WO2007097127A1 - Method of estimating amount of gas hydrate decomposed and decomposition gas utilizing system - Google Patents

Method of estimating amount of gas hydrate decomposed and decomposition gas utilizing system Download PDF

Info

Publication number
WO2007097127A1
WO2007097127A1 PCT/JP2007/000133 JP2007000133W WO2007097127A1 WO 2007097127 A1 WO2007097127 A1 WO 2007097127A1 JP 2007000133 W JP2007000133 W JP 2007000133W WO 2007097127 A1 WO2007097127 A1 WO 2007097127A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas hydrate
decomposition
hydrate
amount
Prior art date
Application number
PCT/JP2007/000133
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Iwasaki
Yuichi Kato
Masahiro Takahashi
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Publication of WO2007097127A1 publication Critical patent/WO2007097127A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • C07B63/02Purification; Separation; Stabilisation; Use of additives by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Definitions

  • the present invention relates to a method for estimating the amount of decomposition of a gas hydrate by using a clathrate compound of water and a gaseous hydrate forming substance that forms a gas hydrate such as natural gas, methane, ethane, and carbon dioxide, and use of the cracked gas About the system.
  • a gas hydrate cage is an ice-like solid crystal composed of water molecules and gas molecules, and the inclusion (formation) formed by the gas molecules being taken into the cage (cage) of the three-dimensional structure created by the water molecules.
  • This is a generic name for clathrate hydrate.
  • the amount of gas that can be stored in a 1 m 3 gas hydrate is about 1 65 Nm 3 . Therefore, a system that generates, stores, and transports natural gas as hydrated straw (NGH system: Natural Gas Hydrate System) is being studied.
  • NSH natural gas hydrate
  • FIG. 5 is a known hydrate equilibrium diagram (example of methane hydrate).
  • the upper left region of the equilibrium line 21 is the hydrate generation region, and the lower right region of the equilibrium line 21 is outside the hydrate generation region.
  • H stands for Hydrate
  • G stands for Gas
  • I stands for Ice
  • LW stands for Liquid Water.
  • the generated natural gas hydrate freezes when cooled to below the freezing point (0 ° C to 40 ° C, point B in Fig. 5) at the same pressure. And the frozen natural gas hydrate The pressure is reduced to the storage pressure (atmospheric pressure near 0.1 MPa, point C in Fig. 5) and stored in the storage tank.
  • the storage pressure is set to be slightly higher than the atmospheric pressure from the viewpoint of preventing inadvertent entry of air into the storage tank.
  • the temperature and pressure of this storage tank are located outside the hydride production area, decomposition of the gas hydrate is suppressed below the freezing point and is in a metastable state. This metastable phenomenon is known as self-preservation.
  • the gas hydrate is compressed and molded into a pellet-like shape.
  • the pellet size is about 5 mm to 10 O mm.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-32083). 2—2 2 0 3 5 3).
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0205-2 086 has been studied.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 2-2 2 0 3 5 3
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 5 _ 2 0 1 2 8 6
  • the amount of decomposition of the gas hydrate tank cannot be estimated, it will be difficult to determine the specifications of the safety valve provided in the storage tank and the specifications of the equipment for using the cracked gas. If the amount of gas hydrate decomposition is greater than the treatment capacity of the selected equipment, the cracked gas cannot be processed and the gas is wasted. In addition, if the amount of gas hydrate decomposition is less than the treatment capacity of the selected facility, the facility will be overdesigned, increasing costs.
  • An object of the present invention is to suppress the decomposition amount of the gas hydrate when storing the gas hydrate, predict the decomposition amount, and efficiently use the decomposition gas generated by the decomposition of the gas hydrate.
  • the object of the present invention is to provide a method for estimating the amount of decomposition of a gas hydride and a system for using cracked gas that can be used effectively.
  • the method for estimating the decomposition amount of a gas hydrate according to the first aspect of the present invention includes a gas hydrate when storing the gas hydrate under conditions where the gas hydrate exhibits a self-preserving effect.
  • the amount of decomposition of the gas hydrate is determined on the basis of the following formula (1), and the amount of decomposition of the gas hydrate is estimated.
  • [Equation 3] ⁇ 1-(1 1 ⁇ ⁇ / r 0 ) 3 ⁇ ⁇ ⁇ (1)
  • K Decomposition rate constant determined by experiment depending on storage pressure, storage temperature, gas hydrate density, and gas composition
  • a cracked gas utilization system for a gas hydrate tank includes a storage tank in which a gas hydrate is stored, and a cracked gas that uses the cracked gas of the gas hydrate tank generated from the storage tank.
  • a gas hydrate cracking gas utilization system comprising: a gas hydrate cracking system, wherein the cracking gas utilization facility is estimated using a gas hydrate cracking rate (S) determined based on the following equation (1): It is characterized in that it is formed on a scale corresponding to the amount of dissolved gas.
  • the present invention it is possible to accurately estimate the cracked gas amount of a gas hydrate tank stored under conditions that exhibit a self-preserving effect. Therefore, based on the pressure design value of the hydrate tank, Equipment such as safety valves can be properly installed, and the storage tank will not be higher than the pressure design value or depressurized, improving safety. [0022] In addition, it is possible to introduce equipment of an appropriate scale according to the estimated amount of cracked gas. That is, an installation that is too small relative to the amount of gas hydrate cracked gas is introduced, and the cracked gas is not wasted and the economy is improved. Furthermore, construction costs can be reduced without introducing excessive facilities for the amount of gas hydrate cracked gas.
  • the type of hydrated rice cake is not particularly limited.
  • the type of gaseous hydrate-forming substance that forms hydrates may be any material that can form hydrates at a predetermined temperature and pressure.
  • natural gas methane as the main component and subcomponents.
  • Gas hydrate particles and pellets are stored in a state of self-preserving effect. It is practical to manufacture the gas hydrate and pellets in the range of 5 mm to 10 O mm.
  • Fig. 1 shows the decomposition rate of methane gas hydrate pellets (hereinafter referred to as MGHP) at each storage temperature in terms of the reduction rate of the gas ⁇ molecular inclusion rate Qf H, ⁇ Of H Z ⁇ t (s _ 1 ).
