WO2007097133A1 - Furnace monitoring apparatus and push-out ram having the same - Google Patents

Furnace monitoring apparatus and push-out ram having the same Download PDF

Info

Publication number
WO2007097133A1
WO2007097133A1 PCT/JP2007/050288 JP2007050288W WO2007097133A1 WO 2007097133 A1 WO2007097133 A1 WO 2007097133A1 JP 2007050288 W JP2007050288 W JP 2007050288W WO 2007097133 A1 WO2007097133 A1 WO 2007097133A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
furnace
heat
cooling air
ram
Prior art date
Application number
PCT/JP2007/050288
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Sato
Hironobu Inamasu
Kiyoshi Nakata
Keiji Yoshimoto
Original Assignee
Kansai Coke And Chemicals Co., Ltd.
Shi Mechanical & Equipment Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke And Chemicals Co., Ltd., Shi Mechanical & Equipment Inc. filed Critical Kansai Coke And Chemicals Co., Ltd.
Priority to CN2007800067156A priority Critical patent/CN101389917B/en
Priority to US12/224,336 priority patent/US8157968B2/en
Priority to KR1020087017336A priority patent/KR101299497B1/en
Priority to PL07706635T priority patent/PL2003413T3/en
Priority to EP07706635.5A priority patent/EP2003413B1/en
Publication of WO2007097133A1 publication Critical patent/WO2007097133A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B41/00Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
    • C10B41/02Safety devices, e.g. signalling or controlling devices for use in the discharge of coke for discharging coke
    • C10B41/04Safety devices, e.g. signalling or controlling devices for use in the discharge of coke for discharging coke by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B33/00Discharging devices; Coke guides
    • C10B33/08Pushers, e.g. rams
    • C10B33/10Pushers, e.g. rams for horizontal chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present invention relates to an in-furnace observation apparatus for observing the inside of a high-temperature furnace and an extrusion ram with an in-furnace observation apparatus suitable for in-furnace observation of a coatus furnace.
  • a coke oven has a structural force in which carbonization chambers and combustion chambers are alternately arranged in the direction of the furnace group. Coal is introduced into the carbonization chamber from a coal charging vehicle that runs in the direction of the furnace group of the cotass furnace. The charged coal is transferred to the carbonizing chamber, and the charged coal is carbonized to produce coatas.
  • the adhesion state of carbon is slightly different even in daily operations, and observing the state of the furnace wall is an extremely important inspection item in order to obtain a stable operation.
  • the temperature inside the furnace is as high as about 1100 ° C, and it is not close to the furnace.
  • the furnace width is as narrow as around 450mm, while the depth is as long as about 15m. There are many restrictions such as poor visibility and limited time of about 2 to 10 minutes depending on the operating rate.
  • this type of in-furnace observation apparatus has a double cylindrical cooling cylinder 62 composed of an outer cooling cylinder 60 and an inner cooling cylinder 61, There is an observation window 63 on the side that also has heat-resistant glass.
  • a reflecting mirror 64 is disposed in the cooling cylinder 62 so as to face the observation window 63, and the optical path bent by the reflecting mirror 64 is guided to the zoom lens 65, thereby zooming up.
  • the furnace wall can be photographed by the CCD camera 66.
  • cooling water or cooling air F is introduced into the passage between the outer cooling cylinder 60 and the inner cooling cylinder 61.
  • thermoelectric cooling elements 67 that generate the Peltier effect are disposed on the inner wall of the cooling cylinder 62, so that the measuring device such as the CCD camera 66 is protected from the high-temperature cover. .
  • the in-furnace observation apparatus described above, it is possible to observe even the inner part of the furnace without being an expert.
  • the image of the image displayed on the monitor screen is distorted or out of focus just by applying vibration, due to the configuration of using the reflector 64 etc. to observe the furnace wall indirectly. In some cases, the observation inside the furnace cannot be performed accurately.
  • the reason for indirectly observing the inside of the furnace using the reflecting mirror 64 as described above is that if the CCD camera 66 is arranged in the vicinity of the observation window 63 in a double cylinder shape, the CCD camera 66 This is because they break down when exposed to high temperatures.
  • thermoelectric cooling element 67 since the cooling by the thermoelectric cooling element 67 is indirect cooling via air, the cooling rate is slow and the temperature control is difficult. Since the cooling force is also cooling in the sealed chamber, the air is not agitated, and a uniform cooling effect and the required temperature drop cannot be obtained. It is impossible to increase the size of the thermoelectric cooling element 67 because the space in the cooling cylinder 62 is limited even if the capacity of the thermoelectric cooling element 67 is increased.
  • the present invention has been made in consideration of the problems in the conventional in-furnace observation apparatus as described above, and the first object is to observe the inside of the high-temperature furnace with high accuracy.
  • the second object is to provide an extrusion ram with an in-furnace observation device that allows the in-furnace observation device to be installed on the ram beam by achieving compactness. Disclosure of the invention
  • the present invention is housed in a vicinity of the casing having a cooling air introduction section and a discharge section that is discharged after the cooling air is used for cooling, and in the vicinity of the discharge section in the casing.
  • the imaging device includes an imaging element, a plate-shaped thermoelectric cooling element disposed with the heat absorption surface surrounding the periphery of the imaging element body, and the imaging element body and the thermoelectric cooling element. This is an in-furnace observation apparatus in which a heat conductor that fills the gap between the heat absorption surface and a cooling fin formed on the heat radiation surface of the thermoelectric cooling element is integrated.
  • the imaging device if the imaging device is housed in a casing in a state of being housed in a cylindrical heat insulating portion, cooling for flowing cooling air between the outer wall of the heat insulating portion and the inner wall of the housing. A passage is formed, and heat entering the housing through the cooling passage can be absorbed and discharged from the discharge portion.
  • a heat insulating material is attached to the inner wall of the housing. As a result, heat entering the cooling passage from the housing can be suppressed.
  • an observation window is provided at a position facing the lens of the image sensor on the front surface of the housing, and the observation window is formed of a laminated body of heat-resistant glass, an infrared absorption filter, and an infrared reflection filter. preferable.
  • the gap between the cooling fins forms a second cooling passage for flowing cooling air.
  • the cooling air passed through the cooling passage to suppress the intrusion of heat from the outside of the housing, the cooling air can be passed through the second cooling passage to increase the cooling efficiency of the cooling fins.
  • the thermoelectric cooling element can be stably operated.
  • a direction change part can be formed. This redirected cooling air enters the observation window. It acts to blow off the adhering dust.
  • the present invention is an extrusion ram with an in-furnace observation device in which the in-furnace observation device having the above-described configuration is installed in a ram beam of an extrusion ram disposed in a coke oven.
  • thermoelectric cooling element In the extrusion ram with an in-furnace observation device, a hose that supplies cooling air to the in-furnace observation device, and an image sensor and a thermoelectric cooling element are supplied into heat-insulated piping laid on the ram beam.
  • a cable for outputting a photographed image and a cable for transmitting a control signal for controlling the temperature of the thermoelectric cooling element can be accommodated.
  • the inside of the high-temperature furnace can be observed with high accuracy.
  • the in-furnace observation device can be installed on the ram beam, and at the time of daily coatus extrusion work, It becomes possible to observe the carbonization chamber with high accuracy.
  • FIG. 1 is a side view showing a state where an in-furnace observation apparatus according to the present invention is installed in an extrusion ram.
  • FIG. 2 is an enlarged longitudinal sectional view of the in-furnace observation apparatus shown in FIG.
  • FIG. 3 (a) is a perspective view having a partially cutaway showing the configuration of a camera unit incorporated in the in-furnace observation apparatus, and (b) is a front view thereof.
  • FIG. 4 is an enlarged view of the main part showing the filter part of the in-furnace observation apparatus shown in FIG.
  • FIG. 5 is a front view showing the configuration of the front side of the in-furnace observation apparatus.
  • FIG. 6 is a side view for explaining a conventional in-furnace observation method performed during the coatus extrusion operation.
  • FIG. 7 is a cross-sectional view showing an internal configuration of a conventional in-furnace observation apparatus.
  • the Cortus extruder includes an extrusion ram 3 having a ram head 1 and a ram beam 2 for moving the ram head 1 back and forth in the horizontal direction. Will be pushed out of the furnace by the ram head 1!
  • a support stand 4 is erected on the ram beam 2 and close to the ram head 1, and an in-furnace observation device 5 is installed on the support stand 4.
  • A indicates the direction of extrusion of the extrusion ram 3.
  • B is a furnace observation device
  • ⁇ a indicates the angle of view of a CCD camera (described later) mounted in the in-furnace observation device 5.
  • the signal system of the in-furnace observation device 5 is a signal unrolled from one side of the drum (in the drum shaft) of the scraping device 6 (in the drum shaft) via a Z power cable 7 and a controller in the extruder operating room not shown
  • the image inside the furnace can be observed in the cab. If necessary, the video can be recorded on a recording device.
  • the signal system includes a power line for supplying power to the CCD camera and the thermoelectric cooling element (Peltier element), an output line for outputting an image signal photographed by the CCD camera, and a thermoelectric cooling element.
  • a control signal line for controlling the temperature is included.
  • the cooling system of the in-furnace observation apparatus 5 is connected to a tank 9 for storing cooling air via a hose 8 unwound from the other side of the drum of the same scraping apparatus 6, and this tank Connected to 9 is a compressor 10 for maintaining the cooling air at a predetermined pressure (pressure that can supply pressure lost due to pressure loss of piping, for example, 0.4 to 0.7 MPa).
  • a predetermined pressure pressure that can supply pressure lost due to pressure loss of piping, for example, 0.4 to 0.7 MPa.
  • [0036] 11 is an image conversion device for a CCD camera (described later), a converter / temperature control device including a power supply device for a thermoelectric cooling element (described later), and a ram beam that is not affected by the heat in the furnace. 2 Arranged at the rear end.
  • the signal Z power cable 7 and the hose 8 pass from the rear end of the ram beam 2 through the heat insulating pipe 12 laid in the ram beam 2, and to the in-furnace observation device 5 installed on the front side of the ram beam 2. It is connected.
  • the signal Z power cable 7 uses a heat-resistant cable.
  • FIG. 2 is an enlarged view of the in-furnace observation apparatus 5.
  • the in-furnace observation apparatus 5 has a heat-insulated box-shaped casing 13, and a CCD camera, a thermoelectric cooling element, a thermocouple for temperature management, etc. are provided in the casing 13 with the minimum necessary. Look at the device A camera with an electronic cooling device is housed as a combined imaging device.
  • the housing 13 is disposed on the front side of a rectangular tube portion 13a, a rear plate 13b that closes a rear end surface of the rectangular tube portion 13a (behind with respect to the observation direction B). It consists of a front plate 13c.
