WO2007097070A1 - Process for producing antivibration bush - Google Patents

Process for producing antivibration bush Download PDF

Info

Publication number
WO2007097070A1
WO2007097070A1 PCT/JP2006/321774 JP2006321774W WO2007097070A1 WO 2007097070 A1 WO2007097070 A1 WO 2007097070A1 JP 2006321774 W JP2006321774 W JP 2006321774W WO 2007097070 A1 WO2007097070 A1 WO 2007097070A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cylinder
spherical surface
rubber
vibration
elastic body
Prior art date
Application number
PCT/JP2006/321774
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Suzuki
Original Assignee
Toyo Tire & Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire & Rubber Co., Ltd. filed Critical Toyo Tire & Rubber Co., Ltd.
Publication of WO2007097070A1 publication Critical patent/WO2007097070A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3863Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by the rigid sleeves or pin, e.g. of non-circular cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/005Ball joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/02Attaching arms to sprung part of vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3842Method of assembly, production or treatment; Mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/18Multilink suspensions, e.g. elastokinematic arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/12Wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/143Mounting of suspension arms on the vehicle body or chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • B60G2204/4108Resilient element being enclosed and or pres-tressed in a solid container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/416Ball or spherical joints

Definitions

  • the present invention relates to a vibration isolating bush used by being incorporated in an automobile suspension device or the like.
  • an anti-vibration bush is used at a connection portion between a vehicle body and a suspension for the purpose of vibration damping, buffering, and the like.
  • Such an anti-vibration bush is generally provided between a shaft member such as an inner cylinder, an outer cylinder arranged at an interval on the outer side of the shaft member, and the shaft member and the outer cylinder. (For example, refer to Patent Document 1 below).
  • Patent Document 7 discloses a multi-link type rear suspension apparatus shown in FIGS.
  • an axle 62 that rotatably supports a wheel 60
  • one end portions 64a and 66a are swingably connected to the axle 62
  • the other end portions 64b and 66b swing to a suspension member 68 that is a vehicle body side member.
  • a pair of front and rear upper links 64, 66 which are movably connected, and one end portions 70a, 72a are swingably connected to the axle 62, and the other end portions 70b, 72b are swingably connected to the suspension member 68.
  • the pair of front and rear lower links 70, 72 and a toe control link 74 having one end 74a swingably connected to the axle 62 and the other end 74b swingably connected to the suspension member 68.
  • symbol F indicates the front side of the vehicle body
  • symbol H indicates the vehicle body width direction.
  • each link 64, 66, 70, 72, 74 is set in an inclined posture in plan view.
  • the front lower link 70 force is set to an inclined posture located in the vehicle front side F toward the inner side in the vehicle body width direction H in plan view
  • the rear lower link 72 is set in the vehicle width direction in plan view.
  • the toe control link 74 is set to the leaning posture located on the front side F of the vehicle body in the plan view in H as the outward side is set to H, and is set to the inclined posture located on the front side F of the vehicle side in the vehicle width direction H. It has been done.
  • the vibration isolating bushes 80, 82, 84 coupled mainly to the lower links 70, 72 and the toe control link 74.
  • the anti-vibration bushings 80, 82, 84 not only have a force in the twisting direction N (see Fig. 3) but also a force in the twisting direction Z (see Fig. 1).
  • the anti-vibration bushes 80, 82, 84 have not only the force in the direction perpendicular to the axis Y (see Fig. 1) but also in the axial direction X (see Fig. 1). Power is also added.
  • both the inner cylinder and the outer cylinder are straight cylinders having a constant diameter, so that the panel constant in the twisting direction is large. Since the panel constant in the vertical direction of the pen- sion device is large, it is difficult to improve the ride comfort. In addition, with this conventional anti-vibration bushing, the panel constant in the axial direction is not so large, so the panel constant in the left-right direction of the suspension device cannot be increased! Difficult to improve,
  • the panel type constant in the twisting direction can be reduced with the noisy type anti-vibration bush described in Patent Document 2.
  • the inner peripheral surface of the outer cylinder is straight, so that when it is displaced in the twisting direction, the rubber-like rigid body has rubber between the inner cylinder and the outer cylinder at both ends in the axial direction.
  • the elastic body was compressed, and the panel constant in the twisting direction was not always sufficiently reduced. That Therefore, the effect of reducing the panel constant in the vertical direction of the suspension device is insufficient, and further improvement is required to improve riding comfort.
  • the bulge-type vibration isolating bushes described in this document the panel constant in the axial direction cannot be increased, so the panel constant in the left-right direction of the suspension device is increased to improve vehicle handling stability. It was difficult to do.
  • the inner peripheral surface of the outer cylinder is formed in a substantially trapezoidal cross section. Therefore, it is said that the shape sufficiently follows the shape of the bulging portion on the inner cylinder side that forms a spherical shape. It is also difficult, and the rubber-like elastic body interposed between them has a large change in the axial thickness, which affects the performance.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-81479
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2004-144150
  • Patent Document 3 Japanese Patent Laid-Open No. 9-100859
  • Patent Document 4 Japanese Patent Laid-Open No. 9-203428
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-344764
  • Patent Document 6 Japanese Unexamined Patent Publication No. 9-100861
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2005-112258
  • Patent Document 8 Japanese Patent Application Laid-Open No. 11-230224
  • the present invention has been made in view of these points, and is a vibration-proof bushing that can be easily drawn and improved in durability even when the thickness of the outer cylinder is large.
  • the purpose is to provide a manufacturing method.
  • the manufacturing method according to the present invention includes a shaft member, an outer cylinder disposed on the outer side of the shaft member, and a rubber-like elastic member interposed between the shaft member and the outer cylinder.
  • a vibration isolating bush comprising a body, a step of producing an outer cylinder in which a plurality of grooves extending in the axial direction are distributed in the circumferential direction on an inner circumferential surface, and an outer periphery of the shaft member Forming a rubber-like elastic body between the shaft member and the outer cylinder provided with the concave groove so that a rubber-like elastic body is integrally bonded to a surface and an inner peripheral surface of the outer cylinder; And drawing the outer cylinder after forming the rubber-like elastic body.
  • the plurality of concave grooves are formed so that distortion due to the drawing does not occur as much as possible at the interface between the rubber-like elastic body and the inner peripheral surface of the outer cylinder.
  • the plurality of concave grooves are arranged on the inner peripheral surface of the outer cylinder at intervals of 6 to 90 ° in the circumferential direction and wider than the groove width.
  • the arrangement of the concave grooves is set to be sparser than every 90 °, the number of the concave grooves is too small, and the distortion of the rubber-like elastic body is concentrated at the interface with the outer cylinder.
  • the strain at the adhesive interface of the rubber-like elastic body is dispersed, and a preferable drawing process is performed within a range where the adhesive surface is not destroyed. Therefore, it is possible to prevent peeling at the bonding surface between the rubber-like elastic body and the outer cylinder.
  • the shaft member and the outer cylinder may be configured as follows. That is, it is preferable that the shaft member has a bulging portion that bulges in a direction perpendicular to the axis at the central portion in the axial direction, and the outer peripheral surface of the bulging portion forms a convex spherical surface.
  • the outer cylinder has a constant outer peripheral diameter in the axial direction.
  • the inner peripheral surface portion of the central portion in the axial direction surrounding the convex spherical surface is recessed in the concave spherical surface corresponding to the convex spherical surface, and is formed in the central portion in the axial direction of the outer cylinder. It is preferable that the wall thickness is thinner than the wall thickness at both ends in the axial direction.
  • the inner peripheral surface of the outer cylinder is formed as a concave spherical surface corresponding to the convex spherical surface of the bulging portion of the shaft member.
  • the interposed rubber elastic body is substantially only subjected to shear deformation, and it is possible to avoid compression of the rubber elastic body between the shaft member and the outer cylinder as much as possible.
  • the spring constant can be effectively reduced.
  • the rubber-like elastic body is subjected not only to shear deformation but also to compression deformation between the convex spherical surface and the concave spherical surface at the time of displacement in the axial direction, the panel constant in the axial direction can be increased.
  • the rubber-like elastic body interposed between the convex spherical surface and the concave spherical surface has a constant thickness in the axial direction, it is not only when displaced in the twisting direction but also when displaced in the direction perpendicular to the axial direction. Vibration suppression performance and durability can be improved by suppressing the application of uniform stress.
  • the outer cylinder is provided with a concave portion that forms a concave spherical surface in the central portion in the axial direction, and the diameter of the outer peripheral surface is a straight cylindrical shape that is constant in the axial direction.
  • a sufficient axial dimension for press-fitting with the cylindrical holder can be ensured, and the pulling force of the cylindrical holder can be improved.
  • the inner peripheral surface of the central portion of the outer cylinder is made concave spherical in this way, the thickness increases at both ends of the outer cylinder.
  • the inner peripheral surface of the outer cylinder is applied to the inner peripheral surface of the outer cylinder. Even in this case, there is an advantage that the depth of the concave spherical surface can be set deeply because of the plurality of concave grooves provided, even in this case, the outer cylinder can be drawn.
  • the convex spherical surface and the concave spherical body are not filled between the shaft member and the outer cylinder on the outer side in the axial direction of the virtual spherical surface defined by the concave spherical surface. It is preferable to interpose between the spherical surfaces. Further, both end surfaces in the axial direction of the rubber-like elastic body are formed in a curved surface shape that swells inward in the axial direction, and a virtual spherical surface defined by the concave spherical surface is a cross-section along the axial direction of the shaft member.
  • a curved surface-like axial end surface intersects, and the intersection ⁇ between the phantom spherical surface and the axial end surface is located on the outer cylinder side from the innermost point ( ⁇ ) in the axial end surface.
  • the anti-vibration bush 10 is used for the multi-link suspension device shown in FIGS. 11 and 12, and more specifically, the other end portion 70b of the front lower link 70 and Anti-vibration bush 80 connecting suspension member 68, anti-vibration bush 82 connecting other end 72b of rear lower link 72 and suspension member 68, and other end 74b of suspension control link 74 and suspension Used as anti-vibration bushing 84 connecting member 68.
  • the overall configuration of the suspension device is as described above, and a description thereof is omitted.
  • the anti-vibration bushing 76 connecting the other end portion 64b of the front upper link 64 and the suspension member 68, and the anti-vibration bushing 78 connecting the other end portion 66b of the rear upper link 66 and the suspension member 68.
  • the conventional anti-vibration bush is used.
  • the anti-vibration bush 10 according to this embodiment may be used.
  • the anti-vibration bush 10 includes an inner cylinder 12 as a shaft member, an outer cylinder 14 that is coaxially disposed so as to surround the outer cylinder 14, and an inner cylinder 12. And a cylindrical rubber-like elastic body 16 interposed between the outer cylinder 14 and the outer cylinder 14. Then, as shown in FIG. 10, the inner cylinder 12 is fixed to the bracket 1 by tightening with a fastening member (not shown) such as a bolt with both end faces sandwiched between the brackets 1 of the suspension member.