  • Hydration number is the ratio of the number of water molecules to gas molecules. In this example, the value of 5.75, which is the theoretical hydration number of the gas hydrated I-type structure, was used.
  • MGH P is large decomposition rate in storage temperature 268 K, and the decomposition rate of the storage temperature is lower small and Li was reduced to 253 in K 3 X 1 0_ 8 s_ 1 .
  • the decomposition rate increased again when the storage temperature was lower than 253 K, and the decomposition rate reached the maximum at 2 1 OK, but decreased at a lower temperature, and the decomposition rate became zero at 1 68 K.
  • the self-preserving property of MG HP was exhibited in a limited temperature range of 226 K to 268 K, and it was confirmed that the highest stability was observed at around 253 mm within this temperature range.
  • mixed GHP mixed gas hydrate pellet
  • methane methane
  • ethane and propane the decomposition rate is the lowest at 253 K within the measurement range. Yes.
  • the temperature dependence of the mixed GHP decomposition rate shows the same tendency as MGH P regardless of the composition and concentration.
  • Fig. 2 is a decomposition reaction model of spherical gas hydrate particles and pellets. The meaning of the symbols is shown below r: Hydrate particle, Perez radius (m)
  • V Hydrate soot particle, Perez soot volume (m 3 )
  • the subscript 0 indicates the initial state.
  • the gas hydrate pellets in a self-preserving state in which the MGHP is in the temperature range of 2 26 K to 2 68 K, particularly around 2 53 3 Estimate the amount of soot decomposition.
  • V 4 ⁇ (r. One X) '3 (3)
  • the decomposition rate d xZd t can be expressed as follows.
  • Equation (8) is obtained from Equation (5) and Equation (7).
  • Equation 11 The decomposition rate ⁇ from the equation (8) is the following equation (1).
  • Decomposition rate constant K is the density of pellets, which is the property of gas hydrate pellets.
  • methane gas hydrate pellets having a pellet density of 880 to 914 kgZm 3 at 1 atmosphere and 253 K are given.
  • the decomposition rate constant K is 1 X 1 0_ 16 m 2 Zs to 1 X 1 0 — 14 m 2 Z s.
  • K 3. 5 X 1 0_ 15 m 2 Zs ⁇ 2. 5 X 1 0_ 15 m 2 Zs as a more preferable range.
  • the decomposition rate ⁇ is obtained by Equation (1), the result of estimation of the guest molecule inclusion rate (%) of MG HP obtained by Equation (9), and the actual result by experiment Figure 3 shows a comparison with the guest molecule inclusion rate (%).
  • the guest molecule inclusion rate in Fig. 3 is expressed as a percentage by multiplying Q? H defined above by 100.
  • the estimated value is in good agreement with the experimental results until after 400 hours, and the decomposition rate of the gas hydrate can be obtained by the estimation formula (1). It can be said that the amount of decomposition can be estimated.
  • Fig. 4 is a schematic configuration diagram of the cracked gas utilization system of gas hydrate and pellets.
  • the gas hydrate pellets will be described as an example, but the same applies to the gas hydrate particles.
  • Process data of gas hydrate pellet storage tank 12 [Storage temperature T (K), storage pressure (MPa), gas hydrate storage volume (kg), gas composition, pellet density iO (kg Zm 3 ), particle size 2 r (mm)] is set.
  • Storage temperature T (K) storage pressure
  • MPa storage pressure
  • gas hydrate storage volume kg
  • gas composition pellet density iO (kg Zm 3 )
  • particle size 2 r (mm) particle size
  • the particle size is divided into several parts, and the decomposition rate is calculated for each average particle size. Multiply this by the weight fraction for each particle size and add up to obtain the overall decomposition rate.
  • the outer diameter may be regarded as the particle diameter.
  • the outer diameter has a major axis and a minor axis, it is desirable to use the average of the major axis and the minor axis as the particle diameter.
  • the set constant properties gas composition, particle size 2 r 0 , pellet ⁇ density gas hydrate pelette ⁇ 1 1, under certain storage conditions (storage pressure where the gas hydrate expresses a self-preserving effect) P, the decomposition rate constant K when storing at storage temperature T) is determined by experiment, and the decomposition rate ⁇ of the gas hydrate stored based on the estimation formula (1) is obtained and stored in storage tank 1 2 The amount of generated cracked gas is estimated.
  • the amount of cracked gas stored in the storage tank 1 2 can be accurately estimated. Therefore, based on the pressure design value of the storage tank 1 2 The inside of the storage tank 1 2 does not become higher than the designed pressure value or depressurize, and safety is improved.
  • the scale When introducing the cracked gas utilization facility 13 using cracked gas, the scale can be designed according to the amount of cracked gas estimated from the cracked gas utilization facility 13. sand In other words, an installation that is too small relative to the amount of cracked gas hydrate and pellets 11 will be introduced, and the cracked gas will not be dissipated unnecessarily, improving the economy. Furthermore, it is possible to reduce the construction cost without introducing excessive equipment with respect to the amount of cracked gas.
  • the present invention relates to the storage of gas hydrate particles and pellets, which are clathrate compounds of gaseous hydrate forming substances such as natural gas, methane, ethane, carbon dioxide and the like, and water. It can be used in the cracked gas utilization system of the gas hydrate tank.
  • FIG. 1 is a diagram showing the correlation between storage temperature and decomposition rate of gas hydrate and pellets.
  • FIG. 2 is a diagram showing a decomposition reaction model of spherical gas hydrate particles and pellets.
  • FIG. 3 is a diagram showing measured values and estimated values of gas storage rates of methane gas hydrate and pellets.
  • FIG. 4 is a schematic configuration diagram of a cracked gas utilization system for a gas hydrate pellets according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A method of estimating the amount of gas hydrate decomposed, and decomposition gas utilizing system, being capable of realizing not only, at the storage of gas hydrate, restriction of the amount of gas hydrate decomposed but also estimation of the decomposition amount and effective utilization of decomposition gas produced by decomposition of gas hydrate without wasting the same. There is provided a method of estimating the amount of gas hydrate decomposed in the storage of gas hydrate under such conditions that the gas hydrate exerts self-preserving effect, characterized in that the decomposition rate of gas hydrate (β) is calculated according to given mathematical formula, thereby attaining estimation of the amount of gas hydrate decomposed.

