WO2007094372A1 - Method for producing glass article and glass article - Google Patents

Method for producing glass article and glass article Download PDF

Info

Publication number
WO2007094372A1
WO2007094372A1 PCT/JP2007/052641 JP2007052641W WO2007094372A1 WO 2007094372 A1 WO2007094372 A1 WO 2007094372A1 JP 2007052641 W JP2007052641 W JP 2007052641W WO 2007094372 A1 WO2007094372 A1 WO 2007094372A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass article
raw material
producing
article according
Prior art date
Application number
PCT/JP2007/052641
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromitsu Seto
Akihiro Koyama
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Publication of WO2007094372A1 publication Critical patent/WO2007094372A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/10Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce uniformly-coloured transparent products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to a method for manufacturing a glass article, and more particularly to a method for manufacturing a glass article containing nickel oxide.
  • a method for manufacturing a glass plate that is formed into a plate shape by the float process or roll-out method three methods can be established to improve glass bubble quality, control oxidation-reduction conditions, and reduce NiS generation.
  • this invention relates to the glass article obtained by the said manufacturing method.
  • soda lime silica glass is manufactured by weighing and mixing predetermined raw materials, and then charging the cullet with this into a melting furnace.
  • the feedstock is heated from room temperature and heated to a maximum of 1500-1600 ° C in a melting furnace to be melted and vitrified.
  • a sulfate compound (calcium sulfate, sodium sulfate, etc.), which is a sulfur-containing compound, is added to the glass batch in order to promote melting and clarification.
  • sodium sulfate (hereinafter referred to as mirabilite) is generally obtained.
  • the melting point of mirabilite is 884 ° C. When this temperature is exceeded, mirabilite is considered to be in the liquid phase and promote the vitrification reaction.
  • the sulfur-containing compound contained in the glass batch is mainly the above-described sulfate compound.
  • blast furnace slag containing sulfur called Calmite (registered trademark) is also cited as a sulfur-containing compound contained in a glass batch.
  • mirabilite is considered to react with a carbon-based reducing agent (for example, carbon) added together in a glass batch to produce sodium sulfide (Na 2 S).
  • a carbon-based reducing agent for example, carbon
  • Na S described above reacts with silica (SiO) to promote silica roasting and glass network formation, and is therefore considered to be an important substance for promoting the vitrification reaction. .
  • SiO silica
  • Nickel oxide (NiO) has long been used as a yellowish brown to dark purple coloring material in glass compositions. In recent years, it has also been used as a coloring component for glass with relatively low visible light transmittance, which is used for automotive rear window glass.
  • the NiO component contained in such low visible light transmittance glass is from several tens of ppm, and in many cases, it contains 1000 ppm or more.
  • Nikkenole may be mixed in industrially produced glass articles.
  • metallic nickel is also widely used as an alloy such as stainless steel and welding rods, and small pieces of these nickel alloys often get mixed into industrial glass raw materials and cullet and are thrown into the kiln. Because. Although the melting reaction of nickel alloy in the kiln is not clear, nickel in the alloy is also considered to combine with the above-mentioned S 2 — to form NiS.
  • NiS formation temperature range is not clear, it is considered that the above-mentioned S 2 — generation temperature range is 800 ° C or higher, and the industrial nickel sulfide formation temperature is about 1000 ° C. From 800 ⁇
  • heat tempered glass is used as one of safety glasses for automobiles.
  • Thermally tempered window glass can spontaneously break very rarely without the application of particularly large external forces.
  • the heat strengthened glass has a compressive stress layer on the surface and an internal tensile stress layer.
  • minute foreign matter particularly nickel sulfide (NiS)
  • NiS nickel sulfide
  • this NiS undergoes a transition from the splay phase to the ⁇ phase with the passage of time. It is known to damage tempered glass.
  • Japanese Patent Application Laid-Open No. 49-118711 is characterized in that a part of mirabilite is replaced with glass stone and soda ash among raw material composition components at the time of production of plate glass, and does not contain carbon.
  • a glass raw material composition is disclosed.
  • US Pat. No. 5,725,628 is characterized in that in the production process of soda-lime glass, a manganese compound is added at least 1.4 times the nickel content in order to remove nickel sulfide.
  • a glass manufacturing method is disclosed.
  • a batch material in a method for producing soda lime glass, includes molybdenum, arsenic, antimony, bismuth, copper, silver, potassium dichromate and chromite iron, and those. Disclosed is a method for producing glass, characterized in that at least 0.010% by weight of a substance selected from the group consisting essentially of the combination is added.
  • the applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 9-169537 is melt-molded due to a nickel-based compound contained in a glass raw material and / or a nickel-based compound mixed in the melting process of the glass raw material.
  • a method for producing soda-lime-based glass characterized in that nickel sulfide produced in the glass is suppressed by adding a small amount of a zinc compound to the glass raw material.
  • Japanese Patent Application Laid-Open No. 6-1633 discloses a reduction in glass by appropriately combining a high reduction rate and / or a relatively high reduction rate frit glass, a specific amount of sodium sulfate, and a specific amount of carbon as appropriate.
  • a method for producing an infrared ultraviolet absorbing glass by controlling the rate so as to fall within a specific range is disclosed.
  • JP-A-11 116270 discloses an ultraviolet-absorbing colorless and transparent soda-lime-silica glass bottle characterized in that a colored frit containing VO and a colored frit containing Se are added and stirred, and then molded. A manufacturing method is disclosed.
  • JP 2005-519015 specific components of the glass batch composition are selectively combined to reduce daros segregation of the batch components in the glass melt, and further provide a thermal reaction path.
  • a method for improving the melting efficiency by controlling is disclosed.
  • the glass production method disclosed in Japanese Patent Application Laid-Open No. 49-118711 has reduced the amount of sodium sulfate having a glass clarification action, so bubbles in the glass cannot be completely removed. Also of glass Since carbon that adjusts the redox state is not included, optical characteristics cannot be adjusted. For this reason, for example, it was not possible to obtain the foam quality and optical properties necessary for automobile window glass.
  • US Pat. No. 5,725,628 contains a large amount of a manganese compound that acts as a strong oxidant, so that the redox condition of the glass becomes oxidation and the optical properties cannot be adjusted. For this reason, for example, it was not possible to obtain the optical characteristics required for automobile window glass.
  • the glass manufacturing method disclosed in Japanese Patent Application Laid-Open No. 7-144922 is not based on the premise that the glass batch contains NiO, and is formed as a contamination by introducing it into the glass raw material only slightly. It was a measure for NiS. For this reason, for example, the glass composition containing NiO could not be used for NiS countermeasures.
  • Japanese Patent Application Laid-Open No. 6-1633 discloses a method for adjusting the reduction rate of glass by using a combination of a high reduction rate frit glass and a glass raw material batch of mirabilite and vigor. However, there is no disclosure or suggestion as to whether NiS formation is effective.
  • Japanese Patent Application Laid-Open No. 11-116270 adds glass frit containing V 2 O and Se, respectively.
  • the composition of the glass frit is based on low melting point glass such as borosilicate, and has a power that does not provide an effect of preventing NiS formation.
  • JP-T-2005-519015 discloses a method that selectively frits, pelletizes, or pre-reacts a specific batch component, thereby reducing the dalos segregation of the batch component and further controlling the thermal reaction path. Thus, a method for improving the melting efficiency is disclosed. However, there is no disclosure or suggestion about the effectiveness of preventing NiS formation.
  • the above-described carbon-based reducing agent has an important function for determining the redox state of glass.
  • the index that represents the redox state of glass is the total iron oxide in the glass.
  • the ratio of divalent iron to Fe (FeO ratio) is generally used.
  • a reducing agent such as carbon works to increase the FeO ratio.
  • sulfate compounds and nitrate compounds work to lower the FeO ratio.
  • the divalent iron in the glass absorbs infrared rays well.
  • high heat ray absorption performance is obtained by utilizing absorption by this divalent iron.
  • NiS produced in glass is deeply related to the redox state of glass. Qualitatively, it is known that NiS is easy to form in a reduced state that is difficult to form if the glass is in an oxidized state. In terms of the above FeO ratio, NiS is more likely to be produced if an attempt is made to obtain a high heat and FeO ratio in order to obtain high heat-absorbing performance.
  • an object of the present invention is to provide a method for producing a glass article that can minimize the generation of NiS in a glass article containing NiO. It is another object of the present invention to provide a method for producing a glass article that can minimize the generation of strength NiS without being affected by the bubble quality and redox state of the glass. It is another object of the present invention to provide a glass article that contains NiO and produces little NiS.
  • the present invention that has achieved the object comprises a glass raw material (a) substantially free of a nickel-containing compound and containing a sulfur-containing compound,
  • the present invention is also a glass article obtained by the production method, wherein the basic composition is expressed in mass%,
  • FIG. 1 is a graph showing the relationship between the particle size of a glass body and the number of NiS per 100 g of glass article.
  • FIG. 2 is a graph showing the relationship between the FeO ratio of a glass article and the number of NiS per 100 g when a compression molded product is used as a nickel source.
  • FIG. 3 is a graph showing the relationship between the FeO ratio of a glass article and the number of NiS per 100 g when glass powder composition A is used and powdered nickel oxide is used as the nickel source.
  • FIG. 4 is a graph showing the relationship between the FeO ratio of a glass article and the number of NiS per 100 g in the case of glass plate composition B when powdered nickel oxide is used as the nickel source.
  • NiO should be surrounded by a component not containing S 2 —.
  • the following method was devised.
  • Glass raw material substantially free of sulfur-containing compounds and containing nickel-containing compounds Use a glass body obtained by melting (b), or
  • the glass raw material (a) substantially free of a nickel-containing compound and containing a sulfur-containing compound, and the nickel-containing compound substantially free of a sulfur-containing compound are obtained by melting the glass raw material (b) and / or a compression molded product of the glass raw material (b).
  • Glass raw material (a) provides a source of sulfur-containing compounds to promote melting and fining.
  • the sulfur-containing compound refers to a compound containing elemental sulfur, and examples thereof include sulfate compounds such as calcium sulfate and sodium sulfate (sodium salt), and calumite (registered trademark).
  • the glass raw material (a) is usually a mixture of raw materials to be a sulfur element source, a metal element source and a silicon element source.
  • the composition of the glass raw material (a) refers to the composition of the glass body obtained by melting the glass raw material (b) and / or the compression molded product of the glass raw material (b), and the composition of the glass article to be produced. If you decide as appropriate.
  • the glass raw material (a) does not substantially contain a nickel-containing compound means that the nickel-containing compound is not intentionally added. Therefore, it means that contamination as an inevitable impurity is allowed.
  • the nickel-containing compound refers to a compound containing a nickel element, and examples thereof include nickel oxide, nickel carbonate, nickel chloride, and nickel nitrate. Even when the nickel-containing compound is mixed as an inevitable impurity, its content is preferably less than 0.1% by mass, and more preferably less than 100% by mass.
  • the glass raw material (b) is a supply source of nickel oxide which is a coloring component.
  • the fact that the glass raw material (b) does not substantially contain a sulfur-containing compound means that the above-mentioned sulfur-containing compound is not intentionally added. Therefore, it means that contamination as an inevitable impurity is allowed. Even if sulfur-containing compounds are mixed as inevitable impurities
  • the amount is preferably less than 0.1% by weight, particularly preferably less than 100% by weight.
  • the glass raw material (b) is used in the form of a glass body or a compression molded product so as to surround the nickel-containing compound with other components.
  • composition of the glass raw material (b) is expressed in mass% when converted to an oxide
  • the% display regarding content represents the mass%
  • the description regarding the composition of glass raw material (b) is an oxide conversion.
  • the glass body and / or the compression molded product must be finally mixed with other raw materials to form a homogeneous glass composition. Therefore, compared to the final glass composition, if the viscosity is too high, it will be difficult to mix with other raw materials, and will cause defects such as color spots. For this reason, it is more preferable that the glass raw material (b) contains 65 to 80% of the SiO component, and more preferably 70 to 80%.
  • this glass body and Z or compression molded product substantially supply NiO to the final glass article.
  • the content of NiO in the final glass article is expressed as the product of the content of NiO in the glass body and Z or compression molding and the ratio of the glass body and Z or compression molding used. Homogeneous in proportion to the addition of glass bodies and / or compression moldings of different composition from the final glass article From the standpoint of obtaining a clear glass, less is preferred.
  • the NiO content in the glass body increases, the number of NiS produced in the final glass article tends to increase. For this reason, when a mixture contains a glass body, it is more preferable that the NiO content rate in the glass raw material (b) of the said glass body is 1-7% in mass%. On the other hand, when the mixture includes a compression molded product, the NiO content in the glass raw material (b) of the compression molded product is more preferably 5 to 15%.
  • the glass raw material (b) may contain a coloring component other than NiO, and preferably contains an iron-containing compound.
  • the iron-containing compound is preferably iron oxide.
  • the first specific solution according to the present invention is a method of preparing a glass body obtained by melting the glass raw material (b) in advance and using this.
  • the glass raw material (b) may be melted according to a conventional method.
  • the glass body is preferably used in the form of a frit.
  • the glass body containing NiO diffuses rapidly around the specified temperature range. For this reason, it is not sufficient to surround NiO with a glass component made of an oxide that does not contain S 2 —.
  • the glass body is formed into various shapes such as spherical, cylindrical, flat plate, lamellar, cubic, and thread-like, and can be used. In particular, it is preferable to be molded into a shape with a relatively small specific surface area such as a spherical shape, a cylindrical shape, or a cubic shape.
  • the glass body is preferably used in as large a shape as possible as long as the homogeneity of the final glass composition is not impaired.
  • the average particle size is at least 5 mm, and it is more preferable that the average particle size is at least 1.5 mm.
  • the particle size is the particle diameter.
  • the shape of the glass body is approximately flaky, it is preferable to form the glass body so that its thickness is at least 0.5 mm. In the case of flakes, the average particle size should be at least 10 mm.
  • the average particle diameter can be determined by, for example, a sieving method.
  • the ratio (S / V) of the surface area S (mm 2 ) to the volume V (mm 3 ) is preferably 4 mm ⁇ 1 or less.
  • SZV 4 mm— 1 at a diameter of 1.5 mm
  • SZV 3 (mm— at a diameter of 2 mm
  • SZV lmm— 1 at a diameter of 6 mm.
  • the diameter should be 1.5 mm or more to achieve SZV force S4 mm 1 or less.
  • the second concrete solution according to the present invention is a method in which a compression molded product obtained by previously compressing and molding a glass material (b) containing NiO is prepared and used. Note that compression-molding the raw material for glass batches is sometimes referred to as pricketing.