  • a fastening member such as a bolt
  • the outer cylinder 14 is fixed by being press-fitted into a cylindrical holder 3 such as the lower link 70, so that the vibration isolating bush 10 connects the lower link 70 and the bracket 1 on the suspension member side in an anti-vibration manner. To do.
  • the inner cylinder 12 is a cylindrical member made of metal such as iron, steel or aluminum, and is shown in FIGS.
  • a bulging portion 18 that bulges over the entire circumference in the direction perpendicular to the axis Y is provided at the center in the axial direction X.
  • the outer peripheral surface of the bulging portion 18 forms a convex spherical surface 20.
  • the convex spherical surface 20 is formed in the shape of a sphere that forms the axial center of a spherical surface having a center ⁇ on the axis ⁇ , and is a general cylindrical portion (with a constant outer diameter) at both axial ends of the inner cylinder 12.
  • the outer peripheral surface of the straight cylindrical part) is formed in a gentle continuous manner.
  • the outer cylinder 14 is a cylindrical member made of metal such as iron, steel, or aluminum. As shown in FIGS. 7 and 8, the outer shape is circular in cross section and the diameter of the outer peripheral surface 19 is in the axial direction X. It is formed in a certain straight cylinder shape.
  • the inner peripheral surface 15 of the outer cylinder 14 has a central portion in the axial direction X surrounding the convex spherical surface 20 concentric with the convex spherical surface 20 (that is, a common center P A concave spherical surface 22).
  • the inner peripheral surface partial force of the outer cylinder 14 surrounding the bulging portion 18 is recessed on the concave spherical surface 22 corresponding to the convex spherical surface 20.
  • the inner peripheral surface 15 at the center of the outer cylinder 14 is axially aligned with the convex spherical surface 20 of the inner cylinder 12 at a certain interval in the shape after drawing described later.
  • the concave spherical surface 22 It is formed as a concave spherical surface 22 that is recessed outward in the right-angle direction Y.
  • the concave spherical surface 22 has a spherical shape that forms the central portion of the spherical surface, and is gently continuous from the inner peripheral surface 15a of the general cylindrical portion (straight cylindrical portion having a constant inner diameter) at both axial ends of the outer cylinder 12. Is formed.
  • the outer cylinder 14 is formed such that the thickness T1 at the central portion in the axial direction X is thinner than the thickness T2 at both end portions in the axial direction X. (See Figure 8).
  • the central portion of the inner peripheral surface 15 of the outer cylinder 14 in the axial direction is not the exact concave spherical surface 22 and the center P is the axis of the outer cylinder 14.
  • the center P is formed in the shape of a sphere with the center P located on the axis A as shown in Fig. 1 by drawing in the reduced diameter direction.
  • a plurality of concave grooves 24 extending in the axial direction X are provided at equal intervals in the circumferential direction C on the inner peripheral surface 15 of the outer cylinder 14.
  • the cylinder 14 is formed thin at the circumferential position where the concave groove 24 is provided.
  • the concave grooves 24 are arranged on the inner peripheral surface 15 of the outer cylinder 14 at intervals of 6 to 90 ° in the circumferential direction and with a gap D wider than the groove width W.
  • a total of 12 concave grooves 24 are provided every 30 °, and the interval between adjacent concave grooves 24 is D is set to more than twice the groove width W (specifically, about 3 times).
  • the concave groove 24 is provided every 15 to 45 °.
  • the concave groove 24 is formed to be depressed into a circular arc shape as a shape before drawing. Further, in this example, since the concave spherical surface 22 is provided on the inner peripheral surface 15 in the central portion in the axial direction X as described above, the concave groove 24 is the other axial direction excluding the portion where the concave spherical surface 22 is provided. It is formed over the entire part.
  • the rubber-like elastic body 16 is integrally vulcanized and bonded to the inner peripheral surface 15 of the outer cylinder 14 and the outer peripheral surface 13 of the inner cylinder 12, and is connected to the convex spherical surface 20 of the inner cylinder 12. As shown in Fig. 1, it is formed in a spherical band shape with a substantially constant thickness in the shape after drawing, as shown in Fig. 1.
  • a rubber-like elastic body is provided between the inner cylinder 12 and the outer cylinder 14. It is provided with an annular straight part that dents in the axially inward direction X2, such as V, which is not filled with 16.
  • the rubber-like elastic body 16 has a pair of left and right axial end faces 17 of the rubber-like elastic body 16 exposed between the axial ends of the inner cylinder 12 and the outer cylinder 14. It is formed in a curved surface shape that swells in the axially inward side X2, and here, it is formed in a circular shape in a cross section along the axial direction X shown in FIG. In the cross section along the axial direction, the phantom spherical surface 26 defined by the concave spherical surface 22 intersects the curved axial end surface 17 at the intersection J, and this intersection J is in the axial end surface 17.
  • the innermost point in the axial direction (that is, the point corresponding to the deepest part (bottom) of the end face 17 in the axial direction) is located closer to the outer cylinder 14 than K.
  • the innermost point K on the axial end face 17 is on a line 27 that bisects the gap between the inner cylinder 12 and the outer cylinder 14 in the radial direction, and is radially outside the line 27.
  • the intersection point J is located on the opposite side.
  • the outermost diameter of the bulging portion 18 on the inner cylinder 12 side (the outer diameter at the apex of the bulging portion 18) dl is the inner diameter of the general cylindrical portion of the outer cylinder 14. It is set to be smaller than d2, and the thickness of the rubber elastic body 16 between the convex spherical surface 20 and the concave spherical surface 22 E force is set to be larger than the maximum bulging height G of the bulging portion 18 of the inner cylinder 12 Has been.
  • a preferred panel in the direction perpendicular to the axis Y, the twisting direction ⁇ and the twisting direction ⁇ is obtained. It is configured to obtain a constant.
  • a rubber film 28 connected to the rubber-like elastic body 16 is formed on the outer peripheral surface 13 of the inner cylinder 12 and the inner peripheral surface 15 of the outer cylinder 14 on the axially outer side XI.
  • a method for manufacturing the vibration isolating bush 10 will be described.
  • the inner cylinder 12 having the bulging portion 18 constituting the convex spherical surface 20 and the straight cylindrical outer peripheral surface 19 as shown in FIGS.
  • outer cylinders 14 each having a concave spherical surface 22 corresponding to the convex spherical surface 20 and a concave groove 24 extending in the axial direction on the inner peripheral surface 15 are produced.
  • the inner cylinder 12 and the outer cylinder 14 are placed in a molding die (not shown), and a rubber material is injected into the molding die, so that a rubber-like material is formed between the inner cylinder 12 and the outer cylinder 14.
  • the elastic body 16 is vulcanized and molded, and the rubber-like elastic body 16 is integrally vulcanized and bonded to the outer peripheral surface 13 of the inner cylinder 12 and the inner peripheral surface 15 of the outer cylinder 14.
  • a rubber-like elastic body 16 enters into the concave groove 24 of the outer cylinder 14, and the rubber-like elastic body 16 vulcanizes to the inner peripheral surface 15 of the outer cylinder 14 even in the concave groove 24. Adhesive strength is increased.
  • the outer cylinder 14 of the vulcanized molded body is drawn. Drawing is performed using a die 52 having dice pieces 50 radially divided into a plurality of pieces as shown in FIG.
  • the die 52 is divided into twelve, which is the same number as the concave groove 24 of the outer cylinder 14, and is set so that the concave groove 24 is positioned at the center in the circumferential direction of each die piece 50.
  • the outer cylinder 14 is drawn in the direction of diameter reduction.
  • the vibration isolating bush 10 shown in FIGS. 1 and 2 is obtained.
  • the concave groove 24 remains in a state in which the rubber-like elastic body 16 enters the concave groove 24 that does not completely sag after drawing.
  • the inner peripheral surface of the outer cylinder 14 is provided even though the thickness of the outer cylinder 14 is large by providing the concave spherical surface 22 at the center of the outer cylinder 14.
  • the outer cylinder 14 can be easily drawn after vulcanization molding.
  • the required number of the concave grooves 24 it is possible to disperse the distortion due to the restriction at the adhesive interface between the rubber-like elastic body 16 and the outer cylinder 14, and to avoid the destruction of the adhesive interface. Further, peeling between the rubber-like elastic body 16 and the outer cylinder 14 can be prevented.
  • the obtained anti-vibration bushing 10 has an inner peripheral surface 15 of the outer cylinder 14 and a convex spherical surface 20 of the inner cylinder 12.
  • the concentric concave spherical surface 22 makes it possible to effectively reduce the panel constant in the twisting direction Z because the force received by the rubber-like elastic body 16 is only shear deformation when displaced in the twisting direction Z. .
  • the panel constant in the vertical direction of the suspension device can be reduced, so that ride comfort can be improved.
  • the rubber-like elastic body 16 receives not only shear deformation but also compression deformation between the convex spherical surface 20 and the concave spherical surface 22.
  • the panel constant in the axial direction X can be increased.
  • the concave spherical surface 22 on the outer cylinder 14 side restricts the escape of rubber in the axial direction X, and the panel constant in the axial perpendicular direction Y can be increased.
  • the panel constant in the left-right direction of the suspension device is increased, and the steering stability can be improved. Therefore, both ride comfort and handling stability can be achieved.
  • the intersection J between the virtual spherical surface 26 and the axial end surfaces 17 of the rubber-like elastic body 16 is positioned closer to the outer cylinder 14 than the innermost point K of the axial end surface 17.
  • the thickness of the rubber-like elastic body 16 interposed between the convex spherical surface 20 and the concave spherical surface 22 in the axial direction X is constant, it is not particularly effective when displaced in the direction perpendicular to the axis Y. By suppressing the application of uniform stress, the vibration isolation performance and durability can be improved.
  • the outer cylinder 14 is provided with a concave portion constituting the concave spherical surface 22 in the central portion in the axial direction, but the diameter of the outer peripheral surface 19 is a straight cylindrical shape constant in the axial direction. A sufficient axial dimension for press-fitting with the cylindrical holder 3 can be secured, and the removal force from the cylindrical holder 3 can be improved.
  • the force described with reference to the bush of a no-restriction type can be applied to a vibration isolating bush that is not a bulge type.
  • the inner peripheral surface of the outer cylinder The groove may be formed so as to extend in the entire axial direction.
  • the bulging portion 18 provided on the inner cylinder 12 is integrally formed of a metal material.
  • the bulge is formed by providing an annular covering made of resin on the outer peripheral surface of the inner cylinder. An outlet may be formed.
  • the present invention can be used for various anti-vibration bushes such as an anti-vibration bush used in an automobile suspension device and a cylindrical anti-vibration bush as an engine mount.
  • FIG. 1 is a cross-sectional view of an anti-vibration bush according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a main part of the vibration isolating bush.
  • FIG. 3 is a side view of the vibration isolating bush before drawing.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a side view of the inner cylinder.
  • FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
  • FIG. 7 is a side view of the outer cylinder.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a view showing a drawing process of the vibration isolating bush.
  • FIG. 10 is a cross-sectional view showing an assembled state of the vibration isolating bush.
  • FIG. 11 is a perspective view of a suspension device.
  • FIG. 12 is a plan view of the suspension device.
  • 10 Anti-vibration bush, 12 ⁇ Inner tube (shaft member), 13 ⁇ Outer surface of inner tube, 14 ⁇ ⁇ ⁇ Outer tube, 15 ⁇ Inner surface of outer tube, 16 ⁇ ⁇ Rubber elastic body, 17 ⁇ Axial end face of rubber elastic body, 18 ⁇ bulge portion, ⁇ Outer peripheral surface of outer cylinder, 20 ⁇ convex spherical surface, 22 ⁇ concave spherical surface, 24 ⁇ J. ⁇ 2 ⁇ Thickness at both ends of the outer cylinder in the axial direction, X ... axial direction, XI ⁇ ⁇ ⁇ axially outward side, ⁇ 2 ⁇ ⁇ ⁇ axially inward side, Y ... axis perpendicular direction, ⁇ ⁇ Picking direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