Description

明 細 書  Specification
ガスハイドレ一卜の分解量推算方法および分解ガス利用システム 技術分野  Method for estimating the amount of decomposition of gas hydrate
[0001] 本発明は、 天然ガス、 メタン、 ェタン、 二酸化炭素などのガスハイドレー 卜を形成する気体状のハイドレー卜形成物質と水との包接化合物でガスハイ ドレー卜の分解量推算方法および分解ガス利用システムに関する。  [0001] The present invention relates to a method for estimating the amount of decomposition of a gas hydrate by using a clathrate compound of water and a gaseous hydrate forming substance that forms a gas hydrate such as natural gas, methane, ethane, and carbon dioxide, and use of the cracked gas About the system.
背景技術  Background art
[0002] ガスハイドレー卜とは、 水分子とガス分子からなる氷状の固体結晶であり 、 水分子が作る立体構造の籠 (ケージ) の内部に、 ガス分子が取り込まれて 形成される包接 (クラスレート) 水和物 (ハイドレート) の総称である。 1 m 3のガスハイドレー卜中に包蔵できるガス量は 1 65 Nm3程度と大量であ る。 そのため、 天然ガスをハイドレー卜として生成、 貯蔵、 輸送するシステ ム (NGHシステム: Natural Gas Hydrate System) が検討されている。 [0002] A gas hydrate cage is an ice-like solid crystal composed of water molecules and gas molecules, and the inclusion (formation) formed by the gas molecules being taken into the cage (cage) of the three-dimensional structure created by the water molecules. This is a generic name for clathrate hydrate. The amount of gas that can be stored in a 1 m 3 gas hydrate is about 1 65 Nm 3 . Therefore, a system that generates, stores, and transports natural gas as hydrated straw (NGH system: Natural Gas Hydrate System) is being studied.
[0003] 大気圧におけるガスハイドレートの貯蔵において、 ガスの分解量を極小化 するためには、 天然ガスハイドレー卜 (Natural Gas Hydrate: NGH) の自 己保存性を利用することが鍵となる。  [0003] In storing gas hydrates at atmospheric pressure, the key to minimizing the amount of gas decomposition is to use the self-preserving properties of natural gas hydrate (NGH).
[0004] 図 5は公知のハイドレートの平衡線図 (メタンハイドレートの例) である 。 尚、 図 5において平衡線 21の左上領域がハイドレート生成領域であり、 平衡線 21の右下領域がハイドレー卜生成領域外である。 また、 Hはハイド レート (Hydrate) 、 Gはガス (Gas) 、 Iはアイス (氷: Ice) 、 LWはリキ ッドウオーター (水: Liquid Water) を表す。  FIG. 5 is a known hydrate equilibrium diagram (example of methane hydrate). In FIG. 5, the upper left region of the equilibrium line 21 is the hydrate generation region, and the lower right region of the equilibrium line 21 is outside the hydrate generation region. H stands for Hydrate, G stands for Gas, I stands for Ice, and LW stands for Liquid Water.
[0005] 天然ガスと水とをハイドレー卜生成反応におけるハイドレー卜生成領域内 となる低温及び高圧 (例えばハイドレー卜平衡条件の高圧且つ低温側となる 5MPaで 0. 1〜3°C程度 図 5の A点) の下で反応させると天然ガスハイ ドレー卜を生成する。  [0005] Low temperature and high pressure in the hydrate formation region in the hydrate formation reaction of natural gas and water (for example, about 0.1 to 3 ° C at 5MPa on the high pressure and low temperature side of the hydrate equilibrium condition) Natural gas hydrates are produced when the reaction is carried out under (point A).
[0006] 生成した天然ガスハイドレートを等圧で氷点以下 (0°C〜一 40°C 図 5 の B点) に冷却すると凍結する。 そして、 凍結した天然ガスハイドレートは 貯蔵圧力 (大気圧 0 . 1 M P a近く 図 5の C点) まで減圧して貯槽に貯蔵さ れる。 [0006] The generated natural gas hydrate freezes when cooled to below the freezing point (0 ° C to 40 ° C, point B in Fig. 5) at the same pressure. And the frozen natural gas hydrate The pressure is reduced to the storage pressure (atmospheric pressure near 0.1 MPa, point C in Fig. 5) and stored in the storage tank.
[0007] 通常、 貯槽内は、 該貯槽内への大気の不用意な浸入を防止する観点から、 その貯蔵圧力は大気圧より少し高圧に設定される。 この貯槽の前記温度及び 圧力は、 ハイドレー卜生成領域外に位置するが、 上記氷点下ではガスハイド レー卜の分解が抑制されて準安定状態にある。 この準安定状態をとる現象が 自己保存性として知られている。  [0007] Usually, in the storage tank, the storage pressure is set to be slightly higher than the atmospheric pressure from the viewpoint of preventing inadvertent entry of air into the storage tank. Although the temperature and pressure of this storage tank are located outside the hydride production area, decomposition of the gas hydrate is suppressed below the freezing point and is in a metastable state. This metastable phenomenon is known as self-preservation.
[0008] ガスハイドレー卜は、 貯槽への充填率の向上や、 輸送及び貯蔵中の安全性 、 荷役時の扱いの容易性などを図るため、 粉体状のガスハイドレー卜粒子を 圧縮成形しペレツ卜状で貯蔵される。 通常、 ペレツ卜サイズは 5 mm〜 1 0 O mm程度である。 更に、 寸法の異なる 2種以上のガスハイドレートペレツ 卜を混合して貯蔵することによって、 貯蔵施設に貯蔵されるガスハイドレー 卜の充填率を向上させことができる (特許文献 1 :特開 2 0 0 2— 2 2 0 3 5 3号公報) 。  [0008] In order to improve the filling rate of the storage tank, the safety during transportation and storage, the ease of handling during cargo handling, etc., the gas hydrate is compressed and molded into a pellet-like shape. Stored in Usually, the pellet size is about 5 mm to 10 O mm. Further, by mixing and storing two or more kinds of gas hydrate pellets 異 な る having different dimensions, the filling rate of the gas hydrate 卜 stored in the storage facility can be improved (Patent Document 1: Japanese Patent Application Laid-Open No. 2000-32083). 2—2 2 0 3 5 3).
[0009] また、 ガスハイドレー卜を貯蔵する技術については、 貯蔵槽の温度を、 ガ スハイドレー卜が自己保存性を発現する温度に制御することによりガスハイ ドレー卜の分解を抑制し、 効率的にガスハイドレー卜を貯蔵する方法が検討 されている (特許文献 2 :特開 2 0 0 5— 2 0 1 2 8 6号公報) 。  [0009] In addition, with regard to the technology for storing gas hydrates, the temperature of the storage tank is controlled to a temperature at which the gas hydrates exhibit self-preserving properties, thereby suppressing the decomposition of the gas hydrates and efficiently (Patent Document 2: Japanese Patent Laid-Open No. 2 0205-2 086) has been studied.
[0010] 特許文献 1 :特開 2 0 0 2 - 2 2 0 3 5 3号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2 0 0 2-2 2 0 3 5 3
特許文献 2:特開 2 0 0 5 _ 2 0 1 2 8 6号公報  Patent Document 2: Japanese Patent Laid-Open No. 2 0 0 5 _ 2 0 1 2 8 6
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[001 1 ] 前記貯蔵槽に貯蔵しているガスハイドレー卜粒子やガスハイドレー卜ペレ ッ卜の一部が分解すると、 ガス化した気体分子が分解ガスとして生成する。 分解ガスが生成することによって、 貯槽内の圧力が上昇するが、 通常、 貯槽 には安全弁が設けられ、 貯槽内が一定圧力以上の高圧になると、 該安全弁が 作動して分解ガスが放出され、 安全な圧力に保たれるように構成されている [0012] また、 前記分解ガスを、 無駄に放出させず、 有効利用することも行われて いる。 船舶で大量のガスハイドレー卜粒子、 ペレツ卜を輸送する場合には、 主機の燃料や発電機の燃料として利用することができる。 また分解ガスを圧 縮して再貯蔵し、 その後利用することもできる。 [001 1] When part of the gas hydrate particles or gas hydrate pellets stored in the storage tank is decomposed, gasified gas molecules are generated as a decomposition gas. The generation of cracked gas increases the pressure in the storage tank. Normally, a safety valve is provided in the storage tank, and when the pressure in the storage tank reaches a certain level or higher, the safety valve operates to release the cracked gas, Configured to maintain a safe pressure [0012] Further, the cracked gas is effectively used without being wasted. When a large amount of gas hydrate particles or pellets is transported by ship, it can be used as fuel for the main engine or generator. The cracked gas can be compressed and stored again, and then used.