  • various shapes such as a spherical shape, a cylindrical shape, a flat plate shape, a flake shape, a cubic shape, and a thread shape may be used.
  • those having a relatively small specific surface area such as a spherical shape, a cylindrical shape, and a cubic shape are preferable.
  • the ratio (S / V) of the surface area S (mm 2 ) to the volume V (mm 3 ) is preferably 1 mm 1 or less when the compression molded product is a sphere. Therefore, the diameter is preferably 6 mm or more when the compact is a sphere.
  • Compressed molded products are components that decompose quickly, such as nitrate compounds and hydroxides, and high temperatures. It is preferable not to include a component that forms a liquid phase.
  • the compression molded product is preferably a raw material mainly composed of an oxide or a carbonate compound.
  • the compression-molded product is a material obtained by compressing and solidifying a glass raw material (b) consisting essentially of silica sand, dolomite, limestone, soda ash and nickel oxide.
  • the glass raw material (a) and / or the glass raw material (b) may further contain an iron-containing compound (eg, iron oxide).
  • an iron-containing compound eg, iron oxide
  • the glass material containing the iron-containing compound is reduced. It may further contain an agent.
  • the reducing agent can adjust the optical characteristics of the glass article. Examples of the reducing agent include carbon-based reducing agents such as carbon.
  • the mixing of the glass raw material (a) with the glass body and / or the compression-molded body may be performed according to a known method. For example, use a ball mill or planetary mill for a crucible scale, and mix using a blender mixer for a melting furnace scale. Either the glass raw material (a) and the glass body and / or the compression-molded body may be added first or simultaneously.
  • the mixing ratio of the glass raw material (a) and the glass body and / or the compression molded body is appropriately determined depending on the NiO content in the glass body and / or the compression molded body and the required final glass composition. Although there is no particular limitation, it is preferable that the ratio of the glass body and / or the compression molded body is low.
  • the mixing ratio may be, for example, in the range of about 99.8: 0.2 to 80:20 as a mass ratio of the glass raw material (a): glass body and / or compression molded body.
  • a step of melting the mixture obtained in the above step is performed.
  • the process may be performed according to a known method.
  • the mixture may be melted by heating at 1350 to: 1650 ° C. for 2 to 6 hours using an electric furnace in a crucible (particularly in a platinum norevo).
  • the mixture may be retained in the furnace and heated at 1350 to 1650 ° C. for about 50 to 100 hours for melting.
  • a glass article can be obtained by shaping the molten glass according to a known method such as a float method or a roll-out method.
  • the step of heating and quenching the obtained glass article to strengthen the glass article is further performed. May be.
  • the process may be performed according to a known method. For example, the glass article is heated to the vicinity of the softening point of glass (about 650 ° C for soda-lime glass), and compressed air is sprayed onto the glass surface. Can be quickly cooled.
  • the glass article to be produced is preferably soda lime silica glass containing NiO as a coloring component.
  • a specific basic glass composition expressed in mass% As a specific basic glass composition expressed in mass%,
  • composition containing NiO as a coloring component is preferably included.
  • the type of the glass article that may contain a coloring component other than NiO is not particularly limited in order to adjust optical properties such as color tone. Not only iron oxide but also TiO, CeO, CoO, Se, etc. may be included.
  • the coloring component is preferably specifically,
  • T-Fe 2 O is all iron oxide converted to Fe 2 O
  • the coloring component is
  • T-Fe 2 O is all iron oxide converted to Fe 2 O
  • the ratio of FeO to T-FeO (FeO ratio) is in the range of 0.15 to 0.5,
  • a component containing 0% in the content range is a component that may be added if necessary).
  • a coloring component When such a coloring component is used, a glass article having excellent absorption of ultraviolet rays and infrared rays and having a relatively small visible light transmittance can be obtained.
  • the FeO ratio is 0.
  • the force S is preferably in the range of 20 to 0 ⁇ 30, more preferably the force S is in the range of 0 ⁇ 21 to 0 ⁇ 27.
  • the glass manufacturing method of the present invention it is possible to provide a glass article in which the generation of NiS is reduced as much as possible.
  • the ratio of adding a clarifier and a reducing agent containing a sulfur-containing compound is limited.
  • the ratio of adding a fining agent containing a sulfur-containing compound such as mirabilite is not limited for NiS countermeasures.
  • the ratio of adding the reducing agent is not limited. For this reason, it became possible to adjust the ratio of adding a refining agent or a reducing agent that controls the redox state of the glass independently of NiS countermeasures. As a result, the optical properties of the glass can be easily designed by reducing the NiS generation as much as possible, maintaining the bubble quality of the glass, and controlling the redox state.
  • the glass article obtained by the production method of the present invention is useful as a base plate for heat strengthening, and is particularly suitable for automobile window glass, architectural window glass, and the like.
  • the glass body was produced according to the following procedure. Silica sand, dolomite, limestone, and soda ash were used as the glass raw material (b), and nickel oxide was used as the coloring component material. The above materials were mixed at a predetermined ratio to prepare a glass body batch.
  • the prepared batch was melted by holding it in an electric furnace set at 1450 to 1550 ° C for 4 hours using a platinum crucible. Thereafter, a glass body having a desired shape and size such as the above-described various shapes, for example, flake shape and spherical shape (marble), was obtained from the glass melt.
  • a compression molded product of the glass raw material (b) was produced according to the following procedure.
  • materials quartz sand, dolomite, limestone and soda ash were used, and nickel oxide and iron oxide were appropriately used as coloring component materials.
  • the above-mentioned materials were mixed at a predetermined ratio, an appropriate amount was put into a predetermined mold, and pressed with a press machine for about 4 to 20 [X104N] (4 to 20 t) for 20 seconds to be molded into a desired shape.
  • X104N 4 to 20 t
  • a glass plate was produced according to the following procedure. Silica sand, dolomite, limestone, soda ash, mirabilite, and potassium carbonate were used as raw materials for the basic glass component. As coloring components, nickel oxide, ferric oxide, titanium oxide, cerium oxide, cobalt oxide and metal selenium were used, and a carbon-based reducing agent was used. The glass body or the compression molded product was used as the nickel oxide raw material. The above raw materials were mixed at a predetermined ratio to prepare a glass batch.
  • the FeO ratio in each example was controlled by a carbon-based reducing agent (carbon powder or the like).
  • a glass batch using a powdered nickel oxide raw material was also prepared to prepare a glass plate, which was used as a comparative example.
  • the prepared batch was kept in an electric furnace set at 1450 ° C for 4 hours using a platinum crucible, and melted and refined. Thereafter, the glass melt was poured out on the iron plate outside the furnace to a thickness of about 6 mm, and cooled and solidified to obtain a glass plate. This glass plate was then slowly cooled. Made the work. The slow cooling operation was performed by holding the glass body in another electric furnace set at 650 ° C for 30 minutes, and then turning off the electric furnace and cooling it to room temperature.
  • the glass plate after the slow cooling operation was observed with an optical microscope (magnification: 10 to 100 times), and the number of NiS present in the glass body was measured.
  • the observed glass plate is cut, ground, and optically polished by applying normal glass processing technology. It is a roughly rectangular parallelepiped with a side of about 50 mm and a thickness of 3.1 mm. A polished glass plate was produced.
  • Table 1 shows the glass composition of the produced glass plate.
  • Glass plate compositions A and B have almost the same glass composition (basic component) except for the coloring component, but the content of each component contained in the basic component differs depending on the content of the coloring component.
  • the content of each component is a quantitative analysis value using a general-purpose analysis method suitable for that component, such as X-ray fluorescence analysis, chemical analysis, or flame analysis. All contents in the table are expressed in mass%, and the total is not 100% due to rounding errors in the analysis results.
  • glass plate compositions A and B have different coloring components, the content of NiO and CoO is about the same, and the content of FeO differs greatly. Furthermore, glass plate composition A contains CeO, and glass plate composition B contains Se. [0086] (1) Example using glass body containing NiO
  • Examples F1 to F23 are examples in which a glass article was manufactured using a glass body containing nickel oxide as a nickel oxide source.
  • Table 2 shows the composition of the glass body used in each example.
  • Examples F1 to F4 shown in Table 2 were obtained by changing the content of NiO in the glass body. NiO content rate in the final glass article The glass body ratio was adjusted so that the glass plate composition B in Table 1 was obtained. Table 2 shows the number of NiS and FeO ratio per 100g of glass articles.
  • the FeO ratio of Examples F1 to F4 was 17.5 to 18.9%.
  • a comparative example R14 having the same FeO ratio (18.7%) as in Examples F1 to F4 was produced using nickel oxide powder as a nickel source.
  • the number of NiS in R14 was about 42 / 100g.
  • the number of NiS in Examples F1 to F4 was about 18 to about 33 pieces / 100 g, which was smaller than that of R14.
  • Examples F1 to F3 are glass articles prepared using a glass body containing 1 to 7% NiO, and the number of NiS in the glass is from Example F4 using a glass body containing 12% NiO. I was able to reduce it.
  • Examples F5 to F12 shown in Table 3 the content of NiO in the glass body is constant at 6%, and the content of NaO and the content of CaO are included together with the content of SiO. Something that has changed
  • the ratio of the glass body was adjusted so that the NiO content in the final glass article was the glass plate A in Table 1.
  • Table 3 shows the number of NiS per 100g of glass articles.
  • the FeO ratio of Examples F5 to F12 was 20 to 23%. As will be described later, the number of NiS in Comparative Example R10 having the same FeO ratio (23%) as Examples F5 to F12 was about 19/100 g. In comparison with this, the number of NiS in Examples F5 to F12 was about 2 to about 16 pieces / 100 g, which was smaller than that of R10.
  • Examples F5, F7, Fl l, and F12 are within the range of 70 to 80% of SiO force in the glass body.
  • F6, F8 to F10 are Si0 forces 3 ⁇ 40% or 60% in the glass body.
  • Examples F13 to F16 and Examples F17 to F23 shown in Table 4 are obtained by changing the average particle size of the glass body with the same glass composition of the glass body. The proportion of the glass body was adjusted so that the NiO content in the final glass article was the glass plate composition A in Table 1. Table 4 also shows the number of NiS per 100g of glass articles and the average particle size of the glass body.
  • the FeO ratio of Examples F13 to F16 and Examples F17 to F23 was 20 to 23%.
  • the number of NiS in Examples F13 to F16 and Examples F17 to F23 is about 0.4 It was about 13 / 100g and about 0.4 ⁇ about 10 / 100g, which was less than that of R10.
  • the glass articles of Examples F14 to F17 and F20 to F23 had an average particle diameter of 1.5 mm or less.
  • the number of NiS in the glass article could be reduced as compared with a glass article produced using a glass body having an average particle size of less than 1.5 mm.
  • Fig. 1 shows the relationship between the average particle size of the glass body and the number of NiS per lOOg. As is clear from Fig. 1, it can be seen that the number of NiS suddenly decreases when the average particle size is increased. The same tendency when the SiO content in the glass body is 70% or 80%
  • Examples Bl to B11 are examples in which a glass article was prepared using a compression molded product of glass raw material (b) containing nickel oxide and nickel oxide as a nickel oxide source.
  • Tables 5 and 6 show the composition of the compression molded product used in each example.
  • This compression-molded product is essentially a glass raw material (b) made of silica sand, dolomite, limestone, soda ash, and nickel oxide, compressed and solidified.
  • Examples B1 to B3 do not contain an iron source in the compression molded product.
  • the ratio of the compression molded product was adjusted so that the NiO content in the final glass article was the glass plate composition A in Table 1.
  • Table 5 also shows the number of NiS per glass article lOOg and the ratio of FeO.
  • the number of NiS in Examples Bl and B2 is about 8 / lOOg and about 9 / lOOg, which is higher than that of R10. I was able to reduce it.
  • Example B3 5% by mass of cerium oxide was contained in the compression molded product, and the number of NiS of the glass article produced by using the compression molded product of B3 was B 1 or B2. I was able to make it even less.
  • Examples B4 and B8 are obtained by including iron oxide as an iron source in the compression molded product.
  • the number of NiS in glass articles made using B4 and B8 compression moldings could be made even smaller than Bl and B2.
  • the number of NiS tended to decrease as the amount of iron oxide contained in the compression-molded product increased.
  • FIG. 2 shows the relationship between the FeO ratio and the number of NiS per 10 Og of the glass article in the example using the compression molded product and the comparative example described later.
  • Fig. 2 shows the relationship between the FeO ratio and the number of NiS per 10 Og of the glass article in the example using the compression molded product and the comparative example described later.
  • the compression moldings of Examples B9 and B11 shown in Table 6 have a ratio (S / V) (mm— of the surface area S (mm 2 ) to the volume V (mm 3 ) of 1.2 and 0.8, respectively.
  • Table 6 shows 100g of glass articles. The number of NiS, FeO ratio, and S / V value were also shown.
  • B10 has a nickel oxide content in the compression-molded product that is twice that of B9, and the number of NiS is less than that of B9.
  • Comparative Examples The glass articles of R1 to R11 were prepared by using a powdered nickel oxide raw material as a nickel oxide source, and melting a glass batch obtained by mixing the same raw materials as in Example 1 at one time. This is a manufactured example. In Comparative Examples R1 to R11, the FeO ratio is changed by the carbon powder, and the others are the same. Tables 7 and 8 show the glass compositions of the glass plates of the comparative examples.
  • Comparative examples Rl to R11 shown in Table 7 are for the glass plate composition A, and comparative examples R12 to R15 shown in Table 8 are for the glass plate composition B.
  • the number of Ni S found in the glass articles of each comparative example greatly increased in proportion to the FeO ratio of the glass articles.
  • Fig. 3 shows the case of glass plate composition A
  • Fig. 4 shows the case of glass plate composition B.
  • the rate of increase in the number of NiS due to the increase in FeO ratio is larger than in the case of glass plate composition A.
  • the sulfur-containing compound including the nickel-containing compound was substantially reduced.
  • NiS is produced in the resulting glass article by mixing and melting the glass body and compression molding contained in the glass raw material (a) containing a sulfur-containing compound and substantially free of a nickel-containing compound. It became clear that it can be reduced. It was also confirmed that the formation of NiS was suppressed when frit or compression-molded material containing a nickel-containing compound and substantially not containing a sulfur-containing compound was included in the glass raw material (a) at the same time. .
  • the composition of the glass article to be produced is only one type.
  • the production method of the present invention uses the soda lime silli If it is a glass composition, it can be applied to its production and can be applied to other glass compositions.
  • the glass production method according to the present invention can reduce NiS in a glass article containing a NiO composition.
  • the present invention can be suitably used particularly for the production of a glass plate formed into a plate shape by a float method or a roll-out method.
  • the ratio of adding a refining agent containing a sulfur-containing compound such as mirabilite is not limited, and the ratio of adding a reducing agent is not limited for NiS countermeasures. Therefore, the ratio of the fining agent and reducing agent added to control the redox state of the glass can be adjusted independently of NiS countermeasures. Therefore, it is possible to reduce NiS without affecting the bubble quality and redox state of glass in a glass article that contains FeO within a predetermined range and includes a NiO composition.
  • the manufactured glass plate can be utilized suitably as a base plate for heat strengthening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