  • a ceramic heat insulating material 14 is attached to each of the inner surface of the rectangular tube portion 13a and the inner surface of the rear plate 13b.
  • the rear plate 13b is provided with a connecting portion 15 for connecting the pipe 12, and the cooling air ca is introduced into the housing 13 through the pipe 12. Further, an image signal is output through the photographing cable 7a accommodated in the signal Z power cable 7, and a control signal for controlling the temperature of the thermoelectric cooling element is transmitted through the control cable 7b.
  • the pipe 12 in the connecting portion 15 functions as an introduction portion for the cooling air ca.
  • FIG. 3 (a) shows the configuration of the camera with an electronic cooling device 20 in a perspective view having a part of the cutout
  • FIG. 3 (b) shows a front view thereof.
  • a camera with an electronic cooling device 20 includes a CCD camera 16 as an image sensor, a thermal conductor 17 (FIG. 2) disposed around the CCD camera 16, and a thermal conductor.
  • Thermoelectric cooling element group 18 Fig. 2) arranged outside 17 and cooling fin group 19 (Fig. 2) arranged outside these thermoelectric cooling element group 18 are integrated. ing.
  • the CCD camera 16 for example, a small color CCD camera equipped with a 1Z2 type CCD having 400,000 effective pixels can be used.
  • the effective number of pixels of the CCD camera 16 can be observed in the furnace if it is about 400,000 pixels.
  • a CCD camera having a larger number of pixels may be used.
  • the lens equipped with a wide-angle lens is used to photograph the left and right wall surfaces in the furnace. When close-up of the furnace wall surface is required, a zoom lens is installed. It is possible to shoot.
  • Thermoelectric cooling elements 18a to 18d are arranged in close contact with the outer surfaces of the heat conduction blocks 17a to 17d, respectively. Cover the locks 17a to 17d in a bowl shape.
  • each of the thermoelectric cooling elements 18a to 18d is configured by stacking two plate-like thermoelectric cooling elements, and the thermoelectric cooling element 18a will be described as a representative.
  • 18e faces the CCD camera 16 side and the heat radiating surface 18f faces the cooling fin 19a side.
  • thermoelectric cooling element group 18 the surface temperature of the main body of the CCD camera 16 is controlled by the thermoelectric cooling element group 18 through the heat conduction blocks 17a to 17d.
  • the CCD power camera 16 surrounded by the heat conduction blocks 17a to 17d and further surrounded by the thermoelectric cooling element group 18 is housed in a rectangular tube case 19e that also serves as a heat conduction member. Cooling fins 19a to 19d constituting the cooling fin group 19 are formed on each surface of the outer wall of the case 19e so that the heat generated by the thermoelectric cooling element group 18 is dissipated.
  • a camera with an electronic cooling device unitized in this way (hereinafter abbreviated as a camera unit)
  • the cutting member 21 is composed of a stainless steel thin plate and a ceramic force.
  • the gap serves as a cooling passage Pa for allowing a part of the cooling air ca to flow along the inner wall of the casing.
  • the partition member 21 and the inner wall of the casing are partially connected by a plurality of rod-shaped members (not shown) arranged along the longitudinal direction of the casing.
  • the camera unit 20 is housed in the partition member 21.
  • cooling fin group 19 and the inner wall of partition member 21 are connected in a state in which camera unit 20 is housed, and cooling air ca is also inserted into the gaps between the cooling fins of cooling fin group 19.
  • each cooling fin of the cooling fin group 19 is arranged toward the cylinder axis direction of the partition member 21.
  • the front end portion (flow direction changing portion) 21a of the partition member 21 is bent by a predetermined length in a direction orthogonal to the cylinder axis direction of the housing 13 so as to be L-shaped inward. Its tip is formed in a taper that opens at an angle of 0 b (see Fig. 4) both vertically and horizontally. This angle ⁇ b is set slightly wider than the angle of view ⁇ a of the lens 16 a of the CCD camera 16.
  • a plate-like filter support member 22 is disposed at the front end of the camera unit 20 in parallel with the front end 21a, and a hole formed in the center of the filter support member 22 is described later.
  • a group of filters is arranged.
  • reference numeral 30 denotes a heat insulating material covering the periphery of the main body of the CCD camera 16 and insulates other than the heat dissipation path leading to the cooling fin group 19.
  • FIG. 4 is an enlarged view of the observation window and the surrounding structure.
  • reference numeral 23 denotes a heat-resistant glass in which a multilayer filter in which an infrared reflection filter is superimposed on the inside of the heat-resistant glass is further laminated.
  • An observation window is configured by opening a gap S from the heat-resistant glass 23 and arranging (24 to 26) an infrared absorption filter 'infrared reflection filter' and heat-resistant glass in combination (24-26) through a spacer. .
  • the lens 16a of the CCD camera 16 faces the heat-resistant glass 26.
  • the cooling air ca flowing upward in the gap between the filter support member 22 and the front end portion 21a flows in a branched manner on both the front and rear sides of the heat-resistant glass 23 and flows downward.
  • the heat-resistant glass 23 can be efficiently cooled on both sides.
  • cooling air ca flowing through the cooling passage Pa is a slit formed in the front plate 13c.
  • the force of the aperture 13d (described later) is also released to the outside of the housing 13.
  • FIG. 5 shows the arrangement of slit-shaped openings 13d formed in the front plate 13c.
  • the slit-shaped openings 13d are arranged in a state in which rectangular openings are arranged in a row at a total of four positions on the top and bottom and the left and right of the front plate 13c.
  • Each slit-shaped opening 13d is provided with a cover 28 having a band plate-like member force having a size slightly larger than the size.
  • the cover 28 can be moved in a direction (arrow C direction) perpendicular to the longitudinal direction of the slit-shaped opening 13d by loosening the screw 29, whereby cooling air blown out from the slit-shaped opening 13d.
  • the flow rate of ca can be adjusted. This makes it possible to adjust the balance according to the situation even when the balance of the cooling air volume changes due to long-term use.
  • the measurement of the amount of cooling air ca is measured before observation and set to a predetermined opening.
  • the central opening 27 and the slit-shaped opening 13d shown in FIG. 4 constitute a discharge portion that is discharged after the cooling air ca is used for cooling.
  • the surface temperature of the CCD camera 16 is raised. Since the operating temperature range of the CCD camera 16 is normally 0 to + 40 ° C, the temperature of the cooling air ca that has been raised to 100 ° C must be lowered by about 60 ° C.
  • thermoelectric cooling elements in the observation apparatus are provided with a plurality of thermoelectric cooling elements in the observation apparatus as a cooling means, but this type of observation apparatus is simply attached to the inner wall of the apparatus, It is impossible to lower the temperature to around 60 ° C because the space inside the device where the CCD camera is located is cooled and the CCD camera is indirectly cooled by the cooled atmosphere.
  • thermoelectric cooling element group 18 the heat absorption side of the thermoelectric cooling element group 18 is brought into close contact with the CCD camera 16 via the heat conductor 17, and the heat dissipation of the thermoelectric cooling element group 18 is performed.
  • the thermoelectric cooling element group 18 is configured to be cooled and operated with high efficiency by attaching and integrating the cooling fin group 19.
  • thermoelectric cooling elements 18a to 18d constituting the thermoelectric cooling element group 18 are made of electronic components that function as small heat pumps and are capable of precise local temperature adjustment.
  • the structure consists of two ceramic elements and a pair of n-type and rho-type semiconductor elements arranged between the two ceramic plates and energized through the lead wire. Absorbs heat (cools), and the opposite surface dissipates (heats).
  • thermoelectric cooling elements 18a to 18a are stacked and used in order to enhance the cooling effect.
  • outer dimensions (L XWX H) of the thermoelectric cooling elements 18a to 18a are 40 X 40 X 7mm, and the maximum temperature difference between the heat absorption surface and the heat dissipation surface is 60 ° C or more.
  • the cooling operation will be specifically described.
  • the surface temperature of the CCD camera 16 is monitored with a thermocouple, and when it exceeds 40 ° C, the thermoelectric cooling element group 18 is turned on.
  • the thermoelectric cooling element group 18 is turned on, the heat radiation side temperature is almost the same as the temperature of the cooling air ca, which is always maintained at a predetermined temperature. 16 can be cooled.
  • the surface temperature of the CCD camera 16 can be kept below 40 ° C, and the CCD camera 16 can be operated stably.
  • the in-furnace observation device 5 is installed in a direction opposite to the insertion direction of the extrusion ram 3, and the furnace wall of the carbonization chamber is placed on the extruder side force guide wheel side.
  • the image signal is related to the position signal information of the extrusion ram 3 and output to the controller described above. To help.
  • Cooling air ca is constantly supplied to the in-furnace observation device 5 through the pipe 12, and the cooling air ca supplied to the in-furnace observation device 5 is connected to the cooling passage Pa as shown in FIG. It separates from the second cooling passage Pb and flows in the housing 13.
  • the cooling air ca flowing in the cooling passage Pa absorbs heat that enters the casing 13 through the heat insulating material 14 attached to the inner wall of the casing 13, and is used for heat exchange.
  • the cooling air ca thus discharged is discharged to the outside of the housing 13 through a slit-shaped opening 13d provided in the front plate 13c.
  • the CCD camera 16 in the camera unit 20 includes heat conduction blocks 17a to 17 arranged around the camera.
  • thermoelectric cooling element 18a to 18d comes into contact with the heat absorption side of the thermoelectric cooling element 18d through 17d, the thermoelectric cooling element
  • thermoelectric cooling elements 18a to 18d heat generated by the thermoelectric cooling elements 18a to 18d is transmitted to the cooling fins 19a to 19d, and the cooling fins 19a to 19d are arranged, and the cooling air ca is provided in the second cooling passage Pb.
  • thermoelectric cooling elements 18a to 18d Since it always flows, the heat generated by the thermoelectric cooling elements 18a to 18d is dissipated by the cooling air ca.
  • a part of the cooling air ca that has passed through the second cooling passage Pb is composed of the heat-resistant glass 23 and the infrared ray.
  • the in-furnace observation device 5 may be operated during the coatus extrusion by the extrusion ram 3 (one direction only), or when the coatus extrusion and the return of the extrusion ram 3 (both directions). You can make it work.
  • the in-furnace observation apparatus of the present invention can be suitably used for observing the inside of a coke oven, converter, firing furnace, incineration boiler, power generation boiler, or other high-temperature furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Studio Devices (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A furnace monitoring apparatus capable of accurately observing the inside of a furnace at a high temperature comprises a casing (13) having an intake part for cooling air and a discharge part from which the cooling air is discharged after being used for cooling and an imaging device (20) contained in the casing (13) near the discharge part. The imaging device (20) is characterized by comprising an imaging element (16), plate-like thermoelectric cooling elements (18a to 18d) disposed with their heat-absorbing surface sides surrounding the imaging element body, heat conductive blocks (17a to 17d) burying the clearances between the imaging element body and the heat-absorbing surface sides of the thermoelectric cooling elements (18a to 18d), and cooling fins (19a to 19d) formed on the heat-dissipating sides of the thermoelectric cooling elements (18a to 18d) which are formed integrally with each other.