[0013] これまでの研究により、 自己保存状態のガスハイドレート粒子、 ペレット の安定性は、 貯蔵温度領域により変化することが示されている。 また、 前記 安定性は、 ガスハイドレート粒子、 ペレットの密度や粒径等の性状や、 ガス ハイドレー卜粒子、 ペレツ卜の表面の状態によっても大きく異なることが定 性的に示されている。 [0013] Previous studies have shown that the stability of self-preserving gas hydrate particles and pellets varies with the storage temperature range. Further, it is qualitatively shown that the stability varies greatly depending on properties such as the density and particle size of gas hydrate particles and pellets, and the surface conditions of gas hydrate particles and pellets.
しかし、 一定性状のガスハイドレー卜ペレツ卜を貯槽に貯蔵した際に、 定 量的にガスハイドレー卜ペレツ卜の分解量を推算する手段が無かった。  However, there was no means for quantitatively estimating the amount of decomposition of gas hydrate pellets when storing gas hydrate pellets with a fixed property in a storage tank.
[0014] ガスハイドレー卜の分解量が推算できないと、 貯槽に設けられる安全弁の 仕様や分解ガスを利用するための設備の仕様を決定することが困難となる。 ガスハイドレー卜の分解量が選択した設備の処理能力より多いと、 分解ガス が処理しきれず、 ガスを無駄に放散することになる。 また、 ガスハイドレー 卜の分解量が選択した設備の処理能力より少ないと、 該設備は過大設計とな リ、 コスト増となる。 [0014] If the amount of decomposition of the gas hydrate tank cannot be estimated, it will be difficult to determine the specifications of the safety valve provided in the storage tank and the specifications of the equipment for using the cracked gas. If the amount of gas hydrate decomposition is greater than the treatment capacity of the selected equipment, the cracked gas cannot be processed and the gas is wasted. In addition, if the amount of gas hydrate decomposition is less than the treatment capacity of the selected facility, the facility will be overdesigned, increasing costs.
[0015] 本発明の課題は、 ガスハイドレートを貯蔵する際に、 ガスハイドレートの 分解量を抑えると共に、 その分解量を予測し、 ガスハイドレートの分解によ つて生成した分解ガスを無駄なく有効に利用することを可能にする、 ガスハ ィドレー卜の分解量推算方法及び分解ガス利用システムを提供することにあ る。  [0015] An object of the present invention is to suppress the decomposition amount of the gas hydrate when storing the gas hydrate, predict the decomposition amount, and efficiently use the decomposition gas generated by the decomposition of the gas hydrate. The object of the present invention is to provide a method for estimating the amount of decomposition of a gas hydride and a system for using cracked gas that can be used effectively.
課題を解決するための手段  Means for solving the problem
[0016] 上記課題を解決するため、 本発明の第 1の態様に係るガスハイドレー卜の 分解量推算方法は、 ガスハイドレー卜が自己保存効果を発現する条件下でガ スハイドレー卜を貯蔵する際のガスハイドレー卜の分解量推算方法であって 、 下記の式 (1 ) に基いてガスハイドレートの分解率 )8を求め、 該ガスハイ ドレー卜の分解量を推算することを特徴とする。 [0017] [数 3] β = 1 - (1 一 Π^ / r 0) 3 · · · ( 1) [0016] In order to solve the above-described problem, the method for estimating the decomposition amount of a gas hydrate according to the first aspect of the present invention includes a gas hydrate when storing the gas hydrate under conditions where the gas hydrate exhibits a self-preserving effect. The amount of decomposition of the gas hydrate is determined on the basis of the following formula (1), and the amount of decomposition of the gas hydrate is estimated. [0017] [Equation 3] β = 1-(1 1 Π ^ / r 0 ) 3 · · · (1)
K :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数 K: Decomposition rate constant determined by experiment depending on storage pressure, storage temperature, gas hydrate density, and gas composition
r 0:ガスハイドレー卜半径 (m)  r 0: Gas hydrate radius (m)
t :貯蔵時間 (s)  t: Storage time (s)
[0018] 本発明によれば、 自己保存効果を発現する条件下でガスハイドレート粒子 、 ペレツ卜を貯蔵する際に、 該ガスハイドレー卜の分解によって発生する分 解ガス量を、 正確に推算することができる。  [0018] According to the present invention, when gas hydrate particles and pellets are stored under conditions that exhibit a self-preserving effect, the amount of decomposed gas generated by the decomposition of the gas hydrate cake is accurately estimated. Can do.
[0019] また、 本発明の第 2の態様に係るガスハイドレー卜の分解ガス利用システ ムは、 ガスハイドレートが貯蔵された貯槽と、 前記貯槽から発生するガスハ ィドレー卜の分解ガスを利用する分解ガス利用設備と、 を備えたガスハイド レートの分解ガス利用システムであって、 前記分解ガス利用設備は、 下記の 式 (1 ) に基いて求めたガスハイドレートの分解率) Sを用いて推算された分 解ガス量に応じた規模に形成されていることを特徴とする。  [0019] A cracked gas utilization system for a gas hydrate tank according to a second aspect of the present invention includes a storage tank in which a gas hydrate is stored, and a cracked gas that uses the cracked gas of the gas hydrate tank generated from the storage tank. A gas hydrate cracking gas utilization system comprising: a gas hydrate cracking system, wherein the cracking gas utilization facility is estimated using a gas hydrate cracking rate (S) determined based on the following equation (1): It is characterized in that it is formed on a scale corresponding to the amount of dissolved gas.
[0020] [数 4] 3 1 - (1 一 Γ Τ /τ 0) 3 . . · ( 1) [0020] [Equation 4] 3 1-(1 Γ Τ / τ 0 ) 3 .. (1)
Κ :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数 :: Decomposition rate constant determined by experiment depending on storage pressure, storage temperature, gas hydrate density, and gas composition
r 0:ガスハイドレー卜半径 (m)  r 0: Gas hydrate radius (m)
t :貯蔵時間 (s)  t: Storage time (s)
