WO2007094229A1 - Substrate treating method, and computer-readable storage medium - Google Patents

Substrate treating method, and computer-readable storage medium Download PDF

Info

Publication number
WO2007094229A1
WO2007094229A1 PCT/JP2007/052215 JP2007052215W WO2007094229A1 WO 2007094229 A1 WO2007094229 A1 WO 2007094229A1 JP 2007052215 W JP2007052215 W JP 2007052215W WO 2007094229 A1 WO2007094229 A1 WO 2007094229A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist pattern
substrate
reducing agent
wafer
pattern size
Prior art date
Application number
PCT/JP2007/052215
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichiro Inatomi
Mitsuaki Iwashita
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020087019777A priority Critical patent/KR101300892B1/en
Publication of WO2007094229A1 publication Critical patent/WO2007094229A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors

Definitions

  • the present invention relates to a substrate processing method for reducing the size of a resist pattern formed on a substrate, and a computer-readable storage medium storing a computer program for executing the substrate processing method It is about.
  • a resist film is formed on a wafer, the resist film is exposed, developed, and a resist pattern is formed on a wafer. Speak.
  • the resist pattern In forming a resist pattern, the resist pattern is required to be miniaturized in order to achieve higher integration of semiconductor devices, and in response to this, the wavelength of the exposure light source has been reduced.
  • a predetermined resist pattern size reducing agent (RELACS agent) is supplied to the center of the wafer, and the resist pattern size reducing agent is applied to the entire surface of the wafer by rotating the wafer. . Then, for example, the resist pattern size reducing agent on the inner wall surface of the hole or groove is insolublely cured by heat, and then the other uncured resist pattern size reducing agent is removed with pure water, so that the resist pattern dimension is reduced. Has been reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-234279
  • the resist pattern dimension reducing agent has high water repellency with respect to the underlying resist.
  • the resist pattern size reducing agent could not be properly applied to the entire surface of the film.
  • the resist pattern size reducing agent is an extremely expensive material, and as a result, the cost required for wafer processing for reducing the resist pattern has increased.
  • the resist pattern size reducing agent is difficult to apply uniformly over the entire surface of the wafer due to water repellency, and the final resist pattern size may vary within the wafer surface.
  • the present invention has been made in view of the strong point, and when the size of the resist pattern is reduced using the RELACS technology, the amount of the resist pattern size reducing agent used is reduced.
  • the purpose is to make the dimensions of the resist pattern uniform within the substrate surface.
  • the present invention provides a substrate processing method for reducing the size of a resist pattern formed on a substrate, wherein pure water is applied to the substrate on which the resist pattern is formed.
  • An alteration process in which the lower layer portion of the resist pattern size reducing agent in contact with the surface of the resist pattern is altered insoluble to the removal liquid, and then the upper layer portion of the resist pattern dimension reducing agent that has not been altered is removed by the removal liquid.
  • a removal step is provided for reducing the size of a resist pattern formed on a substrate, wherein pure water is applied to the substrate on which the resist pattern is formed.
  • the present invention pure water is supplied onto the substrate, and then a water-soluble resist pattern size reducing agent is supplied, so that pure water and the resist pattern size reducing agent are mixed on the substrate. Further, the wettability of the resist pattern dimension reducing agent to the base is improved. As a result, the resist pattern size reducing agent can be spread over the entire surface of the substrate even in a small amount, and the amount of resist pattern size reducing agent used can be reduced. In addition, since the resist pattern size reducing agent spreads easily over the entire surface of the substrate, the resist pattern size reducing agent can be applied uniformly within the substrate surface, and finally the resist pattern size can be made uniform within the substrate surface.
  • the pure water supply step includes a step of rotating the substrate to expand the pure water supplied onto the substrate to such an extent that it does not spread over the entire surface of the substrate.
  • the resist pattern size reducing agent may be supplied to pure water, and the resist pattern size reducing agent may be spread over the entire surface of the substrate by rotating the substrate.
  • the substrate processing method after the resist pattern size reducing agent spreads over the entire surface of the substrate in the coating step, the substrate is rotated at a first rotation speed to increase the film thickness of the resist pattern size reducing agent. It is preferable to have a step of adjusting and a step of drying the resist pattern size reducing agent by rotating at a second rotation speed higher than the first rotation speed.
  • the rotational speed of the substrate is once reduced, and then the substrate is increased to the first rotational speed to increase the resist pattern. Adjust the film thickness of the dimension reducing agent.
  • a dry gas may be supplied to the outer peripheral portion of the substrate.
  • the ambient atmosphere of the substrate may be set to a humidity of 40% or less.
  • control unit of the force substrate processing system executed in the substrate processing system controls the substrate processing system according to the computer program to be executed.
  • the present invention according to another aspect is a computer-readable storage medium storing a computer program for executing the above-described substrate processing method in a substrate processing system.
  • FIG. 1 is a plan view showing the outline of the configuration of a substrate processing system.
  • FIG. 2 is a front view of the substrate processing system of FIG.
  • FIG. 3 is a rear view of the substrate processing system of FIG. 1.
  • FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of a coating treatment apparatus.
  • FIG. 5 is an explanatory diagram of a cross section showing an outline of the configuration of a coating treatment apparatus.
  • FIG. 6 is an explanatory view of a longitudinal section showing an outline of the configuration of the cleaning apparatus.
  • FIG. 7 is a flowchart showing the main steps of wafer processing.
  • FIG. 8 is a graph showing a change in the rotation speed of a wafer in a coating process.
  • FIG. 9 is a schematic diagram showing the state of the wafer in each step of the coating treatment, and (a) is a longitudinal sectional view of the wafer showing a state in which pure water is supplied onto the wafer. (B) is a longitudinal sectional view of a wafer showing a state in which pure water on the wafer is spread. (C) is a longitudinal sectional view of a wafer showing a state in which a resist pattern size reducing agent is supplied to pure water on the wafer. (d) is a longitudinal sectional view of the wafer showing a state in which the resist pattern size reducing agent is spread over the entire surface of the wafer.
  • FIG. 10 is an enlarged longitudinal sectional view of a wafer coated with a resist pattern dimension reducing agent.
  • FIG. 11 is an enlarged longitudinal sectional view of a wafer showing a state in which a cured film is formed on a part of the resist pattern dimension reducing agent.
  • FIG. 12 is an enlarged longitudinal sectional view of a wafer showing a state where an uncured portion of a resist pattern size reducing agent has been removed.
  • FIG. 13 is an explanatory view of a longitudinal section showing an outline of a configuration of a coating treatment apparatus including a third nozzle that ejects nitrogen gas.
  • FIG. 14 is a photograph showing the appearance of the outer periphery of the wafer.
  • A is a photograph of the resist pattern dimension reducing agent film formed on the outer periphery of the wafer when the drying speed of the resist pattern size reducing agent is slow. It is.
  • B is a photograph of the film of the resist pattern size reducing agent formed on the outer periphery of the wafer W when the drying speed of the resist pattern size reducing agent is increased.
  • FIG. 1 is a plan view schematically showing the configuration of a substrate processing system 1 in which the substrate processing method according to the present embodiment is implemented
  • FIG. 2 is a front view of the substrate processing system 1
  • FIG. 2 is a rear view of the substrate processing system 1.
  • the substrate processing system 1 carries, for example, a plurality of wafers W in the cassette unit from the outside to the substrate processing system 1, or a wafer C and W from the cassette C.
  • a processing station 3 having a plurality of processing apparatuses for performing various processes in a series of wafer processing in a single sheet form are integrally connected.
  • the cassette station 2 is provided with a cassette mounting table 10.
  • the cassette mounting table 10 is capable of mounting a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1).
  • the cassette station 2 is provided with a wafer transfer body 12 that can move in the X direction on the transfer path 11.
  • the wafer carrier 12 can also move in the arrangement direction (vertical direction) of the wafers W accommodated in the cassette C, and can selectively access each wafer W in each cassette C arranged in the X direction. .
  • the wafer carrier 12 can rotate in the ⁇ direction around the vertical axis, and can also access the extension device 32 belonging to the third processing device group G3 on the processing station 3 side described later.
  • the processing station 3 is provided with a main transfer device 13 at the center thereof, and various processing devices are arranged in multiple stages around the main transfer device 13 to form a processing device group. Yes.
  • this substrate processing system 1 four processing device groups Gl, G2, G3, G4 are arranged, and the first and second processing device groups Gl, G2 are arranged on the front side of the substrate processing system 1.
  • the third processing unit group G3 is disposed on the cassette station 2 side of the main transfer unit 13.
  • the fourth processing device group G4 is arranged on the opposite side of the third processing device group G3 across the main transfer device 13.
  • a fifth processing unit group G5 indicated by a broken line can be separately arranged on the back side.
  • the main transfer device 13 can transfer the wafer W to various processing devices to be described later arranged in these processing device groups G1 to G5.
  • a coating processing unit 20 for applying a predetermined resist pattern size reducing agent on the wafer W and an excess resist pattern size reducing agent are washed.
  • the cleaning device 21 to be removed in this order is arranged in two stages in descending order.
  • the coating processing device 22 and the cleaning device 23 are also stacked in two stages in order of the lower force.
  • the third processing unit group G 3 includes cooling processing units 30 and 31 for cooling the wafer W, an extension unit 32 for waiting the wafer W, and a heat treatment unit 33 for heating the wafer W. 34 etc., the lower force is also stacked in order, for example, in 5 steps.
  • cooling processing units 40 and 41 for example, cooling processing units 40 and 41, an extension unit 42, a heating processing unit 43 and 44, and the like are stacked in, for example, five stages in order of the lower force.
  • the cooling processing apparatuses 30, 31, 40, 41 can cool the wafer W by placing the wafer W on a cooling plate cooled to a predetermined temperature, for example.
  • the heat treatment apparatuses 33, 34, 43, and 44 can heat the wafer W by placing the wafer W on a hot plate heated to a predetermined temperature, for example.
  • FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of the coating treatment apparatus 20
  • FIG. 5 is an explanatory view of a transverse plane of the coating treatment apparatus 20.
  • the coating treatment apparatus 20 has a casing 70 that can be closed inside, for example.
  • a spin chuck 71 that holds and rotates the Ueno and W!
  • the spin chuck 71 has a horizontal upper surface, and a suction port (not shown) for sucking the wafer W, for example, is provided on the upper surface.
  • the wafer W can be sucked and held on the spin chuck 71 by suction from the suction port.
  • the spin chuck 71 can be rotated at a predetermined speed by a chuck drive mechanism 72 including, for example, a motor.
  • the chuck drive mechanism 72 is provided with a lifting drive source such as a cylinder.
  • the spin chuck 71 can move up and down.
  • a cup 73 for receiving and collecting the liquid that is scattered or dropped by the wafer W force.
  • a lower surface of the cup 73 is connected to a discharge pipe 74 for discharging the recovered liquid and an exhaust pipe 75 for exhausting the atmosphere in the cup 73.
  • the exhaust pipe 75 is connected to a negative pressure generator 76 such as a pump and can forcibly exhaust the atmosphere in the cup 73.
  • a rail 80 extending along the Y direction is formed on the negative side of the cup 73 in the X direction (downward direction in FIG. 5).
  • the rail 80 is formed, for example, to the outer side of the cup 73 in the Y direction negative direction (left direction in FIG. 5) on the Y direction positive direction (right direction in FIG. 5).
  • two arms 81 and 82 are attached to the rail 80.
  • the first arm 81 supports a first nozzle 83 for discharging the resist pattern size reducing agent.
  • the first arm 81 is movable on the rail 80 by a nozzle driving unit 84 shown in FIG. 5, and the first nozzle 83 is installed on the outside of the cup 73 on the Y direction positive side. It can be moved from 85 to above the center of the wafer W in the cup 73. Further, the first arm 81 is moved up and down by the nozzle driving unit 84, and the height of the first nozzle 83 can be adjusted.
  • a supply pipe 87 that communicates with a reducing agent supply source 86 is connected to the first nozzle 83.