Description

明 細 書  Specification
炉内観察装置およびそれを備えた押出ラム  In-furnace observation device and extrusion ram provided with the same
技術分野  Technical field
[0001] 本発明は、高温の炉内を観察するための炉内観察装置およびコータス炉の炉内観 察に好適な炉内観察装置付き押出ラムに関するものである。  The present invention relates to an in-furnace observation apparatus for observing the inside of a high-temperature furnace and an extrusion ram with an in-furnace observation apparatus suitable for in-furnace observation of a coatus furnace.
背景技術  Background art
[0002] コークス炉は炭化室と燃焼室が炉団方向に交互に配置されている構造力 なり、コ 一タス炉の炉上を炉団方向に走行する石炭装入車から炭化室内に石炭が装入され 、燃焼室の熱をその炭化室に伝えることにより装入された石炭を乾留しコータスを製 造するようになっている。  [0002] A coke oven has a structural force in which carbonization chambers and combustion chambers are alternately arranged in the direction of the furnace group. Coal is introduced into the carbonization chamber from a coal charging vehicle that runs in the direction of the furnace group of the cotass furnace. The charged coal is transferred to the carbonizing chamber, and the charged coal is carbonized to produce coatas.
[0003] この種のコークス炉の多くは築炉から 30年を経過し老朽ィ匕しており、炭化室の壁面 を構築している耐火煉瓦は、炉壁損傷部分に付着したカーボンがコータス押出し或 いは石炭装入によって剥離し、炉壁がさらに損傷するといつたサイクルを繰り返して おり、炉壁が変形する等、操業を阻害する要因が顕在化しつつある。  [0003] Many of these types of coke ovens have become obsolete after 30 years from the construction of the furnace, and the refractory bricks that make up the walls of the coking chamber are made of carbon adhering to the damaged parts of the furnace walls. Or, the cycle is repeated when the furnace wall is peeled off due to coal charging and the furnace wall is further damaged, and the factors that hinder the operation, such as deformation of the furnace wall, are becoming apparent.
[0004] 特に、カーボンの付着状態は日々の操業においても微妙に異なっており、炉壁の 状態を観察することは安定操業を得るために極めて重要な検査項目になって 、る。  [0004] In particular, the adhesion state of carbon is slightly different even in daily operations, and observing the state of the furnace wall is an extremely important inspection item in order to obtain a stable operation.
[0005] この炉内観察は、図 6に示すようにコータス押出しが行われている時、具体的には、 炉蓋が外され、炭化室 50で乾留された赤熱コータス 51を、ラムビーム 52先端のラム ヘッド 53によって炉外に待機しているガイド車(図示しない)に押し出している間に行 われ、通常、押出機運転室 54の位置力もオペレータ 55の目視によって行われてい る。  [0005] In this furnace observation, as shown in Fig. 6, when the coatus extrusion is performed, specifically, the red hot coatas 51 which has been removed from the furnace lid and carbonized in the carbonization chamber 50 is replaced with the tip of the ram beam 52. The ram head 53 is pushed out to a guide wheel (not shown) waiting outside the furnace, and the position force of the extruder cab 54 is usually also visually observed by the operator 55.
[0006] また、炉内観察においては、炉内温度が約 1100°Cと高温であり炉の間近まで近寄 れな 、こと、炉幅は 450mm前後と狭 、のに対し奥行きは約 15mと長く視界が悪 、こ と、また、操業度にもよるが炉内を観察できる時間が約 2〜10分程度と制限されてい ること等、制約も多い。  [0006] In the observation inside the furnace, the temperature inside the furnace is as high as about 1100 ° C, and it is not close to the furnace. The furnace width is as narrow as around 450mm, while the depth is as long as about 15m. There are many restrictions such as poor visibility and limited time of about 2 to 10 minutes depending on the operating rate.
[0007] このような事情から、熟練したオペレータ 55であっても目視で炉内全体を観察する ことは不可能とされている。なお、図中 56は炉壁に付着したカーボンを示しており、 各石炭装入孔 57の下方に付着する傾向がある。 [0007] Under such circumstances, even a skilled operator 55 cannot visually observe the entire furnace. In the figure, 56 indicates carbon adhering to the furnace wall. There is a tendency to adhere to the bottom of each coal charging hole 57.
[0008] そこで、水冷または空冷されたカメラを炉内に挿入し、炉外に配置されたモニタの 画面上にそのカメラで撮影された壁面画像を映し出し、損傷状態を観察する方法が 提案されて!ヽる (例えば、実開平 5 - 27599号公報参照)。 [0008] Therefore, a method has been proposed in which a water-cooled or air-cooled camera is inserted into the furnace, a wall image photographed by the camera is projected on the screen of a monitor arranged outside the furnace, and the damage state is observed. ! (See, for example, Japanese Utility Model Publication No. 5-27599).
[0009] この種の炉内観察装置は、図 7に示すように、外側冷却筒 60と内側冷却筒 61から なる二重筒状の冷却筒 62を有し、この冷却筒 62先端部の一方側面には耐熱ガラス 力もなる観察窓 63が設けられて 、る。 As shown in FIG. 7, this type of in-furnace observation apparatus has a double cylindrical cooling cylinder 62 composed of an outer cooling cylinder 60 and an inner cooling cylinder 61, There is an observation window 63 on the side that also has heat-resistant glass.
[0010] 冷却筒 62内にはその観察窓 63と対向して反射鏡 64が配置され、反射鏡 64によつ て折り曲げられた光路はズームレンズ 65に案内され、それにより、ズームアップされ た炉壁が CCDカメラ 66によって撮影できるようになって 、る。 [0010] A reflecting mirror 64 is disposed in the cooling cylinder 62 so as to face the observation window 63, and the optical path bent by the reflecting mirror 64 is guided to the zoom lens 65, thereby zooming up. The furnace wall can be photographed by the CCD camera 66.
[0011] なお、外側冷却筒 60と内側冷却筒 61との間の通路には冷却水または冷却空気 F が導入される。 Note that cooling water or cooling air F is introduced into the passage between the outer cooling cylinder 60 and the inner cooling cylinder 61.
[0012] また、冷却筒 62の内壁にはペルチェ効果を発生させる複数の熱電冷却素子 67が 配設されており、 CCDカメラ 66等の測定機器を高温カゝら保護するようになって ヽる。  [0012] In addition, a plurality of thermoelectric cooling elements 67 that generate the Peltier effect are disposed on the inner wall of the cooling cylinder 62, so that the measuring device such as the CCD camera 66 is protected from the high-temperature cover. .
[0013] 上記した炉内観察装置によれば、熟練者でなくとも炉内の奥部まで観察することが 可能になる。しかしながら、この炉内観察装置では反射鏡 64等を使用して炉壁を間 接的に観察する構成上、振動が加わっただけでモニタ画面に映し出される画像が乱 れたり、焦点がずれたりする等、炉内観察を正確に行えない場合がある。  [0013] According to the in-furnace observation apparatus described above, it is possible to observe even the inner part of the furnace without being an expert. However, in this in-furnace observation device, the image of the image displayed on the monitor screen is distorted or out of focus just by applying vibration, due to the configuration of using the reflector 64 etc. to observe the furnace wall indirectly. In some cases, the observation inside the furnace cannot be performed accurately.
[0014] また、反射鏡 64からズームレンズ 65までの光路を長く取る必要があるため、炉内観 察装置が大型化すると!ヽぅ問題もある。  [0014] In addition, since it is necessary to take a long optical path from the reflecting mirror 64 to the zoom lens 65, there is a problem when the in-furnace observation apparatus is enlarged.
[0015] このように反射鏡 64を用いて炉内を間接的に観察する理由は、二重筒状を構成し て 、な 、観察窓 63近傍に CCDカメラ 66を配置すると、 CCDカメラ 66が高温に曝さ れて故障してしまうからである。  [0015] The reason for indirectly observing the inside of the furnace using the reflecting mirror 64 as described above is that if the CCD camera 66 is arranged in the vicinity of the observation window 63 in a double cylinder shape, the CCD camera 66 This is because they break down when exposed to high temperatures.
[0016] また、熱電冷却素子 67による冷却は空気を介しての間接冷却となるため冷却速度 が遅く温度制御が難しい。し力も、密閉室内での冷却であるために空気が撹拌され ず、均一な冷却効果、必要とする温度降下が得られない。なお、この熱電冷却素子 6 7の能力を高めようとしても冷却筒 62内のスペースが限られているため、熱電冷却素 子 67のサイズを大きくすることは不可能である。 [0017] 本発明は以上のような従来の炉内観察装置における課題を考慮してなされたもの であり、第一の目的は、高温の炉内を精度良く観察することができる炉内観察装置を 提供することにあり、第二の目的は、コンパクトィ匕を図ることによりラムビームに炉内観 察装置を設置できるようにした炉内観察装置付き押出ラムを提供することにある。 発明の開示 [0016] In addition, since the cooling by the thermoelectric cooling element 67 is indirect cooling via air, the cooling rate is slow and the temperature control is difficult. Since the cooling force is also cooling in the sealed chamber, the air is not agitated, and a uniform cooling effect and the required temperature drop cannot be obtained. It is impossible to increase the size of the thermoelectric cooling element 67 because the space in the cooling cylinder 62 is limited even if the capacity of the thermoelectric cooling element 67 is increased. [0017] The present invention has been made in consideration of the problems in the conventional in-furnace observation apparatus as described above, and the first object is to observe the inside of the high-temperature furnace with high accuracy. The second object is to provide an extrusion ram with an in-furnace observation device that allows the in-furnace observation device to be installed on the ram beam by achieving compactness. Disclosure of the invention
[0018] 本発明は、冷却用空気の導入部とその冷却用空気が冷却に供せられた後、排出さ れる排出部とを有する筐体と、この筐体内の上記排出部近傍に収納される撮像装置 とを有し、上記撮像装置は、撮像素子と、吸熱面側が撮像素子本体の周囲を取り囲 んだ状態で配置されるプレート状の熱電冷却素子と、撮像素子本体と熱電冷却素子 の吸熱面側との隙間を埋める熱伝導体と、熱電冷却素子の放熱面に形成された冷 却フィンとを一体ィ匕してなる炉内観察装置である。  [0018] The present invention is housed in a vicinity of the casing having a cooling air introduction section and a discharge section that is discharged after the cooling air is used for cooling, and in the vicinity of the discharge section in the casing. The imaging device includes an imaging element, a plate-shaped thermoelectric cooling element disposed with the heat absorption surface surrounding the periphery of the imaging element body, and the imaging element body and the thermoelectric cooling element. This is an in-furnace observation apparatus in which a heat conductor that fills the gap between the heat absorption surface and a cooling fin formed on the heat radiation surface of the thermoelectric cooling element is integrated.
[0019] 本発明において、上記撮像装置を筒状の断熱部内に収納した状態で筐体内に収 納すれば、その断熱部外壁と上記筐体内壁との間に冷却用空気を流すための冷却 通路が形成され、この冷却通路を介して筐体内に侵入してくる熱を吸収して排出部 力ら 出することができる。  [0019] In the present invention, if the imaging device is housed in a casing in a state of being housed in a cylindrical heat insulating portion, cooling for flowing cooling air between the outer wall of the heat insulating portion and the inner wall of the housing. A passage is formed, and heat entering the housing through the cooling passage can be absorbed and discharged from the discharge portion.
[0020] また、上記筐体内壁には断熱材を貼着することが好ましい。それにより、筐体から冷 却通路内に侵入する熱を抑制することができる。  [0020] It is preferable that a heat insulating material is attached to the inner wall of the housing. As a result, heat entering the cooling passage from the housing can be suppressed.
[0021] また、上記筐体の前面において撮像素子のレンズと対向する位置に観察窓を設け 、この観察窓を、耐熱ガラスと赤外線吸収フィルタと赤外線反射フィルタとの積層体か ら構成することが好ましい。  [0021] In addition, an observation window is provided at a position facing the lens of the image sensor on the front surface of the housing, and the observation window is formed of a laminated body of heat-resistant glass, an infrared absorption filter, and an infrared reflection filter. preferable.
[0022] また、上記冷却フィンの外周部が上記筒状の断熱部によって囲まれることにより、各 冷却フィンの隙間は、冷却空気を流すための第二の冷却通路を形成する。上記冷却 通路に冷却用空気を通過させて筐体外部からの熱の侵入を抑制した状態で、第二 の冷却通路に冷却用空気を通過させることで冷却フィンの冷却効率を高めることが でき、それにより熱電冷却素子を安定動作させることが可能になる。  [0022] Further, since the outer peripheral portion of the cooling fin is surrounded by the cylindrical heat insulating portion, the gap between the cooling fins forms a second cooling passage for flowing cooling air. With the cooling air passed through the cooling passage to suppress the intrusion of heat from the outside of the housing, the cooling air can be passed through the second cooling passage to increase the cooling efficiency of the cooling fins. Thereby, the thermoelectric cooling element can be stably operated.
[0023] また、上記筒状の断熱部における冷却用空気の流れの下流側端部に、第二の冷 却通路を通過した冷却用空気の流れ方向を観察窓側に向けて変更するための流れ 方向変更部を形成することができる。この方向転換された冷却用空気は、観察窓に 付着した粉塵等を吹き飛ばすように作用する。 [0023] Further, a flow for changing the flow direction of the cooling air that has passed through the second cooling passage toward the observation window side at the downstream end of the flow of the cooling air in the cylindrical heat insulating portion. A direction change part can be formed. This redirected cooling air enters the observation window. It acts to blow off the adhering dust.
[0024] 本発明は、上記構成を有する炉内観察装置を、コークス炉に配置される押出ラムの ラムビームに設置した炉内観察装置付き押出ラムである。  [0024] The present invention is an extrusion ram with an in-furnace observation device in which the in-furnace observation device having the above-described configuration is installed in a ram beam of an extrusion ram disposed in a coke oven.
[0025] 上記炉内観察装置付き押出ラムでは、ラムビームに敷設された断熱配管内に、冷 却用空気を炉内観察装置に供給するホースと、撮像素子および熱電冷却素子に電 源を供給するとともに撮影画像を出力するためのケーブルと、熱電冷却素子の温度 制御を行うための制御信号を送信するケーブルを収納することができる。  [0025] In the extrusion ram with an in-furnace observation device, a hose that supplies cooling air to the in-furnace observation device, and an image sensor and a thermoelectric cooling element are supplied into heat-insulated piping laid on the ram beam. In addition, a cable for outputting a photographed image and a cable for transmitting a control signal for controlling the temperature of the thermoelectric cooling element can be accommodated.
[0026] 上記した本発明の炉内観察装置によれば、高温の炉内を精度良く観察することが できる。  [0026] According to the in-furnace observation apparatus of the present invention described above, the inside of the high-temperature furnace can be observed with high accuracy.
[0027] また、上記した本発明の炉内観察装置付き押出ラムによれば、コンパクトィ匕が図れ るためラムビームに炉内観察装置を設置することができ、日々のコータス押出し作業 時において常時、炭化室内を精度良く観察することが可能になる。  [0027] Further, according to the extrusion ram with the in-furnace observation device of the present invention described above, since the compactness can be achieved, the in-furnace observation device can be installed on the ram beam, and at the time of daily coatus extrusion work, It becomes possible to observe the carbonization chamber with high accuracy.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明に係る炉内観察装置を押出ラムに設置した状態を示す側面図である。  FIG. 1 is a side view showing a state where an in-furnace observation apparatus according to the present invention is installed in an extrusion ram.
[図 2]図 1に示す炉内観察装置の拡大縦断面図である。  FIG. 2 is an enlarged longitudinal sectional view of the in-furnace observation apparatus shown in FIG.
[図 3](a)は炉内観察装置に組み込まれるカメラユニットの構成を示す一部切り欠きを 有する斜視図、(b)はその正面図である。  [FIG. 3] (a) is a perspective view having a partially cutaway showing the configuration of a camera unit incorporated in the in-furnace observation apparatus, and (b) is a front view thereof.
[図 4]図 2に示す炉内観察装置のフィルタ部分およびその周辺構造を示す要部拡大 図である。  FIG. 4 is an enlarged view of the main part showing the filter part of the in-furnace observation apparatus shown in FIG.
[図 5]炉内観察装置の前面側の構成を示す正面図である。  FIG. 5 is a front view showing the configuration of the front side of the in-furnace observation apparatus.
[図 6]コータス押出し作業時に行われる従来の炉内観察方法を説明する側面図であ る。  FIG. 6 is a side view for explaining a conventional in-furnace observation method performed during the coatus extrusion operation.
[図 7]従来の炉内観察装置の内部構成を示す断面図である。  FIG. 7 is a cross-sectional view showing an internal configuration of a conventional in-furnace observation apparatus.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、図面に示した実施の形態に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
[0030] 図 1においてコータス押出し機は、ラムヘッド 1と、このラムヘッド 1を水平方向に往 復移動させるためのラムビーム 2とを有する押出ラム 3を備えており、コークス炉内で 乾留された赤熱コータスをラムヘッド 1によって炉外に押し出すようになって!/、る。 [0031] ラムビーム 2上で且つラムヘッド 1寄りには支持スタンド 4が立設されており、この支 持スタンド 4に炉内観察装置 5が設置されている。 [0030] In FIG. 1, the Cortus extruder includes an extrusion ram 3 having a ram head 1 and a ram beam 2 for moving the ram head 1 back and forth in the horizontal direction. Will be pushed out of the furnace by the ram head 1! A support stand 4 is erected on the ram beam 2 and close to the ram head 1, and an in-furnace observation device 5 is installed on the support stand 4.
[0032] なお、図中、 Aは押出ラム 3の押し出し方向を示している。また、 Bは炉内観察装置In the figure, A indicates the direction of extrusion of the extrusion ram 3. B is a furnace observation device
5による観察方向を示し、 Θ aは炉内観察装置 5に搭載されている CCDカメラ (後述 する)の画角を示している。 5 indicates the viewing direction, and Θa indicates the angle of view of a CCD camera (described later) mounted in the in-furnace observation device 5.
[0033] 炉内観察装置 5の信号系統は、卷取装置 6のドラム一方側(ドラム軸において)から 巻き解かれた信号 Z電源ケーブル 7を介して図示しない押出機運転室内のコント口 ーラと接続されており、炉内の映像は運転室内で観察することができるようになつてい る。また、必要な場合にはその映像を記録装置に記録することができるようになって いる。 [0033] The signal system of the in-furnace observation device 5 is a signal unrolled from one side of the drum (in the drum shaft) of the scraping device 6 (in the drum shaft) via a Z power cable 7 and a controller in the extruder operating room not shown The image inside the furnace can be observed in the cab. If necessary, the video can be recorded on a recording device.
[0034] 上記信号系統とは、具体的には、 CCDカメラおよび熱電冷却素子 (ペルチェ素子) に電源を供給する電源ライン、 CCDカメラによって撮影された画像信号を出力する 出力ライン、熱電冷却素子を温度制御するための制御信号ライン等が含まれる。  [0034] Specifically, the signal system includes a power line for supplying power to the CCD camera and the thermoelectric cooling element (Peltier element), an output line for outputting an image signal photographed by the CCD camera, and a thermoelectric cooling element. A control signal line for controlling the temperature is included.
[0035] 炉内観察装置 5の冷却系統は、同じ卷取装置 6のドラム他方側から巻き解かれたホ ース 8を介して冷却用空気を貯留するタンク 9と接続されており、このタンク 9には冷却 用空気を所定圧 (配管等の圧力損失で失われる圧力を供給できる圧力、例えば 0. 4 〜0. 7MPa)に保持するためのコンプレッサ 10が接続されている。上記卷取装置 6、 タンク 9およびコンプレッサ 10は押出機に搭載されている。  [0035] The cooling system of the in-furnace observation apparatus 5 is connected to a tank 9 for storing cooling air via a hose 8 unwound from the other side of the drum of the same scraping apparatus 6, and this tank Connected to 9 is a compressor 10 for maintaining the cooling air at a predetermined pressure (pressure that can supply pressure lost due to pressure loss of piping, for example, 0.4 to 0.7 MPa). The above-described scraping device 6, tank 9 and compressor 10 are mounted on an extruder.
[0036] 11は CCDカメラ (後述する)用の画像変換装置、熱電冷却素子 (後述する)の電源 供給装置を含む変換器 ·温度制御装置であり、炉内の熱の影響が及ばないラムビー ム 2後端部に配置されている。  [0036] 11 is an image conversion device for a CCD camera (described later), a converter / temperature control device including a power supply device for a thermoelectric cooling element (described later), and a ram beam that is not affected by the heat in the furnace. 2 Arranged at the rear end.
[0037] また、信号 Z電源ケーブル 7およびホース 8は、ラムビーム 2後端部よりラムビーム 2 内に敷設された断熱配管 12内を通り、ラムビーム 2先端側に設置された炉内観察装 置 5に接続されている。なお、信号 Z電源ケーブル 7は耐熱ケーブルを使用している  [0037] Further, the signal Z power cable 7 and the hose 8 pass from the rear end of the ram beam 2 through the heat insulating pipe 12 laid in the ram beam 2, and to the in-furnace observation device 5 installed on the front side of the ram beam 2. It is connected. The signal Z power cable 7 uses a heat-resistant cable.
[0038] 図 2は上記炉内観察装置 5を拡大して示したものである。 FIG. 2 is an enlarged view of the in-furnace observation apparatus 5.
[0039] 同図において、炉内観察装置 5は断熱された箱形の筐体 13を有し、この筐体 13内 に CCDカメラ、熱電冷却素子、温度管理用の熱電対等、必要最小限の装置を み 合わせた撮像装置としての電子冷却装置付きカメラを収納している。 [0039] In the figure, the in-furnace observation apparatus 5 has a heat-insulated box-shaped casing 13, and a CCD camera, a thermoelectric cooling element, a thermocouple for temperature management, etc. are provided in the casing 13 with the minimum necessary. Look at the device A camera with an electronic cooling device is housed as a combined imaging device.
[0040] 詳しくは、筐体 13は角筒部 13aと、この角筒部 13aの後側端面 (観察方向 Bに対し て後側となる)を閉塞する後面板 13bと、前側に配置される前面板 13cとから構成さ れている。角筒部 13aの内面および後面板 13bの内面にはそれぞれセラミック製の 断熱材 14が貼着されている。  [0040] Specifically, the housing 13 is disposed on the front side of a rectangular tube portion 13a, a rear plate 13b that closes a rear end surface of the rectangular tube portion 13a (behind with respect to the observation direction B). It consists of a front plate 13c. A ceramic heat insulating material 14 is attached to each of the inner surface of the rectangular tube portion 13a and the inner surface of the rear plate 13b.
[0041] 後面板 13bには配管 12を接続するための接続部 15が備えられており、配管 12を 通じて冷却用空気 caが筐体 13内に導入されるようになっている。また、信号 Z電源 ケーブル 7に収容された撮影ケーブル 7aを通じて画像信号が出力され、制御ケープ ル 7bを通じて熱電冷却素子を温度制御するための制御信号が送信されるようになつ ている。なお、上記接続部 15における配管 12は冷却用空気 caの導入部として機能 する。  [0041] The rear plate 13b is provided with a connecting portion 15 for connecting the pipe 12, and the cooling air ca is introduced into the housing 13 through the pipe 12. Further, an image signal is output through the photographing cable 7a accommodated in the signal Z power cable 7, and a control signal for controlling the temperature of the thermoelectric cooling element is transmitted through the control cable 7b. The pipe 12 in the connecting portion 15 functions as an introduction portion for the cooling air ca.
[0042] 図 3(a)は電子冷却装置付きカメラ 20の構成を、一部切欠きを有する斜視図で示し たものであり、同図 (b)はその正面図を示したものである。  FIG. 3 (a) shows the configuration of the camera with an electronic cooling device 20 in a perspective view having a part of the cutout, and FIG. 3 (b) shows a front view thereof.
[0043] 図 3(a)において、電子冷却装置付きカメラ 20は、撮像素子としての CCDカメラ 16と 、この CCDカメラ 16の周囲に配置される熱伝導体 17 (図 2)と、熱伝導体 17の外側 に配置される熱電冷却素子群 18 (図 2)と、さらにそれらの熱電冷却素子群 18の外 側に配置される冷却フィン群 19 (図 2)とを一体化した構造から構成されている。  In FIG. 3 (a), a camera with an electronic cooling device 20 includes a CCD camera 16 as an image sensor, a thermal conductor 17 (FIG. 2) disposed around the CCD camera 16, and a thermal conductor. Thermoelectric cooling element group 18 (Fig. 2) arranged outside 17 and cooling fin group 19 (Fig. 2) arranged outside these thermoelectric cooling element group 18 are integrated. ing.