[0021] 本発明によれば、 自己保存効果を発現する条件下で貯蔵されているガスハ ィドレー卜の分解ガス量を正確に推算することができるため、 ハイドレー卜 貯槽の圧力設計値に基いて、 安全弁等の設備を適正に設けることができ、 貯 槽内が圧力設計値よリも高くなることや減圧になることがなく、 安全性が向 上する。 [0022] また、 推算した分解ガス量に応じた適切な規模の設備を導入することがで きる。 すなわち、 ガスハイドレートの分解ガス量に対して過小な設備を導入 し、 該分解ガスを無駄に放散されることがなく、 経済性が向上する。 更に、 ガスハイドレー卜の分解ガス量に対して過大な設備を導入することがなく、 建設コス卜が低減できる。 [0021] According to the present invention, it is possible to accurately estimate the cracked gas amount of a gas hydrate tank stored under conditions that exhibit a self-preserving effect. Therefore, based on the pressure design value of the hydrate tank, Equipment such as safety valves can be properly installed, and the storage tank will not be higher than the pressure design value or depressurized, improving safety. [0022] In addition, it is possible to introduce equipment of an appropriate scale according to the estimated amount of cracked gas. That is, an installation that is too small relative to the amount of gas hydrate cracked gas is introduced, and the cracked gas is not wasted and the economy is improved. Furthermore, construction costs can be reduced without introducing excessive facilities for the amount of gas hydrate cracked gas.
発明の効果  The invention's effect
[0023] 本発明によれば、 ガスハイドレート粒子、 ペレットを貯蔵する際に、 ガス ハイドレー卜の分解量を予測し、 その分解によって生成した分解ガスを無駄 なく有効に利用することが可能である。  [0023] According to the present invention, when storing gas hydrate particles and pellets, it is possible to predict the amount of decomposition of the gas hydrate soot and effectively use the decomposition gas generated by the decomposition without waste. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、 本発明に係るガスハイドレー卜の分解量推算方法及び分解ガス利用 システムについて説明する。 本発明においてハイドレー卜の種類は特に限定 されるものではない。 すなわち、 ハイドレー卜を形成するガス状のハイドレ 一卜形成物質の種類は、 所定の温度、 圧力条件でハイドレートを形成するも のであればよく、 例えば天然ガス (メタンを主成分とし、 副成分としてエタ ン、 プロパンなどを含む混合ガス) 、 メタンガス、 ェタンガス、 二酸化炭素 ガス (炭酸ガス) などを挙げることができる。 ガスハイドレート粒子、 ペレ ッ卜は自己保存効果を発現した状態で貯蔵する。 ガスハイドレー卜ペレツ卜 は、 通常、 5 mm〜 1 0 O mmの範囲で製造するのが実用的である。  [0024] Hereinafter, a method for estimating the amount of decomposition of a gas hydrate soot and a system for using cracked gas according to the present invention will be described. In the present invention, the type of hydrated rice cake is not particularly limited. In other words, the type of gaseous hydrate-forming substance that forms hydrates may be any material that can form hydrates at a predetermined temperature and pressure. For example, natural gas (methane as the main component and subcomponents). And methane gas, ethane gas, carbon dioxide gas (carbon dioxide gas), and the like. Gas hydrate particles and pellets are stored in a state of self-preserving effect. It is practical to manufacture the gas hydrate and pellets in the range of 5 mm to 10 O mm.
[0025] [ガスハイドレー卜の分解量推算方法]  [0025] [Method of estimating the amount of decomposition of gas hydrate]
( 1 ) ガスハイドレー卜粒子、 ペレツ卜の分解速度の温度依存性  (1) Temperature dependence of decomposition rate of gas hydrate particles and pellets
図 1に、 メタンガスハイドレートペレット (以下、 M G H Pと称する) の 各貯蔵温度における分解速度をゲス卜分子包蔵率 Qf Hの減少割合 Δ Of HZ厶 t ( s _ 1 ) で示す。 Fig. 1 shows the decomposition rate of methane gas hydrate pellets (hereinafter referred to as MGHP) at each storage temperature in terms of the reduction rate of the gas 卜 molecular inclusion rate Qf H, Δ Of H Z 厶 t (s _ 1 ).
ゲスト分子包蔵率 Qf Hの定義を下記の式 (2 ) に示す。  The definition of guest molecule inclusion rate Qf H is shown in the following formula (2).
[0026] [数 5] ハイ ドレートの包蔵ガス量 (m o 1 ) [0026] [Equation 5] Hydrate's stored gas volume (mo 1)
• · · ( 2 ) 原料水量 (m o 1 ) 水和数  • (2) Raw water (m o 1) Hydration number
水分子が作る全てのケージにゲスト分子が包摂した場合は、 QfH= 1. 0と なる。 水和数とは、 ガス分子に対する水分子数の割合である。 本実施例にお いては、 I型構造のガスハイドレー卜の理論水和数である 5. 75を値とし て用いた。 When guest molecules are included in all cages made by water molecules, Qf H = 1.0. Hydration number is the ratio of the number of water molecules to gas molecules. In this example, the value of 5.75, which is the theoretical hydration number of the gas hydrated I-type structure, was used.
[0027] MGH Pの場合、 貯蔵温度 268 Kでは分解速度が大きいが、 貯蔵温度が 低くなると分解速度が小さくなリ、 253 Kでは 3 X 1 0_8s_1まで低下し た。 貯蔵温度が 253 Kより低くなると再び分解速度が増加し、 2 1 O Kで 分解速度が最大となるが、 それより低い温度では分解速度が減少し、 1 68 Kで分解速度は 0になった。 MG H Pの自己保存性は、 226 K〜268 K の限られた温度範囲で発現し、 この温度範囲内では 253 Κ付近で最も安定 性が高いことが確認された。 [0027] For MGH P, is large decomposition rate in storage temperature 268 K, and the decomposition rate of the storage temperature is lower small and Li was reduced to 253 in K 3 X 1 0_ 8 s_ 1 . The decomposition rate increased again when the storage temperature was lower than 253 K, and the decomposition rate reached the maximum at 2 1 OK, but decreased at a lower temperature, and the decomposition rate became zero at 1 68 K. The self-preserving property of MG HP was exhibited in a limited temperature range of 226 K to 268 K, and it was confirmed that the highest stability was observed at around 253 mm within this temperature range.
[0028] メタンを主成分とし、 ェタン、 プロパンを含む混合ガスハイドレートペレ ット (以下、 混合 G H Pと称する) の場合も、 計測範囲内では、 分解速度は 253 Kで最も低い値を示している。 また混合 GH P分解速度の温度依存性 は、 組成、 濃度によらず MGH Pと同様の傾向を示す。  [0028] Also in the case of a mixed gas hydrate pellet (hereinafter referred to as mixed GHP) containing methane as the main component and containing ethane and propane, the decomposition rate is the lowest at 253 K within the measurement range. Yes. The temperature dependence of the mixed GHP decomposition rate shows the same tendency as MGH P regardless of the composition and concentration.
[0029] (2) ガスハイドレート粒子、 ペレットの分解率の推算式  [0029] (2) Estimation formula for decomposition rate of gas hydrate particles and pellets
次に、 走査型共焦点顕微鏡を用いてガスハイドレー卜ペレツ卜表面状態を 観察したところ、 自己保存性を最も強く示す温度である 253 Kまで昇温し た試料の表面は、 全体が光沢を帯びた膜状に覆われている様子が観察された  Next, when the surface state of the gas hydrate and pellets was observed using a scanning confocal microscope, the surface of the sample heated up to 253 K, the temperature showing the strongest self-preserving property, was glossy as a whole. A state of being covered in a film was observed
[0030] 図 2は球状のガスハイドレート粒子、 ペレットの分解反応モデルである。 記号の意味を以下に示す r :ハイドレー卜粒子、 ペレツ卜半径 (m) [0030] Fig. 2 is a decomposition reaction model of spherical gas hydrate particles and pellets. The meaning of the symbols is shown below r: Hydrate particle, Perez radius (m)
V :ハイドレー卜粒子、 ペレツ卜体積 (m 3) V: Hydrate soot particle, Perez soot volume (m 3 )
X :分解したハイドレート層の厚さ (m )  X: Decomposed hydrate layer thickness (m)
添字の 0は初期の状態を示す。  The subscript 0 indicates the initial state.