  • the reducing agent supply source 86 includes a resist pattern size reducing agent that is water-soluble, is cured by heat, and becomes insoluble in water, and has resistance to an etching material after the alteration. (RELACS) is stored.
  • the second arm 82 supports a second nozzle 90 that discharges pure water.
  • the second arm 82 is movable on the rail 80 by, for example, a nozzle driving unit 91 shown in FIG. 5, and the second nozzle 90 is provided outside the cup 73 on the Y direction negative direction side. It can be moved from the standby part 92 to the upper part of the center of the wafer W in the cup 73. Further, the second arm 82 can be moved up and down by the nozzle driving section 91, and the height of the second nozzle 90 can be adjusted.
  • a supply pipe 94 communicating with a pure water supply source 93 is connected to the second nozzle 90.
  • an air supply pipe 100 is connected to the central portion of the ceiling surface of the casing 70.
  • a temperature / humidity adjusting device 101 is connected to the air supply pipe 100.
  • the configuration of the coating treatment apparatus 22 is the same as that of the above-described coating treatment apparatus 20, and a description thereof will be omitted.
  • FIG. 6 is an explanatory view of a longitudinal section showing an outline of the configuration of the cleaning device 21.
  • the cleaning device 21 includes, for example, a spin chuck 111 that holds and rotates the wafer W in the casing 110.
  • the spin chuck 111 can be rotated at a predetermined speed by the chuck driving mechanism 112.
  • a cup 113 Around the spin chuck 111, there is provided a cup 113 that receives and collects the liquid scattered or dropped from the wafer W.
  • a discharge pipe 114 for discharging the collected liquid is connected to the lower surface of the cup 113.
  • a pure water discharge nozzle 120 for discharging pure water is provided in the casing 110.
  • the pure water discharge nozzle 120 is held by an arm 121 that is movable in the horizontal direction, and can move to the upper part of the center of the wafer W in the cup 113 by the standby part 122 force outside the cup 113.
  • the pure water discharge nozzle 120 communicates with a pure water supply source 124 through a supply pipe 123.
  • the configuration of the cleaning device 23 is the same as that of the above-described cleaning device 21, and thus the description thereof is omitted.
  • the wafer processing performed in the substrate processing system 1 is controlled by a control unit 130 provided in the cassette station 2, for example, as shown in FIG.
  • the control unit 130 is a computer, for example, and has a program storage unit.
  • the program storage unit stores a program P for controlling the operation of the drive systems such as the above-described various processing apparatuses and transfer bodies to execute wafer processing of a predetermined recipe described later.
  • the program P may be recorded on a computer-readable recording medium, and the recording medium force may also be installed in the control unit 130.
  • This wafer process is a process for reducing the dimension of the resist pattern by forming a cured film on the inner wall surface of a recess such as a hole or groove of the resist pattern on the wafer W.
  • FIG. 7 is a flowchart showing the main steps of this wafer processing.
  • the wafer W force in the cassette C on the cassette mounting table 10 is taken out by the wafer transfer body 12 and transferred to the extension device 32 of the third processing unit group G3. Thereafter, the Weno and W are transported to the cooling processing device 30 by the main transport device 13, adjusted to a predetermined temperature, and then transported to the coating processing device 20.
  • FIG. 8 shows a change in the rotational speed of the wafer W in the coating process performed by the coating processing apparatus 20.
  • FIG. 9 is a flowchart showing the state of the wafer W in each step of the coating process.
  • the wafer W transferred to the coating treatment apparatus 20 is first sucked and held by the spin chuck 71 as shown in FIG.
  • the second nozzle 90 moves to above the center of the wafer W.
  • a predetermined amount of pure water A is supplied from the second nozzle 90 to the center of the wafer W on which the resist pattern P is formed on the surface (step Sl in FIG. 7).
  • the wafer W is rotated, for example, at about lOOOOrpm, and the pure water A on the wafer W is spread by centrifugal force as shown in FIG. 9 (b).
  • the pure water A is not spread over the entire surface of the wafer W, but is spread in a circular puddle shape near the center of the wafer W.
  • the second nozzle 90 that has finished supplying the predetermined amount of pure water A is returned to the standby unit 92.
  • the first nozzle 83 is moved to above the center of the wafer W. At this time, the rotation speed of the wafer W is lowered to about 30 rpm. With the rotation speed of the wafer W lowered, a predetermined amount of resist pattern size reducing agent B is supplied from the first nozzle 83 onto the pure water A at the center of the wafer W as shown in FIG. 9 (c). The As a result, the resist pattern size reducing agent B is mixed with the pure water A collected near the center of the wafer W. The first nozzle 83 that has finished supplying the resist pattern dimension reducing agent B is returned to the standby unit 85.
  • the rotation speed of the wafer W is increased to about 2000 rpm, for example, and the resist pattern size reducing agent B is spread over the entire surface of the wafer W as shown in FIG.
  • the resist pattern size reducing agent B is applied to the uneven surface of the resist pattern R on the wafer W (step S2 shown in FIG. 7).
  • the rotational speed of the wafer W is lowered to about lOOrpm.
  • the rotation speed of the wafer W is increased to about 1300 to 1500 rpm as the first rotation speed, and the liquid film of the resist pattern size reducing agent B is adjusted to a predetermined film thickness (step S3 shown in FIG. 7).
  • the rotation speed of the wafer W is further increased to about 3000 rpm, and the resist pattern size reducing agent B is dried (step S4 shown in FIG. 7).
  • the wafer W that has been subjected to the coating process is then transferred to the heat treatment apparatus 33 and heated.
  • this caloric heat is close to the uneven surface of the resist pattern P!
  • the lower layer portion B 1 of the resist pattern size reducing agent B is cured, and the lower layer portion B 1 becomes insoluble in water. To do.
  • a cured film of the resist pattern dimension reducing agent B is formed on the inner wall surface of the recess of the resist pattern P (step S5 in FIG. 7).
  • the wafer W that has been subjected to the heat treatment is transferred to, for example, the cooling processing apparatus 40, and returned to the normal temperature, for example, and then transferred to the cleaning apparatus 21.
  • the wafer W carried into the cleaning device 21 is held by the spin chuck 111 as shown in FIG. Thereafter, the wafer W is rotated by the spin chuck 111 and the pure water as the removal liquid is supplied from the pure water discharge nozzle 120 to the center of the wafer W in the rotated state.
  • the uncured and water-soluble upper layer portion (portion other than the lower layer portion B1) of the resist pattern size reducing agent B is washed away (step S6 in FIG. 7).
  • the wafer W is rotated at a high speed and dried by shaking.
  • the cured film (lower layer portion B1) having the resist pattern size reducing agent B force is left on the inner wall surface of the recess of the resist pattern P, and the size of the resist pattern P is reduced.
  • the wafer W after the cleaning process is returned from the processing station 3 to the cassette C in the cassette station 2 by the main transfer device 13 and the wafer transfer body 12, for example.
  • the resist pattern size reducing agent B is supplied after supplying pure water A onto the wafer W, the wettability of the resist pattern size reducing agent B with respect to the resist pattern P As a result, the resist pattern size reducing agent B is easily spread on the resist pattern P. Therefore, the resist pattern dimension reducing agent B can be applied to the entire surface of the wafer W by supplying a small amount of the resist pattern dimension reducing agent B. As a result, the amount of resist pattern size reducing agent B used can be reduced. Resist pattern dimension reducing agent B is widely used. Resist pattern size reducing agent B can be applied evenly on the wafer surface without unevenness because it is easy to slip.
  • the wafer W is rotated after the pure water A is supplied onto the wafer W, and the pure water A is circular so as not to spread over the entire surface of the wafer W. Can be spread.
  • the resist pattern dimension reducing agent B is supplied onto the pure water A, the wafer W is further rotated, and the resist pattern dimension reducing agent B is spread over the entire surface of the wafer W.
  • pure water A and resist pattern size reducing agent B are properly mixed on Ueno and W, and this mixing reduces the water repellency of resist pattern size reducing agent B to resist pattern P.
  • Dimension reducing agent B spreads properly over the entire surface of wafer W.
  • resist pattern dimension reducing agent B is supplied to pure water A collected in a circular shape at the center of Ueno and W, and then resist pattern dimension reducing agent B is spread outward at a stretch by centrifugal force. As a result, the resist pattern reducing agent B is uniformly applied on the wafer W surface without any spots.
  • the rotational speed of the wafer W is temporarily reduced and then increased to the first rotational speed to increase the film thickness of the resist pattern size reducing agent B. Therefore, when adjusting the film thickness, the resist pattern dimension reducing agent B is always subjected to the inertia in the radial direction of the wafer W, and the resist pattern dimension reducing agent B flows to the outer side of the wafer W. Therefore, the film thickness within the wafer surface is adjusted without unevenness.
  • the rotation speed of the wafer W may be adjusted to the first rotation speed.
  • drying of the resist pattern size reducing agent B is promoted by increasing the rotation speed of the wafer W to the second rotation speed. Let the drying of the resist pattern dimension reducing agent B accelerate by supplying a dry gas.
  • the coating processing apparatus 20 is provided with a third nozzle 150 that ejects, for example, nitrogen gas having a low dew point as a dry gas to the outer peripheral portion of the wafer W.
  • the third nozzle 150 is supported by, for example, a horizontally movable nozzle arm 151 and can move horizontally on the surface of the wafer W in the spin chuck 71.
  • the third nozzle 150 is connected to a nitrogen gas supply source 153 through an air supply pipe 152, for example.
  • Fig. 14 (a) is a photograph of the surface of the film on the outer periphery of the wafer W when the drying speed of the resist pattern size reducing agent B is slow, and Fig.
  • FIG. 14 (b) is the resist pattern size reducing agent B as described above. 6 is a photograph of the surface of the film on the outer periphery of the wafer W when the drying speed is increased. In Fig. 14 (a), it can be confirmed that a hole-like defect is formed, and in Fig. 14 (b), the hole-like defect is eliminated.
  • the humidity is lower than at least the outside of the casing 70 from the air supply pipe 100 into the casing 70, and a dry gas is supplied to reduce the humidity of the ambient atmosphere around the wafer W.
  • a dry gas is supplied to reduce the humidity of the ambient atmosphere around the wafer W.
  • the atmosphere outside the casing 70 is set to a humidity of 45% (temperature 23 ° C)
  • the ambient atmosphere around the wafer W in the casing 70 is set to a humidity of 40% or less (temperature 23 ° C). Even if this is done, drying of the resist pattern dimension reducing agent B is promoted, and a film having no defect is formed. More preferably, the ambient atmosphere around the wafer W is set to a humidity of 40%.
  • a processing station 3 is provided with a resist coating processing apparatus that forms a resist film by applying a resist solution to the wafer W, and a development processing apparatus that develops the resist film on the wafer W.
  • An exposure apparatus for exposing the resist film may be provided adjacent to the processing station 3.
  • the lower layer portion B1 of the resist pattern dimension reducing agent B is altered and cured by heating, but it may be altered by light.
  • the lower layer portion B1 of the resist pattern size reducing agent B is changed to be insoluble in water and cured, and then the unnecessary upper layer portion is removed with pure water. Later, the lower layer portion B1 of the resist pattern size reducing agent B may be insoluble in the developer, and then the unnecessary upper layer portion may be removed by the developer as a removing solution.
  • a resist pattern dimensional reducing agent B that is insoluble in a developer by heat or light is used.
  • the present invention can also be applied to substrate processing when reducing the dimension of a resist pattern formed on an FPD (flat panel display) other than the wafer W, a mask reticle for a photomask, or the like.
  • FPD flat panel display
  • the present invention is useful for reducing the amount of a resist pattern size reducing agent used when reducing the size of a resist pattern using the RELACS technology and making the pattern size in the substrate plane uniform. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A predetermined quantity of pure water is fed onto the central portion of a wafer having a resist pattern formed thereon, and the wafer is rotated to spread the pure water into a circular shape near the central portion of the wafer. Next, the pure water of the wafer is fed with a water-soluble resist pattern size reducing agent. After this, the wafer is rotated at a high speed to spread the resist pattern size reducing agent all over the surface of the wafer. After this, a heating is performed to modify the lower layer portion of the resist pattern size reducing agent near the surface of the resist pattern, into a state insoluble to water, thereby to harden that portion. After this, the unhardened portion of the resist pattern size reducing agent is rinsed and removed with the pure water. Thus, the hardened film is formed on the inner wall face of the recess of the resist pattern so that the resist pattern is reduced in size. In the RELACS technique, the quantity of the resist pattern size reducing agent to be used is reduced to homogenize the pattern sizes in the wafer face.