Disclosed is a method for producing a glass article containing NiO, wherein generation of NiS is suppressed as much as possible. Specifically disclosed is a method for producing a glass article, which comprises a step wherein a glass raw material (a) substantially not containing a nickel-containing compound while containing a sulfur-containing compound is mixed with a glass material obtained by melting a glass raw material (b) substantially not containing a sulfur-containing compound while containing a nickel-containing compound and/or a compression molded product of such a glass raw material (b); and a step wherein the thus-obtained mixture is melted.

Description

明 細 書  Specification
ガラス物品の製造方法およびガラス物品  Glass article manufacturing method and glass article
技術分野  Technical field
[0001] 本発明は、ガラス物品の製造方法に関し、詳しくは酸化ニッケルを含むガラス物品 の製造方法に関する。特に、フロート法やロールアウト法によって板状に成形される ガラス板の製造方法において、ガラスの泡品質の向上、酸化還元条件の制御、 NiS の生成減少の 3つを成立させることができる製造方法に関する。また本発明は、当該 製造方法により得られたガラス物品に関する。  [0001] The present invention relates to a method for manufacturing a glass article, and more particularly to a method for manufacturing a glass article containing nickel oxide. In particular, in a method for manufacturing a glass plate that is formed into a plate shape by the float process or roll-out method, three methods can be established to improve glass bubble quality, control oxidation-reduction conditions, and reduce NiS generation. About. Moreover, this invention relates to the glass article obtained by the said manufacturing method.
背景技術  Background art
[0002] 通常、ソーダライムシリカガラスは、所定の原料を秤量、混合し、これにカレットをカロ えたものを熔融窯に投入して製造される。投入原料は室温から昇温され、熔融窯の 中で最高 1500〜1600°C程度にまで加熱されて熔解、ガラス化される。  [0002] Normally, soda lime silica glass is manufactured by weighing and mixing predetermined raw materials, and then charging the cullet with this into a melting furnace. The feedstock is heated from room temperature and heated to a maximum of 1500-1600 ° C in a melting furnace to be melted and vitrified.
[0003] ソーダライムシリカガラスを製造する場合、熔解'清澄を促進するために、ガラスバッ チに硫黄含有化合物である硫酸塩化合物(硫酸カルシウム、硫酸ナトリウム等)が加 えられる。特に、硫酸ナトリウム(以下、芒硝と記す)をカ卩えるのが一般的である。芒硝 の融点は 884°Cであり、この温度以上になると、芒硝は液相となり、ガラス化反応を促 進すると考えられる。  [0003] When producing soda lime silica glass, a sulfate compound (calcium sulfate, sodium sulfate, etc.), which is a sulfur-containing compound, is added to the glass batch in order to promote melting and clarification. In particular, sodium sulfate (hereinafter referred to as mirabilite) is generally obtained. The melting point of mirabilite is 884 ° C. When this temperature is exceeded, mirabilite is considered to be in the liquid phase and promote the vitrification reaction.
[0004] なお、ガラスバッチに含まれる硫黄含有化合物は、主として上述の硫酸塩化合物で ある。このほかにも、カルマイト(登録商標)と呼ばれる硫黄を含む高炉スラグも、ガラ スバッチに含まれる硫黄含有化合物として挙げられる。  [0004] The sulfur-containing compound contained in the glass batch is mainly the above-described sulfate compound. In addition to this, blast furnace slag containing sulfur called Calmite (registered trademark) is also cited as a sulfur-containing compound contained in a glass batch.
[0005] さらに芒硝は、ガラスバッチ中に共に加えられている炭素系還元剤(例えば、カー ボン等)と反応し、硫化ナトリウム (Na S)を生成すると考えられている。  [0005] Furthermore, mirabilite is considered to react with a carbon-based reducing agent (for example, carbon) added together in a glass batch to produce sodium sulfide (Na 2 S).
[0006] 上述した Na Sは、シリカ(Si〇 )と反応し、シリカの焙解とガラスネットワークの形成 を促すことから、ガラス化反応を促進するために重要な物質であると考えられている。 しかし、熔融融液中の Na Sを直接観察することは非常に難しい。  [0006] Na S described above reacts with silica (SiO) to promote silica roasting and glass network formation, and is therefore considered to be an important substance for promoting the vitrification reaction. . However, it is very difficult to directly observe Na S in the melt.
[0007] この S2—の形成温度域について、正確な数値は明らかではなぐまたガラスバッチの 構成成分によっても変動する力 概ね 800〜: 1200°Cの温度域にあると考えられる。 [0008] さて、酸化ニッケル (Ni〇)は、古くからガラス組成物における黄褐色〜暗紫色の着 色原料として用いられてきた。近年では、 自動車後部窓ガラスに用いられる、比較的 可視光透過率の低いガラスの着色成分としても利用されている。このような低可視光 透過率ガラスに含まれる NiO成分は、数十 ppmから、多いものでは千 ppm以上含ま れる。 [0007] The exact numerical value of the formation temperature range of S 2 — is not clear, and the force fluctuates depending on the constituents of the glass batch. It is considered that the temperature is approximately 800 to 1200 ° C. [0008] Nickel oxide (NiO) has long been used as a yellowish brown to dark purple coloring material in glass compositions. In recent years, it has also been used as a coloring component for glass with relatively low visible light transmittance, which is used for automotive rear window glass. The NiO component contained in such low visible light transmittance glass is from several tens of ppm, and in many cases, it contains 1000 ppm or more.
[0009] ところで、上述した S2—は、酸化ニッケル (NiO)が存在すると、容易に反応して硫化 ニッケル(NiS)を形成する。 By the way, the above-mentioned S 2 — reacts easily to form nickel sulfide (NiS) when nickel oxide (NiO) is present.
[0010] 着色原料として用いる場合のほか、工業的に生産されるガラス物品には、ニッケノレ が混入する虞がある。例えば、金属ニッケルは、ステンレス鋼や溶接棒といった合金 としても広く用いられており、これらニッケル合金の小片は、しばしば、工業ガラス原 料やカレット中に紛れ込み、窯内に投入されることがあるからである。窯槽中でのニッ ケノレ合金の熔融反応は明らかではなレ、が、合金中のニッケルもまた、上述の S2—と結 合して NiSを形成すると考えられてレ、る。 [0010] In addition to the case where it is used as a coloring raw material, there is a possibility that Nikkenole may be mixed in industrially produced glass articles. For example, metallic nickel is also widely used as an alloy such as stainless steel and welding rods, and small pieces of these nickel alloys often get mixed into industrial glass raw materials and cullet and are thrown into the kiln. Because. Although the melting reaction of nickel alloy in the kiln is not clear, nickel in the alloy is also considered to combine with the above-mentioned S 2 — to form NiS.
[0011] NiS生成温度域は明らかではなレ、が、上述した S2—生成温度域から 800°C以上と考 えられ、かつ工業的な硫化ニッケルの生成温度が約 1000°Cであることから、 800〜[0011] Although the NiS formation temperature range is not clear, it is considered that the above-mentioned S 2 — generation temperature range is 800 ° C or higher, and the industrial nickel sulfide formation temperature is about 1000 ° C. From 800 ~
1200°Cの温度域にあると推定される。 Presumed to be in the temperature range of 1200 ° C.
[0012] また 1300°C以上の高温になると、ー且生成した NiSは再びガラス中に熔解あるい は拡散して消失すると考えられる。この熔解速度や拡散速度は、高温ほど大きいと推 定される。 [0012] When the temperature rises to 1300 ° C or higher, the produced NiS is considered to melt or diffuse again in the glass and disappear. It is estimated that the melting rate and diffusion rate are higher at higher temperatures.
[0013] さて、自動車用安全ガラスの一つとして、熱強化ガラスが用いられる。熱強化された 窓ガラスでは、極めて稀に特に大きな外力を作用させなくても、自然に破損すること がある。熱強化ガラスは、表面の圧縮応力層と内部の引張応力層とを有する。この引 張応力層に微小な異物、とりわけ硫化ニッケル (NiS)が存在する場合には、時間の 経過と共に、この NiSがひ相から β相への転移が生じ、その際の体積変化によって、 熱強化ガラスを破損させてしまうことが知られている。  [0013] Now, heat tempered glass is used as one of safety glasses for automobiles. Thermally tempered window glass can spontaneously break very rarely without the application of particularly large external forces. The heat strengthened glass has a compressive stress layer on the surface and an internal tensile stress layer. In the case where minute foreign matter, particularly nickel sulfide (NiS), is present in this tensile stress layer, this NiS undergoes a transition from the splay phase to the β phase with the passage of time. It is known to damage tempered glass.
[0014] このため、 NiSを生じさせないために、様々なガラス製造方法が検討されている。 [0014] For this reason, various glass production methods have been studied in order not to generate NiS.
[0015] 特開昭 49— 118711号公報には、板ガラスの製造時における原料組成成分のうち 芒硝の一部を硝石およびソーダ灰に置き換え、かつカーボンを含まないことを特徴と するガラス原料組成物が開示されている。 [0015] Japanese Patent Application Laid-Open No. 49-118711 is characterized in that a part of mirabilite is replaced with glass stone and soda ash among raw material composition components at the time of production of plate glass, and does not contain carbon. A glass raw material composition is disclosed.
[0016] 米国特許第 5,725, 628号公報には、ソ―ダ石灰ガラスの製造工程において、硫化 ニッケノレを除去するためにマンガン化合物を少なくともニッケル含有量の 1. 4倍添加 することを特徴とするガラス製造方法が開示されてレ、る。  [0016] US Pat. No. 5,725,628 is characterized in that in the production process of soda-lime glass, a manganese compound is added at least 1.4 times the nickel content in order to remove nickel sulfide. A glass manufacturing method is disclosed.
[0017] また、特開平 7— 144922号公報には、ソーダ石灰ガラスの製造方法において、バ ツチ物質に、モリブデン、砒素、アンチモン、ビスマス、銅、銀、ニクロム酸カリウムおよ びクロマイト鉄並びにそれらの組合せから本質的になる群から選ばれた物質を少なく とも 0. 010重量%添加することを特徴とするガラス製造方法が開示されている。  [0017] In addition, in Japanese Patent Application Laid-Open No. 7-144922, in a method for producing soda lime glass, a batch material includes molybdenum, arsenic, antimony, bismuth, copper, silver, potassium dichromate and chromite iron, and those. Disclosed is a method for producing glass, characterized in that at least 0.010% by weight of a substance selected from the group consisting essentially of the combination is added.
[0018] 本出願人は、特開平 9— 169537号公報にて、ガラス原料中に含有されるニッケル 系化合物及び/または前記ガラス原料の熔融過程で混入するニッケル系化合物に 起因して熔融成形されたガラス中に生成される硫化ニッケルを、前記ガラス原料中に 亜鉛化合物を微量添加させることにより抑制することを特徴とするソーダ石灰系ガラ スの製造方法を開示した。 [0018] The applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 9-169537 is melt-molded due to a nickel-based compound contained in a glass raw material and / or a nickel-based compound mixed in the melting process of the glass raw material. Disclosed a method for producing soda-lime-based glass, characterized in that nickel sulfide produced in the glass is suppressed by adding a small amount of a zinc compound to the glass raw material.
[0019] 一方、ガラス原料バッチに、フリットガラスやバッチ成分の一部を選択的に組み合わ せて固化したものを加え、原料として用いる様々なガラスの製造方法も開示されてい る。 [0019] On the other hand, various glass manufacturing methods used as a raw material by adding a glass raw material batch obtained by adding a combination of a frit glass and a part of batch components and solidifying them are also disclosed.
[0020] 特開平 6— 1633号公報には、高還元率または/および比較的高還元率フリットガ ラス、特定量の芒硝および特定量のカーボンを適宜特異に組み合わせて用いること で、ガラス中の還元率を特定範囲に入るようにコントロールすることにより、赤外線紫 外線吸収ガラスを製造する方法が開示されている。  [0020] Japanese Patent Application Laid-Open No. 6-1633 discloses a reduction in glass by appropriately combining a high reduction rate and / or a relatively high reduction rate frit glass, a specific amount of sodium sulfate, and a specific amount of carbon as appropriate. A method for producing an infrared ultraviolet absorbing glass by controlling the rate so as to fall within a specific range is disclosed.
[0021] 特開平 11 116270号公報には、 V Oを含有する着色フリットと Seを含有する着 色フリットを添加して攪拌した後、成形することを特徴とする紫外線吸収無色透明ソ ーダライムシリカ系のガラス瓶の製造方法が開示されている。  [0021] JP-A-11 116270 discloses an ultraviolet-absorbing colorless and transparent soda-lime-silica glass bottle characterized in that a colored frit containing VO and a colored frit containing Se are added and stirred, and then molded. A manufacturing method is disclosed.
[0022] 特表 2005-519015号公報には、ガラスバッチ組成物の特定の構成成分を選択的 に組み合わせて、ガラス融体におけるバッチ成分のダロスセグリゲーシヨンを減少さ せ、更に熱反応経路を制御することで熔融効率を改善する方法が開示されている。 [0022] In JP 2005-519015, specific components of the glass batch composition are selectively combined to reduce daros segregation of the batch components in the glass melt, and further provide a thermal reaction path. A method for improving the melting efficiency by controlling is disclosed.
[0023] しかし、特開昭 49— 118711号公報に開示されたガラス製造方法は、ガラスの清 澄作用を有する芒硝を減らしたため、ガラス中の泡が抜け切れない。また、ガラスの 酸化還元状態を調整するカーボンを含まないので、光学特性を調整できない。この ため、例えば、自動車用窓ガラスに必要な泡品質および光学特性を得ることができな かった。 [0023] However, the glass production method disclosed in Japanese Patent Application Laid-Open No. 49-118711 has reduced the amount of sodium sulfate having a glass clarification action, so bubbles in the glass cannot be completely removed. Also of glass Since carbon that adjusts the redox state is not included, optical characteristics cannot be adjusted. For this reason, for example, it was not possible to obtain the foam quality and optical properties necessary for automobile window glass.
[0024] 米国特許第 5,725,628号公報は、強力な酸化剤として作用するマンガン化合物を 多量に含むので、ガラスの酸化還元条件は酸化よりとなって、光学特性を調整できな レ、。このため、例えば、自動車用窓ガラスに必要な光学特性を得ることができなかつ た。  [0024] US Pat. No. 5,725,628 contains a large amount of a manganese compound that acts as a strong oxidant, so that the redox condition of the glass becomes oxidation and the optical properties cannot be adjusted. For this reason, for example, it was not possible to obtain the optical characteristics required for automobile window glass.
[0025] 特開平 7— 144922号公報に開示されたガラス製造方法は、ガラスバッチに NiOを 含むことを前提としておらず、あくまでコンタミネーシヨンとして、ごくわずかにガラス原 料に導入され形成される NiSのための対策であった。このため、例えば、 NiOを含む ガラス組成物の NiS対策には、利用できな力 た。  [0025] The glass manufacturing method disclosed in Japanese Patent Application Laid-Open No. 7-144922 is not based on the premise that the glass batch contains NiO, and is formed as a contamination by introducing it into the glass raw material only slightly. It was a measure for NiS. For this reason, for example, the glass composition containing NiO could not be used for NiS countermeasures.