[0031 ] 前記球状のガスハイドレー卜粒子、 ペレツ卜の分解反応モデルを用いて、 M G H Pが温度範囲 2 2 6 K〜2 6 8 K、 特に 2 5 3 Κ付近での自己保存状 態におけるガスハイドレー卜ペレツ卜の分解量を推算する。 [0031] By using the decomposition reaction model of the spherical gas hydrate particles and pellets, the gas hydrate pellets in a self-preserving state in which the MGHP is in the temperature range of 2 26 K to 2 68 K, particularly around 2 53 3 Estimate the amount of soot decomposition.
[0032] ガスハイドレー卜粒子、 ペレット 1の分解過程では、 分解によリ生成した 氷 2がガスハイドレー卜粒子、 ペレット 1の表面から内部に向かって成長す るものと仮定する。 氷が多孔質のものであれば、 分解により生成したガスは 氷層を速やかに通過できるが、 緻密な膜状の氷の場合は簡単に通過できずに 氷層中を拡散しなければならない。 [0032] In the decomposition process of gas hydrate soot particles and pellets 1, it is assumed that ice 2 generated by the decomposition grows from the surface of gas hydrate soot particles and pellets 1 toward the inside. If the ice is porous, the gas generated by the decomposition can quickly pass through the ice layer, but in the case of dense film ice, it cannot diffuse easily and must diffuse through the ice layer.
[0033] そこで、 分解速度が非常に小さい 2 5 3 Κ付近のガスハイドレー卜粒子、 ペレット 1表面で観察された、 該表面全体が光沢を帯びた膜状に覆われてい る様子は、 緻密な膜状の氷 2が生成している状態であると仮定し、 ガスハイ ドレー卜粒子、 ペレツ卜の分解速度式に、 拡散律速■界面減少型反応速度式 ( J a n d e rの式) を適用する。 この点が本発明の特徴である。 [0033] Therefore, the degradation rate of the gas hydrate particles in the vicinity of 2 5 3 Κ was observed on the surface of pellet 1 and the entire surface was covered with a glossy film. Assuming that ice-like ice 2 is generated, the diffusion-controlled interface-reduction rate reaction rate equation (J ander equation) is applied to the decomposition rate equation for gas hydrate particles and pellets. This is a feature of the present invention.
[0034] ガスハイドレー卜粒子、 ペレット 1の分解率) Sと分解層である氷 2の厚さ [0034] Decomposition rate of gas hydrate particles, pellet 1) S and thickness of ice 2 as decomposition layer
Xの関係は次式により得られる。 tは時間 (s ) を表す。  The relationship of X is obtained by the following equation. t represents time (s).
[0035] 球状のガスハイドレー卜粒子、 ペレット 1が分解し、 分解層の厚さ Xとな つたときの体積 Vは (3 ) 式によって表せる。 [0035] The volume V when the spherical gas hydrate particles and pellets 1 are decomposed to reach the thickness X of the decomposition layer can be expressed by equation (3).
[0036] [数 6] [0036] [Equation 6]
V = 4 π ( r。一 X ) ' 3 ( 3 ) V = 4 π (r. One X) '3 (3)
球状のガスハイドレー卜粒子、 ペレット 1が分解し、 分解層の厚さ Xとな つたときの分解率 を用いて体積 Vを表すと、 以下の (4 ) 式になる。 [0037] [数 7] When the volume V is expressed using the decomposition rate when the spherical gas hydrate particles and pellet 1 are decomposed and the decomposition layer thickness X is reached, the following equation (4) is obtained. [0037] [Equation 7]
V = 4 π r 0 3 ( 1— β) Z3 · · · (4) 上記 (3) 式と (4) 式から、 分解層の厚さ Xは (5) 式で表せる。 V = 4 π r 0 3 (1− β) Z3 (4) From the above equations (3) and (4), the thickness X of the decomposition layer can be expressed by equation (5).
[0038] [数 8] [0038] [Equation 8]
X = r 0 [ 1 -V (1 - /3) ] · ' · (5) X = r 0 [1 -V (1-/ 3)] · '· (5)
また、 前記拡散律速の仮定より、 分解ガスが分解層中を拡散するのに要す る時間は、 分解層の厚さが増すほど増大するので、 分解層の成長速度はその 厚さに反比例するものとする。 分解速度 d xZd tは以下のように表せる。 Furthermore, from the assumption of the diffusion rate control, the time required for the decomposition gas to diffuse in the decomposition layer increases as the decomposition layer thickness increases, so the growth rate of the decomposition layer is inversely proportional to the thickness. Shall. The decomposition rate d xZd t can be expressed as follows.
[数 9] d x/d t = K/ (2χ ) (6)  [Equation 9] d x / d t = K / (2χ) (6)
t =0χ = 0という初期条件を使って (6) 式を積分すると、 (7) 式 が得られる。 Integrating ( 6 ) using the initial condition of t = 0 and χ = 0 yields (7).
[0040] [数 10] [0040] [Equation 10]
X 2 = K t · · · ( 7) X 2 = K t (7)
(5) 式と (7) 式から (8) 式が得られる Equation (8) is obtained from Equation (5) and Equation (7).
[0041] [数 11] (8) 式から分解率^は、 下記の (1 ) 式となる。 [0041] [Equation 11] The decomposition rate ^ from the equation (8) is the following equation (1).
[0042] [数 12] β = 1 — ( 1 - / r 0) 3 . . . ( 1 ) [0042] [Equation 12] β = 1 — (1-/ r 0 ) 3 ... (1)
ゲスト分子包蔵率 QfHは (9) 式によって求められる。 Guest molecule inclusion rate Qf H can be calculated by equation (9).
[0043] [数 13] a = a Ho ( l 3 ) - - · (.9 ) [0043] [Equation 13] a = a H o (l 3)--· (.9)
[0044] (3) 分解速度定数 K [0044] (3) Decomposition rate constant K
分解速度定数 Kは、 ガスハイドレー卜ペレツ卜の性状であるペレツ卜密度 Decomposition rate constant K is the density of pellets, which is the property of gas hydrate pellets.
(P) およびガス組成と、 貯蔵条件である貯蔵圧力 (P) および貯蔵温度 ((P) and gas composition, storage pressure (P) and storage temperature (storage conditions)
T) に応じて決まる定数である。 貯槽に貯蔵される一定性状のガスハイドレ 一卜ペレツ卜について、 該ガスハイドレー卜ペレツ卜が自己保存効果を発現 する、 一定貯蔵条件下で貯蔵したときの分解率を測定することによって、 該 ガスハイドレー卜ペレツ卜の分解速度定数 Kが求められる。 It is a constant determined according to T). By measuring the decomposition rate when the gas hydrate pellets stored in the storage tank are stored under constant storage conditions, the gas hydrate pellets exhibit a self-preserving effect. The decomposition rate constant K of is obtained.
[0045] 一例として、 1気圧、 253 Kにおける、 ペレット密度が 880〜91 4 k gZm3であるメタンガスハイドレートペレット (MGHP) を挙げると、 分解速度定数 Kは、 実験結果より、 1 X 1 0_16m2Zs〜1 X 1 0_14m2Z sである。 より好ましい範囲として K=3. 5 X 1 0_15m2Zs ± 2. 5 X 1 0_15m2Zsを用いて分解量を推算する。 As an example, methane gas hydrate pellets (MGHP) having a pellet density of 880 to 914 kgZm 3 at 1 atmosphere and 253 K are given. The decomposition rate constant K is 1 X 1 0_ 16 m 2 Zs to 1 X 1 0 — 14 m 2 Z s. To estimate the amount of degradation with K = 3. 5 X 1 0_ 15 m 2 Zs ± 2. 5 X 1 0_ 15 m 2 Zs as a more preferable range.
[0046] 上記分解速度定数 Kを用いて、 (1 ) 式によって分解率 ^を求め、 (9) 式によって求めた MG HPのゲスト分子包蔵率 (%) の推算結果と、 実験に よる実際のゲスト分子包蔵率 (%) の測定結果との比較を図 3に示す。 尚、 図 3におけるゲスト分子包蔵率は、 前述において定義した Q?Hに 1 00を乗じ て百分率で表したものである。 [0046] Using the above decomposition rate constant K, the decomposition rate ^ is obtained by Equation (1), the result of estimation of the guest molecule inclusion rate (%) of MG HP obtained by Equation (9), and the actual result by experiment Figure 3 shows a comparison with the guest molecule inclusion rate (%). The guest molecule inclusion rate in Fig. 3 is expressed as a percentage by multiplying Q? H defined above by 100.