A process for producing an antivibration bush, in which even when the thickness of the outer tube is large, draw forming thereof is easy and a durability enhancement can be attained. There is provided a process for producing antivibration bush (10) having inner tube (12) and outer tube (14) and, interposed therebetween, rubbery elastic matter (16), which process, to facilitate draw forming even when the thickness of the outer tube is large, comprises making axially extending multiple incised grooves (24) on internal circumferential surface (15) of the outer tube (14), the incised grooves (24) distributed at equal intervals along the circumference; conducting vulcanization forming of the rubbery elastic matter (16) between the outer tube (14) furnished with the incised grooves (24) and the inner tube (12); and performing draw forming of the outer tube (14) after the vulcanization forming. In a preferred mode, with respect to the outer tube (14) wherein the external circumferential surface (19) thereof is in the form of straight tube and wherein the internal circumferential surface (15) is furnished with concave spherical surface (22) corresponding to convex spherical surface (20) of the inner tube (12), the incised grooves (24) are made on the internal circumferential surface (15).

Description

明 細 書  Specification
防振ブッシュの製造方法  Anti-vibration bushing manufacturing method
技術分野  Technical field
[0001] 本発明は、自動車のサスペンション装置等に組み込まれて使用される防振ブッシュ に関するものである。  [0001] The present invention relates to a vibration isolating bush used by being incorporated in an automobile suspension device or the like.
背景技術  Background art
[0002] 従来より、自動車のサスペンション装置においては、車体とサスペンションとの連結 部位等に、振動減衰、緩衝などを目的として防振ブッシュが使用されている。かかる 防振ブッシュは、一般に、内筒等の軸部材と、該軸部材の外側に間隔をおいて配置 された外筒と、前記軸部材と外筒との間に介設されて両者を弾性的に結合するゴム 状弾性体とを備えてなる (例えば、下記特許文献 1参照)。  Conventionally, in an automobile suspension device, an anti-vibration bush is used at a connection portion between a vehicle body and a suspension for the purpose of vibration damping, buffering, and the like. Such an anti-vibration bush is generally provided between a shaft member such as an inner cylinder, an outer cylinder arranged at an interval on the outer side of the shaft member, and the shaft member and the outer cylinder. (For example, refer to Patent Document 1 below).
[0003] このような防振ブッシュとして、軸直角方向におけるパネ定数を大きくしつつ、こじり 方向におけるパネ定数を小さくするため、内筒の軸方向中央部に軸直角方向に膨 出する膨出部を設けた、いわゆるバルジタイプの防振ブッシュが知られている(下記 特許文献 2〜6参照)。  As such an anti-vibration bush, in order to increase the panel constant in the direction perpendicular to the axis and to decrease the panel constant in the twisting direction, a bulge portion that bulges in the axis perpendicular direction at the axial center of the inner cylinder A so-called bulge-type anti-vibration bush is known (see Patent Documents 2 to 6 below).
[0004] ところで、この種の防振ブッシュを備えるサスペンション装置として、下記特許文献 7 には、図 11及び図 12に示すマルチリンク式リャサスペンション装置が開示されてい る。このサスペンション装置は、車輪 60を回転可能に支持するアクスル 62と、一端部 64a, 66aがアクスル 62に揺動可能に連結され、他端部 64b, 66bが車体側部材で あるサスペンションメンバー 68に揺動可能に連結された前後一対のアッパーリンク 6 4, 66と、一端部 70a, 72aがアクスル 62に揺動可能に連結され、他端部 70b, 72b がサスペンションメンバー 68に揺動可能に連結された前後一対のロアリンク 70, 72と 、一端部 74aがアクスル 62に揺動可能に連結され、他端部 74bがサスペンションメン バー 68に揺動可能に連結されたトーコントロールリンク 74とを備える。ここで、符号 F は車体前側を示し、符号 Hは車体幅方向を示す。 [0004] By the way, as a suspension apparatus provided with this type of vibration isolating bushing, the following Patent Document 7 discloses a multi-link type rear suspension apparatus shown in FIGS. In this suspension device, an axle 62 that rotatably supports a wheel 60, one end portions 64a and 66a are swingably connected to the axle 62, and the other end portions 64b and 66b swing to a suspension member 68 that is a vehicle body side member. A pair of front and rear upper links 64, 66, which are movably connected, and one end portions 70a, 72a are swingably connected to the axle 62, and the other end portions 70b, 72b are swingably connected to the suspension member 68. The pair of front and rear lower links 70, 72 and a toe control link 74 having one end 74a swingably connected to the axle 62 and the other end 74b swingably connected to the suspension member 68. Here, symbol F indicates the front side of the vehicle body, and symbol H indicates the vehicle body width direction.
[0005] そして、各リンク 64, 66, 70, 72, 74の他端部 64b, 66b, 70b, 72b, 74bとサス ペンションメンバー 68とは、それぞれ防振ブッシュ 76, 78, 80, 82, 84を介して連結 されており、各防振ブッシュの軸心 pi, p2, p3, p4, p5力 平面視において、それぞ れのリンクの長手方向 rl, r2, r3, r4, r5と直交する方向に沿うように配置されている [0005] The other end portions 64b, 66b, 70b, 72b, 74b of the links 64, 66, 70, 72, 74 and the suspension member 68 are connected to the vibration isolating bushes 76, 78, 80, 82, 84, respectively. Connected through The axial center of each anti-vibration bush pi, p2, p3, p4, p5 force In the plan view, the longitudinal direction of each link rl, r2, r3, r4, r5 Arranged
[0006] 上記マルチリンク式サスペンション装置では、図 12に示すように、各リンク 64, 66, 70, 72, 74が平面視で傾斜姿勢に設定されている。詳細には、前側のロアリンク 70 力 平面視において、車体幅方向 Hで内方側ほど車体前側 Fに位置する傾斜姿勢 に設定され、後側のロアリンク 72が、平面視において、車体幅方向 Hで外方側ほど 車体前側 Fに位置する傾斜姿勢に設定され、トーコントロールリンク 74が、平面視に ぉ 、て、車体幅方向 Hで外方側ほど車体前側 Fに位置する傾斜姿勢に設定されて いる。 In the multilink suspension device, as shown in FIG. 12, each link 64, 66, 70, 72, 74 is set in an inclined posture in plan view. Specifically, the front lower link 70 force is set to an inclined posture located in the vehicle front side F toward the inner side in the vehicle body width direction H in plan view, and the rear lower link 72 is set in the vehicle width direction in plan view. The toe control link 74 is set to the leaning posture located on the front side F of the vehicle body in the plan view in H as the outward side is set to H, and is set to the inclined posture located on the front side F of the vehicle side in the vehicle width direction H. It has been done.
[0007] そのため、車両の走行中において、主としてロアリンク 70, 72及びトーコントロール リンク 74に結合された防振ブッシュ 80, 82, 84には、種々の方向の力が入力する。 例えば、車体に対してサスペンション装置が上下方向に変位すると、防振ブッシュ 80 , 82, 84には、ねじり方向 N (図 3参照)の力のみならずこじり方向 Z (図 1参照)の力 も加わる。また、車体に対してサスペンション装置が左右方向に変位すると、防振ブッ シュ 80, 82, 84には、軸直角方向 Y (図 1参照)の力のみならず軸方向 X(図 1参照) の力も加わる。  [0007] Therefore, during traveling of the vehicle, forces in various directions are input to the vibration isolating bushes 80, 82, 84 coupled mainly to the lower links 70, 72 and the toe control link 74. For example, when the suspension device is displaced in the vertical direction with respect to the vehicle body, the anti-vibration bushings 80, 82, 84 not only have a force in the twisting direction N (see Fig. 3) but also a force in the twisting direction Z (see Fig. 1). Join. In addition, when the suspension device is displaced in the left-right direction with respect to the vehicle body, the anti-vibration bushes 80, 82, 84 have not only the force in the direction perpendicular to the axis Y (see Fig. 1) but also in the axial direction X (see Fig. 1). Power is also added.
[0008] このような入力に対し、従来の一般的な防振ブッシュでは、内筒と外筒がともに径が 一定のストレート筒状であるため、こじり方向のパネ定数が大きぐその結果、サスぺ ンシヨン装置の上下方向におけるパネ定数が大きくなるので、乗り心地を向上するこ とが難しい。また、この従来の防振ブッシュでは、軸方向のパネ定数があまり大きくな ぐそのため、サスペンション装置の左右方向におけるパネ定数を大きくすることがで きな!/、ことから、車両の操縦安定性を向上することが難 、。  [0008] With respect to such an input, in the conventional general anti-vibration bushing, both the inner cylinder and the outer cylinder are straight cylinders having a constant diameter, so that the panel constant in the twisting direction is large. Since the panel constant in the vertical direction of the pen- sion device is large, it is difficult to improve the ride comfort. In addition, with this conventional anti-vibration bushing, the panel constant in the axial direction is not so large, so the panel constant in the left-right direction of the suspension device cannot be increased! Difficult to improve,
[0009] これに対し、上記特許文献 2記載のノ レジタイプの防振ブッシュであると、こじり方 向におけるパネ定数を低減することができる。しかしながら、このバルジタイプのもの でも、外筒の内周面がストレート状であるため、こじり方向における変位時、ゴム状弹 性体の軸方向両端部においては内筒と外筒との間でゴム状弾性体が圧縮されること になり、こじり方向におけるパネ定数が必ずしも十分に低減されていな力つた。そのた め、サスペンション装置の上下方向におけるパネ定数を低減する効果も不十分であ り、乗り心地性向上のため、更なる改善が求められる。また、同文献記載のバルジタ イブの防振ブッシュでは、軸方向におけるパネ定数を大きくすることはできず、そのた め、サスペンション装置の左右方向におけるパネ定数を高めて、車両の操縦安定性 を向上することが困難であった。 [0009] On the other hand, the panel type constant in the twisting direction can be reduced with the noisy type anti-vibration bush described in Patent Document 2. However, even in this bulge type, the inner peripheral surface of the outer cylinder is straight, so that when it is displaced in the twisting direction, the rubber-like rigid body has rubber between the inner cylinder and the outer cylinder at both ends in the axial direction. The elastic body was compressed, and the panel constant in the twisting direction was not always sufficiently reduced. That Therefore, the effect of reducing the panel constant in the vertical direction of the suspension device is insufficient, and further improvement is required to improve riding comfort. Also, with the bulge-type vibration isolating bushes described in this document, the panel constant in the axial direction cannot be increased, so the panel constant in the left-right direction of the suspension device is increased to improve vehicle handling stability. It was difficult to do.