[0026] 特開平 9— 169537号公報もまた、酸化剤として作用する亜鉛化合物を添加する 必要があるため、ガラスのレドックスは酸化寄りとなって光学特性の調整が困難になる 。このため、例えば、 自動車用窓ガラスに必要な品質および光学特性を得ることが困 難であった。  [0026] Also in JP-A-9-169537, since it is necessary to add a zinc compound that acts as an oxidizing agent, the redox of the glass is close to oxidation, making it difficult to adjust the optical properties. For this reason, for example, it has been difficult to obtain the quality and optical characteristics required for automobile window glass.
[0027] 特開平 6— 1633号公報は、高還元率フリットガラスとガラス原料バッチの芒硝、力 一ボンを組み合わせて用いることで、ガラスの還元率を調整する方法は開示されて いる。しかし、 NiS生成防止の効果の有無については、開示も示唆もされていない。  [0027] Japanese Patent Application Laid-Open No. 6-1633 discloses a method for adjusting the reduction rate of glass by using a combination of a high reduction rate frit glass and a glass raw material batch of mirabilite and vigor. However, there is no disclosure or suggestion as to whether NiS formation is effective.
[0028] 特開平 11— 116270号公報は、 V Oと Seをそれぞれ含有するガラスフリットを添  [0028] Japanese Patent Application Laid-Open No. 11-116270 adds glass frit containing V 2 O and Se, respectively.
2 5  twenty five
加することで、紫外線吸収無色透明ソーダライムシリカ系ガラスの光学特性を得る方 法が開示されている。しかし、ガラスフリットの組成については、硼珪酸塩系等の低融 点ガラスを用レ、るものであり、 NiS生成防止効果が得られるものではな力、つた。  In addition, a method for obtaining the optical characteristics of an ultraviolet-absorbing colorless and transparent soda lime silica glass by adding the above is disclosed. However, the composition of the glass frit is based on low melting point glass such as borosilicate, and has a power that does not provide an effect of preventing NiS formation.
[0029] 特表 2005-519015号公報は、特定のバッチ成分を選択的にフリット化、ペレット 化または予備反応等させることで、バッチ成分のダロスセグリゲーシヨンを減少させ、 更に熱反応経路を制御することで熔融効率の向上を図る方法が開示されている。し かし、 NiS生成防止の効果の有無については、何ら開示も示唆もされていない。  [0029] JP-T-2005-519015 discloses a method that selectively frits, pelletizes, or pre-reacts a specific batch component, thereby reducing the dalos segregation of the batch component and further controlling the thermal reaction path. Thus, a method for improving the melting efficiency is disclosed. However, there is no disclosure or suggestion about the effectiveness of preventing NiS formation.
[0030] ところで、上述した炭素系還元剤は、ガラスの酸化還元状態を決定するために重要 な働きを持っている。ガラスの酸化還元状態を表す指標には、ガラス中の全酸化鉄 に対する二価鉄の割合 (FeO比)を用いるのが一般的である。カーボンのような還元 剤は、 FeO比を上げる働きがある。一方、硫酸塩化合物や硝酸塩化合物は、 FeO比 を下げる働きがある。 By the way, the above-described carbon-based reducing agent has an important function for determining the redox state of glass. The index that represents the redox state of glass is the total iron oxide in the glass. The ratio of divalent iron to Fe (FeO ratio) is generally used. A reducing agent such as carbon works to increase the FeO ratio. On the other hand, sulfate compounds and nitrate compounds work to lower the FeO ratio.
[0031] ガラス中の二価鉄は、赤外線をよく吸収する。 自動車用の窓ガラスでは、この二価 鉄による吸収を利用して、高い熱線吸収性能を得ることが行われている。この場合、 製品としてのガラスの均質性や泡品質を維持しながら、所望の FeO比を得る必要が ある。  [0031] The divalent iron in the glass absorbs infrared rays well. In the window glass for automobiles, high heat ray absorption performance is obtained by utilizing absorption by this divalent iron. In this case, it is necessary to obtain the desired FeO ratio while maintaining the homogeneity and foam quality of the product glass.
[0032] 一方、ガラス中に生成される NiSは、ガラスの酸化還元状態とも深くかかわつている 。定性的には、 NiSはガラスが酸化状態であれば生成しにくぐ還元状態であれば生 成しやすいことが知られている。上述の Fe〇比でいえば、高い熱線吸収性能を得る ために高レ、 Fe〇比を得ようとすれば、 NiSはより生成しやすくなる。  On the other hand, NiS produced in glass is deeply related to the redox state of glass. Qualitatively, it is known that NiS is easy to form in a reduced state that is difficult to form if the glass is in an oxidized state. In terms of the above FeO ratio, NiS is more likely to be produced if an attempt is made to obtain a high heat and FeO ratio in order to obtain high heat-absorbing performance.
[0033] したがって、所望の光学特性を得るために、特に必要な高い Fe〇比にしながら、 Ni Sの生成を抑制する技術が必要である。  [0033] Therefore, in order to obtain desired optical characteristics, there is a need for a technique that suppresses the formation of Ni S while maintaining a particularly high FeO ratio.
発明の開示  Disclosure of the invention
[0034] これらの状況に鑑み、本発明は、 NiOを含むガラス物品で NiSの生成を極力少なく できるガラス物品の製造方法の提供を目的とする。さらには、ガラスの泡品質や酸化 還元状態に影響されずに、し力 NiSの生成を極力少なくできるガラス物品の製造方 法の提供を目的とする。また、本発明は、 Ni〇を含むガラス物品で NiSの生成が少な いガラス物品の提供を目的とする。  [0034] In view of these circumstances, an object of the present invention is to provide a method for producing a glass article that can minimize the generation of NiS in a glass article containing NiO. It is another object of the present invention to provide a method for producing a glass article that can minimize the generation of strength NiS without being affected by the bubble quality and redox state of the glass. It is another object of the present invention to provide a glass article that contains NiO and produces little NiS.
[0035] 当該目的を達成した本発明は、実質的にニッケル含有化合物を含まず、かつ硫黄 含有化合物を含むガラス原料 (a)と、 [0035] The present invention that has achieved the object comprises a glass raw material (a) substantially free of a nickel-containing compound and containing a sulfur-containing compound,
実質的に硫黄含有化合物を含まず、かつニッケル含有化合物を含むガラス原料 (b )を熔融して得たガラス体および Zまたは当該ガラス原料 (b)の圧縮成形物と、を混 合する工程、および  A step of mixing a glass body obtained by melting a glass raw material (b) substantially free of a sulfur-containing compound and containing a nickel-containing compound, and a compression molded product of Z or the glass raw material (b), and
得られた混合物を熔融する工程を含むガラス物品の製造方法である。  It is a manufacturing method of the glass article including the process of melting the obtained mixture.
[0036] 本発明はまた、当該製造方法により得られたガラス物品であって、質量%で表示し て、基本組成が、 [0036] The present invention is also a glass article obtained by the production method, wherein the basic composition is expressed in mass%,
SiO 65〜80%, Al〇 0〜 5%, SiO 65-80%, Al〇 0-5%,
MgO 0〜: 10%,  MgO 0 ~: 10%,
CaO 5〜: 15%,  CaO 5 ~: 15%,
MgO + CaO 5〜: 15%,  MgO + CaO 5 ~: 15%,
Na O 10〜18%,  Na O 10-18%,
K O 0〜 5%,  K O 0-5%,
Na O + K O 10〜20%,  Na O + K O 10 ~ 20%,
B〇 0〜 5%  B 0-5%
を含み、  Including
着色成分として、少なくとも NiOを 0. 03-2. 0%含むガラス物品である。 図面の簡単な説明  A glass article containing at least 0.03-2.0% of NiO as a coloring component. Brief Description of Drawings
[0037] [図 1]ガラス体の粒径と、ガラス物品 100g当たりの NiS個数の関係を示すグラフであ る。  [0037] FIG. 1 is a graph showing the relationship between the particle size of a glass body and the number of NiS per 100 g of glass article.
[図 2]圧縮成形物をニッケル源に用いた場合における、ガラス物品の FeO比と 100g 当たりの NiS個数の関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the FeO ratio of a glass article and the number of NiS per 100 g when a compression molded product is used as a nickel source.
[図 3]ガラス板組成 Aの場合で、粉末酸化ニッケルをニッケル源に用いた場合におけ る、ガラス物品の FeO比と 100g当たりの NiS個数の関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the FeO ratio of a glass article and the number of NiS per 100 g when glass powder composition A is used and powdered nickel oxide is used as the nickel source.
[図 4]ガラス板組成 Bの場合で、粉末酸化ニッケノレをニッケル源に用いた場合におけ る、ガラス物品の FeO比と 100g当たりの NiS個数の関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the FeO ratio of a glass article and the number of NiS per 100 g in the case of glass plate composition B when powdered nickel oxide is used as the nickel source.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 本発明者らは、ガラスを熔融する工程の 800〜1200°C付近の温度域で、 Ni〇と S2 —が出会うことを阻害することが、 NiS個数を減少させるために非常に重要であると考 [0038] In order to reduce the number of NiS, the inventors of the present invention have a great influence on preventing NiO and S 2 — from meeting in the temperature range of 800 to 1200 ° C in the process of melting glass. Considered important
[0039] そこで、 Ni〇の周囲を、 S2—を含まない成分で取り囲めばよいと着想した。これを実 現するために、以下の方法を考え出した。 [0039] Therefore, the inventor conceived that NiO should be surrounded by a component not containing S 2 —. In order to realize this, the following method was devised.
実質的にニッケル含有化合物を含まず、かつ硫黄含有化合物を含むガラス原料 (a Glass raw materials substantially free of nickel-containing compounds and containing sulfur-containing compounds (a
)を用いつつ、 )
(1)実質的に硫黄含有化合物を含まず、かつニッケル含有化合物を含むガラス原料 (b)を熔融して得たガラス体を用いる、または (1) Glass raw material substantially free of sulfur-containing compounds and containing nickel-containing compounds Use a glass body obtained by melting (b), or
(2)実質的に硫黄含有化合物を含まず、かつニッケル含有化合物を含むガラス原料 (b)の圧縮成形物を用いる。  (2) A compression molded product of the glass raw material (b) substantially free of a sulfur-containing compound and containing a nickel-containing compound is used.
[0040] 従って、本発明の製造方法においては、実質的にニッケル含有化合物を含まず、 かつ硫黄含有化合物を含むガラス原料 (a)と、実質的に硫黄含有化合物を含まず、 かつニッケル含有化合物を含むガラス原料 (b)を熔融して得たガラス体および/また は当該ガラス原料 (b)の圧縮成形物と、を混合する工程を行う。  [0040] Therefore, in the production method of the present invention, the glass raw material (a) substantially free of a nickel-containing compound and containing a sulfur-containing compound, and the nickel-containing compound substantially free of a sulfur-containing compound. And a glass body obtained by melting the glass raw material (b) and / or a compression molded product of the glass raw material (b).
[0041] (ガラス原料 (a) )  [0041] (Glass raw material (a))
ガラス原料 (a)は、熔解および清澄を促進するための硫黄含有化合物の供給源と なる。硫黄含有化合物とは、硫黄元素を含む化合物のことをいい、例としては、硫酸 カルシウム、硫酸ナトリウム(芒硝)等の硫酸塩化合物、カルマイト(登録商標)等が挙 げられる。  Glass raw material (a) provides a source of sulfur-containing compounds to promote melting and fining. The sulfur-containing compound refers to a compound containing elemental sulfur, and examples thereof include sulfate compounds such as calcium sulfate and sodium sulfate (sodium salt), and calumite (registered trademark).
[0042] ガラス原料 (a)は、通常、硫黄元素源、金属元素源および珪素元素源となる原料の 混合物である。ガラス原料 (a)の組成は、ガラス原料 (b)を熔融して得たガラス体およ び/またはガラス原料 (b)の圧縮成形物の組成、ならびに製造するべきガラス物品 の組成を参照して適宜決定すればょレ、。  [0042] The glass raw material (a) is usually a mixture of raw materials to be a sulfur element source, a metal element source and a silicon element source. The composition of the glass raw material (a) refers to the composition of the glass body obtained by melting the glass raw material (b) and / or the compression molded product of the glass raw material (b), and the composition of the glass article to be produced. If you decide as appropriate.
[0043] ガラス原料 (a)が、実質的にニッケル含有化合物を含まないとは、ニッケル含有化 合物が意図的に添加されていないことを意味する。従って、不可避的不純物としての 混入は許容することを意味する。ここで、ニッケル含有化合物とは、ニッケル元素を含 む化合物のことをレ、い、例としては、酸化ニッケル、炭酸ニッケル、塩化ニッケル、硝 酸ニッケノレ等が挙げられる。ニッケル含有化合物が不可避的不純物として混入する 場合でも、その含有量は、 0. 1質量%未満であることが好ましぐ 100質量 ppm未満 であることが特に好ましい。  [0043] The fact that the glass raw material (a) does not substantially contain a nickel-containing compound means that the nickel-containing compound is not intentionally added. Therefore, it means that contamination as an inevitable impurity is allowed. Here, the nickel-containing compound refers to a compound containing a nickel element, and examples thereof include nickel oxide, nickel carbonate, nickel chloride, and nickel nitrate. Even when the nickel-containing compound is mixed as an inevitable impurity, its content is preferably less than 0.1% by mass, and more preferably less than 100% by mass.
[0044] (ガラス原料 (b) )  [0044] (Glass raw material (b))
ガラス原料 (b)は、着色成分となる酸化ニッケノレの供給源である。ガラス原料 (b)が 実質的に硫黄含有化合物を含まないとは、上記の硫黄含有化合物が意図的に添加 されていないことを意味する。従って、不可避的不純物としての混入は許容すること を意味する。硫黄含有化合物が不可避的不純物として混入する場合でも、その含有 量は、 0. 1質量%未満であることが好ましぐ 100質量 ppm未満であることが特に好 ましい。 The glass raw material (b) is a supply source of nickel oxide which is a coloring component. The fact that the glass raw material (b) does not substantially contain a sulfur-containing compound means that the above-mentioned sulfur-containing compound is not intentionally added. Therefore, it means that contamination as an inevitable impurity is allowed. Even if sulfur-containing compounds are mixed as inevitable impurities The amount is preferably less than 0.1% by weight, particularly preferably less than 100% by weight.
[0045] 当該ガラス原料 (b)は、ニッケル含有化合物の周りを他の成分で取り囲むために、 ガラス体または圧縮成形物の形態で使用される。  [0045] The glass raw material (b) is used in the form of a glass body or a compression molded product so as to surround the nickel-containing compound with other components.
[0046] ガラス原料 (b)の組成は、酸化物に換算した場合に質量%で表して、  [0046] The composition of the glass raw material (b) is expressed in mass% when converted to an oxide,
SiO 60〜80%,  SiO 60-80%,
Al O 0〜 5%,  Al O 0-5%,
MgO 0〜: 10%,  MgO 0 ~: 10%,
CaO 0~15%,  CaO 0-15%,
MgO + CaO 5〜: 15%,  MgO + CaO 5 ~: 15%,
Na O 10〜18%,  Na O 10-18%,
K O 0〜 5%,  K O 0-5%,
Na O + K O 10〜20%,  Na O + K O 10 ~ 20%,
Ni〇 1〜: 15%  Ni〇 1 ~: 15%
を含むことが好ましい。以後、含有量に関する%表示は、質量%を表し、ガラス原料( b)の組成に関する記載は、酸化物換算したものである。  It is preferable to contain. Henceforth, the% display regarding content represents the mass%, and the description regarding the composition of glass raw material (b) is an oxide conversion.
[0047] (SiO ) [0047] (SiO 2)