推算値は 400時間以上経過後まで実験結果と良く一致しており、 推算式 (1 ) によってガスハイドレートの分解率求められ、 該ガスハイドレートの 分解量が推算可能といえる。 The estimated value is in good agreement with the experimental results until after 400 hours, and the decomposition rate of the gas hydrate can be obtained by the estimation formula (1). It can be said that the amount of decomposition can be estimated.
[0047] [ガスハイドレー卜ペレツ卜の分解ガス利用システム]  [0047] [System for using cracked gas from gas hydrate and pellets]
[実施例 1 ]  [Example 1]
図 4はガスハイドレー卜ペレツ卜の分解ガス利用システムの概略構成図で ある。 以下、 ガスハイドレー卜ペレツ卜を例に説明するが、 ガスハイドレー 卜粒子についても同様である。  Fig. 4 is a schematic configuration diagram of the cracked gas utilization system of gas hydrate and pellets. Hereinafter, the gas hydrate pellets will be described as an example, but the same applies to the gas hydrate particles.
ガスハイドレートペレット貯槽 1 2のプロセスデータ [貯蔵温度 T ( K) 、 貯蔵圧力 (M P a ) 、 ガスハイドレー卜貯蔵量 (k g ) 、 ガス組成、 ペレ ット密度 iO ( k g Zm 3) 、 粒径 2 r (mm) ] が設定される。 粒径 2 r 0は 、 粒径分布 (%) を考慮した平均粒径を用いる。 Process data of gas hydrate pellet storage tank 12 [Storage temperature T (K), storage pressure (MPa), gas hydrate storage volume (kg), gas composition, pellet density iO (kg Zm 3 ), particle size 2 r (mm)] is set. For the particle size 2 r 0 , an average particle size considering the particle size distribution (%) is used.
[0048] 最小径と最大径が 2倍以上異なる場合は、 粒径を数分割して、 それぞれの 平均粒径で分解率 を計算する。 これに粒径ごとの重量分率を乗じて、 合算 することで全体の分解率が求められる。 また、 ガスハイドレート粒子、 ペレ ッ卜が球形でない場合は、 外径を粒径とみなしてよい。 外径に長径と短径が ある場合、 長径と短径の平均を粒径として用いることが望ましい。  [0048] When the minimum diameter and the maximum diameter are different by a factor of two or more, the particle size is divided into several parts, and the decomposition rate is calculated for each average particle size. Multiply this by the weight fraction for each particle size and add up to obtain the overall decomposition rate. In addition, when the gas hydrate particles and pellets are not spherical, the outer diameter may be regarded as the particle diameter. When the outer diameter has a major axis and a minor axis, it is desirable to use the average of the major axis and the minor axis as the particle diameter.
[0049] 設定された一定性状 (ガス組成、 粒径 2 r 0、 ペレツ卜密度 のガスハイ ドレー卜ペレツ卜 1 1を、 該ガスハイドレー卜が自己保存効果を発現する一 定の貯蔵条件下 (貯蔵圧力 P、 貯蔵温度 T ) で貯蔵する場合の分解速度定数 Kを実験により決定し、 推算式 (1 ) に基き貯蔵されるガスハイドレートの 分解率^が求められ、 貯槽 1 2に貯蔵した際の発生分解ガス量の推算が行わ れる。 [0049] The set constant properties (gas composition, particle size 2 r 0 , pellet 卜 density gas hydrate pelette 、 1 1, under certain storage conditions (storage pressure where the gas hydrate expresses a self-preserving effect) P, the decomposition rate constant K when storing at storage temperature T) is determined by experiment, and the decomposition rate ^ of the gas hydrate stored based on the estimation formula (1) is obtained and stored in storage tank 1 2 The amount of generated cracked gas is estimated.
[0050] 次に、 本実施例の作用を説明する。  [0050] Next, the operation of the present embodiment will be described.
本実施例によれば、 貯槽 1 2に貯蔵されているガスハイドレー卜ペレツ卜 1 1の分解ガス量を正確に推算することができるため、 貯槽 1 2の圧力設計 値に基いて、 安全弁等の設備を適正に設けることができ、 貯槽 1 2内が圧力 設計値よリも高くなることや減圧になることがなく、 安全性が向上する。  According to this embodiment, the amount of cracked gas stored in the storage tank 1 2 can be accurately estimated. Therefore, based on the pressure design value of the storage tank 1 2 The inside of the storage tank 1 2 does not become higher than the designed pressure value or depressurize, and safety is improved.
[0051 ] 分解ガスを利用する分解ガス利用設備 1 3を導入する際に、 分解ガス利用 設備 1 3を推算した分解ガス量に応じた規模に設計することができる。 すな わち、 ガスハイドレー卜ペレツ卜 1 1の分解ガス量に対して過小な設備を導 入し、 該分解ガスを無駄に放散されることがなく、 経済性が向上する。 更に 、 前記分解ガス量に対して過大な設備を導入することがなく、 建設コストが 低減できる。 [0051] When introducing the cracked gas utilization facility 13 using cracked gas, the scale can be designed according to the amount of cracked gas estimated from the cracked gas utilization facility 13. sand In other words, an installation that is too small relative to the amount of cracked gas hydrate and pellets 11 will be introduced, and the cracked gas will not be dissipated unnecessarily, improving the economy. Furthermore, it is possible to reduce the construction cost without introducing excessive equipment with respect to the amount of cracked gas.
[0052] また、 分解ガス利用設備 1 3において、 分解ガスの供給量が不足する場合 、 発生する分解ガス量が推算されているので、 不足分の補助燃料の量も推算 することができ、 適正な量の補助燃料を分解ガス利用設備 1 3に供給するこ とができる。  [0052] Also, in the cracked gas utilization facility 13, when the supply amount of cracked gas is insufficient, the amount of cracked gas generated is estimated, so the amount of auxiliary fuel for the shortage can also be estimated. A sufficient amount of auxiliary fuel can be supplied to the cracked gas utilization equipment 13.
産業上の利用可能性  Industrial applicability
[0053] 本発明は、 天然ガス、 メタン、 ェタン、 二酸化炭素などのガスハイドレー 卜を形成する気体状のハイドレー卜形成物質と水との包接化合物であるガス ハイドレー卜粒子、 ペレツ卜を貯蔵する際のガスハイドレー卜の分解ガス利 用システムに利用可能である。  [0053] The present invention relates to the storage of gas hydrate particles and pellets, which are clathrate compounds of gaseous hydrate forming substances such as natural gas, methane, ethane, carbon dioxide and the like, and water. It can be used in the cracked gas utilization system of the gas hydrate tank.
図面の簡単な説明  Brief Description of Drawings
[0054] [図 1 ]ガスハイドレー卜ペレツ卜の貯蔵温度と分解速度の相関を示す図である  [0054] FIG. 1 is a diagram showing the correlation between storage temperature and decomposition rate of gas hydrate and pellets.
[図 2]球状のガスハイドレー卜粒子、 ペレツ卜の分解反応モデルを示す図であ る。 FIG. 2 is a diagram showing a decomposition reaction model of spherical gas hydrate particles and pellets.
[図 3]メタンガスハイドレー卜ペレツ卜のガス包蔵率の実測値および推算値を 示す図である。  FIG. 3 is a diagram showing measured values and estimated values of gas storage rates of methane gas hydrate and pellets.
[図 4]本発明に係るガスハイドレー卜ペレツ卜の分解ガス利用システムの概略 構成図である。  FIG. 4 is a schematic configuration diagram of a cracked gas utilization system for a gas hydrate pellets according to the present invention.
[図 5]公知のハイドレートの平衡線図 (メタンガスハイドレートの例) である  [Fig. 5] Equilibrium diagram of known hydrate (example of methane gas hydrate)