Description

明 細 書  Specification
基板の処理方法及びコンピュータ読み取り可能な記憶媒体  Substrate processing method and computer-readable storage medium
技術分野  Technical field
[0001] 本発明は、基板上に形成されたレジストパターンの寸法を縮小するための基板の 処理方法と、その基板の処理方法を実行させるためのコンピュータプログラムが格納 されたコンピュータ読み取り可能な記憶媒体に関するものである。  The present invention relates to a substrate processing method for reducing the size of a resist pattern formed on a substrate, and a computer-readable storage medium storing a computer program for executing the substrate processing method It is about.
背景技術  Background art
[0002] 例えば半導体デバイスの製造プロセスにおけるフォトリソグラフィー工程では、ゥェ ハ上にレジスト膜を形成し、そのレジスト膜を露光し、現像して、ウェハ上にレジストパ ターンを形成する処理が行われて ヽる。  [0002] For example, in a photolithography process in a semiconductor device manufacturing process, a resist film is formed on a wafer, the resist film is exposed, developed, and a resist pattern is formed on a wafer. Speak.
[0003] レジストパターンを形成するにあたり、半導体デバイスのさらなる高集積ィ匕を図るた め、レジストパターンの微細化が求められており、これを受けて露光光源の短波長化 が進められている。 In forming a resist pattern, the resist pattern is required to be miniaturized in order to achieve higher integration of semiconductor devices, and in response to this, the wavelength of the exposure light source has been reduced.
し力しながら、現状、露光光源の短波長化には技術的、コスト的な限界がある。そこ で、レジストパターンのホールや溝の内壁面に水溶性のレジストパターン寸法縮小剤 力もなる膜層を形成して、レジストパターンのホール径ゃ線幅などの寸法を縮小する 技術「RELAC;5 (Resolution Ennancement Lithgraphy Assisted by Che mical Shrink)技術」が提案されて ヽる(特許文献 1参照)。  However, at present, there are technical and cost limits to shortening the wavelength of the exposure light source. Therefore, a technology that reduces the dimensions of the resist pattern, such as the hole diameter and line width, is formed by forming a film layer that also has a water-soluble resist pattern size reducing agent on the inner walls of the resist pattern holes and grooves. "Resolution Ennancement Lithgraphy Assisted by Chemical Shrink" technology has been proposed (see Patent Document 1).
[0004] この RELACS技術では、例えばウェハの中央部に所定のレジストパターン寸法縮 小剤 (RELACS剤)が供給され、ウェハの回転によりそのレジストパターン寸法縮小 剤がウェハの表面全体に塗布されている。そして、例えばホールや溝の内壁面のレ ジストパターン寸法縮小剤が熱により不溶性に硬化され、その後その他の未硬化の 部分のレジストパターン寸法縮小剤が純水により除去されて、レジストパターンの寸 法が縮小されている。 [0004] In this RELACS technology, for example, a predetermined resist pattern size reducing agent (RELACS agent) is supplied to the center of the wafer, and the resist pattern size reducing agent is applied to the entire surface of the wafer by rotating the wafer. . Then, for example, the resist pattern size reducing agent on the inner wall surface of the hole or groove is insolublely cured by heat, and then the other uncured resist pattern size reducing agent is removed with pure water, so that the resist pattern dimension is reduced. Has been reduced.
特許文献 1 :日本国特開 2003— 234279号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-234279
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] しかしながら、上述したような RELACS技術を用いた場合、レジストパターン寸法縮 小剤が下地となるレジストに対して撥水性が高 、ので、レジストパターン寸法縮小剤 を大量に供給しないと、ウェハの表面全体にレジストパターン寸法縮小剤を適正に 塗布することができな力つた。レジストパターン寸法縮小剤は、極めて高価な材料で あり、この結果、レジストパターンを縮小するウェハ処理に要するコストが増大してい た。また、撥水性のためレジストパターン寸法縮小剤をウェハの表面全体に均一に塗 布することが難しぐ最終的に形成されるレジストパターンの寸法がウェハ面内でばら つくことがあった。 Problems to be solved by the invention However, when the RELACS technology as described above is used, the resist pattern dimension reducing agent has high water repellency with respect to the underlying resist. The resist pattern size reducing agent could not be properly applied to the entire surface of the film. The resist pattern size reducing agent is an extremely expensive material, and as a result, the cost required for wafer processing for reducing the resist pattern has increased. In addition, the resist pattern size reducing agent is difficult to apply uniformly over the entire surface of the wafer due to water repellency, and the final resist pattern size may vary within the wafer surface.
[0006] 本発明は、力かる点に鑑みてなされたものであり、 RELACS技術を用いてレジスト ノ ターンの寸法を縮小する際に、レジストパターン寸法縮小剤の使用量を低減し、ゥ ェハなどの基板面内においてレジストパターンの寸法を均一にすることをその目的と する。  [0006] The present invention has been made in view of the strong point, and when the size of the resist pattern is reduced using the RELACS technology, the amount of the resist pattern size reducing agent used is reduced. The purpose is to make the dimensions of the resist pattern uniform within the substrate surface.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するための本発明は、基板上に形成されたレジストパターンの寸 法を縮小するための基板の処理方法であって、レジストパターンが形成された基板 上に純水を供給する純水供給工程と、その後、基板上に水溶性のレジストパターン 寸法縮小剤を供給し、基板を回転させて、基板の表面全体に前記レジストパターン 寸法縮小剤を塗布する塗布工程と、その後、レジストパターンの表面に接する前記レ ジストパターン寸法縮小剤の下層部分を除去液に対する不溶性に変質させる変質 工程と、その後、前記レジストパターン寸法縮小剤の変質していない上層部分を除去 液により除去する除去工程と、を有している。  In order to achieve the above object, the present invention provides a substrate processing method for reducing the size of a resist pattern formed on a substrate, wherein pure water is applied to the substrate on which the resist pattern is formed. Supplying pure water, and then applying a resist pattern size reducing agent to the entire surface of the substrate by supplying a water-soluble resist pattern size reducing agent onto the substrate, rotating the substrate, and thereafter An alteration process in which the lower layer portion of the resist pattern size reducing agent in contact with the surface of the resist pattern is altered insoluble to the removal liquid, and then the upper layer portion of the resist pattern dimension reducing agent that has not been altered is removed by the removal liquid. And a removal step.
[0008] 本発明によれば、基板上に純水が供給され、その後に水溶性のレジストパターン寸 法縮小剤が供給されるので、基板上で純水とレジストパターン寸法縮小剤が混合さ れ、レジストパターン寸法縮小剤の下地に対する濡れ性が向上する。これにより、少 量でもレジストパターン寸法縮小剤を基板の表面全体に広げることができるので、レ ジストパターン寸法縮小剤の使用量を低減できる。また、レジストパターン寸法縮小 剤が基板の表面全体に広がり易いので、基板面内に均一にレジストパターン寸法縮 小剤を塗布して、最終的に基板面内においてレジストパターンの寸法を均一にでき る。 [0008] According to the present invention, pure water is supplied onto the substrate, and then a water-soluble resist pattern size reducing agent is supplied, so that pure water and the resist pattern size reducing agent are mixed on the substrate. Further, the wettability of the resist pattern dimension reducing agent to the base is improved. As a result, the resist pattern size reducing agent can be spread over the entire surface of the substrate even in a small amount, and the amount of resist pattern size reducing agent used can be reduced. In addition, since the resist pattern size reducing agent spreads easily over the entire surface of the substrate, the resist pattern size reducing agent can be applied uniformly within the substrate surface, and finally the resist pattern size can be made uniform within the substrate surface. The
[0009] 前記純水供給工程は、基板を回転させて、基板上に供給された純水を基板の表面 全体に広がらない程度に広げる工程を有し、その後の前記塗布工程では、その広が つた純水に前記レジストパターン寸法縮小剤を供給し、基板の回転により当該レジス トパターン寸法縮小剤を基板の表面全体に広げるようにしてもょ 、。  [0009] The pure water supply step includes a step of rotating the substrate to expand the pure water supplied onto the substrate to such an extent that it does not spread over the entire surface of the substrate. Alternatively, the resist pattern size reducing agent may be supplied to pure water, and the resist pattern size reducing agent may be spread over the entire surface of the substrate by rotating the substrate.
[0010] 前記基板処理方法は、前記塗布工程において前記レジストパターン寸法縮小剤が 基板の表面全体に広がった後に、基板を第 1の回転速度で回転させて前記レジスト パターン寸法縮小剤の膜厚を調整する工程と、その後、第 1の回転速度よりも速い第 2の回転速度で回転させて前記レジストパターン寸法縮小剤を乾燥させる工程を有 するようにしてちょい。  [0010] In the substrate processing method, after the resist pattern size reducing agent spreads over the entire surface of the substrate in the coating step, the substrate is rotated at a first rotation speed to increase the film thickness of the resist pattern size reducing agent. It is preferable to have a step of adjusting and a step of drying the resist pattern size reducing agent by rotating at a second rotation speed higher than the first rotation speed.
[0011] 前記塗布工程において前記レジストパターン寸法縮小剤が基板の表面全体に広 がった後に、基板の回転速度を一旦下げ、その後に基板を前記第 1の回転速度まで 上昇させて前記レジストパターン寸法縮小剤の膜厚を調整するようにしてもょ ヽ。  [0011] After the resist pattern size reducing agent spreads over the entire surface of the substrate in the coating step, the rotational speed of the substrate is once reduced, and then the substrate is increased to the first rotational speed to increase the resist pattern. Adjust the film thickness of the dimension reducing agent.
[0012] 前記レジストパターン寸法縮小剤を乾燥させる際には、基板の外周部に乾燥気体 を供給するようにしてもよ 、。  [0012] When drying the resist pattern size reducing agent, a dry gas may be supplied to the outer peripheral portion of the substrate.
[0013] 少なくとも前記レジストパターン寸法縮小剤を乾燥させる際に、基板の周辺雰囲気 を 40%以下の湿度に設定してもよい。 [0013] At least when the resist pattern size reducing agent is dried, the ambient atmosphere of the substrate may be set to a humidity of 40% or less.
[0014] 前記した基板の処理方法は、例えば基板処理システムにお 、て実行される力 基 板処理システムの制御部は、実行するためのコンピュータプログラムにしたがって、 基板処理システムを制御する。 [0014] In the substrate processing method described above, for example, the control unit of the force substrate processing system executed in the substrate processing system controls the substrate processing system according to the computer program to be executed.
したがって、別の観点による本発明は、前記した基板の処理方法を基板処理システ ムで実行するためのコンピュータプログラムが格納されたコンピュータ読み取り可能な 記憶媒体である。  Therefore, the present invention according to another aspect is a computer-readable storage medium storing a computer program for executing the above-described substrate processing method in a substrate processing system.
発明の効果  The invention's effect
[0015] 本発明によれば、 RELACS技術を用いてレジストパターンの寸法を縮小する際の コストを低減できる。また、基板面内でばらつきのないレジストパターンを形成し、歩 留まりを向上できる。  [0015] According to the present invention, it is possible to reduce the cost for reducing the size of a resist pattern using the RELACS technology. In addition, a resist pattern having no variation within the substrate surface can be formed to improve yield.
図面の簡単な説明 [0016] [図 1]基板処理システムの構成の概略を示す平面図である。 Brief Description of Drawings FIG. 1 is a plan view showing the outline of the configuration of a substrate processing system.
[図 2]図 1の基板処理システムの正面図である。  FIG. 2 is a front view of the substrate processing system of FIG.
[図 3]図 1の基板処理システムの背面図である。  FIG. 3 is a rear view of the substrate processing system of FIG. 1.
[図 4]塗布処理装置の構成の概略を示す縦断面の説明図である。  FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of a coating treatment apparatus.
[図 5]塗布処理装置の構成の概略を示す横断面の説明図である。  FIG. 5 is an explanatory diagram of a cross section showing an outline of the configuration of a coating treatment apparatus.
[図 6]洗浄装置の構成の概略を示す縦断面の説明図である。  FIG. 6 is an explanatory view of a longitudinal section showing an outline of the configuration of the cleaning apparatus.
[図 7]ウェハ処理の主な工程を示すフロー図である。  FIG. 7 is a flowchart showing the main steps of wafer processing.
[図 8]塗布処理におけるウェハの回転速度の変移を示すグラフである。  FIG. 8 is a graph showing a change in the rotation speed of a wafer in a coating process.
[図 9]塗布処理の各工程におけるウェハの状態を示す模式的な図であり、(a)は、ゥ ェハ上に純水が供給された状態を示すウェハの縦断面図である。(b)は、ウェハ上 の純水が広げられた状態を示すウェハの縦断面図である。(c)は、ウェハ上の純水 にレジストパターン寸法縮小剤が供給された状態を示すウェハの縦断面図である。 ( d)は、ウェハの表面全体にレジストパターン寸法縮小剤が広げられた状態を示すゥ ェハの縦断面図である。  FIG. 9 is a schematic diagram showing the state of the wafer in each step of the coating treatment, and (a) is a longitudinal sectional view of the wafer showing a state in which pure water is supplied onto the wafer. (B) is a longitudinal sectional view of a wafer showing a state in which pure water on the wafer is spread. (C) is a longitudinal sectional view of a wafer showing a state in which a resist pattern size reducing agent is supplied to pure water on the wafer. (d) is a longitudinal sectional view of the wafer showing a state in which the resist pattern size reducing agent is spread over the entire surface of the wafer.