[0044] CCDカメラ 16は例えば有効画素数 40万画素の 1Z2型 CCDを搭載した小型カラ 一 CCDカメラを使用することができる。なお、 CCDカメラ 16の有効画素数について は 40万画素程度あれば炉内の観察が可能である力 もちろんそれ以上の画素数を 有する CCDカメラを使用してもよい。また、炉内では左右の壁面を撮影するために広 角系のレンズを装着している力 炉内壁面のクローズアップが必要な場合にはズーム レンズを装着するなど、目的にあったレンズを装着して撮影することが可能である。  As the CCD camera 16, for example, a small color CCD camera equipped with a 1Z2 type CCD having 400,000 effective pixels can be used. The effective number of pixels of the CCD camera 16 can be observed in the furnace if it is about 400,000 pixels. Of course, a CCD camera having a larger number of pixels may be used. In addition, the lens equipped with a wide-angle lens is used to photograph the left and right wall surfaces in the furnace. When close-up of the furnace wall surface is required, a zoom lens is installed. It is possible to shoot.
[0045] この CCDカメラ 16の本体を取り囲むようにしてその周囲に、熱伝導体 17を構成す る 4つのアルミニウム製の熱伝導ブロック 17a〜17dが配置されている、ただし、手前 側の熱伝導ブロック 17dについては内部構成を説明する都合上、取り外している。 [0045] Four aluminum heat conduction blocks 17a to 17d constituting the heat conductor 17 are arranged so as to surround the body of the CCD camera 16; Block 17d has been removed for convenience of explanation of the internal configuration.
[0046] 熱伝導ブロック 17a〜 17dの各外面にはそれぞれ熱電冷却素子 18a〜 18d (図で は 18cおよび 18dの一部が現れている)が密着した状態で配置されており、熱伝導ブ ロック 17a〜 17dの周囲を籠状に覆って 、る。 [0046] Thermoelectric cooling elements 18a to 18d (parts of 18c and 18d appear in the figure) are arranged in close contact with the outer surfaces of the heat conduction blocks 17a to 17d, respectively. Cover the locks 17a to 17d in a bowl shape.
[0047] 図 3(b)において、各熱電冷却素子 18a〜18dは、プレート状の熱電冷却素子を二 枚積層することによって構成されており、熱電冷却素子 18aを代表して説明すると、 吸熱面 18eを CCDカメラ 16側に向け、放熱面 18fを冷却フィン 19a側に向けて配置 している。 In FIG. 3 (b), each of the thermoelectric cooling elements 18a to 18d is configured by stacking two plate-like thermoelectric cooling elements, and the thermoelectric cooling element 18a will be described as a representative. 18e faces the CCD camera 16 side and the heat radiating surface 18f faces the cooling fin 19a side.
[0048] このように構成することにより、 CCDカメラ 16本体の表面温度は、熱伝導ブロック 17 a〜 17dを通じ熱電冷却素子群 18〖こよって制御されることになる。  With this configuration, the surface temperature of the main body of the CCD camera 16 is controlled by the thermoelectric cooling element group 18 through the heat conduction blocks 17a to 17d.
[0049] 熱伝導ブロック 17a〜17dで囲まれ、さらに熱電冷却素子群 18で囲まれた CCD力 メラ 16は、熱伝導部材カもなる角筒状のケース 19e内に収納される。このケース 19e の外壁各面には冷却フィン群 19を構成して!/ヽる冷却フィン 19a〜 19dが形成されて おり、熱電冷却素子群 18の発熱を放熱するようになって 、る。  [0049] The CCD power camera 16 surrounded by the heat conduction blocks 17a to 17d and further surrounded by the thermoelectric cooling element group 18 is housed in a rectangular tube case 19e that also serves as a heat conduction member. Cooling fins 19a to 19d constituting the cooling fin group 19 are formed on each surface of the outer wall of the case 19e so that the heat generated by the thermoelectric cooling element group 18 is dissipated.
[0050] なお、ケース 19eの内壁と熱伝導ブロック 17a〜17dの四隅との間に生じる小さな隙 間は断熱材 30で塞がれ、冷却用空気 caが冷却フィン 19a〜 19d以外に流れな 、よう になっている。  [0050] It should be noted that the small gaps formed between the inner wall of the case 19e and the four corners of the heat conduction blocks 17a to 17d are closed by the heat insulating material 30, and the cooling air ca does not flow except for the cooling fins 19a to 19d. It is like this.
[0051] このようにユニットィ匕された電子冷却装置付きカメラ(以下カメラユニットと略称する) [0051] A camera with an electronic cooling device unitized in this way (hereinafter abbreviated as a camera unit)
20は、筐体 13内部の前側に配置される。 20 is arranged on the front side inside the housing 13.
[0052] 図 2に戻って説明する。 [0052] Returning to FIG.
[0053] 筐体 13内部の前側には、筐体 13の角筒部 13a各内壁力 所定の隙間を空けた状 態で一回り小さい角筒状の仕切部材 (筒状の断熱部) 21が収納されており、この仕 切部材 21はステンレス製の薄板とセラミック力も構成されて 、る。  [0053] On the front side of the inside of the housing 13, there is a square tubular partition member (cylindrical heat insulating portion) 21 that is slightly smaller in a state where each inner wall force of the rectangular tube portion 13a of the housing 13 has a predetermined gap. The cutting member 21 is composed of a stainless steel thin plate and a ceramic force.
[0054] 上記隙間は冷却用空気 caの一部 caを筐体内壁に沿って流すための冷却通路 Pa となっている。なお、仕切部材 21と筐体内壁とは筐体長手方向に沿って配置された 複数の棒状部材(図示しな 、)によって部分的に接続されて 、る。  [0054] The gap serves as a cooling passage Pa for allowing a part of the cooling air ca to flow along the inner wall of the casing. The partition member 21 and the inner wall of the casing are partially connected by a plurality of rod-shaped members (not shown) arranged along the longitudinal direction of the casing.
[0055] この仕切部材 21内に上記カメラユニット 20が収納されている。  The camera unit 20 is housed in the partition member 21.
[0056] カメラユニット 20が収納された状態で冷却フィン群 19のフィン外周端と仕切部材 21 の内壁とが接続され、冷却フィン群 19の各冷却フィンの隙間にも冷却用空気 caが  [0056] The fin outer periphery of cooling fin group 19 and the inner wall of partition member 21 are connected in a state in which camera unit 20 is housed, and cooling air ca is also inserted into the gaps between the cooling fins of cooling fin group 19.
2 流れるようになる。これらの冷却フィンの隙間は第二の冷却通路 Pb (図 3(a)参照)を 構成する。 [0057] ただし、冷却フィン群 19の各冷却フィンは、仕切部材 21の筒軸方向に向けて配置 されている。 2 It begins to flow. The clearance between these cooling fins constitutes the second cooling passage Pb (see Fig. 3 (a)). However, each cooling fin of the cooling fin group 19 is arranged toward the cylinder axis direction of the partition member 21.
[0058] また、上記仕切部材 21の前側端部(流れ方向変更部) 21aは、内側に向け L字状と なるように、筐体 13の筒軸方向と直交する方向に所定長さ折り曲げられており、その 先端は上下および左右とも角度 0 b (図 4参照)に開いたテーパに形成されている。こ の角度 Θ bは CCDカメラ 16のレンズ 16aの画角 Θ aより若干広く設定されている。  [0058] Further, the front end portion (flow direction changing portion) 21a of the partition member 21 is bent by a predetermined length in a direction orthogonal to the cylinder axis direction of the housing 13 so as to be L-shaped inward. Its tip is formed in a taper that opens at an angle of 0 b (see Fig. 4) both vertically and horizontally. This angle Θ b is set slightly wider than the angle of view Θ a of the lens 16 a of the CCD camera 16.
[0059] この前側端部 21aと平行に、カメラユニット 20の前側端部にはプレート状のフィルタ 支持部材 22が配置され、このフィルタ支持部材 22の中心に穿設された孔部に、後 述するフィルタ群が配置されて 、る。  A plate-like filter support member 22 is disposed at the front end of the camera unit 20 in parallel with the front end 21a, and a hole formed in the center of the filter support member 22 is described later. A group of filters is arranged.
[0060] なお、図中、 30は CCDカメラ 16の本体周囲を被覆している断熱材であり、冷却フィ ン群 19に通じる放熱経路以外を断熱して 、る。  In the figure, reference numeral 30 denotes a heat insulating material covering the periphery of the main body of the CCD camera 16 and insulates other than the heat dissipation path leading to the cooling fin group 19.
[0061] 図 4は観察窓およびその周辺の構造を拡大して示したものである。  FIG. 4 is an enlarged view of the observation window and the surrounding structure.
[0062] 同図において、 23は耐熱ガラスの内側に赤外線反射フィルタを重ね合わせた複層 フィルタをさらに積層した耐熱ガラスである。  [0062] In the figure, reference numeral 23 denotes a heat-resistant glass in which a multilayer filter in which an infrared reflection filter is superimposed on the inside of the heat-resistant glass is further laminated.
[0063] この耐熱ガラス 23から隙間 Sを空け、その内側に赤外線吸収フィルタ '赤外線反射 フィルタ '耐熱ガラスをスぺーサを介して組み合わせ(24〜26)配置することによって 観察窓が構成されている。この耐熱ガラス 26に対して CCDカメラ 16のレンズ 16aが 対向するようになっている。  [0063] An observation window is configured by opening a gap S from the heat-resistant glass 23 and arranging (24 to 26) an infrared absorption filter 'infrared reflection filter' and heat-resistant glass in combination (24-26) through a spacer. . The lens 16a of the CCD camera 16 faces the heat-resistant glass 26.
[0064] また、前側端部 21aが L字状に折り曲げられていることによって冷却用空気 caは第  [0064] Further, since the front end 21a is bent in an L shape, the cooling air ca is
2 二の冷却通路 Pbを通過した後、その向きが 90° 変更され、フィルタ支持部材 22と前 側端部 21aとの間の隙間 Dを流れて耐熱ガラス 23の中心で合流し、外側に向けて中 央部開口 27から筐体 13の外部に放出される。  2 After passing through the second cooling passage Pb, its direction is changed by 90 °, flows through the gap D between the filter support member 22 and the front end 21a, and joins at the center of the heat-resistant glass 23 and faces outward. And discharged from the central opening 27 to the outside of the housing 13.
[0065] また、フィルタ支持部材 22と前側端部 21aとの間の隙間を上向きに流れる冷却用 空気 caは耐熱ガラス 23の前後両側を分岐して流れ、下向きに流れる冷却用空気 ca[0065] Further, the cooling air ca flowing upward in the gap between the filter support member 22 and the front end portion 21a flows in a branched manner on both the front and rear sides of the heat-resistant glass 23 and flows downward.
3 Three
と合流する。それにより、耐熱ガラス 23をその両面力 効率良く冷却することができ To join. As a result, the heat-resistant glass 23 can be efficiently cooled on both sides.
4 Four
るとともに、耐熱ガラス 23の外面に付着した粉塵等を冷却用空気 caおよび caによ  At the same time, dust adhering to the outer surface of the heat-resistant glass 23 is cooled by the cooling air ca and ca.
3 4 つて吹き飛ばすことができるようになって 、る。  3 4 Now you can blow away.
[0066] なお、冷却通路 Paを流れた冷却用空気 caは前面板 13cに形成されているスリット 状開口 13d (後述する)力も筐体 13の外部に放出されるようになっている。 [0066] Note that the cooling air ca flowing through the cooling passage Pa is a slit formed in the front plate 13c. The force of the aperture 13d (described later) is also released to the outside of the housing 13.
[0067] 図 5は前面板 13cに形成されたスリット状開口 13dの配置を示したものである。 FIG. 5 shows the arrangement of slit-shaped openings 13d formed in the front plate 13c.
[0068] 同図においてスリット状開口 13dは、前面板 13cの上下および左右に合計 4箇所そ れぞれに、長方形開口を列設した状態で配置されている。各スリット状開口 13dには そのサイズより若干大きなサイズを有する帯板状部材力 なるカバー 28が備えられて いる。 [0068] In the figure, the slit-shaped openings 13d are arranged in a state in which rectangular openings are arranged in a row at a total of four positions on the top and bottom and the left and right of the front plate 13c. Each slit-shaped opening 13d is provided with a cover 28 having a band plate-like member force having a size slightly larger than the size.
[0069] このカバー 28はねじ 29を緩めることによってスリット状開口 13dの長手方向と直交 する方向(矢印 C方向)に移動させることができ、それにより、スリット状開口 13dから 吹き出される冷却用空気 caの流量を調節することができるようになつている。これに より、長期使用により冷却空気量のバランスが変化した場合にも、状況に合わせてバ ランス調整が可能になる。なお、冷却空気 caの吹出量の測定は観測前に測定され、 所定の開度に設定される。  [0069] The cover 28 can be moved in a direction (arrow C direction) perpendicular to the longitudinal direction of the slit-shaped opening 13d by loosening the screw 29, whereby cooling air blown out from the slit-shaped opening 13d. The flow rate of ca can be adjusted. This makes it possible to adjust the balance according to the situation even when the balance of the cooling air volume changes due to long-term use. In addition, the measurement of the amount of cooling air ca is measured before observation and set to a predetermined opening.