[0010] 一方、上記特許文献 3, 4に記載のバルジタイプの防振ブッシュでは、外筒の軸方 向中央部を、内筒の球状をなす膨出部に対応させて外側に拡径させており、これに よりこじり方向におけるパネ定数をより低減することができる。し力しながら、これらの 防振ブッシュでは、外筒をリンクの筒状ホルダに圧入保持するために、外筒の軸方向 中央部に一定径の大径部を設けているものの、その軸方向寸法が必ずしも十分でな い場合もあり、抜け力の更なる向上が求められる。また、上記大径部を設けるために 、外筒の内周面は断面略台形状に形成されており、そのため、球状をなす内筒側の 膨出部の形状に十分に沿う形状とは言い難ぐまた、その間に介設されるゴム状弾性 体も軸方向での肉厚変化が大きくなつて、性能にも影響を与えることになる。  [0010] On the other hand, in the bulge type vibration-proof bush described in Patent Documents 3 and 4, the central portion in the axial direction of the outer cylinder is expanded outwardly in correspondence with the bulging portion forming the spherical shape of the inner cylinder. As a result, the panel constant in the twisting direction can be further reduced. However, these anti-vibration bushes have a large diameter part with a constant diameter at the center in the axial direction of the outer cylinder in order to press fit and hold the outer cylinder in the cylindrical holder of the link. In some cases, the dimensions are not always sufficient, and further improvement in the removal force is required. Further, in order to provide the large-diameter portion, the inner peripheral surface of the outer cylinder is formed in a substantially trapezoidal cross section. Therefore, it is said that the shape sufficiently follows the shape of the bulging portion on the inner cylinder side that forms a spherical shape. It is also difficult, and the rubber-like elastic body interposed between them has a large change in the axial thickness, which affects the performance.
[0011] ところで、外筒を備える防振ブッシュにおいては、加硫成形後のゴム状弾性体の収 縮を取り除いて耐久性を向上するために、加硫成形後に外筒を縮径方向に絞り加工 することが通常行われる(例えば、下記特許文献 4, 8参照)。  [0011] By the way, in an anti-vibration bush equipped with an outer cylinder, the outer cylinder is squeezed in the direction of diameter reduction after vulcanization molding in order to improve the durability by removing the shrinkage of the rubber-like elastic body after vulcanization molding. Processing is usually performed (for example, see Patent Documents 4 and 8 below).
特許文献 1 :日本国特開 2002— 81479号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-81479
特許文献 2 :日本国特開 2004— 144150号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2004-144150
特許文献 3 :日本国特開平 9— 100859号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-100859
特許文献 4:日本国特開平 9— 203428号公報  Patent Document 4: Japanese Patent Laid-Open No. 9-203428
特許文献 5 :日本国特開 2005— 344764号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2005-344764
特許文献 6 :日本国特開平 9— 100861号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 9-100861
特許文献 7 :日本国特開 2005— 112258号公報  Patent Document 7: Japanese Unexamined Patent Publication No. 2005-112258
特許文献 8 :日本国特開平 11— 230224号公報  Patent Document 8: Japanese Patent Application Laid-Open No. 11-230224
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 上記のように防振ブッシュの加硫成形後に外筒を絞り加工する場合において、特に 外筒の肉厚が大き 、ものにっ 、ては、絞り加工しにく 、と 、う問題がある。 [0012] When the outer cylinder is drawn after the vulcanization molding of the vibration-proof bushing as described above, There is a problem that the wall thickness of the outer cylinder is large, and it is difficult to draw.
[0013] 本発明は、このような点に鑑みてなされたものであり、外筒の肉厚が大きいものにお いても絞り加工しやすくして耐久性を向上することができる防振ブッシュの製造方法 を提供することを目的とする。  [0013] The present invention has been made in view of these points, and is a vibration-proof bushing that can be easily drawn and improved in durability even when the thickness of the outer cylinder is large. The purpose is to provide a manufacturing method.
課題を解決するための手段  Means for solving the problem
[0014] 本発明に係る製造方法は、軸部材と、該軸部材の外側に間隔をおいて配置された 外筒と、前記軸部材と前記外筒との間に介設されたゴム状弾性体と、を備える防振ブ ッシュの製造方法であって、内周面に軸方向に延びる複数の凹溝が周方向に分散し て設けられた外筒を作製する工程と、軸部材の外周面と前記外筒の内周面とにゴム 状弾性体を一体に接着させるように、前記軸部材と前記凹溝が設けられた外筒との 間にゴム状弾性体を成形する工程と、前記ゴム状弾性体の成形後に前記外筒を絞り 加工する工程と、を含むものである。  [0014] The manufacturing method according to the present invention includes a shaft member, an outer cylinder disposed on the outer side of the shaft member, and a rubber-like elastic member interposed between the shaft member and the outer cylinder. A vibration isolating bush comprising a body, a step of producing an outer cylinder in which a plurality of grooves extending in the axial direction are distributed in the circumferential direction on an inner circumferential surface, and an outer periphery of the shaft member Forming a rubber-like elastic body between the shaft member and the outer cylinder provided with the concave groove so that a rubber-like elastic body is integrally bonded to a surface and an inner peripheral surface of the outer cylinder; And drawing the outer cylinder after forming the rubber-like elastic body.
[0015] この方法によれば、外筒の内周面に複数の凹溝を周方向に分散させて設けたこと により、外筒の肉厚が大の場合でも、ゴム状弾性体の成形後に外筒を絞り加工しや すぐ耐久性を向上することができる。  [0015] According to this method, since the plurality of concave grooves are provided in the circumferential direction on the inner peripheral surface of the outer cylinder, even when the thickness of the outer cylinder is large, the rubber-like elastic body is molded. The outer cylinder can be drawn and the durability can be improved immediately.
[0016] このようにゴム状弾性体の成形後に外筒を絞り加工する場合、ゴム状弾性体と外筒 内周面との界面に絞りによる歪みが極力生じないように、上記複数の凹溝が前記外 筒の内周面において周方向に等間隔に配置されていることが好ましい。更には、上 記複数の凹溝が、外筒の内周面において、周方向に 6〜90° 毎に、かつ溝幅よりも 広い間隔をおいて配置されていることが好ましい。凹溝の配置が 90° 毎よりも疎に設 定されていると、凹溝の数が少なすぎて、外筒との界面においてゴム状弾性体の歪 みが集中してしまう。そこで、このように所定以上の数の凹溝を適切に配することによ り、ゴム状弾性体の接着界面における歪みを分散して、接着面が破壊されない範囲 内で好ましい絞り加工を行うことができ、もって、ゴム状弾性体と外筒との接着面にお ける剥離を防止することができる。  [0016] In this way, when the outer cylinder is drawn after the rubber-like elastic body is molded, the plurality of concave grooves are formed so that distortion due to the drawing does not occur as much as possible at the interface between the rubber-like elastic body and the inner peripheral surface of the outer cylinder. Are preferably arranged at equal intervals in the circumferential direction on the inner peripheral surface of the outer cylinder. Furthermore, it is preferable that the plurality of concave grooves are arranged on the inner peripheral surface of the outer cylinder at intervals of 6 to 90 ° in the circumferential direction and wider than the groove width. If the arrangement of the concave grooves is set to be sparser than every 90 °, the number of the concave grooves is too small, and the distortion of the rubber-like elastic body is concentrated at the interface with the outer cylinder. Thus, by appropriately arranging a predetermined number or more of the grooves, the strain at the adhesive interface of the rubber-like elastic body is dispersed, and a preferable drawing process is performed within a range where the adhesive surface is not destroyed. Therefore, it is possible to prevent peeling at the bonding surface between the rubber-like elastic body and the outer cylinder.
[0017] 本発明において、前記軸部材と外筒は次のように構成してもよい。すなわち、軸部 材は、軸方向の中央部に軸直角方向に膨出する膨出部を有し、該膨出部の外周面 が凸状球面をなすことが好ましい。また、外筒は、外周面の径が軸方向で一定のスト レート筒状に形成されるとともに、前記凸状球面を取り囲む軸方向中央部の内周面 部分が該凸状球面に対応する凹状球面に凹設されて、外筒の軸方向中央部におけ る肉厚が軸方向両端部における肉厚よりも薄く形成されることが好ましい。 In the present invention, the shaft member and the outer cylinder may be configured as follows. That is, it is preferable that the shaft member has a bulging portion that bulges in a direction perpendicular to the axis at the central portion in the axial direction, and the outer peripheral surface of the bulging portion forms a convex spherical surface. The outer cylinder has a constant outer peripheral diameter in the axial direction. The inner peripheral surface portion of the central portion in the axial direction surrounding the convex spherical surface is recessed in the concave spherical surface corresponding to the convex spherical surface, and is formed in the central portion in the axial direction of the outer cylinder. It is preferable that the wall thickness is thinner than the wall thickness at both ends in the axial direction.
[0018] このように、外筒の内周面を軸部材の膨出部の凸状球面に対応する凹状球面とし たことにより、こじり方向における変位時、凸状球面と凹状球面との間に介設されたゴ ム状弾性体は実質的に剪断変形を受けるのみとなり、軸部材と外筒との間でゴム状 弾性体が圧縮されることを極力回避することができるので、こじり方向におけるバネ定 数を効果的に低減することができる。また、軸方向における変位時には、凸状球面と 凹状球面との間でゴム状弾性体が剪断変形だけでなく圧縮変形も受けるようになる ので、軸方向におけるパネ定数を上げることができる。また、凸状球面と凹状球面と の間に介設されたゴム状弾性体は軸方向で肉厚が一定であるため、こじり方向での 変位時はもちろん、軸直角方向での変位時にも不均一な応力が作用するのを抑制し て、防振性能及び耐久性を向上することができる。  As described above, the inner peripheral surface of the outer cylinder is formed as a concave spherical surface corresponding to the convex spherical surface of the bulging portion of the shaft member. The interposed rubber elastic body is substantially only subjected to shear deformation, and it is possible to avoid compression of the rubber elastic body between the shaft member and the outer cylinder as much as possible. The spring constant can be effectively reduced. In addition, since the rubber-like elastic body is subjected not only to shear deformation but also to compression deformation between the convex spherical surface and the concave spherical surface at the time of displacement in the axial direction, the panel constant in the axial direction can be increased. In addition, since the rubber-like elastic body interposed between the convex spherical surface and the concave spherical surface has a constant thickness in the axial direction, it is not only when displaced in the twisting direction but also when displaced in the direction perpendicular to the axial direction. Vibration suppression performance and durability can be improved by suppressing the application of uniform stress.