[図 10]レジストパターン寸法縮小剤が塗布されたウェハの拡大縦断面図である。  FIG. 10 is an enlarged longitudinal sectional view of a wafer coated with a resist pattern dimension reducing agent.
[図 11]レジストパターン寸法縮小剤の一部に硬化膜が形成された状態を示すウェハ の拡大縦断面図である。  FIG. 11 is an enlarged longitudinal sectional view of a wafer showing a state in which a cured film is formed on a part of the resist pattern dimension reducing agent.
[図 12]レジストパターン寸法縮小剤の未硬化部分が除去された状態を示すウェハの 拡大縦断面図である。  FIG. 12 is an enlarged longitudinal sectional view of a wafer showing a state where an uncured portion of a resist pattern size reducing agent has been removed.
[図 13]窒素ガスを噴出する第 3のノズルを備えた塗布処理装置の構成の概略を示す 縦断面の説明図である。  FIG. 13 is an explanatory view of a longitudinal section showing an outline of a configuration of a coating treatment apparatus including a third nozzle that ejects nitrogen gas.
[図 14]ウェハの外周部の様子を示す写真であり、(a)は、レジストパターン寸法縮小 剤の乾燥速度が遅い場合にウェハの外周部に形成されるレジストパターン寸法縮小 剤の膜の写真である。(b)は、レジストパターン寸法縮小剤の乾燥速度を上げた場合 にウェハ Wの外周部に形成されるレジストパターン寸法縮小剤の膜の写真である。 符号の説明  FIG. 14 is a photograph showing the appearance of the outer periphery of the wafer. (A) is a photograph of the resist pattern dimension reducing agent film formed on the outer periphery of the wafer when the drying speed of the resist pattern size reducing agent is slow. It is. (B) is a photograph of the film of the resist pattern size reducing agent formed on the outer periphery of the wafer W when the drying speed of the resist pattern size reducing agent is increased. Explanation of symbols
[0017] 1 基板処理システム [0017] 1 substrate processing system
20 塗布処理装置 21 洗浄装置 20 Application processing equipment 21 Cleaning equipment
A 純水  A pure water
B レジストパターン寸法縮小剤  B Resist pattern size reducing agent
W ウェハ  W wafer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の好ましい実施の形態について説明する。図 1は、本実施の形態に かかる基板の処理方法が実施される基板処理システム 1の構成の概略を示す平面 図であり、図 2は、基板処理システム 1の正面図であり、図 3は、基板処理システム 1の 背面図である。 [0018] Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a plan view schematically showing the configuration of a substrate processing system 1 in which the substrate processing method according to the present embodiment is implemented, FIG. 2 is a front view of the substrate processing system 1, and FIG. 2 is a rear view of the substrate processing system 1. FIG.
[0019] 基板処理システム 1は、図 1に示すように例えば複数枚のウェハ Wをカセット単位で 外部から基板処理システム 1に対して搬入出したり、カセット Cに対してウエノ、 Wを搬 入出したりするカセットステーション 2と、一連のウェハ処理中の各種処理を枚様式に 行う複数の処理装置を多段に備えている処理ステーション 3とを一体に接続した構成 を有している。  [0019] As shown in FIG. 1, the substrate processing system 1 carries, for example, a plurality of wafers W in the cassette unit from the outside to the substrate processing system 1, or a wafer C and W from the cassette C. And a processing station 3 having a plurality of processing apparatuses for performing various processes in a series of wafer processing in a single sheet form are integrally connected.
[0020] カセットステーション 2には、カセット載置台 10が設けられ、当該カセット載置台 10 は、複数のカセット Cを X方向(図 1中の上下方向)に一列に載置自在になっている。 カセットステーション 2には、搬送路 11上を X方向に向かって移動可能なウェハ搬送 体 12が設けられている。ウェハ搬送体 12は、カセット Cに収容されたウェハ Wの配列 方向(上下方向)にも移動自在であり、 X方向に配列された各カセット C内の各ウェハ Wに対して選択的にアクセスできる。  [0020] The cassette station 2 is provided with a cassette mounting table 10. The cassette mounting table 10 is capable of mounting a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a wafer transfer body 12 that can move in the X direction on the transfer path 11. The wafer carrier 12 can also move in the arrangement direction (vertical direction) of the wafers W accommodated in the cassette C, and can selectively access each wafer W in each cassette C arranged in the X direction. .
[0021] ウェハ搬送体 12は、鉛直軸周りの Θ方向に回転可能であり、後述する処理ステー シヨン 3側の第 3の処理装置群 G3に属するエクステンション装置 32に対してもァクセ スできる。  The wafer carrier 12 can rotate in the Θ direction around the vertical axis, and can also access the extension device 32 belonging to the third processing device group G3 on the processing station 3 side described later.
[0022] 処理ステーション 3には、その中心部に主搬送装置 13が設けられており、この主搬 送装置 13の周辺には、各種処理装置が多段に配置されて処理装置群が構成されて いる。この基板処理システム 1には、 4つの処理装置群 Gl、 G2、 G3、 G4が配置され ており、第 1及び第 2の処理装置群 Gl、 G2は、基板処理システム 1の正面側に配置 され、第 3の処理装置群 G3は、主搬送装置 13のカセットステーション 2側に配置され 、第 4の処理装置群 G4は、第 3の処理装置群 G3の主搬送装置 13を挟んだ反対側 に配置されている。さらにオプションとして破線で示した第 5の処理装置群 G5を背面 側に別途配置可能となっている。主搬送装置 13は、これらの処理装置群 G1〜G5内 に配置されている後述する各種処理装置に対してウェハ Wを搬送できる。 The processing station 3 is provided with a main transfer device 13 at the center thereof, and various processing devices are arranged in multiple stages around the main transfer device 13 to form a processing device group. Yes. In this substrate processing system 1, four processing device groups Gl, G2, G3, G4 are arranged, and the first and second processing device groups Gl, G2 are arranged on the front side of the substrate processing system 1. The third processing unit group G3 is disposed on the cassette station 2 side of the main transfer unit 13. The fourth processing device group G4 is arranged on the opposite side of the third processing device group G3 across the main transfer device 13. As an option, a fifth processing unit group G5 indicated by a broken line can be separately arranged on the back side. The main transfer device 13 can transfer the wafer W to various processing devices to be described later arranged in these processing device groups G1 to G5.
[0023] 第 1の処理装置群 G1には、例えば図 2に示すようにウェハ W上に所定のレジストパ ターン寸法縮小剤を塗布する塗布処理装置 20と、余分なレジストパターン寸法縮小 剤を洗浄して除去する洗浄装置 21とが下力 順に 2段に配置されている。第 2の処 理装置群 G2も同様に、塗布処理装置 22と、洗浄装置 23とが下力も順に 2段に積み 重ねられている。 In the first processing unit group G 1, for example, as shown in FIG. 2, a coating processing unit 20 for applying a predetermined resist pattern size reducing agent on the wafer W and an excess resist pattern size reducing agent are washed. The cleaning device 21 to be removed in this order is arranged in two stages in descending order. Similarly, in the second processing device group G2, the coating processing device 22 and the cleaning device 23 are also stacked in two stages in order of the lower force.
[0024] 第 3の処理装置群 G3には、例えば図 3に示すようにウェハ Wを冷却する冷却処理 装置 30、 31、ウェハ Wを待機させるエクステンション装置 32、ウェハ Wを加熱する加 熱処理装置 33、 34等が下力も順に例えば 5段に重ねられている。  For example, as shown in FIG. 3, the third processing unit group G 3 includes cooling processing units 30 and 31 for cooling the wafer W, an extension unit 32 for waiting the wafer W, and a heat treatment unit 33 for heating the wafer W. 34 etc., the lower force is also stacked in order, for example, in 5 steps.
[0025] 第 4の処理装置群 G4には、例えば冷却処理装置 40、 41、エクステンション装置 42 、加熱処理装置 43、 44等が下力 順に例えば 5段に積み重ねられている。  [0025] In the fourth processing unit group G4, for example, cooling processing units 40 and 41, an extension unit 42, a heating processing unit 43 and 44, and the like are stacked in, for example, five stages in order of the lower force.
[0026] 冷却処理装置 30、 31、 40、 41は、例えば所定温度に冷却された冷却板上にゥェ ハ Wを載置することによりウェハ Wを冷却できる。また、加熱処理装置 33、 34、 43、 4 4は、例えば所定温度に加熱された熱板にウェハ Wを載置することによりウェハ Wを 加熱できる。  The cooling processing apparatuses 30, 31, 40, 41 can cool the wafer W by placing the wafer W on a cooling plate cooled to a predetermined temperature, for example. The heat treatment apparatuses 33, 34, 43, and 44 can heat the wafer W by placing the wafer W on a hot plate heated to a predetermined temperature, for example.
[0027] 次に、上述の塗布処理装置 20、 22の構成について説明する。図 4は、塗布処理装 置 20の構成の概略を示す縦断面の説明図であり、図 5は、塗布処理装置 20の横断 面の説明図である。  Next, the configuration of the above-described coating treatment apparatuses 20 and 22 will be described. FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of the coating treatment apparatus 20, and FIG. 5 is an explanatory view of a transverse plane of the coating treatment apparatus 20.
[0028] 塗布処理装置 20は、例えば内部を閉鎖可能なケーシング 70を有している。ケーシ ング 70内の中央部には、ウエノ、 Wを保持して回転させるスピンチャック 71を備えて!/ヽ る。スピンチャック 71は、水平な上面を有し、当該上面には、例えばウェハ Wを吸引 する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハ Wを スピンチャック 71上に吸着保持できる。  The coating treatment apparatus 20 has a casing 70 that can be closed inside, for example. In the center of the casing 70, there is a spin chuck 71 that holds and rotates the Ueno and W! The spin chuck 71 has a horizontal upper surface, and a suction port (not shown) for sucking the wafer W, for example, is provided on the upper surface. The wafer W can be sucked and held on the spin chuck 71 by suction from the suction port.
[0029] スピンチャック 71は、例えばモータなどを備えたチャック駆動機構 72により、所定の 速度に回転できる。また、チャック駆動機構 72には、シリンダなどの昇降駆動源が設 けられており、スピンチャック 71は上下動可能である。 [0029] The spin chuck 71 can be rotated at a predetermined speed by a chuck drive mechanism 72 including, for example, a motor. The chuck drive mechanism 72 is provided with a lifting drive source such as a cylinder. The spin chuck 71 can move up and down.
[0030] スピンチャック 71の周囲には、ウェハ W力 飛散又は落下する液体を受け止め、回 収するカップ 73が設けられている。カップ 73の下面には、回収した液体を排出する 排出管 74と、カップ 73内の雰囲気を排気する排気管 75が接続されている。排気管 7 5は、ポンプなどの負圧発生装置 76に接続されており、カップ 73内の雰囲気を強制 的に排気できる。 [0030] Around the spin chuck 71, there is provided a cup 73 for receiving and collecting the liquid that is scattered or dropped by the wafer W force. A lower surface of the cup 73 is connected to a discharge pipe 74 for discharging the recovered liquid and an exhaust pipe 75 for exhausting the atmosphere in the cup 73. The exhaust pipe 75 is connected to a negative pressure generator 76 such as a pump and can forcibly exhaust the atmosphere in the cup 73.
[0031] 図 5に示すようにカップ 73の X方向負方向(図 5の下方向)側には、 Y方向(図 5の 左右方向)に沿って延伸するレール 80が形成されている。レール 80は、例えばカツ プ 73の Y方向負方向(図 5の左方向)側の外方力 Y方向正方向(図 5の右方向)側 の外方まで形成されている。レール 80には、例えば二本のアーム 81、 82が取り付け られている。  As shown in FIG. 5, a rail 80 extending along the Y direction (left and right direction in FIG. 5) is formed on the negative side of the cup 73 in the X direction (downward direction in FIG. 5). The rail 80 is formed, for example, to the outer side of the cup 73 in the Y direction negative direction (left direction in FIG. 5) on the Y direction positive direction (right direction in FIG. 5). For example, two arms 81 and 82 are attached to the rail 80.
[0032] 第 1のアーム 81には、図 4及び図 5に示すようにレジストパターン寸法縮小剤を吐 出する第 1のノズル 83が支持されている。第 1のアーム 81は、図 5に示すノズル駆動 部 84により、レール 80上を移動自在であり、第 1のノズル 83を、カップ 73の Y方向正 方向側の外方に設置された待機部 85からカップ 73内のウェハ Wの中心部上方まで 移動させることができる。また、第 1のアーム 81は、ノズル駆動部 84によって昇降自 在であり、第 1のノズル 83の高さを調整できる。  As shown in FIGS. 4 and 5, the first arm 81 supports a first nozzle 83 for discharging the resist pattern size reducing agent. The first arm 81 is movable on the rail 80 by a nozzle driving unit 84 shown in FIG. 5, and the first nozzle 83 is installed on the outside of the cup 73 on the Y direction positive side. It can be moved from 85 to above the center of the wafer W in the cup 73. Further, the first arm 81 is moved up and down by the nozzle driving unit 84, and the height of the first nozzle 83 can be adjusted.
[0033] 第 1のノズル 83には、図 4に示すように縮小剤供給源 86に連通する供給管 87が接 続されている。本実施の形態においては、例えば縮小剤供給源 86には、水溶性で あって、熱によって硬化して水に対する不溶性に変質し、さらにその変質後にエッチ ング材に対する耐性を有するレジストパターン寸法縮小剤 (RELACS剤)が貯留され る。  As shown in FIG. 4, a supply pipe 87 that communicates with a reducing agent supply source 86 is connected to the first nozzle 83. In the present embodiment, for example, the reducing agent supply source 86 includes a resist pattern size reducing agent that is water-soluble, is cured by heat, and becomes insoluble in water, and has resistance to an etching material after the alteration. (RELACS) is stored.