前記ガラス体および/または前記圧縮成形物は、最終的に他の原料と混じり合つ て均質なガラス組成物を形成する必要がある。そのため、最終的なガラス組成と比較 して、粘性が高すぎると他の原料と混ざりにくくなつて、色斑を生じるなどの不具合を 生じること力 Sある。このため、ガラス原料 (b)は、 SiO成分を 65〜80%含むことがより 好ましぐ 70〜80%含むことがさらに好ましい。  The glass body and / or the compression molded product must be finally mixed with other raw materials to form a homogeneous glass composition. Therefore, compared to the final glass composition, if the viscosity is too high, it will be difficult to mix with other raw materials, and will cause defects such as color spots. For this reason, it is more preferable that the glass raw material (b) contains 65 to 80% of the SiO component, and more preferably 70 to 80%.
[0048] (ΝΪΟ) [0048] (ΝΪΟ)
本発明の製造方法において、このガラス体および Zまたは圧縮成形物のみが、最 終的なガラス物品に対して NiOを実質的に供給する。最終的なガラス物品における Ni〇の含有率は、ガラス体および Zまたは圧縮成形物中の Ni〇含有率と、使用する ガラス体および Zまたは圧縮成形物の割合との積で表される。最終的なガラス物品と 組成の異なるガラス体および/または圧縮成形物を添加する割合につレ、ては、均質 なガラスを得る観点から、少なレ、方が好ましレ、。 In the manufacturing method of the present invention, only this glass body and Z or compression molded product substantially supply NiO to the final glass article. The content of NiO in the final glass article is expressed as the product of the content of NiO in the glass body and Z or compression molding and the ratio of the glass body and Z or compression molding used. Homogeneous in proportion to the addition of glass bodies and / or compression moldings of different composition from the final glass article From the standpoint of obtaining a clear glass, less is preferred.
[0049] 一方、ガラス体中の NiO含有率が高くなるに従って、最終的なガラス物品中に生成 する NiS個数は増加する傾向にある。このため、混合物がガラス体を含む場合には、 当該ガラス体のガラス原料 (b)中の NiO含有率は、質量%で表して、 1〜7%である ことがより好ましい。他方では、混合物が圧縮成形物を含む場合には、当該圧縮成 形物のガラス原料(b)中の Ni〇含有率は、 5〜: 15%であることがより好ましい。  [0049] On the other hand, as the NiO content in the glass body increases, the number of NiS produced in the final glass article tends to increase. For this reason, when a mixture contains a glass body, it is more preferable that the NiO content rate in the glass raw material (b) of the said glass body is 1-7% in mass%. On the other hand, when the mixture includes a compression molded product, the NiO content in the glass raw material (b) of the compression molded product is more preferably 5 to 15%.
[0050] ガラス原料 (b)は、 NiO以外の着色成分を含んでよく、鉄含有化合物を含むことが 好ましい。鉄含有化合物としては、好ましくは酸化鉄である。ガラス原料 (b)中に鉄含 有化合物を含むことにより、それ自身の持つ酸化力、または Feと Sとの親和力の作用 によって、より高い NiS抑制効果が得られると推定される。その含有量は、 Fe Oに換 算した全酸化鉄の量として、 0. 05〜40%力好ましく、 1〜: 10%がより好ましい。  [0050] The glass raw material (b) may contain a coloring component other than NiO, and preferably contains an iron-containing compound. The iron-containing compound is preferably iron oxide. By including an iron-containing compound in the glass raw material (b), it is presumed that a higher NiS suppression effect can be obtained by the action of its own oxidizing power or the affinity between Fe and S. The content of the total iron oxide converted to Fe 2 O is preferably 0.05 to 40%, more preferably 1 to 10%.
[0051] (1)ガラス原料 (b)を熔融して得たガラス体  [0051] (1) Glass body obtained by melting glass raw material (b)
本発明による具体的な解決方法の第一は、予めガラス原料 (b)を熔融して得たガラ ス体を準備しておき、これを用いる方法である。ガラス原料 (b)の熔融は常法に従つ て行えばよぐ当該ガラス体は、フリットの形態で用いることが好ましい。  The first specific solution according to the present invention is a method of preparing a glass body obtained by melting the glass raw material (b) in advance and using this. The glass raw material (b) may be melted according to a conventional method. The glass body is preferably used in the form of a frit.
[0052] このガラス体の組成は、最終的なガラス物品の組成と比較して、 log 77 =4の温度が 同程度か、それより高いことが好ましい。ここで 77は、ガラス体の熔融物の粘度である [0052] The composition of the glass body preferably has a log 77 = 4 temperature of the same or higher than that of the final glass article. Where 77 is the viscosity of the glass melt
。 log r? =4の温度が低いと、特定の温度域で NiOを含むガラス体が速やかに周囲に 拡散してしまう。このため、 Ni〇の周囲を、 S2—を含まない酸化物からなるガラス成分で 取り囲むことが十分でなくなる。例えば、最終的なガラス物品がソーダライムシリカ系 ガラスである場合、 log r? =4の温度が約 1000°C以上であるガラス体とすることが好 ましい。 . When the temperature of log r? = 4 is low, the glass body containing NiO diffuses rapidly around the specified temperature range. For this reason, it is not sufficient to surround NiO with a glass component made of an oxide that does not contain S 2 —. For example, when the final glass article is soda lime silica glass, it is preferable to use a glass body having a log r? = 4 temperature of about 1000 ° C or higher.
[0053] (形状、粒径)  [0053] (Shape, particle size)
ガラス体は、球状、円筒状、扁平板状、薄片状、立方体状、糸状と様々な形状に成 形されて、用レ、られるとよレ、。特に球状、円筒状、立方体状等の比表面積の比較的 小さレ、形状に成形されることが好ましレ、。ガラス体は最終的なガラス組成物の均質性 を損なわない範囲で、なるべく大きな形状で用いられることが好ましい。  The glass body is formed into various shapes such as spherical, cylindrical, flat plate, lamellar, cubic, and thread-like, and can be used. In particular, it is preferable to be molded into a shape with a relatively small specific surface area such as a spherical shape, a cylindrical shape, or a cubic shape. The glass body is preferably used in as large a shape as possible as long as the homogeneity of the final glass composition is not impaired.
[0054] ガラス体の形状が概略粒子状である場合は、それを球体とみなして換算した場合、 平均粒径が少なくとも 1. 5mmとなるように成形することが好ましぐ平均粒径が少なく とも 5mmであること力 より好ましい。粒径とは粒子の直径のことである。ガラス体の形 状が概略薄片状である場合は、その厚みを少なくとも 0. 5mmとなるように成形するこ とが好ましい。薄片状の場合、その平均粒径は少なくとも 10mmであるとよい。ここで 、平均粒径は、例えば、篩分け法により求めることができる。 [0054] When the shape of the glass body is roughly particulate, when converted into a sphere, It is more preferable that the average particle size is at least 5 mm, and it is more preferable that the average particle size is at least 1.5 mm. The particle size is the particle diameter. When the shape of the glass body is approximately flaky, it is preferable to form the glass body so that its thickness is at least 0.5 mm. In the case of flakes, the average particle size should be at least 10 mm. Here, the average particle diameter can be determined by, for example, a sieving method.
[0055] このガラス体において、体積 V (mm3)に対する表面積 S (mm2)の割合(S/V)は、 4mm— 1以下であることが好ましい。例えば、ガラス体を球体とした場合、直径 1. 5mm では SZV=4mm— 1であり、直径 2mmでは SZV= 3 (mm— であり、直径 6mmでは 、 SZV= lmm— 1である。したがって、ガラス体の形状を球状とした場合、 SZV力 S4m m 1以下とするには、直径を 1. 5mm以上にするとよい。 In this glass body, the ratio (S / V) of the surface area S (mm 2 ) to the volume V (mm 3 ) is preferably 4 mm− 1 or less. For example, when the glass body is a sphere, SZV = 4 mm— 1 at a diameter of 1.5 mm, SZV = 3 (mm— at a diameter of 2 mm, and SZV = lmm— 1 at a diameter of 6 mm. If the body shape is spherical, the diameter should be 1.5 mm or more to achieve SZV force S4 mm 1 or less.
[0056] (2)ガラス原料 (b)の圧縮成形物  [0056] (2) Compression molding of glass raw material (b)
本発明による具体的な解決方法の第二は、予め Ni〇を含むガラス原料 (b)を圧縮 し成形した圧縮成形物を用意して、これを用いる方法である。なお、ガラスバッチの 原料を圧縮成形することは、プリケット化と呼ばれることがある。  The second concrete solution according to the present invention is a method in which a compression molded product obtained by previously compressing and molding a glass material (b) containing NiO is prepared and used. Note that compression-molding the raw material for glass batches is sometimes referred to as pricketing.
[0057] (形状)  [0057] (Shape)
圧縮成形物には、球状、円筒状、扁平板状、薄片状、立方体状、糸状と様々な形 状のものを用いてよい。特に球状、円筒状、立方体状等の比表面積の比較的小さい 形状をしたものが好ましい。  As the compression molded product, various shapes such as a spherical shape, a cylindrical shape, a flat plate shape, a flake shape, a cubic shape, and a thread shape may be used. In particular, those having a relatively small specific surface area such as a spherical shape, a cylindrical shape, and a cubic shape are preferable.
[0058] この圧縮成形物において、体積 V (mm3)に対する表面積 S (mm2)の割合(S/V) は、圧縮成形物を球体とした場合、 1mm 1以下であることが好ましい。したがって、圧 縮成形物を球体とした場合の直径は、 6mm以上が好ましレ、。 In this compression molded product, the ratio (S / V) of the surface area S (mm 2 ) to the volume V (mm 3 ) is preferably 1 mm 1 or less when the compression molded product is a sphere. Therefore, the diameter is preferably 6 mm or more when the compact is a sphere.
[0059] なお、圧縮成形物を球体とするには、静水圧にて圧縮する必要があり、これは一般 的でない。圧縮成形物を作製する場合、最も容易なのは一軸方向に加圧、成形する 方法である。その場合は円筒状、板状、薄片状、直方体状といった、加圧面が平行 平面となる形状、あるいは、打錠機のような装置と金型を用いることで、加圧面が曲面 となる扁平形状とするのが一般的である。  [0059] It should be noted that in order to make a compression molded product into a sphere, it is necessary to compress it under hydrostatic pressure, which is not common. When producing a compression molded product, the easiest method is to press and mold in a uniaxial direction. In that case, a cylindrical shape, a plate shape, a flake shape, a rectangular parallelepiped shape, etc., where the pressing surface is a parallel plane, or a flat shape where the pressing surface is curved by using a device such as a tableting machine and a mold Is generally.
[0060] (材料)  [0060] (Material)
圧縮成形物は、硝酸塩化合物や水酸化物等の素早く分解してしまう成分や、高温 で液相を形成する成分を含まない方が好ましい。圧縮成形物は、主として酸化物、 炭酸塩化合物からなる原料を用いることが好ましい。例えば、ソーダライムシリカ系ガ ラスにおいては、珪砂と、苦灰石、石灰石、ソーダ灰からなる材料群から選ばれる少 なくとも 1種以上を用いることが好ましい。特に、圧縮成形物は、実質的に、珪砂、苦 灰石、石灰石、ソーダ灰および酸化ニッケルからなるガラス原料 (b)を、圧縮して固 化したものであることがより好ましレ、。 Compressed molded products are components that decompose quickly, such as nitrate compounds and hydroxides, and high temperatures. It is preferable not to include a component that forms a liquid phase. The compression molded product is preferably a raw material mainly composed of an oxide or a carbonate compound. For example, in soda lime silica glass, it is preferable to use at least one selected from the group consisting of quartz sand, dolomite, limestone, and soda ash. In particular, it is more preferable that the compression-molded product is a material obtained by compressing and solidifying a glass raw material (b) consisting essentially of silica sand, dolomite, limestone, soda ash and nickel oxide.
[0061] また、ガラス原料 (a)および/またはガラス原料 (b)は、鉄含有化合物(例、酸化鉄 )をさらに含んでいてもよぐこの場合、鉄含有化合物を含むガラス材料が、還元剤を さらに含んでいてもよい。当該還元剤によって、ガラス物品の光学特性を調整するこ とができる。還元剤としては、例えば、カーボン等の炭素系還元剤が挙げられる。  [0061] The glass raw material (a) and / or the glass raw material (b) may further contain an iron-containing compound (eg, iron oxide). In this case, the glass material containing the iron-containing compound is reduced. It may further contain an agent. The reducing agent can adjust the optical characteristics of the glass article. Examples of the reducing agent include carbon-based reducing agents such as carbon.
[0062] ガラス原料 (a)と、ガラス体および/または圧縮成形体との混合は、公知方法に準 じて行えばよレ、。例えば、るつぼスケールならボールミルや遊星ミル等を用いて、熔 融炉スケールならプレンダーゃミキサー等を用いて混合すればょレ、。ガラス原料 (a) と、ガラス体および/または圧縮成形体の添加順序は、どちらが先であってもよいし、 同時に添加してもよい。ガラス原料 (a)と、ガラス体および/または圧縮成形体の混 合比は、ガラス体および/または圧縮成形体中の NiO含有量と必要な最終のガラス 組成によって適宜決定されるものであり、特に限定はないが、ガラス体および/また は圧縮成形体の比率が低い方が好ましい。混合比は例えば、ガラス原料 (a):ガラス 体および/または圧縮成形体の質量比として、 99. 8 : 0. 2〜80 : 20程度の範囲と すればよい。  [0062] The mixing of the glass raw material (a) with the glass body and / or the compression-molded body may be performed according to a known method. For example, use a ball mill or planetary mill for a crucible scale, and mix using a blender mixer for a melting furnace scale. Either the glass raw material (a) and the glass body and / or the compression-molded body may be added first or simultaneously. The mixing ratio of the glass raw material (a) and the glass body and / or the compression molded body is appropriately determined depending on the NiO content in the glass body and / or the compression molded body and the required final glass composition. Although there is no particular limitation, it is preferable that the ratio of the glass body and / or the compression molded body is low. The mixing ratio may be, for example, in the range of about 99.8: 0.2 to 80:20 as a mass ratio of the glass raw material (a): glass body and / or compression molded body.
[0063] 次に、上記工程で得られた混合物を熔融する工程を行う。当該工程は、公知方法 に準じて行えばよレ、。例えば、ルツボ中(特に白金ノレッボ中)で、電気炉を用いて、混 合物を 1350〜: 1650°Cで 2〜6時間加熱して熔解すればよい。また例えば、一般的 ガラス溶解炉 (シーメンス炉)においては、混合物を炉内に滞留させて 1350〜: 1650 °Cで 50〜: 100時間程度加熱し、熔解すればよい。  [0063] Next, a step of melting the mixture obtained in the above step is performed. The process may be performed according to a known method. For example, the mixture may be melted by heating at 1350 to: 1650 ° C. for 2 to 6 hours using an electric furnace in a crucible (particularly in a platinum norevo). Further, for example, in a general glass melting furnace (Siemens furnace), the mixture may be retained in the furnace and heated at 1350 to 1650 ° C. for about 50 to 100 hours for melting.
[0064] 次いで、熔融したガラスを、工業生産では、フロート法、ロールアウト法等の公知方 法に準じて成形すれば、ガラス物品を得ることができる。  [0064] Next, in an industrial production, a glass article can be obtained by shaping the molten glass according to a known method such as a float method or a roll-out method.
[0065] 得られたガラス物品を加熱し、急冷して当該ガラス物品を強化する工程をさらに行 つてもよい。当該工程は、公知方法に準じて行えばよぐ例えば、ガラスの軟化点付 近(ソーダライム系ガラスであれば 650°C程度)までガラス物品を加熱し、これに圧縮 空気を吹き付けてガラス表面を急冷して行えばよい。 [0065] The step of heating and quenching the obtained glass article to strengthen the glass article is further performed. May be. The process may be performed according to a known method. For example, the glass article is heated to the vicinity of the softening point of glass (about 650 ° C for soda-lime glass), and compressed air is sprayed onto the glass surface. Can be quickly cooled.