[0019] また、外筒は軸方向中央部に凹状球面を構成する凹設部を設けたものでありなが ら、外周面の径を軸方向で一定のストレート筒状としたので、リンクの筒状ホルダとの 間で圧入のための十分な軸方向寸法を確保することができ、筒状ホルダ力もの抜け 力を向上することができる。し力も、このように外筒の中央部内周面を凹状球面とする と、外筒の両端部で肉厚が大きくなつてしまうが、上記のように本発明では、外筒の内 周面に設けた複数の凹溝により、この場合でも、外筒を絞り加工しやすぐまた、その ため、凹状球面の深さを深く設定できるというメリットもある。  [0019] Further, the outer cylinder is provided with a concave portion that forms a concave spherical surface in the central portion in the axial direction, and the diameter of the outer peripheral surface is a straight cylindrical shape that is constant in the axial direction. A sufficient axial dimension for press-fitting with the cylindrical holder can be ensured, and the pulling force of the cylindrical holder can be improved. If the inner peripheral surface of the central portion of the outer cylinder is made concave spherical in this way, the thickness increases at both ends of the outer cylinder. However, as described above, in the present invention, the inner peripheral surface of the outer cylinder is applied to the inner peripheral surface of the outer cylinder. Even in this case, there is an advantage that the depth of the concave spherical surface can be set deeply because of the plurality of concave grooves provided, even in this case, the outer cylinder can be drawn.
[0020] 上記の場合、ゴム状弾性体を、前記凹状球面によって定められる仮想球面の軸方 向外方側では前記軸部材と外筒との間に充填されないように前記凸状球面と前記凹 状球面との間に介設することが好ましい。また、前記ゴム状弾性体の軸方向両端面を 軸方向内方側に膨らむ湾曲面状に形成するとともに、前記軸部材の軸方向に沿う断 面において、前記凹状球面によって定められる仮想球面が前記湾曲面状の軸方向 端面と交差し、かつ、前記仮想球面と前記軸方向端面との交点 ωが、前記軸方向 端面における最も軸方向内側の点 (Κ)よりも前記外筒側に位置するように、前記ゴム 状弾性体を成形することが好ましい。これにより、こじり方向における変位時にゴム状 弾性体の軸方向端部で圧縮パネが力かることを確実に回避して、こじり方向でのバ ネ定数を一層低減することができる。 [0020] In the above case, the convex spherical surface and the concave spherical body are not filled between the shaft member and the outer cylinder on the outer side in the axial direction of the virtual spherical surface defined by the concave spherical surface. It is preferable to interpose between the spherical surfaces. Further, both end surfaces in the axial direction of the rubber-like elastic body are formed in a curved surface shape that swells inward in the axial direction, and a virtual spherical surface defined by the concave spherical surface is a cross-section along the axial direction of the shaft member. A curved surface-like axial end surface intersects, and the intersection ω between the phantom spherical surface and the axial end surface is located on the outer cylinder side from the innermost point (Κ) in the axial end surface. Thus, it is preferable to mold the rubber-like elastic body. This makes it rubbery when displaced in the prying direction. It is possible to reliably avoid the compression panel from being applied at the axial end of the elastic body, and to further reduce the spring constant in the twisting direction.
発明の効果  The invention's effect
[0021] 本発明の防振ブッシュの製造方法であると、外筒の肉厚が大の場合でも、ゴム状弾 性体の成形後に外筒を絞り加工しやすぐ防振ブッシュの耐久性を向上することがで きる。  [0021] According to the method for manufacturing a vibration isolating bush of the present invention, even when the outer cylinder is thick, the outer cylinder is drawn after the rubber-like elastic body is formed, and the durability of the vibration isolating bush is improved immediately. Can be improved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023] 実施形態に係る防振ブッシュ 10は、上述した図 11及び図 12に示すマルチリンク式 サスペンション装置に用いられるものであり、より詳細には、前側のロアリンク 70の他 端部 70bとサスペンションメンバー 68とを連結する防振ブッシュ 80、後側のロアリンク 72の他端部 72bとサスペンションメンバー 68とを連結する防振ブッシュ 82、及び、ト 一コントロールリンク 74の他端部 74bとサスペンションメンバー 68とを連結する防振 ブッシュ 84として用いられる。サスペンション装置の全体構成としては、上記の通りで あり、説明は省略する。なお、前側のアッパーリンク 64の他端部 64bとサスペンション メンバー 68とを連結する防振ブッシュ 76、及び後側のアッパーリンク 66の他端部 66 bとサスペンションメンバー 68とを連結する防振ブッシュ 78については、この例では 従来の防振ブッシュを用いて 、るが、これらにっ 、ても本実施形態に係る防振ブッシ ュ 10を用いてもよい。 The anti-vibration bush 10 according to the embodiment is used for the multi-link suspension device shown in FIGS. 11 and 12, and more specifically, the other end portion 70b of the front lower link 70 and Anti-vibration bush 80 connecting suspension member 68, anti-vibration bush 82 connecting other end 72b of rear lower link 72 and suspension member 68, and other end 74b of suspension control link 74 and suspension Used as anti-vibration bushing 84 connecting member 68. The overall configuration of the suspension device is as described above, and a description thereof is omitted. The anti-vibration bushing 76 connecting the other end portion 64b of the front upper link 64 and the suspension member 68, and the anti-vibration bushing 78 connecting the other end portion 66b of the rear upper link 66 and the suspension member 68. In this example, the conventional anti-vibration bush is used. However, the anti-vibration bush 10 according to this embodiment may be used.
[0024] 防振ブッシュ 10は、図 1に示すように、軸部材としての内筒 12と、これを取り囲むよ うに外側に間隔をおいて同軸状に配置された外筒 14と、内筒 12と外筒 14との間に 介設された筒状のゴム状弾性体 16とを備えてなる。そして、図 10に示すように、内筒 12は、その両端面がサスペンションメンバーのブラケット 1に挟まれた状態で、ボルト などの不図示の締結部材で締め付けることによりブラケット 1に固定され、また、外筒 14は、ロアリンク 70等の筒状のホルダ 3内に圧入することにより固定され、これにより 、防振ブッシュ 10はロアリンク 70等とサスペンションメンバー側のブラケット 1とを防振 的に連結する。  As shown in FIG. 1, the anti-vibration bush 10 includes an inner cylinder 12 as a shaft member, an outer cylinder 14 that is coaxially disposed so as to surround the outer cylinder 14, and an inner cylinder 12. And a cylindrical rubber-like elastic body 16 interposed between the outer cylinder 14 and the outer cylinder 14. Then, as shown in FIG. 10, the inner cylinder 12 is fixed to the bracket 1 by tightening with a fastening member (not shown) such as a bolt with both end faces sandwiched between the brackets 1 of the suspension member. The outer cylinder 14 is fixed by being press-fitted into a cylindrical holder 3 such as the lower link 70, so that the vibration isolating bush 10 connects the lower link 70 and the bracket 1 on the suspension member side in an anti-vibration manner. To do.
[0025] 内筒 12は、鉄、鋼やアルミニウムなどの金属製の円筒状部材であり、図 5, 6に示す ように、軸方向 Xの中央部に軸直角方向 Yに向けて全周にわたって膨出する膨出部 18を備える。膨出部 18の外周面は凸状球面 20をなしている。凸状球面 20は、軸心 Α上に中心 Ρを持つ球面の軸方向中央部を構成する球帯状に形成されており、内筒 12の軸方向両端部における一般筒部 (外径が一定のストレート筒状部)の外周面 13 力 なだらかに連続して形成されて 、る。 [0025] The inner cylinder 12 is a cylindrical member made of metal such as iron, steel or aluminum, and is shown in FIGS. Thus, a bulging portion 18 that bulges over the entire circumference in the direction perpendicular to the axis Y is provided at the center in the axial direction X. The outer peripheral surface of the bulging portion 18 forms a convex spherical surface 20. The convex spherical surface 20 is formed in the shape of a sphere that forms the axial center of a spherical surface having a center Α on the axis Α, and is a general cylindrical portion (with a constant outer diameter) at both axial ends of the inner cylinder 12. The outer peripheral surface of the straight cylindrical part) is formed in a gentle continuous manner.
[0026] 外筒 14は、鉄、鋼やアルミニウムなどの金属製の円筒状部材であり、図 7, 8に示す ように、外形が断面円形状をなし、外周面 19の径が軸方向 Xで一定のストレート筒状 に形成されている。 [0026] The outer cylinder 14 is a cylindrical member made of metal such as iron, steel, or aluminum. As shown in FIGS. 7 and 8, the outer shape is circular in cross section and the diameter of the outer peripheral surface 19 is in the axial direction X. It is formed in a certain straight cylinder shape.
[0027] 図 1に示すように、外筒 14の内周面 15は、上記凸状球面 20を取り囲む軸方向 Xの 中央部が、該凸状球面 20と同心状 (即ち、共通の中心 Pを持つ)の凹状球面 22をな している。すなわち、膨出部 18を囲む外筒 14の内周面部分力 凸状球面 20に対応 する凹状球面 22に凹設されている。より詳細には、後述する絞り加工後の形状にお いて、内筒 12の凸状球面 20に一定の間隔をおいて沿うように、外筒 14の中央部に おける内周面 15が、軸直角方向 Yの外方側に凹んだ凹状球面 22として形成されて いる。凹状球面 22は、球面の中央部を構成する球帯状をなし、外筒 12の軸方向両 端部における一般筒部(内径が一定のストレート筒状部)の内周面 15aからなだらか に連続して形成されている。  As shown in FIG. 1, the inner peripheral surface 15 of the outer cylinder 14 has a central portion in the axial direction X surrounding the convex spherical surface 20 concentric with the convex spherical surface 20 (that is, a common center P A concave spherical surface 22). In other words, the inner peripheral surface partial force of the outer cylinder 14 surrounding the bulging portion 18 is recessed on the concave spherical surface 22 corresponding to the convex spherical surface 20. More specifically, the inner peripheral surface 15 at the center of the outer cylinder 14 is axially aligned with the convex spherical surface 20 of the inner cylinder 12 at a certain interval in the shape after drawing described later. It is formed as a concave spherical surface 22 that is recessed outward in the right-angle direction Y. The concave spherical surface 22 has a spherical shape that forms the central portion of the spherical surface, and is gently continuous from the inner peripheral surface 15a of the general cylindrical portion (straight cylindrical portion having a constant inner diameter) at both axial ends of the outer cylinder 12. Is formed.