[0034] 第 2のアーム 82には、純水を吐出する第 2のノズル 90が支持されている。第 2のァ ーム 82は、例えば図 5に示すノズル駆動部 91によってレール 80上を移動自在であり 、第 2のノズル 90を、カップ 73の Y方向負方向側の外方に設けられた待機部 92から カップ 73内のウェハ Wの中心部上方まで移動させることができる。また、ノズル駆動 部 91によって、第 2のアーム 82は昇降自在であり、第 2のノズル 90の高さも調節でき る。 [0035] 第 2のノズル 90には、図 4に示すように純水供給源 93に連通する供給管 94が接続 されている。 The second arm 82 supports a second nozzle 90 that discharges pure water. The second arm 82 is movable on the rail 80 by, for example, a nozzle driving unit 91 shown in FIG. 5, and the second nozzle 90 is provided outside the cup 73 on the Y direction negative direction side. It can be moved from the standby part 92 to the upper part of the center of the wafer W in the cup 73. Further, the second arm 82 can be moved up and down by the nozzle driving section 91, and the height of the second nozzle 90 can be adjusted. As shown in FIG. 4, a supply pipe 94 communicating with a pure water supply source 93 is connected to the second nozzle 90.
[0036] 例えばケーシング 70の天井面の中央部には、給気管 100が接続されている。給気 管 100には、温湿度調整装置 101が接続されている。温湿度調整装置 101により温 度と湿度の調整された気体をケーシング 70内に供給することにより、ケーシング 70内 を所定の温度と湿度の雰囲気に調整できる。  For example, an air supply pipe 100 is connected to the central portion of the ceiling surface of the casing 70. A temperature / humidity adjusting device 101 is connected to the air supply pipe 100. By supplying the gas whose temperature and humidity are adjusted by the temperature and humidity adjusting device 101 into the casing 70, the inside of the casing 70 can be adjusted to an atmosphere of a predetermined temperature and humidity.
[0037] なお、塗布処理装置 22の構成は、上述の塗布処理装置 20と同様であるので、説 明を省略する。  [0037] The configuration of the coating treatment apparatus 22 is the same as that of the above-described coating treatment apparatus 20, and a description thereof will be omitted.
[0038] 次に、洗浄装置 21、 23の構成について説明する。図 6は、洗浄装置 21の構成の 概略を示す縦断面の説明図である。  Next, the configuration of the cleaning devices 21 and 23 will be described. FIG. 6 is an explanatory view of a longitudinal section showing an outline of the configuration of the cleaning device 21.
[0039] 洗浄装置 21は、例えばケーシング 110内に、ウェハ Wを保持して回転させるスピン チャック 111を備えている。スピンチャック 111は、チャック駆動機構 112により所定の 速度で回転できる。スピンチャック 111の周囲には、ウェハ Wから飛散又は落下する 液体を受け止め、回収するカップ 113が設けられている。カップ 113の下面には、回 収した液体を排出する排出管 114が接続されて 、る。  The cleaning device 21 includes, for example, a spin chuck 111 that holds and rotates the wafer W in the casing 110. The spin chuck 111 can be rotated at a predetermined speed by the chuck driving mechanism 112. Around the spin chuck 111, there is provided a cup 113 that receives and collects the liquid scattered or dropped from the wafer W. A discharge pipe 114 for discharging the collected liquid is connected to the lower surface of the cup 113.
[0040] ケーシング 110内には、純水を吐出する純水吐出ノズル 120が設けられている。純 水吐出ノズル 120は、水平方向に移動自在なアーム 121により保持されており、カツ プ 113の外方の待機部 122力らカップ 113内のウェハ Wの中心部上方まで移動でき る。純水吐出ノズル 120は、供給管 123によって純水供給源 124に連通している。  In the casing 110, a pure water discharge nozzle 120 for discharging pure water is provided. The pure water discharge nozzle 120 is held by an arm 121 that is movable in the horizontal direction, and can move to the upper part of the center of the wafer W in the cup 113 by the standby part 122 force outside the cup 113. The pure water discharge nozzle 120 communicates with a pure water supply source 124 through a supply pipe 123.
[0041] なお、洗浄装置 23の構成は、上述の洗浄装置 21と同様であるので、説明を省略 する。  [0041] The configuration of the cleaning device 23 is the same as that of the above-described cleaning device 21, and thus the description thereof is omitted.
[0042] 上記基板処理システム 1で行われるウェハ処理は、例えば図 1に示すようにカセット ステーション 2に設けられた制御部 130によって制御されている。制御部 130は、例 えばコンピュータであり、プログラム格納部を有している。そのプログラム格納部には 、上述の各種処理装置や搬送体などの駆動系の動作を制御して、後述する所定の レシピのウェハ処理を実行するプログラム Pが格納されている。なお、このプログラム Pは、コンピュータに読み取り可能な記録媒体に記録されていたものであって、その 記録媒体力も制御部 130にインストールされたものであってもよい。 [0043] 次に、以上のように構成された基板処理システム 1で行われるウェハ処理について 説明する。このウェハ処理は、ウェハ W上のレジストパターンのホールや溝などの凹 みの内壁面に硬化膜を形成してレジストパターンの寸法を縮小するための処理であ る。図 7は、このウェハ処理の主な工程を示すフロー図である。 The wafer processing performed in the substrate processing system 1 is controlled by a control unit 130 provided in the cassette station 2, for example, as shown in FIG. The control unit 130 is a computer, for example, and has a program storage unit. The program storage unit stores a program P for controlling the operation of the drive systems such as the above-described various processing apparatuses and transfer bodies to execute wafer processing of a predetermined recipe described later. The program P may be recorded on a computer-readable recording medium, and the recording medium force may also be installed in the control unit 130. Next, wafer processing performed in the substrate processing system 1 configured as described above will be described. This wafer process is a process for reducing the dimension of the resist pattern by forming a cured film on the inner wall surface of a recess such as a hole or groove of the resist pattern on the wafer W. FIG. 7 is a flowchart showing the main steps of this wafer processing.
[0044] 先ず、カセット載置台 10上のカセット C内のウェハ W力 ウェハ搬送体 12によって 取り出され、第 3の処理装置群 G3のエクステンション装置 32に搬送される。その後ゥ エノ、 Wは、主搬送装置 13によって例えば冷却処理装置 30に搬送され、所定温度に 温度調節され、その後塗布処理装置 20に搬送される。図 8は、塗布処理装置 20で 行われる塗布処理のウエノヽ Wの回転速度の変移を示す。図 9は、塗布処理の各ェ 程におけるウェハ Wの状態を示すフロー図である。  First, the wafer W force in the cassette C on the cassette mounting table 10 is taken out by the wafer transfer body 12 and transferred to the extension device 32 of the third processing unit group G3. Thereafter, the Weno and W are transported to the cooling processing device 30 by the main transport device 13, adjusted to a predetermined temperature, and then transported to the coating processing device 20. FIG. 8 shows a change in the rotational speed of the wafer W in the coating process performed by the coating processing apparatus 20. FIG. 9 is a flowchart showing the state of the wafer W in each step of the coating process.
[0045] 塗布処理装置 20に搬送されたウェハ Wは、先ず図 4に示すようにスピンチャック 71 に吸着保持される。次に第 2のノズル 90がウェハ Wの中心部の上方まで移動する。 その後、図 9 (a)に示すように表面にレジストパターン Pが形成されているウェハ Wの 中心部に第 2のノズル 90から所定量の純水 Aが供給される(図 7の工程 Sl)。その後 、ウェハ Wは例えば lOOOrpm程度で回転され、図 9 (b)に示すようにウェハ W上の 純水 Aが遠心力により広げられる。このとき、純水 Aは、ウェハ Wの表面の全体に広 げられず、ウェハ Wの中心部付近に円形の水溜り状に広げられる。所定量の純水 A を供給し終えた第 2のノズル 90は、待機部 92に戻される。  The wafer W transferred to the coating treatment apparatus 20 is first sucked and held by the spin chuck 71 as shown in FIG. Next, the second nozzle 90 moves to above the center of the wafer W. Thereafter, as shown in FIG. 9 (a), a predetermined amount of pure water A is supplied from the second nozzle 90 to the center of the wafer W on which the resist pattern P is formed on the surface (step Sl in FIG. 7). . Thereafter, the wafer W is rotated, for example, at about lOOOOrpm, and the pure water A on the wafer W is spread by centrifugal force as shown in FIG. 9 (b). At this time, the pure water A is not spread over the entire surface of the wafer W, but is spread in a circular puddle shape near the center of the wafer W. The second nozzle 90 that has finished supplying the predetermined amount of pure water A is returned to the standby unit 92.
[0046] 次に、第 1のノズル 83がウェハ Wの中心部の上方まで移動される。このときウェハ Wの回転速度が 30rpm程度に下げられる。ウェハ Wの回転速度が下げられた状態 で、図 9 (c)に示すように第 1のノズル 83から所定量のレジストパターン寸法縮小剤 B がウェハ Wの中心部の純水 A上に供給される。これにより、ウェハ Wの中心付近に溜 まった純水 Aにレジストパターン寸法縮小剤 Bが混合される。レジストパターン寸法縮 小剤 Bを供給し終えた第 1のノズル 83は、待機部 85に戻される。その後、ウェハ Wの 回転速度が例えば 2000rpm程度まで上昇され、図 9 (d)に示すようにレジストパター ン寸法縮小剤 Bがウェハ Wの表面の全体に広げられる。こうして図 10に示すようにゥ ェハ W上のレジストパターン Rの凹凸の表面上にレジストパターン寸法縮小剤 Bが塗 布される(図 7に示す工程 S2)。 [0047] 次に、ウェハ Wの回転速度が lOOrpm程度にー且下げられる。その後ウェハ Wの 回転速度が第 1の回転速度としての 1300〜1500rpm程度に上げられ、レジストパタ ーン寸法縮小剤 Bの液膜が所定の膜厚に調整される(図 7に示す工程 S3)。膜厚が 調整された後、ウェハ Wの回転速度がさらに 3000rpm程度に上げられ、レジストパタ ーン寸法縮小剤 Bが乾燥される(図 7に示す工程 S4)。 Next, the first nozzle 83 is moved to above the center of the wafer W. At this time, the rotation speed of the wafer W is lowered to about 30 rpm. With the rotation speed of the wafer W lowered, a predetermined amount of resist pattern size reducing agent B is supplied from the first nozzle 83 onto the pure water A at the center of the wafer W as shown in FIG. 9 (c). The As a result, the resist pattern size reducing agent B is mixed with the pure water A collected near the center of the wafer W. The first nozzle 83 that has finished supplying the resist pattern dimension reducing agent B is returned to the standby unit 85. Thereafter, the rotation speed of the wafer W is increased to about 2000 rpm, for example, and the resist pattern size reducing agent B is spread over the entire surface of the wafer W as shown in FIG. Thus, as shown in FIG. 10, the resist pattern size reducing agent B is applied to the uneven surface of the resist pattern R on the wafer W (step S2 shown in FIG. 7). [0047] Next, the rotational speed of the wafer W is lowered to about lOOrpm. Thereafter, the rotation speed of the wafer W is increased to about 1300 to 1500 rpm as the first rotation speed, and the liquid film of the resist pattern size reducing agent B is adjusted to a predetermined film thickness (step S3 shown in FIG. 7). After the film thickness is adjusted, the rotation speed of the wafer W is further increased to about 3000 rpm, and the resist pattern size reducing agent B is dried (step S4 shown in FIG. 7).
[0048] その後、ウエノ、 Wの回転が停止され、一連の塗布処理が終了する。  [0048] Thereafter, the rotation of Ueno and W is stopped, and a series of coating processes is completed.
[0049] 塗布処理の終了したウェハ Wは、次に加熱処理装置 33に搬送され、加熱される。  The wafer W that has been subjected to the coating process is then transferred to the heat treatment apparatus 33 and heated.
このカロ熱により、図 11に示すようにレジストパターン Pの凹凸表面に近!、レジストパタ ーン寸法縮小剤 Bの下層部分 B 1が硬化して、その下層部分 B 1が水に対する不溶 性に変質する。これにより、レジストパターン Pの凹みの内壁面にレジストパターン寸 法縮小剤 Bの硬化膜が形成される(図 7の工程 S5)。  As shown in FIG. 11, this caloric heat is close to the uneven surface of the resist pattern P! The lower layer portion B 1 of the resist pattern size reducing agent B is cured, and the lower layer portion B 1 becomes insoluble in water. To do. As a result, a cured film of the resist pattern dimension reducing agent B is formed on the inner wall surface of the recess of the resist pattern P (step S5 in FIG. 7).
[0050] 加熱処理の終了したウェハ Wは、例えば冷却処理装置 40に搬送され、例えば常 温に戻された後、洗浄装置 21に搬入される。洗浄装置 21に搬入されたウェハ Wは、 図 6に示すようにスピンチャック 111に保持される。その後ウェハ Wは、スピンチャック 111〖こより回転され、その回転された状態で、純水吐出ノズル 120からウェハ Wの中 心部に除去液となる純水が供給される。これにより、レジストパターン寸法縮小剤 Bの 未硬化で水溶性のままの上層部分(下層部分 B1以外の部分)が洗い落とされる(図 7の工程 S6)。その後、ウェハ Wは、高速回転され、振り切り乾燥される。こうして、図 12に示すようにレジストパターン Pの凹みの内壁面にレジストパターン寸法縮小剤 B 力 なる硬化膜 (下層部分 B1)が残されて、レジストパターン Pの寸法が縮小される。  The wafer W that has been subjected to the heat treatment is transferred to, for example, the cooling processing apparatus 40, and returned to the normal temperature, for example, and then transferred to the cleaning apparatus 21. The wafer W carried into the cleaning device 21 is held by the spin chuck 111 as shown in FIG. Thereafter, the wafer W is rotated by the spin chuck 111 and the pure water as the removal liquid is supplied from the pure water discharge nozzle 120 to the center of the wafer W in the rotated state. As a result, the uncured and water-soluble upper layer portion (portion other than the lower layer portion B1) of the resist pattern size reducing agent B is washed away (step S6 in FIG. 7). Thereafter, the wafer W is rotated at a high speed and dried by shaking. Thus, as shown in FIG. 12, the cured film (lower layer portion B1) having the resist pattern size reducing agent B force is left on the inner wall surface of the recess of the resist pattern P, and the size of the resist pattern P is reduced.
[0051] その後、洗浄処理の終了したウェハ Wは、例えば主搬送装置 13とウェハ搬送体 12 によって処理ステーション 3からカセットステーション 2のカセット Cに戻される。  [0051] After that, the wafer W after the cleaning process is returned from the processing station 3 to the cassette C in the cassette station 2 by the main transfer device 13 and the wafer transfer body 12, for example.