[0070] 図 4に示した中央部開口 27および上記スリット状開口 13dは、冷却用空気 caが冷 却に供せられた後、排出される排出部を構成する。  [0070] The central opening 27 and the slit-shaped opening 13d shown in FIG. 4 constitute a discharge portion that is discharged after the cooling air ca is used for cooling.
[0071] ところで、冷却用空気 caをラムビーム 2の先端側に設置された炉内観察装置 5に供 給する場合、冷却用空気 caを供給するホースを断熱配管 12内に収納したとしても、 炉内観察装置 5に到達した時点で供給した冷却用空気 caの温度は 100°C程度に昇 温してしまう。  By the way, when the cooling air ca is supplied to the in-furnace observation apparatus 5 installed on the front end side of the ram beam 2, even if the hose supplying the cooling air ca is stored in the heat insulating pipe 12, the furnace When the temperature reaches the internal observation device 5, the temperature of the cooling air ca supplied increases to about 100 ° C.
[0072] このように昇温した冷却用空気 caが筐体 13内に導入されると、 CCDカメラ 16の表 面温度を上昇させてしまう。 CCDカメラ 16の動作温度範囲は通常、 0〜+40°Cであ るため、 100°Cに昇温した冷却用空気 caの温度を 60°C程度降下させる必要がある。  When the cooling air ca that has been heated in this way is introduced into the housing 13, the surface temperature of the CCD camera 16 is raised. Since the operating temperature range of the CCD camera 16 is normally 0 to + 40 ° C, the temperature of the cooling air ca that has been raised to 100 ° C must be lowered by about 60 ° C.
[0073] 従来の炉内観察装置には冷却手段として観察装置内に熱電冷却素子を複数配設 したものもあるが、この種の観察装置は、熱電冷却素子を単に装置内壁に取り付け、 まず、 CCDカメラが配置されている装置内の空間を冷却し、冷却された雰囲気によつ て間接的に CCDカメラを冷却するものであるから、 60°C程度に降下させることは不 可能である。  [0073] Some conventional observation apparatuses in the furnace are provided with a plurality of thermoelectric cooling elements in the observation apparatus as a cooling means, but this type of observation apparatus is simply attached to the inner wall of the apparatus, It is impossible to lower the temperature to around 60 ° C because the space inside the device where the CCD camera is located is cooled and the CCD camera is indirectly cooled by the cooled atmosphere.
[0074] これに対し、本発明の炉内観察装置 5では、 CCDカメラ 16に対し熱伝導体 17を介 して熱電冷却素子群 18の吸熱側を密着させ、その熱電冷却素子群 18の放熱側に 冷却フィン群 19を取り付けて一体化することで熱電冷却素子群 18を高効率で冷却 動作させるように構成して 、る。 On the other hand, in the in-furnace observation apparatus 5 of the present invention, the heat absorption side of the thermoelectric cooling element group 18 is brought into close contact with the CCD camera 16 via the heat conductor 17, and the heat dissipation of the thermoelectric cooling element group 18 is performed. On the side The thermoelectric cooling element group 18 is configured to be cooled and operated with high efficiency by attaching and integrating the cooling fin group 19.
[0075] 上記熱電冷却素子群 18を構成している熱電冷却素子 18a〜18dは、小型ヒートポ ンプとして機能し精密な局所温度調整が可能な電子部品からなる。その構成は、二 枚のセラミック板と、両セラミック板に間に配置される、 n型 ·ρ型が対となった複数の半 導体素子力 なり、リード線を通じて通電するとセラミック板の一方の面が吸熱 (冷却) し、反対の面が放熱 (加熱)するようになつている。  [0075] The thermoelectric cooling elements 18a to 18d constituting the thermoelectric cooling element group 18 are made of electronic components that function as small heat pumps and are capable of precise local temperature adjustment. The structure consists of two ceramic elements and a pair of n-type and rho-type semiconductor elements arranged between the two ceramic plates and energized through the lead wire. Absorbs heat (cools), and the opposite surface dissipates (heats).
[0076] 本実施形態では、冷却効果を高めるため熱電冷却素子を二枚積層して使用してい る。また、各熱電冷却素子 18a〜18aの外形寸法 (L XWX H)を例示すると 40 X 40 X 7mmであり、吸熱面と放熱面の最大温度差が 60°C以上のものを使用している。  In this embodiment, two thermoelectric cooling elements are stacked and used in order to enhance the cooling effect. Further, the outer dimensions (L XWX H) of the thermoelectric cooling elements 18a to 18a are 40 X 40 X 7mm, and the maximum temperature difference between the heat absorption surface and the heat dissipation surface is 60 ° C or more.
[0077] 冷却動作を具体的に説明すると、 CCDカメラ 16の表面温度を熱電対で監視し、 40 °Cを超える場合には熱電冷却素子群 18を ON動作させる。熱電冷却素子群 18を O N動作させると、放熱側温度は、常に所定の温度に維持されている冷却用空気 caの 温度と略同じ温度になるから、熱電冷却素子群 18は安定して CCDカメラ 16を冷却 することができる。それにより、 CCDカメラ 16の表面温度を 40°C以下に保つことが可 能になり、 CCDカメラ 16を安定動作させることが可能になる。  [0077] The cooling operation will be specifically described. The surface temperature of the CCD camera 16 is monitored with a thermocouple, and when it exceeds 40 ° C, the thermoelectric cooling element group 18 is turned on. When the thermoelectric cooling element group 18 is turned on, the heat radiation side temperature is almost the same as the temperature of the cooling air ca, which is always maintained at a predetermined temperature. 16 can be cooled. As a result, the surface temperature of the CCD camera 16 can be kept below 40 ° C, and the CCD camera 16 can be operated stably.
[0078] また、図 2において、筐体 13外部カも炉内観察装置 5内に侵入する熱は、まず筐体 13内壁に貼着されている断熱材 14によって遮断され、熱の一部がその断熱材 14を 通過したとしても冷却通路 Paを流れる冷却用空気 caによってそのほとんどが奪われ る。そのため、第二の冷却通路 Pbに配置されている冷却フィン群 19を通過する冷却 用空気 caに与える影響は少ない。  Further, in FIG. 2, the heat that enters the in-furnace observation apparatus 5 of the casing 13 outside the casing 13 is first blocked by the heat insulating material 14 attached to the inner wall of the casing 13, and part of the heat is Even if it passes through the heat insulating material 14, most of it is taken away by the cooling air ca flowing in the cooling passage Pa. Therefore, there is little influence on the cooling air ca passing through the cooling fin group 19 disposed in the second cooling passage Pb.
2  2
[0079] 次に、上記構成を有する炉内観察装置 5の動作について説明する。  Next, the operation of the in-furnace observation apparatus 5 having the above configuration will be described.
[0080] 炭化室で乾留された赤熱コータス 51を炉外に押し出す押出作業において炉蓋が 外されると、図 1に示した押出ラム 3が炭化室内に挿入され、ラムビーム 2先端のラム ヘッド 1によって赤熱コータスが押し出される。  [0080] When the furnace lid is removed in the extrusion operation of extruding the red hot coatas 51 that has been carbonized in the carbonization chamber, the extrusion ram 3 shown in Fig. 1 is inserted into the carbonization chamber, and the ram head 1 at the tip of the ram beam 2 is inserted. Extrudes red hot coatas.
[0081] 押出ラム 3が炭化室内を移動していく際、押出ラム 3の挿入方向と逆向に設置され て 、る炉内観察装置 5は、炭化室の炉壁を押出機側力 ガイド車側に向けて撮影し[0081] When the extrusion ram 3 moves in the carbonization chamber, the in-furnace observation device 5 is installed in a direction opposite to the insertion direction of the extrusion ram 3, and the furnace wall of the carbonization chamber is placed on the extruder side force guide wheel side. Shoot for
、その画像信号を押出ラム 3の位置信号情報と関連させて前述したコントローラに出 力する。 The image signal is related to the position signal information of the extrusion ram 3 and output to the controller described above. To help.
[0082] 炉内観察装置 5には冷却用空気 caが配管 12を通じて常時供給されており、炉内観 察装置 5に供給された冷却用空気 caは、図 2に示したように冷却通路 Paと第二の冷 却通路 Pbとに別れて筐体 13内を流れる。  [0082] Cooling air ca is constantly supplied to the in-furnace observation device 5 through the pipe 12, and the cooling air ca supplied to the in-furnace observation device 5 is connected to the cooling passage Pa as shown in FIG. It separates from the second cooling passage Pb and flows in the housing 13.
[0083] 冷却通路 Paを流れる冷却用空気 caは、筐体 13内壁に貼着された断熱材 14を通 過して筐体 13内に侵入してくる熱を吸収し、熱交換に供せられた冷却用空気 caは 前面板 13cに設けられたスリット状開口 13dから筐体 13外部に放出される。 [0083] The cooling air ca flowing in the cooling passage Pa absorbs heat that enters the casing 13 through the heat insulating material 14 attached to the inner wall of the casing 13, and is used for heat exchange. The cooling air ca thus discharged is discharged to the outside of the housing 13 through a slit-shaped opening 13d provided in the front plate 13c.
[0084] カメラユニット 20内の CCDカメラ 16はその周囲に配設された熱伝導ブロック 17a〜[0084] The CCD camera 16 in the camera unit 20 includes heat conduction blocks 17a to 17 arranged around the camera.
17dを介して熱電冷却素子 18a〜 18dの吸熱側と接触して ヽるため、熱電冷却素子Since the thermoelectric cooling element 18a to 18d comes into contact with the heat absorption side of the thermoelectric cooling element 18d through 17d, the thermoelectric cooling element
18a〜18dが温度制御されることによって冷却される。 18a-18d is cooled by temperature control.
[0085] また、熱電冷却素子 18a〜18dの発熱は冷却フィン 19a〜19dに伝達され、これら の冷却フィン 19a〜 19dが配置されて 、る第二の冷却通路 Pbには冷却用空気 caが [0085] Further, heat generated by the thermoelectric cooling elements 18a to 18d is transmitted to the cooling fins 19a to 19d, and the cooling fins 19a to 19d are arranged, and the cooling air ca is provided in the second cooling passage Pb.
2 常時流れているため、熱電冷却素子 18a〜18dによって生じた発熱はその冷却空気 caによって放熱される。  2 Since it always flows, the heat generated by the thermoelectric cooling elements 18a to 18d is dissipated by the cooling air ca.
[0086] 第二の冷却通路 Pbを通過して熱交換に供せられた冷却用空気 caは、さらに、仕  [0086] The cooling air ca passed through the second cooling passage Pb and used for heat exchange is further processed.
2  2
切部材 21の前側端部とフィルタ支持部材 22との隙間 D (図 4参照)を流れることにより 、その向きを耐熱ガラス 23に集中する方向に変換し、耐熱ガラス 23の表面に粉塵等 が付着することを防止する。  By flowing through the gap D (see Fig. 4) between the front end of the cutting member 21 and the filter support member 22, the direction is changed to a direction where it concentrates on the heat-resistant glass 23, and dust adheres to the surface of the heat-resistant glass 23. To prevent.
[0087] また、第二の冷却通路 Pbを通過した冷却用空気 caの一部は耐熱ガラス 23と赤外 [0087] Further, a part of the cooling air ca that has passed through the second cooling passage Pb is composed of the heat-resistant glass 23 and the infrared ray.
2  2
線吸収フィルタ 24 (図 4参照)との間に設けられた隙間にも流れ、それにより耐熱ガラ ス 23を効率良く冷却するようになって ヽる。  It also flows into the gap provided between the wire absorption filter 24 (see Fig. 4), and as a result, the heat-resistant glass 23 is cooled efficiently.
[0088] また、上記炉内観察装置 5は、押出ラム 3によるコータス押出し時 (片方向のみ)に 動作させるものであってもよぐまた、コータス押出し時と押出ラム 3の戻り時(両方向) に動作させるものであってもよ 、。 [0088] Further, the in-furnace observation device 5 may be operated during the coatus extrusion by the extrusion ram 3 (one direction only), or when the coatus extrusion and the return of the extrusion ram 3 (both directions). You can make it work.
産業上の利用可能性  Industrial applicability
[0089] 本発明の炉内観察装置は、コークス炉、転炉、焼成炉、焼却ボイラー、発電用ボイ ラー、その他の高温の炉内を観察する場合に好適に利用することができる。 The in-furnace observation apparatus of the present invention can be suitably used for observing the inside of a coke oven, converter, firing furnace, incineration boiler, power generation boiler, or other high-temperature furnace.