[0028] そして、力かる凹状球面 22が設けられたことで、外筒 14は、軸方向 Xの中央部にお ける肉厚 T1が、軸方向 Xの両端部における肉厚 T2よりも薄く形成されている(図 8参 照)。なお、図 8に示すように、絞り加工前の状態では、外筒 14の内周面 15の軸方向 中央部は厳密な凹状球面 22ではなぐ中心 Pが外筒 14の軸心 A上力も軸直角方向 Yにずれた位置にあり、縮径方向に絞り加工することで、図 1に示すように中心 Pが軸 心 A上に位置する球帯状に形成される。  [0028] And, by providing the concave concave spherical surface 22, the outer cylinder 14 is formed such that the thickness T1 at the central portion in the axial direction X is thinner than the thickness T2 at both end portions in the axial direction X. (See Figure 8). In addition, as shown in FIG. 8, in the state before drawing, the central portion of the inner peripheral surface 15 of the outer cylinder 14 in the axial direction is not the exact concave spherical surface 22 and the center P is the axis of the outer cylinder 14. The center P is formed in the shape of a sphere with the center P located on the axis A as shown in Fig. 1 by drawing in the reduced diameter direction.
[0029] 図 7, 8に示すように、外筒 14の内周面 15には、軸方向 Xに延びる複数の凹溝 24 が周方向 Cに等間隔に分散して設けられ、これにより外筒 14は凹溝 24が設けられた 周方向位置で薄肉に形成されている。詳細には、凹溝 24は、外筒 14の内周面 15に おいて、周方向に 6〜90° 毎に、かつ溝幅 Wよりも広い間隔 Dをおいて配置されて おり、図の例では、凹溝 24は 30° 毎に計 12個設けられ、隣接する凹溝 24間の間隔 Dは溝幅 Wの 2倍以上 (具体的には約 3倍)に設定されている。なお、凹溝 24は、 15 〜45° 毎に設けることがより好ましい。 As shown in FIGS. 7 and 8, a plurality of concave grooves 24 extending in the axial direction X are provided at equal intervals in the circumferential direction C on the inner peripheral surface 15 of the outer cylinder 14. The cylinder 14 is formed thin at the circumferential position where the concave groove 24 is provided. Specifically, the concave grooves 24 are arranged on the inner peripheral surface 15 of the outer cylinder 14 at intervals of 6 to 90 ° in the circumferential direction and with a gap D wider than the groove width W. In the example, a total of 12 concave grooves 24 are provided every 30 °, and the interval between adjacent concave grooves 24 is D is set to more than twice the groove width W (specifically, about 3 times). In addition, it is more preferable that the concave groove 24 is provided every 15 to 45 °.
[0030] 凹溝 24は、図 7に示すように、絞り加工前の形状として、断面円弧状に陥没して形 成されている。また、この例では、上記のように軸方向 Xの中央部の内周面 15に凹状 球面 22を設けたことから、凹溝 24は、凹状球面 22が設けられた部分を除くその他の 軸方向部分の全体にわたって形成されている。  [0030] As shown in FIG. 7, the concave groove 24 is formed to be depressed into a circular arc shape as a shape before drawing. Further, in this example, since the concave spherical surface 22 is provided on the inner peripheral surface 15 in the central portion in the axial direction X as described above, the concave groove 24 is the other axial direction excluding the portion where the concave spherical surface 22 is provided. It is formed over the entire part.
[0031] ゴム状弾性体 16は、外筒 14の内周面 15と内筒 12の外周面 13とに一体に加硫接 着されたものであって、内筒 12の凸状球面 20と外筒 14の凹状球面 22との間を充填 するように介設されており、図 1に示すように、絞り加工後の形状において、略一定の 肉厚を持つ球帯状に形成されて!ヽる。  [0031] The rubber-like elastic body 16 is integrally vulcanized and bonded to the inner peripheral surface 15 of the outer cylinder 14 and the outer peripheral surface 13 of the inner cylinder 12, and is connected to the convex spherical surface 20 of the inner cylinder 12. As shown in Fig. 1, it is formed in a spherical band shape with a substantially constant thickness in the shape after drawing, as shown in Fig. 1. The
[0032] また、図 2に示すように、外筒 14側の凹状球面 22によって定められる仮想球面 26 の軸方向外方側 XIでは、内筒 12と外筒 14との間にゴム状弾性体 16が充填されな V、ように、軸方向内方側 X2に向力つて陥没する環状のすぐり部を備える。  Further, as shown in FIG. 2, on the axially outer side XI of the phantom spherical surface 26 defined by the concave spherical surface 22 on the outer cylinder 14 side, a rubber-like elastic body is provided between the inner cylinder 12 and the outer cylinder 14. It is provided with an annular straight part that dents in the axially inward direction X2, such as V, which is not filled with 16.
[0033] より詳細には、ゴム状弾性体 16は、内筒 12と外筒 14の軸方向両端部との間で露 出したゴム状弾性体 16の左右一対の軸方向両端面 17が、軸方向内方側 X2に膨ら む湾曲面状に形成されており、ここでは、図 2に示す軸方向 Xに沿う断面において円 弧状に湾曲形成されている。そして、かかる軸方向に沿う断面において、凹状球面 2 2によって定められる仮想球面 26が上記湾曲面状の軸方向端面 17と交点 Jにて交差 しており、この交点 Jが、軸方向端面 17における最も軸方向内側の点(即ち、軸方向 端面 17の最深部 (底)に相当する点) Kよりも外筒 14側に位置している。この例では 、軸方向端面 17の最も軸方向内側の点 Kは、内筒 12と外筒 14との間隙を径方向に 2等分する線 27上にあり、この線 27よりも径方向外方側に、上記交点 Jが位置してい る。  [0033] More specifically, the rubber-like elastic body 16 has a pair of left and right axial end faces 17 of the rubber-like elastic body 16 exposed between the axial ends of the inner cylinder 12 and the outer cylinder 14. It is formed in a curved surface shape that swells in the axially inward side X2, and here, it is formed in a circular shape in a cross section along the axial direction X shown in FIG. In the cross section along the axial direction, the phantom spherical surface 26 defined by the concave spherical surface 22 intersects the curved axial end surface 17 at the intersection J, and this intersection J is in the axial end surface 17. The innermost point in the axial direction (that is, the point corresponding to the deepest part (bottom) of the end face 17 in the axial direction) is located closer to the outer cylinder 14 than K. In this example, the innermost point K on the axial end face 17 is on a line 27 that bisects the gap between the inner cylinder 12 and the outer cylinder 14 in the radial direction, and is radially outside the line 27. The intersection point J is located on the opposite side.
[0034] また、図 2に示すように、上記内筒 12側の膨出部 18の最外径 (膨出部 18の頂点に おける外径) dlは、外筒 14の一般筒部の内径 d2よりも小さく設定されており、また、 凸状球面 20と凹状球面 22間のゴム状弾性体 16の厚み E力 内筒 12の膨出部 18の 最大膨出高さ Gよりも大に設定されている。これにより、軸方向 Xにおける過大なパネ 定数を回避しながら、軸直角方向 Y、こじり方向 Ζ及びねじり方向 Νでの好ましいパネ 定数が得られるように構成されて 、る。 In addition, as shown in FIG. 2, the outermost diameter of the bulging portion 18 on the inner cylinder 12 side (the outer diameter at the apex of the bulging portion 18) dl is the inner diameter of the general cylindrical portion of the outer cylinder 14. It is set to be smaller than d2, and the thickness of the rubber elastic body 16 between the convex spherical surface 20 and the concave spherical surface 22 E force is set to be larger than the maximum bulging height G of the bulging portion 18 of the inner cylinder 12 Has been. As a result, while avoiding an excessive panel constant in the axial direction X, a preferred panel in the direction perpendicular to the axis Y, the twisting direction Ζ and the twisting direction 方向 is obtained. It is configured to obtain a constant.
[0035] なお、上記軸方向外方側 XIにおいて内筒 12の外周面 13と外筒 14の内周面 15に は、ゴム状弾性体 16から連なるゴム膜 28が形成されて 、る。  Note that a rubber film 28 connected to the rubber-like elastic body 16 is formed on the outer peripheral surface 13 of the inner cylinder 12 and the inner peripheral surface 15 of the outer cylinder 14 on the axially outer side XI.
[0036] 防振ブッシュ 10の製造方法について説明する。製造に際しては、まず、図 5, 6に 示すように凸状球面 20を構成する膨出部 18を備えた内筒 12と、図 7, 8に示すように ストレート筒状の外周面 19を持つとともに、内周面 15に上記凸状球面 20に対応する 凹状球面 22と軸方向に延びる凹溝 24が設けられた外筒 14を、それぞれ作製する。  A method for manufacturing the vibration isolating bush 10 will be described. In manufacturing, first, as shown in FIGS. 5 and 6, the inner cylinder 12 having the bulging portion 18 constituting the convex spherical surface 20 and the straight cylindrical outer peripheral surface 19 as shown in FIGS. At the same time, outer cylinders 14 each having a concave spherical surface 22 corresponding to the convex spherical surface 20 and a concave groove 24 extending in the axial direction on the inner peripheral surface 15 are produced.
[0037] 次いで、上記の内筒 12と外筒 14を不図示の成形型に配置し、該成形型内にゴム 材料を注入することで、内筒 12と外筒 14との間にゴム状弾性体 16を加硫成形すると ともに、内筒 12の外周面 13と外筒 14の内周面 15にゴム状弾性体 16を一体に加硫 接着させる。これにより、図 3, 4に示す絞り加工前の加硫成形体が得られる。該加硫 成形体において、外筒 14の凹溝 24内にはゴム状弾性体 16が入り込んでおり、該凹 溝 24内でもゴム状弾性体 16が外筒 14の内周面 15に加硫接着され、接着強度が高 められている。  [0037] Next, the inner cylinder 12 and the outer cylinder 14 are placed in a molding die (not shown), and a rubber material is injected into the molding die, so that a rubber-like material is formed between the inner cylinder 12 and the outer cylinder 14. The elastic body 16 is vulcanized and molded, and the rubber-like elastic body 16 is integrally vulcanized and bonded to the outer peripheral surface 13 of the inner cylinder 12 and the inner peripheral surface 15 of the outer cylinder 14. As a result, the vulcanized molded body before drawing shown in FIGS. In the vulcanized molded body, a rubber-like elastic body 16 enters into the concave groove 24 of the outer cylinder 14, and the rubber-like elastic body 16 vulcanizes to the inner peripheral surface 15 of the outer cylinder 14 even in the concave groove 24. Adhesive strength is increased.