[0066] (ガラス物品の組成) [0066] (Composition of glass article)
本発明のガラス物品の製造方法において、製造されるガラス物品は、基本的に着 色成分として Ni〇を含むソーダライムシリカガラスであることが好ましレ、。質量%で表 示して、具体的な基本ガラス組成としては、  In the method for producing a glass article of the present invention, the glass article to be produced is preferably soda lime silica glass containing NiO as a coloring component. As a specific basic glass composition expressed in mass%,
SiO 65〜80%,  SiO 65-80%,
Al O 0〜 5%,  Al O 0-5%,
MgO 0〜: 10%,  MgO 0 ~: 10%,
CaO 5~ 15%,  CaO 5 ~ 15%,
MgO + CaO 5〜: 15%,  MgO + CaO 5 ~: 15%,
Na O 10〜: 18%,  Na O 10 ~: 18%,
K O 0〜 5%,  K O 0-5%,
Na O + K O 10〜20%,  Na O + K O 10 ~ 20%,
B〇 0〜 5%  B 0-5%
を含む組成が例示でき、着色成分である NiOを 0. 03-2. 0%含むことが好ましい。  And a composition containing NiO as a coloring component is preferably included.
[0067] さらにこのガラス物品は、その色調などの光学特性を調整するために、 NiO以外の 着色成分を含んでもよぐその種類は特に限定されない。酸化鉄はもちろんのこと、 T i〇や CeO , CoO, Seなどを含んでもよレヽ。 [0067] Further, the type of the glass article that may contain a coloring component other than NiO is not particularly limited in order to adjust optical properties such as color tone. Not only iron oxide but also TiO, CeO, CoO, Se, etc. may be included.
[0068] 当該着色成分は、好ましくは具体的に、  [0068] The coloring component is preferably specifically,
T-Fe O 0を超え 1. 4%まで、  T-FeO over 0, up to 1.4%,
(T-Fe Oは、 Fe Oに換算した全酸化鉄である)  (T-Fe 2 O is all iron oxide converted to Fe 2 O)
Ti〇 0を超え 1 %まで、  Over TiOO 0 to 1%,
CeO 0を超え 2%まで、  CeO over 0 up to 2%,
CoO 0を超え 0. 03%まで、  CoO over 0 up to 0.03%,
Se 0を超え 0. 003%まで、  Se 0 over 0.03%,
力 選ばれる少なくとも 1種である。 [0069] 当該着色成分は、 Power At least one selected. [0069] The coloring component is
T-Fe O 0.:!〜 1 · 4%,  T-Fe O 0.:!~ 1 · 4%,
(T-Fe Oは、 Fe Oに換算した全酸化鉄である),  (T-Fe 2 O is all iron oxide converted to Fe 2 O),
T-Fe Oに対する Fe〇の割合(FeO比)が、 0. 15〜0. 5の範囲にあり, The ratio of FeO to T-FeO (FeO ratio) is in the range of 0.15 to 0.5,
Ti〇 0〜1 %, Ti〇 0 to 1%,
CeO 0〜2%,  CeO 0-2%,
CoO 0. 01〜0. 03%,  CoO 0.01-0.03%,
Se 0〜0. 003%,  Se 0-0.003%,
であることがより好ましい (含有率の範囲が 0%を含む成分は、必要により添加すれば よい成分である)。このような着色成分とすると、紫外線や赤外線の吸収に優れ、可視 光透過率が比較的小さいガラス物品を得ることができる。  (A component containing 0% in the content range is a component that may be added if necessary). When such a coloring component is used, a glass article having excellent absorption of ultraviolet rays and infrared rays and having a relatively small visible light transmittance can be obtained.
[0070] 本発明の製造方法により製造されるガラス物品が酸化鉄を含む場合、 FeO比が 0.  [0070] When the glass article produced by the production method of the present invention contains iron oxide, the FeO ratio is 0.
20〜0· 30の範囲内であること力 S好ましく、 0· 21〜0· 27の範囲内であること力 Sより 好ましい。  The force S is preferably in the range of 20 to 0 · 30, more preferably the force S is in the range of 0 · 21 to 0 · 27.
[0071] 本発明のガラスの製造方法によれば、 NiSの生成を極力減少させたガラス物品を 提供すること力 Sできる。  [0071] According to the glass manufacturing method of the present invention, it is possible to provide a glass article in which the generation of NiS is reduced as much as possible.
[0072] また、従来のガラスの製造方法における NiS対策では、硫黄含有化合物を含む清 澄剤や還元剤を添加する割合が制限されていた。しかし、本発明のガラスの製造方 法によれば、 NiS対策のために、芒硝などの硫黄含有化合物を含む清澄剤を添カロ する割合が制限されない。さらに、還元剤を添加する割合も制限されない。そのため 、ガラスの酸化還元状態を制御する清澄剤や還元剤を添加する割合を、 NiS対策と は独立に調整することが可能となった。この結果、 NiSの生成を極力減少させつつ、 ガラスの泡品質を保ったり、酸化還元状態を制御することによって、容易にガラスの 光学特性を設計したりすることができる。  [0072] Further, in the NiS countermeasure in the conventional glass manufacturing method, the ratio of adding a clarifier and a reducing agent containing a sulfur-containing compound is limited. However, according to the method for producing glass of the present invention, the ratio of adding a fining agent containing a sulfur-containing compound such as mirabilite is not limited for NiS countermeasures. Further, the ratio of adding the reducing agent is not limited. For this reason, it became possible to adjust the ratio of adding a refining agent or a reducing agent that controls the redox state of the glass independently of NiS countermeasures. As a result, the optical properties of the glass can be easily designed by reducing the NiS generation as much as possible, maintaining the bubble quality of the glass, and controlling the redox state.
[0073] 本発明の製造方法により得られるガラス物品は、熱強化用素板として有用であり、 自動車用窓ガラス、建築用窓ガラス等に特に好適である。  [0073] The glass article obtained by the production method of the present invention is useful as a base plate for heat strengthening, and is particularly suitable for automobile window glass, architectural window glass, and the like.
[0074] 以下、本発明のガラス物品について、実施例を挙げて詳細に説明するが、本発明 は、これら実施例に何ら制限されるものではない。 [0075] (1)ガラス原料 (b)を熔融して得たガラス体の製造 Hereinafter, the glass article of the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. [0075] (1) Production of glass body obtained by melting glass raw material (b)
当該ガラス体は以下の手順に従って作製した。ガラス原料 (b)の材料として、珪砂, 苦灰石,石灰石およびソーダ灰を、着色成分材料として、酸化ニッケノレを用いた。上 述の材料を所定の割合で混合し、ガラス体用バッチを調合した。  The glass body was produced according to the following procedure. Silica sand, dolomite, limestone, and soda ash were used as the glass raw material (b), and nickel oxide was used as the coloring component material. The above materials were mixed at a predetermined ratio to prepare a glass body batch.
[0076] 調合したバッチは、白金ルツボを用いて、 1450〜: 1550°Cに設定した電気炉で 4時 間保持して、熔融した。その後、ガラス融液から、上述した種々の形状、例えば薄片 状や球状 (マーブル)など、所望の形状および大きさのガラス体を得た。  [0076] The prepared batch was melted by holding it in an electric furnace set at 1450 to 1550 ° C for 4 hours using a platinum crucible. Thereafter, a glass body having a desired shape and size such as the above-described various shapes, for example, flake shape and spherical shape (marble), was obtained from the glass melt.
[0077] (2)ガラス原料 (b)の圧縮成形物の製造  [0077] (2) Production of compression molded product of glass raw material (b)
ガラス原料 (b)の圧縮成形物は、以下の手順に従って作製した。材料として、珪砂 ,苦灰石,石灰石およびソーダ灰を、着色成分材料として、酸化ニッケルおよび酸化 鉄を適宜用いた。上述の材料を所定の割合で混合し、適量を所定の型枠に投入し、 プレス機で 20秒間およそ 4〜20 [ X 104N] (4〜20t)で押圧し、所望の形状に成形 した。型枠には、 <i) 25mm X 3mm厚, φ 16mm X 5mm厚の形状に塩化ビニルパイ プを切断したものを、 φ 70mm X 10mm厚の鉄製ダイスで挟んで用いた。  A compression molded product of the glass raw material (b) was produced according to the following procedure. As materials, quartz sand, dolomite, limestone and soda ash were used, and nickel oxide and iron oxide were appropriately used as coloring component materials. The above-mentioned materials were mixed at a predetermined ratio, an appropriate amount was put into a predetermined mold, and pressed with a press machine for about 4 to 20 [X104N] (4 to 20 t) for 20 seconds to be molded into a desired shape. <I) A 25mm x 3mm thick, φ16mm x 5mm thick vinyl chloride pipe cut into a formwork was sandwiched between φ70mm x 10mm thick iron dies.
[0078] (ガラス板の製造)  [0078] (Manufacture of glass plate)
ガラス物品の一例として、ガラス板を以下の手順に従って作製した。基本ガラス成 分の原料として、珪砂,苦灰石,石灰石,ソーダ灰,芒硝および炭酸カリウムを用い た。着色成分として、酸化ニッケル,酸化第二鉄,酸化チタン,酸化セリウム,酸化コ バルトおよび金属セレンを用い、さらに炭素系還元剤を用いた。酸化ニッケル原料と しては、前記ガラス体または前記圧縮成形物を用いた。上述の原料を、所定の割合 で混合し、ガラスバッチを調合した。  As an example of a glass article, a glass plate was produced according to the following procedure. Silica sand, dolomite, limestone, soda ash, mirabilite, and potassium carbonate were used as raw materials for the basic glass component. As coloring components, nickel oxide, ferric oxide, titanium oxide, cerium oxide, cobalt oxide and metal selenium were used, and a carbon-based reducing agent was used. The glass body or the compression molded product was used as the nickel oxide raw material. The above raw materials were mixed at a predetermined ratio to prepare a glass batch.
[0079] なお、各実施例における Fe〇比は、炭素系還元剤(カーボン粉末等)によって制御 した。  [0079] The FeO ratio in each example was controlled by a carbon-based reducing agent (carbon powder or the like).
[0080] また、粉末の酸化ニッケル原料を用いたガラスバッチも調合し、ガラス板を作製し、 比較例とした。  [0080] A glass batch using a powdered nickel oxide raw material was also prepared to prepare a glass plate, which was used as a comparative example.
[0081] 調合したバッチは、白金ルツボを用いて、 1450°Cに設定した電気炉で 4時間保持 し、熔融および清澄した。その後、ガラス融液を炉外で鉄板上に、厚さが約 6mmにな るように流し出し、冷却固化してガラス板を得た。このガラス板には引き続いて徐冷操 作を施した。徐冷操作は、このガラス体を 650°Cに設定した別の電気炉の中で 30分 保持した後、その電気炉の電源を切り、室温まで冷却することによって行った。 [0081] The prepared batch was kept in an electric furnace set at 1450 ° C for 4 hours using a platinum crucible, and melted and refined. Thereafter, the glass melt was poured out on the iron plate outside the furnace to a thickness of about 6 mm, and cooled and solidified to obtain a glass plate. This glass plate was then slowly cooled. Made the work. The slow cooling operation was performed by holding the glass body in another electric furnace set at 650 ° C for 30 minutes, and then turning off the electric furnace and cooling it to room temperature.
[0082] この徐冷操作を経たガラス板を光学顕微鏡 (倍率: 10〜 100倍)で観察し、ガラス 体中に存在する NiSの個数を計測した。観察後のガラス板を、通常のガラス加工技 術を適用して切断、研削および光学研磨し、 1辺が約 50mm,厚み 3. 1mmの略正 方体であって、両側の主平面が光学研磨されたガラス板を作製した。  [0082] The glass plate after the slow cooling operation was observed with an optical microscope (magnification: 10 to 100 times), and the number of NiS present in the glass body was measured. The observed glass plate is cut, ground, and optically polished by applying normal glass processing technology. It is a roughly rectangular parallelepiped with a side of about 50 mm and a thickness of 3.1 mm. A polished glass plate was produced.
[0083] (ガラス板組成)  [0083] (Glass plate composition)
作製したガラス板のガラス組成を表 1に示した。ガラス板組成 Aと Bとは、着色成分 を除くガラス組成 (基本成分)はほぼ同じであるが、着色成分の含有率の多少により、 基本成分に含まれる各成分の含有率が異なっている。各成分の含有率は、 X線蛍光 分析法,化学分析法または炎光分析法など、その成分に適した汎用の分析方法を 用いた、定量分析値である。なお、表中の含有率は全て質量%表示であり、分析結 果の丸め誤差により、その合計が 100%とはなっていない。  Table 1 shows the glass composition of the produced glass plate. Glass plate compositions A and B have almost the same glass composition (basic component) except for the coloring component, but the content of each component contained in the basic component differs depending on the content of the coloring component. The content of each component is a quantitative analysis value using a general-purpose analysis method suitable for that component, such as X-ray fluorescence analysis, chemical analysis, or flame analysis. All contents in the table are expressed in mass%, and the total is not 100% due to rounding errors in the analysis results.
[0084] [表 1]  [0084] [Table 1]
Figure imgf000017_0001
ガラス板組成 Aと Bとでは、着色成分が異なっており、 Ni〇や Co〇の含有率は同程 度であり、 Fe〇の含有率が大きく異なっている。さらに、ガラス板組成 Aは Ce〇を含 んでおり、ガラス板組成 Bは Seを含んでいる。 [0086] ( 1 ) Ni〇を含むガラス体を用レ、た実施例
Figure imgf000017_0001
The glass plate compositions A and B have different coloring components, the content of NiO and CoO is about the same, and the content of FeO differs greatly. Furthermore, glass plate composition A contains CeO, and glass plate composition B contains Se. [0086] (1) Example using glass body containing NiO
実施例 F1〜F23は、いずれも酸化ニッケル源として、酸化ニッケルを含むガラス体 を用いて、ガラス物品を製造した例である。各実施例に用いたガラス体の組成を表 2 Examples F1 to F23 are examples in which a glass article was manufactured using a glass body containing nickel oxide as a nickel oxide source. Table 2 shows the composition of the glass body used in each example.
〜表 4に示した。 ~ Shown in Table 4.
[0087] [表 2] [0087] [Table 2]
Figure imgf000018_0001
Figure imgf000018_0001
[0088] 表 2に示した実施例 F1〜F4は、ガラス体中の Ni〇の含有率を変化させたものであ る。最終的なガラス物品における Ni〇含有率力 表 1のガラス板組成 Bとなるように、 ガラス体の割合を調整した。また表 2には、ガラス物品 100g当たりの NiS個数と FeO 比を示した。 [0088] Examples F1 to F4 shown in Table 2 were obtained by changing the content of NiO in the glass body. NiO content rate in the final glass article The glass body ratio was adjusted so that the glass plate composition B in Table 1 was obtained. Table 2 shows the number of NiS and FeO ratio per 100g of glass articles.
[0089] 実施例 F1〜F4の FeO比は、 17. 5〜: 18. 9%であった。後述するように、酸化ニッ ケル粉末をニッケル源として用い、実施例 F1〜F4とほぼ同じ Fe〇比(18. 7%)を有 する比較例 R14を作製した。この R14における NiS個数は、約 42個/ 100gであつ た。これに比べて、実施例 F1〜F4における NiS個数は、約 18〜約 33個/ 100gで あり、 R14のそれより、少なくすることができた。このうち、実施例 F1〜F3は、 NiOを 1 〜7%含むガラス体を用いて作製したガラス物品であり、ガラス中の NiS個数を、 NiO を 12%含むガラス体を用いた実施例 F4より、少なくすることができた。  [0089] The FeO ratio of Examples F1 to F4 was 17.5 to 18.9%. As will be described later, a comparative example R14 having the same FeO ratio (18.7%) as in Examples F1 to F4 was produced using nickel oxide powder as a nickel source. The number of NiS in R14 was about 42 / 100g. Compared to this, the number of NiS in Examples F1 to F4 was about 18 to about 33 pieces / 100 g, which was smaller than that of R14. Of these, Examples F1 to F3 are glass articles prepared using a glass body containing 1 to 7% NiO, and the number of NiS in the glass is from Example F4 using a glass body containing 12% NiO. I was able to reduce it.
[0090] [表 3]
Figure imgf000019_0001
[0090] [Table 3]
Figure imgf000019_0001