Claims

請求の範囲 The scope of the claims
[1] 冷却用空気の導入部とその冷却用空気が冷却に供せられた後、排出される排出部 とを有する筐体と、この筐体内の上記排出部近傍に収納される撮像装置とを有し、 上記撮像装置は、  [1] A housing having a cooling air introduction portion and a discharge portion that is discharged after the cooling air is provided for cooling, and an imaging device that is housed near the discharge portion in the housing The imaging device has
撮像素子と、  An image sensor;
吸熱面側が上記撮像素子本体の周囲を取り囲んだ状態で配置されるプレート状の 熱電冷却素子と、  A plate-like thermoelectric cooling element disposed with the heat absorption surface side surrounding the periphery of the image sensor body;
上記撮像素子本体と上記熱電冷却素子の吸熱面側との隙間を埋める熱伝導体と、 上記熱電冷却素子の放熱面側に形成された冷却フィンとを一体化してなることを特 徴とする炉内観察装置。  A furnace characterized by integrating a heat conductor that fills a gap between the imaging element body and the heat absorption surface side of the thermoelectric cooling element, and a cooling fin formed on the heat radiation surface side of the thermoelectric cooling element. Internal observation device.
[2] 上記撮像装置が筒状の断熱部に収納された状態で上記筐体内に収納され、上記 断熱部外壁と上記筐体内壁との間に冷却用空気を流すための冷却通路が形成され ている請求項 1記載の炉内観察装置。  [2] The imaging device is housed in the housing in a state of being housed in a cylindrical heat insulating portion, and a cooling passage is formed between the outer wall of the heat insulating portion and the inner wall of the housing to flow cooling air. The in-furnace observation apparatus according to claim 1.
[3] 上記筐体内壁に断熱材が貼着されている請求項 2記載の炉内観察装置。 [3] The in-furnace observation device according to claim 2, wherein a heat insulating material is adhered to the inner wall of the casing.
[4] 上記筐体の前面において上記撮像素子のレンズと対向する位置に観察窓が設け られ、この観察窓力 耐熱ガラスと赤外線吸収フィルタと赤外線反射フィルタとの積層 体から構成されている請求項 1記載の炉内観察装置。 [4] The observation window is provided at a position facing the lens of the imaging device on the front surface of the housing, and the observation window force is configured by a laminate of heat-resistant glass, infrared absorption filter, and infrared reflection filter. 1. In-furnace observation apparatus.
[5] 上記冷却フィンの外周部が上記筒状の断熱部によって囲まれ、各冷却フィンの隙 間が冷却空気を流すための第二の冷却通路を構成している請求項 2記載の炉内観 察装置。 [5] The furnace interior view according to claim 2, wherein an outer peripheral portion of the cooling fin is surrounded by the cylindrical heat insulating portion, and a gap between the cooling fins constitutes a second cooling passage for flowing cooling air. Observation device.
[6] 上記筒状の断熱部における冷却用空気の流れ方向下流側端部に、上記第二の冷 却通路を通過した冷却用空気の流れ方向を上記観察窓側に向けて変更する流れ方 向変更部が形成されている請求項 5記載の炉内観察装置。  [6] Flow direction in which the flow direction of the cooling air that has passed through the second cooling passage is changed toward the observation window side at the downstream end in the flow direction of the cooling air in the cylindrical heat insulating portion. 6. The in-furnace observation apparatus according to claim 5, wherein a changing portion is formed.
[7] 請求項 1〜6のいずれか 1項に記載の炉内観察装置を、コークス炉に配置される押 出ラムのラムビームに設置したことを特徴とする炉内観察装置付き押出ラム。  [7] An extrusion ram with an in-furnace observation device, wherein the in-furnace observation device according to any one of claims 1 to 6 is installed in a ram beam of an extrusion ram disposed in a coke oven.
[8] 上記ラムビームに敷設された断熱配管内に、冷却用空気を上記炉内観察装置に 供給するホースと、上記撮像素子および熱電冷却素子に電源を供給するとともに撮 影画像を出力するためのケーブルと、上記熱電冷却素子の温度制御を行うための制 御信号を送信するケーブルが収納されている請求項 7記載の炉内観察装置付き押 出ラム。 [8] A heat hose for supplying cooling air to the in-furnace observation device, power supply to the imaging element and thermoelectric cooling element, and output of a captured image in a heat insulating pipe laid on the ram beam. Control for temperature control of cable and thermoelectric cooling element The extrusion ram with an in-furnace observation device according to claim 7, wherein a cable for transmitting a control signal is accommodated.
上記押出ラムに、上記冷却用空気を貯溜するためのタンクと、このタンク内の冷却 用空気を所定圧に保持するためのコンプレッサが搭載されている請求項 8記載の炉 内観察装置付き押出ラム。  9. The extrusion ram with in-furnace observation device according to claim 8, wherein a tank for storing the cooling air and a compressor for maintaining the cooling air in the tank at a predetermined pressure are mounted on the extrusion ram. .
PCT/JP2007/050288 2006-02-27 2007-01-12 Furnace monitoring apparatus and push-out ram having the same WO2007097133A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800067156A CN101389917B (en) 2006-02-27 2007-01-12 Furnace monitoring apparatus and push-out ram having the same
US12/224,336 US8157968B2 (en) 2006-02-27 2007-01-12 Oven observing equipment and push-out ram having the same
KR1020087017336A KR101299497B1 (en) 2006-02-27 2007-01-12 Furnace monitoring apparatus and push-out ram having the same
PL07706635T PL2003413T3 (en) 2006-02-27 2007-01-12 Furnace monitoring apparatus and push-out ram having the same
EP07706635.5A EP2003413B1 (en) 2006-02-27 2007-01-12 Furnace monitoring apparatus and push-out ram having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006050454A JP4873962B2 (en) 2006-02-27 2006-02-27 In-furnace observation device and extrusion ram provided with the same
JP2006-050454 2006-02-27

