WO2007094209A1 - Method for manufacturing molded flat plate, and molded flat plate - Google Patents

Method for manufacturing molded flat plate, and molded flat plate Download PDF

Info

Publication number
WO2007094209A1
WO2007094209A1 PCT/JP2007/052089 JP2007052089W WO2007094209A1 WO 2007094209 A1 WO2007094209 A1 WO 2007094209A1 JP 2007052089 W JP2007052089 W JP 2007052089W WO 2007094209 A1 WO2007094209 A1 WO 2007094209A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
row
gates
gate row
cavity surface
Prior art date
Application number
PCT/JP2007/052089
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Hayashi
Noboru Muraoka
Kazunori Ueki
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2008500453A priority Critical patent/JPWO2007094209A1/en
Publication of WO2007094209A1 publication Critical patent/WO2007094209A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0032Preventing defects on the moulded article, e.g. weld lines, shrinkage marks sequential injection from multiple gates, e.g. to avoid weld lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets

Definitions

  • the present invention relates to a method for producing a flat plate molded product and a flat plate molded product produced by the production method.
  • a backlight device for a liquid crystal display an edge light type method or a direct type method is used.
  • a general direct type backlight device includes a plurality of light sources arranged in parallel, a reflection plate that reflects light emitted from the light source, light from the light source and light reflected by the reflection plate. And a light diffusing plate for diffusing irradiation
  • the light diffusing plate used in such a direct type backlight device is often molded by an extrusion molding method, a casting method, an injection molding method, or the like.
  • Japanese Patent Application Publication No. 20 05-271306 discloses a method of forming a light diffusion plate by an injection molding method. In this method, a rectangular cavity surface is divided into predetermined rectangles, and a light diffusing plate is manufactured by using a mold in which a gate is provided at the center in the short direction from the intersection of diagonal lines of each rectangle. It is. According to such a method, since air does not easily accumulate in the cavity, there is an effect that it is possible to efficiently manufacture a high-quality light diffusing plate with less appearance defects due to burning or the like.
  • An object of the present invention is to provide a method for producing a flat plate product capable of efficiently producing a high quality flat plate product while keeping the pressure inside the mold low, and a flat plate product obtained by this production method. It is to provide.
  • a method for manufacturing a flat plate molded product capable of efficiently manufacturing a high quality flat plate molded product while suppressing the internal pressure when a plurality of gates are arranged at equal intervals in the vertical direction and the horizontal direction, respectively. I found it.
  • a method for manufacturing a resin-made flat plate molded article using an injection mold wherein the mold is the flat plate molded article.
  • a substantially rectangular cavity surface corresponding to the shape of the cavity surface is formed, and a fixed mold plate provided with a plurality of gates communicating with the cavity surface is provided, and the plurality of gates are substantially rectangular longitudinally of the cavity surface.
  • the substantially rectangular cavity surface is arranged at the position of the intersection of the grids.
  • the distance LA1 to LA4 between each outermost gate and the nearest side among the lateral sides of the cavity surface is 120% to the pitch L1.
  • 10% and each outermost gate and the cavity surface are 120% to 10% of the pitch L2, and the plurality of gates are a plurality of gates arranged in the vertical direction.
  • the number of gate rows in at least one of the number of the vertical gate rows and the number of the horizontal gate rows as a plurality of horizontal gate rows comprising a vertical gate row and a plurality of gates arranged in the horizontal direction Is an odd number, and in the gate row in any direction where the odd number is present, the first gate row is a row including a plurality of gate rows and a central gate that is a gate closest to an intersection of diagonal lines of the cavity surface.
  • Each gate row close to each gate row that makes up the row The n-th gate column that contains ( n is an integer greater than or equal to 2), and the first step of injecting the resin from the first gate row, and when the injection amount of the n-1 gate row force reaches a predetermined amount, the nth gate row
  • a method of manufacturing a molded article is provided.
  • the center gate row becomes the first gate row, and the gate closest to the first gate row.
  • the second gate row which is a row, will contain two gate rows, one on each side of the first gate row.
  • there is one gate row that is the closest to each gate row force that constitutes the second gate row so there are also two third gate rows. After that, there will be two gate rows for every nth gate row.
  • the resin is fed from the central gate row (first gate row).
  • the first gate row force is also injected from the first step of injecting the resin, and then from each gate row (second gate row) on both sides of the first gate row.
  • the number of gate columns is 2n-l (where n is an integer equal to or greater than 2)
  • the first gate row including the central gate is formed in the order of the first gate row in the direction of the odd number of rows.
  • the timing of the resin injection is shifted in the order of this gate row, so that even if the gates are arranged approximately at the intersections of the lattice, there is no air pool in the cavity. It is possible to prevent appearance defects such as burning due to air accumulation. This makes it possible to produce high-quality flat plate products.
  • the plurality of gates are arranged substantially evenly in this way, it is possible to keep the internal pressure of the mold within which the pressure does not rise partially in the cavity.
  • the number of gate rows is, for example, 4 in the vertical direction, 3 in the horizontal direction, 3 in the vertical direction, 3 in the horizontal direction, 2 in the vertical direction, 3 in the horizontal direction, and 4 in the vertical direction.
  • X can be 5 in the horizontal direction.
  • the direction of the odd number of columns may be either the vertical direction or the horizontal direction. However, the direction of the odd number of columns is preferably the longer one of the vertical direction and the horizontal direction.
  • the distances LA1 to LA4 in the outermost gates may be substantially the same, and the distances LB1 to LB4 in the outermost gates may be substantially the same.
  • a method for producing a substantially rectangular flat plate molded article by injection molding a resin using an injection mold includes a movable mold plate and a fixed mold plate on which a substantially rectangular cavity surface corresponding to the shape of the flat plate molded product is formed and a plurality of gates communicating with the cavity surface are provided.
  • the plurality of gates have a pitch in the first direction along the first side of the substantially rectangular shape of the cavity surface is L1, and the second direction in the second direction along the second side orthogonal to the first direction.
  • the plurality of gates arranged at the intersections of the lattice and a plurality of first gate rows composed of a plurality of gates arranged along the first direction are arranged.
  • the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the eleventh gate row and the twelfth gate row, and the two gates close to the eleventh gate row and the twelfth gate row.
  • the rows are the 13th gate row and the 14th gate row, respectively.
  • the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 21st gate row and the 22nd gate row.
  • each gate is expressed as (first gate row, second gate row), (13, 21), (11, 22), (12, 21), (14, 22) first group including gates (13, 22), (11, 21), (12, 22), (14, 21) a first step of injecting the resin from each gate included in any one of the second groups including each gate;
  • the injection amount in the first step reaches a predetermined amount
  • the second step of injecting the resin from each gate included in the other group and the injection amount in the second step become the predetermined amount.
  • a third step of injecting the resin from each gate of the 23rd gate row and the 24th gate row When the two gate rows close to the gate row and the 22nd gate row are respectively the second 3rd gate row and the 24th gate row, and each gate is expressed as (first gate row, second gate row), (13, 21), (11, 22), (12, 21), (14, 22) first
  • the plurality of gates are arranged in a substantially uniform manner in this way, the mold pressure within the cavity where the pressure does not partially rise can be kept low. Therefore, it is possible to manufacture a high-quality flat plate molded product more efficiently while keeping the in-mold pressure low.
  • a method of manufacturing a substantially rectangular flat plate molded article by injection molding a resin using an injection mold includes a movable mold plate and a fixed mold plate on which a substantially rectangular cavity surface corresponding to the shape of the flat plate molded product is formed and a plurality of gates communicating with the cavity surface are provided.
  • the plurality of gates have a pitch in the first direction along the first side of the substantially rectangular shape of the cavity surface is L1, and the second direction in the second direction along the second side orthogonal to the first direction.
  • the plurality of gates arranged at the intersections of the lattice and a plurality of first gate rows composed of a plurality of gates arranged along the first direction are arranged.
  • the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the eleventh gate row and the twelfth gate row, and the two gates close to the eleventh gate row and the twelfth gate row.
  • the rows are the 13th gate row and the 14th gate row, respectively.
  • the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 21st gate row and the 22nd gate row.
  • the two gate rows close to the gate row and the 22nd gate row are the second gate row and the 24th gate row, respectively, and each gate is expressed as (first gate row, second gate row).
  • the first group including the gates of (11, 22) and (12, 21), and one of the second groups including the gates of (11, 21) and (12, 22).
  • the injection amount in the second step and the second step reaches a predetermined amount, the resin is discharged from each gate of the thirteenth gate row, the fourteenth gate row, the twenty-third gate row, and the twenty-fourth gate row.
  • the distance LA1 to LA4 between each outermost gate and the nearest side of the cavity surface in the second direction is 120% to 10% of the pitch L1, and each outermost gate and the cavity surface. It is preferable that the distances LB1 to LB4 with the closest side among the sides in the first direction are 120% to 10% of the pitch L2.
  • the distances LA1 to LA4 at the outermost gates are substantially the same, and the distances LB1 to LB4 at the outermost gates are substantially the same.
  • the method for producing a flat plate molded article of the present invention it is possible to satisfactorily inject grease into the vicinity of each apex of a substantially rectangular shaped cavity surface, and to produce a high-quality flat surface having no thickness unevenness.
  • a plate molded product can be manufactured more efficiently.
  • the number of the gates is N (pieces), and the depth of the cavity formed in the fixed mold is t.
  • the area of the cavity surface is S (mm 2 )
  • the fourth aspect of the present invention it is possible to provide a flat molded product having no appearance defect manufactured by the method for manufacturing a flat molded product of the present invention.
  • flat plate molded products include optical members such as a light diffusing plate and a light guide plate.
  • FIG. 1 is a plan view schematically showing a cavity surface formed on a fixed mold according to a first embodiment of the present invention.
  • FIG. 2 is a plan view for explaining the position of the gate formed on the cavity surface according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of a cavity surface for explaining a method of manufacturing a light diffusing plate according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining the procedure of the method for manufacturing the light diffusing plate according to the first embodiment of the present invention.
  • FIG. 5 is a plan view schematically showing a cavity surface formed on a fixed mold plate according to a second embodiment of the present invention.
  • FIG. 6 is a plan view for explaining the position of the gate formed on the cavity surface according to the second embodiment of the present invention.
  • FIG. 7 is a plan view of a cavity surface for explaining a method of manufacturing a light diffusing plate according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart for explaining the procedure of a method for producing a light diffusing plate according to the second embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a state of resin flow when manufacturing a light diffusing plate according to a second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a state of resin flow when manufacturing a light diffusing plate according to a second embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a state of resin flow when manufacturing a light diffusing plate according to a second embodiment of the present invention.
  • FIG. 12 is a diagram for explaining gate opening / closing timings when the number of gates formed on the stationary mold plate according to the second embodiment of the present invention is 6 ⁇ 8.
  • FIG. 13 is a view for explaining the state of resin flow when manufacturing a light diffusing plate according to a third embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 15 is a plan view schematically showing a cavity surface of a fixed mold in Comparative Example 2 as a conventional technique.
  • FIG. 16 is a plan view schematically showing the cavity surface of the fixed mold in Comparative Example 3 as a prior art.
  • FIG. 17 is a plan view schematically showing the cavity surface of the fixed mold plate in Comparative Example 4 as a conventional technique.
  • An injection mold is composed of a fixed mold (fixed mold plate) and a movable mold (movable mold plate), and injects grease into the cavity that is the gap between the fixed mold and the movable mold. Then, for example, a light diffusion plate that is a flat plate molded product is manufactured.
  • a gas vent is provided at the outer peripheral edge of the injection mold for releasing air in the cavity at the time of injection molding.
  • the fixed mold can be equipped with a hot runner or cold runner.
  • a vacuum drawing hole for releasing air in the cavity or the like can be provided in the fixed mold or the movable mold.
  • the depth of the cavity is preferably 0.1 mm to 15. Omm, more preferably 0.2 mm to 5. Omm. 0.5 nm! ⁇ 3. More preferably, it is Omm.
  • the key The depth of the cavity substantially coincides with the thickness of the obtained flat plate molded product.
  • FIG. 1 is a plan view schematically showing a cavity surface formed on a fixed mold.
  • the cavity surface 10 is formed in a substantially rectangular shape.
  • the rectangular vertex is 10A ⁇ : L0D
  • the vertical side connecting vertex 10A and vertex 10B is 11A
  • the vertical side connecting vertex IOC and vertex 10D is 11B
  • the horizontal side connecting vertex 10A and vertex 10C is 12A
  • the horizontal side connecting vertex 10B and vertex 10D is 12B.
  • the vertical direction is the vertical direction in FIG. 1, and the horizontal direction is the left-right direction in FIG.
  • the diagonal length of the cavity surface 10 is preferably 400 mm or more, more preferably 650 mm or more. According to the manufacturing method according to an embodiment of the present invention to be described later, even if the diagonal length is larger than the numerical value, a flat plate molded product with less thickness unevenness can be efficiently manufactured.
  • the entire cavity surface for example, (1) when the entire cavity surface is rectangular, (2) the entire cavity surface is a rectangular main body, and the main body The peripheral edge portion is formed in an arbitrary shape, and the entire cavity surface is not a rectangular shape.
  • the cavity surface 10 is usually formed so that the length in the horizontal direction is larger than the length in the vertical direction, but the length in the vertical direction and the length in the horizontal direction may be substantially the same.
  • FIG. 2 is a schematic diagram for explaining the position of the gate 20 on the cavity surface 10.
  • each gate 20 consists of a vertical line A along the vertical side ⁇ ⁇ ( ⁇ ⁇ ) of the cavity surface 10 and a horizontal line B along the horizontal side 12A (12B). Is considered at the position of the intersection P of the lattice.
  • This lattice is The vertical pitch (the pitch between the gates 20 arranged in the vertical direction) is L1, and the horizontal pitch (the pitch between the gates 20 arranged in the horizontal direction) is L2.
  • the plurality of gates are formed at substantially equal intervals along the vertical direction and the horizontal direction of the cavity surface 10.
  • substantially uniform intervals means that each interval falls within an error range of about 10% with respect to an average interval obtained by averaging all intervals in a certain direction.
  • the error range is preferably within a range of about 5%, more preferably within a range of about 1%.
  • the pressure inside the mold can be kept low, and the one with a small mold clamping force can be used.
  • the pitch L1 in the vertical direction can be 143.3 mm and the pitch L2 in the horizontal direction can be 185 mm.
  • the gates 20A to 20D are the outermost gates 20A to 20D, which are closest to each vertex 10A to LOD.
  • the distance LA1 between the lateral side 12A closest to the outermost gate 20A and the outermost gate 20A is 120% to 10%, preferably 100% to 20% of the pitch L1.
  • the distance LB1 between the vertical side 11A closest to the outermost gate 20A and the outermost gate 20A is 120% to 10%, preferably 100% to 20% of the pitch L2.
  • the distance LA2 between the lateral side 12B and the outermost gate 20B where the outermost gate 20B force is closest is 120% to 10% of the pitch L1, and preferably 100 % To 20%.
  • the distance LB2 between the vertical side 11A closest to the outermost gate 20B and the outermost gate 20B is 120% to 10%, preferably 100% to 20% of the pitch L2.
  • the distance LA3 between the lateral side 12A and the outermost gate 20C where the outermost gate 20C force is closest is 120% to 10%, preferably 100% to 20% of the pitch L1. %. Further, the distance LB3 between the vertical side 11B and the outermost gate 20C closest to the outermost gate 20C force is 120% to 10%, preferably 100% to 20% of the pitch L2.
  • the distance LA4 between the lateral side 12B and the outermost gate 20D where the outermost gate 20D force is closest is 120% to 10% of the pitch L1, preferably 100. % To 20%.
  • the distance LB4 between the vertical side 1 IB closest to the outermost gate 20D force and the outermost gate 20D is 120% to 10%, preferably 100% to 20% of the pitch L2.
  • the pitch L1 can be an average value of the intervals.
  • the pitch L2 can be an average value of each interval.
  • the distances LA1 to LA4 are preferably substantially equal to each other.
  • the distances LB1 to LB4 are preferably substantially equal to each other.
  • “substantially equal” means that the distances LA1 to LA4 have an error of 10% or less with respect to the average distance obtained by averaging the distances LA1 to LA4.
  • the error is preferably 5% or less, more preferably 1% or less.
  • the number of installed gates N is determined when the depth of the cavity is t (mm) and the area of the cavity is S (mm 2 ). It is preferable that the following mathematical formula (1) is satisfied.
  • the number of gates is less than the preferred range, there is a risk that unevenness in the thickness of the flat plate molded product will occur due to an increase in the flow distance of the resin within the cavity. Further, when the number of gates is larger than the preferable range, it may be difficult to manufacture a mold. For this reason, by setting the number of gates within the preferred range, it is possible to easily form a high-quality flat plate molded product.
  • the plurality of gates 20 are arranged on the intersection P of the lattice, as shown in FIG. 1, the plurality of gates 20 are connected to the vertical gate row 21 which is a vertical gate row.
  • horizontal gate row 22 which is a horizontal gate row.
  • the number of vertical gate rows 21 is several, and the number of horizontal gate rows 22 is three (odd number).
  • the number of gates 20 constituting the vertical gate row 21 is three, and the number of gates 20 constituting the horizontal gate row 22 is four.
  • the resin that is a constituent material of the flat plate molded product will be described.
  • the coconut resin include alicyclic resin having an alicyclic structure, a copolymer of an aromatic vinyl monomer and an alkyl ester (meth) acrylate ester, methallyl rosin, polycarbonate, polystyrene, acrylonitrile. -Styrene copolymer resin, ABS resin, and polyether sulfone.
  • a resin having an alicyclic structure, a methacrylic resin, and a copolymer of an aromatic butyl monomer and a (meth) acrylic acid alkyl ester monomer can be suitably used.
  • a resin having a cyclic structure can be particularly preferably used.
  • the resin having an alicyclic structure Since the resin having an alicyclic structure has good fluidity of the molten resin, it can be filled with mold cavity at a low injection pressure, and has extremely low hygroscopicity, so it has excellent dimensional stability. Since the specific gravity that does not cause warpage in the flat plate molded product is small, the flat plate molded product can be reduced in weight. In addition, rosin having an alicyclic structure has an advantage that weld lines are less likely to occur.
  • a resin having an alicyclic structure is a resin having an alicyclic structure in a main chain or a side chain.
  • rosin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance.
  • the alicyclic structure is preferably a saturated cyclic hydrocarbon structure, and its carbon number is preferably 4 to 30, more preferably 5 to 20, and more preferably 5 to 15. More preferably.
  • the proportion of the repeating unit having an alicyclic structure in the alicyclic resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and more preferably 90% by weight or more. More preferably.
  • rosins having an alicyclic structure include, for example, ring-opening polymers or ring-opening copolymers of norbornene monomers or hydrogenated products thereof, addition polymers or additions of norbornene monomers.
  • Copolymer or hydrogenated product thereof polymer of monocyclic cyclic olefin monomer or hydrogenated product thereof, polymer of cyclic conjugation monomer or hydrogenated product thereof, vinyl alicyclic carbonization Polymer or copolymer of hydrogen monomer or hydrogen additive thereof, polymer of vinyl aromatic hydrocarbon monomer or hydrogenated product of unsaturated bond part containing aromatic ring of copolymer And so on.
  • hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and strength. Since it is excellent in heat resistance, it can be used particularly suitably.
  • the methacrylic resin is suitable for an optical member because it is excellent in transparency, tough and hardly cracks. Examples of the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in Japanese Industrial Standard JIS K 6717.
  • methacrylic resins stipulated in this standard methacrylic resin with a Vicat soft spot temperature of 96-100 ° C and a melt rate of 8 to 16 with a specified classification code of 100-120 has moderate fluidity and strength. Therefore, it can be suitably used.
  • the aromatic bulle monomer constituting the copolymer of the aromatic vinyl monomer and the (meth) acrylic acid alkyl ester is an aromatic vinyl monomer and a derivative thereof, such as styrene. , A-methylstyrene, m-methylstyrene, p-methylstyrene, 0-chlorostyrene, and P-chlorostyrene.
  • the (meth) acrylic acid alkyl ester include (meth) acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms.
  • (meth) acrylic acid alkyl ester methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate can be suitably used.
  • a copolymer of an aromatic butyl monomer and a (meth) acrylic acid alkyl ester is a copolymer of 20 to 60% by weight of an aromatic butyl monomer and 40 to 80% by weight of a (meth) acrylic acid alkyl ester. It is preferably a coalescence.
  • (meth) acrylic acid means metatalic acid and acrylic acid
  • (meth) acrylic means methacryl and acrylic.
  • thermoplastic elastomer examples include polybutadiene, a styrene-butadiene block copolymer and a hydrogenated carotenate thereof, and a styrene-isoprene block copolymer and a hydrogenated product thereof.
  • additives include light diffusing agents, antioxidants, ultraviolet absorbers, light stabilizers, colorants such as dyes and pigments, lubricants, plasticizers, antistatic agents, and fluorescent whitening agents. it can.
  • the light diffusing agent examples include a polystyrene polymer, a polysiloxane polymer, or fine particles made of a crosslinked product thereof, (meth) acrylic resin, fluorine resin, barium sulfate, calcium carbonate, silica, and talc. Can be mentioned.
  • a polystyrene polymer a polysiloxane polymer, or fine particles made of a crosslinked product thereof, (meth) acrylic resin, fluorine resin, barium sulfate, calcium carbonate, silica, and talc.
  • acrylic resin fluorine resin
  • barium sulfate calcium carbonate
  • silica silica
  • talc talc
  • the fine particles are particularly suitable because they have good dispersibility, excellent heat resistance, and no yellowing during molding.
  • the blending amount of the thermoplastic elastomer is usually 0.01 wt% to 50 wt%, preferably 0.05 wt% to 30 wt%.
  • the compounding quantity of the said additive is 0.01 to 30 weight% normally, Preferably it is 0.05 to 20 weight%.
  • the particle size of the light diffusing agent is usually 0.5 / z m to: LOO / z m in terms of average particle size, and preferably 0.5 m to 80 m.
  • FIG. 3 is a plan view of a cavity surface for explaining a method of manufacturing a light diffusing plate.
  • FIG. 4 is a flowchart for explaining the procedure of the method of manufacturing the light diffusing plate.
  • the horizontal gate row 22 includes three horizontal gate rows 22A, 22B, and 22C. Of these horizontal gate rows 22A, 22B, and 22C, the row that includes the gates 20S and 20T that are closest to the intersection of the diagonal lines of the cavity surface 10 is defined as the first horizontal gate row X, and this first horizontal gate row. Two gate rows close to the row are designated as the second horizontal gate row Y.
  • the lateral gate row 22B is the first lateral gate row X
  • the lateral gate row 22A and the lateral gate row 22C that are substantially the same distance from the first lateral gate row X are Second horizontal gate row Y.
  • the mold for injection molding is clamped at a predetermined pressure using a saddle mold clamping device (not shown) (step Sl).
  • the gate of the first horizontal gate row X is opened, and the resin is injected from the gate of the first horizontal gate row X at a constant injection rate (step S2: first step).
  • the resin injected into the cavity also flows out with a force corresponding to the first gate row X directed toward the outer peripheral side of the cavity surface 10.
  • the injection amount of the resin can be grasped by the injection time since the injection rate (injection speed) is constant.
  • step S3 it is determined whether or not the force with which the injection amount from the gates of the first horizontal gate row X becomes a predetermined amount. Specifically, this determination may be performed based on, for example, the injection time. If necessary, the resin injected from the gates of the first gate row X is changed into the first horizontal gate row X and the second horizontal gate. This may be done by checking whether or not the current has flown to about half the distance of row Y.
  • step S2 is repeated. Oil injection When the amount reaches the planned amount, the gate of the first horizontal gate row X is opened while the gate of the first horizontal gate row X is opened, and the gate of the first horizontal gate row X and the second horizontal gate row are opened. The resin is injected from the Y gate at the injection rate (step S4: second step).
  • step S5 it is determined whether or not the injection amounts from the gates of the first lateral gate row X and the gates of the second lateral gate row Y have become predetermined amounts as described above (step S5). If the injection amount of the resin does not reach the expected amount, repeat step S4. When the resin injection amount reaches the predetermined amount, the gates of the first horizontal gate row X and the second horizontal gate row Y are closed, and the injection from the gates of these gate rows X and Y is stopped. (Step S6). Thereafter, the injection mold is cooled (step S7), and the mold force is taken out of the light diffusion plate (step S8). As described above, one cycle of manufacturing the light diffusion plate is completed.
  • step S6 the timing of closing the gate is usually performed when the injection amount of the resin reaches a predetermined amount. For example, the state of filling the surface of the molded product is observed, and this is done. It may be performed when the state of filling becomes better.
  • the light diffusing plate is manufactured by repeating such a cycle a plurality of times.
  • the first gate column including the center side gate thereof is used, and the second gate column is arranged in the order closer to the first gate column. Since the injection timing of the resin is shifted in the order of the rows, even if the multiple gates are arranged at the intersections of the grid, there is no air pool in the cavity, and there is no burning in the air pool. It is possible to prevent the appearance defect from occurring. For this reason, high quality flat plate molded products can be manufactured.
  • the plurality of gates are arranged substantially evenly in this way, it is possible to keep the mold internal pressure within the cavity where the pressure does not partially rise low. Therefore, it is possible to more efficiently manufacture a high-quality flat plate molded product while keeping the in-mold pressure low.
  • the following effects can be obtained. Since the gate 20 is arranged on the cavity surface 10 so that the distance between the adjacent gates 20 is substantially constant, the mold internal pressure is approximately the same at any position within the cavity. For this reason, since the pressure inside the mold can be kept low, a mold clamping device having a small mold clamping force can be used, and space saving can be achieved.
  • the first lateral gate X and the second lateral gate row Y are divided into the center side of the cavity surface 10. After injecting the grease from the gate 20 of the lateral gate row X, the injection timing was shifted so that the gate 20 force of the lateral gate row Y outside also injects the grease. However, there is no air pocket in the cavity. For this reason, appearance defects such as burning caused by air accumulation do not occur in the obtained flat plate molded product, so that a high-quality light diffusion plate can be efficiently produced.
  • the present invention is not limited to the above-described embodiment!
  • the number of vertical gate rows X the number of horizontal gate rows is 4 X 3.
  • the gate rows The number of is not limited to the above number.
  • the size of the cavity surface is not limited to the above size.
  • the obtained flat plate molded article was used as the light diffusing plate, it may be used as optical members, such as a light-guide plate, and may be used as members other than an optical use.
  • the injection timing is adjusted based on the horizontal gate row 22. If the number of the vertical gate rows 21 is an odd number, the injection timing is adjusted based on the vertical gate rows 21. May be. Also, the gate row for timing adjustment can be a gate row along the long side, which is the long side, and the gate row along the vertical direction, which is the short side! / ,.
  • the distances LB1 to LB4 in the horizontal direction are preferably about 30% to 70% of the distance L2 in the horizontal direction (for example, the average distance).
  • the length is 45% to 55%. More preferably, it is 49% to 51%.
  • the vertical distances LA1 to LA4 are preferably about 30% to 70% of the vertical distance L1, and more preferably 45% to 55%. More preferably, it is 49% to 51%. According to such a configuration, it is possible to form a high-quality flat plate molded product in which uneven thickness and poor appearance are further improved by allowing the molten resin to flow more suitably.
  • the second embodiment has the first implementation described above in terms of the arrangement and number of gates provided in the injection mold, the timing of opening and closing the gate when manufacturing a flat molded product, and the like. This is different from the method for producing the injection mold according to the embodiment and the flat resin molded product made of resin, but otherwise the same injection mold as used in the first embodiment. Is used to manufacture a flat molded product. Therefore, in the following, detailed description of the parts common to the first embodiment will be omitted, and only different parts will be described in detail. Further, the same components as those in the first embodiment will be described using the same reference numerals.
  • the injection mold used in the second embodiment includes a fixed mold plate and a movable mold plate, as in the first embodiment described above, and includes a fixed mold plate and a movable mold plate.
  • a cavity is formed by the gap, and the depth of the cavity substantially matches the thickness of the obtained flat plate molded product.
  • FIG. 5 is a plan view schematically showing the cavity surface formed on the fixed mold plate, and corresponds to FIG. 1 in the first embodiment.
  • the cavity surface 10 is formed in a substantially rectangular shape, and the diagonal length is preferably 400 mm or more, more preferably 650 mm or more.
  • the vertical length and the horizontal length of the cavity surface 10 are not particularly limited, and are usually formed so that the horizontal length is larger than the vertical length. And the length in the horizontal direction may substantially coincide with each other.
  • FIG. 6 is a schematic diagram for explaining the position of the gate 20 on the cavity surface 10, and corresponds to FIG. 2 in the first embodiment.
  • a plurality of gates 20 communicating with the cavity surface 10 are formed on the fixed template, and each of the gates 20 has a longitudinal pitch L1 and a lateral pitch of the cavity surface 10.
  • L2 is formed at substantially equal intervals along the vertical direction and the horizontal direction.
  • the gates closest to each vertex 10A-: L0D are the outermost gates 20A-20D, respectively, and the distance LA1 between each outermost gate 20A-20D and the lateral side with respect to each of them is LA1.
  • ⁇ LA4 is 120% to 10% of L1, preferably 100% to 20%.
  • each outermost gate 20A to 20D, the distance LB1 ⁇ LB4 ⁇ the longitudinal sides for each or a 120-10 0/0 of L2, preferably I or 100 0 / 0-20 0/0 is there.
  • the plurality of gates 20 are arranged on the intersections of the lattices, as shown in FIG. 7, the plurality of gates 20 are arranged in the vertical direction as a vertical gate row.
  • Gate column They can be classified into (11th to 14th gate rows) and horizontal gate rows (21st to 24th gate rows), which are lateral gate rows.
  • the number of vertical gate rows is four (even numbers), and the number of horizontal gate rows is even (even numbers).
  • the number of gates 20 constituting the vertical gate row is four, and the number of gates 20 constituting the horizontal gate row is four.
  • the resin that is a constituent material of the flat molded product uses the same resin as that used in the first embodiment, even in the second embodiment. Therefore, detailed description is omitted.
  • FIG. 8 is a flowchart for explaining the procedure of the method of manufacturing the light diffusing plate.
  • the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 11th gate row and the 12th gate row, and this 11th gate row.
  • the two gate rows close to the twelfth gate row are the 13th gate row and the 14th gate row, respectively.
  • the two gates closest to the intersection of the diagonals of the cavity surface The gates are the 21st gate row and the 22nd gate row, and the two gate rows close to the 21st gate row and the 22nd gate row are the 23rd gate row and the 24th gate row, respectively. 1 gate row, 2nd gate row).
  • the mold for injection molding is clamped at a predetermined pressure using a mold clamping device (not shown) (step S11).
  • open each gate of the first group that is, (13, 21), (11, 22), (12, 21), (14, 22) gates, and make certain projections from these gates.
  • the resin is injected at a rate (step S12: first step).
  • step S12 first step.
  • the grease injected into the cavity flows out from each gate of the first group to the outer peripheral side of the cavity surface 10 as shown in FIG.
  • the injection amount of the resin can be grasped by the injection time since the injection rate (injection speed) is constant.
  • step S13 it is determined whether or not the injection amount from each gate of the first group has become a predetermined amount. Specifically, this determination may be performed based on, for example, the injection time. 1S If necessary, the resin injected from each gate of the first group is half the distance to the gate of the second group described later. You can do it depending on whether it has flowed to a certain level. Grease If the output amount has not reached the planned amount, the process of step S12 is continued. When the injection amount of the resin reaches the planned amount, each gate of the second group, that is, (13, 22), (11, 21), (12, 22), with the gates of the first group open.
  • FIG. 10 is a view showing a state in which the resin is injected from each gate of the first group and the second group.
  • the circles indicating the range of the grease flowing out from each gate of the first group overlap each other, and the circles indicating the range of the grease flowing out from each gate of the first group are the cavity surface.
  • the fat flows in the direction of the arrow shown in the figure so as to compensate for the slow part of the fat flow.
  • the resin is filled in the lateral direction of the cavity.
  • step S15 it is determined whether or not the injection amount from each gate of the second group has become a predetermined amount. If the injection amount of the resin does not reach the expected amount, continue the process of step S14. When the injection amount of the resin reaches a predetermined amount, each gate of the third group, that is, each of the 23rd gate row and the 24th gate row is left with the gates of the first group and the second group being opened. Gate ((13, 23), (11, 23), (12, 23), (14, 23), (13, 24), (11, 24), (12, 24), (14, 24) Each gate) is opened, and the resin is injected at the injection rate from the gates of the first group to the third group (step S16: third step).
  • step S17 it is determined whether or not the injection amount force from each gate of the third group has become a predetermined amount. If the injection amount of the resin does not reach the expected amount, continue the process of step S16. When the injection amount of the resin reaches the predetermined amount, the gates of the first group to the third group are closed, and the injection from these gates is stopped (step S18). Thereafter, the injection mold is cooled (step S19), and the mold force light diffusion plate is taken out (step S20). As described above, one cycle of manufacturing the light diffusion plate is completed.
  • step S18 the timing for closing the gate is normally performed when the amount of the resin spray reaches a predetermined amount. Observation may be made when this filling state becomes good.
  • the light diffusing plate is manufactured by repeating such a cycle a plurality of times.
  • the number of vertical gate rows ⁇ the number of horizontal gate rows is 4 ⁇ 4. If the number of vertical and horizontal gate rows is an even number, the number of gate rows The number is not limited to the number.
  • FIG. 12 is a diagram for explaining the timing of opening the gate when the number of vertical gate rows X the number of horizontal gate rows is 6 x 8.
  • the resin is injected from each gate included in the first group in the first process, and the resin is injected from each gate included in the first group and the second group in the second process.
  • the resin is injected from each gate included in the second group, and in the second step, the resin is injected from each gate included in the first group and the second group.
  • the gates included in the horizontal gate rows closest to the first group and the second group are opened to inject the resin, and further, the gates included in the outer horizontal gate rows are opened to open the resin. Inject.
  • the third embodiment which is another manufacturing method for manufacturing a light diffusing plate, which is a flat resin molded product made of resin, using the injection mold according to the second embodiment described above.
  • the processing procedure is the same as the procedure in the second embodiment shown in FIG. 8, and will be described with reference to FIG.
  • step S 11 the mold for injection molding is clamped at a predetermined pressure using a mold clamping device (not shown) (step S 11).
  • each gate of the first group that is, each gate of (11, 22) and (12, 21) shown in FIG. 13 is opened, and a constant injection rate is obtained from these gates.
  • step S12 the resin is injected.
  • the resin injected into the cavity flows out from the gates of the first group toward the outer peripheral side of the cavity surface 10.
  • the range of the spread of the resin injected from each gate of the first group is indicated by a solid circle. The injection amount of the resin can be grasped by the injection time since the injection rate (injection speed) is constant.
  • step S13 it is determined whether or not the injection amount from each gate of the first group has become a predetermined amount. Specifically, for example, this determination may be performed based on the injection time. If necessary, the resin injected from each gate of the first group flows to a position about half the distance from the adjacent gate. It may be done depending on whether or not it is correct. If the injection amount of the resin does not reach the expected amount, continue the process of step S12. The injection amount of sallow reaches the planned amount In this case, as shown in FIG. 13, with the gates of the first group open, the gates of the second group, ie, (11, 21), (12, 22) shown in FIG.
  • step S14 second step.
  • the range of spread of the resin injected from each gate of the second group is indicated by a dotted circle.
  • step S15 it is determined whether or not the injection amount force from each gate of the second group is equal to the predetermined amount. If the resin injection amount has not reached the expected amount, continue with step S14. When the injection amount of the resin reaches the predetermined amount, the gates of the third group, that is, the gates of the thirteenth group as shown in FIG.
  • Each gate of the row, the 14th gate row, the 23rd gate row and the 24th gate row ((13, 23), (13, 21), (13, 22), (13, 24), (14, 23), (14, 21), (14, 22), (14, 24), (11, 23), (12, 23), (11, 24), (12, 24) gates))
  • the resin is injected from the gates of the first group to the third group at the injection rate (step S16: third step).
  • step S17 it is determined whether or not the injection amount from each gate of the third group has become a predetermined amount. If the injection amount of the resin does not reach the expected amount, continue the process of step S16. When the injection amount of the resin reaches the predetermined amount, the gates of the first group to the third group are closed, and the injection from these gates is stopped (step S18). Thereafter, the injection mold is cooled (step S19), and the mold force light diffusion plate is taken out (step S20). As described above, one cycle of manufacturing the light diffusion plate is completed.
  • step S18 the timing for closing the gate is normally performed when the amount of the resin spray reaches a predetermined amount. Observation may be made when this filling state becomes good.
  • the light diffusing plate is manufactured by repeating such a cycle a plurality of times.
  • the number of vertical gate rows x the number of horizontal gate rows is 4 x 4.
  • the number of gate rows is not limited to the number. In that case, after controlling the injection timing of 4 x 4 gates by the above-mentioned method, the outer gates of the cavity are opened sequentially and the resin is injected. That is, The gates are opened sequentially from the inside to the outside.
  • the resin is injected from each gate included in the first group or each gate included in the second group, and the second step
  • resin is injected from each gate included in the second group or each gate included in the first group, and as a third step, the resin is injected from each gate of the 23rd gate row and the 24th gate row.
  • the injection timing of the resin from each gate is shifted, or as the first step, the resin is injected from each gate included in the first group or each gate included in the second group, As the second step, the resin is injected from each gate included in the second group or from each gate included in the first group, and as the third step, the thirteenth gate row, the fourteenth gate row, the twenty-third gate row and the second gate row Injecting grease from each gate in the 24 gate row.
  • the injection timing of the resin from each gate is shifted, so even if a plurality of gates are arranged at the intersections of the lattice, there is no air pool in the cavity, and It is possible to prevent appearance defects such as burning. For this reason, a high quality flat plate molded product can be manufactured.
  • the plurality of gates are arranged substantially evenly in this way, it is possible to keep the mold internal pressure within the cavity that prevents the pressure from partially rising. Accordingly, it is possible to manufacture a high-quality flat plate product more efficiently while keeping the in-mold pressure low.
  • the gate 20 is arranged on the cavity surface 10 so that the distance between the adjacent gates 20 is substantially constant, the mold internal pressure is approximately the same at any position within the cavity. For this reason, since the mold internal pressure can be kept low, a mold clamping device with a small mold clamping force can be used, and space saving can be achieved. Also, the gates were divided into the first group to the third group, and the injection timing was shifted so that the grease was emitted from each gate 20 in the order of the first group, the second group, and the third group. Therefore, even if the gates 20 are arranged substantially evenly, there is no air pool in the cavity. For this reason, the obtained flat plate molded product does not suffer from appearance defects such as burning caused by air accumulation, so that a high-quality light diffusion plate can be efficiently manufactured.
  • the resin is injected from each gate included in the first group in the first step, and included in the second group in the second step.
  • the grease is injected from each gate, but in the first process, the resin is injected from each gate included in the second group, and in the second process, the resin is injected from each gate included in the first group. You may make it do.
  • the size of the cavity surface is not limited to the above size.
  • the obtained flat plate molded product is a light diffusion plate, but may be an optical member such as a light guide plate, or may be a member other than an optical application.
  • each of the horizontal distances LB1 to LB4 is approximately 30% to 70% of the horizontal distance L2 (for example, the average distance). It is more preferable that the length is 45% to 55%, and it is more preferable that the length is 49% to 51%.
  • the vertical distances LA1 to LA4 are preferably about 30% to 70% of the vertical distance L1, and more preferably 45% to 55%. More preferably, it is 49% to 51%. According to such a configuration, a high quality flat plate molded product with improved thickness unevenness and appearance defect can be formed by flowing the molten resin more suitably.
  • FIG. 14 is a diagram illustrating a configuration of the liquid crystal display device.
  • the liquid crystal display device 30 includes a pair of liquid crystal substrates 31 disposed opposite to each other, a liquid crystal panel including a liquid crystal layer 32 sandwiched between the pair of liquid crystal substrates 31, and a pair of polarizing plates disposed so as to sandwich the liquid crystal panel.
  • a light plate 33, a direct type backlight 34 that illuminates the LCD panel with a back force, and a liquid crystal panel and a direct type backlight 34 are arranged between the liquid crystal panel and the direct type backlight 34 to make light uniform, diffuse light, or collect light.
  • An optical film 35 having a function of illuminating and a light diffusion plate 36 manufactured by the manufacturing method according to each of the above-described embodiments are provided.
  • the direct type backlight 34 is provided with a plurality of lamps 37 and a reflector 38 that are also cold cathode fluorescent lamps and the like.
  • the liquid crystal display device since the light diffusion plate 36 manufactured by the manufacturing method according to the above-described embodiment is provided, the liquid crystal panel can be well illuminated. I'll do it.
  • a light diffusion plate was molded by an injection molding machine (screw diameter ⁇ 90 mm, maximum mold clamping 850 t).
  • the mold has a substantially rectangular cavity surface on the main surface of the fixed mold plate.
  • the dimensions of the cavity surface were 430 mm long, 740 mm wide, and 856 mm diagonal.
  • the cavity depth was 2.0 mm.
  • the cavity surface of the fixed mold is provided with twelve hot runner type valve gates having a diameter of 2mm in communication with the cavity surface.
  • the gate gap L2 in the horizontal direction was 185mm
  • the gate gap L1 in the vertical direction was 143.3mm.
  • the spacing error in each direction was 0%.
  • the distance LA1 between the outermost gate 20A and the vertical side 11A of the cavity surface shown in FIG. 1 is 71.7 mm
  • the distance LB1 between the outermost gate 20A and the lateral side 12A of the cavity surface is LB1. It was 92.5 mm.
  • the distance 1 ⁇ ⁇ 2 was 71.7 mm and the distance LB2 was 92.5 mm.
  • the distance L A3 was 71.7 mm, and the distance LB3 was 92.5 mm.
  • the distance LA4 was 71.7 mm and the distance LB4 was 9 2.5 mm. Therefore, the distance error was 0%.
  • Each distance LA1 to LA4 was 50% of the distance L1, and each distance LB1 to LB4 was 50% of the distance L2.
  • the injection molding conditions were a cylinder temperature of 275 ° C, a hot runner temperature of 275 ° C, a mold temperature of 78 ° C, an injection speed of lOOmmZ seconds, and a cooling time of 30 seconds.
  • valve gates of the first lateral gate row were opened, and the resin was injected from the valve gates of the first lateral gate row. Subsequently, 1.5 seconds after resin injection from the valve gate of the first horizontal gate row, the second gate gate open the valve gate, and the first and second horizontal gate row gate gates and The resin was injected from the valve gate. Next, when the resin injection amount reached the predetermined amount and it was determined that the resin filling state near the cavity surface was sufficient without sink marks, all valve gates were closed and injection stopped. . At this time, the pressure inside the mold at the time of injection was 180 kgfZcm 2 (18 MPa). Then gold on the above conditions After cooling the mold, the light diffusing plate was taken out of the mold to obtain a light diffusing plate.
  • the obtained light diffusing plate was a non-defective product having no appearance defect caused by air accumulation.
  • the variation in thickness was measured by a micrometer (manufactured by Mitutoyo Corporation) and found to be 60 m.
  • the dimensions of the cavity surface were changed as follows, and 2.5 seconds after opening the valve gate of the first horizontal gate row, the same as in Example 1 except that the valve gate of the second gate row was opened. A light diffusing plate was obtained.
  • the dimensions of the cavity surface were 600 mm long, 1,020 mm wide, and a diagonal length of 1,183 mm.
  • the horizontal gate interval L2 was 233 mm
  • the vertical gate interval L 1 was 181.7 mm.
  • the spacing error in each direction was 0%.
  • the distance LA1 between the outermost gate 20A and the longitudinal side 11A of the cavity surface is 1 18.3 mm
  • the distance LB 1 between the outermost gate 20A and the lateral side 12A of the cavity surface is 160.5 mm. .
  • the distance LA2 was 118.3 mm and the distance LB2 was 160.5 mm.
  • the distance LA3 was 118.3 mm, and the distance LB3 was 160.5 mm.
  • the distance LA4 was 118.3mm and the distance LB4 was 160.5mm. Therefore, the distance error was 0%.
  • Each distance LA1 to LA4 was 65.1% of the distance L1, and each distance LB1 to LB4 was 68.9% of the distance L2.
  • the depth of the cavity was 2.0 mm.
  • the mold internal pressure at the time of injection was 190kgfZcm 2 (19MPa).
  • the obtained light diffusing plate was a good product with no appearance defect caused by air accumulation. Furthermore, the thickness variation of the light diffusing plate was 100 m.
  • a light diffusion plate was obtained in the same manner as in Example 1 except that all the valve gates were opened at the same time and the resin was injected at the same time.
  • the obtained light diffusing plate had a poor appearance due to burning caused by air accumulation. Furthermore, the variation in the thickness of the light diffusing plate was 200 m.
  • Example 1 As shown in Fig. 15, except that the number of valve gates is 8 (2 in the vertical direction and 4 in the horizontal direction) and all the valve gates are opened at the same time and the grease is injected at the same time.
  • Example 1 Similarly, a light diffusion plate was obtained.
  • the dimensions of the mold cavity surface were 430 mm long, 740 mm wide, and 856 mm diagonal. The depth of the cavity was 2.0mm.
  • the lateral gate spacing (L2 in Fig. 2) was 185mm
  • the vertical gate spacing (L1 in Fig. 2) was 215mm.
  • the gap error in the horizontal direction was 0%
  • the distances (LB1 to LB4 in Fig. 2) were 160.5 mm each, and the distances (LA1 to LA4 in Fig. 2) were each 118.3 mm.
  • the distance error in each direction was 0%.
  • Each distance (LA1 to LA4 in Fig. 2) is 50% of the distance (L1 in Fig. 2), and each distance (LB1 to LB4 in Fig. 2) is equal to the distance (L2 in Fig. 2). It was 50% long.
  • the pressure inside the mold at the time of injection was 200kgfZcm 2 (20MPa). Further, the obtained light diffusing plate had a poor appearance due to burning caused by air pockets. Furthermore, the thickness variation of the light diffusing plate was 200 ⁇ m.
  • the interval between the horizontal gate rows is narrowed, and the dimensions of the cavity surface are changed as follows.
  • a light diffusing plate was obtained in the same manner as in Comparative Example 1.
  • the dimensions of the mold cavity surface were 600 mm long, 1,02 Omm wide, and 1,183 mm diagonal.
  • the lateral gate spacing (L2 in Fig. 2) was 255mm and the vertical gate spacing (L1 in Fig. 2) was 50mm.
  • the spacing error in each direction was 0%.
  • the distances (LB1 to LB4 in Fig. 2) were 125.5 mm each, and the distances (LA1 to LA4 in Fig. 2) were 112.5 mm each.
  • the distance error in each direction was 0%.
  • Each distance (LA1 to LA4 in FIG. 2) was 225% of the distance (L1 in FIG. 2).
  • Each distance (LB1 to LB4 in FIG. 2) was 50% of the distance (L2 in FIG. 2).
  • the depth of the cavity was 2.0 mm.
  • the lateral gate spacing was 230 mm, and the longitudinal gate spacing was 50 mm. In each direction, the spacing error was 0%.
  • the in-mold pressure at the time of injection was 250 kgfZcm 2 (25 MPa). Moreover, it was a good product without any appearance defects that could occur due to air accumulation.
  • the thickness variation of the light diffusing plate was 200 m.
  • the in-mold pressure could be kept low, and the obtained light diffusion plate had no appearance defects due to gas burning or the like, and suppressed thickness unevenness.
  • Comparative Examples 1 and 2 the obtained light diffusion plate had poor appearance and uneven thickness due to gas burn.
  • the mold pressure could not be kept low, and the obtained light diffusion plate had uneven thickness.
  • a light diffusion plate was formed by an injection molding machine (screw diameter ⁇ 90 mm, maximum clamping force 85 Ot).
  • the mold has a substantially rectangular cavity surface on the main surface of the fixed mold plate.
  • the dimensions of the cavity surface were 430 mm long, 740 mm wide, and a diagonal length of 856 mm.
  • the cavity depth was 2.0 mm.
  • the cavity surface of the fixed mold plate is provided with 16 hot runner type valve gates having a diameter of 2 mm, which communicate with the cavity surface.
  • the gate gap L2 in the horizontal direction was 185mm
  • the gate gap L1 in the vertical direction was 107.5mm.
  • the spacing error in each direction was 0%.
  • the distance LA1 between the outermost gate 20A and the longitudinal side 11A of the cavity surface shown in FIG. 5 is 92.5 mm
  • the distance LB1 between the outermost gate 20A and the lateral side 12A of the cavity surface is 53. It was 8 mm.
  • the distance LA2 was 92.5 mm and the distance LB2 was 53.8 mm.
  • the distance LA3 was 92.5 mm and the distance LB3 was 53.8 mm.
  • the distance LA4 was 92.5 mm, and the distance LB4 was 53.8 mm. Therefore, the distance error was 0%.
  • Each distance LA1 to LA4 was 50% of the distance L1, and each distance LB1 to LB4 was 50% the distance L2.
  • the injection molding conditions were a cylinder temperature of 275 ° C, a hot runner temperature of 275 ° C, a mold temperature of 78 ° C, an injection speed of lOOmmZ seconds, and a cooling time of 30 seconds.
  • the first group of valve gates was opened, and the resin was injected from the first group of valve gates.
  • grease spray from the valve gate of the first group 1.5 seconds after exit, the second group of valve gates was opened, and the resin was injected from the first group of valve gates and the second group of valve gates.
  • 1.5 seconds after the injection of the resin from the valve gate of the second group the valve gate of the third group was opened and the resin was injected from the first to third valve gates.
  • the injection amount of the resin reaches the planned amount and it is determined that the resin filling state near the cavity surface is sufficient without sink marks, all valve gates are closed and the injection is stopped. did.
  • the in-mold pressure at the time of injection was 180 kgfZcm 2 (18 MPa). Then, after cooling a metal mold
  • the obtained light diffusing plate was a non-defective product having no appearance defect caused by air accumulation.
  • the variation in thickness was measured by a micrometer (manufactured by Mitutoyo Corporation) and found to be 60 m.
  • the dimensions of the cavity surface were changed as follows, and the opening and closing of the valve gate was controlled in the same manner as in Example 1 to obtain a light diffusing plate.
  • the dimensions of the cavity surface were 600 mm long, 1,02 Omm wide, and 1,183 mm diagonal.
  • the horizontal gate interval L2 was 255 mm
  • the vertical gate interval L1 was 150 mm.
  • the spacing error in each direction was 0%.
  • the distance L A1 between the outermost gate 20A and the longitudinal side 11A of the cavity surface is 75 mm
  • the distance LB 1 between the outermost gate 20A and the lateral side 12A of the cavity surface is 127.5 mm.
  • the distance LA2 was 75 mm and the distance LB2 was 127.5 mm.
  • the distance LA3 was 75 mm and the distance LB3 was 127.5 mm.
  • the distance LA4 was 75mm and the distance LB4 was 127.5mm. Therefore, the distance error was 0%.
  • Each distance LA1 to LA4 was 50% of the distance L1, and each distance LB1 to LB4 was 50% of the distance L2.
  • the depth of the cavity was 2.0mm.
  • the mold internal pressure at the time of injection was 180kgfZcm 2 (18MPa).
  • the obtained light diffusing plate was a good product with no appearance defect caused by air accumulation. Furthermore, the thickness variation of the light diffuser was 80 ⁇ m.
  • Example except that all valve gates are opened at the same time and the grease is injected at the same time.
  • a light diffusing plate was obtained in the same manner as in 3.
  • the obtained light diffusing plate had a poor appearance due to burning caused by air accumulation.
  • the variation in the thickness of the light diffusing plate was 200 m.
  • the number of valve gates is 8 (2 in the vertical direction and 4 in the horizontal direction), and the vertical gate interval is narrower than the horizontal gate interval, and all the valve gates are used simultaneously.
  • a light diffusing plate was obtained in the same manner as in Example 2 except that the resin was simultaneously injected and the pressure inside the mold was 25 MPa. The obtained light diffusing plate had a poor appearance due to burning caused by air pockets. Furthermore, the variation in the thickness of the light diffusing plate is about 200 m.
  • the method for producing a flat molded product of the present invention is suitable for producing a flat molded product using a mold, such as a light diffusing plate, a light guide plate, a reflecting plate, etc. constituting a backlight device of a liquid crystal display. It can be applied to the production of optical components and other flat plate molded products.

Abstract

A plurality of gates (20) are arranged on a substantially rectangular cavity surface (10). The gates (20) are arranged along the longitudinal direction or the lateral direction at substantially equal intervals. A plurality of gates are arranged by three lateral gate rows (22) and four longitudinal gate rows. A lateral gate row (22B) at the middle of the three lateral gate rows is permitted to be a first lateral gate row (X), and lateral gate rows (20A, 20C) outside the middle lateral gate row are permitted to be second lateral gate rows (Y). A resin is projected from the first lateral gate row (X), and when the projecting quantity of the resin becomes a prescribed quantity, the resin is projected from the second lateral gate rows (Y) and a molded flat plate is manufactured.

Description

明 細 書  Specification
平板成形品の製造方法および平板成形品  Method for producing flat plate molded product and flat plate molded product
技術分野  Technical field
[0001] 本発明は、平板成形品の製造方法及び該製造方法により製造された平板成形品 に関するものである。  The present invention relates to a method for producing a flat plate molded product and a flat plate molded product produced by the production method.
背景技術  Background art
[0002] 従来、液晶ディスプレイ用のバックライト装置としては、エッジライト型方式や直下型 方式が用いられている。例えば、一般的な直下型方式のバックライト装置は、並列に 配置された複数の光源と、光源から出射された光を反射する反射板と、光源からの 光および反射板で反射された光を拡散照射する光拡散板とを備えて構成されている  Conventionally, as a backlight device for a liquid crystal display, an edge light type method or a direct type method is used. For example, a general direct type backlight device includes a plurality of light sources arranged in parallel, a reflection plate that reflects light emitted from the light source, light from the light source and light reflected by the reflection plate. And a light diffusing plate for diffusing irradiation
[0003] このような直下型バックライト装置で用いられる光拡散板は、押出成形法やキャスト 法、射出成形法などにより成形される場合が多い。例えば、日本国特許出願公開 20 05 - 271306号公報には、射出成形法により光拡散板を成形する方法が開示され ている。この方法は、矩形形状のキヤビティ面を所定の矩形に分割し、各矩形の対角 線の交点よりも短手方向の中心よりにゲートを設けた金型を用いて光拡散板を製造 する方法である。このような方法によれば、キヤビティ内に空気溜りが生じにくいため、 焼け等による外観不良の少ない高品質な光拡散板を効率的に製造できるという効果 がある。 [0003] The light diffusing plate used in such a direct type backlight device is often molded by an extrusion molding method, a casting method, an injection molding method, or the like. For example, Japanese Patent Application Publication No. 20 05-271306 discloses a method of forming a light diffusion plate by an injection molding method. In this method, a rectangular cavity surface is divided into predetermined rectangles, and a light diffusing plate is manufactured by using a mold in which a gate is provided at the center in the short direction from the intersection of diagonal lines of each rectangle. It is. According to such a method, since air does not easily accumulate in the cavity, there is an effect that it is possible to efficiently manufacture a high-quality light diffusing plate with less appearance defects due to burning or the like.
発明の開示  Disclosure of the invention
[0004] し力しながら、矩形形状のキヤビティ面の短手方向のゲート列においては、ゲート間 隔の広い箇所と狭い箇所とが混在しているため、ゲート間隔の狭い箇所では圧力が 上昇することがあり、型内圧を十分に低くできない場合があった。なお、このような問 題は、光拡散板に限らず、導光板や反射板等の他の光学部材その他の平板成形品 にお ヽても同様に生じて 、た。  [0004] However, in the gate row in the short direction of the rectangular cavity surface, there are a mixture of a wide gate interval and a narrow gate interval, so that the pressure rises at a narrow gate interval. In some cases, the in-mold pressure could not be lowered sufficiently. Such a problem occurs not only in the light diffusion plate but also in other optical members such as a light guide plate and a reflection plate and other flat plate molded products.
[0005] 本発明の目的は、型内圧を低く抑えると共に、高品質な平板成形品を効率的に製 造できる平板成形品の製造方法、及びこの製造方法により得られた平板成形品を提 供することである。 [0005] An object of the present invention is to provide a method for producing a flat plate product capable of efficiently producing a high quality flat plate product while keeping the pressure inside the mold low, and a flat plate product obtained by this production method. It is to provide.
[0006] 上記課題を解決するために本発明者らが鋭意検討した結果、例えば、縦方向に 3 個、横方向に 4個のゲートを均等な間隔で配置した場合では、縦方向に 3個並んだ ゲートのうち真ん中のゲートを含む横方向に沿ったゲート列 (第 1ゲート列)から榭脂 を射出し、その後タイミングをずらして、第 1ゲート列の両側のゲート列 (第 2ゲート列) 力 榭脂を射出することにより、型内圧を抑えて、高品質な平板成形品を効率よく製 造できることを見出した。  [0006] As a result of intensive studies by the present inventors in order to solve the above-mentioned problem, for example, when three gates in the vertical direction and four gates in the horizontal direction are arranged at equal intervals, three in the vertical direction. Out of the gates lined up, the resin is injected from the gate row (first gate row) along the lateral direction including the middle gate, and then the timing is shifted so that the gate rows on both sides of the first gate row (second gate row) We have found that high-quality flat plate molded products can be produced efficiently by suppressing the internal pressure of the mold by injecting force grease.
[0007] また、縦方向及び横方向にそれぞれ複数個のゲートを均等な間隔で配置した場合 において、型内圧を抑えて、高品質な平板成形品を効率よく製造できる平板成形品 の製造方法を見出した。  [0007] Also, there is provided a method for manufacturing a flat plate molded product capable of efficiently manufacturing a high quality flat plate molded product while suppressing the internal pressure when a plurality of gates are arranged at equal intervals in the vertical direction and the horizontal direction, respectively. I found it.
[0008] 即ち、本発明の第 1の態様に従えば、射出成形用の金型を用いて、榭脂製の平板 成形品を製造する方法であって、前記金型は、前記平板成形品の形状に対応した 略矩形のキヤビティ面が形成されるとともに、このキヤビティ面に連通する複数のゲー トが設けられた固定型板を備え、前記複数のゲートは、前記キヤビティ面の略矩形の 縦方向および横方向に沿った、前記縦方向のピッチが L1で、前記横方向のピッチが L2の格子を考えた際に、この格子の交点部分の位置に配置され、前記略矩形のキ ャビティ面の各頂点から最も近いゲートである 4つの最外側ゲートにおいて、各最外 側ゲートと前記キヤビティ面の横方向の辺のうち最も近い辺との距離 LA1〜LA4は、 前記ピッチ L1の 120%〜10%であり、かつ各最外側ゲートと前記キヤビティ面の縦 方向の辺のうち最も近い辺との距離 LB1〜LB4は、前記ピッチ L2の 120%〜10% であり、前記複数のゲートを、前記縦方向に沿って並んだ複数のゲートからなる複数 の縦ゲート列と、前記横方向に沿って並んだ複数のゲートからなる複数の横ゲート列 として、前記縦ゲート列の数と前記横ゲート列の数とのうち、少なくとも一方の方向の ゲート列数が奇数であり、前記奇数となるいずれかの方向のゲート列において、複数 のゲート列を、前記キヤビティ面の対角線の交点に最も近い位置のゲートである中心 側ゲートを含む列を第 1ゲート列、この第 1ゲート列に近い 2つのゲート列を含む第 2 ゲート列、この第 2ゲート列を構成する各ゲート列に近い各ゲート列を含む第 3ゲート 列、 · · ·第 n-1ゲート列を構成する各ゲート列に近い各ゲート列を含む第 nゲート列( nは 2以上の整数)とし、前記第 1ゲート列から前記榭脂を射出する第 1工程と、第 n- 1ゲート列力 の射出量が所定量となった際に、前記第 nゲート列力 前記榭脂を射 出する第 n工程 (nの値カ¾である場合にお!、て、 nが 2〜kのすベての値にお!、て成 立する)とを備える平板成形品の製造方法が提供される。 [0008] That is, according to the first aspect of the present invention, there is provided a method for manufacturing a resin-made flat plate molded article using an injection mold, wherein the mold is the flat plate molded article. A substantially rectangular cavity surface corresponding to the shape of the cavity surface is formed, and a fixed mold plate provided with a plurality of gates communicating with the cavity surface is provided, and the plurality of gates are substantially rectangular longitudinally of the cavity surface. When considering a grid having a vertical pitch L1 and a horizontal pitch L2 along the horizontal and horizontal directions, the substantially rectangular cavity surface is arranged at the position of the intersection of the grids. In the four outermost gates, which are the gates closest to each vertex, the distance LA1 to LA4 between each outermost gate and the nearest side among the lateral sides of the cavity surface is 120% to the pitch L1. 10% and each outermost gate and the cavity surface The distances LB1 to LB4 with the closest side among the vertical sides are 120% to 10% of the pitch L2, and the plurality of gates are a plurality of gates arranged in the vertical direction. The number of gate rows in at least one of the number of the vertical gate rows and the number of the horizontal gate rows as a plurality of horizontal gate rows comprising a vertical gate row and a plurality of gates arranged in the horizontal direction Is an odd number, and in the gate row in any direction where the odd number is present, the first gate row is a row including a plurality of gate rows and a central gate that is a gate closest to an intersection of diagonal lines of the cavity surface. A second gate row including two gate rows close to the first gate row, a third gate row including gate rows close to the gate rows constituting the second gate row, the n-1th gate Each gate row close to each gate row that makes up the row The n-th gate column that contains ( n is an integer greater than or equal to 2), and the first step of injecting the resin from the first gate row, and when the injection amount of the n-1 gate row force reaches a predetermined amount, the nth gate row A flat plate provided with an n-th step for ejecting the resin (when n has a value of 3 !, n stands for all values of 2 to k!) A method of manufacturing a molded article is provided.
[0009] 上記の通り、少なくとも一方の方向では、所定ピッチで奇数本のゲート列が設けら れているため、最も中央のゲート列が第 1ゲート列となり、この第 1ゲート列に最も近い ゲート列である第 2ゲート列は、この第 1ゲート列の各側に 1つずつ、合計 2つのゲー ト列を含むこととなる。また、第 2ゲート列を構成する各ゲート列力も最も近いゲート列 がそれぞれ 1つずつ存在するため、第 3ゲート列も 2つ存在することになる。以降、第 nゲート列まですべてゲート列が 2つずつ存在することになる。  [0009] As described above, in at least one direction, since an odd number of gate rows are provided at a predetermined pitch, the center gate row becomes the first gate row, and the gate closest to the first gate row. The second gate row, which is a row, will contain two gate rows, one on each side of the first gate row. In addition, there is one gate row that is the closest to each gate row force that constitutes the second gate row, so there are also two third gate rows. After that, there will be two gate rows for every nth gate row.
[0010] 本発明の第 1の態様に係る平板成形品の製造方法おいて、例えば、ゲート列の数 力 S3本である場合には、中央のゲート列 (第 1ゲート列)から榭脂を射出する第 1工程 と、その後、第 1ゲート列の両側のゲート列 (第 2ゲート列)から榭脂を射出する第 2ェ 程とを含む。また、ゲート列の数が 5本である場合には、第 1ゲート列力も榭脂を射出 する第 1工程と、その後、第 1ゲート列の両側の各ゲート列 (第 2ゲート列)から榭脂を 射出する第 2工程と、その後、第 2ゲート列を構成する各ゲート列力 最も近いゲート 列 (第 3ゲート列)から榭脂を射出する第 3工程とを含む。以上まとめれば、ゲート列 数を 2n-l本 (nが 2以上の整数)とすると、本発明の第 1の観点においては、第 1工程 と、第 2工程と、 · · ·、第 n工程とを含むということになる。  [0010] In the method for producing a flat molded product according to the first aspect of the present invention, for example, when the gate row has a number S3, the resin is fed from the central gate row (first gate row). A first step of injecting, and then a second step of injecting the resin from the gate rows (second gate rows) on both sides of the first gate row. If the number of gate rows is five, the first gate row force is also injected from the first step of injecting the resin, and then from each gate row (second gate row) on both sides of the first gate row. A second step of injecting the grease, and then a third step of injecting the grease from the closest gate row (third gate row) constituting each second gate row. In summary, if the number of gate columns is 2n-l (where n is an integer equal to or greater than 2), in the first aspect of the present invention, the first step, the second step,. Will be included.
[0011] 本発明の第 1の態様に係る平板成形品の製造方法よれば、奇数の列数となる方向 において、その中心側ゲートを含む第 1ゲート列とし、この第 1ゲート列に近い順に第 2ゲート列として、このゲート列の順に榭脂射出のタイミングをずらすようにしたので、 複数のゲートを格子の交点部分に配置した略均等な配置としても、キヤビティ内に空 気溜りが生じず、空気溜りによる焼け等の外観不良が生じるのを防止できる。このた め、高品質な平板成形品を製造できる。また、このように複数のゲートを略均等な配 置としたので、キヤビティ内において、部分的に圧力が上昇することがなぐ型内圧を 低く抑えることができる。以上より、本発明によれば、型内圧を低く抑えて、高品質な 平板成形品をより一層効率的に製造できる。 [0012] ここで、ゲート列の数は、例えば、縦方向 4個 X横方向 3個や、縦方向 3個 X横方 向 3個、縦方向 2個 X横方向 3個、縦方向 4個 X横方向 5個等とすることができる。ま た、前記奇数の列数となる方向は、縦方向および横方向のいずれの方向であっても よい。ただし、奇数の列数となる方向は、縦方向および横方向のいずれか長い方向 であることが好ましい。 [0011] According to the method for manufacturing a flat molded product according to the first aspect of the present invention, the first gate row including the central gate is formed in the order of the first gate row in the direction of the odd number of rows. As the second gate row, the timing of the resin injection is shifted in the order of this gate row, so that even if the gates are arranged approximately at the intersections of the lattice, there is no air pool in the cavity. It is possible to prevent appearance defects such as burning due to air accumulation. This makes it possible to produce high-quality flat plate products. In addition, since the plurality of gates are arranged substantially evenly in this way, it is possible to keep the internal pressure of the mold within which the pressure does not rise partially in the cavity. As described above, according to the present invention, a high-quality flat plate molded product can be manufactured more efficiently while keeping the in-mold pressure low. Here, the number of gate rows is, for example, 4 in the vertical direction, 3 in the horizontal direction, 3 in the vertical direction, 3 in the horizontal direction, 2 in the vertical direction, 3 in the horizontal direction, and 4 in the vertical direction. X can be 5 in the horizontal direction. Further, the direction of the odd number of columns may be either the vertical direction or the horizontal direction. However, the direction of the odd number of columns is preferably the longer one of the vertical direction and the horizontal direction.
[0013] また、前記各最外側ゲートにおける前記距離 LA1〜LA4は、互いに略同じであり、 前記各最外側ゲートにおける前記距離 LB1〜LB4は、互いに略同じであることとし てもよい。  [0013] Further, the distances LA1 to LA4 in the outermost gates may be substantially the same, and the distances LB1 to LB4 in the outermost gates may be substantially the same.
[0014] また、本発明の第 2の態様に従えば、射出成形用の金型を用いて、榭脂を射出成 形することにより、略矩形形状の平板成形品を製造する方法であって、前記金型は、 可動型板と、前記平板成形品の形状に対応した略矩形形状のキヤビティ面が形成さ れると共に、前記キヤビティ面に連通する複数のゲートが設けられた固定型板を備え 、前記複数のゲートは、前記キヤビティ面の略矩形形状の第 1の辺に沿った第 1方向 のピッチが L1で、前記第 1の方向と直交する第 2の辺に沿った第 2方向のピッチが L 2の格子を考えた際に、この格子の交点部分の位置に配置され、前記複数のゲート を、前記第 1方向に沿って並んだ複数のゲートからなる複数の第 1ゲート列と、前記 第 2方向に沿って並んだ複数のゲートからなる複数の第 2ゲート列とし、前記第 1ゲー ト列において、前記キヤビティ面の対角線の交点に最も近い 2つのゲート列を第 11ゲ ート列及び第 12ゲート列、この第 11ゲート列及び第 12ゲート列に近い 2つのゲート 列をそれぞれ第 13ゲート列及び第 14ゲート列とし、前記第 2ゲート列において、前 記キヤビティ面の対角線の交点に最も近い 2つのゲート列を第 21ゲート列及び第 22 ゲート列、この第 21ゲート列及び第 22ゲート列に近い 2つのゲート列をそれぞれ第 2 3ゲート列及び第 24ゲート列とし、各ゲートを (第 1ゲート列,第 2ゲート列)で表した 場合に、 (13, 21)、 (11, 22)、 (12, 21)、 (14, 22)の各ゲートを含む第 1グループ 、 (13, 22)、 (11, 21)、 (12, 22)、 (14, 21)の各ゲートを含む第 2グループの中の 何れか一方のグループに含まれる各ゲートから前記榭脂を射出する第 1工程と、前 記第 1工程での射出量が所定量となった際に、他方のグループに含まれる各ゲート から前記榭脂を射出する第 2工程と、前記第 2工程での射出量が所定量となった際 に、第 23ゲート列及び第 24ゲート列の各ゲートから前記榭脂を射出する第 3工程と を含む平板成形品の製造方法が提供される。 [0014] Further, according to the second aspect of the present invention, there is provided a method for producing a substantially rectangular flat plate molded article by injection molding a resin using an injection mold. The mold includes a movable mold plate and a fixed mold plate on which a substantially rectangular cavity surface corresponding to the shape of the flat plate molded product is formed and a plurality of gates communicating with the cavity surface are provided. The plurality of gates have a pitch in the first direction along the first side of the substantially rectangular shape of the cavity surface is L1, and the second direction in the second direction along the second side orthogonal to the first direction. When considering a lattice having a pitch of L2, the plurality of gates arranged at the intersections of the lattice and a plurality of first gate rows composed of a plurality of gates arranged along the first direction are arranged. A plurality of second gate rows composed of a plurality of gates arranged along the second direction. In the first gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the eleventh gate row and the twelfth gate row, and the two gates close to the eleventh gate row and the twelfth gate row. The rows are the 13th gate row and the 14th gate row, respectively. In the second gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 21st gate row and the 22nd gate row. When the two gate rows close to the gate row and the 22nd gate row are respectively the second 3rd gate row and the 24th gate row, and each gate is expressed as (first gate row, second gate row), (13, 21), (11, 22), (12, 21), (14, 22) first group including gates (13, 22), (11, 21), (12, 22), (14, 21) a first step of injecting the resin from each gate included in any one of the second groups including each gate; When the injection amount in the first step reaches a predetermined amount, the second step of injecting the resin from each gate included in the other group and the injection amount in the second step become the predetermined amount. When And a third step of injecting the resin from each gate of the 23rd gate row and the 24th gate row.
[0015] 本発明の第 2の態様に係る平板成形品の製造方法においては、第 1工程として、 第 1グループに含まれる各ゲート又は第 2グループに含まれる各ゲートから榭脂を射 出し、第 2工程として、第 2グループに含まれる各ゲート又は第 1グループに含まれる 各ゲートから榭脂を射出し、第 3工程として、第 23ゲート列及び第 24ゲート列の各ゲ ートから榭脂を射出するように、各ゲートからの榭脂の射出のタイミングをずらしてい るので、複数のゲートを格子の交点部分に配置した略均等な配置としても、キヤビテ ィ内に空気溜りが生じず、空気溜りによる焼け等の外観不良が生じるのを防止できる 。このため、高品質な平板成形品を製造できる。また、このように複数のゲートを略均 等な配置としたので、キヤビティ内において、部分的に圧力が上昇することがなぐ型 内圧を低く抑えることができる。従って、型内圧を低く抑えて、高品質な平板成形品を より一層効率的に製造することができる。  [0015] In the method for producing a flat molded article according to the second aspect of the present invention, as the first step, resin is sprayed from each gate included in the first group or each gate included in the second group, In the second step, the resin is injected from each gate included in the second group or each gate included in the first group, and in the third step, the resin is injected from each gate of the 23rd gate row and the 24th gate row. Since the injection timing of the grease from each gate is shifted so as to inject the oil, even if the plurality of gates are arranged at the intersections of the lattice, there is no air pocket in the cavity. It is possible to prevent appearance defects such as burning due to air accumulation. For this reason, a high quality flat plate molded product can be manufactured. In addition, since the plurality of gates are arranged in a substantially uniform manner in this way, the mold pressure within the cavity where the pressure does not partially rise can be kept low. Therefore, it is possible to manufacture a high-quality flat plate molded product more efficiently while keeping the in-mold pressure low.
[0016] また、本発明の第 3の態様に従えば、射出成形用の金型を用いて、榭脂を射出成 形することにより、略矩形形状の平板成形品を製造する方法であって、前記金型は、 可動型板と、前記平板成形品の形状に対応した略矩形形状のキヤビティ面が形成さ れると共に、前記キヤビティ面に連通する複数のゲートが設けられた固定型板を備え 、前記複数のゲートは、前記キヤビティ面の略矩形形状の第 1の辺に沿った第 1方向 のピッチが L1で、前記第 1の方向と直交する第 2の辺に沿った第 2方向のピッチが L 2の格子を考えた際に、この格子の交点部分の位置に配置され、前記複数のゲート を、前記第 1方向に沿って並んだ複数のゲートからなる複数の第 1ゲート列と、前記 第 2方向に沿って並んだ複数のゲートからなる複数の第 2ゲート列とし、前記第 1ゲー ト列において、前記キヤビティ面の対角線の交点に最も近い 2つのゲート列を第 11ゲ ート列及び第 12ゲート列、この第 11ゲート列及び第 12ゲート列に近い 2つのゲート 列をそれぞれ第 13ゲート列及び第 14ゲート列とし、前記第 2ゲート列において、前 記キヤビティ面の対角線の交点に最も近い 2つのゲート列を第 21ゲート列及び第 22 ゲート列、この第 21ゲート列及び第 22ゲート列に近い 2つのゲート列をそれぞれ第 2 3ゲート列及び第 24ゲート列とし、各ゲートを (第 1ゲート列,第 2ゲート列)で表した 場合に、 (11, 22)、 (12, 21)の各ゲートを含む第 1グループ、 (11, 21)、 (12, 22) の各ゲートを含む第 2グループの中の何れか一方のグループに含まれる各ゲートか ら前記榭脂を射出する第 1工程と、前記第 1工程での射出量が所定量となった際に、 他方のグループに含まれる各ゲートから前記榭脂を射出する第 2工程と、前記第 2ェ 程での射出量が所定量となった際に、第 13ゲート列、第 14ゲート列、第 23ゲート列 及び第 24ゲート列の各ゲートから前記榭脂を射出する第 3工程とを含む平板成形品 の製造方法が提供される。 [0016] Further, according to the third aspect of the present invention, there is provided a method of manufacturing a substantially rectangular flat plate molded article by injection molding a resin using an injection mold. The mold includes a movable mold plate and a fixed mold plate on which a substantially rectangular cavity surface corresponding to the shape of the flat plate molded product is formed and a plurality of gates communicating with the cavity surface are provided. The plurality of gates have a pitch in the first direction along the first side of the substantially rectangular shape of the cavity surface is L1, and the second direction in the second direction along the second side orthogonal to the first direction. When considering a lattice having a pitch of L2, the plurality of gates arranged at the intersections of the lattice and a plurality of first gate rows composed of a plurality of gates arranged along the first direction are arranged. A plurality of second gate rows composed of a plurality of gates arranged along the second direction. In the first gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the eleventh gate row and the twelfth gate row, and the two gates close to the eleventh gate row and the twelfth gate row. The rows are the 13th gate row and the 14th gate row, respectively. In the second gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 21st gate row and the 22nd gate row. The two gate rows close to the gate row and the 22nd gate row are the second gate row and the 24th gate row, respectively, and each gate is expressed as (first gate row, second gate row). The first group including the gates of (11, 22) and (12, 21), and one of the second groups including the gates of (11, 21) and (12, 22). A first step of injecting the resin from each gate included in the first step, and when the injection amount in the first step reaches a predetermined amount, the resin is injected from each gate included in the other group When the injection amount in the second step and the second step reaches a predetermined amount, the resin is discharged from each gate of the thirteenth gate row, the fourteenth gate row, the twenty-third gate row, and the twenty-fourth gate row. There is provided a method for producing a flat molded article including a third step of injecting.
[0017] 本発明の第 3の態様に係る平板成形品の製造方法においては、第 1工程として、 第 1グループに含まれる各ゲート又は第 2グループに含まれる各ゲートから榭脂を射 出し、第 2工程として、第 2グループに含まれる各ゲート又は第 1グループに含まれる 各ゲートから榭脂を射出し、第 3工程として、第 13ゲート列、第 14ゲート列、第 23ゲ ート列及び第 24ゲート列の各ゲートから榭脂を射出するように、各ゲートからの榭脂 の射出のタイミングをずらしているので、複数のゲートを格子の交点部分に配置した 略均等な配置としても、キヤビティ内に空気溜りが生じず、空気溜りによる焼け等の外 観不良が生じるのを防止できる。このため、高品質な平板成形品を製造できる。また 、このように複数のゲートを略均等な配置としたので、キヤビティ内において、部分的 に圧力が上昇することがなぐ型内圧を低く抑えることができる。従って、型内圧を低 く抑えて、高品質な平板成形品をより一層効率的に製造することができる。  [0017] In the method for manufacturing a flat molded product according to the third aspect of the present invention, as the first step, resin is sprayed from each gate included in the first group or each gate included in the second group, As the second step, grease is injected from each gate included in the second group or from each gate included in the first group, and as the third step, the thirteenth gate row, the fourteenth gate row, and the twenty-third gate row Since the timing of the injection of the resin from each gate is shifted so that the resin is injected from each gate of the 24th gate row, a plurality of gates may be arranged at the intersections of the lattice. In addition, air retention does not occur in the cavity, and appearance defects such as burning due to the air retention can be prevented. For this reason, a high quality flat plate molded product can be manufactured. In addition, since the plurality of gates are arranged substantially evenly in this way, it is possible to keep the internal pressure of the mold within which the pressure does not increase partially in the cavity. Accordingly, it is possible to manufacture a high-quality flat plate product more efficiently while keeping the in-mold pressure low.