[0091] 表 3に示した実施例 F5〜F12は、ガラス体中における Ni〇の含有率を 6%と一定と し、 SiOの含有率とともに、 Na Oの含有率と CaOの含有率とを変化させたものであ[0091] In Examples F5 to F12 shown in Table 3, the content of NiO in the glass body is constant at 6%, and the content of NaO and the content of CaO are included together with the content of SiO. Something that has changed
2 2 twenty two
る。最終的なガラス物品における NiO含有率が表 1のガラス板 Aとなるように、ガラス 体の割合を調整した。また表 3には、ガラス物品 100g当たりの NiS個数を示した。  The The ratio of the glass body was adjusted so that the NiO content in the final glass article was the glass plate A in Table 1. Table 3 shows the number of NiS per 100g of glass articles.
[0092] 実施例 F5〜F12の FeO比は 20〜23%であった。後述するように、実施例 F5〜F 12とほぼ同じ FeO比(23%)を有する比較例 R10における NiS個数は、約 19個 /1 00gであった。これに比べて、実施例 F5〜F12における NiS個数は、約 2〜約 16個 /100gであり、 R10のそれより、少なくすることができた。  [0092] The FeO ratio of Examples F5 to F12 was 20 to 23%. As will be described later, the number of NiS in Comparative Example R10 having the same FeO ratio (23%) as Examples F5 to F12 was about 19/100 g. In comparison with this, the number of NiS in Examples F5 to F12 was about 2 to about 16 pieces / 100 g, which was smaller than that of R10.
[0093] このうち、実施例 F5, F7, Fl l , F12は、ガラス体中の SiO力 70〜80%の範囲内  Of these, Examples F5, F7, Fl l, and F12 are within the range of 70 to 80% of SiO force in the glass body.
2  2
とした例であり、一方、 F6, F8〜F10は、ガラス体中の Si〇力 ¾0%または 60%であ  On the other hand, F6, F8 to F10 are Si0 forces ¾0% or 60% in the glass body.
2  2
る。両者を比較すると、実施例 F5, F7, Fl l , F12の方力 ガラス物品中の NiS個数 を、より少なくすることができた。 The Comparing the two, the direction force of Examples F5, F7, Fl l and F12 The number of NiS in the glass article Was able to be reduced.
[0094] [表 4] [0094] [Table 4]
Figure imgf000020_0001
Figure imgf000020_0001
[0095] 表 4に示した、実施例 F13〜F16と実施例 F17〜F23とは、それぞれガラス体のガ ラス組成を同一として、ガラス体の平均粒径を変化させたものである。最終的なガラス 物品における NiO含有率が表 1のガラス板組成 Aとなるように、ガラス体の割合を調 整した。また表 4には、ガラス物品 100g当たりの NiS個数と、ガラス体の平均粒径を 示した。 [0095] Examples F13 to F16 and Examples F17 to F23 shown in Table 4 are obtained by changing the average particle size of the glass body with the same glass composition of the glass body. The proportion of the glass body was adjusted so that the NiO content in the final glass article was the glass plate composition A in Table 1. Table 4 also shows the number of NiS per 100g of glass articles and the average particle size of the glass body.
[0096] 実施例 F13〜F16と、実施例 F17〜F23の FeO比は、 20〜23%であった。これら とほぼ同じ Fe〇比を有する比較例 R10における NiS個数である約 19個/ 100gと比 較すると、実施例 F13〜F16と、実施例 F17〜F23とにおける NiS個数は、それぞれ 約 0· 4〜約 13個/ 100gと、約 0· 4〜約 10個/ 100gであり、 R10のそれより、少な くすることができた。  [0096] The FeO ratio of Examples F13 to F16 and Examples F17 to F23 was 20 to 23%. When compared with the NiS number of about 19/100 g in Comparative Example R10 having the same FeO ratio as these, the number of NiS in Examples F13 to F16 and Examples F17 to F23 is about 0.4 It was about 13 / 100g and about 0.4 · about 10 / 100g, which was less than that of R10.
[0097] 実施例 F14〜F17, F20〜F23のガラス物品は、いずれの平均粒径も 1. 5mm以 上と、好ましい平均粒径を持つガラス物品である。平均粒径が 1. 5mm未満であるガ ラス体を用いて作製したガラス物品と比較して、ガラス物品中の NiS個数を、より少な くすることができた。 [0097] The glass articles of Examples F14 to F17 and F20 to F23 had an average particle diameter of 1.5 mm or less. A glass article with a preferred average particle size. The number of NiS in the glass article could be reduced as compared with a glass article produced using a glass body having an average particle size of less than 1.5 mm.
[0098] 図 1に、ガラス体の平均粒径と、 lOOg当たりの NiSの個数との関係を示した。図 1か ら明らかなように、平均粒径を大きくすると、 NiSの個数が急に減少していることが分 力、る。ガラス体における SiOの含有率が 70%と 80%のいずれの場合も、同様の傾向  [0098] Fig. 1 shows the relationship between the average particle size of the glass body and the number of NiS per lOOg. As is clear from Fig. 1, it can be seen that the number of NiS suddenly decreases when the average particle size is increased. The same tendency when the SiO content in the glass body is 70% or 80%
2  2
を示していた。  Was showing.
[0099] (2) Ni〇を含むガラス原料 (b)の圧縮成形物を用いた実施例  [0099] (2) Example using compression molded product of glass raw material (b) containing NiO
実施例 Bl〜B11は、レ、ずれも酸化ニッケノレを含むガラス原料 (b)の圧縮成形物を 酸化ニッケル源として用いて、ガラス物品を作製した例である。各実施例に用いた圧 縮成形物の組成を表 5と表 6に示した。  Examples Bl to B11 are examples in which a glass article was prepared using a compression molded product of glass raw material (b) containing nickel oxide and nickel oxide as a nickel oxide source. Tables 5 and 6 show the composition of the compression molded product used in each example.
[0100] この圧縮成形物は、本質的に、珪砂、苦灰石、石灰石、ソーダ灰および酸化ニッケ ノレからなるガラス原料 (b)を、圧縮し固化したものである。 [0100] This compression-molded product is essentially a glass raw material (b) made of silica sand, dolomite, limestone, soda ash, and nickel oxide, compressed and solidified.
[0101] [表 5] [0101] [Table 5]
Figure imgf000021_0001
Figure imgf000021_0001
[0102] 表 5に示した実施例のうち、実施例 B1〜B3は、圧縮成形物中に鉄源を含まないも のである。最終的なガラス物品における NiO含有率が表 1のガラス板組成 Aとなるよう に、圧縮成形物の割合を調整した。また表 5には、ガラス物品 lOOg当たりの NiS個数 と Fe〇比を示した。 [0102] Of the examples shown in Table 5, Examples B1 to B3 do not contain an iron source in the compression molded product. The ratio of the compression molded product was adjusted so that the NiO content in the final glass article was the glass plate composition A in Table 1. Table 5 also shows the number of NiS per glass article lOOg and the ratio of FeO.
[0103] 上述した比較例 R10における NiS個数である約 19個/ lOOgと比較すると、実施例 Bl, B2における NiS個数は、約 8個/ lOOgと約 9個/ lOOgであり、 R10のそれより 、少なくすることができた。 [0103] Compared to the NiS number of about 19 / lOOg in Comparative Example R10 described above, the number of NiS in Examples Bl and B2 is about 8 / lOOg and about 9 / lOOg, which is higher than that of R10. I was able to reduce it.
[0104] 実施例 B3は、圧縮成形物中に 5質量%の酸化セリウムを含ませたものであり、 B3 の圧縮成形物を用レ、て作製したガラス物品の NiS個数は、 B 1や B2よりさらに少なく すること力 Sできた。  [0104] In Example B3, 5% by mass of cerium oxide was contained in the compression molded product, and the number of NiS of the glass article produced by using the compression molded product of B3 was B 1 or B2. I was able to make it even less.
[0105] 表 5に示した実施例のうち、実施例 B4 B8は、圧縮成形物中に鉄源として酸化鉄 を含ませたものである。 B4 B8の圧縮成形物を用いて作製したガラス物品の NiS個 数は、 Bl , B2より、さらに少なくすることができた。また、圧縮成形物中に含まれる酸 化鉄が多くなるほど、 NiS個数も減少する傾向が見られた。  [0105] Of the examples shown in Table 5, Examples B4 and B8 are obtained by including iron oxide as an iron source in the compression molded product. The number of NiS in glass articles made using B4 and B8 compression moldings could be made even smaller than Bl and B2. In addition, the number of NiS tended to decrease as the amount of iron oxide contained in the compression-molded product increased.
[0106] 圧縮成形物を用いた実施例と後述する比較例とにおいて、 Fe〇比とガラス物品 10 Og当たりの NiSの個数との関係を、図 2に示した。図 2から明らかなように、この実施 例と比較例では、 FeO比の増加に対する NiSの個数の増加の割合、すなわち近似 直線の傾きに大きな差が見られた。すなわち、比較例では、 Fe〇比が大きくなると、 NiSの個数も大きく増えている力 これに比べて実施例では、増加の割合が小さいこ とが分かった。  [0106] FIG. 2 shows the relationship between the FeO ratio and the number of NiS per 10 Og of the glass article in the example using the compression molded product and the comparative example described later. As is clear from Fig. 2, there was a large difference in the ratio of the increase in the number of NiS to the increase in the FeO ratio, ie, the slope of the approximate line, in this example and the comparative example. That is, in the comparative example, as the FeO ratio is increased, the number of NiS is greatly increased. In contrast, it was found that the rate of increase was smaller in the example.
[0107] [表 6]  [0107] [Table 6]
Figure imgf000022_0001
表 6に示した実施例 B9 B11の圧縮成形物は、その体積 V (mm3)に対する表面 積 S (mm2)の割合(S/V) (mm— が、それぞれ 1. 2と 0. 8となるように成形したもの である。 φ 25mm X 2mm厚に成形した圧縮成形物は、 SZV= 1. 2であり、 φ 16m m X 4mm厚のものでは、 S/V=0. 8であった。また表 6には、ガラス物品 100g当た りの NiS個数と Fe〇比、さらに S/V値を示した。
Figure imgf000022_0001
The compression moldings of Examples B9 and B11 shown in Table 6 have a ratio (S / V) (mm— of the surface area S (mm 2 ) to the volume V (mm 3 ) of 1.2 and 0.8, respectively. The compression molded product molded to φ25mm x 2mm thickness is SZV = 1.2, and the one with φ16mm x 4mm thickness is S / V = 0.8. Table 6 shows 100g of glass articles. The number of NiS, FeO ratio, and S / V value were also shown.
[0109] B9〜B11のいずれの場合も、 S/V= l . 2のものに比べ、 S/V=0. 8の方が、よ り NiS個数が少なくなつた。なお、 B10は圧縮成形物中の酸化ニッケル含有率を B9 の 2倍としたものであり、 B9よりそれぞれ NiS個数は少なくなつた。  [0109] In any of B9 to B11, the number of NiS was smaller when S / V = 0.8 than when S / V = 1.2. B10 has a nickel oxide content in the compression-molded product that is twice that of B9, and the number of NiS is less than that of B9.
[0110] (比較例)  [0110] (Comparative example)
比較例 R1〜R11のガラス物品は、いずれも粉末の酸化ニッケル原料を酸化ニッケ ノレ源として用レ、、実施例 1と同じ原料を一度に混合して得たガラスバッチを熔融して ガラス板を作製した例である。比較例 R1〜R11では、カーボン粉末により FeO比を 変化させており、その他は同じである。各比較例のガラス板のガラス組成を表 7と表 8 に示した。  Comparative Examples The glass articles of R1 to R11 were prepared by using a powdered nickel oxide raw material as a nickel oxide source, and melting a glass batch obtained by mixing the same raw materials as in Example 1 at one time. This is a manufactured example. In Comparative Examples R1 to R11, the FeO ratio is changed by the carbon powder, and the others are the same. Tables 7 and 8 show the glass compositions of the glass plates of the comparative examples.
[0111] [表 7] [0111] [Table 7]
[0112] [ [0112] [
Figure imgf000023_0001
Figure imgf000023_0001
[0113] 表 7に示した比較例 Rl〜R11はガラス板組成 Aの場合であり、表 8に示した比較例 R12〜R15はガラス板組成 Bの場合である。各比較例のガラス物品中に見られる Ni S個数は、ガラス物品の FeO比に比例して大きく増加した。図 3はガラス板組成 Aの 場合であり、図 4はガラス板組成 Bの場合である。ガラス板組成 Bの場合、ガラス板組 成 Aの場合に比べて、 Fe〇比の増加による NiS個数の増加の割合が大きレ、。 [0113] Comparative examples Rl to R11 shown in Table 7 are for the glass plate composition A, and comparative examples R12 to R15 shown in Table 8 are for the glass plate composition B. The number of Ni S found in the glass articles of each comparative example greatly increased in proportion to the FeO ratio of the glass articles. Fig. 3 shows the case of glass plate composition A, and Fig. 4 shows the case of glass plate composition B. In the case of glass plate composition B, the rate of increase in the number of NiS due to the increase in FeO ratio is larger than in the case of glass plate composition A.
[0114] 以上の実施例の結果から、ニッケル含有化合物を含み硫黄含有化合物を実質的 に含まなレ、ガラス体や圧縮成形物を、硫黄含有化合物を含みニッケル含有化合物を 実質的に含まないガラス原料 (a)に混合して熔融することで、得られるガラス物品に おける NiSの生成を低減できることが明らかとなった。また、ニッケル含有化合物を含 み硫黄含有化合物を実質的に含まないフリットや圧縮成形物を、ガラス原料 (a)に同 時に含ませた場合も、 NiSの生成が抑えられていることを確認した。 [0114] From the results of the above examples, the sulfur-containing compound including the nickel-containing compound was substantially reduced. NiS is produced in the resulting glass article by mixing and melting the glass body and compression molding contained in the glass raw material (a) containing a sulfur-containing compound and substantially free of a nickel-containing compound. It became clear that it can be reduced. It was also confirmed that the formation of NiS was suppressed when frit or compression-molded material containing a nickel-containing compound and substantially not containing a sulfur-containing compound was included in the glass raw material (a) at the same time. .
[0115] なお、以上の実施例や比較例では、製造するガラス物品の組成は 1種類のみであ つたが、本発明の製造方法は、対象となるガラス物品が、 NiOを含むソーダライムシリ 力ガラス組成であれば、その製造に適用可能であり、他のガラス組成に対しても適用 し得る。 [0115] In the above examples and comparative examples, the composition of the glass article to be produced is only one type. However, the production method of the present invention uses the soda lime silli If it is a glass composition, it can be applied to its production and can be applied to other glass compositions.
産業上の利用可能性  Industrial applicability
[0116] 本発明によるガラス製造方法は、 NiO組成を含むガラス物品において、 NiSを減少 させることができる。本発明は、特に、フロート法やロールアウト法によって、板状に成 形されるガラス板の製造に好適に利用できる。  [0116] The glass production method according to the present invention can reduce NiS in a glass article containing a NiO composition. The present invention can be suitably used particularly for the production of a glass plate formed into a plate shape by a float method or a roll-out method.
[0117] さらに、本発明によるガラス製造方法は、 NiS対策のために、芒硝などの硫黄含有 化合物を含む清澄剤を添加する割合が制限されず、さらに、還元剤を添加する割合 も制限されない。そのため、ガラスの酸化還元状態を制御する清澄剤や還元剤を添 加する割合を、 NiS対策とは独立に調整することができる。したがって、 Fe〇を所定 の範囲とし Ni〇組成を含むガラス物品で、ガラスの泡品質と酸化還元状態に影響を 及ぼすことなぐ NiSを減少させることができる。このようにして製造されたガラス板は 、熱強化用素板として好適に利用できる。  [0117] Furthermore, in the glass manufacturing method according to the present invention, the ratio of adding a refining agent containing a sulfur-containing compound such as mirabilite is not limited, and the ratio of adding a reducing agent is not limited for NiS countermeasures. Therefore, the ratio of the fining agent and reducing agent added to control the redox state of the glass can be adjusted independently of NiS countermeasures. Therefore, it is possible to reduce NiS without affecting the bubble quality and redox state of glass in a glass article that contains FeO within a predetermined range and includes a NiO composition. Thus, the manufactured glass plate can be utilized suitably as a base plate for heat strengthening.