Publications (1)

Publication Number Publication Date
WO2007097133A1 true WO2007097133A1 (en) 2007-08-30

Family

ID=38437176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050288 WO2007097133A1 (en) 2006-02-27 2007-01-12 Furnace monitoring apparatus and push-out ram having the same

Country Status (8)

Country Link
US (1) US8157968B2 (en)
EP (1) EP2003413B1 (en)
JP (1) JP4873962B2 (en)
KR (1) KR101299497B1 (en)
CN (1) CN101389917B (en)
PL (1) PL2003413T3 (en)
TW (1) TW200734591A (en)
WO (1) WO2007097133A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245517A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd Welding sensor
US20120050539A1 (en) * 2009-05-06 2012-03-01 Eyal Naimi Camera having a temperature balancing feature
JP6745026B1 (en) * 2019-03-28 2020-08-26 株式会社メンテック Surveillance camera equipment
WO2020196212A1 (en) * 2019-03-28 2020-10-01 株式会社メンテック Monitoring camera device

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711856B2 (en) * 2006-02-28 2011-06-29 関西熱化学株式会社 Furnace width measuring device and extrusion ram provided with the same
JP5449690B2 (en) * 2008-03-27 2014-03-19 日本原子力発電株式会社 High-temperature atmosphere furnace observation device
JP4840675B2 (en) * 2009-06-05 2011-12-21 センサーテクノロジー株式会社 Video camera with cooling function
US8546717B2 (en) * 2009-09-17 2013-10-01 Sciaky, Inc. Electron beam layer manufacturing
WO2011059621A1 (en) * 2009-11-13 2011-05-19 Sciaky, Inc. Electron beam layer manufacturing using scanning electron monitored closed loop control
JP5452189B2 (en) * 2009-11-27 2014-03-26 株式会社Ihi検査計測 In-furnace observation apparatus and method
WO2011123195A1 (en) 2010-03-31 2011-10-06 Sciaky, Inc. Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control
EP2437021B1 (en) * 2010-09-29 2013-05-01 TMT Tapping-Measuring-Technology GmbH Device and method for protecting an optical observation opening
KR101223104B1 (en) * 2010-10-28 2013-01-17 재단법인 포항산업과학연구원 Method and apparatus for monitoring an operation of iron & steel-making furnace
JP5842332B2 (en) * 2011-01-13 2016-01-13 Jfeスチール株式会社 Coke oven carbonization chamber observation device
TR201900106T4 (en) 2011-02-28 2019-02-21 Arcelormittal Method and apparatus for real-time video imaging of the nose in the hot dip coating line.
KR101256353B1 (en) * 2011-05-04 2013-04-25 주식회사 에스엔엔씨 Kiln surveillance cameras
JP5781888B2 (en) * 2011-10-07 2015-09-24 幹男 下川 High-temperature atmosphere furnace observation device
US20130120936A1 (en) * 2011-11-11 2013-05-16 Vale S/A Scanner protection casing and system of reading the height of the pellet bed of grid cars inside a grid furnace comprising a scanner protected by said casing
CN102818538B (en) * 2012-09-14 2014-09-10 洛阳兰迪玻璃机器股份有限公司 Detection system based on modulated glass thread structure laser image
AU2014247887A1 (en) * 2013-04-01 2015-10-22 Mitsubishi Electric Corporation Optical device, lidar device, and image pickup device
JP5865879B2 (en) * 2013-09-19 2016-02-17 エスペック株式会社 Environmental test equipment
KR101593197B1 (en) * 2014-02-21 2016-02-11 주식회사 후상 Temperature measuring apparatus of combustionchamber in a coke oven
JP6212416B2 (en) * 2014-03-13 2017-10-11 株式会社日立ハイテクサイエンス IMAGING DEVICE FOR THERMAL ANALYZER AND THERMAL ANALYZER HAVING THE SAME
JP6293025B2 (en) * 2014-09-11 2018-03-14 住友重機械プロセス機器株式会社 Extruder and operating method of extruder
JP6640542B2 (en) * 2015-12-07 2020-02-05 日鉄テックスエンジ株式会社 Target core sensor device
US9939859B2 (en) * 2016-03-17 2018-04-10 Google Llc Electronic device with a cooling structure
JP6766483B2 (en) * 2016-07-07 2020-10-14 日本製鉄株式会社 High temperature part observation window
JP6948696B2 (en) * 2017-06-29 2021-10-13 フジクス株式会社 Camera device with dirt removal function
JP7146659B2 (en) 2019-01-25 2022-10-04 住友重機械プロセス機器株式会社 In-furnace observation device, maintenance method for in-furnace observation device
JP7313274B2 (en) * 2019-12-25 2023-07-24 日鉄テックスエンジ株式会社 Furnace peephole structure
KR102412477B1 (en) * 2020-07-13 2022-06-22 주식회사 포스코 Appratus and method for operating coke oven
CN114933909B (en) * 2022-05-11 2023-06-06 太原重工股份有限公司 Coke oven door closing state detection device and identification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527599U (en) 1991-09-13 1993-04-09 川崎炉材株式会社 High temperature furnace observation device
JPH09203950A (en) * 1996-01-25 1997-08-05 Nippon Avionics Co Ltd Environmental resistance camera housing
JP2003115686A (en) * 2001-10-05 2003-04-18 Nuclear Fuel Ind Ltd Overheating controller for operated heat generating component in equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141987A (en) * 1961-06-01 1964-07-21 Gen Precision Inc Camera and temperature-controlling jacket
US3464218A (en) * 1967-12-28 1969-09-02 Meade Electric Co Of Indiana I Heat exchange housing for television camera and the like
US4131914A (en) * 1975-09-23 1978-12-26 Bricmont & Associates, Inc. Method and apparatus for inspecting refractory lining in coke oven chambers and the like
US5162906A (en) * 1988-04-06 1992-11-10 Shinagawa Refractories Co., Ltd. Apparatus for observing the interior of a hot furnace
CN2132984Y (en) * 1992-09-04 1993-05-12 煤炭科学研究总院北京煤化学研究所 Ash fusion controlled visualizer
CN2162055Y (en) * 1993-04-27 1994-04-13 天津开发区中导实业公司 Furnace wall type industry camera protective sleeve
AU698585B2 (en) * 1996-04-04 1998-11-05 Nippon Steel & Sumitomo Metal Corporation Apparatus for monitoring wall surface
JPH10257360A (en) * 1997-03-12 1998-09-25 Hitachi Denshi Ltd Monitoring television camera device
CN2362123Y (en) * 1999-03-23 2000-02-02 高胜利 Ash fusibility testing instrument
WO2003066775A1 (en) * 2002-01-09 2003-08-14 Nippon Steel Corporation Furnace wall observation device and furnace wall shape measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527599U (en) 1991-09-13 1993-04-09 川崎炉材株式会社 High temperature furnace observation device
JPH09203950A (en) * 1996-01-25 1997-08-05 Nippon Avionics Co Ltd Environmental resistance camera housing
JP2003115686A (en) * 2001-10-05 2003-04-18 Nuclear Fuel Ind Ltd Overheating controller for operated heat generating component in equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003413A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050539A1 (en) * 2009-05-06 2012-03-01 Eyal Naimi Camera having a temperature balancing feature
JP2011245517A (en) * 2010-05-27 2011-12-08 Kobe Steel Ltd Welding sensor
JP6745026B1 (en) * 2019-03-28 2020-08-26 株式会社メンテック Surveillance camera equipment
WO2020196212A1 (en) * 2019-03-28 2020-10-01 株式会社メンテック Monitoring camera device
US11882348B2 (en) 2019-03-28 2024-01-23 Maintech Co., Ltd. Monitoring camera device

Also Published As

Publication number Publication date
US20090134005A1 (en) 2009-05-28
JP2007225266A (en) 2007-09-06
EP2003413B1 (en) 2013-05-29
KR20080100338A (en) 2008-11-17
EP2003413A4 (en) 2010-04-14
CN101389917A (en) 2009-03-18
JP4873962B2 (en) 2012-02-08
EP2003413A2 (en) 2008-12-17
KR101299497B1 (en) 2013-08-29
PL2003413T3 (en) 2013-09-30
US8157968B2 (en) 2012-04-17
EP2003413A9 (en) 2009-04-15
CN101389917B (en) 2012-07-25
TW200734591A (en) 2007-09-16
TWI375005B (en) 2012-10-21

Similar Documents

Publication Publication Date Title
WO2007097133A1 (en) Furnace monitoring apparatus and push-out ram having the same
WO2003066775A1 (en) Furnace wall observation device and furnace wall shape measuring device
JP6490750B2 (en) Observation device and cooling mechanism
CA2950850C (en) Thermal imaging in a high temperature furnace
JPH09307795A (en) Device for observing inside of furnace under high temperature environment
JP4711856B2 (en) Furnace width measuring device and extrusion ram provided with the same
JP3996813B2 (en) Furnace wall observation device
JP4133106B2 (en) Furnace wall shape measuring device
JP7158094B1 (en) Closed space observation device
KR101996621B1 (en) Camera apparatus for furnace, converter and hub system therefor
JP7438721B2 (en) Furnace monitoring device
CN201654322U (en) Industrial flame endoscope
JPH05141878A (en) Observation device for inside of furnace equipped with filter
JP2561913Y2 (en) High temperature furnace observation device
JP2002226861A (en) Method for diagnosing inside of carbonization chamber of coke oven and device for diagnosing the same
CN213072856U (en) Color comparison watching television
JP3590509B2 (en) Method and apparatus for observing inner wall of coke oven carbonization chamber
JP2003286486A (en) Thermal spray apparatus for repairing coke oven
JP3781800B2 (en) Inspection equipment in the hot stove
CN116075776A (en) Device and method for observing structure
CN114303036A (en) High-temperature furnace interior inspection method and image capturing device used in same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087017336

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12224336

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780006715.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007706635

Country of ref document: EP