Claims

請求の範囲 The scope of the claims
[1] ガスハイドレー卜が自己保存効果を発現する条件下でガスハイドレー卜を 貯蔵する際のガスハイドレー卜の分解量推算方法であって、  [1] A method for estimating the amount of decomposition of a gas hydrate when storing the gas hydrate under conditions where the gas hydrate exhibits a self-preserving effect,
下記の式 (1 ) に基いてガスハイドレートの分解率 )8を求め、 該ガスハイ ドレー卜の分解量を推算することを特徴とする、 ガスハイドレー卜の分解量 推算方法。  A method for estimating the amount of decomposition of a gas hydrate, characterized by calculating a decomposition rate of the gas hydrate based on the following formula (1) 8 and estimating the amount of decomposition of the gas hydrate.
 圆
/S = 1 — ( 1 一 ^Π Γ /r 0) 3 · · · (!) / S = 1 — (1 1 ^ Π Γ / r 0 ) 3 · · · (!)
κ :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数 κ: Decomposition rate constant determined by experiment depending on storage pressure, storage temperature, gas hydrate density, and gas composition
r 0:ガスハイドレー卜半径 (m)  r 0: Gas hydrate radius (m)
t :貯蔵時間 (s )  t: Storage time (s)
[2] ガスハイドレー卜が貯蔵された貯槽と、 [2] A storage tank in which the gas hydrate tanks are stored,
前記貯槽から発生するガスハイドレー卜の分解ガスを利用する分解ガス利 用設備と、 を備えたガスハイドレー卜の分解ガス利用システムであって、 前記分解ガス利用設備は、 下記の式 (1 ) に基いて求めたガスハイドレー 卜の分解率^を用いて推算された分解ガス量に応じた規模に形成されている ことを特徴とする、 ガスハイドレー卜の分解ガス利用システム。  A cracked gas utilization system using cracked gas hydrate cracked gas generated from the storage tank, and a cracked gas utilization system of the gas hydrate tank provided with the cracked gas utilization facility based on the following formula (1): A gas hydrate cracked gas utilization system, characterized in that the scale is formed according to the amount of cracked gas estimated using the calculated gas hydrate cracking rate ^.
[数 2] β = 1 - ( 1 一 ΛΓ / r 0) 3 · · · ( 1 ) κ :貯蔵圧力、 貯蔵温度、 ガスハイドレー卜の密度、 及びガス組成に応 じて実験によって決まる分解速度定数 [Equation 2] β = 1-(1 1 ΛΓ / r 0 ) 3 ··· (1) κ: Decomposition rate constant determined by experiment depending on storage pressure, storage temperature, gas hydrate density, and gas composition
r 0:ガスハイドレー卜半径 (m)  r 0: Gas hydrate radius (m)
t :貯蔵時間 (s )  t: Storage time (s)
PCT/JP2007/000133 2006-02-27 2007-02-27 Method of estimating amount of gas hydrate decomposed and decomposition gas utilizing system WO2007097127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-051349 2006-02-27
JP2006051349A JP4838014B2 (en) 2006-02-27 2006-02-27 Gas hydrate decomposition amount estimation method and decomposition gas utilization system

Publications (1)

Publication Number Publication Date
WO2007097127A1 true WO2007097127A1 (en) 2007-08-30

Family

ID=38437171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000133 WO2007097127A1 (en) 2006-02-27 2007-02-27 Method of estimating amount of gas hydrate decomposed and decomposition gas utilizing system

Country Status (2)

Country Link
JP (1) JP4838014B2 (en)
WO (1) WO2007097127A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827470A (en) * 1994-07-12 1996-01-30 Kazunari Ogaki Decomposition of gas hydrate and natural gas hydrate recovery of gas and apparatus therefor
JP2003287199A (en) * 2002-03-28 2003-10-10 Mitsui Eng & Shipbuild Co Ltd Method for transporting gas hydrate, method for storing the same, and method for manufacturing the same
JP2004002754A (en) * 2002-03-28 2004-01-08 Mitsui Eng & Shipbuild Co Ltd Gas hydrate, method for producing the same and agent for suppressing decomposition of gas hydrate
JP2005076640A (en) * 2003-08-29 2005-03-24 Chubu Electric Power Co Inc Storing method and device for natural gas hydrate
JP2005089539A (en) * 2003-09-16 2005-04-07 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet and method for producing the same
JP2005319862A (en) * 2004-05-07 2005-11-17 Mitsui Eng & Shipbuild Co Ltd Method and device for treating boil-off gas of gas hydrate transport ship

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322296A (en) * 2002-04-26 2003-11-14 Mitsubishi Heavy Ind Ltd Method and appliance for feeding gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827470A (en) * 1994-07-12 1996-01-30 Kazunari Ogaki Decomposition of gas hydrate and natural gas hydrate recovery of gas and apparatus therefor
JP2003287199A (en) * 2002-03-28 2003-10-10 Mitsui Eng & Shipbuild Co Ltd Method for transporting gas hydrate, method for storing the same, and method for manufacturing the same
JP2004002754A (en) * 2002-03-28 2004-01-08 Mitsui Eng & Shipbuild Co Ltd Gas hydrate, method for producing the same and agent for suppressing decomposition of gas hydrate
JP2005076640A (en) * 2003-08-29 2005-03-24 Chubu Electric Power Co Inc Storing method and device for natural gas hydrate
JP2005089539A (en) * 2003-09-16 2005-04-07 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet and method for producing the same
JP2005319862A (en) * 2004-05-07 2005-11-17 Mitsui Eng & Shipbuild Co Ltd Method and device for treating boil-off gas of gas hydrate transport ship

Also Published As

Publication number Publication date
JP2007231053A (en) 2007-09-13
JP4838014B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
CN101377265B (en) Methods for stabilizing gas hydrates and compositions
Hosseini et al. Thermodynamic analysis of filling compressed gaseous hydrogen storage tanks
Khurana et al. Thermodynamic and kinetic modelling of mixed CH4-THF hydrate for methane storage application
US5473904A (en) Method and apparatus for generating, transporting and dissociating gas hydrates
JP2008546968A (en) Method and apparatus for the safe and controlled delivery of ammonia from a solid ammonia storage medium
US20090035627A1 (en) Method for gas storage, transport, and energy generation
US20110185623A1 (en) Clathrates for Gas Storage
US8466331B2 (en) Apparatus and method for gasifying gas hydrate pellet
Jeong et al. Comparative analysis of a hybrid propulsion using LNG-LH2 complying with regulations on emissions
Di Profio et al. Novel nanostructured media for gas storage and transport: clathrate hydrates of methane and hydrogen
US20140274659A1 (en) Methods, materials, and apparatuses associated with adsorbing hydrocarbon gas mixtures
JP2000303083A (en) Hydrate slurry fuel, its production, and apparatus for producing it, and method for storing it
WO2007097127A1 (en) Method of estimating amount of gas hydrate decomposed and decomposition gas utilizing system
RU2020119337A (en) INSULATION SECTION FOR HERMETIC AND HEAT-INSULATING TANK AND METHOD OF MANUFACTURING SUCH SECTION
JP4837424B2 (en) Method and apparatus for producing gas hydrate pellets
JP4866693B2 (en) Method for regasification of gas hydrate
JP4233264B2 (en) Method for transferring and storing gas hydrate
JP4838015B2 (en) Gas hydrate decomposition amount control method and decomposition gas amount control system
GB2356619A (en) Transporting and storing a hydrate slurry
JP2002255865A (en) Storage and transportation of hydrocarbon gas
JP6099091B2 (en) Method for producing gas hydrate containing heavy water and gas hydrate storage method using the same
Pavlenko et al. A new method for the rapid synthesis of gas hydrates for their storage and transportation
JP5173736B2 (en) Method for producing gas hydrate
Kim et al. Study on gas hydrates for the solid transportation of natural gas
JP2005201286A (en) Storing method, storing device, and method of transportation of hydrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713515

Country of ref document: EP

Kind code of ref document: A1