Claims

請求の範囲 The scope of the claims
[1] 実質的にニッケル含有化合物を含まず、かつ硫黄含有化合物を含むガラス原料 (a )と、  [1] A glass raw material (a) substantially free of a nickel-containing compound and containing a sulfur-containing compound;
実質的に硫黄含有化合物を含まず、かつニッケル含有化合物を含むガラス原料 (b )を熔融して得たガラス体および Zまたは当該ガラス原料 (b)の圧縮成形物と、を混 合する工程、および  A step of mixing a glass body obtained by melting a glass raw material (b) substantially free of a sulfur-containing compound and containing a nickel-containing compound, and a compression molded product of Z or the glass raw material (b), and
得られた混合物を熔融する工程を含むガラス物品の製造方法。  The manufacturing method of the glass article including the process of melting the obtained mixture.
[2] 前記ガラス原料 (b)が、酸化物換算で質量%で表して、 [2] The glass raw material (b) is expressed in mass% in terms of oxide,
SiO 60〜80%,  SiO 60-80%,
2  2
Al O 0〜 5%,  Al O 0-5%,
2 3  twenty three
MgO 0〜: 10%,  MgO 0 ~: 10%,
CaO 0〜: 15%,  CaO 0 ~: 15%,
MgO + CaO 5〜: 15%,  MgO + CaO 5 ~: 15%,
Na O 10〜: 18%,  Na O 10 ~: 18%,
2  2
K O 0〜 5%,  K O 0-5%,
2  2
Na O + K O 10〜20%,  Na O + K O 10 ~ 20%,
2 2  twenty two
NiO 1〜: 15%  NiO 1 ~: 15%
を含む組成を有する請求項 1に記載のガラス物品の製造方法。  The method for producing a glass article according to claim 1, which has a composition containing
[3] 前記組成において、前記 Si〇の含有率が、質量%で表して、 65〜80%である請 [3] In the composition, the content of SiO is 65% to 80% in mass%.
2  2
求項 2に記載のガラス物品の製造方法。  The method for producing a glass article according to claim 2.
[4] 前記組成がさらに、 Fe Oに換算した全酸化鉄を、質量%で表して、 0. 05-40% [4] The total iron oxide converted into Fe 2 O by the above composition is expressed by mass%, and 0.05-40%
2 3  twenty three
含む請求項 2に記載のガラス物品の製造方法。  The manufacturing method of the glass article of Claim 2 containing.
[5] 前記組成がさらに、 Fe Oに換算した全酸化鉄を、質量%で表して、 1〜: 10%含む [5] The composition further includes 1 to 10% of the total iron oxide converted to Fe 2 O in mass%.
2 3  twenty three
請求項 2に記載のガラス物品の製造方法。  The method for producing a glass article according to claim 2.
[6] 前記混合物に前記ガラス体が含まれ、 [6] The glass body is included in the mixture,
前記ガラス体が粒子状であり、その平均粒径が少なくとも 1. 5mmである請求項 1に 記載のガラス物品の製造方法。  The method for producing a glass article according to claim 1, wherein the glass body is in the form of particles and has an average particle diameter of at least 1.5 mm.
[7] 前記混合物に前記ガラス体が含まれ、 前記ガラス体が薄片状であり、その厚みが少なくとも 0. 5mm、その平均粒径が少 なくとも 10mmである請求項 1に記載のガラス物品の製造方法。 [7] The glass body is included in the mixture, 2. The method for producing a glass article according to claim 1, wherein the glass body has a flaky shape, has a thickness of at least 0.5 mm, and an average particle size of at least 10 mm.
[8] 前記混合物に前記ガラス体が含まれ、 [8] The glass body is included in the mixture,
前記ガラス体のガラス原料 (b)の組成において、前記 Ni〇の含有率力 質量%で 表して、 1〜7%である請求項 2に記載のガラス物品の製造方法。  3. The method for producing a glass article according to claim 2, wherein the composition of the glass raw material (b) of the glass body is 1 to 7% in terms of content power of NiO.
[9] 前記混合物に前記圧縮成形物が含まれ、 [9] The compression molding is included in the mixture,
前記圧縮成形物が、実質的に、珪砂、苦灰石、石灰石、ソーダ灰および酸化ニッケ ノレからなるガラス原料 (b)を、圧縮して固化したものである請求項 1に記載のガラス物 品の製造方法。  The glass article according to claim 1, wherein the compression-molded article is obtained by compressing and solidifying a glass raw material (b) substantially composed of silica sand, dolomite, limestone, soda ash, and nickel oxide. Manufacturing method.
[10] 前記混合物に前記圧縮成形物が含まれ、 [10] The mixture includes the compression molding,
前記圧縮成形物のガラス原料 (b)の組成において、前記 NiOの含有率が、質量% で表して、 5〜: 15%である請求項 2に記載のガラス物品の製造方法。  3. The method for producing a glass article according to claim 2, wherein in the composition of the glass raw material (b) of the compression-molded product, the content of NiO is 5 to 15% in terms of mass%.
[11] 前記ガラス原料 (a)および/または前記ガラス原料 (b)が、鉄含有化合物をさらに 含む請求項 1に記載のガラス物品の製造方法。 [11] The method for producing a glass article according to [1], wherein the glass raw material (a) and / or the glass raw material (b) further contains an iron-containing compound.
[12] 前記ガラス原料 (a)および/または前記ガラス原料 (b)が、還元剤をさらに含む請 求項 11に記載のガラス物品の製造方法。 [12] The method for producing a glass article according to claim 11, wherein the glass raw material (a) and / or the glass raw material (b) further contains a reducing agent.
[13] 前記還元剤が、炭素系還元剤である請求項 12に記載のガラス物品の製造方法。 13. The method for producing a glass article according to claim 12, wherein the reducing agent is a carbon-based reducing agent.
[14] 前記ガラス物品の基本組成が、質量%で表示して、 [14] The basic composition of the glass article is expressed in mass%,
SiO 65〜80%,  SiO 65-80%,
Al O 0〜 5%,  Al O 0-5%,
MgO 0〜: 10%,  MgO 0 ~: 10%,
CaO 5~15%,  CaO 5 ~ 15%,
MgO + CaO 5〜: 15%,  MgO + CaO 5 ~: 15%,
Na O 10〜18%,  Na O 10-18%,
K O 0〜 5%,  K O 0-5%,
Na O + K O 10〜20%,および  Na O + K O 10-20%, and
B〇 0〜 5%  B 0-5%
を含み、 着色成分として、 Ni〇を 0. 03〜2. 0%含む請求項 1に記載のガラス物品の製造方 法。 Including 2. The method for producing a glass article according to claim 1, comprising 0.03 to 2.0% of NiO as a coloring component.
[15] 前記ガラス物品の組成が、着色成分として、さらに、  [15] The composition of the glass article further includes, as a coloring component,
T-Fe O 0を超え 1. 4%まで、  T-FeO over 0, up to 1.4%,
(T-Fe Oは、 Fe Oに換算した全酸化鉄である)  (T-Fe 2 O is all iron oxide converted to Fe 2 O)
Ti〇 0を超え 1 %まで、  Over TiOO 0 to 1%,
CeO 0を超え 2%まで、  CeO over 0 up to 2%,
CoO 0を超え 0. 03%まで、および  CoO over 0 to 0.03%, and
Se 0を超え 0. 003%まで、  Se 0 over 0.03%,
力、ら選ばれる少なくとも 1種を含む請求項 14に記載のガラス物品の製造方法。  15. The method for producing a glass article according to claim 14, comprising at least one selected from force.
[16] 得られたガラス物品を加熱し、急冷して当該ガラス物品を強化する工程をさらに含 む請求項 1に記載のガラス物品の製造方法。 16. The method for producing a glass article according to claim 1, further comprising a step of heating and quenching the obtained glass article to strengthen the glass article.
[17] 請求項 1に記載のガラス物品の製造方法により得られたガラス物品であって、質量 %で表示して、基本組成が、 [17] A glass article obtained by the method for producing a glass article according to claim 1, wherein the basic composition is expressed in mass%.
SiO 65〜80%,  SiO 65-80%,
Al O 0〜 5%,  Al O 0-5%,
MgO 0〜: 10%,  MgO 0 ~: 10%,
CaO 5〜: 15%,  CaO 5 ~: 15%,
MgO + CaO 5〜: 15%,  MgO + CaO 5 ~: 15%,
Na O 10〜: 18%,  Na O 10 ~: 18%,
K O 0〜 5%,  K O 0-5%,
Na O + K O 10〜20%,および  Na O + K O 10-20%, and
B〇 0〜 5%  B 0-5%
を含み、  Including
着色成分として、 Ni〇を 0. 03-2. 0%含むガラス物品。  Glass articles containing 0.03-2.0% Ni〇 as a coloring component.
[18] 前記ガラス物品の組成が、着色成分として、さらに、 [18] The composition of the glass article further includes, as a coloring component,
T-Fe O 0を超え 1. 4%まで、  T-FeO over 0, up to 1.4%,
(T-Fe Oは、 Fe Oに換算した全酸化鉄である) TiO 0を超え 1%まで、 (T-Fe 2 O is all iron oxide converted to Fe 2 O) Over TiO 0 to 1%,
CeO。 0を超え 2%まで、  CeO. Over 0 to 2%
CoO 0を超え 0. 03%まで、および  CoO over 0 to 0.03%, and
Se 0を超え 0. 003%まで、  Se 0 over 0.03%,
から選ばれる少なくとも 1種を含む請求項 17に記載のガラス物品 The glass article according to claim 17, comprising at least one selected from
PCT/JP2007/052641 2006-02-14 2007-02-14 Method for producing glass article and glass article WO2007094372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006036724A JP2009107850A (en) 2006-02-14 2006-02-14 Method for producing glass article
JP2006-036724 2006-02-14

Publications (1)

Publication Number Publication Date
WO2007094372A1 true WO2007094372A1 (en) 2007-08-23

Family

ID=38371551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052641 WO2007094372A1 (en) 2006-02-14 2007-02-14 Method for producing glass article and glass article

Country Status (2)

Country Link
JP (1) JP2009107850A (en)
WO (1) WO2007094372A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167839A (en) * 1988-12-21 1990-06-28 Toyo Glass Co Ltd Coloring agent for glass product and coloring method of glass product using same agent
JPH0431325A (en) * 1990-05-29 1992-02-03 Asahi Glass Co Ltd Production of colored glass
JP2000026134A (en) * 1998-07-07 2000-01-25 Nippon Sheet Glass Co Ltd Production of soda-lime glass
JP2001048570A (en) * 1999-08-10 2001-02-20 Koa Glass Kk Frit for ultraviolet-screening glass, ultraviolet- screening glass by using the same, and production of ultraviolet-screening glass by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167839A (en) * 1988-12-21 1990-06-28 Toyo Glass Co Ltd Coloring agent for glass product and coloring method of glass product using same agent
JPH0431325A (en) * 1990-05-29 1992-02-03 Asahi Glass Co Ltd Production of colored glass
JP2000026134A (en) * 1998-07-07 2000-01-25 Nippon Sheet Glass Co Ltd Production of soda-lime glass
JP2001048570A (en) * 1999-08-10 2001-02-20 Koa Glass Kk Frit for ultraviolet-screening glass, ultraviolet- screening glass by using the same, and production of ultraviolet-screening glass by using the same

Also Published As

Publication number Publication date
JP2009107850A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
KR102551614B1 (en) Glass composition, glass with low inclusion content, manufacturing method thereof and application thereof
JP5019732B2 (en) Manufacturing method of optical glass
JP2005206433A (en) Optical glass, glass body to be formed by press forming, optical device and method of manufacturing the same
JP2007238398A (en) Soda-lime based glass composition
TW201004886A (en) Glass plate for display devices
CN106746595A (en) A kind of borosilicate glass glass fining agent high and its preparation method and application
JPH04310539A (en) Infrared and ultraviolet absorbing glass
CN103524042A (en) Environment-friendly type high-transmission high-refractivity crystalline glass and preparation method thereof
JP7353271B2 (en) Method for manufacturing a crystallized glass member having a curved surface shape
JP4630190B2 (en) High zirconia refractories
JP5335430B2 (en) Pellets for Se encapsulation
EP1989152A2 (en) Method of making glass including use of boron oxide for reducing glass refiting time
JP2005504708A (en) High purity bioactive glass and method for producing the same
US6672108B2 (en) Method of making glass with reduced Se burnoff
WO2007094372A1 (en) Method for producing glass article and glass article
JP3379548B2 (en) Forehearth colorant
JP2007217200A (en) Method for producing glass article
JP7149595B2 (en) glass and crystallized glass
CN1121491A (en) Blue heat-absorbing float glass
US2991185A (en) Yellow-green optical glass
EP4112573A1 (en) Glass batch compositions comprising cullet and methods of forming glass with cullet
CN116062987A (en) Method for preparing slag glass from blast furnace slag
JP2007137696A (en) Manufacturing method of glass sheet
JPH1072264A (en) Production of alumina-zirconia-silica fused refractory
CN105246848A (en) Novel soda lime silicate glass composition comprising colemanite and process for the preparation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP