JP2000229343A - Method for injection compression molding - Google Patents

Method for injection compression molding

Info

Publication number
JP2000229343A
JP2000229343A JP3451899A JP3451899A JP2000229343A JP 2000229343 A JP2000229343 A JP 2000229343A JP 3451899 A JP3451899 A JP 3451899A JP 3451899 A JP3451899 A JP 3451899A JP 2000229343 A JP2000229343 A JP 2000229343A
Authority
JP
Japan
Prior art keywords
resin
mold
cavity
injection
clamping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3451899A
Other languages
Japanese (ja)
Inventor
Naoki Azuma
直樹 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3451899A priority Critical patent/JP2000229343A/en
Publication of JP2000229343A publication Critical patent/JP2000229343A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding

Abstract

PROBLEM TO BE SOLVED: To improve flatness, sink, strain, and others by a method in the injection molding of a thermoplastic resin, after the resin in a specified ratio to the volume of a mold cavity being injected, compression is started, and when the volume of the resin has arrived at a specified ratio to the volume of the cavity, mold clamping force is decreased gradually. SOLUTION: In a mold, in order to open its cavity sufficiently, a movable side piece 11 the side of which can slide by a spring 10 is formed in a fixed side mold 9. A thermoplastic resin 15 passes through a sprue 13 and a gate 11 to be injected into the cavity opened in excess of a prescribed size t1. The injection amount of the resin 15 is set to be 1.09-1.2 times as large as the volume of the cavity. When the temperature of the resin 15 is at least its solidification temperature, mold clamping force is increased, and the resin 15 is compressed promptly to be packed in the cavity. When the specific volume of the resin 15 in the cavity is 1.005-1.07 times as large as that of a molding, the mold clamping force is decreased gradually to keep the compression.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、射出圧縮成形方法
に関するものであり、特に最大肉厚が4mm以上の厚肉
または偏肉の15inch以上の液晶モニタの面発光装
置に用いる導光板の成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection compression molding method, and more particularly to a method for molding a light guide plate used in a surface light emitting device of a liquid crystal monitor having a maximum thickness of 4 mm or more or a thickness variation of 15 inches or more. About.

【0002】[0002]

【従来の技術】近年液晶表示装置(以下液晶)は大型化
が進み、用途もノートパソコンの表示から、CRTモニ
タ代替の液晶モニタへと拡大し、市場にも出始めてきて
いる。液晶モニタのサイズは、15〜18inchとこ
れまでの液晶と比べ大サイズであり、かつ、CRTモニ
タの用に高輝度が必要とされている。従来のノートパソ
コンでは、液晶に用いる面発光装置の導光板の光源の冷
極管は、1灯、径は約2mm、本数は1本、導光板の厚
みも2mm前後であり、ノートパソコンで要求される輝
度は充分確保されている。しかしCRTモニタでは、こ
れでは輝度不足であり冷極管はその径が2〜3mmの2
本を必要とし、その光を有効に導光させるため、導光板
も4〜9mmという厚みが必要とされてきている。
2. Description of the Related Art In recent years, liquid crystal display devices (hereinafter referred to as "liquid crystal") have been increasing in size, and their applications have been expanded from display of a notebook personal computer to liquid crystal monitors in place of CRT monitors, and have begun to appear on the market. The size of the liquid crystal monitor is 15 to 18 inches, which is larger than that of the conventional liquid crystal, and high brightness is required for a CRT monitor. In the conventional notebook personal computer, the cold cathode tube of the light source of the light guide plate of the surface emitting device used for the liquid crystal is one light, the diameter is about 2 mm, the number is one, and the thickness of the light guide plate is about 2 mm. The obtained luminance is sufficiently ensured. However, in the case of a CRT monitor, the brightness is insufficient in this case, and the cold cathode tube has a diameter of 2-3 mm.
A light guide plate is also required to have a thickness of 4 to 9 mm in order to require a book and guide the light effectively.

【0003】現在、市場に出始めている液晶モニタの面
発光表示装置のほとんどが、シート成形により成形され
た透明板を切り出して、その切り口をバフ等の研磨で研
磨して鏡面にしたものである。この場合、板の切り出
し、研磨の作業に手間がかかり、コストダウン及び量産
化が非常に難しい。そこで、一工程で導光板製品が得ら
れる射出成形方法が考えられるが、射出成形では、大
型、厚肉になると、厚肉部分に内部と外側の冷却速度と
収縮率の違いで生じるヒケやそりが発生する。また、こ
のヒケを抑制するために保圧を高くかけることになり、
成形品に歪みが生じる。成形品中の歪みが大きいと光源
からの光が真っ直ぐに入射しなくなり、導光板の面発光
に輝度ムラが生じてしまう。この歪みを少なくするため
に射出速度を下げ成形すると、溶融樹脂が金型と接触し
た時点で樹脂が冷却固化され、樹脂は流動せずに止まっ
てしまい、その時点で、充填圧による全体の歪みが逆に
大きくなる。また、特に、導光板はサイドゲート方式で
樹脂を射出するが、大型になればそれだけ流動距離が長
くなるため射出速度を遅くすると充填最中に金型表面の
樹脂が固化してしまい、フローマークが生じやすい。フ
ローマークを防ぐためには、金型温度を十分に高くしな
ければならず、このため、成形サイクルが長くなり、現
在、射出成形による4〜9mmの導光板は実用化されて
いない。この射出成形の問題を解決するために、特開昭
55−39355号公報、特開昭52−14657号公
報等に見られる射出圧縮成形が考えられる。射出圧縮成
形は、圧縮のために余分に金型キャビティを開けて射出
し、圧縮しながら型締めを行う、もしくは、金型キャビ
ティ内に樹脂を射出し、その射出圧で金型を広げ、圧縮
しながら、型締めを行う方法である。しかし、実際には
金型の開き量とそれに対する射出樹脂量及び型締力によ
り、成形品の出来が大きく左右され、射出圧縮成形によ
るもののほうが、従来技術である射出成形によるものよ
り悪いサンプルが生じることがわかってきた。また、他
の公知の技術である特開平9−76310号公報では圧
縮のために余分に開ける量は、最大肉厚の0.5〜2%
である。さらに、特開昭60−110419号公報で
は、射出充填時の金型開き量を0.5〜3.0mmの範
囲に保つことが上げられている。しかし、求められる、
ヒケ、歪み、そりといった現象を防ぐのに際し、これ方
法だけでは、樹脂温度や、型締力に工夫がないとフロー
マークが生じ、金型特にパーティングライン部の機械的
歪みが残り、良品が採取することが出来ないことがわか
った。また射出圧縮成形では、金型キャビティをどの程
度開けるかとともに、開けるために射出樹脂量をどの程
度にするかの関係が重要であるが、その関係が不明であ
る。その他、特公平4−60016号公報では、冷却時
に一旦減圧してから複数にわたって昇圧し、再度減圧す
ることが記載されているが、この場合、一旦減圧して歪
みを緩和させることは出来るものの、この時点で樹脂は
圧力解放のため膨張し、この後再度昇圧する事で、膨張
した樹脂を圧力収縮させるという無理をかけることによ
り再度成形品に歪みが残り好ましくない。また、特開平
5−31774号公報では、保圧又は冷却途中で型締め
力を低下させて圧縮成形を行う方法が、提案されてい
る。これは、型締め状態から、樹脂圧、樹脂量で型を開
ける方法としているが、この方法では、ゲート付近の歪
みが残り、また、全体の歪みは均一となるが、絶対歪み
量は大きくなる傾向にあり、特に光学部品分野では好ま
しくない。また、充填後すぐに型締め力を低下させてい
るが、この場合では、本来目的の金型の転写性が圧力を
弱くするため悪くなってしまう。
[0003] Most of the surface-emitting display devices of liquid crystal monitors that are currently on the market are obtained by cutting a transparent plate formed by sheet molding and polishing the cut end to a mirror surface by polishing with a buff or the like. . In this case, the work of cutting out and polishing the plate is troublesome, and it is very difficult to reduce the cost and mass-produce. Therefore, an injection molding method that can produce a light guide plate product in one step is conceivable.However, in injection molding, when it becomes large and thick, sink and warpage caused by the difference in cooling rate and shrinkage rate between the inside and outside of the thick part are considered. Occurs. In addition, in order to suppress this sink mark, we will apply a high pressure,
The molded product is distorted. If the distortion in the molded product is large, the light from the light source does not enter straight, and the surface light emission of the light guide plate causes uneven brightness. If the injection speed is reduced and molded to reduce this distortion, the resin is cooled and solidified when the molten resin comes into contact with the mold, the resin stops without flowing, and at that point, the overall distortion due to the filling pressure Becomes larger on the contrary. Also, in particular, the light guide plate injects the resin by the side gate method, but the larger the size, the longer the flow distance, so if the injection speed is slowed down, the resin on the mold surface solidifies during filling and the flow mark Tends to occur. In order to prevent the flow mark, the mold temperature must be sufficiently high, and therefore, the molding cycle becomes long, and a light guide plate of 4 to 9 mm by injection molding has not been put to practical use at present. In order to solve this problem of injection molding, injection compression molding as disclosed in JP-A-55-39355, JP-A-52-14657 and the like can be considered. In injection compression molding, an extra mold cavity is opened for compression and injection is performed, and the mold is clamped while compressing, or resin is injected into the mold cavity, and the mold is expanded by the injection pressure and compressed. This is a method of performing mold clamping. However, in practice, the quality of the molded product is greatly affected by the opening amount of the mold, the amount of the injected resin and the mold clamping force, and the sample obtained by injection compression molding has a worse sample than that obtained by the conventional injection molding. It turns out to happen. In another known technique, Japanese Patent Application Laid-Open No. 9-76310, the amount of extra opening for compression is 0.5 to 2% of the maximum thickness.
It is. Further, Japanese Patent Application Laid-Open No. 60-110419 discloses that the opening amount of a mold at the time of injection filling is kept in a range of 0.5 to 3.0 mm. But required,
In order to prevent sink marks, distortion, and warpage, this method alone produces flow marks if the resin temperature and mold clamping force are not devised, leaving mechanical distortion in the mold, especially in the parting line, resulting in non-defective products. It turned out that it could not be collected. In addition, in injection compression molding, the relationship between how much the mold cavity is opened and the amount of the injection resin to be opened is important, but the relationship is unknown. In addition, Japanese Patent Publication No. 4-60016 describes that the pressure is reduced once during cooling, then the pressure is increased over a plurality of times, and the pressure is reduced again. At this point, the resin expands to release the pressure, and then is pressurized again. Then, the expanded resin is subjected to pressure contraction. Japanese Patent Application Laid-Open No. Hei 5-31774 proposes a method of performing compression molding by lowering the mold clamping force during holding pressure or cooling. In this method, the mold is opened with the resin pressure and the resin amount from the mold-clamped state. In this method, distortion near the gate remains and the entire distortion is uniform, but the absolute distortion amount is large. This is not preferable in the field of optical components. In addition, the mold clamping force is reduced immediately after the filling, but in this case, the transferability of the originally intended mold is deteriorated because the pressure is weakened.

【0004】また、導光板は出光面、反射面、入光面が
重要でありこの面にダイレクトでゲートを用いることが
出来ずゲートがサイドゲートとなる。導光板の各面を図
1の断面図で説明すると、導光板1のうち液晶パネル2
に面する面が出光面3であり、その反対面が反射面4で
ある。冷陰極管5に面している面が入光面6である。冷
陰極管5には、導光板に有効に光が入光するようにリフ
レクター8で導光板の反対側に設けられている。反射面
側には、反射シート7が一般的に用いられる。液晶パネ
ル2と導光板1との間にはベフと呼ばれる輝度調整のた
めのプリズムシートや拡散させるための拡散シートが場
合により挟まれる。サイドゲートは残りの2面のうちの
1面に一般的に用いられる。この場合、樹脂は、射出し
た際、金型キャビティのゲート付近側に樹脂が偏る。こ
れを圧縮して樹脂をキャビティ全体に広げるため、特に
この型開き量や、変化する樹脂温度、型締力の関係は、
射出後の樹脂の流動距離や、その結果生じる流動による
歪みの影響等が重要となってくる。
Further, the light guide plate is required to have a light exit surface, a reflection surface, and a light entrance surface, and a gate cannot be used directly on this surface, so that the gate becomes a side gate. Each surface of the light guide plate will be described with reference to the cross-sectional view of FIG.
Is a light emitting surface 3 and the opposite surface is a reflecting surface 4. The surface facing the cold cathode tube 5 is the light incident surface 6. The cold cathode tube 5 is provided with a reflector 8 on the opposite side of the light guide plate so that light can effectively enter the light guide plate. On the reflective surface side, a reflective sheet 7 is generally used. Between the liquid crystal panel 2 and the light guide plate 1, a prism sheet for adjusting brightness or a diffusion sheet for diffusing, called a bef, is sometimes sandwiched. Side gates are commonly used on one of the remaining two sides. In this case, when the resin is injected, the resin is biased toward the mold cavity near the gate. In order to compress this and spread the resin over the entire cavity, especially the relationship between this mold opening amount, changing resin temperature, and mold clamping force,
The flow distance of the resin after the injection and the influence of the resulting distortion due to the flow become important.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような従
来の技術に存在する課題を解決するものであり、特に厚
肉で大型の光学部品で問題となる平面性、ヒケ、歪み、
クラックの問題を解決する厚肉大型光学部品の製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems existing in the prior art, and particularly has the problems of flatness, sink mark, distortion, and the like, which are problems with thick and large optical components.
An object of the present invention is to provide a method of manufacturing a thick large-sized optical component that solves the problem of cracks.

【0006】[0006]

【課題を解決するための手段】本発明は、熱可塑性樹脂
を射出成形するに際し、金型キャビティを厚さ方向に余
分に開かせた状態で、該キャビティの容積に対して1.
09倍以上1.20倍以下の量の該樹脂を射出し、さら
に該キャビティの溶融樹脂が固化温度以上のうちに金型
の圧縮を開始して該樹脂を金型キャビティ内に充満さ
せ、さらに、該樹脂の体積が該キャビティの容積に対し
て1.005倍以上1.07倍以下になった時点で型締
力を弱めて、弱めた型締力もしくは、更に弱い型締力で
更に圧縮を続け、冷却、固化した後、型開きして成形品
を取り出すことを特徴とする、射出圧縮成形方法であ
る。
SUMMARY OF THE INVENTION According to the present invention, when a thermoplastic resin is injection-molded, the mold cavity is opened in an extra thickness direction and the volume of the cavity is increased by 1.
Inject the resin in an amount of 09 times or more and 1.20 times or less, further start the compression of the mold while the molten resin in the cavity is at or above the solidification temperature to fill the resin into the mold cavity, When the volume of the resin becomes 1.005 times or more and 1.07 times or less of the volume of the cavity, the mold clamping force is reduced, and the resin is further compressed with the reduced mold clamping force or a weaker clamping force. After cooling and solidifying, the mold is opened and a molded product is taken out to obtain an injection compression molding method.

【0007】これは、金型キャビティを厚さ方向に充分
に余分に開かせ、射出圧を出来るだけ低くし樹脂圧、射
出圧による歪みを出来るだけなくし、圧縮行程を大きく
2工程にわけ、初めの工程で均一な圧で樹脂をキャビテ
ィ内に広げ、次の工程で型締力を弱めて一度、型締力に
よる歪みを加えないように型締力を弱めて、歪みによる
光学的な不具合を改善する事で目的とする成形品を得る
ことが出来る。
[0007] This is because the mold cavity is opened sufficiently in the thickness direction, the injection pressure is reduced as much as possible, the distortion due to the resin pressure and the injection pressure is reduced as much as possible, and the compression stroke is largely divided into two steps. Spread the resin into the cavity with a uniform pressure in the step, reduce the mold clamping force in the next step, and once reduce the mold clamping force so as not to apply the distortion due to the mold clamping force, to eliminate optical defects due to distortion. By improving, a desired molded product can be obtained.

【0008】以下本発明を詳細に説明する。本発明の熱
可塑性樹脂は非晶性熱可塑性樹脂と結晶性熱可塑性樹脂
に分類される。本発明の非晶性熱可塑性樹脂の例として
具体的には、ポリスチレン、ポリ塩化ビニル、アクリル
樹脂、スチレン系樹脂、ポリアリレート、変成ポリフェ
ニレンエーテル樹脂、ポリカーボネート樹脂、ポリエー
テルイミド、ポリエーテルサルフォン、ポリサルフォン
等の熱可塑性のプラスチック材料及びこれらのプラスチ
ック材料を一種または二種以上混合したブレンド物であ
る。
Hereinafter, the present invention will be described in detail. The thermoplastic resin of the present invention is classified into an amorphous thermoplastic resin and a crystalline thermoplastic resin. Specific examples of the amorphous thermoplastic resin of the present invention, polystyrene, polyvinyl chloride, acrylic resin, styrene resin, polyarylate, modified polyphenylene ether resin, polycarbonate resin, polyetherimide, polyether sulfone, It is a thermoplastic plastic material such as polysulfone or a blend of one or more of these plastic materials.

【0009】本発明のスチレン系樹脂とは、スチレンを
必須成分とするホモポリマー、コポリマー及びこれらの
ポリマーを他の樹脂より得られるポリマーブレンドであ
る。本発明のスチレン系樹脂はポリスチレンまたはAB
S樹脂であることが好ましい。 本発明のポリスチレン
とは、スチレンホモポリマーまたは、樹脂相中にゴムが
分布したゴム強化ポリスチレンである。
The styrenic resin of the present invention is a homopolymer or a copolymer containing styrene as an essential component, and a polymer blend obtained by obtaining these polymers from other resins. The styrenic resin of the present invention is polystyrene or AB
It is preferably S resin. The polystyrene of the present invention is a styrene homopolymer or a rubber-reinforced polystyrene in which rubber is distributed in a resin phase.

【0010】本発明の変成ポリフェニレンエーテル樹脂
とは、ポリフェニレンエーテルを溶融混練してなる樹脂
及び、ポリフェニレンエーテルをそのほかの組成物と混
合溶融してなるポリマーアロイまたは、ポリマーコンポ
ジットである。本発明のアクリル樹脂とは、例えば、メ
タクリル酸メチルを主体とする樹脂が挙げられる。具体
的にはメチルメタクリレートの単独重合体、又はメチル
メタクリレート、メチルアクリレート、エチルアクリレ
ート、n−プロピルアクリレート、イソプロピルアクリ
レート、ブチルアクリレート、アクリルニトリル、アク
リル酸、メタクリル酸、ビニルピリジン、ビニルモルホ
リン、ビニルピリドンテトラヒドロフルフリルアクリレ
ート、N,N−ジメチルアミノエチルアクリレート、
N,N−ジメチルアクリルアミド、2−ヒドロキシアク
リレート、エチレングリコールモノアクリレート、グリ
セリンモノアクリレート、無水マレイン酸、スチレン、
もしくはα−メチルスチレンなどの共重合可能なモノマ
ーのいずれか1つ以上の共重合体、及び耐熱性アクリル
樹脂、低吸湿性アクリル樹脂、耐衝撃アクリル樹脂など
が含まれる。耐衝撃アクリル樹脂とは、アクリル樹脂に
耐衝撃性を持たせたもので、アクリル樹脂にゴム弾性体
をブレンドした物であり、そのゴム弾性体は、特開昭5
3−58554号公報、同55−94917号公報、同
61−32346号公報等に開示されている。簡単に説
明すると、アクリル系重合体芯材料のまわりに弾性層及
び非弾性層を交互に生成させる多段逐次重合法により製
造される多段重合体である。これらのアクリル樹脂は単
独で用いても良いし、また、ポリマーブレンドして用い
ても良い。また、重合方法については特に限定されな
い。
The modified polyphenylene ether resin of the present invention is a resin obtained by melt-kneading polyphenylene ether, and a polymer alloy or polymer composite obtained by mixing and melting polyphenylene ether with another composition. The acrylic resin of the present invention includes, for example, a resin mainly composed of methyl methacrylate. Specifically, a homopolymer of methyl methacrylate, or methyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, butyl acrylate, acrylonitrile, acrylic acid, methacrylic acid, vinyl pyridine, vinyl morpholine, vinyl pyridone tetrahydro Furfuryl acrylate, N, N-dimethylaminoethyl acrylate,
N, N-dimethylacrylamide, 2-hydroxyacrylate, ethylene glycol monoacrylate, glycerin monoacrylate, maleic anhydride, styrene,
Alternatively, a copolymer of at least one of copolymerizable monomers such as α-methylstyrene, a heat-resistant acrylic resin, a low-hygroscopic acrylic resin, an impact-resistant acrylic resin, and the like are included. The impact-resistant acrylic resin is obtained by blending an acrylic resin with impact resistance, and is obtained by blending an acrylic resin with a rubber elastic body.
It is disclosed in JP-A-3-58554, JP-A-55-94917, JP-A-61-32346 and the like. Briefly, a multi-stage polymer produced by a multi-stage sequential polymerization method in which an elastic layer and an inelastic layer are alternately formed around an acrylic polymer core material. These acrylic resins may be used alone or as a polymer blend. Further, the polymerization method is not particularly limited.

【0011】本発明のポリカーボネート樹脂とは、ビス
フェノールAに代表される二価のフェノール系化合物か
ら誘導される重合体が用いられる。ポリカーボネート樹
脂の製造方法については特に限定せず、ホスゲン法、エ
ステル交換法あるいは固相重合法のいずれにより製造さ
れた物でも使用できる。本発明の環状ポリオレフィン樹
脂とは、ノボルネンやシクロヘキサジエン等、ポリマー
鎖中に環状オレフィン骨格を含む重合体もしくはこれら
を含む共重合体であり、非晶性熱可塑性樹脂に属する。
その製造方法については特に限定されるものではない。
たとえば、ノボルネンを主とした環状ポリオレフィン樹
脂としては、特開昭60−168708号公報、特開昭
62−252406号公報、特開昭62−252406
号公報、特開平2−133413号公報、特開昭63−
145324号公報、特開昭63ー264626号公
報、特開平1−240517号公報、特公昭57−88
15号公報などに記載されている樹脂を用いることが出
来る。
As the polycarbonate resin of the present invention, a polymer derived from a divalent phenolic compound represented by bisphenol A is used. The method for producing the polycarbonate resin is not particularly limited, and a resin produced by any of the phosgene method, the transesterification method, and the solid-state polymerization method can be used. The cyclic polyolefin resin of the present invention is a polymer having a cyclic olefin skeleton in a polymer chain or a copolymer containing these, such as nobornene or cyclohexadiene, and belongs to an amorphous thermoplastic resin.
The manufacturing method is not particularly limited.
For example, cyclic polyolefin resins mainly containing nobornene are disclosed in JP-A-60-168708, JP-A-62-252406, and JP-A-62-252406.
JP, JP-A-2-133413, JP-A-63-163
145324, JP-A-63-264626, JP-A-1-240517, JP-B-57-88.
Resins described in JP-A No. 15 can be used.

【0012】本発明の結晶性熱可塑性樹脂の例として具
体的には、高密度ポリエチレン、低密度ポリエチレン、
直鎖低密度ポリスチレン、ポリプロピレン、シンジオタ
クティックポリスチレン、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、全芳香族ポリエステ
ル、ポリアセタール、ポリアミド系樹脂、ポリエーテル
エーテルケトン、ポリエーテルケトン等の熱可塑性のプ
ラスチック材料、及びこれらのプラスチック材料を一種
または二種以上混合したブレンド物及び非晶性熱可塑性
樹脂と結晶性熱可塑性樹脂とを混合したブレンド物であ
る。
Specific examples of the crystalline thermoplastic resin of the present invention include high-density polyethylene, low-density polyethylene,
Thermoplastic plastic materials such as linear low-density polystyrene, polypropylene, syndiotactic polystyrene, polyethylene terephthalate, polybutylene terephthalate, wholly aromatic polyester, polyacetal, polyamide resin, polyetheretherketone, polyetherketone, and the like. A blend in which one or more plastic materials are mixed, and a blend in which an amorphous thermoplastic resin and a crystalline thermoplastic resin are mixed.

【0013】本発明における熱可塑性樹脂の材料の形状
は特に限定されず、粒状、ペレット状、粉体状のいずれ
も使用できる。本発明における熱可塑性樹脂の中でも、
透明性樹脂であるアクリル樹脂、ポリカーボネート樹
脂、環状オレフィン樹脂が好ましい。また、本発明にお
いて、目的、必要に応じて熱可塑性樹脂に所望の添加剤
を添加した熱可塑性樹脂を含む組成物を用いても良い。
添加剤としては、熱安定剤、酸化防止剤、UV吸収剤、
界面活性剤、滑剤、充填剤、難燃剤、顔料、染料、蛍光
増白剤、耐衝撃性付与剤、ポリマー添加剤、フィラー、
ガラス繊維、カーボン繊維、無機繊維、過酸化物、有機
架橋ポリマービーズ、無機ビーズ、ガラスビーズ、シリ
コンビーズ等である。
The shape of the thermoplastic resin material in the present invention is not particularly limited, and any of granular, pellet and powder forms can be used. Among the thermoplastic resins in the present invention,
Acrylic resin, polycarbonate resin, and cyclic olefin resin, which are transparent resins, are preferred. Further, in the present invention, a composition containing a thermoplastic resin obtained by adding a desired additive to the thermoplastic resin as required and as necessary may be used.
Additives include heat stabilizers, antioxidants, UV absorbers,
Surfactants, lubricants, fillers, flame retardants, pigments, dyes, optical brighteners, impact modifiers, polymer additives, fillers,
Glass fibers, carbon fibers, inorganic fibers, peroxides, organic crosslinked polymer beads, inorganic beads, glass beads, silicon beads, and the like.

【0014】とくに、光学部品でも液晶モニター用導光
板材料として、光拡散材に有機架橋ポリマービーズや無
機ビーズ等を安定剤として、UV吸収剤、酸化防止剤、
熱安定剤を透明性樹脂であるアクリル樹脂、ポリカーボ
ネート樹脂、環状オレフィン樹脂に添加した熱可塑性樹
脂を含む組成物を用いても良い。本発明で用いられる射
出圧縮成形機は特に制限されることなく、通常のインラ
イン式の型締めが横型の射出圧縮成形機が用いられる。
必要に応じ、加熱筒の途中にベントのついたベント付き
射出圧縮成形機であっても良い。プログラムとしては、
型締力を最低でも2段階に分けるので型締め制御は多段
でプログラミング出来るものが好ましい。
Particularly, optical components are used as a light guide plate material for a liquid crystal monitor, a light diffusing material is used as a stabilizer such as organic crosslinked polymer beads or inorganic beads, and a UV absorber, an antioxidant,
A composition containing a thermoplastic resin in which a heat stabilizer is added to an acrylic resin, a polycarbonate resin, or a cyclic olefin resin, which is a transparent resin, may be used. The injection compression molding machine used in the present invention is not particularly limited, and an ordinary in-line type injection compression molding machine with a horizontal clamping type is used.
If necessary, a vented injection compression molding machine having a vent in the middle of the heating cylinder may be used. As a program,
Since the mold clamping force is divided into at least two stages, it is preferable that the mold clamping control can be programmed in multiple stages.

【0015】本発明における熱可塑性樹脂の溶融、射出
成形における加工温度条件としては、特に制限はない
が、アクリル樹脂、スチレン樹脂、ポリカーボネート樹
脂、環状オレフィン樹脂等の非晶性樹脂の場合、熱可塑
性樹脂のガラス転移温度+250℃以下が好ましい。ま
た、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート等の結晶性樹脂の場合、熱可塑性樹脂の融点+
200℃以下が好ましい。加工温度条件としては、加熱
筒内の樹脂の温度である。実質的に差がなければ射出成
形機の設定温度で代用できる。非晶性樹脂の場合、加工
温度がガラス転移温度+250℃より高いと、樹脂自体
の熱分解が生じ、この要因により成形性が不安定になり
好ましくない。更に好ましくは、ガラス転移温度+20
0℃以下である。また結晶性樹脂の場合は、さらに好ま
しくは融点+150℃以下である。非晶性樹脂のガラス
転移温度及び結晶性樹脂の融点は、JIS K 712
1に基づき、DSCやDTAを用いて測定することが出
来る。
The processing temperature conditions in the melting and injection molding of the thermoplastic resin in the present invention are not particularly limited, but in the case of an amorphous resin such as an acrylic resin, a styrene resin, a polycarbonate resin, a cyclic olefin resin, etc. The glass transition temperature of the resin is preferably + 250 ° C or lower. In the case of a crystalline resin such as polyethylene terephthalate and polybutylene terephthalate, the melting point of the thermoplastic resin +
200 ° C. or lower is preferred. The processing temperature condition is the temperature of the resin in the heating cylinder. If there is no substantial difference, the set temperature of the injection molding machine can be substituted. In the case of an amorphous resin, if the processing temperature is higher than the glass transition temperature + 250 ° C., thermal decomposition of the resin itself occurs, and the moldability becomes unstable due to this factor, which is not preferable. More preferably, the glass transition temperature +20
0 ° C. or less. In the case of a crystalline resin, the melting point is more preferably + 150 ° C. or lower. The glass transition temperature of the amorphous resin and the melting point of the crystalline resin are determined according to JIS K 712.
1 and can be measured using DSC or DTA.

【0016】本発明における金型キャビティの容積と
は、成形収縮率を見込んだ金型、見込まない金型を問わ
ず、金型内寸による容積を示す。更に本発明における金
型と樹脂の挙動を図2〜4に示して説明する。そのポイ
ントは次のようである。すなわち、金型キャビティを充
分な広さに開けた上で射出することにより、射出による
歪みと射出された樹脂が狭い金型を移動する事による樹
脂圧の増加を低減し、また熱可塑性樹脂がガラス転移温
度以上であるうちに圧縮を行って金型に接する樹脂表面
の歪みを出来るだけ少なくし、金型キャビティに樹脂を
充満させた後、圧縮による歪みを少なくするために型締
力を落として圧縮することである。図で工程を説明する
と、図2は金型キャビティを充分な広さt1だけ余分に
開いた状態を示す。図3が図2の金型の状態に熱可塑性
樹脂を射出した状態を示す。図3は圧縮により射出した
熱可塑性樹脂が余分に開いた金型キャビティ内に充満さ
れた状態である。図4は、圧縮を弱める直前時の状態で
あり、t2はそのときまだ、キャビティがまだt2だけ
余分に開いている状態である。なお、図2〜4の金型構
造は、固定側金型9に金型キャビティを余分に開かせる
ために側面がバネ10により摺動する可動側駒11を設
けて圧縮成形を行うことが出来る。図3の状態では、熱
可塑性樹脂15はスプルー13、ゲート11を通って、
団子状態でt1だけ余分に開いた金型キャビティに存在
し、射出圧は低くて良く、かつ、金型表面とのストレス
も少ないため樹脂内部の圧力の増加は低く、歪みは少な
い。厚肉であるため金型キャビティ内の樹脂量は多い
が、金型キャビティ容積は大きいため射出された樹脂
は、樹脂は過剰な圧力を受けることがなく、歪みは小さ
くなる。圧縮により、樹脂を余分に開いたキャビティ内
に充満させる工程により金型及び樹脂は図3から図4へ
変化する。このとき樹脂は固化温度以上である必要があ
り、固化温度より低いと樹脂表面に樹脂が広がる様子が
形作られるいわゆるヘジテーションと呼ばれる円形状の
細かな模様が発生し、外観が良くない。ここで言う、樹
脂が固化転移温度以上というのは、金型表層の樹脂温度
ではなくて、樹脂内部の温度状況である。金型は樹脂の
固化温度より低いため、溶融樹脂が金型と接触すると同
時にスキン層と呼ばれる固化層を形成する。
The volume of the mold cavity in the present invention refers to the volume according to the inner dimensions of the mold, regardless of whether the mold shrinkage rate is expected or not. Further, the behavior of the mold and the resin in the present invention will be described with reference to FIGS. The points are as follows. In other words, by injecting the mold after opening the mold cavity to a sufficient size, the distortion due to the injection and the increase in the resin pressure due to the movement of the injected resin in the narrow mold are reduced, and the thermoplastic resin is reduced. While the temperature is higher than the glass transition temperature, compression is performed to minimize the distortion of the resin surface in contact with the mold, and after filling the mold cavity with resin, the mold clamping force is reduced to reduce distortion due to compression. Compression. Referring to the drawings, FIG. 2 shows a state in which the mold cavity is excessively opened by a sufficient width t1. FIG. 3 shows a state where the thermoplastic resin is injected into the state of the mold shown in FIG. FIG. 3 shows a state in which the thermoplastic resin injected by compression is filled in the mold cavity which is excessively opened. FIG. 4 shows a state immediately before the compression is weakened, and t2 is a state in which the cavity is still opened by t2 at that time. The mold structure shown in FIGS. 2 to 4 can be compression-molded by providing a movable side piece 11 whose side surface slides by a spring 10 in order to open a mold cavity in the fixed side mold 9 excessively. . In the state of FIG. 3, the thermoplastic resin 15 passes through the sprue 13 and the gate 11,
It exists in the mold cavity which is excessively opened by t1 in the dumpling state, the injection pressure may be low, and the stress on the mold surface is small, so that the increase in the pressure inside the resin is low and the distortion is small. Since the thickness is large, the amount of resin in the mold cavity is large, but since the volume of the mold cavity is large, the injected resin does not receive an excessive pressure and the distortion is small. The mold and resin change from FIG. 3 to FIG. 4 by the process of filling the extra open cavity with resin by compression. At this time, the resin must be at or above the solidification temperature, and if it is lower than the solidification temperature, a fine circular pattern called so-called hesitation, in which the resin spreads on the resin surface, is generated, and the appearance is not good. Here, the fact that the temperature of the resin is equal to or higher than the solidification transition temperature is not the temperature of the resin on the surface of the mold but the temperature inside the resin. Since the mold is lower than the solidification temperature of the resin, the molten resin comes into contact with the mold and simultaneously forms a solidified layer called a skin layer.

【0017】本発明における固化温度とは、非晶性樹脂
の場合はガラス転移温度を示し、結晶性樹脂の場合、融
点であり、先に述べた方法で測定することが出来る。こ
のため、ここでは、型締力を高くして、樹脂が固化温度
以上の状態であるうちに、すばやく圧縮して、余分に開
いたキャビティ内に樹脂を充満させる必要がある。さら
に、図4で型締力を弱めながら圧縮する工程により、冷
却に合わせて生じる型締力の機械的歪みを少なくする事
ができる。この工程時に、型締力が先の型締力と同等も
しくは弱い場合は、金型キャビティ内の樹脂の力が集合
する角や辺の部分に機械的な力がかかり、歪みが新たに
生じやすく、クラックの発生原因となるため良くない。
型締力をかけなければ、冷却収縮が起こり、ヒケが生じ
やすくなり良くない。型締力は、樹脂の冷却収縮に合わ
せて、型締力を弱めても好ましい。特に厚肉の場合、角
や辺の面積が大きいためその影響は大きくなってくる。
The solidification temperature in the present invention indicates a glass transition temperature in the case of an amorphous resin and a melting point in the case of a crystalline resin, and can be measured by the method described above. For this reason, it is necessary here to increase the mold clamping force and quickly compress the resin while the resin is at or above the solidification temperature to fill the extra open cavity with the resin. Further, by performing the step of compressing while weakening the mold clamping force in FIG. 4, the mechanical distortion of the mold clamping force caused by cooling can be reduced. During this process, if the mold clamping force is equal to or weaker than the previous mold clamping force, mechanical force is applied to the corners and sides where the resin force in the mold cavity gathers, and distortion is likely to occur newly This is not good because it causes cracks.
If no mold clamping force is applied, cooling shrinkage will occur and sinks will easily occur, which is not good. It is preferable that the mold clamping force is weakened in accordance with the cooling shrinkage of the resin. In particular, in the case of a thick wall, the influence becomes large because the area of the corner or the side is large.

【0018】本発明における、最初に金型キャビティを
余分に開かせる量、すなわち図2のt1は、成形品の最
大厚さに対して3〜30%が良い。3%より小さい場合
には、溶融樹脂のフローフロントが金型に到達した際、
大きな樹指圧で金型に押されるため、圧縮を行っても緩
和しきれずに歪みが残り好ましくない。30%より大き
いと横置き式の型締め機構の場合、樹脂が、重力により
流動するので、コントロールしずらく、樹脂が偏りバリ
が発生するため好ましくない。また、金型と樹脂の間で
ズリを生じ成形品にズリ跡が残る。また、圧縮ストロー
クが長くなりすぎるため、圧縮するのに時間がかかり樹
脂が冷却するため、フローマークが出やすくなるため良
くない。更に好ましくは5〜20%である。
In the present invention, the amount by which the mold cavity is first opened extra, that is, t1 in FIG. 2 is preferably 3 to 30% with respect to the maximum thickness of the molded product. If less than 3%, when the molten resin flow front reaches the mold,
Since it is pressed by a metal mold with a large tree finger pressure, even if it compresses, it cannot be fully relaxed and distortion remains, which is not preferable. If it is greater than 30%, in the case of a horizontal type clamping mechanism, the resin flows due to gravity, which makes it difficult to control the resin and causes the resin to be unbalanced and generate burrs. In addition, a shift occurs between the mold and the resin, and a mark remains on the molded product. Further, since the compression stroke becomes too long, it takes a long time to compress and the resin cools, so that a flow mark is easily generated, which is not good. More preferably, it is 5 to 20%.

【0019】本発明における樹脂の射出量は、金型キャ
ビティの体積の1.09倍以上1.2倍以下である。こ
の体積は、成形終了して室温状態になったときに成形品
の体積が、金型キャビティの体積とほぼ同等になるとき
の射出量である。この射出量は、あらかじめ一定重量の
温度、圧力、比容積(PVT)測定より体積を求めその
値を用いることができる。
The injection amount of the resin in the present invention is not less than 1.09 times and not more than 1.2 times the volume of the mold cavity. This volume is the injection amount when the volume of the molded product becomes substantially equal to the volume of the mold cavity when the room temperature is reached after the completion of molding. As the injection amount, a volume can be obtained in advance by measuring the temperature, pressure and specific volume (PVT) of a constant weight, and the value can be used.

【0020】PVT測定は、特に制限なく、公知の方法
より得られる。射出時を想定したときの比容積は、温度
は射出温度であり、圧力は1気圧時の比容積を用いる。
たとえば、PVT測定により作成されたアクリル樹脂の
25℃、1気圧の比容積は0.83cm3 /gであり、
射出温度を240℃のときはPVT測定で、250℃、
1気圧の比容積であり、0.93cm3 /gとなり、金
型キャビティの体積に対して、1.12倍の射出量とな
る。射出量が1.09倍より小さいと成形温度を下げて
もショートとなり好ましくない。更に1.2倍より大き
いと、最後に得られる成形品の厚みが厚くなるので、樹
脂温度を高くしなければならず、樹脂ヤケ、分解が生じ
るために良くない。好ましくは1.09倍以上1.2倍
以下である。
The PVT measurement is not particularly limited and can be obtained by a known method. As for the specific volume at the time of injection, the temperature is the injection temperature, and the pressure is the specific volume at 1 atm.
For example, the specific volume at 25 ° C. and 1 atm of the acrylic resin prepared by PVT measurement is 0.83 cm 3 / g,
When the injection temperature is 240 ° C., the PVT measurement is 250 ° C.
It is a specific volume of 1 atm, which is 0.93 cm 3 / g, and the injection amount is 1.12 times the volume of the mold cavity. If the injection amount is smaller than 1.09 times, the molding temperature is lowered, resulting in a short circuit, which is not preferable. If the ratio is more than 1.2 times, the thickness of the finally obtained molded article becomes large, so that the resin temperature must be increased, which is not good because resin burning and decomposition occur. Preferably it is 1.09 times or more and 1.2 times or less.

【0021】本発明における圧縮の開始は、射出が90
%以上100%未満完了したときに行ことが好ましい。
90%未満であると、開いた金型キャビティに樹脂が充
填しても射出が続くため、通常の射出成形の保圧と同様
な形になり、歪みが生じ好ましくない。射出が100%
完了した後だと、射出による樹脂の動きと圧縮による樹
脂の動きの間に変化が生じ、そこで、切り替え模様やヘ
ジテーションが生じるので好ましい。更に好ましくは、
95%以上100%未満完了したときである。
In the present invention, the start of compression is as follows.
It is preferable to perform the operation when the completion is at least 100% and less than 100%.
If it is less than 90%, the injection continues even if the resin is filled in the open mold cavity, so that the shape becomes the same as that of the normal pressure holding in injection molding, which is not preferable because distortion occurs. 100% injection
After completion, a change occurs between the movement of the resin due to the injection and the movement of the resin due to the compression, and thus a switching pattern or hesitation occurs, which is preferable. More preferably,
This is when the completion is 95% or more and less than 100%.

【0022】本発明における型締力を弱めるタイミン
グ、すなわち図4の状態での型締力を減少させることが
本発明の成形方法において一番重要である。研究の結
果、早く切り替えすぎると鏡面の転写が悪くなり、ま
た、遅く切り替えすぎると、角や辺の部分に機械的歪み
が生じ、輝度ムラやクラックが発生することがわかっ
た。また、冷却固化して取り出した際に、側面の中央部
が凸レンズ状に膨張してしまい、光学部品、特にその側
面から入光する導光板としては好ましくない。さらに、
開いた金型キャビティに樹脂が充満したのち、型締力を
弱めることが重要である。充満するまでは、成形品の形
状の形成を優先するために高い型締力で行い、その後
は、成形品の形状安定から、角や辺にかかる機械的歪み
へと型締力の効果が変わる。そこで型締力を弱めること
により、固化し続ける樹脂にかかる機械的歪みを少なく
すると共に、それまでの樹脂圧による樹脂の体積膨張に
より、金型キャビティが一旦開くことにより、それまで
の樹脂圧を一度緩和することが出来るのである。また、
これらは、体積、体積収縮率に大いに関係しており、体
積収縮が積極的に行われようとする領域では、型締力は
高めにして、ヒケ、反りを含めた成形品の形状の保持、
金型の転写性を積極的に行い、体積収縮率が低くなった
ときには、型締力が機械歪みとして残っていくので、型
締力を弱めて機械歪みを少なくするのである。
It is of the utmost importance in the molding method of the present invention that the timing of reducing the clamping force in the present invention, that is, the reduction of the clamping force in the state of FIG. As a result of research, it has been found that if the switching is performed too fast, the transfer of the mirror surface is deteriorated, and if the switching is performed too late, mechanical distortion occurs at corners and sides, causing luminance unevenness and cracks. In addition, when taken out after being cooled and solidified, the central portion of the side surface expands into a convex lens shape, which is not preferable as an optical component, particularly, a light guide plate which receives light from the side surface. further,
After the open mold cavity is filled with resin, it is important to reduce the mold clamping force. Until the mold is filled, high mold clamping force is used to give priority to the formation of the shape of the molded product, and thereafter, the effect of the mold clamping force changes from the shape stability of the molded product to mechanical distortion on the corners and sides . Therefore, by reducing the mold clamping force, the mechanical strain on the resin that continues to solidify is reduced, and the volume of the resin expands due to the previous resin pressure. It can be eased once. Also,
These are greatly related to the volume and volume shrinkage, and in the region where volume shrinkage is going to be positively performed, the mold clamping force is increased to maintain the shape of the molded product including sink marks and warpage.
When the transferability of the mold is positively performed and the volume shrinkage rate becomes low, the mold clamping force remains as mechanical strain, so that the mold clamping force is weakened to reduce the mechanical strain.

【0023】すなわち、金型キャビティ内の熱可塑性樹
脂の比容積が成形品に対して1.005倍〜1.07倍
のときに型締力を弱める。1.005倍より小さいと先
の型締力が緩和しきれずに残るため良くない。1.07
倍以上だと金型の転写性が悪く、成形品表面が良くな
い。好ましくは1.008倍以上1.065倍以下であ
り、更に好ましくは1.01〜1.06倍である。金型
内キャビティ内の熱可塑性樹脂の成形品に対する比容積
の関係は、金型キャビティ内の熱可塑性樹脂の体積が、
開いた金型キャビティに充満しているので金型キャビテ
ィの開き量すなわち図4のt2量を観測して求めること
が出来る。
That is, when the specific volume of the thermoplastic resin in the mold cavity is 1.005 to 1.07 times the molded product, the mold clamping force is weakened. If it is smaller than 1.005 times, the above-mentioned clamping force remains without being fully relieved, which is not good. 1.07
If it is more than twice, the transferability of the mold is poor, and the surface of the molded product is not good. Preferably it is 1.008 times or more and 1.065 times or less, more preferably 1.01 to 1.06 times. The relationship of the specific volume of the thermoplastic resin in the mold cavity relative to the molded product is such that the volume of the thermoplastic resin in the mold cavity is
Since the open mold cavity is full, it can be obtained by observing the opening amount of the mold cavity, that is, the amount t2 in FIG.

【0024】初めに圧縮する圧力、弱めたときの圧力及
び射出速度、射出圧は、特に制限なく、通常の射出圧縮
成形における型締力の範囲で行われる。また、本発明に
おける型締力は、初め圧縮し始めるときは、10MPa
以上の型締め力で圧縮を開始した方がよい。特に好まし
くは、20MPa以上であり、さらには30MPa以上
である。さらには、樹脂の金型キャビティへの充満の動
きにあわせて段階的に昇圧してもよい。型締力を弱める
のは、先の型締力の30%以上90%以下の型締力が好
ましい。初め圧縮し始めたとき段階的に昇圧した場合
は、昇圧しきったときの型締力に対し、30%以上90
%以下の型締力に弱めることが好ましい。さらに好まし
くは50%以上80%以下である。型締力を弱め、その
後はその弱めた型締力で一定もしくは、さらに型締力を
弱めて、圧縮し続けることが良い。型締力を弱めた後、
型締力を昇圧すると、樹脂に再び歪みが発生し残るので
良くない。好ましくは、型締め力を弱めた後、ヒケを発
生させないために、体積収縮速度より大きな圧縮速度と
なる型締力で圧縮し続けるのがよい。型締力を弱めたあ
とは、昇圧しない限り複数段階で型締力を弱めて圧縮し
続けても良い。
The pressure for initial compression, the pressure at the time of weakening, the injection speed, and the injection pressure are not particularly limited, and are set within the range of the mold clamping force in ordinary injection compression molding. Further, the mold clamping force in the present invention is 10 MPa
It is better to start compression with the above clamping force. Particularly preferably, it is 20 MPa or more, and more preferably 30 MPa or more. Further, the pressure may be increased stepwise in accordance with the movement of filling the mold cavity with the resin. The mold clamping force is preferably weakened by a mold clamping force of 30% or more and 90% or less of the preceding clamping force. When the pressure is increased stepwise when compression is first started, the mold clamping force when the pressure is fully increased is 30% or more and 90% or more.
% Or less. More preferably, it is 50% or more and 80% or less. It is preferable that the mold clamping force is reduced, and thereafter, the compression is continued at a constant level with the reduced mold clamping force or further reduced. After weakening the mold clamping force,
If the mold clamping force is increased, the resin is distorted again and remains, which is not good. Preferably, after the mold clamping force is weakened, in order to prevent sink marks from occurring, it is preferable to continue the compression with the mold clamping force having a compression speed higher than the volume contraction speed. After the mold clamping force is weakened, the compression may be continued in a plurality of stages by reducing the mold clamping force as long as the pressure is not increased.

【0025】本発明における金型キャビティの開き量
は、移動側金型のタイバー位置を感知するセンサーを設
けても良いし、固定側金型と固定側金型との間隔をダイ
ヤルゲージで検知しても良く、これらから得られる信号
を、型締め力に反映させることで型開き量により型締力
をコントロールすることができる。本発明における金型
は、特に制限はなく、一般の射出成形で用いられる金型
が用いられるが、型開き量を広く取るため、可動側と固
定側の金型の間よりバリが生じるおそれがある。そこで
好ましくは、ゲート部を形成する固定型と移動型の構造
が成形機の開閉方向に摺動できる印籠構造である金型が
好ましい。しかし、金型の熱膨張により印籠部分がぶつ
かり金型が欠け、そこよりバリが発生するおそれがあ
る。これを防ぐために、更に好ましくは、金型キャビテ
ィのコア側の側面が別駒となり、バネを用いて摺動する
構造である。この金型構造だと、金型間の距離と型締力
は、バネ力で制御する事が出来、かつ樹脂に必要以上の
圧力がかからないために好ましい。
The amount of opening of the mold cavity in the present invention may be provided with a sensor for detecting the position of the tie bar of the movable mold, or the distance between the fixed mold and the fixed mold is detected by a dial gauge. Alternatively, the signal obtained from these may be reflected in the mold clamping force to control the mold clamping force by the mold opening amount. The mold in the present invention is not particularly limited, and a mold used in general injection molding is used. However, since the mold opening amount is widened, burrs may be generated between the movable side and the fixed side mold. is there. Therefore, it is preferable to use a mold having an intaglio structure in which the structure of the fixed mold and the movable mold forming the gate portion can slide in the opening and closing direction of the molding machine. However, due to the thermal expansion of the mold, the inro part may collide with the mold, causing the mold to be chipped, thereby causing burrs. In order to prevent this, it is more preferable that the side surface on the core side of the mold cavity be a separate piece and slide using a spring. This mold structure is preferable because the distance between the molds and the mold clamping force can be controlled by a spring force, and no excessive pressure is applied to the resin.

【0026】本発明における金型キャビティには炭酸ガ
スを満たしておくことが好ましい。金型キャビティ内に
存在する空気が射出時に抜けにくく、樹脂の射出速度及
び射出圧がかかることにより樹脂ヤケや空気の巻き込み
の現象が発生する。射出圧縮成形ではパーティングライ
ン面(以下PL面と呼ぶ)が開いた状態となるが、金型
キャビティは、余分に開いても、樹脂漏れが発生しない
ために、印籠構造もしくは、側面の駒が揺動する構造と
していることから、空気抜けがしずらいという不具合が
発生する。特に厚肉大型の成形品は、金型キャビティが
深いので、金型キャビティ内の空気が抜けにくく、その
不具合が、顕著であり、公知のガス抜けだけでは、深い
金型キャビティから空気をうまく逃がす事が出来ない。
そこで、炭酸ガスを金型キャビティに満たすことによ
り、樹脂ヤケを防止し、更に、炭酸ガスは樹脂に溶解し
やすいので、巻き込みがほとんど発生しない。更に、炭
酸ガスを金型に満たした状態で成形すると、金型の転写
性も向上することから炭酸ガスを満たすことが特に好ま
しい。
It is preferable that the mold cavity in the present invention is filled with carbon dioxide gas. Air existing in the mold cavity is difficult to escape at the time of injection, and resin injection or air entrainment occurs due to application of the injection speed and injection pressure of the resin. In injection compression molding, the parting line surface (hereinafter referred to as the PL surface) is open. However, even if the mold cavity is excessively opened, resin leakage does not occur. Due to the swinging structure, there is a problem that it is difficult for air to escape. Especially in the case of thick and large molded products, since the mold cavity is deep, it is difficult for air in the mold cavity to escape, and the problem is remarkable. Only known gas escape allows air to escape from the deep mold cavity well. I can't do things.
By filling the mold cavity with carbon dioxide gas, resin burn is prevented. Further, since carbon dioxide gas is easily dissolved in the resin, entrainment hardly occurs. Further, when the mold is filled with carbon dioxide gas, the transferability of the mold is improved, so that it is particularly preferable to fill the carbon dioxide gas.

【0027】本発明における炭酸ガスとは、二酸化炭素
を50%以上存在するガス体であり、さらに、状態は、
100%の気体であっても、液体、個体の状態を含むガ
ス体であっても良い。本発明における炭酸ガスを満たす
条件は特に制限はなく、入れる方法は、PL面から入れ
ても良いし、金型キャビティ内のすき間に金型外から炭
酸ガスを注入しても良い。確実に満たすためには、金型
キャビティのPL面より金型キャビティに、高圧の炭酸
ガスを射出前から、射出開始時まで、もしくは射出終了
まで注入し続けることである。炭酸ガスの注入圧として
は、好ましくは0.2〜5MPaである。更に好ましく
は、1〜3MPaである。射出圧縮成形の場合PL面が
開いているのが通常であり、金型キャビティに注入した
炭酸ガスの注入圧があがらない。この場合、開いたPL
にOリングを入れて、圧縮の際Oリングがつぶれること
により、炭酸ガスを漏れにくくする事が出来る。更にそ
のOリングの内側に金型キャビティに確実に炭酸ガスを
導くための溝を掘っておいても良い。
The carbon dioxide gas in the present invention is a gas containing 50% or more of carbon dioxide.
It may be a 100% gas, a liquid, or a gas containing the state of an individual. The conditions for filling the carbon dioxide gas in the present invention are not particularly limited, and the method for introducing the carbon dioxide gas may be from the PL surface, or the carbon dioxide gas may be injected from outside the mold into a gap in the mold cavity. In order to reliably fill the mold cavity, high-pressure carbon dioxide gas is continuously injected from the PL surface of the mold cavity into the mold cavity before the injection, until the start of the injection, or until the end of the injection. The injection pressure of carbon dioxide gas is preferably 0.2 to 5 MPa. More preferably, it is 1 to 3 MPa. In the case of injection compression molding, the PL surface is usually open, and the injection pressure of carbon dioxide gas injected into the mold cavity does not increase. In this case, open PL
By inserting an O-ring into the O-ring and crushing the O-ring during compression, it is possible to make it difficult for carbon dioxide gas to leak. Further, a groove may be dug inside the O-ring to surely introduce carbon dioxide into the mold cavity.

【0028】本発明における、ゲートシールは特に制限
はないが、金型内で機械的にゲートシールにしても良い
し、成形機のノズルを機械的にシールをしても良い。機
械的にゲートシールする方法としては、公知であるゲー
ト付近の金型駒を外から油圧等でずらしてゲートカット
を含めてゲートシールをする方法や、バルブゲートを用
いてゲートシールをする方法でも良い。ノズルを機械的
にシールする方法としては、バルブ式のノズルを用いた
り、シャットオフ機構のノズルを用いても良い。もちろ
ん樹脂が冷却固化する方式のゲートシールであっても可
能である。
In the present invention, the gate seal is not particularly limited, but may be a gate seal mechanically in a mold or a nozzle of a molding machine. As a method of mechanically sealing a gate, a known method of performing a gate seal including a gate cut by displacing a mold piece near a gate from the outside with a hydraulic pressure or a method of performing a gate seal using a valve gate is also known. good. As a method of mechanically sealing the nozzle, a valve-type nozzle or a nozzle of a shut-off mechanism may be used. Of course, a gate seal of a type in which the resin is cooled and solidified is also possible.

【0029】本発明の成形品は、最大肉厚4mm以上特
に好ましくは最大肉厚5mm以上でかつ画像面積が60
0cm2でもしくは成形品の最大長さが300mm以上
の厚肉大型成形品に好ましい。本発明における液晶モニ
タ用導光板の形状は、直方体や偏肉のあるくさび形や、
両サイドが偏肉をしたちょうちょ型、直方体から楕円体
を取り除いた形状等特に制限はなく、最大肉厚4mm以
上特に好ましくは最大肉厚5mm以上でかつ画像面積が
600cm2でもしくは対角の長さが15inchの液
晶モニタ用導光板に特に好ましい。また、その表面は、
鏡面であっても、緻密な模様を賦形したものであっても
良い。リブや立ち壁の有る形状であっても良い。リブや
立ち壁がある場合、その高さは、最大厚みには含まな
い。
The molded article of the present invention has a maximum thickness of 4 mm or more, particularly preferably a maximum thickness of 5 mm or more and an image area of 60 mm or more.
It is preferable for a thick large molded product having a size of 0 cm 2 or a maximum length of 300 mm or more. The shape of the liquid crystal monitor light guide plate in the present invention is a rectangular parallelepiped or uneven wedge shape,
There are no particular limitations on both sides, such as a chopstick shape, a shape obtained by removing an ellipsoid from a rectangular parallelepiped, and a maximum thickness of 4 mm or more, particularly preferably a maximum thickness of 5 mm or more, and an image area of 600 cm 2 or a diagonal length. This is particularly preferable for a 15-inch liquid crystal monitor light guide plate. Also, its surface is
It may be a mirror surface or a fine pattern. The shape may have ribs and standing walls. If there are ribs or standing walls, their height is not included in the maximum thickness.

【0030】導光板は、ヒケ、歪みによりその輝度、均
一性に大きな影響を及ぼす。また、導光板形状として
は、6面とも鏡面であっても良いし、光が入光する面は
鏡面で光が出光する面及び又は反対面に微細な凹凸形状
を賦形したものであっても良い。微細な模様とは、プリ
ズム状、レンズ状、直方体形状、立方体形状、円錐形
状、三角柱形状、楕円錐形状等の多面体形状等の幾何学
的形状や、梨地状のような不規則な形状であっても良
い。導光板に形成される微細な模様は、その配列や規則
性、形状、大きさを変化させることにより、面発光とし
ての性能をコントロールすることが出来る。このため、
上記形状は、その集合体中で、同一であっても良いし、
複数の形の混合体であっても良いし、その大きさが異な
っていても良い。また、その構成単位の形状高さと配列
ピッチとの比は(高さ/ピッチ)=0.2〜500で有
ることが好ましい。この関係は、縦または横方向でこの
範囲内で任意に変化しても良い。
The light guide plate has a large influence on its brightness and uniformity due to sink marks and distortion. Further, as the light guide plate shape, all six surfaces may be mirror surfaces, and the surface on which light enters may be a mirror surface on which light exits and / or the opposite surface is formed with fine irregularities. Is also good. The fine pattern is a geometrical shape such as a prism, a lens, a rectangular parallelepiped, a cube, a cone, a triangular prism, an elliptical cone, or the like, or an irregular shape such as a satin shape. May be. By changing the arrangement, regularity, shape, and size of the fine pattern formed on the light guide plate, the performance as surface light emission can be controlled. For this reason,
The shape may be the same in the aggregate,
A mixture of a plurality of shapes may be used, and the sizes thereof may be different. Further, it is preferable that the ratio between the shape height of the constituent units and the arrangement pitch is (height / pitch) = 0.2 to 500. This relationship may change arbitrarily within this range in the vertical or horizontal direction.

【0031】[0031]

【発明の実施の形態】 以下、本発明を実施例に従って
更に具体的に説明する。成形に利用した熱可塑性樹脂
は、アクリル樹脂(旭化成製デルペット80NH)で成
形前は、ペレット状である。この樹脂の固化温度は、J
IS K 7121に基づき、DSC(パーキンエルマ
ー製 7シリーズ)で測定して100℃であった。
Hereinafter, the present invention will be described more specifically with reference to examples. The thermoplastic resin used for molding is an acrylic resin (Delpet 80NH manufactured by Asahi Kasei) and is in the form of pellets before molding. The solidification temperature of this resin is J
It was 100 ° C. as measured by DSC (7 series manufactured by PerkinElmer) based on IS K7121.

【0032】成形機は、小松製作所製の型締め力300
tのIP−1050を使用した。この成形機に付属して
いる、ノズル部のシャットオフ機構を樹脂供給のシール
として用いた。また、金型の開き量もこの機械に付属し
ている、タイバーからの位置検出機構を用いた。樹脂の
体積は、GNOMIX社製のPVT樹脂特性測定装置を
用いた。この機械は簡単に説明すると、水銀を用いたベ
ローズ方式で水銀の中に樹脂を入れ、温度、圧力をかけ
たときのベローズの変化量で、樹脂の比容積を求める方
式である。金型は、金型キャビティが、厚さ6mm、縦
324mm、横243mmの6面鏡面である導光板用金
型1であり、もう1つは金型キャビティが、厚さ6m
m、縦324mm、横243mmで、324mm×24
3mmの1つの面が微細な形状を有し、残りの5面が鏡
面の導光板用金型2である。微細な形状とは、図5に有
るとおり、導光板成形品16に高さa32μmで、配列
ピッチbが縦方向には一定の250μmで横方向には両
端から中央に向かって配列ピッチbが710〜190μ
mの範囲で順次変化する直方体形状単位が配列したもの
である。
The molding machine is a mold clamping force 300 manufactured by Komatsu Ltd.
t of IP-1050 was used. The shut-off mechanism of the nozzle part attached to this molding machine was used as a seal for supplying resin. In addition, the opening amount of the mold was determined by using a tie bar position detection mechanism attached to the machine. For the volume of the resin, a PVT resin property measuring device manufactured by GNOMIX was used. In brief, this machine is a system in which a resin is put into mercury by a bellows method using mercury, and the specific volume of the resin is obtained by a change amount of the bellows when a temperature and a pressure are applied. The mold is a light guide plate mold 1 in which the mold cavity is a 6-mirror surface having a thickness of 6 mm, a length of 324 mm, and a width of 243 mm, and the other is a mold cavity having a thickness of 6 m.
m, length 324mm, width 243mm, 324mm × 24
One surface of 3 mm has a fine shape, and the remaining five surfaces are mirror-finished light guide plate molds 2. As shown in FIG. 5, the fine shape means that the light guide plate molded product 16 has a height a of 32 μm, the arrangement pitch b is constant at 250 μm in the vertical direction, and the arrangement pitch b is 710 from both ends to the center in the horizontal direction. ~ 190μ
The rectangular parallelepiped shape units sequentially changing in the range of m are arranged.

【0033】金型構造は、図6に有るとおり、サイドゲ
ート方式で、スプルー17の長さが130mm、ゲート
18側のスプルー径が12mm、ゲート18は幅30m
m、厚さ3mmのファンゲートを用いた。圧縮するため
の金型構造は、可動側金型19の側面の可動側駒21が
バネ20により摺動することで金型キャビティ余分に開
くことが出来る金型構造とした。ゲート18は、詳細に
は、固定側金型21との間で印籠構造とし、金型キャビ
ティを余分に開けて射出しても樹脂がゲート18から漏
れない構造とした。 (平面性の測定):成形品の324mm×243mmの
平面について端より1mm内側のところより縦324m
m側に8等分の9点、横243mm方向に8等分の9点
の合計81点のそれぞれの場所の厚みを3次元粗さ計
(ミツトヨ精密製3次元粗さ計 MACROCORD
AE122)で測定し、その最大値と最小値の差を取
り、平面性を求めた。 (ヒケ量の測定):JIS−B0601に準じた表面粗
さ計(ミツトヨ精密製3次元粗さ計 R−600)で図
7の太線で示すように得られた導光板成形品23のゲー
ト24側の端の部分20mm間の表面形状を測定した。 (歪みの測定):歪み計で偏光板を90°直交させて歪
みを調べた。偏光板と偏光板の間に成形品を入れて歪み
を測定した。測定方法は、図8のように上と下の偏光板
25の偏光方向を直交させてその間に導光板成形品26
をそれぞれ平行に設置し、下から白色光源27より光を
照らす。真上70cm離れた位置より輝度計28(ミノ
ルタ製 CS−1000)で輝度を観測する。歪みがな
い場合には、サンプルは暗いが、サンプルに歪みが生じ
ると光の偏光がサンプルを通過した際に変わり、白く明
るくなる。その輝度を測定し、輝度の最大値及び最小値
を求め歪みの度合い及び歪みムラを調べた。 (環境試験後のクラックの測定):60℃、90RH%
の恒温高湿器中に成形品を100時間つるしておき10
0時間後のクラックの数を測定した。 (転写性の測定):JIS−B0601に準じた表面粗
さ計(ミツトヨ精密製3次元粗さ計 R−600)で金
型の凹凸の形状がわかっている部分について成形品の形
状を測定し、その最大高さを求めた。そして、金型の形
状の最大高さに対しての比率を転写率として求めた。 (実用上輝度の測定)図9のような面発光装置を作り、
導光板成形品31の長辺2方向からそれぞれ直径4mm
の冷陰極管29を1灯で光を入射し、反射シート30側
に導光板金型Iの成形品は、スクリーン印刷により直径
1.6mmピッチ2.5mmの白色の円を反射シート面
に印刷し、導光板金型IIの成形品は、微細な凹凸形状
面を反射シート30側に向けてそれぞれ、出光面の表面
輝度を輝度計32(ミノルタ製 CS−1000)を用
いて、図9に示すゲート33付近のX点とX点から20
cm離れたY点の輝度を測定し、その輝度差を測定し
た。冷陰極管29はハリソン電気製の直径4mmの冷陰
極管29を用い入力電圧7Vで評価した。
As shown in FIG. 6, the mold structure is of a side gate type, the sprue 17 has a length of 130 mm, the sprue diameter on the gate 18 side is 12 mm, and the gate 18 has a width of 30 m.
m, a fan gate having a thickness of 3 mm was used. The mold structure for compression is such that the movable cavity 21 on the side surface of the movable mold 19 is slid by the spring 20 so that the mold cavity can be opened extra. In detail, the gate 18 has an intaglio structure between the gate 18 and the fixed-side mold 21, and the resin does not leak from the gate 18 even if the mold cavity is opened extra and injected. (Measurement of flatness): About 324 mm x 243 mm plane of the molded product, 324 m vertically from 1 mm inside from the end
The thickness at each of a total of 81 points, 9 points of 8 equal parts on the m side and 9 points of 8 equal parts in the 243 mm width direction, is measured with a three-dimensional roughness meter (Mitsutoyo Seimitsu's three-dimensional roughness meter MACROCORD
AE122), and the difference between the maximum value and the minimum value was calculated to determine the flatness. (Measurement of sink mark): Gate 24 of light guide plate molded product 23 obtained as shown by the thick line in FIG. 7 with a surface roughness meter (3-D roughness meter R-600 manufactured by Mitutoyo Seimitsu) according to JIS-B0601. The surface shape between the 20 mm portions at the side end was measured. (Measurement of distortion): The distortion was examined by making a polarizing plate orthogonal by 90 ° using a strain meter. A molded product was placed between polarizing plates, and the distortion was measured. As shown in FIG. 8, the measuring method is such that the polarizing directions of the upper and lower polarizers 25 are orthogonal to each other, and the light guide
Are arranged in parallel, and light is emitted from the white light source 27 from below. The luminance is observed from a position 70 cm directly above using a luminance meter 28 (CS-1000 manufactured by Minolta). If there is no distortion, the sample is dark, but if the sample is distorted, the polarization of light changes as it passes through the sample, making it whiter and brighter. The luminance was measured, the maximum value and the minimum value of the luminance were obtained, and the degree of distortion and distortion unevenness were examined. (Measurement of crack after environmental test): 60 ° C., 90 RH%
The molded article is suspended for 100 hours in a constant temperature and high humidity
The number of cracks after 0 hour was measured. (Measurement of transferability): The shape of the molded product was measured for a part where the shape of the concaves and convexes of the mold was known using a surface roughness meter (3-D roughness meter R-600 manufactured by Mitutoyo Seimitsu) according to JIS-B0601. Sought its maximum height. Then, the ratio to the maximum height of the shape of the mold was determined as the transfer rate. (Practical measurement of luminance) A surface emitting device as shown in FIG.
4 mm in diameter from the two long sides of the light guide plate 31
The light guide plate mold I is molded on the reflective sheet 30 side by printing a white circle having a diameter of 1.6 mm and a pitch of 2.5 mm on the surface of the reflective sheet by screen printing. Then, the molded product of the light guide plate mold II is shown in FIG. 9 by using a luminance meter 32 (CS-1000 manufactured by Minolta) to measure the surface luminance of the light emitting surface with the fine uneven surface facing the reflective sheet 30 side. Point X near gate 33 shown and 20 points from point X
The luminance at the Y point separated by cm was measured, and the luminance difference was measured. The cold cathode tube 29 was a 4 mm diameter cold cathode tube manufactured by Harrison Electric Co., and was evaluated at an input voltage of 7V.

【0034】[0034]

【実施例1】 シリンダ温度240℃、金型温度60
℃、充填時間5秒、ゲートシールは、射出完了後ノズル
のシャトオフ機構を閉じることにより樹脂の供給のシー
ルを行なった。金型は6面鏡面の導光板用金型1を用い
た。金型キャビティの開きは、285tの力で型締めを
行い、開き量が1mm(金型キャビティの最大肉厚6.
0mmに対し、16.6%余分に開く)のところで型に
285tの力を停止させた。次にこの余分に開いた金型
キャビティ内に炭酸ガスをPL面より2MPaの圧力で
アクリル樹脂を射出する2秒前より注入した。アクリル
樹脂を元の金型キャビティの体積に対して1.12倍量
射出し、その射出が99%完了した時点で型締力を28
5tで圧縮した。射出完了と同時に炭酸ガスの注入を終
了した。樹脂が金型キャビティに充満した後、金型キャ
ビティの開き量が0.3mm(金型キャビティの体積に
対して、1.05倍)の時点で型締力を150tに落と
し、圧縮を続け、75秒冷却固化させ、その後。金型を
開いて取り出した。このときの、射出開始から、金型を
開いて取り出すまでの時間は2分であった。
[Example 1] Cylinder temperature 240 ° C, mold temperature 60
C., filling time: 5 seconds, and the gate seal closed the nozzle shut-off mechanism after the injection was completed to seal the supply of the resin. The mold used was a mold 1 for a light guide plate having six mirror surfaces. The mold cavity is opened with a force of 285 t and the opening amount is 1 mm (maximum mold cavity thickness 6.
(16.6% extra opening for 0 mm). Next, carbon dioxide gas was injected into the extra open mold cavity from the PL surface at a pressure of 2 MPa from 2 seconds before injection of the acrylic resin. Acrylic resin was injected in an amount of 1.12 times the volume of the original mold cavity, and when the injection was completed 99%, the mold clamping force was increased to 28%.
Compressed at 5t. The injection of carbon dioxide gas was terminated at the same time as the completion of the injection. After the mold cavity is filled with the resin, when the opening amount of the mold cavity is 0.3 mm (1.05 times the volume of the mold cavity), the mold clamping force is reduced to 150 t, and compression is continued. Cool and solidify for 75 seconds, then. The mold was opened and removed. At this time, the time from the start of injection until the mold was opened and taken out was 2 minutes.

【0035】[0035]

【実施例2】 実施例1において最初の型締力を195
tとし、弱めた型締力を90tとして後は、実施例1と
同様の条件で成形した。
Embodiment 2 The first mold clamping force in Embodiment 1 was 195
After that, the mold was molded under the same conditions as in Example 1.

【0036】[0036]

【比較例1】 金型を6面鏡面の導光板用金型1を用い
た。成形条件は、シリンダ温度240℃、金型温度60
℃、金型キャビティは300tの圧力で、閉じた状態
で、射出速度80cc/sec、充填時間5秒、保圧時
間20秒、保圧力20MPaで射出を行った。型開き量
は0mmとし固定側金型及び可動側が完全に密着したと
き射出を開始した。ノズルのシャットオフ機構は保圧完
了後閉じた。射出開始から2分後、金型を開いて成形品
を取り出した。
Comparative Example 1 A light guide plate mold 1 having six mirror surfaces was used. The molding conditions were as follows: cylinder temperature 240 ° C, mold temperature 60
Injection was performed at a temperature of 300 ° C., a pressure of 300 t, a closed state, an injection speed of 80 cc / sec, a filling time of 5 seconds, a dwell time of 20 seconds, and a dwell pressure of 20 MPa. The opening amount of the mold was 0 mm, and injection was started when the fixed mold and the movable mold were completely in close contact with each other. The shut-off mechanism of the nozzle was closed after the dwell was completed. Two minutes after the start of the injection, the mold was opened and the molded product was taken out.

【0037】[0037]

【比較例2】 比較例1において保圧時間10秒、保圧
力10MPaとし後の条件を比較例1と同様にして測定
した。
[Comparative Example 2] The same conditions as in Comparative Example 1 were measured except that the dwell time was 10 seconds and the dwell pressure was 10 MPa.

【0038】[0038]

【比較例3】 実施例1で型締力を弱めず285tのま
まで射出圧縮成形を行った。
Comparative Example 3 Injection compression molding was performed in Example 1 while keeping the mold clamping force at 285 t.

【0039】[0039]

【実施例3】 金型を1面に微細な模様、残り5面が鏡
面の導光板用金型2を用いて、その他は実施例1と同等
に成形を行った。
Example 3 A mold was formed in the same manner as in Example 1 except that a mold was used for the light guide plate 2 having a fine pattern on one surface and mirror surfaces on the remaining five surfaces.

【0040】[0040]

【比較例4】 金型1面に微細な模様、残り5面が鏡面
の導光板用金型2を用いて、その他は比較例1と同様に
成形を行った。実施例、比較例の平面性、ヒケ、歪み、
環境試験後のクラック、転写性を測定した結果を表1に
示す。実施例1〜3とも、平面性評価において各部分に
おける厚みの最大値と最小値との差が小さく、平面性が
高い。また、ヒケは、生じていない。歪みも、最大値、
最小値とも小さく、光学部品として、必要な歪みの小さ
い成形品が得られている。環境試験後の吸湿によるクラ
ックは、発生していない。実用上の輝度については、輝
度に差が無い導光板が得られている。金型の転写につい
ては、比較例4に比べ、大幅に改良できている。比較例
1、2、4は平面性が実施例1〜3比べ悪い。また、ヒ
ケが発生している。クラックも多量発生し、導光板製品
としては好ましくない。実用上の輝度差も多く発生し、
均一に面発光させることが導光板としては良くない。射
出圧縮成形である比較例3は、平面性、ヒケ、実用性と
もに他の比較例より改善出来ているが、実施例に比べる
と、歪み特に最小値が高く、さらにクラックの発生が生
じ好ましくない。金型の転写については比較例4は転写
率が50%に満たず、転写が十分に出来ていない。
Comparative Example 4 Molding was performed in the same manner as in Comparative Example 1 except that a mold for a light guide plate having a fine pattern on one surface of the mold and mirror surfaces on the remaining five surfaces was used. Example, flatness of the comparative example, sink, distortion,
Table 1 shows the results of measuring cracks and transferability after the environmental test. In all of Examples 1 to 3, the difference between the maximum value and the minimum value of the thickness in each portion in the evaluation of flatness is small, and the flatness is high. No sink marks have occurred. The distortion is also the maximum value,
A molded product having a small minimum value and a small required distortion is obtained as an optical component. No crack was generated due to moisture absorption after the environmental test. As for the practical luminance, a light guide plate having no difference in luminance is obtained. The transfer of the mold was significantly improved as compared with Comparative Example 4. Comparative Examples 1, 2, and 4 have poorer planarity than Examples 1 to 3. In addition, sink marks have occurred. Many cracks are generated, which is not preferable as a light guide plate product. Many practical brightness differences occur,
Uniform surface emission is not good for a light guide plate. In Comparative Example 3, which is injection compression molding, the flatness, sink mark, and practicality could be improved as compared with other Comparative Examples. However, compared to the Examples, the distortion, particularly the minimum value, was high, and further cracks were generated, which is not preferable. . Regarding the transfer of the mold, the transfer rate of Comparative Example 4 was less than 50%, and the transfer was not sufficiently performed.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】本発明の射出圧縮成型方法は光学成形
品、例えば液晶モニタ等に用いられる面発光装置等の平
面性を良くし、ヒケ、クラックをなくすことが出来、ま
た、歪み量を大幅に低減でき、さらに、金型の転写性が
良く、実用時の光学部品の性能を向上することが出来て
有効である。
According to the injection compression molding method of the present invention, the flatness of an optical molded product, for example, a surface light emitting device used for a liquid crystal monitor or the like can be improved, sink marks and cracks can be eliminated, and the amount of distortion can be greatly reduced. In addition, the transferability of the mold is good, and the performance of the optical component in practical use can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液晶パネルと導光板を用いた面発光装置の概念
図である。
FIG. 1 is a conceptual diagram of a surface light emitting device using a liquid crystal panel and a light guide plate.

【図2】金型キャビティをt1だけ余分に開いた状態の
金型の断面の概念図である。
FIG. 2 is a conceptual diagram of a cross section of a mold in a state in which a mold cavity is further opened by t1.

【図3】金型キャビティをt1だけ余分に開いて樹脂を
射出したときの樹脂と金型の断面の概念図である。
FIG. 3 is a conceptual diagram of a cross section of a resin and a mold when the resin is injected by opening a mold cavity by an extra amount of t1.

【図4】金型キャビティをt2だけ余分に開いた状態ま
で圧縮したときの樹脂と金型の断面の概念図である。
FIG. 4 is a conceptual diagram of a cross section of the resin and the mold when the mold cavity is compressed to an extra open state by t2.

【図5】本発明の実施例で使用した導光板用金型2で成
形した導光板の微細な凹凸の概念図である。
FIG. 5 is a conceptual diagram of fine irregularities of the light guide plate formed by the light guide plate mold 2 used in the embodiment of the present invention.

【図6】本発明の実施例で使用した金型の構造の断面の
概念図である。
FIG. 6 is a conceptual diagram of a cross section of the structure of a mold used in an embodiment of the present invention.

【図7】本発明の実施例におけるヒケ量の測定位置の概
略図である。
FIG. 7 is a schematic diagram of a measurement position of a sink mark amount in the embodiment of the present invention.

【図8】本発明の実施例における歪みの測定方法の概念
図である。
FIG. 8 is a conceptual diagram of a distortion measuring method according to the embodiment of the present invention.

【図9】本発明の実施例における実用時の輝度測定の概
念図である。
FIG. 9 is a conceptual diagram of luminance measurement during practical use in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、導光板 2、液晶パネル 3、出光面 4、反射面 5、冷陰極管 6、入光面 7、反射シート 8、リフレクター 9、可動側金型 10、バネ 11、可動側駒 12、固定側金型 13、スプルー 14、ゲート 15、熱可塑性樹脂 16、導光板成形品 17、スプルー 18、ゲート 19、可動側金型 20、バネ 21、可動側駒 22、固定側金型 23、導光板成形品 24、ゲート 25、偏光板 26、導光板成形品 27、白色光源 28、輝度計 29、冷陰極管 30、反射シート 31、導光板成形品 32、輝度計 33、ゲート 34、リフレクター 1, light guide plate 2, liquid crystal panel 3, light exit surface 4, reflection surface 5, cold cathode tube 6, light entrance surface 7, reflection sheet 8, reflector 9, movable mold 10, spring 11, movable frame 12, fixed Side mold 13, sprue 14, gate 15, thermoplastic resin 16, molded product of light guide plate 17, sprue 18, gate 19, movable mold 20, spring 21, movable piece 22, fixed mold 23, light guide plate Molded product 24, Gate 25, Polarizer 26, Light guide plate molded product 27, White light source 28, Luminance meter 29, Cold cathode tube 30, Reflective sheet 31, Light guide plate molded product 32, Luminance meter 33, Gate 34, Reflector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を射出成形するに際し、金
型キャビティを厚さ方向に余分に開かせた状態で、該キ
ャビティの容積に対して1.09倍以上1.20倍以下
の量の該樹脂を射出し、さらに該キャビティの溶融樹脂
が固化温度以上のうちに金型の圧縮を開始して該樹脂を
金型キャビティ内に充満させ、さらに、該樹脂の体積が
該キャビティの容積に対して1.005倍以上1.07
倍以下になった時点で型締力を弱めて、弱めた型締力も
しくは、更に弱い型締力で更に圧縮を続け、冷却、固化
した後、型開きして成形品を取り出すことを特徴とする
射出圧縮成形方法。
In injection molding of a thermoplastic resin, a mold cavity having a volume of 1.09 times or more and 1.20 times or less with respect to the volume of the mold cavity is formed with the mold cavity being excessively opened in the thickness direction. Injecting the resin, further starting the compression of the mold while the molten resin in the cavity is at or above the solidification temperature, filling the resin in the mold cavity, and further reducing the volume of the resin to the volume of the cavity. 1.005 times or more 1.07
When it becomes less than double, the mold clamping force is weakened, the compression is continued further with the weakened mold clamping force or a weaker mold clamping force, and after cooling and solidification, the mold is opened and the molded product is taken out. Injection compression molding method.
【請求項2】 請求項1記載の射出圧縮成形方法で成形
された成形品が、最大厚さ4mm以上でかつ投影面積が
600mm2 以上もしくは成形品の最大長さが300m
m以上である厚肉大型成形品であることを特徴とする射
出圧縮成形方法。
2. A molded article molded by the injection compression molding method according to claim 1, having a maximum thickness of 4 mm or more and a projected area of 600 mm 2 or more or a maximum length of the molded article of 300 m.
Injection compression molding method characterized by being a thick large-sized molded product having a thickness of at least m.
【請求項3】 射出成形に先立ち、金型キャビティに炭
酸ガスを満たしておくことを特徴とする請求項1、2記
載の射出圧縮成形方法。
3. The injection compression molding method according to claim 1, wherein the mold cavity is filled with carbon dioxide gas before injection molding.
【請求項4】 該熱可塑性樹脂が透明性樹脂であるアク
リル樹脂、ポリカーボネート樹脂、もしくは環状ポリオ
レフィン樹脂であることを特徴とする請求項1〜3記載
の射出圧縮成形方法。
4. The injection compression molding method according to claim 1, wherein the thermoplastic resin is a transparent resin such as an acrylic resin, a polycarbonate resin, or a cyclic polyolefin resin.
【請求項5】 請求項2記載の成形品が、該熱可塑性樹
脂を含む組成物からなる液晶モニタ用の導光板で有るこ
とを特徴とする請求項1〜4記載の射出圧縮成形方法。
5. The injection compression molding method according to claim 1, wherein the molded product according to claim 2 is a light guide plate for a liquid crystal monitor made of a composition containing the thermoplastic resin.
JP3451899A 1999-02-12 1999-02-12 Method for injection compression molding Pending JP2000229343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3451899A JP2000229343A (en) 1999-02-12 1999-02-12 Method for injection compression molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3451899A JP2000229343A (en) 1999-02-12 1999-02-12 Method for injection compression molding

Publications (1)

Publication Number Publication Date
JP2000229343A true JP2000229343A (en) 2000-08-22

Family

ID=12416498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3451899A Pending JP2000229343A (en) 1999-02-12 1999-02-12 Method for injection compression molding

Country Status (1)

Country Link
JP (1) JP2000229343A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187177A (en) * 2000-12-21 2002-07-02 Polyplastics Co Method for manufacturing injection compression molded article
WO2006098137A1 (en) 2005-03-16 2006-09-21 Mitsubishi Engineering-Plastics Corporation Light guiding plate formed of transparent resin, planar light source, and light guiding plate manufacturing method
JP2012187770A (en) * 2011-03-09 2012-10-04 Sumitomo Heavy Ind Ltd Injection molder
JP2014185721A (en) * 2013-03-25 2014-10-02 Ntn Corp Manufacturing method of spherical surface spacer, spherical surface spacer, bearing and linear motion device
KR101462417B1 (en) * 2013-06-04 2014-11-17 에이테크솔루션(주) Injection mould having a dam structure around a cavity
CN112840500A (en) * 2019-06-12 2021-05-25 株式会社Lg化学 Battery module, method for preparing the same, and battery pack including the same
CN114211678A (en) * 2021-12-15 2022-03-22 上汽通用汽车有限公司 Injection compression molding mold and plastic part molding method
DE112021004659T5 (en) 2020-11-10 2023-06-29 Fanuc Corporation Mold clamping device for an injection molding machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187177A (en) * 2000-12-21 2002-07-02 Polyplastics Co Method for manufacturing injection compression molded article
WO2006098137A1 (en) 2005-03-16 2006-09-21 Mitsubishi Engineering-Plastics Corporation Light guiding plate formed of transparent resin, planar light source, and light guiding plate manufacturing method
EP1860374A1 (en) * 2005-03-16 2007-11-28 Mitsubishi Engineering-Plastics Corporation Light guiding plate formed of transparent resin, planar light source, and light guiding plate manufacturing method
US7616858B2 (en) 2005-03-16 2009-11-10 Mitsubishi Engineering-Plastics Corporation Light guiding plate made of transparent resin, surface-emitting light source apparatus and process for manufacturing light guiding plate
EP1860374A4 (en) * 2005-03-16 2010-04-21 Mitsubishi Eng Plastics Corp Light guiding plate formed of transparent resin, planar light source, and light guiding plate manufacturing method
JP2012187770A (en) * 2011-03-09 2012-10-04 Sumitomo Heavy Ind Ltd Injection molder
JP2014185721A (en) * 2013-03-25 2014-10-02 Ntn Corp Manufacturing method of spherical surface spacer, spherical surface spacer, bearing and linear motion device
KR101462417B1 (en) * 2013-06-04 2014-11-17 에이테크솔루션(주) Injection mould having a dam structure around a cavity
CN112840500A (en) * 2019-06-12 2021-05-25 株式会社Lg化学 Battery module, method for preparing the same, and battery pack including the same
DE112021004659T5 (en) 2020-11-10 2023-06-29 Fanuc Corporation Mold clamping device for an injection molding machine
CN114211678A (en) * 2021-12-15 2022-03-22 上汽通用汽车有限公司 Injection compression molding mold and plastic part molding method

Similar Documents

Publication Publication Date Title
JP3218397B2 (en) Injection molding of thermoplastic resin
US20050189665A1 (en) Method for producing light transmitting plate
US20040119204A1 (en) Process for producing light transmitting plate
US20050230861A1 (en) Method for expansion injection molding
US20070222092A1 (en) Mold for Injection Molding Light Guide Plate and Process for Producing Light Guide Plate Using the Mold
JP2000229343A (en) Method for injection compression molding
TW480352B (en) Light-guiding plate and method of producing the same
US20110304079A1 (en) Mold for molding resin, apparatus for molding resin, and method for molding resin
JP4357105B2 (en) Light guide plate and manufacturing method thereof
KR101293899B1 (en) Low-birefringent resin composition for injection molding and tv panel fabricated using the same
JP2000263613A (en) Method for injection compression molding of thermoplastic resin molding
JP2001225349A (en) Method for manufacturing molded article having gradation hue
JP2004133148A (en) Optical molding made of thermoplastic resin, and its molding method
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP3875326B2 (en) Injection molding method and optical component
JP3096904B2 (en) Injection molding of amorphous thermoplastic resin
US11820045B2 (en) Injection molding method for fabricating transparent device
JP4457344B2 (en) Manufacturing method of light diffusion plate
WO2007094209A1 (en) Method for manufacturing molded flat plate, and molded flat plate
JP2004243590A (en) Injection mold, method for manufacturing molded object and light guide plate
CN102241100A (en) Hot press for generating micropores and bubbles by using reflecting film and method thereof
JP2003191263A (en) Flat panel and method for manufacturing the same
JP2006264149A (en) Mold for injection molding and manufacturing method of optical member using the mold
JP2002011769A (en) Manufacturing method for large-sized light guiding plate
JPH09248844A (en) Production of fresnel lens sheet