[0038] その後、上記加硫成形体の外筒 14に絞り加工が施される。絞り加工は、図 9に示 すように、放射状に複数に分割されたダイス片 50を持つダイス 52を用いて行われる 。ダイス 52は、この例では、外筒 14の凹溝 24と同数の 12個に分割されており、各ダ イス片 50の周方向中央に上記凹溝 24が位置するようにセットして、ダイス片 50を径 内方に移動させることにより、外筒 14が縮径方向に絞り加工される。これにより、図 1 , 2に示す防振ブッシュ 10が得られる。なお、上記凹溝 24は、絞り加工後も完全につ ぶれることはなぐ凹溝 24内にゴム状弾性体 16が入り込んだ状態で残存している。  [0038] Thereafter, the outer cylinder 14 of the vulcanized molded body is drawn. Drawing is performed using a die 52 having dice pieces 50 radially divided into a plurality of pieces as shown in FIG. In this example, the die 52 is divided into twelve, which is the same number as the concave groove 24 of the outer cylinder 14, and is set so that the concave groove 24 is positioned at the center in the circumferential direction of each die piece 50. By moving the piece 50 inward in the diameter, the outer cylinder 14 is drawn in the direction of diameter reduction. Thereby, the vibration isolating bush 10 shown in FIGS. 1 and 2 is obtained. The concave groove 24 remains in a state in which the rubber-like elastic body 16 enters the concave groove 24 that does not completely sag after drawing.
[0039] 以上よりなる本実施形態であると、外筒 14の中央部に凹状球面 22を設けたことで 外筒 14の肉厚が大であるにもかかわらず、外筒 14の内周面 15に複数の凹溝 24を 均等配置したことにより、加硫成形後に外筒 14を絞り加工しやすい。また、所要数の 凹溝 24を適切に配置したことにより、ゴム状弾性体 16の外筒 14との接着界面におけ る絞りによる歪みを分散して、接着界面の破壊を回避することができ、ゴム状弾性体 1 6と外筒 14との剥離を防止することができる。  [0039] In the present embodiment configured as described above, the inner peripheral surface of the outer cylinder 14 is provided even though the thickness of the outer cylinder 14 is large by providing the concave spherical surface 22 at the center of the outer cylinder 14. By uniformly arranging the plurality of concave grooves 24 in 15, the outer cylinder 14 can be easily drawn after vulcanization molding. In addition, by properly arranging the required number of the concave grooves 24, it is possible to disperse the distortion due to the restriction at the adhesive interface between the rubber-like elastic body 16 and the outer cylinder 14, and to avoid the destruction of the adhesive interface. Further, peeling between the rubber-like elastic body 16 and the outer cylinder 14 can be prevented.
[0040] そして、得られた防振ブッシュ 10は、外筒 14の内周面 15を内筒 12の凸状球面 20 と同心状の凹状球面 22としたことにより、こじり方向 Zにおける変位時、ゴム状弾性体 16が受ける力は剪断変形のみとなるので、こじり方向 Zにおけるパネ定数を効果的に 低減することができる。これにより、サスペンション装置の上下方向におけるパネ定数 を小さくすることができるので、乗り心地性を向上することができる。 [0040] The obtained anti-vibration bushing 10 has an inner peripheral surface 15 of the outer cylinder 14 and a convex spherical surface 20 of the inner cylinder 12. The concentric concave spherical surface 22 makes it possible to effectively reduce the panel constant in the twisting direction Z because the force received by the rubber-like elastic body 16 is only shear deformation when displaced in the twisting direction Z. . As a result, the panel constant in the vertical direction of the suspension device can be reduced, so that ride comfort can be improved.
[0041] また、軸方向 Xにおける変位時には、図 2に示すように、凸状球面 20と凹状球面 22 との間でゴム状弾性体 16が剪断変形だけでなく圧縮変形も受けるようになるので、軸 方向 Xにおけるパネ定数を上げることができる。また、軸直角方向 Yにおける変位時 には、外筒 14側の凹状球面 22により軸方向 Xへのゴムの逃げが規制されて、軸直 角方向 Yにおけるパネ定数を上げることができる。これにより、サスペンション装置の 左右方向におけるパネ定数が大きくなり、操縦安定性を向上することができる。よって 、乗り心地性と操縦安定性を両立することができる。  [0041] Further, when displaced in the axial direction X, as shown in FIG. 2, the rubber-like elastic body 16 receives not only shear deformation but also compression deformation between the convex spherical surface 20 and the concave spherical surface 22. The panel constant in the axial direction X can be increased. When the displacement is in the direction perpendicular to the axis Y, the concave spherical surface 22 on the outer cylinder 14 side restricts the escape of rubber in the axial direction X, and the panel constant in the axial perpendicular direction Y can be increased. As a result, the panel constant in the left-right direction of the suspension device is increased, and the steering stability can be improved. Therefore, both ride comfort and handling stability can be achieved.
[0042] また、特に、上記仮想球面 26とゴム状弾性体 16の軸方向両端面 17との交点 Jを、 軸方向端面 17の最も軸方向内側の点 Kよりも外筒 14側に位置させたことにより、こじ り方向 Zにおける変位時にゴム状弾性体 16の軸方向端部で圧縮パネが力かることを 確実に回避して、こじり方向 Zでのパネ定数を一層低減することができる。そのため、 サスペンション装置の上下方向におけるパネ定数を一層小さくして、しなやかな足回 りとすることができ、よって、乗員の目線高さを変えないように上下動を足回りで吸収 するという、いわゆるフラット感を得ることができる。  In particular, the intersection J between the virtual spherical surface 26 and the axial end surfaces 17 of the rubber-like elastic body 16 is positioned closer to the outer cylinder 14 than the innermost point K of the axial end surface 17. As a result, it is possible to reliably avoid the compression panel from being applied at the axial end portion of the rubber-like elastic body 16 during displacement in the twisting direction Z, and to further reduce the panel constant in the twisting direction Z. For this reason, the panel constant in the vertical direction of the suspension device can be further reduced, and the suspension can be supple. Therefore, the vertical movement is absorbed by the suspension so as not to change the height of the occupant's eyes. A flat feeling can be obtained.
[0043] また、凸状球面 20と凹状球面 22との間に介設されたゴム状弾性体 16の軸方向 X での肉厚が一定であるため、特に軸直角方向 Yでの変位時に不均一な応力が作用 するのを抑制して、防振性能及び耐久性を向上することができる。  [0043] Further, since the thickness of the rubber-like elastic body 16 interposed between the convex spherical surface 20 and the concave spherical surface 22 in the axial direction X is constant, it is not particularly effective when displaced in the direction perpendicular to the axis Y. By suppressing the application of uniform stress, the vibration isolation performance and durability can be improved.
[0044] また、外筒 14は軸方向中央部に凹状球面 22を構成する凹設部を設けたものであり ながら、外周面 19の径を軸方向で一定のストレート筒状としたので、筒状ホルダ 3と の間で圧入のための十分な軸方向寸法を確保することができ、筒状ホルダ 3からの 抜け力を向上することができる。 [0044] Further, the outer cylinder 14 is provided with a concave portion constituting the concave spherical surface 22 in the central portion in the axial direction, but the diameter of the outer peripheral surface 19 is a straight cylindrical shape constant in the axial direction. A sufficient axial dimension for press-fitting with the cylindrical holder 3 can be secured, and the removal force from the cylindrical holder 3 can be improved.
[0045] なお、上記実施形態では、ノ レジタイプのブッシュを例に挙げて説明した力 本発 明は、バルジタイプでない防振ブッシュにも適用することができ、その場合、外筒内 周面の凹溝を軸方向の全体に延びるように形成すればよい。また、上記実施形態で は、バルジタイプのブッシュとするために、内筒 12に設ける膨出部 18を金属材料に より一体に形成したが、内筒の外周面に榭脂製の環状被覆体を設けるなどして膨出 部を形成してもよい。 [0045] In the above embodiment, the force described with reference to the bush of a no-restriction type can be applied to a vibration isolating bush that is not a bulge type. In this case, the inner peripheral surface of the outer cylinder The groove may be formed so as to extend in the entire axial direction. In the above embodiment, In order to form a bulge-type bush, the bulging portion 18 provided on the inner cylinder 12 is integrally formed of a metal material. However, the bulge is formed by providing an annular covering made of resin on the outer peripheral surface of the inner cylinder. An outlet may be formed.
産業上の利用可能性  Industrial applicability
[0046] 本発明は、自動車のサスペンション装置に組み込まれて使用される防振ブッシュや 、エンジンマウントとしての筒形の防振ブッシュなど、各種防振ブッシュに利用できる The present invention can be used for various anti-vibration bushes such as an anti-vibration bush used in an automobile suspension device and a cylindrical anti-vibration bush as an engine mount.
図面の簡単な説明 Brief Description of Drawings
[0047] [図 1]本発明の一実施形態に係る防振ブッシュの断面図である。 FIG. 1 is a cross-sectional view of an anti-vibration bush according to an embodiment of the present invention.
[図 2]同防振ブッシュの要部拡大断面図である。  FIG. 2 is an enlarged sectional view of a main part of the vibration isolating bush.
[図 3]同防振ブッシュの絞り加工前の側面図である。  FIG. 3 is a side view of the vibration isolating bush before drawing.
[図 4]図 3の IV— IV線断面図である。  4 is a cross-sectional view taken along the line IV-IV in FIG.
[図 5]内筒の側面図である。  FIG. 5 is a side view of the inner cylinder.
[図 6]図 5の VI— VI線断面図である。  FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
[図 7]外筒の側面図である。  FIG. 7 is a side view of the outer cylinder.
[図 8]図 7の VIII— VIII線断面図である。  8 is a cross-sectional view taken along line VIII-VIII in FIG.
[図 9]同防振ブッシュの絞り加工工程を示す図である。  FIG. 9 is a view showing a drawing process of the vibration isolating bush.
[図 10]同防振ブッシュの組み付け状態を示す断面図である。  FIG. 10 is a cross-sectional view showing an assembled state of the vibration isolating bush.
[図 11]サスペンション装置の斜視図である。  FIG. 11 is a perspective view of a suspension device.
[図 12]サスペンション装置の平面図である。  FIG. 12 is a plan view of the suspension device.
符号の説明  Explanation of symbols
[0048] 10· ··防振ブッシュ、 12· ··内筒(軸部材)、 13· ··内筒の外周面、 14…外筒、 15· ··外 筒の内周面、 16· ··ゴム状弾性体、 17· ··ゴム状弾性体の軸方向端面、 18…膨出部、 19· ··外筒の外周面、 20…凸状球面、 22· ··凹状球面、 24· ··凹溝、 26· ··仮想球面、 J …仮想球面と軸方向端面の交点、 K…軸方向端面における最も軸方向内側の点、 T 1…外筒の軸方向中央部における肉厚、 Τ2· ··外筒の軸方向両端部における肉厚、 X…軸方向、 XI· ··軸方向外方側、 Χ2· ··軸方向内方側、 Y…軸直角方向、 Ζ· ··こじり 方向  [0048] 10 ··· Anti-vibration bush, 12 ··· Inner tube (shaft member), 13 ··· Outer surface of inner tube, 14 · · · Outer tube, 15 ··· Inner surface of outer tube, 16 ··· ··· Rubber elastic body, 17 ··· Axial end face of rubber elastic body, 18 ··· bulge portion, ··· Outer peripheral surface of outer cylinder, 20 ··· convex spherical surface, 22 ··· concave spherical surface, 24 ··················································································· J. Τ2 ··· Thickness at both ends of the outer cylinder in the axial direction, X ... axial direction, XI · · · axially outward side, Χ2 · · · axially inward side, Y ... axis perpendicular direction, Ζ · Picking direction

Claims

請求の範囲 The scope of the claims
[1] 軸部材と、該軸部材の外側に間隔をおいて配置された外筒と、前記軸部材と前記 外筒との間に介設されたゴム状弾性体と、を備える防振ブッシュの製造方法であって 内周面に軸方向に延びる複数の凹溝が周方向に分散して設けられた外筒を作製 する工程と、  [1] An anti-vibration bushing comprising: a shaft member; an outer cylinder disposed at an interval outside the shaft member; and a rubber-like elastic body interposed between the shaft member and the outer cylinder. A method of manufacturing an outer cylinder in which a plurality of concave grooves extending in the axial direction are distributed in the circumferential direction on the inner circumferential surface;
軸部材の外周面と前記外筒の内周面とにゴム状弾性体を一体に接着させるように 、前記軸部材と前記凹溝が設けられた外筒との間にゴム状弾性体を成形する工程と 前記ゴム状弾性体の成形後に前記外筒を絞り加工する工程と、  A rubber-like elastic body is formed between the shaft member and the outer cylinder provided with the concave groove so that the rubber-like elastic body is integrally bonded to the outer peripheral surface of the shaft member and the inner peripheral surface of the outer cylinder. And a step of drawing the outer cylinder after molding the rubber-like elastic body,
を含む防振ブッシュの製造方法。  A method for manufacturing a vibration-proof bushing.
[2] 前記複数の凹溝が前記外筒の内周面において周方向に等間隔に配置された、 請求項 1記載の防振ブッシュの製造方法。  [2] The method for manufacturing a vibration-proof bushing according to claim 1, wherein the plurality of concave grooves are arranged at equal intervals in the circumferential direction on the inner peripheral surface of the outer cylinder.
[3] 前記複数の凹溝力 前記外筒の内周面において、周方向に 6° 〜90° 毎に、か つ溝幅よりも広 ヽ間隔をお ヽて配置された、 [3] The plurality of concave groove forces are arranged on the inner circumferential surface of the outer cylinder at intervals of 6 ° to 90 ° in the circumferential direction with a gap larger than the groove width.
請求項 3記載の防振ブッシュの製造方法。  A method for manufacturing the vibration-proof bushing according to claim 3.
[4] 前記軸部材は、軸方向の中央部に軸直角方向に膨出する膨出部を有し、該膨出 部の外周面が凸状球面をなし、 [4] The shaft member has a bulging portion that bulges in a direction perpendicular to the axis at a central portion in the axial direction, and an outer peripheral surface of the bulging portion forms a convex spherical surface.
前記外筒は、外周面の径が軸方向で一定のストレート筒状に形成されるとともに、 前記凸状球面を取り囲む軸方向中央部の内周面部分が前記凸状球面に対応する 凹状球面に凹設されて、前記外筒の軸方向中央部における肉厚が軸方向両端部に おける肉厚よりも薄く形成された、  The outer cylinder is formed in a straight cylinder shape having a constant outer peripheral surface diameter in the axial direction, and an inner peripheral surface portion of an axially central portion surrounding the convex spherical surface is a concave spherical surface corresponding to the convex spherical surface. The thickness of the outer cylinder in the axially central portion is thinner than the thickness at both axial ends.
請求項 1記載の防振ブッシュの製造方法。  The method for manufacturing the vibration-proof bushing according to claim 1.
[5] 前記ゴム状弾性体を、前記凹状球面によって定められる仮想球面の軸方向外方側 では前記軸部材と前記外筒との間に充填されないように前記凸状球面と前記凹状球 面との間に介設する、 [5] The convex spherical surface and the concave spherical surface are arranged so that the rubber-like elastic body is not filled between the shaft member and the outer cylinder on the axially outer side of the virtual spherical surface defined by the concave spherical surface. Between
請求項 4記載の防振ブッシュの製造方法。  A method for manufacturing the vibration-proof bushing according to claim 4.
[6] 前記ゴム状弾性体の軸方向両端面を軸方向内方側に膨らむ湾曲面状に形成する とともに、前記軸部材の軸方向に沿う断面において、前記凹状球面によって定められ る仮想球面が前記湾曲面状の軸方向端面と交差し、かつ、前記仮想球面と前記軸 方向端面との交点 ωが、前記軸方向端面における最も軸方向内側の点 (κ)よりも 前記外筒側に位置するように、前記ゴム状弾性体を成形する、 [6] Both end surfaces in the axial direction of the rubber-like elastic body are formed into curved surfaces that swell inward in the axial direction. In addition, in a cross section along the axial direction of the shaft member, a virtual spherical surface defined by the concave spherical surface intersects with the curved axial end surface, and an intersection ω between the virtual spherical surface and the axial end surface is The rubber-like elastic body is molded so as to be located on the outer cylinder side from the innermost point (κ) in the axial end face.
請求項 5記載の防振ブッシュの製造方法。  6. A method for manufacturing a vibration-proof bush according to claim 5.
PCT/JP2006/321774 2006-02-20 2006-10-31 Process for producing antivibration bush WO2007097070A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-043094 2006-02-20
JP2006043094A JP3951274B1 (en) 2006-02-20 2006-02-20 Anti-vibration bushing manufacturing method

Publications (1)

Publication Number Publication Date
WO2007097070A1 true WO2007097070A1 (en) 2007-08-30

Family

ID=38437126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321774 WO2007097070A1 (en) 2006-02-20 2006-10-31 Process for producing antivibration bush

Country Status (2)

Country Link
JP (1) JP3951274B1 (en)
WO (1) WO2007097070A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002991A1 (en) * 2010-06-30 2012-01-05 Diversified Machine, Inc. Knuckle and bushing assembly
EP2540534A1 (en) * 2011-05-16 2013-01-02 Nissan Motor Co., Ltd. Suspension structure, bush structure and suspension characteristic adjusting method
US8678409B2 (en) 2011-05-16 2014-03-25 Nissan Motor Co., Ltd. Suspension structure and link arranging method
JP2015117808A (en) * 2013-12-19 2015-06-25 住友理工株式会社 Cylindrical vibration isolator
CN106257087A (en) * 2015-06-18 2016-12-28 株洲时代新材料科技股份有限公司 A kind of monoblock type is empty, real to the reinforcement of rubber nodal point
CN106321704A (en) * 2015-06-18 2017-01-11 株洲时代新材料科技股份有限公司 Method for reinforcing integral empty and solid rubber node
SE1900102A1 (en) * 2019-06-07 2020-12-08 Mattias Hvass Device for manufacturing bushings and bushings made with this device.
EP4129717A1 (en) * 2021-08-05 2023-02-08 Mazda Motor Corporation Vehicle suspension system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130156U (en) * 1978-03-01 1979-09-10
JPH04109235U (en) * 1991-03-08 1992-09-22 東海ゴム工業株式会社 Butsuyu
JPH0669052U (en) * 1993-03-18 1994-09-27 東海ゴム工業株式会社 Bush for mounting the left and right dampers of the vehicle body support device
JPH09504354A (en) * 1994-05-18 1997-04-28 カウチョウ マニュファクチュレ エ プラスティクス Resilient struts comprising at least two cylindrical sleeves, sleeves for such struts, and method of making struts with such sleeves
JPH11325145A (en) * 1998-05-15 1999-11-26 Bridgestone Corp Vibration isolating rubber bush
JP2003226239A (en) * 2002-02-05 2003-08-12 Tokai Rubber Ind Ltd Vibration controlling rubber bush for rolling stock and its manufacturing and assembling method
JP2005344764A (en) * 2004-05-31 2005-12-15 Tokai Rubber Ind Ltd Vibration control bush

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130156U (en) * 1978-03-01 1979-09-10
JPH04109235U (en) * 1991-03-08 1992-09-22 東海ゴム工業株式会社 Butsuyu
JPH0669052U (en) * 1993-03-18 1994-09-27 東海ゴム工業株式会社 Bush for mounting the left and right dampers of the vehicle body support device
JPH09504354A (en) * 1994-05-18 1997-04-28 カウチョウ マニュファクチュレ エ プラスティクス Resilient struts comprising at least two cylindrical sleeves, sleeves for such struts, and method of making struts with such sleeves
JPH11325145A (en) * 1998-05-15 1999-11-26 Bridgestone Corp Vibration isolating rubber bush
JP2003226239A (en) * 2002-02-05 2003-08-12 Tokai Rubber Ind Ltd Vibration controlling rubber bush for rolling stock and its manufacturing and assembling method
JP2005344764A (en) * 2004-05-31 2005-12-15 Tokai Rubber Ind Ltd Vibration control bush

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102211B2 (en) 2010-06-30 2015-08-11 Diversified Machine, Inc. Knuckle and bushing assembly
US8444158B2 (en) 2010-06-30 2013-05-21 Diversified Machine, Inc. Knuckle and bushing assembly
CN103221239A (en) * 2010-06-30 2013-07-24 机器多元化公司 Knuckle and bushing assembly
WO2012002991A1 (en) * 2010-06-30 2012-01-05 Diversified Machine, Inc. Knuckle and bushing assembly
EP2540534A1 (en) * 2011-05-16 2013-01-02 Nissan Motor Co., Ltd. Suspension structure, bush structure and suspension characteristic adjusting method
US8628101B2 (en) 2011-05-16 2014-01-14 Nissan Motor Co., Ltd. Suspension structure, bush structure and suspension characteristic adjusting method
US8678409B2 (en) 2011-05-16 2014-03-25 Nissan Motor Co., Ltd. Suspension structure and link arranging method
JP2015117808A (en) * 2013-12-19 2015-06-25 住友理工株式会社 Cylindrical vibration isolator
CN106257087A (en) * 2015-06-18 2016-12-28 株洲时代新材料科技股份有限公司 A kind of monoblock type is empty, real to the reinforcement of rubber nodal point
CN106321704A (en) * 2015-06-18 2017-01-11 株洲时代新材料科技股份有限公司 Method for reinforcing integral empty and solid rubber node
SE1900102A1 (en) * 2019-06-07 2020-12-08 Mattias Hvass Device for manufacturing bushings and bushings made with this device.
WO2020246938A1 (en) * 2019-06-07 2020-12-10 Hvass Mattias Device for the manufacture of elastic bushings
SE544343C2 (en) * 2019-06-07 2022-04-12 Mattias Hvass Device for manufacturing bushings
EP4129717A1 (en) * 2021-08-05 2023-02-08 Mazda Motor Corporation Vehicle suspension system

Also Published As

Publication number Publication date
JP2007218412A (en) 2007-08-30
JP3951274B1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2007097070A1 (en) Process for producing antivibration bush
JP6867138B2 (en) Anti-vibration bush
JP4740818B2 (en) Link member with anti-vibration bush
JP2008095860A (en) Link member
JP2005315315A (en) Torque rod
JP3924729B1 (en) Anti-vibration bush
JP2012211604A (en) Vibration-isolating device
JP2000088026A (en) Rubber bush and manufacture thereof
JP5595203B2 (en) Toe collect bush
JP4261587B2 (en) Anti-vibration bush
JP2008019928A (en) Vibration damping bush, and multi-ring type suspension device having the same
JP2010159860A (en) Vibration absorbing bush
JP2004028267A (en) Vibration isolating bush
JP4832344B2 (en) Anti-vibration bush manufacturing method and anti-vibration bush
JP7409979B2 (en) suspension bushing
JP2005344764A (en) Vibration control bush
JP4358874B2 (en) Anti-vibration bush
JP2008111537A (en) Manufacturing method of vibration control bush
JP2004150596A (en) Flexible mounting device
JP2010060023A (en) Vibration damping bushing
JP4371708B2 (en) Vibration isolator and manufacturing method thereof
JP3724221B2 (en) Anti-vibration bushing manufacturing method
JP4303297B2 (en) Anti-vibration bush
JP4315972B2 (en) Anti-vibration bush manufacturing method and anti-vibration bush
WO2024070560A1 (en) Cylindrical anti-vibration device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822703

Country of ref document: EP

Kind code of ref document: A1