[0052] 以上の実施の形態によれば、ウェハ W上に純水 Aを供給した後に、レジストパター ン寸法縮小剤 Bを供給したので、レジストパターン Pに対するレジストパターン寸法縮 小剤 Bの濡れ性が向上し、レジストパターン P上でレジストパターン寸法縮小剤 Bが広 力きやすくなる。このため、少量のレジストパターン寸法縮小剤 Bの供給によりウェハ Wの表面全体にレジストパターン寸法縮小剤 Bを塗布できる。この結果、レジストパタ ーン寸法縮小剤 Bの使用量を低減できる。また、レジストパターン寸法縮小剤 Bが広 力滑り易いので、ウェハ面内でレジストパターン寸法縮小剤 Bを斑なく均一に塗布する ことができる。 [0052] According to the above embodiment, since the resist pattern size reducing agent B is supplied after supplying pure water A onto the wafer W, the wettability of the resist pattern size reducing agent B with respect to the resist pattern P As a result, the resist pattern size reducing agent B is easily spread on the resist pattern P. Therefore, the resist pattern dimension reducing agent B can be applied to the entire surface of the wafer W by supplying a small amount of the resist pattern dimension reducing agent B. As a result, the amount of resist pattern size reducing agent B used can be reduced. Resist pattern dimension reducing agent B is widely used. Resist pattern size reducing agent B can be applied evenly on the wafer surface without unevenness because it is easy to slip.
[0053] 以上の実施の形態によれば、ウェハ W上に純水 Aが供給された後にウェハ Wが回 転され、その純水 Aがウェハ Wの表面全体に広げられない程度に円状に広げられる 。そして、その純水 A上にレジストパターン寸法縮小剤 Bが供給され、ウェハ Wがさら に回転されて、レジストパターン寸法縮小剤 Bがウェハ Wの表面全体に広げられる。 こうすることにより、ウエノ、 W上で純水 Aとレジストパターン寸法縮小剤 Bが適正に混 合され、その混合によりレジストパターン寸法縮小剤 Bのレジストパターン Pに対する 撥水性が低下して、レジストパターン寸法縮小剤 Bがウェハ Wの表面全体に適正に 広がる。また、ウエノ、 Wの中心部で円状に溜まった純水 Aにレジストパターン寸法縮 小剤 Bが供給され、それからレジストパターン寸法縮小剤 Bが遠心力により外方向に 向けて一気に広げられる。この結果、レジストパターン縮小剤 Bがウェハ W面内で斑 なく均一に塗布される。  According to the above embodiment, the wafer W is rotated after the pure water A is supplied onto the wafer W, and the pure water A is circular so as not to spread over the entire surface of the wafer W. Can be spread. Then, the resist pattern dimension reducing agent B is supplied onto the pure water A, the wafer W is further rotated, and the resist pattern dimension reducing agent B is spread over the entire surface of the wafer W. By doing so, pure water A and resist pattern size reducing agent B are properly mixed on Ueno and W, and this mixing reduces the water repellency of resist pattern size reducing agent B to resist pattern P. Dimension reducing agent B spreads properly over the entire surface of wafer W. In addition, resist pattern dimension reducing agent B is supplied to pure water A collected in a circular shape at the center of Ueno and W, and then resist pattern dimension reducing agent B is spread outward at a stretch by centrifugal force. As a result, the resist pattern reducing agent B is uniformly applied on the wafer W surface without any spots.
[0054] レジストパターン寸法縮小剤 Bをウェハ Wの表面の全体に広げた後に、ウェハ Wの 回転速度を一旦下げて、そこから第 1の回転速度に上げてレジストパターン寸法縮小 剤 Bの膜厚を調整するようにしたので、膜厚調整時に、常にレジストパターン寸法縮 小剤 Bにウェハ Wの半径方向の外方向の慣性が働き、レジストパターン寸法縮小剤 Bがウェハ Wの外方側に流動するので、ウェハ面内の膜厚が斑なく調整される。  [0054] After the resist pattern size reducing agent B is spread over the entire surface of the wafer W, the rotational speed of the wafer W is temporarily reduced and then increased to the first rotational speed to increase the film thickness of the resist pattern size reducing agent B. Therefore, when adjusting the film thickness, the resist pattern dimension reducing agent B is always subjected to the inertia in the radial direction of the wafer W, and the resist pattern dimension reducing agent B flows to the outer side of the wafer W. Therefore, the film thickness within the wafer surface is adjusted without unevenness.
[0055] なお、レジストパターン寸法縮小剤 Bをウェハ Wの表面の全体に広げた後に、必ず しもウェハ Wの回転速度を一時的に低下させる必要はなぐレジストパターン寸法縮 小剤 Bをウェハ Wの表面の全体に広げた後に、直ちにウェハ Wの回転速度を第 1の 回転速度に調整してもよい。  [0055] After the resist pattern size reducing agent B is spread over the entire surface of the wafer W, it is not always necessary to temporarily reduce the rotational speed of the wafer W. Immediately after spreading over the entire surface of the wafer, the rotation speed of the wafer W may be adjusted to the first rotation speed.
[0056] ところで、回転塗布されたレジストパターン寸法縮小剤 Bの乾燥速度が遅いと、ゥェ ハ Wの外周部のレジストパターン寸法縮小剤 Bの膜に穴状の欠陥ができることが発 明者によって確認されている。上記実施の形態によれば、ウェハ Wを第 1の回転速 度で回転させレジストパターン寸法縮小剤 Bの膜厚を調整した後、それより速い第 2 の回転速度でウェハ Wを高速回転させてレジストパターン寸法縮小剤 Bを乾燥させ たので、レジストパターン寸法縮小剤 Bの乾燥速度が上がり、ウェハ Wの外周部にお いてレジストパターン寸法縮小剤 Bの膜を適正に形成できる。 [0056] By the way, when the drying speed of the spin-coated resist pattern size reducing agent B is slow, a hole-like defect can be formed in the film of the resist pattern size reducing agent B on the outer periphery of the wafer W. It has been confirmed. According to the above embodiment, after adjusting the film thickness of the resist pattern dimension reducing agent B by rotating the wafer W at the first rotation speed, the wafer W is rotated at a high speed at a higher second rotation speed. Since the resist pattern size reducing agent B is dried, the drying speed of the resist pattern size reducing agent B is increased and Thus, the resist pattern dimension reducing agent B film can be properly formed.
[0057] 前記実施の形態では、ウェハ Wの回転速度を第 2の回転速度に上げることによりレ ジストパターン寸法縮小剤 Bの乾燥を促進させて ヽたが、乾燥工程時にウェハ Wの 外周部に乾燥気体を供給することによりレジストパターン寸法縮小剤 Bの乾燥を促進 させてちょい。 In the above embodiment, drying of the resist pattern size reducing agent B is promoted by increasing the rotation speed of the wafer W to the second rotation speed. Let the drying of the resist pattern dimension reducing agent B accelerate by supplying a dry gas.
[0058] かかる場合、例えば図 13に示すように塗布処理装置 20に、ウェハ Wの外周部に対 して乾燥気体としての例えば露点の低い窒素ガスを噴出する第 3のノズル 150が設 けられる。第 3のノズル 150は、例えば水平移動自在なノズルアーム 151に支持され ており、スピンチャック 71内のウェハ Wの表面上を水平方向に移動できる。第 3のノ ズル 150は、例えば給気管 152を通じて窒素ガス供給源 153に接続されている。そ して、ウェハ W上のレジストパターン寸法縮小剤 Bの膜厚が調整され、そのレジストパ ターン寸法縮小剤 Bを乾燥させる際に、第 3のノズル 150がウェハ Wの外周部上方に 移動し、その第 3のノズル 150から回転されたウェハ Wの外周部に対して窒素ガスが 供給される。こうすること〖こより、ウェハ Wの外周部のレジストパターン寸法縮小剤 Bの 乾燥が促進され、ウェハ W上に欠陥のない膜を形成できる。図 14 (a)は、レジストパ ターン寸法縮小剤 Bの乾燥速度が遅い場合のウェハ Wの外周部の膜の表面写真で あり、図 14 (b)は、上述のようにレジストパターン寸法縮小剤 Bの乾燥速度を上げた 場合のウェハ Wの外周部の膜の表面写真である。図 14 (a)では、穴状の欠陥が形 成され、図 14 (b)では、穴状の欠陥が解消されていることが確認できる。  In such a case, for example, as shown in FIG. 13, the coating processing apparatus 20 is provided with a third nozzle 150 that ejects, for example, nitrogen gas having a low dew point as a dry gas to the outer peripheral portion of the wafer W. . The third nozzle 150 is supported by, for example, a horizontally movable nozzle arm 151 and can move horizontally on the surface of the wafer W in the spin chuck 71. The third nozzle 150 is connected to a nitrogen gas supply source 153 through an air supply pipe 152, for example. Then, the film thickness of the resist pattern dimension reducing agent B on the wafer W is adjusted, and when the resist pattern dimension reducing agent B is dried, the third nozzle 150 moves above the outer periphery of the wafer W, Nitrogen gas is supplied from the third nozzle 150 to the outer periphery of the wafer W rotated. As a result, drying of the resist pattern size reducing agent B on the outer periphery of the wafer W is promoted, and a film having no defect can be formed on the wafer W. Fig. 14 (a) is a photograph of the surface of the film on the outer periphery of the wafer W when the drying speed of the resist pattern size reducing agent B is slow, and Fig. 14 (b) is the resist pattern size reducing agent B as described above. 6 is a photograph of the surface of the film on the outer periphery of the wafer W when the drying speed is increased. In Fig. 14 (a), it can be confirmed that a hole-like defect is formed, and in Fig. 14 (b), the hole-like defect is eliminated.
[0059] また、塗布処理時に、給気管 100からケーシング 70内に、少なくともケーシング 70 の外部よりも湿度が低 、乾燥気体を供給して、ウェハ Wの周辺雰囲気の湿度を下げ るようにしてもよい。例えばケーシング 70の外部の雰囲気が湿度 45% (温度 23°C)に 設定されている場合、ケーシング 70内のウェハ Wの周辺雰囲気が湿度 40%以下( 温度 23°C)に設定される。こうすること〖こよっても、レジストパターン寸法縮小剤 Bの乾 燥が促進され、欠陥のない膜が形成される。なお、より好ましくはウェハ Wの周辺雰 囲気を湿度 40%に設定するとよい。  [0059] Further, at the time of the coating treatment, the humidity is lower than at least the outside of the casing 70 from the air supply pipe 100 into the casing 70, and a dry gas is supplied to reduce the humidity of the ambient atmosphere around the wafer W. Good. For example, when the atmosphere outside the casing 70 is set to a humidity of 45% (temperature 23 ° C), the ambient atmosphere around the wafer W in the casing 70 is set to a humidity of 40% or less (temperature 23 ° C). Even if this is done, drying of the resist pattern dimension reducing agent B is promoted, and a film having no defect is formed. More preferably, the ambient atmosphere around the wafer W is set to a humidity of 40%.
[0060] 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、 本発明はカゝかる例に限定されない。当業者であれば、特許請求の範囲に記載された 思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであ り、それらについても当然に本発明の技術的範囲に属するものと了解される。 As described above, the preferred embodiments of the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. A person skilled in the art will be described in the claims. It is clear that various changes or modifications can be made within the scope of the idea, and it is understood that these also belong to the technical scope of the present invention.
[0061] 例えば、以上の実施の形態では、基板処理システム 1にお 、てレジストパターンの 寸法を縮小するウェハ処理のみが行われて 、たが、レジストパターンを形成するフォ トリソグラフイエ程も行うようにしてもよい。かかる場合、基板処理システム 1内に、処理 ステーション 3に、ウェハ Wにレジスト液を塗布してレジスト膜を形成するレジスト塗布 処理装置や、ウェハ W上のレジスト膜を現像する現像処理装置を設け、またレジスト 膜を露光する露光装置を処理ステーション 3に隣接して設けるようにしてもよい。  [0061] For example, in the above embodiment, only the wafer processing for reducing the size of the resist pattern is performed in the substrate processing system 1, but the photolithography process for forming the resist pattern is also performed. You may do it. In such a case, in the substrate processing system 1, a processing station 3 is provided with a resist coating processing apparatus that forms a resist film by applying a resist solution to the wafer W, and a development processing apparatus that develops the resist film on the wafer W. An exposure apparatus for exposing the resist film may be provided adjacent to the processing station 3.
[0062] 以上の実施の形態では、塗布処理後に、レジストパターン寸法縮小剤 Bの下層部 分 B1を加熱することによって変質させ硬化させていたが、光によって変質させてもよ い。また、以上の実施の形態では、塗布処理後に、レジストパターン寸法縮小剤 Bの 下層部分 B1が水に対する不溶性に変質され硬化され、その後純水によって不要の 上層部分が除去されていたが、塗布処理後にレジストパターン寸法縮小剤 Bの下層 部分 B1が現像液に対する不溶性に変質され、その後除去液としての現像液によつ て不要の上層部分を除去するようにしてもよい。この場合、レジストパターン寸法縮小 剤 Bとして、熱や光により現像液に対する不溶性に変質するものが用いられる。  In the above embodiment, after the coating process, the lower layer portion B1 of the resist pattern dimension reducing agent B is altered and cured by heating, but it may be altered by light. In the above embodiment, after the coating process, the lower layer portion B1 of the resist pattern size reducing agent B is changed to be insoluble in water and cured, and then the unnecessary upper layer portion is removed with pure water. Later, the lower layer portion B1 of the resist pattern size reducing agent B may be insoluble in the developer, and then the unnecessary upper layer portion may be removed by the developer as a removing solution. In this case, as the resist pattern size reducing agent B, a resist pattern dimensional reducing agent B that is insoluble in a developer by heat or light is used.
[0063] また本発明は、ウェハ W以外の FPD (フラットパネルディスプレイ)、フォトマスク用 のマスクレチクルなどに形成されたレジストパターンの寸法を縮小する際の基板処理 にも適用できる。  The present invention can also be applied to substrate processing when reducing the dimension of a resist pattern formed on an FPD (flat panel display) other than the wafer W, a mask reticle for a photomask, or the like.
産業上の利用可能性  Industrial applicability
[0064] 本発明は、 RELACS技術を用いてレジストパターンの寸法を縮小する場合におい て、レジストパターン寸法縮小剤の使用量を低減し、なおかつ基板面内のパターン 寸法を均一にする際に有用である。 [0064] The present invention is useful for reducing the amount of a resist pattern size reducing agent used when reducing the size of a resist pattern using the RELACS technology and making the pattern size in the substrate plane uniform. is there.

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成されたレジストパターンの寸法を縮小するための基板の処理方法であ つて、  [1] A substrate processing method for reducing the size of a resist pattern formed on a substrate.
レジストパターンが形成された基板上に純水を供給する純水供給工程と、 その後、基板上に水溶性のレジストパターン寸法縮小剤を供給し、基板を回転させ て、基板の表面全体に前記レジストパターン寸法縮小剤を塗布する塗布工程と、 その後、レジストパターンの表面に接する前記レジストパターン寸法縮小剤の下層部 分を除去液に対する不溶性に変質させる変質工程と、  A pure water supplying step of supplying pure water onto the substrate on which the resist pattern is formed, and then supplying a water-soluble resist pattern size reducing agent onto the substrate, rotating the substrate, and applying the resist to the entire surface of the substrate. An application step of applying a pattern size reducing agent; and thereafter, an alteration step of changing the lower layer portion of the resist pattern size reducing agent in contact with the surface of the resist pattern to be insoluble in the removal solution;
その後、前記レジストパターン寸法縮小剤の変質していない上層部分を除去液によ つて除去する除去工程と、を有する。  And a removal step of removing the unmodified upper layer portion of the resist pattern size reducing agent with a removal liquid.
[2] 請求項 1に記載の基板の処理方法にお!、て、  [2] The substrate processing method according to claim 1!
前記純水供給工程は、基板を回転させて、基板上に供給された純水を基板の表面 全体に広がらない程度に広げる工程を有し、  The pure water supply step includes a step of rotating the substrate to expand the pure water supplied on the substrate to such an extent that it does not spread over the entire surface of the substrate,
その後の前記塗布工程では、その広がった純水に前記レジストパターン寸法縮小剤 を供給し、基板の回転によって当該レジストパターン寸法縮小剤を基板の表面全体 に広げる。  In the subsequent coating step, the resist pattern size reducing agent is supplied to the spread pure water, and the resist pattern size reducing agent is spread over the entire surface of the substrate by rotating the substrate.
[3] 請求項 2に記載の基板の処理方法にぉ 、て、  [3] In the substrate processing method according to claim 2,
前記塗布工程において前記レジストパターン寸法縮小剤が基板の表面全体に広が つた後に、  After the resist pattern size reducing agent spreads over the entire surface of the substrate in the coating step,
基板を第 1の回転速度で回転させて前記レジストパターン寸法縮小剤の膜厚を調整 する工程と、その後、第 1の回転速度よりも速い第 2の回転速度で回転させて前記レ ジストパターン寸法縮小剤を乾燥させる工程を有する。  Adjusting the film thickness of the resist pattern size reducing agent by rotating the substrate at a first rotation speed, and then rotating the substrate at a second rotation speed that is faster than the first rotation speed. A step of drying the reducing agent.
[4] 請求項 3に記載の基板の処理方法にお 、て、  [4] In the substrate processing method according to claim 3,
前記塗布工程において前記レジストパターン寸法縮小剤が基板の表面全体に広が つた後に、基板の回転速度を一旦下げ、その後に基板を前記第 1の回転速度まで上 昇させて前記レジストパターン寸法縮小剤の膜厚を調整する。  After the resist pattern size reducing agent spreads over the entire surface of the substrate in the coating step, the rotational speed of the substrate is once reduced, and then the substrate is raised to the first rotational speed to increase the resist pattern size reducing agent. Adjust the film thickness.
[5] 請求項 3に記載の基板の処理方法にぉ 、て、  [5] The substrate processing method according to claim 3, wherein
前記レジストパターン寸法縮小剤を乾燥させる際には、基板の外周部に乾燥気体を 供給する。 When drying the resist pattern size reducing agent, dry gas is applied to the outer periphery of the substrate. Supply.
[6] 請求項 3に記載の基板の処理方法にぉ 、て、  [6] The substrate processing method according to claim 3, wherein
少なくとも前記レジストパターン寸法縮小剤を乾燥させる際には、基板の周辺雰囲気 を 40%以下の湿度にする。  At least when drying the resist pattern size reducing agent, the ambient atmosphere of the substrate is set to a humidity of 40% or less.
[7] 基板の処理方法を基板処理システムで実行するためのコンピュータプログラムが格 納されたコンピュータ読み取り可能な記憶媒体であって、 [7] A computer-readable storage medium storing a computer program for executing a substrate processing method in a substrate processing system,
前記基板の処理方法は、基板上に形成されたレジストパターンの寸法を縮小するた めの基板の処理方法であり、  The substrate processing method is a substrate processing method for reducing the size of a resist pattern formed on a substrate,
この基板の処理方法は、  This substrate processing method is:
レジストパターンが形成された基板上に純水を供給する純水供給工程と、 その後、基板上に水溶性のレジストパターン寸法縮小剤を供給し、基板を回転させ て、基板の表面全体に前記レジストパターン寸法縮小剤を塗布する塗布工程と、 その後、レジストパターンの表面に接する前記レジストパターン寸法縮小剤の下層部 分を除去液に対する不溶性に変質させる変質工程と、  A pure water supplying step of supplying pure water onto the substrate on which the resist pattern is formed, and then supplying a water-soluble resist pattern size reducing agent onto the substrate, rotating the substrate, and applying the resist to the entire surface of the substrate. An application step of applying a pattern size reducing agent; and thereafter, an alteration step of changing the lower layer portion of the resist pattern size reducing agent in contact with the surface of the resist pattern to be insoluble in the removal solution;
その後、前記レジストパターン寸法縮小剤の変質していない上層部分を除去液によ つて除去する除去工程と、を有する。  And a removal step of removing the unmodified upper layer portion of the resist pattern size reducing agent with a removal liquid.
PCT/JP2007/052215 2006-02-13 2007-02-08 Substrate treating method, and computer-readable storage medium WO2007094229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020087019777A KR101300892B1 (en) 2006-02-13 2007-02-08 Substrate treating method, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-035416 2006-02-13
JP2006035416A JP4624936B2 (en) 2006-02-13 2006-02-13 Substrate processing method and program

Publications (1)

Publication Number Publication Date
WO2007094229A1 true WO2007094229A1 (en) 2007-08-23

Family

ID=38371416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052215 WO2007094229A1 (en) 2006-02-13 2007-02-08 Substrate treating method, and computer-readable storage medium

Country Status (3)

Country Link
JP (1) JP4624936B2 (en)
KR (1) KR101300892B1 (en)
WO (1) WO2007094229A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091722B2 (en) * 2008-03-04 2012-12-05 東京エレクトロン株式会社 Coating processing method, program, computer storage medium, and coating processing apparatus
JP5091764B2 (en) * 2008-05-20 2012-12-05 東京エレクトロン株式会社 Coating processing method, program, computer storage medium, and coating processing apparatus
KR101447759B1 (en) * 2008-12-16 2014-10-06 도쿄엘렉트론가부시키가이샤 Application processing method and application processing apparatus
JP2010225871A (en) * 2009-03-24 2010-10-07 Elpida Memory Inc Method for applying coating liquid, method for forming coated film, method for forming pattern by using the same, and method for manufacturing semiconductor device
JP5183562B2 (en) * 2009-04-27 2013-04-17 東京エレクトロン株式会社 Coating film forming apparatus and coating film forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205062A (en) * 1996-01-26 1997-08-05 Tokyo Electron Ltd Resist coater
JPH11260717A (en) * 1998-01-09 1999-09-24 Tokyo Electron Ltd Resist coating method and apparatus
JP2002110504A (en) * 2000-09-27 2002-04-12 Dainippon Screen Mfg Co Ltd Resist applying device and system, and recording medium
JP2003059825A (en) * 2001-06-07 2003-02-28 Tokyo Electron Ltd Method and device for coating film forming
JP2005055873A (en) * 2003-08-04 2005-03-03 Fujitsu Ltd Resist pattern thickening material, method for forming resist pattern, and method for manufacturing semiconductor device
WO2005043608A1 (en) * 2003-10-31 2005-05-12 Ebara Corporation A processing liquid coating apparatus and a processing liquid coating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071401B2 (en) * 1996-07-05 2000-07-31 三菱電機株式会社 Fine pattern forming material, method of manufacturing semiconductor device using the same, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205062A (en) * 1996-01-26 1997-08-05 Tokyo Electron Ltd Resist coater
JPH11260717A (en) * 1998-01-09 1999-09-24 Tokyo Electron Ltd Resist coating method and apparatus
JP2002110504A (en) * 2000-09-27 2002-04-12 Dainippon Screen Mfg Co Ltd Resist applying device and system, and recording medium
JP2003059825A (en) * 2001-06-07 2003-02-28 Tokyo Electron Ltd Method and device for coating film forming
JP2005055873A (en) * 2003-08-04 2005-03-03 Fujitsu Ltd Resist pattern thickening material, method for forming resist pattern, and method for manufacturing semiconductor device
WO2005043608A1 (en) * 2003-10-31 2005-05-12 Ebara Corporation A processing liquid coating apparatus and a processing liquid coating method

Also Published As

Publication number Publication date
KR101300892B1 (en) 2013-08-27
JP4624936B2 (en) 2011-02-02
KR20080102370A (en) 2008-11-25
JP2007214506A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
KR101006800B1 (en) Method for improving surface roughness of processed film of substrate and apparatus for processing substrate
JP4805758B2 (en) Coating processing method, program, computer-readable recording medium, and coating processing apparatus
JP5065071B2 (en) Coating processing method, coating processing apparatus, and computer-readable storage medium
JP4328667B2 (en) Method for improving surface roughness of substrate processing film and substrate processing apparatus
US9016231B2 (en) Substrate processing method and substrate processing system
JPH1043666A (en) Method and apparatus for forming applied film
WO2005104194A1 (en) Substrate processing method and substrate processing apparatus
JP2009078250A (en) Coating treatment method, coating treatment device, and memory medium readable by computer
KR20120030058A (en) Template treatment device and imprint system
US8168378B2 (en) Substrate treatment system, substrate treatment method, and computer readable storage medium
US11065639B2 (en) Coating treatment method, computer storage medium and coating treatment apparatus
JP4531661B2 (en) Substrate processing method and substrate processing apparatus
WO2007094229A1 (en) Substrate treating method, and computer-readable storage medium
KR101347983B1 (en) Coating treatment method and computer storage medium
JP4678740B2 (en) Coating processing method and coating processing apparatus
JP2005011996A (en) Application method and application apparatus
JP2003218015A (en) Substrate processing device
JP2003156858A (en) Method and system for treating substrate
US20080199617A1 (en) Substrate processing method, substrate processing system, and storage medium
JP5638477B2 (en) Development processing method, development processing apparatus, program, and computer storage medium
JP4807749B2 (en) Exposure and development processing methods
JP4531659B2 (en) Method and apparatus for flattening coating film
JP4066255B2 (en) Substrate processing apparatus and substrate processing method
JP2003209036A (en) Resist coating device
US8105738B2 (en) Developing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087019777

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713931

Country of ref document: EP

Kind code of ref document: A1