[0018] また、本発明の第 2及び第 3の態様に係る平板成形品の製造方法においては、前 記略矩形形状のキヤビティ面の各頂点から最も近いゲートである 4つの最外側ゲート において、各最外側ゲートと前記キヤビティ面の前記第 2方向の辺のうち最も近い辺 との距離 LA1〜LA4は、前記ピッチ L1の 120%〜10%であり、かつ各最外側ゲー トと前記キヤビティ面の前記第 1方向の辺のうち最も近い辺との距離 LB1〜LB4は、 前記ピッチ L2の 120%〜10%であることが好ましい。  [0018] Further, in the method for manufacturing a flat molded product according to the second and third aspects of the present invention, in the four outermost gates which are the gates closest to each vertex of the substantially rectangular shaped cavity surface, The distance LA1 to LA4 between each outermost gate and the nearest side of the cavity surface in the second direction is 120% to 10% of the pitch L1, and each outermost gate and the cavity surface. It is preferable that the distances LB1 to LB4 with the closest side among the sides in the first direction are 120% to 10% of the pitch L2.
[0019] また、前記各最外側ゲートにおける前記距離 LA1〜LA4は、互いに略同じであり、 前記各最外側ゲートにおける前記距離 LB1〜LB4は、互いに略同じであることが好 ましい。この発明の平板成形品の製造方法によれば、略矩形形状のキヤビティ面の 各頂点付近にも良好に榭脂の注入を行なうことができ、厚みムラのない高品質な平 板成形品をより効率的に製造することができる。 [0019] Preferably, the distances LA1 to LA4 at the outermost gates are substantially the same, and the distances LB1 to LB4 at the outermost gates are substantially the same. According to the method for producing a flat plate molded article of the present invention, it is possible to satisfactorily inject grease into the vicinity of each apex of a substantially rectangular shaped cavity surface, and to produce a high-quality flat surface having no thickness unevenness. A plate molded product can be manufactured more efficiently.
[0020] また、本発明の第 1〜第 3の態様に係る平板成形品の製造方法においては、前記 ゲートの数を N (個)、前記固定金型に形成されるキヤビティの深さを t (mm)、前記キ ャビティ面の面積を S (mm2)とした際に、下記数式(1)を満たすことが好ましい。 [0020] Further, in the method for manufacturing a flat molded product according to the first to third aspects of the present invention, the number of the gates is N (pieces), and the depth of the cavity formed in the fixed mold is t. When the area of the cavity surface is S (mm 2 ), it is preferable that the following formula (1) is satisfied.
[0021] (数 1) [0021] (Equation 1)
(S/ (t+6) ) X 10-4 ≤ N ≤ (2S/t) X 10"4- - - (l) (S / (t + 6)) X 10 -4 ≤ N ≤ (2S / t) X 10 " 4 ---(l)
また、本発明の第 4の態様に従えば、本発明の平板成形品の製造方法により製造 された外観不良のない平板成形品を提供することが出来る。このような平板成形品と しては、光拡散板や導光板等の光学部材等を挙げることができる。  Further, according to the fourth aspect of the present invention, it is possible to provide a flat molded product having no appearance defect manufactured by the method for manufacturing a flat molded product of the present invention. Examples of such flat plate molded products include optical members such as a light diffusing plate and a light guide plate.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の第 1の実施形態に係る固定金型に形成されたキヤビティ面を模式的に 示す平面図である。  FIG. 1 is a plan view schematically showing a cavity surface formed on a fixed mold according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態に係るキヤビティ面に形成されたゲートの位置を説明 するための平面図である。  FIG. 2 is a plan view for explaining the position of the gate formed on the cavity surface according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施形態に係る光拡散板の製造方法を説明するための、キヤ ビティ面の平面図である。  FIG. 3 is a plan view of a cavity surface for explaining a method of manufacturing a light diffusing plate according to the first embodiment of the present invention.
[図 4]本発明の第 1の実施形態に係る光拡散板を製造する方法の手順を説明するた めのフローチャートである。  FIG. 4 is a flowchart for explaining the procedure of the method for manufacturing the light diffusing plate according to the first embodiment of the present invention.
[図 5]本発明の第 2の実施形態に係る固定型板に形成されたキヤビティ面を模式的に 示す平面図である。  FIG. 5 is a plan view schematically showing a cavity surface formed on a fixed mold plate according to a second embodiment of the present invention.
[図 6]本発明の第 2の実施形態に係るキヤビティ面に形成されたゲートの位置を説明 するための平面図である。  FIG. 6 is a plan view for explaining the position of the gate formed on the cavity surface according to the second embodiment of the present invention.
[図 7]本発明の第 2の実施形態に係る光拡散板の製造方法を説明するためのキヤビ ティ面の平面図である。  FIG. 7 is a plan view of a cavity surface for explaining a method of manufacturing a light diffusing plate according to the second embodiment of the present invention.
[図 8]本発明の第 2の実施形態に係る光拡散板を製造する方法の手順を説明するた めのフローチャートである。  FIG. 8 is a flowchart for explaining the procedure of a method for producing a light diffusing plate according to the second embodiment of the present invention.
[図 9]本発明の第 2の実施形態に係る光拡散板を製造する際の樹脂の流動の状態を 説明するための図である。 [図 10]本発明の第 2の実施形態に係る光拡散板を製造する際の樹脂の流動の状態 を説明するための図である。 FIG. 9 is a diagram for explaining a state of resin flow when manufacturing a light diffusing plate according to a second embodiment of the present invention. FIG. 10 is a diagram for explaining a state of resin flow when manufacturing a light diffusing plate according to a second embodiment of the present invention.
[図 11]本発明の第 2の実施形態に係る光拡散板を製造する際の樹脂の流動の状態 を説明するための図である。  FIG. 11 is a diagram for explaining a state of resin flow when manufacturing a light diffusing plate according to a second embodiment of the present invention.
[図 12]本発明の第 2の実施形態に係る固定型板に形成されたゲート数が 6 X 8の場 合のゲートの開閉タイミングを説明するための図である。  FIG. 12 is a diagram for explaining gate opening / closing timings when the number of gates formed on the stationary mold plate according to the second embodiment of the present invention is 6 × 8.
[図 13]本発明の第 3の実施形態に係る光拡散板を製造する際の樹脂の流動の状態 を説明するための図である。  FIG. 13 is a view for explaining the state of resin flow when manufacturing a light diffusing plate according to a third embodiment of the present invention.
[図 14]本発明の実施形態に係る液晶表示装置の構成を示す図である。  FIG. 14 is a diagram showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
[図 15]従来技術としての比較例 2における固定金型のキヤビティ面を模式的に示す 平面図である。  FIG. 15 is a plan view schematically showing a cavity surface of a fixed mold in Comparative Example 2 as a conventional technique.
[図 16]従来技術としての比較例 3における固定金型のキヤビティ面を模式的に示す 平面図である。  FIG. 16 is a plan view schematically showing the cavity surface of the fixed mold in Comparative Example 3 as a prior art.
[図 17]従来技術としての比較例 4における固定型板のキヤビティ面を模式的に示す 平面図である。  FIG. 17 is a plan view schematically showing the cavity surface of the fixed mold plate in Comparative Example 4 as a conventional technique.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、図面を参照して、本発明の第 1の実施形態に係る射出成形用金型を用いる 榭脂製の平板成形品の製造方法について説明する。まず、第 1の実施形態に用いら れる射出成形用金型について説明する。射出成形用金型は、固定金型(固定型板) と可動金型 (可動型板)とを備えて構成され、固定金型と可動金型との空隙であるキ ャビティに榭脂を射出して、平板成形品である例えば光拡散板を製造するものである Hereinafter, with reference to the drawings, a method for producing a flat resin molded product made of resin using the injection mold according to the first embodiment of the present invention will be described. First, the injection mold used in the first embodiment will be described. An injection mold is composed of a fixed mold (fixed mold plate) and a movable mold (movable mold plate), and injects grease into the cavity that is the gap between the fixed mold and the movable mold. Then, for example, a light diffusion plate that is a flat plate molded product is manufactured.
[0024] ここで、射出成形用金型の外周縁には、射出成形時に、キヤビティ内の空気を逃が すためのガスベントが設けられている。なお、固定金型には、ホットランナーやコール ドランナーを設けることができる。また、固定金型または可動金型に、キヤビティ内の 空気等を逃がすための真空引き孔を設けることができる。 [0024] Here, a gas vent is provided at the outer peripheral edge of the injection mold for releasing air in the cavity at the time of injection molding. The fixed mold can be equipped with a hot runner or cold runner. Moreover, a vacuum drawing hole for releasing air in the cavity or the like can be provided in the fixed mold or the movable mold.
[0025] キヤビティの深さは、 0. lmm〜15. Ommであることが好ましぐ 0. 2mm〜5. Om mであることがより好ましぐ 0. 5mn!〜 3. Ommであることがさらに好ましい。なお、キ ャビティの深さは、得られる平板成形品の厚みと略一致することになる。 [0025] The depth of the cavity is preferably 0.1 mm to 15. Omm, more preferably 0.2 mm to 5. Omm. 0.5 nm! ~ 3. More preferably, it is Omm. The key The depth of the cavity substantially coincides with the thickness of the obtained flat plate molded product.
[0026] 図 1は、固定金型に形成されたキヤビティ面を模式的に示す平面図である。図 1に 示すように、キヤビティ面 10は、略矩形形状に形成されている。略矩形形状のキヤビ ティ面 10において、矩形の頂点を 10A〜: L0Dとし、頂点 10Aと頂点 10Bとを結んだ 縦方向の辺を 11A、頂点 IOCと頂点 10Dとを結んだ縦方向の辺を 11B、頂点 10Aと 頂点 10Cとを結んだ横方向の辺を 12A、頂点 10Bと頂点 10Dとを結んだ横方向の 辺を 12Bとする。なお、縦方向とは図 1中の上下方向であり、横方向とは図 1中の左 右方向である。  FIG. 1 is a plan view schematically showing a cavity surface formed on a fixed mold. As shown in FIG. 1, the cavity surface 10 is formed in a substantially rectangular shape. In the substantially rectangular shaped cavity surface 10, the rectangular vertex is 10A ~: L0D, the vertical side connecting vertex 10A and vertex 10B is 11A, and the vertical side connecting vertex IOC and vertex 10D is 11B, the horizontal side connecting vertex 10A and vertex 10C is 12A, and the horizontal side connecting vertex 10B and vertex 10D is 12B. The vertical direction is the vertical direction in FIG. 1, and the horizontal direction is the left-right direction in FIG.
[0027] キヤビティ面 10の対角線長さ(頂点 10Aおよび頂点 10D間の距離、頂点 10Bおよ び頂点 10C間の距離)は、 400mm以上であることが好ましぐ 650mm以上であるこ とがより好ましい。後述する本発明の実施形態に係る製造方法によれば、対角線長さ が前記数値より大きくなる場合であっても、厚みムラの少ない平板成形品を効率よく 製造できる。  [0027] The diagonal length of the cavity surface 10 (distance between vertex 10A and vertex 10D, distance between vertex 10B and vertex 10C) is preferably 400 mm or more, more preferably 650 mm or more. . According to the manufacturing method according to an embodiment of the present invention to be described later, even if the diagonal length is larger than the numerical value, a flat plate molded product with less thickness unevenness can be efficiently manufactured.
[0028] ここで、略矩形形状のキヤビティ面の態様としては、例えば、(1)キヤビティ面全体 が矩形形状である場合、(2)キヤビティ面全体が、矩形形状の本体部と、この本体部 の周囲に設けられる周縁部とを備えて構成され、この周縁部の形状が任意の形状で 形成され、キヤビティ面全体としては矩形形状ではな 、場合等を挙げることができる。  [0028] Here, as an aspect of the substantially rectangular shape of the cavity surface, for example, (1) when the entire cavity surface is rectangular, (2) the entire cavity surface is a rectangular main body, and the main body The peripheral edge portion is formed in an arbitrary shape, and the entire cavity surface is not a rectangular shape.
[0029] キヤビティ面 10の縦方向の長さ(辺 11Aおよび辺 11Bの長さ)および横方向の長さ  [0029] The vertical length of the cavity surface 10 (the length of the sides 11A and 11B) and the length in the horizontal direction
(辺 12Aおよび辺 12Bの長さ)は、特に限定されないが、例えば縦方向の長さ X横方 向の長さと記載して、縦 740mm X横 430mm、および、縦 1, 020mm X横 600mm 等とすることができる。なお、キヤビティ面 10は、通常、縦方向の長さよりも横方向の 長さが大きくなるように形成されるが、縦方向の長さと横方向の長さとが略一致しても よい。  (Length of side 12A and side 12B) is not particularly limited. For example, the length in the vertical direction and the length in the horizontal direction are described as 740mm in length X 430mm in width and 1,020mm in length X 600mm in width. It can be. The cavity surface 10 is usually formed so that the length in the horizontal direction is larger than the length in the vertical direction, but the length in the vertical direction and the length in the horizontal direction may be substantially the same.
[0030] 前記固定金型には、キヤビティ面 10に連通する複数のゲート (ピンポイントゲート) 2 0が形成されている。ここで、図 2は、キヤビティ面 10におけるゲート 20の位置を説明 するための模式図である。図 2に示すように、各ゲート 20は、キヤビティ面 10の縦方 向の辺 Ι ΙΑ(Ι ΙΒ)に沿った縦線 Aと、横方向の辺 12A(12B)に沿った横線 Bとから なる格子を考えた際に、この格子の交点部分 Pの位置に設けられている。この格子は 、縦方向のピッチ(縦方向に並んだゲート 20間のピッチ)が L1であり、横方向のピッ チ (横方向に並んだゲート 20間のピッチ)が L2である。換言すれば、複数のゲートは 、キヤビティ面 10の縦方向および横方向のそれぞれの方向に沿って、略均等な間隔 で形成されている。ここで、略均等な間隔とは、ある方向のすべての間隔を平均した 平均間隔に対して、各間隔が 10%程度以内の誤差範囲に収まることである。なお、 前記誤差範囲は、 5%程度以内の範囲であることが好ましぐ 1%程度以内の範囲で あることがより好ましい。このようにゲート 20が略均等な配置となるため、型内圧を低く 抑えることができ、型締力の小さいものを利用できる。具体的には、例えば、キヤビテ ィ面 10の寸法が縦 740mm X横 430mmである場合において、縦方向のピッチ L1を 143. 3mm、横方向のピッチ L2を 185mmとすることができる。 The fixed mold is formed with a plurality of gates (pinpoint gates) 20 communicating with the cavity surface 10. Here, FIG. 2 is a schematic diagram for explaining the position of the gate 20 on the cavity surface 10. As shown in FIG. 2, each gate 20 consists of a vertical line A along the vertical side キ ΙΑ (Ι ΙΒ) of the cavity surface 10 and a horizontal line B along the horizontal side 12A (12B). Is considered at the position of the intersection P of the lattice. This lattice is The vertical pitch (the pitch between the gates 20 arranged in the vertical direction) is L1, and the horizontal pitch (the pitch between the gates 20 arranged in the horizontal direction) is L2. In other words, the plurality of gates are formed at substantially equal intervals along the vertical direction and the horizontal direction of the cavity surface 10. Here, “substantially uniform intervals” means that each interval falls within an error range of about 10% with respect to an average interval obtained by averaging all intervals in a certain direction. The error range is preferably within a range of about 5%, more preferably within a range of about 1%. As described above, since the gates 20 are substantially evenly arranged, the pressure inside the mold can be kept low, and the one with a small mold clamping force can be used. Specifically, for example, when the dimension of the cavity surface 10 is 740 mm long by 430 mm wide, the pitch L1 in the vertical direction can be 143.3 mm and the pitch L2 in the horizontal direction can be 185 mm.
[0031] また、図 2に示すように、複数のゲート 10のうち、各頂点 10A〜: LODから最も近いゲ ートをそれぞれ最外側ゲート 20A〜20Dとする。ここで、最外側ゲート 20Aから最も 近 ヽ横方向の辺 12Aと最外側ゲート 20Aとの距離 LA1は、前記ピッチ L 1の 120 % 〜 10%であり、好ましくは 100%〜20%である。また、最外側ゲート 20Aから最も近 い縦方向の辺 11Aと最外側ゲート 20Aとの距離 LB1は、前記ピッチ L2の 120%〜1 0%であり、好ましくは 100%〜20%である。  Further, as shown in FIG. 2, out of the plurality of gates 10, the gates 20A to 20D are the outermost gates 20A to 20D, which are closest to each vertex 10A to LOD. Here, the distance LA1 between the lateral side 12A closest to the outermost gate 20A and the outermost gate 20A is 120% to 10%, preferably 100% to 20% of the pitch L1. The distance LB1 between the vertical side 11A closest to the outermost gate 20A and the outermost gate 20A is 120% to 10%, preferably 100% to 20% of the pitch L2.
[0032] また、最外側ゲート 20Bでは、最外側ゲート 20B力も最も近い横方向の辺 12Bと最 外側ゲート 20Bとの距離 LA2は、前記ピッチ L1の 120%〜10%であり、好ましくは 1 00%〜20%である。また、最外側ゲート 20Bから最も近い縦方向の辺 11Aと最外側 ゲート 20Bとの距離 LB2は、前記ピッチ L2の 120%〜10%であり、好ましくは 100% 〜20%である。  [0032] Further, in the outermost gate 20B, the distance LA2 between the lateral side 12B and the outermost gate 20B where the outermost gate 20B force is closest is 120% to 10% of the pitch L1, and preferably 100 % To 20%. The distance LB2 between the vertical side 11A closest to the outermost gate 20B and the outermost gate 20B is 120% to 10%, preferably 100% to 20% of the pitch L2.
[0033] 最外側ゲート 20Cでは、最外側ゲート 20C力も最も近い横方向の辺 12Aと最外側 ゲート 20Cとの距離 LA3は、前記ピッチ L1の 120%〜10%であり、好ましくは 100 %〜20%である。また、最外側ゲート 20C力も最も近い縦方向の辺 11Bと最外側ゲ ート 20Cとの距離 LB3は、前記ピッチ L2の 120%〜10%であり、好ましくは 100% 〜20%である。  [0033] In the outermost gate 20C, the distance LA3 between the lateral side 12A and the outermost gate 20C where the outermost gate 20C force is closest is 120% to 10%, preferably 100% to 20% of the pitch L1. %. Further, the distance LB3 between the vertical side 11B and the outermost gate 20C closest to the outermost gate 20C force is 120% to 10%, preferably 100% to 20% of the pitch L2.
[0034] 最外側ゲート 20Dでは、最外側ゲート 20D力も最も近い横方向の辺 12Bと最外側 ゲート 20Dとの距離 LA4は、前記ピッチ L1の 120%〜10%であり、好ましくは 100 %〜20%である。また、最外側ゲート 20D力も最も近い縦方向の辺 1 IBと最外側ゲ ート 20Dとの距離 LB4は、前記ピッチ L2の 120%〜10%であり、好ましくは 100% 〜20%である。 [0034] In the outermost gate 20D, the distance LA4 between the lateral side 12B and the outermost gate 20D where the outermost gate 20D force is closest is 120% to 10% of the pitch L1, preferably 100. % To 20%. Further, the distance LB4 between the vertical side 1 IB closest to the outermost gate 20D force and the outermost gate 20D is 120% to 10%, preferably 100% to 20% of the pitch L2.
[0035] なお、ピッチ L1は、各間隔の平均値とすることができる。同様に、ピッチ L2は、各間 隔の平均値とすることができる。  Note that the pitch L1 can be an average value of the intervals. Similarly, the pitch L2 can be an average value of each interval.
[0036] ここで、前記距離 LA1〜LA4は、互いに略等 、ことが好まし 、。また、前記距離 L B1〜LB4は、互いに略等しいことが好ましい。なお、略等しいとは、距離 LA1〜LA 4を平均した平均距離に対して、各距離 LA1〜LA4が 10%以下の誤差となることで ある。なお、前記誤差は、 5%以下となることが好ましぐ 1%以下となることがより好ま しい。このような構成とすることにより、得られた平板成形品に厚みムラが生じることを 抑えることができる。  Here, the distances LA1 to LA4 are preferably substantially equal to each other. The distances LB1 to LB4 are preferably substantially equal to each other. Note that “substantially equal” means that the distances LA1 to LA4 have an error of 10% or less with respect to the average distance obtained by averaging the distances LA1 to LA4. The error is preferably 5% or less, more preferably 1% or less. By setting it as such a structure, it can suppress that thickness nonuniformity arises in the obtained flat plate molded article.
[0037] 本実施形態に用いる射出成形用金型において、設置するゲートの数 N (個)は、キ ャビティの深さを t (mm)、キヤビティの面積を S (mm2)とした際に、下記数式(1)を満 たすことが好ましい。 [0037] In the injection mold used in the present embodiment, the number of installed gates N (pieces) is determined when the depth of the cavity is t (mm) and the area of the cavity is S (mm 2 ). It is preferable that the following mathematical formula (1) is satisfied.
[0038] (数 1)  [0038] (Equation 1)
(S/ (t+6) ) X 10-4 ≤ N ≤ (2S/t) X 10"4- - - (l) (S / (t + 6)) X 10 -4 ≤ N ≤ (2S / t) X 10 " 4 ---(l)
ゲート数が前記好適な範囲より少ない場合には、キヤビティ内での榭脂の流動距離 が長くなることによる平板成形品の厚みムラ等が生じるおそれがある。また、ゲート数 が前記好適な範囲より多くなる場合には、金型の作製が困難になるおそれがある。こ のため、ゲート数を前記好適な範囲とすることにより、高品質な平板成形品を簡便に 成形できるという効果がある。  If the number of gates is less than the preferred range, there is a risk that unevenness in the thickness of the flat plate molded product will occur due to an increase in the flow distance of the resin within the cavity. Further, when the number of gates is larger than the preferable range, it may be difficult to manufacture a mold. For this reason, by setting the number of gates within the preferred range, it is possible to easily form a high-quality flat plate molded product.
[0039] 前述したように、複数のゲート 20は、格子の交点部分 P上に配置されるため、図 1に 示すように、複数のゲート 20を、縦方向のゲート列である縦ゲート列 21と、横方向の ゲート列である横ゲート列 22とに分類することができる。本実施形態では、縦ゲート 列 21の数力 本であり、横ゲート列 22の数が 3本 (奇数本)である。また、縦ゲート列 21を構成するゲート 20の数は 3個であり、横ゲート列 22を構成するゲート 20の数は 4個である。  As described above, since the plurality of gates 20 are arranged on the intersection P of the lattice, as shown in FIG. 1, the plurality of gates 20 are connected to the vertical gate row 21 which is a vertical gate row. And horizontal gate row 22 which is a horizontal gate row. In the present embodiment, the number of vertical gate rows 21 is several, and the number of horizontal gate rows 22 is three (odd number). The number of gates 20 constituting the vertical gate row 21 is three, and the number of gates 20 constituting the horizontal gate row 22 is four.
[0040] 次に、平板成形品の構成材料である樹脂にっ 、て説明する。本実施形態に用いる 榭脂としては、例えば、脂環式構造を有する榭脂、芳香族ビニル単量体と (メタ)アタリ ル酸アルキルエステル単量体との共重合体、メタタリル榭脂、ポリカーボネート、ポリ スチレン、アクリロニトリル-スチレン共重合体榭脂、 ABS榭脂、およびポリエーテルス ルホンなどを挙げることができる。これらの中で、脂環式構造を有する榭脂、メタクリル 榭脂、および芳香族ビュル単量体と (メタ)アクリル酸アルキルエステル単量体との共 重合体を好適に用いることができ、脂環式構造を有する榭脂を特に好適に用いること ができる。 Next, the resin that is a constituent material of the flat plate molded product will be described. Used in this embodiment Examples of the coconut resin include alicyclic resin having an alicyclic structure, a copolymer of an aromatic vinyl monomer and an alkyl ester (meth) acrylate ester, methallyl rosin, polycarbonate, polystyrene, acrylonitrile. -Styrene copolymer resin, ABS resin, and polyether sulfone. Among these, a resin having an alicyclic structure, a methacrylic resin, and a copolymer of an aromatic butyl monomer and a (meth) acrylic acid alkyl ester monomer can be suitably used. A resin having a cyclic structure can be particularly preferably used.
[0041] 脂環式構造を有する榭脂は、溶融樹脂の流動性が良好なので、低い射出圧力で 金型のキヤビティを充填することができ、吸湿性が極めて低いので、寸法安定性に優 れ、平板成形品に反りを生ずることがなぐ比重が小さいので平板成形品を軽量化で きる。また、脂環式構造を有する榭脂は、ウエルドラインが発生しにくい利点もある。  [0041] Since the resin having an alicyclic structure has good fluidity of the molten resin, it can be filled with mold cavity at a low injection pressure, and has extremely low hygroscopicity, so it has excellent dimensional stability. Since the specific gravity that does not cause warpage in the flat plate molded product is small, the flat plate molded product can be reduced in weight. In addition, rosin having an alicyclic structure has an advantage that weld lines are less likely to occur.
[0042] 脂環式構造を有する榭脂は、主鎖又は側鎖に脂環式構造を有する榭脂のことであ る。この中でも主鎖に脂環式構造を有する榭脂は、機械的強度と耐熱性が良好なの で、特に好適に用いることができる。脂環式構造は、飽和環状炭化水素構造であるこ と力 子ましく、その炭素数は、 4〜30であることが好ましぐ 5〜20であることがより好 ましぐ 5〜 15であることがさらに好ましい。脂環式構造を有する榭脂中の脂環式構 造を有する繰り返し単位の割合は、 50重量%以上であることが好ましぐ 70重量% 以上であることがより好ましぐ 90重量%以上であることがさらに好ましい。  [0042] A resin having an alicyclic structure is a resin having an alicyclic structure in a main chain or a side chain. Among these, rosin having an alicyclic structure in the main chain is particularly suitable because it has good mechanical strength and heat resistance. The alicyclic structure is preferably a saturated cyclic hydrocarbon structure, and its carbon number is preferably 4 to 30, more preferably 5 to 20, and more preferably 5 to 15. More preferably. The proportion of the repeating unit having an alicyclic structure in the alicyclic resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and more preferably 90% by weight or more. More preferably.
[0043] 脂環式構造を有する榭脂としては、例えば、ノルボルネン系単量体の開環重合体 若しくは開環共重合体又はそれらの水素添加物、ノルボルネン系単量体の付加重合 体若しくは付加共重合体又はそれらの水素添加物、単環の環状ォレフィン系単量体 の重合体又はその水素添加物、環状共役ジェン系単量体の重合体又はその水素添 加物、ビニル脂環式炭化水素系単量体の重合体若しくは共重合体又はそれらの水 素添加物、ビニル芳香族炭化水素系単量体の重合体又は共重合体の芳香環を含 む不飽和結合部分の水素添加物などを挙げることができる。これらの中で、ノルボル ネン系単量体の重合体の水素添加物及びビニル芳香族炭化水素系単量体の重合 体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れる ので、特に好適に用いることができる。 [0044] メタクリル樹脂は、透明性に優れ、強靭でひびが入りにく!/、ので、光学部材用に好 適である。メタクリル樹脂としては、 日本工業規格 JIS K 6717に規定されるメタクリル 酸メチル重合物を 80%以上含むメタクリル樹脂成形材料を挙げることができる。この 規格に規定されるメタクリル樹脂の中で、ビカット軟ィ匕点温度 96〜100°C、メルトフ口 一レート 8〜16の指定分類コード 100- 120のメタクリル榭脂は、適度な流動性と強度 を有するので、好適に用いることができる。 [0043] Examples of rosins having an alicyclic structure include, for example, ring-opening polymers or ring-opening copolymers of norbornene monomers or hydrogenated products thereof, addition polymers or additions of norbornene monomers. Copolymer or hydrogenated product thereof, polymer of monocyclic cyclic olefin monomer or hydrogenated product thereof, polymer of cyclic conjugation monomer or hydrogenated product thereof, vinyl alicyclic carbonization Polymer or copolymer of hydrogen monomer or hydrogen additive thereof, polymer of vinyl aromatic hydrocarbon monomer or hydrogenated product of unsaturated bond part containing aromatic ring of copolymer And so on. Among these, hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and strength. Since it is excellent in heat resistance, it can be used particularly suitably. The methacrylic resin is suitable for an optical member because it is excellent in transparency, tough and hardly cracks. Examples of the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in Japanese Industrial Standard JIS K 6717. Among methacrylic resins stipulated in this standard, methacrylic resin with a Vicat soft spot temperature of 96-100 ° C and a melt rate of 8 to 16 with a specified classification code of 100-120 has moderate fluidity and strength. Therefore, it can be suitably used.
[0045] 芳香族ビニル単量体と (メタ)アクリル酸アルキルエステルとの共重合体を構成する 芳香族ビュル単量体とは、芳香族ビニル単量体及びその誘導体であり、例えば、ス チレン、 a -メチルスチレン、 m-メチルスチレン、 p-メチルスチレン、 0-クロルスチレン 、および P-クロルスチレンなどを挙げることができる。(メタ)アクリル酸アルキルエステ ルとしては、例えば、炭素数 1〜4のアルキル基を有する (メタ)アクリル酸アルキルエス テルなどを挙げることができる。(メタ)アクリル酸アルキルエステルとしては、アクリル 酸メチル、アクリル酸ェチル、メタクリル酸メチル、およびメタクリル酸ェチルを好適に 用いることができる。芳香族ビュル単量体と (メタ)アクリル酸アルキルエステルとの共 重合体は、香族ビュル単量体 20〜60重量%と、(メタ)アクリル酸アルキルエステル 4 0〜80重量%の共重合体であることが好ましい。なお、(メタ)アクリル酸とは、メタタリ ル酸およびアクリル酸のことであり、(メタ)アクリルとは、メタクリルおよびアクリルのこと である。  [0045] The aromatic bulle monomer constituting the copolymer of the aromatic vinyl monomer and the (meth) acrylic acid alkyl ester is an aromatic vinyl monomer and a derivative thereof, such as styrene. , A-methylstyrene, m-methylstyrene, p-methylstyrene, 0-chlorostyrene, and P-chlorostyrene. Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms. As the (meth) acrylic acid alkyl ester, methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate can be suitably used. A copolymer of an aromatic butyl monomer and a (meth) acrylic acid alkyl ester is a copolymer of 20 to 60% by weight of an aromatic butyl monomer and 40 to 80% by weight of a (meth) acrylic acid alkyl ester. It is preferably a coalescence. In addition, (meth) acrylic acid means metatalic acid and acrylic acid, and (meth) acrylic means methacryl and acrylic.
[0046] 本実施形態においては、前記榭脂としては、必要に応じて、熱可塑性エラストマ一 や添加剤が配合されたものを用いることができる。熱可塑性エラストマ一としては、例 えば、ポリブタジエン、スチレン-ブタジエンブロック共重合体およびその水素添カロ物 、およびスチレン-イソプレンブロック共重合体及びその水素添加物などを挙げること ができる。添加剤としては、例えば、光拡散剤、酸化防止剤、紫外線吸収剤、光安定 剤、染料や顔料などの着色剤、滑剤、可塑剤、帯電防止剤、および蛍光増白剤など を挙げることができる。光拡散剤としては、例えば、ポリスチレン系重合体、ポリシロキ サン系重合体又はこれらの架橋物からなる微粒子、(メタ)アクリル榭脂、フッ素榭脂、 硫酸バリウム、炭酸カルシウム、シリカ、およびタルクなどを挙げることができる。これら の中で、ポリスチレン系重合体、ポリシロキサン系重合体又はこれらの架橋物力 な る微粒子は、分散性が良好であり、耐熱性に優れ、成形時の黄変がないことから特 に好適である。 [0046] In the present embodiment, as the resin, a mixture containing a thermoplastic elastomer or an additive can be used as necessary. Examples of the thermoplastic elastomer include polybutadiene, a styrene-butadiene block copolymer and a hydrogenated carotenate thereof, and a styrene-isoprene block copolymer and a hydrogenated product thereof. Examples of the additives include light diffusing agents, antioxidants, ultraviolet absorbers, light stabilizers, colorants such as dyes and pigments, lubricants, plasticizers, antistatic agents, and fluorescent whitening agents. it can. Examples of the light diffusing agent include a polystyrene polymer, a polysiloxane polymer, or fine particles made of a crosslinked product thereof, (meth) acrylic resin, fluorine resin, barium sulfate, calcium carbonate, silica, and talc. Can be mentioned. Among these, polystyrene-based polymers, polysiloxane-based polymers or their cross-linked products The fine particles are particularly suitable because they have good dispersibility, excellent heat resistance, and no yellowing during molding.
[0047] 前記熱可塑性エラストマ一の配合量は、通常 0.01重量%〜50重量%、好ましくは 0.05重量%〜30重量%である。また、前記添加剤の配合量は、通常 0.01重量%〜 30重量%、好ましくは 0.05重量%〜20重量%である。配合剤として光拡散剤を配 合する場合において、光拡散剤の粒子径は、平均粒径で通常 0.5 /z m〜: LOO /z mで あり、 0.5 m〜80 mであることが好ましい。  [0047] The blending amount of the thermoplastic elastomer is usually 0.01 wt% to 50 wt%, preferably 0.05 wt% to 30 wt%. Moreover, the compounding quantity of the said additive is 0.01 to 30 weight% normally, Preferably it is 0.05 to 20 weight%. When a light diffusing agent is mixed as a compounding agent, the particle size of the light diffusing agent is usually 0.5 / z m to: LOO / z m in terms of average particle size, and preferably 0.5 m to 80 m.
[0048] 次に、第 1の実施形態に係る射出成形用金型を用いて、榭脂製の平板成形品であ る光拡散板を製造する方法について説明する。図 3は、光拡散板の製造方法を説明 するためのキヤビティ面の平面図である。図 4は、光拡散板を製造する方法の手順を 説明するためのフローチャートである。  [0048] Next, a method for producing a light diffusion plate, which is a flat resin molded product made of resin, using the injection mold according to the first embodiment will be described. FIG. 3 is a plan view of a cavity surface for explaining a method of manufacturing a light diffusing plate. FIG. 4 is a flowchart for explaining the procedure of the method of manufacturing the light diffusing plate.
[0049] 図 3に示すように、横ゲート列 22としては、 3本の横ゲート列 22A, 22B, 22Cがあ る。これらの横ゲート列 22A, 22B, 22Cのうち、キヤビティ面 10の対角線の交点じに 最も近い位置にあるゲート 20S, 20Tを含む列を第 1横ゲート列 Xとし、この第 1横ゲ ート列に近い 2つのゲート列を第 2横ゲート列 Yとする。本第 1の実施形態では、横ゲ ート列 22Bが第 1横ゲート列 Xであり、この第 1横ゲート列 Xからの距離が略同じであ る横ゲート列 22Aおよび横ゲート列 22Cが第 2横ゲート列 Yである。  As shown in FIG. 3, the horizontal gate row 22 includes three horizontal gate rows 22A, 22B, and 22C. Of these horizontal gate rows 22A, 22B, and 22C, the row that includes the gates 20S and 20T that are closest to the intersection of the diagonal lines of the cavity surface 10 is defined as the first horizontal gate row X, and this first horizontal gate row. Two gate rows close to the row are designated as the second horizontal gate row Y. In the present first embodiment, the lateral gate row 22B is the first lateral gate row X, and the lateral gate row 22A and the lateral gate row 22C that are substantially the same distance from the first lateral gate row X are Second horizontal gate row Y.
[0050] まず、図 4に示すように、図示しな ヽ型締装置を用いて、所定圧力で射出成形用金 型の型締めを行う (ステップ Sl)。次に、第 1横ゲート列 Xのゲートを開けて、第 1横ゲ ート列 Xのゲートから一定の射出率で前記榭脂を射出する (ステップ S2 :第 1工程)。 この際、キヤビティ内に射出された榭脂は、第 1ゲート列 Xに対応する箇所力もキヤビ ティ面 10の外周側に向力つて流れ出す。なお、榭脂の射出量は、射出率 (射出速度 )を一定としたので、射出時間により把握できる。  First, as shown in FIG. 4, the mold for injection molding is clamped at a predetermined pressure using a saddle mold clamping device (not shown) (step Sl). Next, the gate of the first horizontal gate row X is opened, and the resin is injected from the gate of the first horizontal gate row X at a constant injection rate (step S2: first step). At this time, the resin injected into the cavity also flows out with a force corresponding to the first gate row X directed toward the outer peripheral side of the cavity surface 10. The injection amount of the resin can be grasped by the injection time since the injection rate (injection speed) is constant.
[0051] 次に、第 1横ゲート列 Xのゲートからの射出量が予定量となった力否かを判定する( ステップ S3)。この判定は、具体的には、例えば、射出時間により実施すればよいが 、必要に応じて、第 1ゲート列 Xのゲートから射出した榭脂が、第 1横ゲート列 Xと第 2 横ゲート列 Yの距離の半分程度の位置まで流れたカゝ否かで行ってもよい。  [0051] Next, it is determined whether or not the force with which the injection amount from the gates of the first horizontal gate row X becomes a predetermined amount (step S3). Specifically, this determination may be performed based on, for example, the injection time. If necessary, the resin injected from the gates of the first gate row X is changed into the first horizontal gate row X and the second horizontal gate. This may be done by checking whether or not the current has flown to about half the distance of row Y.
[0052] 榭脂射出量が予定量に達していない場合には、ステップ S2を繰り返す。榭脂射出 量が予定量に達した場合には、第 1横ゲート列 Xのゲートを開いたまま、第 2横ゲート 列 Yのゲートを開けて、第 1横ゲート列 Xのゲートおよび第 2横ゲート列 Yのゲートから 、前記射出率で前記榭脂を射出する (ステップ S4:第 2工程)。 [0052] If the injection amount of the resin does not reach the predetermined amount, step S2 is repeated. Oil injection When the amount reaches the planned amount, the gate of the first horizontal gate row X is opened while the gate of the first horizontal gate row X is opened, and the gate of the first horizontal gate row X and the second horizontal gate row are opened. The resin is injected from the Y gate at the injection rate (step S4: second step).
[0053] 次に、第 1横ゲート列 Xのゲートおよび第 2横ゲート列 Yのゲートからの射出量が、 前記同様に予定量となったか否かを判定する (ステップ S5)。榭脂射出量が予定量 に達していない場合には、ステップ S4を繰り返す。榭脂射出量が予定量に達した場 合には、第 1横ゲート列 Xのゲートおよび第 2横ゲート列 Yのゲートを閉じて、これらの ゲート列 X, Yのゲートからの射出を停止する (ステップ S6)。その後、射出成形用金 型を冷却し (ステップ S 7)、金型力も光拡散板を取り出す (ステップ S8)。以上のように して、光拡散板製造の 1サイクルを終了する。  Next, it is determined whether or not the injection amounts from the gates of the first lateral gate row X and the gates of the second lateral gate row Y have become predetermined amounts as described above (step S5). If the injection amount of the resin does not reach the expected amount, repeat step S4. When the resin injection amount reaches the predetermined amount, the gates of the first horizontal gate row X and the second horizontal gate row Y are closed, and the injection from the gates of these gate rows X and Y is stopped. (Step S6). Thereafter, the injection mold is cooled (step S7), and the mold force is taken out of the light diffusion plate (step S8). As described above, one cycle of manufacturing the light diffusion plate is completed.
[0054] なお、ステップ S6において、ゲートを閉じるタイミングは、通常は、榭脂射出量が所 定量になった際に行うが、例えば、成形品の表面部分の榭脂充填状態を観察し、こ の充填状態が良好になった際に行うようにしてもよい。このようなサイクルを複数回繰 り返すことにより、光拡散板の製造を行う。  [0054] In step S6, the timing of closing the gate is usually performed when the injection amount of the resin reaches a predetermined amount. For example, the state of filling the surface of the molded product is observed, and this is done. It may be performed when the state of filling becomes better. The light diffusing plate is manufactured by repeating such a cycle a plurality of times.
[0055] 本第 1の実施形態によれば、奇数の列数となる方向において、その中心側ゲートを 含む第 1ゲート列とし、この第 1ゲート列に近い順に第 2ゲート列として、このゲート列 の順に榭脂射出のタイミングをずらすようにしたので、複数のゲートを格子の交点部 分に配置した略均等な配置としても、キヤビティ内に空気溜りが生じず、空気溜りによ る焼け等の外観不良が生じるのを防止できる。このため、高品質な平板成形品を製 造できる。また、このように複数のゲートを略均等な配置としたので、キヤビティ内にお いて、部分的に圧力が上昇することがなぐ型内圧を低く抑えることができる。従って 、型内圧を低く抑えて、高品質な平板成形品をより一層効率的に製造できる。  [0055] According to the first embodiment, in the direction of the odd number of columns, the first gate column including the center side gate thereof is used, and the second gate column is arranged in the order closer to the first gate column. Since the injection timing of the resin is shifted in the order of the rows, even if the multiple gates are arranged at the intersections of the grid, there is no air pool in the cavity, and there is no burning in the air pool. It is possible to prevent the appearance defect from occurring. For this reason, high quality flat plate molded products can be manufactured. In addition, since the plurality of gates are arranged substantially evenly in this way, it is possible to keep the mold internal pressure within the cavity where the pressure does not partially rise low. Therefore, it is possible to more efficiently manufacture a high-quality flat plate molded product while keeping the in-mold pressure low.
[0056] また、本第 1の実施形態によれば、以下のような効果がある。キヤビティ面 10におい て、隣接するゲート 20間の間隔が略一定となるようにゲート 20を配置したので、キヤ ビティ内のどの位置でも型内圧が略同程度になる。このため、型内圧を低く抑えるこ とができることから、型締力の小さい型締装置を用いることができ、省スペース化を図 ることがでさる。 [0056] Further, according to the first embodiment, the following effects can be obtained. Since the gate 20 is arranged on the cavity surface 10 so that the distance between the adjacent gates 20 is substantially constant, the mold internal pressure is approximately the same at any position within the cavity. For this reason, since the pressure inside the mold can be kept low, a mold clamping device having a small mold clamping force can be used, and space saving can be achieved.
[0057] また、第 1横ゲート Xと第 2横ゲート列 Yとに分けて、キヤビティ面 10の中心側となる 横ゲート列 Xのゲート 20から榭脂を射出した後、その外側の横ゲート列 Yのゲート 20 力も榭脂を射出するように射出タイミングをずらしたので、ゲート 20を略均等に配置し たとしても、キヤビティ内に空気溜りが生じることがない。このため、得られる平板成形 品に、空気溜りによって生じる焼け等の外観不良が生じないため、高品質な光拡散 板を効率的に製造できる。 [0057] The first lateral gate X and the second lateral gate row Y are divided into the center side of the cavity surface 10. After injecting the grease from the gate 20 of the lateral gate row X, the injection timing was shifted so that the gate 20 force of the lateral gate row Y outside also injects the grease. However, there is no air pocket in the cavity. For this reason, appearance defects such as burning caused by air accumulation do not occur in the obtained flat plate molded product, so that a high-quality light diffusion plate can be efficiently produced.
[0058] なお、本発明は、前記実施形態には限定されな!、。例えば、前記実施形態では、 縦ゲート列数 X横ゲート列数を 4本 X 3本としたが、縦方向および横方向の少なくとも いずれか一方の方向のゲート列が奇数本であれば、ゲート列の数は、前記数には限 定されない。また、キヤビティ面の大きさも前記大きさには限定されない。また、前記 実施形態では、得られる平板成形品を光拡散板としたが、導光板等の光学部材とし てもよいし、光学用途以外の部材としてもよい。  Note that the present invention is not limited to the above-described embodiment! For example, in the above-described embodiment, the number of vertical gate rows X the number of horizontal gate rows is 4 X 3. However, if the number of gate rows in at least one of the vertical direction and the horizontal direction is an odd number, the gate rows The number of is not limited to the above number. Further, the size of the cavity surface is not limited to the above size. Moreover, in the said embodiment, although the obtained flat plate molded article was used as the light diffusing plate, it may be used as optical members, such as a light-guide plate, and may be used as members other than an optical use.
[0059] また、前記実施形態において、横ゲート列 22に基づいて射出タイミングを調整した 力 縦ゲート列 21の数が奇数本である場合には、縦ゲート列 21に基づいて射出タイ ミングを調整してもよい。また、タイミング調整を行うゲート列を、長辺である横方向に 沿ったゲート列とした力 短辺である縦方向に沿ったゲート列としてもよ!/、。  [0059] In the above embodiment, the injection timing is adjusted based on the horizontal gate row 22. If the number of the vertical gate rows 21 is an odd number, the injection timing is adjusted based on the vertical gate rows 21. May be. Also, the gate row for timing adjustment can be a gate row along the long side, which is the long side, and the gate row along the vertical direction, which is the short side! / ,.
[0060] また、横方向の各距離 LB1〜LB4は、横方向の間隔 L2 (例えば前記平均間隔)の 30%〜70%程度の長さであることが好ましぐ 45%〜55%の長さであることがより好 ましぐ 49%〜51%であることがさらに好ましい。また、縦方向の各距離 LA1〜LA4 は、縦方向の間隔 L1の 30%〜70%程度の長さであることが好ましぐ 45%〜55% の長さであることがより好ましぐ 49%〜51%であることがさらに好ましい。このような 構成によれば、溶融榭脂がより好適に流動することにより、厚みムラや外観不良がよ り改善された高品質な平板成形品を成形できる。  [0060] The distances LB1 to LB4 in the horizontal direction are preferably about 30% to 70% of the distance L2 in the horizontal direction (for example, the average distance). The length is 45% to 55%. More preferably, it is 49% to 51%. The vertical distances LA1 to LA4 are preferably about 30% to 70% of the vertical distance L1, and more preferably 45% to 55%. More preferably, it is 49% to 51%. According to such a configuration, it is possible to form a high-quality flat plate molded product in which uneven thickness and poor appearance are further improved by allowing the molten resin to flow more suitably.
[0061] 次に、本発明の第 2の実施形態に係る射出成形用金型を用いて、榭脂製の平板成 形品を製造する方法について、図面を参照して説明する。  [0061] Next, a method for producing a flat resin molded product made of resin using the injection mold according to the second embodiment of the present invention will be described with reference to the drawings.
[0062] なお、本第 2の実施形態は、射出成形用金型に設けられているゲートの配列及び 数、平板成形品を製造する際のゲート開閉のタイミング等において、上述の第 1の実 施形態に係る射出成形用金型及び榭脂製の平板成形品を製造する方法と相違して いるが、その他の点においては第 1の実施形態で用いるのと同様の射出成形用金型 を用いて、平板成形品の製造を行う。従って、以下においては、第 1の実施形態と共 通する部分については詳細な説明を省略し、異なる部分についてのみ詳細に説明 する。また、上述の第 1の実施形態と同一の構成については同一の符号を用いて説 明を行う。 [0062] Note that the second embodiment has the first implementation described above in terms of the arrangement and number of gates provided in the injection mold, the timing of opening and closing the gate when manufacturing a flat molded product, and the like. This is different from the method for producing the injection mold according to the embodiment and the flat resin molded product made of resin, but otherwise the same injection mold as used in the first embodiment. Is used to manufacture a flat molded product. Therefore, in the following, detailed description of the parts common to the first embodiment will be omitted, and only different parts will be described in detail. Further, the same components as those in the first embodiment will be described using the same reference numerals.
[0063] 本第 2の実施形態において用いる射出成形用金型は、上述の第 1の実施形態と同 様に、固定型板と可動型板とを備え、固定型板と可動型板との空隙によりキヤビティ が形成されており、該キヤビティの深さは、得られる平板成形品の厚みと略一致して いる。  [0063] The injection mold used in the second embodiment includes a fixed mold plate and a movable mold plate, as in the first embodiment described above, and includes a fixed mold plate and a movable mold plate. A cavity is formed by the gap, and the depth of the cavity substantially matches the thickness of the obtained flat plate molded product.
[0064] 図 5は、固定型板に形成されたキヤビティ面を模式的に示す平面図であり、第 1の 実施形態における図 1に相当する図である。図 5に示すように、キヤビティ面 10は、略 矩形形状に形成されており、対角線長さが 400mm以上であることが好ましぐ 650m m以上であることがより好ましい。なお、キヤビティ面 10の縦方向の長さ及び横方向 の長さは特に限定されず、通常、縦方向の長さよりも横方向の長さが大きくなるように 形成されるが、縦方向の長さと横方向の長さとが略一致していてもよい。  FIG. 5 is a plan view schematically showing the cavity surface formed on the fixed mold plate, and corresponds to FIG. 1 in the first embodiment. As shown in FIG. 5, the cavity surface 10 is formed in a substantially rectangular shape, and the diagonal length is preferably 400 mm or more, more preferably 650 mm or more. The vertical length and the horizontal length of the cavity surface 10 are not particularly limited, and are usually formed so that the horizontal length is larger than the vertical length. And the length in the horizontal direction may substantially coincide with each other.
[0065] また、図 6は、キヤビティ面 10におけるゲート 20の位置を説明するための模式図で あり、第 1の実施形態における図 2に相当する図である。固定型板には、図 6に示す ように、キヤビティ面 10に連通する複数のゲート 20が形成されており、各ゲート 20は 、キヤビティ面 10の縦方向のピッチを Ll、横方向のピッチを L2とし、縦方向及び横 方向のそれぞれの方向に沿って、略均等な間隔で形成されている。また、図 6に示 すように、各頂点 10A〜: L0Dからもっとも近いゲートはそれぞれ最外側ゲート 20A〜 20Dであり、各最外側ゲート 20A〜20Dと、それぞれに対する横方向の辺との距離 LA1〜LA4は、 L1の 120%〜10%であり、好ましくは 100%〜20%である。また、 各最外側ゲート 20A〜20Dと、それぞれに対する縦方向の辺との距離 LB1〜LB4 ίま、 L2の 120〜100/0であり、好ましく ίま 1000/0〜200/0である。 FIG. 6 is a schematic diagram for explaining the position of the gate 20 on the cavity surface 10, and corresponds to FIG. 2 in the first embodiment. As shown in FIG. 6, a plurality of gates 20 communicating with the cavity surface 10 are formed on the fixed template, and each of the gates 20 has a longitudinal pitch L1 and a lateral pitch of the cavity surface 10. L2 is formed at substantially equal intervals along the vertical direction and the horizontal direction. In addition, as shown in FIG. 6, the gates closest to each vertex 10A-: L0D are the outermost gates 20A-20D, respectively, and the distance LA1 between each outermost gate 20A-20D and the lateral side with respect to each of them is LA1. ˜LA4 is 120% to 10% of L1, preferably 100% to 20%. Further, each outermost gate 20A to 20D, the distance LB1~LB4 ί the longitudinal sides for each or a 120-10 0/0 of L2, preferably I or 100 0 / 0-20 0/0 is there.
[0066] なお、射出成形用金型において、設置するゲートの数は、第 1の実施形態と同様に 、数式(1)を満たすことが好ましい。  [0066] In the injection mold, it is preferable that the number of gates to be installed satisfies Equation (1), as in the first embodiment.
[0067] この第 2の実施形態において、複数のゲート 20は、格子の交点部分 Ρ上に配置さ れるため、図 7に示すように、複数のゲート 20を、縦方向のゲート列である縦ゲート列 (第 11〜第 14ゲート列)と、横方向のゲート列である横ゲート列 (第 21〜第 24ゲート 列)とに分類することができる。本第 2の実施形態では、縦ゲート列の数が 4本 (偶数 本)であり、横ゲート列の数力 本 (偶数本)である。また、縦ゲート列を構成するゲー ト 20の数は 4個であり、横ゲート列を構成するゲート 20の数は 4個である。 In the second embodiment, since the plurality of gates 20 are arranged on the intersections of the lattices, as shown in FIG. 7, the plurality of gates 20 are arranged in the vertical direction as a vertical gate row. Gate column They can be classified into (11th to 14th gate rows) and horizontal gate rows (21st to 24th gate rows), which are lateral gate rows. In the second embodiment, the number of vertical gate rows is four (even numbers), and the number of horizontal gate rows is even (even numbers). The number of gates 20 constituting the vertical gate row is four, and the number of gates 20 constituting the horizontal gate row is four.
[0068] なお、平板成形品の構成材料である榭脂は、本第 2の実施形態にお ヽても、上述 の第 1の実施形態において用いた榭脂と同様の榭脂を用いているため、詳細な説明 は省略する。 [0068] It should be noted that the resin that is a constituent material of the flat molded product uses the same resin as that used in the first embodiment, even in the second embodiment. Therefore, detailed description is omitted.
[0069] 次に、上述の射出成形用金型を用いて、前記榭脂製の平板成形品である光拡散 板を製造する方法について説明する。図 8は、光拡散板を製造する方法の手順を説 明するためのフローチャートである。  [0069] Next, a method for producing a light diffusing plate, which is a flat resin molded product made of resin, using the above-described injection molding die will be described. FIG. 8 is a flowchart for explaining the procedure of the method of manufacturing the light diffusing plate.
[0070] 図 7に示すように、縦ゲート列(第 1ゲート列)において、キヤビティ面の対角線の交 点に最も近い 2つのゲート列を第 11ゲート列及び 12ゲート列、この第 11ゲート列及 び第 12ゲート列に近い 2つのゲート列をそれぞれ第 13ゲート列及び第 14ゲート列と し、横ゲート列(第 2ゲート列)において、キヤビティ面の対角線の交点に最も近い 2つ のゲート列を第 21ゲート列及び第 22ゲート列、この第 21ゲート列及び第 22ゲート列 に近い 2つのゲート列をそれぞれ第 23ゲート列及び第 24ゲート列とし、以下の説明 において各ゲートを (第 1ゲート列,第 2ゲート列)で表す。  [0070] As shown in FIG. 7, in the vertical gate row (first gate row), the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 11th gate row and the 12th gate row, and this 11th gate row. The two gate rows close to the twelfth gate row are the 13th gate row and the 14th gate row, respectively. In the horizontal gate row (second gate row), the two gates closest to the intersection of the diagonals of the cavity surface The gates are the 21st gate row and the 22nd gate row, and the two gate rows close to the 21st gate row and the 22nd gate row are the 23rd gate row and the 24th gate row, respectively. 1 gate row, 2nd gate row).
[0071] まず、図 8に示すように、図示しない型締装置を用いて、所定圧力で射出成形用金 型の型締めを行う(ステップ S11)。次に、第 1グループの各ゲート、即ち、(13, 21)、 (11, 22)、 (12, 21)、 (14, 22)の各ゲートを開けて、これらのゲートから一定の射 出率で前記榭脂を射出する (ステップ S12 :第 1工程)。この際、キヤビティ内に射出さ れた榭脂は、図 9に示すように、第 1グループの各ゲートからキヤビティ面 10の外周 側に向力つて流れ出す。なお、榭脂の射出量は、射出率 (射出速度)を一定としたの で、射出時間により把握できる。  First, as shown in FIG. 8, the mold for injection molding is clamped at a predetermined pressure using a mold clamping device (not shown) (step S11). Next, open each gate of the first group, that is, (13, 21), (11, 22), (12, 21), (14, 22) gates, and make certain projections from these gates. The resin is injected at a rate (step S12: first step). At this time, the grease injected into the cavity flows out from each gate of the first group to the outer peripheral side of the cavity surface 10 as shown in FIG. The injection amount of the resin can be grasped by the injection time since the injection rate (injection speed) is constant.
[0072] 次に、第 1グループの各ゲートからの射出量が予定量となったか否かを判定する( ステップ S13)。この判定は、具体的には、例えば、射出時間により実施すればよい 1S 必要に応じて、第 1グループの各ゲートから射出した榭脂が、後述の第 2グルー プのゲートまでの距離の半分程度の位置まで流れたカゝ否かで行ってもよ ヽ。榭脂射 出量が予定量に達していない場合には、ステップ S 12の処理を継続する。榭脂射出 量が予定量に達した場合には、第 1グループの各ゲートを開いたまま、第 2グループ の各ゲート、即ち、 (13, 22)、 (11, 21)、 (12, 22)、 (14, 21)の各ゲートを開けて 、第 1グループ及び第 2グループの各ゲートから、前記射出率で前記榭脂を射出する (ステップ S 14 :第 2工程)。図 10は、第 1グループ及び第 2グループの各ゲートから 榭脂を射出している状態を示す図である。この図においては、第 1グループの各ゲー トから流出した榭脂の範囲を示す円同士が重なっている部分、第 1グループの各ゲ ートから流出した榭脂の範囲を示す円がキヤビティ面からはみ出している部分がある 力 実際には、この部分においては、榭脂は榭脂流動の遅い部分を補うように、図に 示す矢印方向に流動する。そして、榭脂は、図 11において波線で示すように、キヤビ ティの横辺方向に充填されて 、く。 [0072] Next, it is determined whether or not the injection amount from each gate of the first group has become a predetermined amount (step S13). Specifically, this determination may be performed based on, for example, the injection time. 1S If necessary, the resin injected from each gate of the first group is half the distance to the gate of the second group described later. You can do it depending on whether it has flowed to a certain level. Grease If the output amount has not reached the planned amount, the process of step S12 is continued. When the injection amount of the resin reaches the planned amount, each gate of the second group, that is, (13, 22), (11, 21), (12, 22), with the gates of the first group open. ), (14, 21) are opened, and the resin is injected from the gates of the first group and the second group at the injection rate (step S14: second step). FIG. 10 is a view showing a state in which the resin is injected from each gate of the first group and the second group. In this figure, the circles indicating the range of the grease flowing out from each gate of the first group overlap each other, and the circles indicating the range of the grease flowing out from each gate of the first group are the cavity surface. There is a part that protrudes. In fact, in this part, the fat flows in the direction of the arrow shown in the figure so as to compensate for the slow part of the fat flow. And, as shown by the wavy line in FIG. 11, the resin is filled in the lateral direction of the cavity.
[0073] 次に、第 2グループの各ゲートからの射出量が、予定量となったか否かを判定する( ステップ S15)。榭脂射出量が予定量に達していない場合には、ステップ S14の処理 を継続する。榭脂射出量が予定量に達した場合には、第 1グループ及び第 2グルー プの各ゲートを開いたまま、第 3グループの各ゲート、即ち、第 23ゲート列及び第 24 ゲート列の各ゲート((13, 23)、 (11, 23)、 (12, 23)、 (14, 23)、 (13, 24)、 (11, 24)、 (12, 24)、 (14, 24)の各ゲート)を開けて、第 1グループ〜第 3グループの各 ゲートから、前記射出率で前記榭脂を射出する (ステップ S16 :第 3工程)。 [0073] Next, it is determined whether or not the injection amount from each gate of the second group has become a predetermined amount (step S15). If the injection amount of the resin does not reach the expected amount, continue the process of step S14. When the injection amount of the resin reaches a predetermined amount, each gate of the third group, that is, each of the 23rd gate row and the 24th gate row is left with the gates of the first group and the second group being opened. Gate ((13, 23), (11, 23), (12, 23), (14, 23), (13, 24), (11, 24), (12, 24), (14, 24) Each gate) is opened, and the resin is injected at the injection rate from the gates of the first group to the third group (step S16: third step).
[0074] 次に、第 3グループの各ゲートからの射出量力 予定量となったか否かを判定する( ステップ S17)。榭脂射出量が予定量に達していない場合には、ステップ S16の処理 を継続する。榭脂射出量が予定量に達した場合には、第 1グループ〜第 3グループ の各ゲートを閉じて、これらのゲートからの射出を停止する (ステップ S 18)。その後、 射出成形用金型を冷却し (ステップ S19)、金型力 光拡散板を取り出す (ステップ S 20)。以上のようにして、光拡散板製造の 1サイクルを終了する。  Next, it is determined whether or not the injection amount force from each gate of the third group has become a predetermined amount (step S17). If the injection amount of the resin does not reach the expected amount, continue the process of step S16. When the injection amount of the resin reaches the predetermined amount, the gates of the first group to the third group are closed, and the injection from these gates is stopped (step S18). Thereafter, the injection mold is cooled (step S19), and the mold force light diffusion plate is taken out (step S20). As described above, one cycle of manufacturing the light diffusion plate is completed.
[0075] なお、ステップ S 18の処理において、ゲートを閉じるタイミングは、通常は、榭脂射 出量が所定量になった際に行うが、例えば、成形品の表面部分の榭脂充填状態を 観察し、この充填状態が良好になった際に行うようにしてもよい。このようなサイクルを 複数回繰り返すことにより、光拡散板の製造を行う。 [0076] また、上述の第 2の実施形態では、縦ゲート列数 X横ゲート列数を 4本 X 4本とした 力 縦方向および横方向のゲート列が偶数本であれば、ゲート列の数は、前記数に は限定されない。図 12は、縦ゲート列数 X横ゲート列数を 6本 X 8本とした場合のゲ ートを開くタイミングを説明するための図である。この場合には、第 1工程において第 1グループに含まれる各ゲートから榭脂の射出を行い、第 2工程において第 1グルー プ及び第 2グループに含まれる各ゲートから榭脂の射出を行う、または第 1工程にお いて第 2グループに含まれる各ゲートから榭脂の射出を行い、第 2工程において第 1 グループ及び第 2グループに含まれる各ゲートから榭脂の射出を行う。その後は、第 1グループ及び第 2グループに最も近い各横ゲート列に含まれる各ゲートを開けて榭 脂の射出を行い、更にその外側の各横ゲート列に含まれる各ゲートを開けて榭脂の 射出を行なう。 [0075] In the process of step S18, the timing for closing the gate is normally performed when the amount of the resin spray reaches a predetermined amount. Observation may be made when this filling state becomes good. The light diffusing plate is manufactured by repeating such a cycle a plurality of times. In the second embodiment described above, the number of vertical gate rows × the number of horizontal gate rows is 4 × 4. If the number of vertical and horizontal gate rows is an even number, the number of gate rows The number is not limited to the number. FIG. 12 is a diagram for explaining the timing of opening the gate when the number of vertical gate rows X the number of horizontal gate rows is 6 x 8. In this case, the resin is injected from each gate included in the first group in the first process, and the resin is injected from each gate included in the first group and the second group in the second process. Alternatively, in the first step, the resin is injected from each gate included in the second group, and in the second step, the resin is injected from each gate included in the first group and the second group. After that, the gates included in the horizontal gate rows closest to the first group and the second group are opened to inject the resin, and further, the gates included in the outer horizontal gate rows are opened to open the resin. Inject.
[0077] 次に、上述の第 2の実施形態に係る射出成形用金型を用いて、榭脂製の平板成形 品である光拡散板を製造する他の製造方法である第 3の実施形態について説明す る。なお、処理手順は、図 8に示す第 2の実施形態における手順と同様であるため、 図 8を参照して説明する。  [0077] Next, the third embodiment, which is another manufacturing method for manufacturing a light diffusing plate, which is a flat resin molded product made of resin, using the injection mold according to the second embodiment described above. Is explained. The processing procedure is the same as the procedure in the second embodiment shown in FIG. 8, and will be described with reference to FIG.
[0078] まず、図 8に示すように、図示しない型締装置を用いて、所定圧力で射出成形用金 型の型締めを行う(ステップ S 11)。次に、図 12に示すように、第 1グループの各ゲー ト、即ち、図 13に示す(11, 22)、 (12, 21)の各ゲートを開けて、これらのゲートから 一定の射出率で前記榭脂を射出する (ステップ S12 :第 1工程)。この際、キヤビティ 内に射出された榭脂は、第 1グループの各ゲートからキヤビティ面 10の外周側に向 かって流れ出す。ここで、図 13においては、第 1グループの各ゲートから射出された 榭脂の広がりの範囲を実線の円で示す。なお、榭脂の射出量は、射出率 (射出速度 )を一定としたので、射出時間により把握できる。  First, as shown in FIG. 8, the mold for injection molding is clamped at a predetermined pressure using a mold clamping device (not shown) (step S 11). Next, as shown in FIG. 12, each gate of the first group, that is, each gate of (11, 22) and (12, 21) shown in FIG. 13 is opened, and a constant injection rate is obtained from these gates. In step S12, the resin is injected. At this time, the resin injected into the cavity flows out from the gates of the first group toward the outer peripheral side of the cavity surface 10. Here, in FIG. 13, the range of the spread of the resin injected from each gate of the first group is indicated by a solid circle. The injection amount of the resin can be grasped by the injection time since the injection rate (injection speed) is constant.
[0079] 次に、第 1グループの各ゲートからの射出量が予定量となったか否かを判定する( ステップ S13)。この判定は、具体的には、例えば、射出時間により実施すればよい 力 必要に応じて、第 1グループの各ゲートから射出した榭脂が、隣接するゲートとの 距離の半分程度の位置まで流れたカゝ否かで行ってもよい。榭脂射出量が予定量に 達していない場合には、ステップ S 12の処理を継続する。榭脂射出量が予定量に達 した場合には、図 13に示すように、第 1グループの各ゲートを開いたまま、第 2グルー プの各ゲート、即ち、図 13に示す(11, 21)、 (12, 22)の各ゲートを開けて、第 1グ ループ及び第 2グループの各ゲートから、前記射出率で前記榭脂を射出する (ステツ プ S14 :第 2工程)。ここで、図 13においては、第 2グループの各ゲートから射出され た榭脂の広がりの範囲を点線の円で示す。 Next, it is determined whether or not the injection amount from each gate of the first group has become a predetermined amount (step S13). Specifically, for example, this determination may be performed based on the injection time. If necessary, the resin injected from each gate of the first group flows to a position about half the distance from the adjacent gate. It may be done depending on whether or not it is correct. If the injection amount of the resin does not reach the expected amount, continue the process of step S12. The injection amount of sallow reaches the planned amount In this case, as shown in FIG. 13, with the gates of the first group open, the gates of the second group, ie, (11, 21), (12, 22) shown in FIG. The gate is opened, and the resin is injected from the gates of the first group and the second group at the injection rate (step S14: second step). Here, in FIG. 13, the range of spread of the resin injected from each gate of the second group is indicated by a dotted circle.
[0080] 次に、第 2グループの各ゲートからの射出量力 前記同様に予定量となった力否か を判定する (ステップ S15)。榭脂射出量が予定量に達していない場合には、ステツ プ S14の処理を継続する。榭脂射出量が予定量に達した場合には、第 1グループ及 び第 2グループの各ゲートを開いたまま、第 3グループの各ゲート、即ち、図 13に示 すように、第 13ゲート列、第 14ゲート列、第 23ゲート列及び第 24ゲート列の各ゲート ( (13, 23)、 (13, 21)、 (13, 22)、 (13, 24)、 (14, 23)、 (14, 21)、 (14, 22)、 ( 14, 24)、 (11, 23)、 (12, 23)、 (11, 24)、 (12, 24)の各ゲート))を開けて、第 1 グループ〜第 3グループの各ゲートから、前記射出率で前記榭脂を射出する (ステツ プ S16 :第 3工程)。 [0080] Next, it is determined whether or not the injection amount force from each gate of the second group is equal to the predetermined amount (step S15). If the resin injection amount has not reached the expected amount, continue with step S14. When the injection amount of the resin reaches the predetermined amount, the gates of the third group, that is, the gates of the thirteenth group as shown in FIG. Each gate of the row, the 14th gate row, the 23rd gate row and the 24th gate row ((13, 23), (13, 21), (13, 22), (13, 24), (14, 23), (14, 21), (14, 22), (14, 24), (11, 23), (12, 23), (11, 24), (12, 24) gates)) The resin is injected from the gates of the first group to the third group at the injection rate (step S16: third step).
[0081] 次に、第 3グループの各ゲートからの射出量が、予定量となったか否かを判定する( ステップ S17)。榭脂射出量が予定量に達していない場合には、ステップ S16の処理 を継続する。榭脂射出量が予定量に達した場合には、第 1グループ〜第 3グループ の各ゲートを閉じて、これらのゲートからの射出を停止する (ステップ S 18)。その後、 射出成形用金型を冷却し (ステップ S19)、金型力 光拡散板を取り出す (ステップ S 20)。以上のようにして、光拡散板製造の 1サイクルを終了する。  [0081] Next, it is determined whether or not the injection amount from each gate of the third group has become a predetermined amount (step S17). If the injection amount of the resin does not reach the expected amount, continue the process of step S16. When the injection amount of the resin reaches the predetermined amount, the gates of the first group to the third group are closed, and the injection from these gates is stopped (step S18). Thereafter, the injection mold is cooled (step S19), and the mold force light diffusion plate is taken out (step S20). As described above, one cycle of manufacturing the light diffusion plate is completed.
[0082] なお、ステップ S 18の処理において、ゲートを閉じるタイミングは、通常は、榭脂射 出量が所定量になった際に行うが、例えば、成形品の表面部分の榭脂充填状態を 観察し、この充填状態が良好になった際に行うようにしてもよい。このようなサイクルを 複数回繰り返すことにより、光拡散板の製造を行う。  [0082] In the process of step S18, the timing for closing the gate is normally performed when the amount of the resin spray reaches a predetermined amount. Observation may be made when this filling state becomes good. The light diffusing plate is manufactured by repeating such a cycle a plurality of times.
[0083] また、本第 3の実施形態では、縦ゲート列数 X横ゲート列数を 4本 X 4本としたが、 縦方向および横方向のゲート列が偶数本であれば、ゲート列の数は、前記数には限 定されない。その場合には、上述の方法により 4本 X 4本のゲートの射出タイミングを 制御した後は、キヤビティの順次外側のゲートを開放して榭脂の射出を行なう。即ち、 内側から外側に向けて、順にゲートを開放していく。 [0083] In the third embodiment, the number of vertical gate rows x the number of horizontal gate rows is 4 x 4. However, if the number of vertical and horizontal gate rows is an even number, the number of gate rows The number is not limited to the number. In that case, after controlling the injection timing of 4 x 4 gates by the above-mentioned method, the outer gates of the cavity are opened sequentially and the resin is injected. That is, The gates are opened sequentially from the inside to the outside.
[0084] 上述の第 2及び第 3の各実施形態によれば、第 1工程として、第 1グループに含ま れる各ゲート又は第 2グループに含まれる各ゲートから榭脂を射出し、第 2工程として 、第 2グループに含まれる各ゲート又は第 1グループに含まれる各ゲートから榭脂を 射出し、第 3工程として、第 23ゲート列及び第 24ゲート列の各ゲートから榭脂を射出 するように、各ゲートからの榭脂の射出のタイミングをずらしている、または第 1工程と して、第 1グループに含まれる各ゲート又は第 2グループに含まれる各ゲートから榭 脂を射出し、第 2工程として、第 2グループに含まれる各ゲート又は第 1グループに含 まれる各ゲートから榭脂を射出し、第 3工程として、第 13ゲート列、第 14ゲート列、第 23ゲート列及び第 24ゲート列の各ゲートから榭脂を射出するように、各ゲートからの 榭脂の射出のタイミングをずらしているので、複数のゲートを格子の交点部分に配置 した略均等な配置としても、キヤビティ内に空気溜りが生じず、空気溜りによる焼け等 の外観不良が生じるのを防止できる。このため、高品質な平板成形品を製造できる。 また、このように複数のゲートを略均等な配置としたので、キヤビティ内において、部 分的に圧力が上昇することがなぐ型内圧を低く抑えることができる。従って、型内圧 を低く抑えて、高品質な平板成形品をより一層効率的に製造することができる。  [0084] According to each of the second and third embodiments described above, as the first step, the resin is injected from each gate included in the first group or each gate included in the second group, and the second step As a third step, resin is injected from each gate included in the second group or each gate included in the first group, and as a third step, the resin is injected from each gate of the 23rd gate row and the 24th gate row. The injection timing of the resin from each gate is shifted, or as the first step, the resin is injected from each gate included in the first group or each gate included in the second group, As the second step, the resin is injected from each gate included in the second group or from each gate included in the first group, and as the third step, the thirteenth gate row, the fourteenth gate row, the twenty-third gate row and the second gate row Injecting grease from each gate in the 24 gate row As described above, the injection timing of the resin from each gate is shifted, so even if a plurality of gates are arranged at the intersections of the lattice, there is no air pool in the cavity, and It is possible to prevent appearance defects such as burning. For this reason, a high quality flat plate molded product can be manufactured. In addition, since the plurality of gates are arranged substantially evenly in this way, it is possible to keep the mold internal pressure within the cavity that prevents the pressure from partially rising. Accordingly, it is possible to manufacture a high-quality flat plate product more efficiently while keeping the in-mold pressure low.
[0085] また、上述の第 2及び第 3の実施形態によれば、以下のような効果がある。キヤビテ ィ面 10において、隣接するゲート 20間の間隔が略一定となるようにゲート 20を配置 したので、キヤビティ内のどの位置でも型内圧が略同程度になる。このため、型内圧 を低く抑えることができることから、型締力の小さい型締装置を用いることができ、省ス ペース化を図ることができる。また、複数のゲートを第 1グループ〜第 3グループに分 けて、第 1グループ、第 2グループ、第 3グループの順で、各ゲート 20から榭脂を射 出するように射出タイミングをずらしたので、ゲート 20を略均等に配置したとしても、キ ャビティ内に空気溜りが生じることがない。このため、得られる平板成形品に、空気溜 りによって生じる焼け等の外観不良が生じないため、高品質な光拡散板を効率的に 製造できる。  [0085] Further, according to the second and third embodiments described above, the following effects are obtained. Since the gate 20 is arranged on the cavity surface 10 so that the distance between the adjacent gates 20 is substantially constant, the mold internal pressure is approximately the same at any position within the cavity. For this reason, since the mold internal pressure can be kept low, a mold clamping device with a small mold clamping force can be used, and space saving can be achieved. Also, the gates were divided into the first group to the third group, and the injection timing was shifted so that the grease was emitted from each gate 20 in the order of the first group, the second group, and the third group. Therefore, even if the gates 20 are arranged substantially evenly, there is no air pool in the cavity. For this reason, the obtained flat plate molded product does not suffer from appearance defects such as burning caused by air accumulation, so that a high-quality light diffusion plate can be efficiently manufactured.
[0086] なお、上述の第 2及び第 3の各実施形態においては、第 1工程において第 1グルー プに含まれる各ゲートから榭脂を射出し、第 2工程において第 2グループに含まれる 各ゲートから榭脂を射出しているが、第 1工程において第 2グループに含まれる各ゲ ートから榭脂を射出し、第 2工程において第 1グループに含まれる各ゲートから榭脂 を射出するようにしてもよい。 [0086] In each of the second and third embodiments described above, the resin is injected from each gate included in the first group in the first step, and included in the second group in the second step. The grease is injected from each gate, but in the first process, the resin is injected from each gate included in the second group, and in the second process, the resin is injected from each gate included in the first group. You may make it do.
[0087] また、上述の第 2及び第 3の各実施形態においては、キヤビティ面の大きさも前記 大きさには限定されない。また、上述の第 2及び第 3の各実施形態では、得られる平 板成形品を光拡散板としたが、導光板等の光学部材としてもよいし、光学用途以外 の部材としてもよい。 In the second and third embodiments described above, the size of the cavity surface is not limited to the above size. In each of the above-described second and third embodiments, the obtained flat plate molded product is a light diffusion plate, but may be an optical member such as a light guide plate, or may be a member other than an optical application.
[0088] また、上述の第 2及び第 3の各実施形態において、横方向の各距離 LB1〜LB4は 、横方向の間隔 L2 (例えば前記平均間隔)の 30%〜70%程度の長さであることが 好ましぐ 45%〜55%の長さであることがより好ましぐ 49%〜51%であることがさら に好ましい。また、縦方向の各距離 LA1〜LA4は、縦方向の間隔 L1の 30%〜70 %程度の長さであることが好ましぐ 45%〜55%の長さであることがより好ましぐ 49 %〜51%であることがさらに好ましい。このような構成によれば、溶融榭脂がより好適 に流動することにより、厚みムラや外観不良がより改善された高品質な平板成形品を 成形できる。  [0088] In each of the second and third embodiments described above, each of the horizontal distances LB1 to LB4 is approximately 30% to 70% of the horizontal distance L2 (for example, the average distance). It is more preferable that the length is 45% to 55%, and it is more preferable that the length is 49% to 51%. The vertical distances LA1 to LA4 are preferably about 30% to 70% of the vertical distance L1, and more preferably 45% to 55%. More preferably, it is 49% to 51%. According to such a configuration, a high quality flat plate molded product with improved thickness unevenness and appearance defect can be formed by flowing the molten resin more suitably.
[0089] 次に、上述の各実施形態により製造された光拡散板を備える液晶表示装置につい て説明を行なう。図 14は、液晶表示装置の構成を示す図である。この液晶表示装置 30は、対向配置された一対の液晶基板 31と、この一対の液晶基板 31により挟持さ れた液晶層 32を備える液晶パネルと、液晶パネルを挟むように配置された一対の偏 光板 33と、液晶パネルを背面力 照射する直下型方式のバックライト 34と、液晶パネ ルと直下型方式のバックライト 34の間に配置される、光を均一にしたり光を拡散或い は集光する機能を有する光学フィルム 35及び上述の各実施の形態に係る製造方法 により製造された光拡散板 36を備えている。ここで、直下型方式のバックライト 34は、 冷陰極蛍光灯等力もなる複数のランプ 37と反射板 38を備えている。  Next, a liquid crystal display device including the light diffusing plate manufactured according to each of the above embodiments will be described. FIG. 14 is a diagram illustrating a configuration of the liquid crystal display device. The liquid crystal display device 30 includes a pair of liquid crystal substrates 31 disposed opposite to each other, a liquid crystal panel including a liquid crystal layer 32 sandwiched between the pair of liquid crystal substrates 31, and a pair of polarizing plates disposed so as to sandwich the liquid crystal panel. A light plate 33, a direct type backlight 34 that illuminates the LCD panel with a back force, and a liquid crystal panel and a direct type backlight 34 are arranged between the liquid crystal panel and the direct type backlight 34 to make light uniform, diffuse light, or collect light. An optical film 35 having a function of illuminating and a light diffusion plate 36 manufactured by the manufacturing method according to each of the above-described embodiments are provided. Here, the direct type backlight 34 is provided with a plurality of lamps 37 and a reflector 38 that are also cold cathode fluorescent lamps and the like.
[0090] この実施の形態に係る液晶表示装置によれば、上述の実施の形態に係る製造方 法により製造さえた光拡散板 36を備えているため、液晶パネルを良好に照明するこ とがでさる。  [0090] According to the liquid crystal display device according to this embodiment, since the light diffusion plate 36 manufactured by the manufacturing method according to the above-described embodiment is provided, the liquid crystal panel can be well illuminated. I'll do it.
[0091] 本開示は、 2006年 2月 13日に提出された日本国特許出願第 2006— 34655号及 び 2006年 8月 22日に提出された日本国特許出願第 2006— 225259号に含まれた 主題に関連し、その開示のすべてはここに参照事項として明白に組み込まれる。 実施例 [0091] This disclosure relates to Japanese Patent Application No. 2006-34655 filed on February 13, 2006 and All of which disclosure is expressly incorporated herein by reference in relation to the subject matter contained in Japanese Patent Application No. 2006-225259 filed August 22, 2006. Example
[0092] 次に、実施例および比較例により、本発明をより詳細に説明する。なお、本発明は 、下記実施例には限定されない。  Next, the present invention will be described in more detail with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
[0093] <製造例 1 (ノルボルネン系重合体の製造) >  [0093] <Production Example 1 (Production of norbornene polymer)>
脱水したシクロへキサン 500重量部、 1-へキセン 0.82重量部、ジブチルエーテル 0 .15重量部、及びトリイソブチルアルミニウム 0.30重量部を室温で十分に乾燥し、窒 素置換したステンレス製耐圧容器に入れ混合した後、 45°Cに保ちながら、トリシクロ [ 4.3.0.12 5]デカ-3,7-ジェン(ジシクロぺンタジェン、以下、「DCP」と略記する) 170 重量部と、 8-ェチリデン-テトラシクロ [4.4.0.12'5.17·10]-ドデ力- 3-ェン (ェチリデンテト ラシクロドデセン、以下、「ETD」と略記する) 30重量部と、六塩ィ匕タングステン (0.7 重量%トルエン溶液) 30重量部とを、 2時間かけて連続的に添加し重合した。重合溶 液にブチルダリシジルエーテル 1.06重量部とイソプロピルアルコール 0.52重量部を 加えて重合触媒を不活性化し、重合反応を停止させた。 500 parts by weight of dehydrated cyclohexane, 0.82 parts by weight of 1-hexene, 0.15 parts by weight of dibutyl ether and 0.30 parts by weight of triisobutylaluminum are thoroughly dried at room temperature and placed in a nitrogen pressure-substituted stainless steel pressure vessel. After mixing, while maintaining the temperature at 45 ° C, 170 parts by weight of tricyclo [4.3.0.1 2 5 ] deca-3,7-gen (dicyclopentagen, hereinafter abbreviated as “DCP”) and 8-ethylidene-tetracyclo [4.4.0.1 2 ' 5 .1 7 · 10 ] -dode force-3-ene (ethylidenetetracyclododecene, hereinafter abbreviated as “ETD”) 30 parts by weight and hexasalt-tungsten (0.7 wt% toluene) Solution) 30 parts by weight were continuously added and polymerized over 2 hours. To the polymerization solution, 1.06 parts by weight of butyldaricidyl ether and 0.52 parts by weight of isopropyl alcohol were added to inactivate the polymerization catalyst, and the polymerization reaction was stopped.
[0094] 次 、で、得られた開環重合体を含有する反応溶液 100重量部に対して、シクロへ キサン 270重量部をカ卩え、さらに水素添加触媒としてニッケル-アルミナ触媒(日揮ィ匕 学社製) 5重量部をカ卩え、水素により 5MPaに加圧して撹拌しながら温度 200°Cまで 加温した後、 4時間反応させ、 DCPZETD開環重合体水素添加物を 20重量%含 有する反応溶液を得た。瀘過により水素添加触媒を除去した後、前記水素添加物 1 00重量部にあたり 0.1重量部のフエノール系酸ィ匕防止剤としてペンタエリスリチル-テ トラキス(3- (3,5-ジ- -ブチル -4-ヒドロキシフエ-ル)プロピオネート)を、得られた溶 液に添加して溶解させた。  Next, with respect to 100 parts by weight of the reaction solution containing the obtained ring-opening polymer, 270 parts by weight of cyclohexane was added, and a nickel-alumina catalyst (JGC) was added as a hydrogenation catalyst. 5 parts by weight, pressurized to 5 MPa with hydrogen, heated to 200 ° C with stirring and then reacted for 4 hours, containing 20% by weight of DCPZETD ring-opening polymer hydrogenated product A reaction solution was obtained. After removing the hydrogenation catalyst by filtration, 0.1 part by weight of a phenol-based antioxidation agent per 100 parts by weight of the hydrogenated product is pentaerythrityl-tetrakis (3- (3,5-di-butyl). -4-hydroxyphenol) propionate) was added to and dissolved in the resulting solution.
[0095] 次 、で、円筒型濃縮乾燥器 (日立製作所製)を用いて、温度 270°C、圧力 lkPa以 下で、溶液から、溶媒であるシクロへキサン及びその他の揮発成分を除去しつつ水 素添加物を溶融状態で押出機からストランド状に押出し、冷却後ペレット化してペレ ットを回収した。この開環重合体水素添加物の、重量平均分子量 (Mw)は 35,000、 水素添加率は 99.9%、ガラス転移温度 (Tg)は 100°Cであった。 [0096] <実施例 1 > [0095] Next, using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd.), the solvent cyclohexane and other volatile components were removed from the solution at a temperature of 270 ° C and a pressure of 1kPa or less. The hydrogen additive was extruded in the form of a strand from the extruder in a molten state, cooled and pelletized to recover the pellets. This hydrogenated ring-opened polymer had a weight average molecular weight (Mw) of 35,000, a hydrogenation rate of 99.9%, and a glass transition temperature (Tg) of 100 ° C. <Example 1>
製造例 1で得られた DCPZETD開環重合体水素添加物 99重量部とポリシロキサ ン系重合体の架橋物力もなる微粒子 (GE東芝シリコーン (株)、トスパール 120) 1重 量部を混合し、二軸押出機 (東芝機械 (株)、 TEM- 35B)を用いてストランド状に押し 出し、ペレタイザ一で切断することにより、光拡散板用ペレットを製造した。  Mix 99 parts by weight of the DCPZETD ring-opening polymer hydrogenated product obtained in Production Example 1 with 1 part by weight of fine particles (GE Toshiba Silicone Co., Ltd., Tospearl 120) that have the cross-linking power of the polysiloxane polymer. Extruded into a strand using a shaft extruder (Toshiba Machine Co., Ltd., TEM-35B) and cut with a pelletizer to produce pellets for a light diffusion plate.
[0097] この光拡散板用ペレットを用い、射出成形機 (スクリュー径 φ 90mm,最大型締カ 8 50t)で、光拡散板を成形した。金型は、固定型板の主面に略矩形形状のキヤビティ 面が形成されている。キヤビティ面の寸法は、縦 430mm、横 740mm、対角線の長さ 856mmであった。また、キヤビティの深さは、 2.0mmであった。  [0097] Using this light diffusion plate pellet, a light diffusion plate was molded by an injection molding machine (screw diameter φ 90 mm, maximum mold clamping 850 t). The mold has a substantially rectangular cavity surface on the main surface of the fixed mold plate. The dimensions of the cavity surface were 430 mm long, 740 mm wide, and 856 mm diagonal. The cavity depth was 2.0 mm.
[0098] 図 1,図 2に示すように、固定金型のキヤビティ面には、このキヤビティ面に連通する 、直径 2mmのホットランナー方式のバルブゲートが 12個設けられている。横方向の ゲート間隔 L2が 185mmで、縦方向のゲート間隔 L1が 143. 3mmであった。各方向 において間隔の誤差は 0%であった。また、図 1に示す、最外側ゲート 20Aとキヤビテ ィ面の縦方向の辺 11Aとの距離 LA1は 71.7mmであり、最外側ゲート 20Aとキヤビ ティ面の横方向の辺 12Aとの距離 LB1は 92.5mmであった。また、距離1^\2は71.7 mmであって、距離 LB2は 92.5mmであった。また、距離 L A3は 71.7mmであって、 距離 LB3は 92.5mmであった。また、距離 LA4は 71.7mmであって、距離 LB4は 9 2.5mmであった。従って、距離の誤差は 0%であった。各距離 LA1〜LA4は間隔 L 1の 50%の長さであり、各距離 LB1〜LB4は間隔 L2の 50%の長さであった。射出 成形条件は、シリンダ温度 275°C、ホットランナー温度 275°C、金型温度 78°C、射出 速度 lOOmmZ秒、冷却時間 30秒とした。  [0098] As shown in Figs. 1 and 2, the cavity surface of the fixed mold is provided with twelve hot runner type valve gates having a diameter of 2mm in communication with the cavity surface. The gate gap L2 in the horizontal direction was 185mm, and the gate gap L1 in the vertical direction was 143.3mm. The spacing error in each direction was 0%. In addition, the distance LA1 between the outermost gate 20A and the vertical side 11A of the cavity surface shown in FIG. 1 is 71.7 mm, and the distance LB1 between the outermost gate 20A and the lateral side 12A of the cavity surface is LB1. It was 92.5 mm. The distance 1 ^ \ 2 was 71.7 mm and the distance LB2 was 92.5 mm. The distance L A3 was 71.7 mm, and the distance LB3 was 92.5 mm. The distance LA4 was 71.7 mm and the distance LB4 was 9 2.5 mm. Therefore, the distance error was 0%. Each distance LA1 to LA4 was 50% of the distance L1, and each distance LB1 to LB4 was 50% of the distance L2. The injection molding conditions were a cylinder temperature of 275 ° C, a hot runner temperature of 275 ° C, a mold temperature of 78 ° C, an injection speed of lOOmmZ seconds, and a cooling time of 30 seconds.
[0099] 金型を型締した後、第 1横ゲート列のバルブゲートを開いて、第 1横ゲート列のバル ブゲートから前記榭脂を射出した。続いて、第 1横ゲート列のバルブゲートからの榭 脂射出の 1. 5秒後に、第 2横ゲート列のノ レブゲートを開いて、第 1横ゲート列のバ ルブゲートおよび第 2横ゲート列のバルブゲートから前記榭脂を射出した。次に、榭 脂射出量が予定量に達し、キヤビティ面近傍の榭脂充填状態が、ヒケ等のない十分 な状態であると判別できた際に、すべてのバルブゲートを閉じて射出を停止した。こ の際、射出時の型内圧が 180kgfZcm2 (18MPa)であった。その後、前記条件で金 型を冷却した後、光拡散板を金型から取り出して、光拡散板を得た。 [0099] After clamping the mold, the valve gates of the first lateral gate row were opened, and the resin was injected from the valve gates of the first lateral gate row. Subsequently, 1.5 seconds after resin injection from the valve gate of the first horizontal gate row, the second gate gate open the valve gate, and the first and second horizontal gate row gate gates and The resin was injected from the valve gate. Next, when the resin injection amount reached the predetermined amount and it was determined that the resin filling state near the cavity surface was sufficient without sink marks, all valve gates were closed and injection stopped. . At this time, the pressure inside the mold at the time of injection was 180 kgfZcm 2 (18 MPa). Then gold on the above conditions After cooling the mold, the light diffusing plate was taken out of the mold to obtain a light diffusing plate.
[0100] 得られた光拡散板には、空気溜りによって生じるような外観不良のない良品であつ た。また、板厚のばらつきをマイクロメーター(ミツトヨ社製)により測定したところ 60 mであった。  [0100] The obtained light diffusing plate was a non-defective product having no appearance defect caused by air accumulation. The variation in thickness was measured by a micrometer (manufactured by Mitutoyo Corporation) and found to be 60 m.
[0101] <実施例 2>  [0101] <Example 2>
キヤビティ面の寸法を下記の通り変更するとともに、第 1横ゲート列のバルブゲート を開いてから 2. 5秒後に、第 2ゲート列のバルブゲート開いた以外は、実施例 1と同 様にして光拡散板を得た。キヤビティ面の寸法は、縦 600mm、横 1, 020mm,対角 線の長さ 1, 183mmであった。図 2に示す、横方向のゲート間隔 L2が 233mmで、 縦方向のゲート間隔 L 1が 181.7mmであった。各方向における間隔の誤差は 0%で あった。また、最外側ゲート 20Aとキヤビティ面の縦方向の辺 11Aとの距離 LA1は 1 18.3mmであり、最外側ゲート 20Aとキヤビティ面の横方向の辺 12Aとの距離 LB 1 は 160.5mmであった。また、距離 LA2は 118.3mmであって、距離 LB2は 160.5m mであった。また、距離 LA3は 118.3mmであって、距離 LB3は 160.5mmであった 。また、距離 LA4は 118.3mmであって、距離 LB4は 160.5mmであった。従って、 距離の誤差は 0%であった。各距離 LA1〜LA4は間隔 L1の 65. 1%の長さであり、 各距離 LB1〜LB4は間隔 L2の 68. 9%の長さであった。なお、キヤビティの深さは、 2.0mmであった。射出時の型内圧が 190kgfZcm2 (19MPa)であった。また、得ら れた光拡散板には、空気溜りによって生じるような外観不良がなく良品であった。さら に、光拡散板の厚みのばらつきが 100 mであった。 The dimensions of the cavity surface were changed as follows, and 2.5 seconds after opening the valve gate of the first horizontal gate row, the same as in Example 1 except that the valve gate of the second gate row was opened. A light diffusing plate was obtained. The dimensions of the cavity surface were 600 mm long, 1,020 mm wide, and a diagonal length of 1,183 mm. As shown in Fig. 2, the horizontal gate interval L2 was 233 mm, and the vertical gate interval L 1 was 181.7 mm. The spacing error in each direction was 0%. The distance LA1 between the outermost gate 20A and the longitudinal side 11A of the cavity surface is 1 18.3 mm, and the distance LB 1 between the outermost gate 20A and the lateral side 12A of the cavity surface is 160.5 mm. . The distance LA2 was 118.3 mm and the distance LB2 was 160.5 mm. The distance LA3 was 118.3 mm, and the distance LB3 was 160.5 mm. The distance LA4 was 118.3mm and the distance LB4 was 160.5mm. Therefore, the distance error was 0%. Each distance LA1 to LA4 was 65.1% of the distance L1, and each distance LB1 to LB4 was 68.9% of the distance L2. The depth of the cavity was 2.0 mm. The mold internal pressure at the time of injection was 190kgfZcm 2 (19MPa). The obtained light diffusing plate was a good product with no appearance defect caused by air accumulation. Furthermore, the thickness variation of the light diffusing plate was 100 m.
[0102] <比較例 1 >  [0102] <Comparative Example 1>
すべてのバルブゲートを同時に開けて、同時に榭脂を射出する点以外は、実施例 1と同様にして光拡散板を得た。得られた光拡散板には、空気溜りによって生じた焼 けによる外観不良があった。さらに、光拡散板の厚みのばらつきは 200 mであった  A light diffusion plate was obtained in the same manner as in Example 1 except that all the valve gates were opened at the same time and the resin was injected at the same time. The obtained light diffusing plate had a poor appearance due to burning caused by air accumulation. Furthermore, the variation in the thickness of the light diffusing plate was 200 m.
[0103] <比較例 2> [0103] <Comparative Example 2>
図 15に示すようにバルブゲートの数を 8個(縦方向 2個、横方向 4個)にした点と、す ベてのバルブゲートを同時に開けて、同時に榭脂を射出する点以外は、実施例 1と 同様にして光拡散板を得た。金型のキヤビティ面の寸法は、縦 430mm、横 740mm 、対角線の長さ 856mmであった。キヤビティの深さは、 2.0mmであった。図 2の符号 を引用して説明すれば、横方向のゲート間隔(図 2の L2)が 185mmで、縦方向のゲ ート間隔(図 2の L1)が 215mmであった。横方向における間隔の誤差は 0%であつ た As shown in Fig. 15, except that the number of valve gates is 8 (2 in the vertical direction and 4 in the horizontal direction) and all the valve gates are opened at the same time and the grease is injected at the same time. Example 1 and Similarly, a light diffusion plate was obtained. The dimensions of the mold cavity surface were 430 mm long, 740 mm wide, and 856 mm diagonal. The depth of the cavity was 2.0mm. Explaining with reference to the symbols in Fig. 2, the lateral gate spacing (L2 in Fig. 2) was 185mm, and the vertical gate spacing (L1 in Fig. 2) was 215mm. The gap error in the horizontal direction was 0%
。距離(図 2の LB1〜: LB4)はそれぞれ 160.5mmであり、距離(図 2の LA1〜LA4) はそれぞれ 118.3mmであった。各方向における距離の誤差は 0%であった。また、 各距離(図 2の LA1〜LA4)は前記間隔(図 2の L1)の 50%の長さであり、各距離( 図 2の LB1〜LB4)は前記間隔(図 2の L2)の 50%の長さであった。射出時の型内 圧が 200kgfZcm2 (20MPa)であった。また、得られた光拡散板には、空気溜りによ つて生じた焼けによる外観不良があった。さらに、光拡散板の厚みのばらつきは 200 μ mであった。 . The distances (LB1 to LB4 in Fig. 2) were 160.5 mm each, and the distances (LA1 to LA4 in Fig. 2) were each 118.3 mm. The distance error in each direction was 0%. Each distance (LA1 to LA4 in Fig. 2) is 50% of the distance (L1 in Fig. 2), and each distance (LB1 to LB4 in Fig. 2) is equal to the distance (L2 in Fig. 2). It was 50% long. The pressure inside the mold at the time of injection was 200kgfZcm 2 (20MPa). Further, the obtained light diffusing plate had a poor appearance due to burning caused by air pockets. Furthermore, the thickness variation of the light diffusing plate was 200 μm.
[0104] <比較例 3 >  [0104] <Comparative Example 3>
図 16に示すようにバルブゲートの数を 16個(縦方向 4個、横方向 4個)とし、横ゲー ト列の間隔を狭くした点と、キヤビティ面の寸法を下記の通り変更した以外は、比較例 1と同様にして光拡散板を得た。金型のキヤビティ面の寸法は、縦 600mm、横 1, 02 Omm,対角線の長さ 1, 183mmであった。図 2の符号を引用して説明すれば、横方 向のゲート間隔(図 2の L2)が 255mmで、縦方向のゲート間隔(図 2の L1)が 50mm であった。各方向における間隔の誤差は 0%であった。距離(図 2の LB1〜LB4)は それぞれ 127. 5mmであり、距離(図 2の LA1〜LA4)はそれぞれ 112. 5mmであ つた。各方向における距離の誤差は 0%であった。また、各距離(図 2の LA1〜LA4 )は、前記間隔(図 2の L1)の 225%の長さであった。また、各距離(図 2の LB1〜LB 4)は、前記間隔(図 2の L2)の 50%の長さであった。  As shown in Fig. 16, except that the number of valve gates is 16 (4 in the vertical direction and 4 in the horizontal direction), the interval between the horizontal gate rows is narrowed, and the dimensions of the cavity surface are changed as follows. A light diffusing plate was obtained in the same manner as in Comparative Example 1. The dimensions of the mold cavity surface were 600 mm long, 1,02 Omm wide, and 1,183 mm diagonal. Explaining with reference to Fig. 2, the lateral gate spacing (L2 in Fig. 2) was 255mm and the vertical gate spacing (L1 in Fig. 2) was 50mm. The spacing error in each direction was 0%. The distances (LB1 to LB4 in Fig. 2) were 125.5 mm each, and the distances (LA1 to LA4 in Fig. 2) were 112.5 mm each. The distance error in each direction was 0%. Each distance (LA1 to LA4 in FIG. 2) was 225% of the distance (L1 in FIG. 2). Each distance (LB1 to LB4 in FIG. 2) was 50% of the distance (L2 in FIG. 2).
[0105] キヤビティの深さは、 2.0mmであった。横方向のゲート間隔が 230mmで、縦方向 のゲート間隔が 50mmであった。各方向において、間隔の誤差は 0%であった。射出 時の型内圧が 250kgfZcm2 (25MPa)であった。また、空気溜りによって生じるよう な外観不良がなく良品であった。さらに、光拡散板の厚みのばらつきを 200 mであ つた o [0106] 実施例 1, 2では、型内圧を低く抑えることができるとともに、得られた光拡散板は、 ガス焼け等による外観不良がなぐかつ厚みムラを抑えたものであった。これに対して 、比較例 1, 2では、得られた光拡散板には、ガス焼け等による外観不良と厚みムラが 生じていた。比較例 3では、型内圧を低く抑えることができない上、得られた光拡散板 には、厚みムラが生じていた。 [0105] The depth of the cavity was 2.0 mm. The lateral gate spacing was 230 mm, and the longitudinal gate spacing was 50 mm. In each direction, the spacing error was 0%. The in-mold pressure at the time of injection was 250 kgfZcm 2 (25 MPa). Moreover, it was a good product without any appearance defects that could occur due to air accumulation. In addition, the thickness variation of the light diffusing plate was 200 m. In Examples 1 and 2, the in-mold pressure could be kept low, and the obtained light diffusion plate had no appearance defects due to gas burning or the like, and suppressed thickness unevenness. On the other hand, in Comparative Examples 1 and 2, the obtained light diffusion plate had poor appearance and uneven thickness due to gas burn. In Comparative Example 3, the mold pressure could not be kept low, and the obtained light diffusion plate had uneven thickness.
[0107] <実施例 3 >  <Example 3>
製造例 1で得られた DCPZETD開環重合体水素添加物 99重量部とポリシロキサ ン系重合体の架橋物力もなる微粒子 (GE東芝シリコーン (株)、トスパール 120) 1重 量部を混合し、二軸押出機 (東芝機械 (株)、 TEM- 35B)を用いてストランド状に押し 出し、ペレタイザ一で切断することにより、光拡散板用ペレットを製造した。  Mix 99 parts by weight of the DCPZETD ring-opening polymer hydrogenated product obtained in Production Example 1 with 1 part by weight of fine particles (GE Toshiba Silicone Co., Ltd., Tospearl 120) that have the cross-linking power of the polysiloxane polymer. Extruded into a strand using a shaft extruder (Toshiba Machine Co., Ltd., TEM-35B) and cut with a pelletizer to produce pellets for a light diffusion plate.
[0108] この光拡散板用ペレットを用い、射出成形機 (スクリュ径 φ 90mm、最大型締カ 85 Ot)で、光拡散板を成形した。金型は、固定型板の主面に略矩形形状のキヤビティ面 が形成されている。キヤビティ面の寸法は、縦 430mm、横 740mm、対角線の長さ 8 56mmであった。また、キヤビティの深さは、 2.0mmであった。  [0108] Using the light diffusion plate pellets, a light diffusion plate was formed by an injection molding machine (screw diameter φ 90 mm, maximum clamping force 85 Ot). The mold has a substantially rectangular cavity surface on the main surface of the fixed mold plate. The dimensions of the cavity surface were 430 mm long, 740 mm wide, and a diagonal length of 856 mm. The cavity depth was 2.0 mm.
[0109] 図 5及び図 6に示すように、固定型板のキヤビティ面には、このキヤビティ面に連通 する、直径 2mmのホットランナー方式のバルブゲートが 16個設けられている。横方 向のゲート間隔 L2が 185mmで、縦方向のゲート間隔 L1が 107. 5mmであった。各 方向において間隔の誤差は 0%であった。また、図 5に示す、最外側ゲート 20Aとキ ャビティ面の縦方向の辺 11Aとの距離 LA1は 92. 5mmであり、最外側ゲート 20Aと キヤビティ面の横方向の辺 12Aとの距離 LB1は 53. 8mmであった。また、距離 LA2 は 92. 5mmであって、距離 LB2は 53. 8mmであった。また、距離 LA3は 92. 5mm であって、距離 LB3は 53. 8mmであった。また、距離 LA4は 92. 5mmであって、距 離 LB4は 53. 8mmであった。従って、距離の誤差は 0%であった。各距離 LA1〜L A4は間隔 L1の 50%の長さであり、各距離 LB1〜LB4は間隔 L2の 50%の長さであ つた。射出成形条件は、シリンダ温度 275°C、ホットランナー温度 275°C、金型温度 7 8°C、射出速度 lOOmmZ秒、冷却時間 30秒とした。  As shown in FIGS. 5 and 6, the cavity surface of the fixed mold plate is provided with 16 hot runner type valve gates having a diameter of 2 mm, which communicate with the cavity surface. The gate gap L2 in the horizontal direction was 185mm, and the gate gap L1 in the vertical direction was 107.5mm. The spacing error in each direction was 0%. Also, the distance LA1 between the outermost gate 20A and the longitudinal side 11A of the cavity surface shown in FIG. 5 is 92.5 mm, and the distance LB1 between the outermost gate 20A and the lateral side 12A of the cavity surface is 53. It was 8 mm. The distance LA2 was 92.5 mm and the distance LB2 was 53.8 mm. The distance LA3 was 92.5 mm and the distance LB3 was 53.8 mm. The distance LA4 was 92.5 mm, and the distance LB4 was 53.8 mm. Therefore, the distance error was 0%. Each distance LA1 to LA4 was 50% of the distance L1, and each distance LB1 to LB4 was 50% the distance L2. The injection molding conditions were a cylinder temperature of 275 ° C, a hot runner temperature of 275 ° C, a mold temperature of 78 ° C, an injection speed of lOOmmZ seconds, and a cooling time of 30 seconds.
[0110] 金型を型締した後、第 1グループのバルブゲートを開いて、第 1グループのバルブ ゲートから前記榭脂を射出した。続いて、第 1グループのバルブゲートからの榭脂射 出の 1. 5秒後に、第 2グループのバルブゲートを開いて、第 1グループのバルブゲー トおよび第 2グループのバルブゲートから前記榭脂を射出した。続いて、第 2グルー プのバルブゲートからの榭脂射出の 1. 5秒後に、第 3グループのバルブゲートを開 いて、第 1〜第 3のバルブゲートから前記榭脂を射出した。次に、榭脂射出量が予定 量に達し、キヤビティ面近傍の榭脂充填状態が、ヒケ等のない十分な状態であると判 別できた際に、すべてのバルブゲートを閉じて射出を停止した。この際、射出時の型 内圧が 180kgfZcm2 (18MPa)であった。その後、前記条件で金型を冷却した後、 光拡散板を金型から取り出して、光拡散板を得た。 [0110] After clamping the mold, the first group of valve gates was opened, and the resin was injected from the first group of valve gates. Next, grease spray from the valve gate of the first group 1.5 seconds after exit, the second group of valve gates was opened, and the resin was injected from the first group of valve gates and the second group of valve gates. Subsequently, 1.5 seconds after the injection of the resin from the valve gate of the second group, the valve gate of the third group was opened and the resin was injected from the first to third valve gates. Next, when the injection amount of the resin reaches the planned amount and it is determined that the resin filling state near the cavity surface is sufficient without sink marks, all valve gates are closed and the injection is stopped. did. At this time, the in-mold pressure at the time of injection was 180 kgfZcm 2 (18 MPa). Then, after cooling a metal mold | die on the said conditions, the light-diffusion board was picked out from the metal mold | die, and the light-diffusion board was obtained.
[0111] 得られた光拡散板には、空気溜りによって生じるような外観不良のない良品であつ た。また、板厚のばらつきをマイクロメーター(ミツトヨ社製)により測定したところ 60 mであった。  [0111] The obtained light diffusing plate was a non-defective product having no appearance defect caused by air accumulation. The variation in thickness was measured by a micrometer (manufactured by Mitutoyo Corporation) and found to be 60 m.
[0112] く実施例 4 >  [0112] Example 4>
キヤビティ面の寸法を下記の通り変更するとともに、バルブゲートの開閉の制御は 実施例 1と同様にして光拡散板を得た。キヤビティ面の寸法は、縦 600mm、横 1, 02 Omm、対角線の長さ 1, 183mmであった。図 6に示す、横方向のゲート間隔 L2が 2 55mmで、縦方向のゲート間隔 L1が 150mmであった。各方向における間隔の誤差 は 0%であった。また、最外側ゲート 20Aとキヤビティ面の縦方向の辺 11Aとの距離 L A1は 75mmであり、最外側ゲート 20Aとキヤビティ面の横方向の辺 12Aとの距離 LB 1は 127. 5mmであった。また、距離 LA2は 75mmであって、距離 LB2は 127. 5m mであった。また、距離 LA3は 75mmであって、距離 LB3は 127. 5mmであった。ま た、距離 LA4は 75mmであって、距離 LB4は 127. 5mmであった。従って、距離の 誤差は 0%であった。各距離 LA1〜LA4は間隔 L1の 50%の長さであり、各距離 LB 1〜LB4は間隔 L2の 50%の長さであった。なお、キヤビティの深さは、 2.0mmであ つた。射出時の型内圧が 180kgfZcm2 (18MPa)であった。また、得られた光拡散 板には、空気溜りによって生じるような外観不良がなく良品であった。さらに、光拡散 板の厚みのばらつきが 80 μ mであった。 The dimensions of the cavity surface were changed as follows, and the opening and closing of the valve gate was controlled in the same manner as in Example 1 to obtain a light diffusing plate. The dimensions of the cavity surface were 600 mm long, 1,02 Omm wide, and 1,183 mm diagonal. As shown in FIG. 6, the horizontal gate interval L2 was 255 mm, and the vertical gate interval L1 was 150 mm. The spacing error in each direction was 0%. The distance L A1 between the outermost gate 20A and the longitudinal side 11A of the cavity surface is 75 mm, and the distance LB 1 between the outermost gate 20A and the lateral side 12A of the cavity surface is 127.5 mm. . The distance LA2 was 75 mm and the distance LB2 was 127.5 mm. The distance LA3 was 75 mm and the distance LB3 was 127.5 mm. The distance LA4 was 75mm and the distance LB4 was 127.5mm. Therefore, the distance error was 0%. Each distance LA1 to LA4 was 50% of the distance L1, and each distance LB1 to LB4 was 50% of the distance L2. The depth of the cavity was 2.0mm. The mold internal pressure at the time of injection was 180kgfZcm 2 (18MPa). The obtained light diffusing plate was a good product with no appearance defect caused by air accumulation. Furthermore, the thickness variation of the light diffuser was 80 μm.
[0113] <比較例 4>  [0113] <Comparative Example 4>
すべてのバルブゲートを同時に開けて、同時に榭脂を射出する点以外は、実施例 3と同様にして光拡散板を得た。得られた光拡散板には、空気溜りによって生じた焼 けによる外観不良があった。さらに、光拡散板の厚みのばらつきは 200 mであった Example except that all valve gates are opened at the same time and the grease is injected at the same time. A light diffusing plate was obtained in the same manner as in 3. The obtained light diffusing plate had a poor appearance due to burning caused by air accumulation. Furthermore, the variation in the thickness of the light diffusing plate was 200 m.
[0114] <比較例 5 > [0114] <Comparative Example 5>
図 17に示すようにバルブゲートの数を 8個(縦方向 2個、横方向 4個)にし、縦方向 のゲート間隔を横方向のゲート間隔よりも狭くした点と、すべてのバルブゲートを同時 に開けて、同時に榭脂を射出する点、射出時の型内圧を 25MPaとした点以外は、 実施例 2と同様にして光拡散板を得た。得られた光拡散板には、空気溜りによって生 じた焼けによる外観不良があった。さらに、光拡散板の厚みのばらつきは 200 mで めつに。  As shown in Fig. 17, the number of valve gates is 8 (2 in the vertical direction and 4 in the horizontal direction), and the vertical gate interval is narrower than the horizontal gate interval, and all the valve gates are used simultaneously. A light diffusing plate was obtained in the same manner as in Example 2 except that the resin was simultaneously injected and the pressure inside the mold was 25 MPa. The obtained light diffusing plate had a poor appearance due to burning caused by air pockets. Furthermore, the variation in the thickness of the light diffusing plate is about 200 m.
[0115] 実施例 3, 4では、型内圧を低く抑えることができるとともに、得られた光拡散板は、 ガス焼け等による外観不良がなぐかつ厚みムラを抑えたものであった。これに対して 、比較例 4では、得られた光拡散板には、ガス焼け等による外観不良と厚みムラが生 じていた。比較例 5では、型内圧を低く抑えることができない上、得られた光拡散板に は、厚みムラが生じていた。  [0115] In Examples 3 and 4, the in-mold pressure could be kept low, and the obtained light diffusing plate had no appearance defects due to gas burning or the like, and suppressed thickness unevenness. On the other hand, in Comparative Example 4, the obtained light diffusion plate had poor appearance and uneven thickness due to gas burning or the like. In Comparative Example 5, the in-mold pressure could not be kept low, and the obtained light diffusion plate had uneven thickness.
産業上の利用可能性  Industrial applicability
[0116] 本発明の平板成形品の製造方法は、金型を用いた平板成形品の製造に好適であ り、液晶ディスプレイのバックライト装置を構成する光拡散板、導光板、反射板等の光 学部材その他の平板成形品の製造に応用することができる。 [0116] The method for producing a flat molded product of the present invention is suitable for producing a flat molded product using a mold, such as a light diffusing plate, a light guide plate, a reflecting plate, etc. constituting a backlight device of a liquid crystal display. It can be applied to the production of optical components and other flat plate molded products.

Claims

請求の範囲 The scope of the claims
[1] 射出成形用の金型を用いて、榭脂製の平板成形品を製造する方法であって、 前記金型は、前記平板成形品の形状に対応した略矩形のキヤビティ面が形成され るとともに、このキヤビティ面に連通する複数のゲートが設けられた固定型板を備え、 前記複数のゲートは、前記キヤビティ面の略矩形の縦方向および横方向に沿った、 前記縦方向のピッチが L1で、前記横方向のピッチが L2の格子を考えた際に、この 格子の交点部分の位置に配置され、  [1] A method for producing a resin-made flat plate molded product using a mold for injection molding, wherein the mold has a substantially rectangular cavity surface corresponding to the shape of the flat plate molded product. And a fixed mold plate provided with a plurality of gates communicating with the cavity surface, wherein the plurality of gates have a longitudinal pitch along a substantially rectangular longitudinal direction and lateral direction of the cavity surface. Considering a lattice with L1 and a horizontal pitch of L2, it is placed at the position of the intersection of this lattice,
前記略矩形のキヤビティ面の各頂点から最も近いゲートである 4つの最外側ゲート において、各最外側ゲートと前記キヤビティ面の横方向の辺のうち最も近い辺との距 離 LA1〜LA4は、前記ピッチ L1の 120%〜10%であり、かつ各最外側ゲートと前 記キヤビティ面の縦方向の辺のうち最も近い辺との距離 LB1〜LB4は、前記ピッチ L 2の 120%〜10%であり、  In the four outermost gates, which are the gates closest to each vertex of the substantially rectangular cavity surface, the distances LA1 to LA4 between each outermost gate and the nearest side of the lateral sides of the cavity surface are The distance between each outermost gate and the nearest side in the vertical direction of the above-mentioned cavity surface is 120% to 10% of the pitch L1, and LB1 to LB4 is 120% to 10% of the pitch L2. Yes,
前記複数のゲートを、前記縦方向に沿って並んだ複数のゲートからなる複数の縦 ゲート列と、前記横方向に沿って並んだ複数のゲートからなる複数の横ゲート列とし て、  The plurality of gates as a plurality of vertical gate rows composed of a plurality of gates arranged along the vertical direction and a plurality of horizontal gate rows composed of a plurality of gates arranged along the horizontal direction,
前記縦ゲート列の数と前記横ゲート列の数とのうち、少なくとも一方の方向のゲート 列数が奇数であり、  Of the number of the vertical gate rows and the number of the horizontal gate rows, the number of gate rows in at least one direction is an odd number,
前記奇数となるいずれかの方向のゲート列において、複数のゲート列を、前記キヤ ビティ面の対角線の交点に最も近 、位置のゲートである中心側ゲートを含む列を第 1 ゲート列、この第 1ゲート列に近い 2つのゲート列を含む第 2ゲート列、この第 2ゲート 列を構成する各ゲート列に近い各ゲート列を含む第 3ゲート列、 · · ·第 n-1ゲート列を 構成する各ゲート列に近い各ゲート列を含む第 nゲート列 (nは 2以上の整数)とし、 前記第 1ゲート列から前記榭脂を射出する第 1工程と、  In the odd-numbered gate row in any direction, a plurality of gate rows are closest to an intersection of diagonal lines of the cavity surface, and a row including a central gate that is a gate of a position is a first gate row, this first row. 2nd gate row including 2 gate rows close to 1 gate row, 3rd gate row including each gate row close to each gate row constituting this 2nd gate row, ... A first step of injecting the resin from the first gate row, and an nth gate row (n is an integer of 2 or more) including each gate row close to each gate row
第 n-1ゲート列力もの射出量が所定量となった際に、前記第 nゲート列力も前記榭 脂を射出する第 n工程 (nの値カ¾である場合にぉ 、て、 nが 2〜kのすベての値にお いて成立する)と、  When the injection amount of the (n-1) th gate row force reaches a predetermined amount, the nth gate row force is also the nth step of injecting the resin (if n is a value of n, then n is (Established for all values from 2 to k)
を備えることを特徴とする平板成形品の製造方法。  The manufacturing method of the flat plate molded article characterized by comprising.
[2] 前記各最外側ゲートにおける前記距離 LA1〜LA4は、互いに略同じであり、前記 各最外側ゲートにおける前記距離 LB1〜LB4は、互いに略同じであることを特徴と する請求項 1記載の平板成形品の製造方法。 [2] The distances LA1 to LA4 in the outermost gates are substantially the same as each other, 2. The method for manufacturing a flat molded article according to claim 1, wherein the distances LB1 to LB4 in each outermost gate are substantially the same.
[3] 前記奇数となるゲート列の方向力 縦方向および横方向のいずれか長い方向であ ることを特徴とする請求項 1または請求項 2記載の平板成形品の製造方法。 [3] The method for producing a flat molded article according to claim 1 or 2, wherein the odd-numbered directional force of the gate row is a longer one of a longitudinal direction and a transverse direction.
[4] 射出成形用の金型を用いて、榭脂を射出成形することにより、略矩形形状の平板 成形品を製造する方法であって、 [4] A method for producing a substantially rectangular flat plate molded article by injection molding a resin using a mold for injection molding,
前記金型は、可動型板と、前記平板成形品の形状に対応した略矩形形状のキヤビ ティ面が形成されると共に、前記キヤビティ面に連通する複数のゲートが設けられた 固定型板とを備え、  The mold includes a movable mold plate, and a fixed mold plate having a substantially rectangular cavity surface corresponding to the shape of the flat plate molded product and provided with a plurality of gates communicating with the cavity surface. Prepared,
前記複数のゲートは、前記キヤビティ面の略矩形形状の第 1の辺に沿った第 1方向 のピッチが L1で、前記第 1の方向と直交する第 2の辺に沿った第 2方向のピッチが L2 の格子を考えた際に、この格子の交点部分の位置に配置され、  The plurality of gates have a pitch in the first direction along the first side of the substantially rectangular shape of the cavity surface as L1, and a pitch in the second direction along the second side orthogonal to the first direction. Is placed at the position of the intersection of this lattice when considering the lattice of L2,
前記複数のゲートを、前記第 1方向に沿って並んだ複数のゲートからなる複数の第 1ゲート列と、前記第 2方向に沿って並んだ複数のゲートからなる複数の第 2ゲート列 とし、  The plurality of gates are a plurality of first gate rows made of a plurality of gates arranged along the first direction and a plurality of second gate rows made of a plurality of gates arranged along the second direction,
前記第 1ゲート列において、前記キヤビティ面の対角線の交点に最も近い 2つのゲ 一ト列を第 11ゲート列及び第 12ゲート列、この第 11ゲート列及び第 12ゲート列に近 い 2つのゲート列をそれぞれ第 13ゲート列及び第 14ゲート列とし、前記第 2ゲート列 において、前記キヤビティ面の対角線の交点に最も近い 2つのゲート列を第 21ゲート 列及び第 22ゲート列、この第 21ゲート列及び第 22ゲート列に近い 2つのゲート列を それぞれ第 23ゲート列及び第 24ゲート列とし、各ゲートを (第 1ゲート列,第 2ゲート 列)で表した場合に、  In the first gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the eleventh gate row and the twelfth gate row, and the two gates close to the eleventh gate row and the twelfth gate row. The rows are the 13th gate row and the 14th gate row, respectively. In the second gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 21st gate row and the 22nd gate row, the 21st gate row. When the two gate rows close to the row and the 22nd gate row are the 23rd gate row and the 24th gate row, respectively, and each gate is expressed as (first gate row, second gate row),
(13, 21)、 (11, 22)、 (12, 21)、 (14, 22)の各ゲー卜を含む第 1グループ、 (13, 22)、 (11, 21)、 (12, 22)、 (14, 21)の各ゲートを含む第 2グループの中の何れか 一方のグループに含まれる各ゲートから前記榭脂を射出する第 1工程と、  First group including (13, 21), (11, 22), (12, 21), (14, 22), (13, 22), (11, 21), (12, 22) A first step of injecting the resin from each gate included in any one of the second groups including each gate of (14, 21),
前記第 1工程での射出量が所定量となった際に、他方のグループに含まれるゲート カゝら前記榭脂を射出する第 2工程と、  When the injection amount in the first step reaches a predetermined amount, the second step of injecting the resin from the gate group included in the other group;
前記第 2工程での射出量が所定量となった際に、第 23ゲート列及び第 24ゲート列 の各ゲートから前記榭脂を射出する第 3工程と、 When the injection amount in the second step reaches a predetermined amount, the 23rd gate row and the 24th gate row A third step of injecting the resin from each of the gates;
を含むことを特徴とする平板成形品の製造方法。 The manufacturing method of the flat plate molded article characterized by including.
射出成形用の金型を用いて、榭脂を射出成形することにより、略矩形形状の平板 成形品を製造する方法であって、  A method for producing a substantially rectangular flat plate molded product by injection molding a resin using a mold for injection molding,
前記金型は、可動型板と、前記平板成形品の形状に対応した略矩形形状のキヤビ ティ面が形成されると共に、前記キヤビティ面に連通する複数のゲートが設けられた 固定型板とを備え、  The mold includes a movable mold plate, and a fixed mold plate having a substantially rectangular cavity surface corresponding to the shape of the flat plate molded product and provided with a plurality of gates communicating with the cavity surface. Prepared,
前記複数のゲートは、前記キヤビティ面の略矩形形状の第 1の辺に沿った第 1方向 のピッチが L1で、前記第 1の方向と直交する第 2の辺に沿った第 2方向のピッチが L2 の格子を考えた際に、この格子の交点部分の位置に配置され、  The plurality of gates have a pitch in the first direction along the first side of the substantially rectangular shape of the cavity surface as L1, and a pitch in the second direction along the second side orthogonal to the first direction. Is placed at the position of the intersection of this lattice when considering the lattice of L2,
前記複数のゲートを、前記第 1方向に沿って並んだ複数のゲートからなる複数の第 1ゲート列と、前記第 2方向に沿って並んだ複数のゲートからなる複数の第 2ゲート列 とし、  The plurality of gates are a plurality of first gate rows made of a plurality of gates arranged along the first direction and a plurality of second gate rows made of a plurality of gates arranged along the second direction,
前記第 1ゲート列において、前記キヤビティ面の対角線の交点に最も近い 2つのゲ 一ト列を第 11ゲート列及び第 12ゲート列、この第 11ゲート列及び第 12ゲート列に近 い 2つのゲート列をそれぞれ第 13ゲート列及び第 14ゲート列とし、前記第 2ゲート列 において、前記キヤビティ面の対角線の交点に最も近い 2つのゲート列を第 21ゲート 列及び第 22ゲート列、この第 21ゲート列及び第 22ゲート列に近い 2つのゲート列を それぞれ第 23ゲート列及び第 24ゲート列とし、各ゲートを (第 1ゲート列,第 2ゲート 列)で表した場合に、  In the first gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the eleventh gate row and the twelfth gate row, and the two gates close to the eleventh gate row and the twelfth gate row. The rows are the 13th gate row and the 14th gate row, respectively. In the second gate row, the two gate rows closest to the intersection of the diagonal lines of the cavity surface are the 21st gate row and the 22nd gate row, the 21st gate row. When the two gate rows close to the row and the 22nd gate row are the 23rd gate row and the 24th gate row, respectively, and each gate is expressed as (first gate row, second gate row),
(11, 22)、 (12, 21)の各ゲートを含む第 1グループ、 (11, 21)、 (12, 22)の各ゲ ートを含む第 2グループの中の何れか一方のグループに含まれる各ゲートから前記 榭脂を射出する第 1工程と、  One of the first group including the gates of (11, 22) and (12, 21) and the second group including the gates of (11, 21) and (12, 22) A first step of injecting the resin from each included gate;
前記第 1工程での射出量が所定量となった際に、他方のグループに含まれる各ゲ ートから前記榭脂を射出する第 2工程と、  A second step of injecting the resin from each of the gates included in the other group when the injection amount in the first step reaches a predetermined amount;
前記第 2工程での射出量が所定量となった際に、第 13ゲート列、第 14ゲート列、第 23ゲート列及び第 24ゲート列の各ゲートから前記榭脂を射出する第 3工程と、 を含むことを特徴とする平板成形品の製造方法。 [6] 前記略矩形形状のキヤビティ面の各頂点から最も近 、ゲートである 4つの最外側ゲ ートにおいて、各最外側ゲートと前記キヤビティ面の前記第 2方向の辺のうち最も近 い辺との距離 LA1〜LA4は、前記ピッチ L1の 120%〜10%であり、かつ各最外側 ゲートと前記キヤビティ面の前記第 1方向の辺のうち最も近い辺との距離 LB1〜LB4 は、前記ピッチ L2の 120%〜 10%であることを特徴とする請求項 4または請求項 5記 載の平板成形品の製造方法。 A third step of injecting the resin from each gate of the thirteenth gate row, the fourteenth gate row, the twenty-third gate row, and the twenty-fourth gate row when the injection amount in the second step reaches a predetermined amount; The manufacturing method of the flat molded article characterized by including these. [6] In the four outermost gates that are the gates closest to the vertices of the substantially rectangular shaped cavity surface, the nearest sides of the outermost gate and the side in the second direction of the cavity surface. The distance LA1 to LA4 is 120% to 10% of the pitch L1, and the distance LB1 to LB4 between each outermost gate and the nearest side of the first side of the cavity surface is LB1 to LB4, 6. The method for producing a flat plate molded product according to claim 4, wherein the pitch L2 is 120% to 10% of the pitch L2.
[7] 前記各最外側ゲートにおける前記距離 LA1〜LA4は、互いに略同じであり、前記 各最外側ゲートにおける前記距離 LB1〜LB4は、互いに略同じであることを特徴と する請求項 6に記載の平板成形品の製造方法。  7. The distances LA1 to LA4 at the outermost gates are substantially the same as each other, and the distances LB1 to LB4 at the outermost gates are substantially the same as each other. Manufacturing method for flat plate products.
[8] 前記ゲートの数を N (個)、前記固定金型に形成されるキヤビティの深さを t (mm)、 前記キヤビティ面の面積を S (mm2)とした際に、下記数式(1)を満たすことを特徴と する請求項 1〜請求項 7の何れか一項に記載の平板成形品の製造方法。 [8] When the number of gates is N (pieces), the depth of the cavity formed in the fixed mold is t (mm), and the area of the cavity surface is S (mm 2 ), The method for producing a flat plate molded article according to any one of claims 1 to 7, wherein 1) is satisfied.
(S/ (t+6) ) X 10-4 ≤ N ≤ (237 10—4' ' '数式(1)  (S / (t + 6)) X 10-4 ≤ N ≤ (237 10—4 '' '
[9] 請求項 1〜8のいずれか一項に記載の平板成形品の製造方法により製造された平 板成形品。  [9] A flat plate molded product produced by the method for producing a flat molded product according to any one of claims 1 to 8.
PCT/JP2007/052089 2006-02-13 2007-02-07 Method for manufacturing molded flat plate, and molded flat plate WO2007094209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500453A JPWO2007094209A1 (en) 2006-02-13 2007-02-07 Method for producing flat plate molded product and flat plate molded product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006034655 2006-02-13
JP2006-034655 2006-02-13
JP2006-225259 2006-08-22
JP2006225259 2006-08-22

Publications (1)

Publication Number Publication Date
WO2007094209A1 true WO2007094209A1 (en) 2007-08-23

Family

ID=38371395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052089 WO2007094209A1 (en) 2006-02-13 2007-02-07 Method for manufacturing molded flat plate, and molded flat plate

Country Status (4)

Country Link
JP (1) JPWO2007094209A1 (en)
KR (1) KR20080101904A (en)
TW (1) TW200740596A (en)
WO (1) WO2007094209A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106514964A (en) * 2016-10-14 2017-03-22 深圳天珑无线科技有限公司 Side wall side-by-side intra-mold automatic water nozzle cutting structure
WO2017137172A1 (en) * 2016-02-11 2017-08-17 Osram Gmbh Method for producing a lighting module, lighting module and use of an optical element in a lighting module
JP2020192781A (en) * 2019-05-30 2020-12-03 三光合成株式会社 Injection molding apparatus and injection molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112448A (en) * 1993-10-18 1995-05-02 Toyoda Gosei Co Ltd Injection molding method for resin molded article, and mold
JP2004117544A (en) * 2002-09-24 2004-04-15 Nippon Zeon Co Ltd Method for manufacturing light diffusing plate
WO2005088358A1 (en) * 2004-03-12 2005-09-22 Zeon Corporation Light diffuser and method for producing the same
JP2005271306A (en) * 2004-03-23 2005-10-06 Nippon Zeon Co Ltd Method for manufacturing light diffusion plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112448A (en) * 1993-10-18 1995-05-02 Toyoda Gosei Co Ltd Injection molding method for resin molded article, and mold
JP2004117544A (en) * 2002-09-24 2004-04-15 Nippon Zeon Co Ltd Method for manufacturing light diffusing plate
WO2005088358A1 (en) * 2004-03-12 2005-09-22 Zeon Corporation Light diffuser and method for producing the same
JP2005271306A (en) * 2004-03-23 2005-10-06 Nippon Zeon Co Ltd Method for manufacturing light diffusion plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137172A1 (en) * 2016-02-11 2017-08-17 Osram Gmbh Method for producing a lighting module, lighting module and use of an optical element in a lighting module
CN106514964A (en) * 2016-10-14 2017-03-22 深圳天珑无线科技有限公司 Side wall side-by-side intra-mold automatic water nozzle cutting structure
JP2020192781A (en) * 2019-05-30 2020-12-03 三光合成株式会社 Injection molding apparatus and injection molding method
JP7257256B2 (en) 2019-05-30 2023-04-13 三光合成株式会社 INJECTION MOLDING APPARATUS AND INJECTION MOLDING METHOD

Also Published As

Publication number Publication date
JPWO2007094209A1 (en) 2009-07-02
KR20080101904A (en) 2008-11-21
TW200740596A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP5296405B2 (en) Optical sheet, optical sheet manufacturing method, molded body, and molded body manufacturing method
KR20060043088A (en) Method for producing light transmitting plate
WO2007094209A1 (en) Method for manufacturing molded flat plate, and molded flat plate
JP2003276047A (en) Method for molding vinyl alicyclic hydrocarbon polymer composition, and molded body
CN101445665A (en) Extrusion resin plate and manufacturing method thereof, surface coating plate
JP2003211475A (en) Method for manufacturing molded product for optics
JP2001183532A (en) Light guide plate and method of producing the same
JP4144028B2 (en) Manufacturing method of light diffusion plate
JP2008296587A (en) Method for manufacture of light guide plate
JP2004271635A (en) Light guide/light diffusing resin material, and its manufacturing method
JP2009178941A (en) Method of manufacturing molded article and optical injection molded article
JP5508742B2 (en) Method for producing acrylic resin film
JP4457344B2 (en) Manufacturing method of light diffusion plate
JP2000229343A (en) Method for injection compression molding
JP3997521B2 (en) Injection mold and method for producing flat plate molded product
CN101421089A (en) Method for manufacturing molded flat plate, and molded flat plate
JP2006264149A (en) Mold for injection molding and manufacturing method of optical member using the mold
JP2005288803A (en) Mold or stamper made of resin
JP2007253379A (en) Method for producing tabular molding
JP2005103947A (en) Method for producing light guiding plate
JP2007230016A (en) Manufacturing method of injection molded object
JP2011225699A (en) Modified acrylic resin using heterocyclic base catalyst, and method for production thereof
JP2003191263A (en) Flat panel and method for manufacturing the same
JP2006116759A (en) Die for optical material injection-molding, and manufacturing method for optical material
KR20060088550A (en) Thick flat-plate molded product and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500453

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087019749

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200780013194.7

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07708133

Country of ref document: EP

Kind code of ref document: A1