17 2002-10-22 Kawasaki Heavy Ind Ltd Sea water-upwelling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106239A (en) * 1982-12-07 1984-06-19 海洋科学技術センタ− Artifical flow-out apparatus in deep water
JPS6339529A (en) * 1986-08-05 1988-02-20 旭化成株式会社 Eutrophication of surface water
JP2715253B2 (en) * 1994-03-14 1998-02-18 鹿島建設株式会社 Upwelling generator
JPH1098973A (en) * 1996-09-30 1998-04-21 Teruo Kinoshita Marine plankton culture unit
JP2002306016A (en) * 2001-04-17 2002-10-22 Kawasaki Heavy Ind Ltd Sea water-upwelling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312765A (en) * 2018-06-27 2021-02-02 横河电机株式会社 Marine biological resource production method and marine biological resource production device
CN112535157A (en) * 2020-11-30 2021-03-23 重庆市水产科学研究所 Fish pumping machine
CN113396890A (en) * 2021-07-19 2021-09-17 重庆交通大学 Protection device is driven with fish to reef blasting under water

Similar Documents

Publication Publication Date Title
US11118559B2 (en) Inertial hydrodynamic pump and wave engine
US10161379B2 (en) Coastal protection and wave energy generation system
JP5311540B2 (en) Air bubble entrainment prevention device for ships
TWI490405B (en) The construction of hydroelectric power plant
US20110148117A1 (en) Underwater turbine with finned diffuser for flow enhancement
KR101642949B1 (en) Off-shore floating power generation
KR20110010602A (en) Frictional resistance reduction device for ship
US20230078347A1 (en) Inertial hydrodynamic pump and wave engine
US9709022B2 (en) Apparatus for generating energy
CN106379507B (en) The environmental protection and energy saving ship pneumatically promoted
JP2019509934A (en) Floating platform
WO2021102396A1 (en) Self-charging autonomous submersible vessel
KR101642948B1 (en) Off-shore floating power generation
CN206107524U (en) Pneumatic propulsive environmental protection and energy saving ship
WO2007099651A1 (en) Apparatus for marine production
GB2487448A (en) Hydro-kinetic Water Turbine Duct
JP2007189972A (en) Marine production apparatus
KR20190079552A (en) Minimal bow wave system
JPH1098973A (en) Marine plankton culture unit
KR102124538B1 (en) Movable fish cage and moving system of fish cage
JP2011196361A (en) Floating power-generating device
WO2018191779A1 (en) "wave energy converter"
JP6393893B1 (en) Acting waterway
AU2020223704A1 (en) Wave Energy Converter
WO2021068030A1 (en) "wave energy converter"

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06728808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP