WO2007091709A1 - Screen for rear projection type image projector - Google Patents

Screen for rear projection type image projector Download PDF

Info

Publication number
WO2007091709A1
WO2007091709A1 PCT/JP2007/052527 JP2007052527W WO2007091709A1 WO 2007091709 A1 WO2007091709 A1 WO 2007091709A1 JP 2007052527 W JP2007052527 W JP 2007052527W WO 2007091709 A1 WO2007091709 A1 WO 2007091709A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sheet
screen
type image
absorbing
Prior art date
Application number
PCT/JP2007/052527
Other languages
French (fr)
Japanese (ja)
Inventor
Yukihiro Hyobu
Original Assignee
Miraial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006034298A external-priority patent/JP2007212887A/en
Priority claimed from JP2006066636A external-priority patent/JP2007241139A/en
Application filed by Miraial Co., Ltd. filed Critical Miraial Co., Ltd.
Publication of WO2007091709A1 publication Critical patent/WO2007091709A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens

Definitions

  • the present invention relates to a screen for a rear projection type image projection apparatus.
  • Rear projection type image projection apparatuses such as a projector using a CRT, a liquid crystal projector, and a projector using a micromirror device are becoming more widespread.
  • the screen used in such a rear projection type image projection apparatus is also required to have good visibility for a plurality of observers with different positions.
  • Such a screen for a conventional rear projection type image projection apparatus is provided with a Fresnel lens that converts incident light into parallel light at the incident stage, and the parallel light from the Fresnel lens is converted into a microlens array.
  • a desired viewing angle is obtained by transmitting a sheet or a lenticular sheet (see Patent Document 1).
  • a configuration is also provided as appropriate in the vicinity of the microlens array sheet or lenticular sheet so as to prevent adverse effects of external light (such as reflections and stray light in the apparatus).
  • image projection apparatuses such as projectors using CRTs, liquid crystal projectors, and projectors using micromirror devices are becoming increasingly popular.
  • the screen used in such an image projection apparatus is required to have good visibility for a plurality of observers at different positions, but on the other hand, the light beam from the light source in the room where the image projection apparatus is installed. External light such as light that enters the room through windows and windows, etc. There is a need to reduce the image quality of the projected image on the screen.
  • Patent Document 2 describes a screen having a louver-like light absorption wall array in order to suppress deterioration in image quality due to external light.
  • the louver-shaped light absorption wall row extends in the horizontal direction and is provided so as to enter the surface force thickness direction of the transparent member.
  • the incident external light reflected by the surface of the transparent member travels in a direction unrelated to the visual field of the observer due to the reflection.
  • Patent Document 3 uses a sheet in which a columnar region having a high refractive index and a columnar region having a low refractive index are mixed in order to suppress good visibility and deterioration in image quality due to external light. is doing. It is also described that a through hole is used as a columnar region having a low refractive index. The above requirement is satisfied by passing or reflecting the boundary between the columnar region having a high refractive index and the columnar region having a low refractive index depending on the incident direction.
  • Patent Document 1 JP 2000-131506 A
  • Patent Document 2 JP-A-11 167167
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-326824
  • the conventional screen for a rear projection type image projection apparatus has components for converting incident light into parallel light, components for achieving a desired viewing angle, and for preventing adverse effects of external light.
  • Various components such as components had to be provided, and the number of parts was large. For this reason, the manufacturing time is long and the manufacturing time is long.
  • the light absorption wall array in a screen using a louver-like light absorption wall array, the light absorption wall array must be provided in the transparent member, and there is a problem that manufacturing becomes complicated and costs increase. In addition, it is difficult to manufacture a large area because the light absorption wall row must be provided in the transparent member. Furthermore, the adverse effect of external light from upward and downward forces can be suppressed, but the adverse effect of external light from the left and right directions cannot be suppressed.
  • a first aspect of the present invention is an optical sheet in which a Fresnel lens surface is formed on one surface and a microlens array surface is formed on the other surface in a screen applied to a rear projection type image projection apparatus. And an anisotropic light-absorbing sheet having different light absorption characteristics depending on the incident angle of incident light incident from all incident surfaces, and is arranged close to the microlens array surface. To do.
  • the second aspect of the present invention is characterized in that the optical sheet, the anisotropic light absorbing sheet, and further a pinhole array sheet are arranged close to each other in this order.
  • the third aspect of the present invention is characterized in that the optical sheet, the anisotropic light absorbing sheet, the pinhole array sheet, and a light diffusion sheet are arranged close to each other in this order.
  • a screen for a rear projection type image projection apparatus is a screen for a rear projection type image projection apparatus applied to a rear projection type image projection apparatus, and is a through cavity surrounded by a light absorbing side wall. However, it has an anisotropic light-absorbing sheet, a light diffusion layer, and a light reflection layer formed in this order by sharing a plurality of side walls with each other.
  • the image projector screen preferably includes the anisotropic light absorbing sheet and a microlens array sheet. It is desirable that the microlenses constituting the microlens array sheet and the optical axes of the through cavities are the same.
  • microlenses have through-holes communicating on both sides, and it is desirable that this through-hole communicates with the above-mentioned through-cavity associated with the same optical axis.
  • a pinhole array sheet having a pinhole near the focal position of each microlens is provided between the anisotropic light absorbing sheet and the microlens array sheet! / I want to be! /
  • an optical sheet having a Fresnel lens surface formed on one surface and a microlens array surface formed on the other surface is used.
  • the number of parts can be reduced. As a result, reductions in manufacturing steps and manufacturing time can be expected.
  • a low-cost screen for an image projection apparatus that can suppress the adverse effect of external light by absorption.
  • an anisotropic light-absorbing sheet that can be applied to a screen for an image projection apparatus and that has different absorption characteristics depending on the incident direction and is easy to manufacture and low-cost.
  • an anisotropic light-absorbing sheet can be produced easily and at low cost.
  • a mold used for manufacturing an anisotropic light-absorbing sheet by injection molding or punching press can be manufactured easily and at low cost.
  • FIG. 1 is a schematic cross-sectional view showing a screen for a rear projection type image projection apparatus according to a first embodiment.
  • FIG. 2 is a schematic sectional view showing a rear projection type image projection apparatus using the screen of the first embodiment.
  • FIG. 3 is a schematic perspective view showing the anisotropic light absorbing sheet of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a screen for a rear projection type image projection apparatus according to a second embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a screen for a rear projection type image projection apparatus of a third embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a screen for an image projection apparatus according to a fourth embodiment.
  • FIG. 7 is a schematic sectional view showing a rear projection type image projection apparatus using a screen for an image projection apparatus according to a fourth embodiment.
  • FIG. 8 is a schematic perspective view of an anisotropic light absorbing sheet according to a fourth embodiment.
  • FIG. 9 is a schematic perspective view of a modified embodiment related to the anisotropic light-absorbing sheet of the fourth embodiment.
  • FIG. 10 is a schematic section showing a modified embodiment related to the anisotropic light-absorbing sheet of the fourth embodiment.
  • FIG. 11 is a schematic sectional view showing a screen for an image projection apparatus according to a fifth embodiment.
  • FIG. 12 is a schematic plan view showing the arrangement of through holes in the microlens array sheet of the fifth embodiment.
  • FIG. 13 is a schematic sectional view showing a screen for an image projection apparatus according to a sixth embodiment.
  • FIG. 14 is a schematic cross-sectional view showing a modified embodiment relating to the screen for an image projection apparatus of the sixth embodiment.
  • FIG. 15 is a schematic sectional view showing a screen for an image projection apparatus according to a seventh embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a rear projection image projection apparatus using the screen of the first embodiment.
  • the rear projection type image projection apparatus 10 forms a basket box with the screen 11 of the first embodiment and the housing frame 12, and, for example, the projector main body 13 and the mirror are placed in this dark box. 14 are arranged.
  • the projector body 13 includes a power CRT, a liquid crystal panel or a micromirror device that does not show the detailed configuration, and a projection lens device, a light source, and a drive for enlarging and projecting the formed light image.
  • the optical image which is composed of a circuit and is emitted from the projector main body 13, is reflected by the mirror 14 so that the traveling direction is directed toward the screen 11, and reaches the observer through the screen 11.
  • the screen 11 of the first embodiment includes an optical sheet 20 disposed on the mirror 14 side and an anisotropic light absorbing sheet 21.
  • the optical sheet 20 exhibits two functions: a function as a Fresnel lens and a function as a microlens array sheet.
  • the surface on the mirror 14 side of the optical sheet 20 is a Fresnel lens surface 20a, and the surface on the anisotropic light absorbing sheet 21 side of the optical sheet 20 is a microphone aperture lens array surface 20b.
  • the Fresnel lens surface 20a of the optical sheet 20 has the same surface shape as the concave-convex surface of the Fresnel lens whose one surface is flat.
  • the Fresnel lens surface 20a has a function of converting divergent light emitted from the projector body 13 and reflected by the mirror 14 into parallel light.
  • the microlens array surface 20b of the optical sheet 20 has the same surface shape as the concavo-convex surface of the microlens array sheet whose one surface is flat.
  • the microlens array surface 20b is formed by arranging a large number of microlenses, for example, vertically and horizontally, and an incident light image is condensed by each microlens for each minute region.
  • the optical sheet 20 may be one member that was originally manufactured with force, and one surface may be flat and the other surface may be the first sub-member of the Fresnel lens surface 20a, and one surface may be flat and the other surface may be a micro-layer.
  • the second sub-member of the sensor array surface 20b may be bonded together on both planes and integrated together.
  • the anisotropic light absorbing sheet 21 is provided in contact with the optical lens 20 on the side of the microlens array surface 20b or at some distance from it.
  • the method of providing the optical sheet 20 and the anisotropic light absorbing sheet 21 close to each other is not limited.
  • the periphery of both sheets may be placed close to each other with a frame member, or the surrounding may be placed close together by adhesion, fusion, or the like.
  • the anisotropic light absorbing sheet 21 may be anything as long as it allows light incident from the optical sheet 20 to pass a component in the incident direction within a predetermined range and absorb the component in the other incident direction.
  • 1 and 3 show an example of the configuration of the anisotropic light absorbing sheet 21.
  • the anisotropic light absorption sheet 21 achieves an angle corresponding to the position of the permitted observer as the viewing angle of the screen 11 and absorbs and removes external light from the outside through a light source or window in the room. It is for.
  • a light source in a room is a fluorescent lamp or an incandescent lamp, and a light beam entering the room through a window is sunlight.
  • the anisotropic light absorbing sheet 12 is made to have an absorption characteristic for visible light.
  • FIG. 3 is a schematic perspective view showing the configuration of the anisotropic light absorption sheet 21 used in the screen 11 of the first embodiment.
  • the anisotropic light absorbing sheet 21 is a net-like structure in which through cavities 31 surrounded by light absorbing side walls 30 share many side walls 30 and are densely assembled.
  • the through-cavity 31 is a complete cavity, in other words, only air is present there. Note that the portion of the through cavity 31 may be filled with a light-transmitting material such as a light-transmitting polymer material.
  • the light-absorbing side wall 30 may be entirely formed of a single light-absorbing material. Only the surface of the side wall 30 may be formed of a light-absorbing material. In addition, it is preferable that the surface (upper surface) 32 on the optical sheet 20 side of the anisotropic light absorbing sheet 21 and the opposite surface (lower surface) 33 also have light absorptivity.
  • the light-absorbing material applied to the side wall 30 for example, a metal can be applied, a glass containing a light-absorbing pigment can be applied, and a polymer containing a light-absorbing pigment or a light-absorbing dye. Material can be applied and light absorbing ceramic can be applied.
  • the anisotropic light-absorbing sheet 21 can be made flexible.
  • a light absorbing layer may be provided on the surface of the metal to form the light absorbing side wall 30.
  • a light absorption layer may be formed by applying a light-absorbing coating, which is coated with a light-absorbing pigment or light-absorbing dye. May be formed. If aluminum is applied as the metal, a light absorption layer may be provided by black alumite treatment. If chromium is used as the metal, the light absorption layer may be provided by performing a surface treatment for controlling the reflectance of the surface.
  • the through cavities 31 have the same shape and are arranged with regularity.
  • the through-cavity 31 has a square cross-sectional shape (hereinafter referred to as an outline) on a plane orthogonal to the light traveling direction.
  • the screen 11 of the first embodiment includes the optical axis of each microlens of the optical sheet 20 and the central axis of each through-cavity 31 of the anisotropic light absorbing sheet 21 (the center of the square is the same). The axis extending in the direction of travel of light) matches! / What is it.
  • the anisotropic light-absorbing sheet 21 is formed by regularly arranging the through cavities 31 having the same contour, the central axis of the through cavities 31 should coincide with the optical axis of each microlens of the optical sheet 20. And the anisotropic light-absorbing sheet 21 is easy to manufacture.
  • the anisotropic light-absorbing sheet 21 is not limited to the example shown in FIGS. 1 and 3, and a large number of through cavities 31 may be irregularly arranged.
  • the outlines of the through cavities 31 are not limited to squares, and the sizes (areas) of the outlines of the through cavities 31 may not be uniform.
  • a plurality of types of through-cavities 31 with different contours may be regularly arranged!
  • a protective film for preventing intrusion of dust and mechanical damage is bonded to the surface of the anisotropic light absorbing sheet 21! /.
  • An optical image (diverged light) emitted from the projector main body 13 and reflected by the mirror 14 is directed to the screen 11.
  • An optical sheet 20 is provided at the incident stage of the screen 11, and divergent light from the mirror 14 enters the Fresnel lens surface 20 a of the optical sheet 20.
  • the divergent light from the mirror 14 is converted into parallel light by the Fresnel lens surface 20a and is incident on the microlens array surface 20b of the optical sheet 20.
  • the parallel light incident on each microlens related to the microlens array surface 20b is, for example, a predetermined point (focal plane) close to the exit side in the corresponding through-cavity 31 of the anisotropic light absorbing sheet 21 by each microlens. (Points on the focal plane are Other positions may be used), and after passing through the predetermined point, it becomes divergent light.
  • the position of the condensing point (point on the focal plane) should be selected in consideration of the divergence angle that can achieve the desired viewing angle and the fact that light absorption at the side wall 30 is not performed. ,.
  • the diverging light passes through the penetration cavity 31 without impinging on (incident on) the side wall 30 that defines the force penetration cavity 31, and is observed by the observer.
  • the light that collides (incides) with the side wall 30 that defines the through-cavity 31 is absorbed by the side wall 30.
  • a desired viewing angle as the screen 11 is achieved.
  • the axial length of the through-hole 31 (in other words, the thickness of the anisotropic light-absorbing sheet 21) is selected to be long so that it reaches any part of the side wall 30. And external light is absorbed.
  • the outline of the through-cavity 31 may be any shape, but the average diameter of the inscribed circle or circumscribed circle of the outline is about 50 to 200 m, and the axis of the through-cavity 31
  • the length in the direction is preferably about 50 to 200 m. From these ranges, you can select specific values in consideration of the viewing angle required for the screen 11 and the absorption characteristics of external light.
  • FIG. 4 is a schematic cross-sectional view showing a screen 11A of the second embodiment.
  • an optical sheet 20, an anisotropic light absorbing sheet 21, and a pinhole array sheet 22 are arranged in order.
  • the optical sheet 20 and the anisotropic light absorbing sheet 21 may be the same as those in the first embodiment.
  • the anisotropic light absorbing sheet 21 may be integrated with the pinhole array sheet 22.
  • the pinhole array sheet 22 is provided with pinholes 51 with respect to the light-absorbing pinhole array sheet main body 50.
  • the pinhole array sheet 22 may be formed as a single component, or may be formed integrally with the exit surface of the anisotropic light absorbing sheet 21.
  • the pinhole 51 can be formed by applying a photo etching method, for example.
  • Each pinhole 51 corresponds to the microlens of the optical sheet 20 and the through-cavity 31 of the anisotropic light-absorbing sheet 21, and their optical axes and central axes coincide with each other.
  • Each pinhole 51 is provided at or near the focal position of the corresponding microlens.
  • the pinhole 51 may be formed by a cavity (air layer) or may be a minute optical window in which a transparent material is present. Further, the pinhole 51 may be subjected to a treatment that imparts diffusibility to transmitted light.
  • the pinhole 51 may have a cylindrical trapezoidal optical opening which may be a cylindrical optical opening.
  • the pinhole 51 is formed in the vicinity of the condensing point of the corresponding microlens, the light collected by the microlens is transmitted without being blocked by the pinhole 51. To do. The light that has passed through the pinhole 51 is observed by an observer in the same manner as in the first embodiment.
  • FIG. 4 shows an example in which the pinhole 51 is provided at the end of the anisotropic light-absorbing sheet 21. If the force is in the vicinity of the condensing point by the microlens, A pinhole 51 is provided in the middle part of the through-cavity 31 when viewed in the light traveling direction. Needless to say, it's okay! The same applies to the third embodiment described later.
  • the incident angle of the external light transmitted through the pinhole array sheet 22 is narrowed, and the external light is absorbed and removed by the pinhole array sheet main body 50, and temporarily enters the anisotropic light absorption sheet 21 side through the pinhole 51. Even so, it is absorbed and removed by the anisotropic light absorbing sheet 21.
  • an image quality improvement effect can be expected by providing the pinhole array sheet.
  • the contrast can be improved.
  • FIG. 5 is a schematic cross-sectional view showing a screen 11B of the third embodiment.
  • the screen 11B according to the third embodiment includes an optical sheet 20, an anisotropic light absorption sheet 21, a pinhole array sheet 22, and a light diffusion sheet 23 arranged in this order.
  • optical sheet 20 the anisotropic light absorbing sheet 21, and the pinhole array sheet 22 are the same as those in the second embodiment.
  • the light diffusion sheet 23 diffuses incident light by passing through the light diffusion sheet 23.
  • the light diffusion sheet 23 is attached to the pinhole array sheet 22 by adhesion, fusion, or the like, for example.
  • the light diffusion sheet 23 for example, a sheet having a large number of transparent beads made of acrylic or styrene can be used.
  • a material obtained by binding a scattering oxide powder (MgSO, MgO, BaSO, etc.) with a polymer material is applied.
  • the divergent light from the mirror 14 enters the Fresnel lens surface 20a of the optical sheet 20 and is parallel to it. It is converted into light and incident on the microlens array surface 20b of the optical sheet 20.
  • the parallel light incident on each microlens related to the microlens array surface 20b is, for example, a predetermined close to the emission side in the corresponding through-cavity 31 of the anisotropic light absorbing sheet 21 by each microlens. After being focused toward a point (a point on the focal plane) and passing through that predetermined point, it becomes divergent light.
  • the divergent light passes through the pinhole 51, enters the light diffusion sheet 23, is diffused, and is emitted to the outside. This achieves the desired viewing angle.
  • the improvement of image quality and the effect of preventing the intrusion of dust due to the provision of the light diffusion sheet 23 are expected. it can.
  • the method of connecting the various sheets in the above embodiments is not limited to the method mentioned in the description of the above embodiments.
  • the screen 11 includes the optical sheet 20 and the anisotropic light absorbing sheet 21, and in the second embodiment, the optical sheet 20, the anisotropic light absorbing sheet 21, and the pinhole array sheet 22.
  • the screen 11B having the optical sheet 20, the anisotropic light absorbing sheet 21, the pinhole array sheet 22, and the light diffusing sheet 23 is shown.
  • Sheet and light diffusion sheet You can also arrange the screens in order to make up the screen.
  • FIG. 7 is a schematic cross-sectional view showing a rear projection type image projection apparatus using the screen for an image projection apparatus of the fourth embodiment. That is, the screen of the fourth embodiment is a so-called rear screen.
  • an image projection apparatus 60 forms a basket box with the screen 61 of the fourth embodiment and the casing frame 62, and, for example, a projector main body 63 and a mirror 64 are provided in the dark box. Is arranged.
  • the projector main body 63 is composed of an optical image forming unit using a CRT, a liquid crystal panel, or a micromirror device, and a projection lens device for enlarging and projecting the formed optical image.
  • the optical image emitted from 63 is reflected by the mirror 64 and the traveling direction is directed to the screen 61 side, and reaches the observer through the screen 61.
  • the screen 61 of the fourth embodiment is arranged on the incident side, and the microlens array sheet 70 and the anisotropic light-absorbing sheet 7 of the fourth embodiment. 1 and
  • the microlens array sheet 70 has a large number of microlenses arranged, for example, vertically and horizontally, and an incident optical image is collected for each micro area by each microlens.
  • Each microlens may be curved on both sides, but Fig. 6 shows an example where one side is flat!
  • the anisotropic light absorbing sheet 71 is provided in contact with the plane side of the microlens array sheet 70.
  • the method for joining the microlens array sheet 70 and the anisotropic light absorbing sheet 71 is not limited.
  • the periphery of both sheets may be suppressed by a frame member, or may be bonded by good adhesion or fusion.
  • the anisotropic light absorbing sheet 71 is a sheet-like optical component having anisotropy having different light absorption characteristics depending on the incident direction.
  • the anisotropic light-absorbing sheet 71 is the light incident from the microlens array sheet 70.
  • a component in an incident direction within a predetermined range is allowed to pass through the image and a component in another incident direction is absorbed.
  • the viewing angle of the screen 61 is to achieve an angle according to the position of the permitted observer, and to absorb and remove external light from the outside through an indoor light source or window.
  • the indoor light source is a fluorescent lamp, and the light that enters the room through the window is sunlight. Therefore, the anisotropic light absorbing sheet 71 has an absorption characteristic for white light.
  • FIG. 8 is a schematic perspective view of the anisotropic light-absorbing sheet 71 of the fourth embodiment.
  • the anisotropic light-absorbing sheet 71 of the fourth embodiment is a net-like structure in which a large number of through-holes 81 surrounded by light-absorbing side walls 80 are shared by sharing the side walls 80. .
  • the through-cavity 81 is a complete cavity, in other words, only air is present there.
  • the light absorbing side wall 80 may be entirely formed of a single light absorbing material. Only the surface of the side wall 80 may be formed of a light absorbing material. It is preferable that the light image incident side surface (upper surface) 82 and the light image output side surface (lower surface) 83 also have light absorptivity.
  • a light-absorbing material to be applied to the side wall 80 for example, a metal can be applied, a glass containing a light-absorbing face can be applied, and a polymer containing a light-absorbing pigment or a light-absorbing dye. Materials can be applied, and conductive ceramics can be applied.
  • the anisotropic light-absorbing sheet 71 When a polymer material having flexibility, such as salt or blue, is applied as the polymer material, the anisotropic light-absorbing sheet 71, and thus the screen 61, can be made flexible.
  • a polymer material having flexibility such as salt or blue
  • a conductive ceramic is applied as the light absorbing material of the sidewall 80, it is possible to prevent dust from adhering to the screen surface due to electrostatic charging.
  • non-charged materials other than conductive ceramics may be used or non-charged so as not to be charged.
  • the non-charging treatment it is preferable to apply the same to the microlens array sheet 70 as well.
  • a light absorbing layer may be provided on the surface of the metal to form the light absorbing side wall 80.
  • a light-absorbing layer is applied to a light-absorbing coating. It may be formed by coating a light-absorbing pigment or light-absorbing dye that may be formed by applying a coating material. If aluminum is applied as the metal, a light absorption layer may be provided by black alumite treatment. If chromium is used as the metal, the light absorption layer may be provided by a surface treatment that causes a change to the compound.
  • the through cavities 81 have the same shape and are arranged with regularity.
  • the through-cavity 81 has a square outline.
  • the optical axis of each microlens of the microlens array sheet 70 and the optical axis of each through-cavity 81 of the anisotropic light absorbing sheet 71 are aligned. Is.
  • the anisotropic light-absorbing sheet 71 is formed by arranging the through cavities 81 having the same contour with regularity, it is easy to match the optical axis of each microlens of the microlens array sheet 70, The anisotropic light absorbing sheet 71 is easy to manufacture.
  • the anisotropic light-absorbing sheet of the present invention is not limited to the anisotropic light-absorbing sheet 71 shown in FIGS. 6 and 8, and even if a large number of through cavities 81 are irregularly arranged. Also, the outlines of the through cavities 81 are not limited to squares, and the sizes (areas) of the outlines of the respective through cavities 81 are not necessarily required.
  • FIG. 9A shows an anisotropic light-absorbing sheet 71 in which rectangular through cavities 81 having different outline sizes are irregularly arranged.
  • FIG. 9B shows an anisotropic light-absorbing sheet 71 in which circular through cavities 81 having different contour sizes are irregularly arranged.
  • an equilateral triangle or a hexagon can be applied as the contour.
  • FIG. 10 is a schematic cross-sectional view of the anisotropic light absorbing sheet 71 in which the through cavities 81 are irregularly arranged.
  • the microphone lenses of the microlens array sheet 70 correspond to the through cavities 81 on a one-to-one basis so that the optical axes coincide.
  • the anisotropic light-absorbing sheet in which the through cavities are irregularly arranged is more difficult to manufacture than the anisotropic light-absorbing sheet in which the through-cavities are regularly arranged, but has the advantage that the moire phenomenon can be suppressed. Have.
  • the optical image emitted from the projector main body 63 and reflected by the mirror 64 is directed to the screen 61.
  • a microlens array sheet 70 is provided on the incident side of the screen 61. Since the area where each microlens is formed is a minute area, the optical image to each microlens can be considered to be approximately parallel light.
  • the parallel light PL that has entered each microlens is, for example, a predetermined point (focal point) in the corresponding through-cavity 81 of the anisotropic light absorbing sheet 71 by each microlens.
  • the light is condensed so as to be directed (the focal point may be at another position), and after passing through the predetermined point (focal point), it becomes divergent light inside the through-cavity 81.
  • the diverging light light that has passed through the through-cavity 81 without colliding (incident) with the side wall 80 that defines the through-cavity 81 becomes an optical image for observation by the observer.
  • Most of the diverging light that has collided (incident) with the side wall 80 defining the through-cavity 81 is absorbed by the side wall 80.
  • a desired viewing angle as the screen 61 is achieved.
  • an anisotropic light absorbing sheet 71 is provided on the surface side of the screen 61 exposed to the outside.
  • the external light NS incident on the anisotropic light absorbing sheet 71 at an angle enters the through-cavity 81 and is absorbed and removed by the side wall 80 having light absorption property that defines the through-cavity 81. Even if several percent of the external light NS is reflected, it is absorbed when it reaches the opposite side wall 80, and is completely absorbed as the reflection is multiplexed. Even if the incident angle force S is small, by selecting a long axial length of the through-cavity 81 (in other words, the thickness of the anisotropic light-absorbing sheet 71), it is possible to reach any part of the side wall 80.
  • the outside light NS is absorbed. Further, even if the light reaches the plane of the microlens array sheet 70 and is reflected by the plane, it is absorbed there when it reaches a shifted part of the side wall 80 in the path after reflection.
  • the outline of the through-cavity 81 may be any shape, but the average diameter of the inscribed circle or circumscribed circle of the outline is about 100 to 200 ⁇ m, and The axial length (the thickness of the anisotropic light absorbing sheet 71) is preferably about 100 to 200 m. From these ranges, consider the viewing angle required for the screen 61 and the absorption characteristics of external light.
  • a specific value may be selected.
  • the through-cavity surrounded by the light-absorbing side walls is a net-like structure in which a large number of the through-cavities share a common side wall. Due to the configuration, manufacturing is easy and low cost can be expected.
  • the microlens array sheet and the anisotropic light absorption sheet are used, manufacturing is easy and low cost can be expected, and external light is absorbed and removed. , A high-quality optical image can be supplied to the observer.
  • the screen of the fifth embodiment is also a rear screen applied to the rear projection type image projection apparatus (see FIG. 7), similarly to the screen 61 of the fourth embodiment.
  • the image projection apparatus to which the screen of the fifth embodiment is applied has, for example, a sound source inside the apparatus casing.
  • FIG. 11 is a schematic sectional view showing a screen 61A of the fifth embodiment.
  • the screen 61A of the fifth embodiment is also composed of a microlens array sheet 70A disposed on the incident side and an anisotropic light absorbing sheet 71.
  • the screen 61A force of the fifth embodiment is that through-holes 90 along the optical axis are provided in some microlenses of the microlens array sheet 70A.
  • the anisotropic light absorbing sheet 71 is the same as that of the fourth embodiment.
  • the through hole 90 communicates with the through cavity 81 of the anisotropic light absorbing sheet 71 corresponding to the microlens.
  • the arrangement of the plurality of through-holes 90 is arbitrary. For example, as shown in FIG. 12, it may be provided for each microlens having a predetermined distance DIS (for example, 5 cm) vertically and horizontally.
  • DIS for example, 5 cm
  • Such a separation distance is preferably set to such a distance that the observer cannot recognize the presence of the through-hole 90 from the optical image via the screen 61A!
  • the same effects as the screen of the fourth embodiment can be obtained.
  • the sound generated by the sound source inside the housing of the image projection apparatus is led out to the outside through the communicating through-hole 90 and the through-cavity 81, so that the observer can Sound can be heard properly.
  • the inside and outside of the casing communicate with each other through the through-hole 90 and the through-cavity 81, so that it can be cooled.
  • the screen of the sixth embodiment is also a rear screen applied to the rear projection type image projection apparatus (see FIG. 7), like the screen 61 of the fourth embodiment.
  • FIG. 13 is a schematic cross-sectional view showing a screen 61B of the sixth embodiment.
  • the screen 61B of the sixth embodiment also has a microlens array sheet 70, an anisotropic light absorption sheet 71, and a pinhole provided between the microlens array sheet 70 and the anisotropic light absorption sheet 71 arranged on the incident side. It consists of an array sheet 72.
  • the arrangement order of these three sheets may be the reverse of that shown in FIG.
  • microlens array sheet 70 and the anisotropic light absorbing sheet 71 are the same as those in the fourth embodiment.
  • the pinhole array sheet 72 is provided with pinholes 101 with respect to the light-absorbing pinhole array sheet main body 100.
  • the pinhole array sheet 72 may be formed as a single component and may be joined between the microlens array sheet 70 and the anisotropic light absorbing sheet 71. Also, the pinhole array sheet 72 may be integrated with the light exit surface of the microlens array sheet 70. It may be formed, or may be formed integrally with the incident surface of the anisotropic light absorbing sheet 71.
  • the pinhole 101 can be formed by applying, for example, a photoetching method.
  • Each pinhole 101 corresponds to the incident-side microlens and the exit-side through-cavity 81, and their optical axes coincide with each other.
  • Each pinhole 101 is provided at or near the focal position of the corresponding microlens.
  • FIG. Forces showing the case where the cavities 81 are regularly arranged Even if the through cavities 8 1 of various sizes are arranged irregularly, each pinhole 101 is connected to the incident side of the corresponding through cavity 81. Are provided with the optical axis aligned.
  • the pinhole 101 may be formed by a cavity (air layer), or may be a minute optical window in which a transparent material is present. Further, the pinhole 101 may be subjected to a treatment that imparts diffusibility to transmitted light.
  • the pinhole 101 may be a cylindrical trapezoidal optical opening which may be a cylindrical optical opening.
  • the pinhole 101 is formed in the vicinity of the focal point of the corresponding microlens, the light of the light image collected by the microlens is blocked by the pinhole 101. It is transparent. The light that has passed through the pinhole 101 becomes a light image that is used for observation by the observer, as in the fourth embodiment.
  • the presence of the pinhole array sheet main body 100 makes one surface of the microlens array sheet 70 invisible from the observer side. In other words, the observer observes the light image from the black base. A contrast light image can be provided to the observer.
  • external light is also absorbed and removed by the anisotropic light-absorbing sheet 71 as in the fourth embodiment. Even if the pinhole array sheet 72 is reached, it is absorbed and removed by the light-absorbing pinhole array sheet main body 100, which is a portion other than the pinhole 101 of the pinhole array sheet 72. In other words, it can be considered that almost no external light enters the inside of the apparatus housing through the pinhole 101, and it is possible to prevent external light from entering the inside of the apparatus housing and causing adverse effects as stray light.
  • FIG. 14 shows a modified embodiment of the screen of the sixth embodiment.
  • the screen 61C shown in FIG. 14 includes a microlens array sheet 70C, a transparent flat plate 73, a pinhole array sheet 72, and an anisotropic light absorbing sheet 71.
  • Partial force of the microlens array sheet 70C and the transparent flat plate 73 in this modified embodiment is the same as the microlens array sheet 70 of the sixth embodiment. Pi It is difficult to manufacture the entire hole array sheet 72 and the anisotropic light absorbing sheet 71 as one member, but the transparent flat plate 73, the transparent flat plate 73, the pinhole array sheet 72, and the anisotropic light absorbing sheet 71 part. Can be manufactured as a single member. Moreover, it becomes easy to handle and sell as a sheet-like optical component having light absorption.
  • the screen of the seventh embodiment is a so-called front screen applied to a front projection type image projection apparatus.
  • the positional relationship between the projector main body that projects the optical image and the front screen is similar to the positional relationship between the projector main body 63 and the mirror 64 in FIG.
  • FIG. 15 is a schematic cross-sectional view showing a screen 61D of the seventh embodiment.
  • the screen 61D of the seventh embodiment includes an anisotropic light absorbing sheet 71, a light diffusing layer 74, and a light reflecting layer 75 from the entrance and exit surface sides.
  • the anisotropic light-absorbing sheet 71 is the same as that of the fourth embodiment. However, since the optical image from the projector main body reciprocates through the through-cavity 81, the length of the through-cavity 81 in the axial direction, in other words, the thickness of the anisotropic light-absorbing sheet 71 is, for example, It becomes shorter than the case of the rear screen.
  • FIG. 15 shows the anisotropic light absorbing sheet 71 in which the through cavities 81 of various sizes are irregularly arranged. However, the anisotropic light absorbing sheet 71 in which the through cavities 81 of the same shape are regularly arranged is shown in FIG. Of course, it may be applied to the screen 61D of the seventh embodiment.
  • the light diffusion layer 74 diffuses the incident light by passing through the light diffusion layer 74, and the light reflection layer 75 reflects the incident light.
  • the light diffusion layer 74 and the light reflection layer 75 are the same as those of the existing front screen.
  • As the light reflecting layer 75 for example, PE A substrate formed by evaporating aluminum, silver or the like on a substrate such as T can be applied.
  • the light diffusion layer 74 for example, a material obtained by bonding a large number of transparent beads made of acrylic or styrene can be used. Further, as the light diffusion layer 74, for example, a scattering acid oxide (MgSO,
  • Powder bound with a polymer material can be applied.
  • the optical axis of the through-cavity 81 of the anisotropic light-absorbing sheet 71 and the normal direction of the light reflecting layer 75 are preferably parallel, but the present invention is not limited to this.
  • An optical image emitted from a projector main body (not shown) is reflected directly or by a mirror (not shown) or the like and is incident on the screen 61D of the seventh embodiment.
  • the incident light image can be regarded as parallel light along the optical axis of the through-cavity 81 when viewed from each through-cavity 81 having a small cross-sectional area of the anisotropic light absorbing sheet 71.
  • each through-cavity 81 The parallel light PL traveling along the optical axis in each through-cavity 81 is diffused by passing through the light diffusion layer 74 and reaches the light reflection layer 75.
  • the light (diffused light) reflected by the light reflecting layer 75 is diffused by passing through the light diffusing layer 74 again. Also by this diffusion, light that travels through the through-cavity 81 without reaching the side wall 80 and is emitted to the outside of the through-cavity 81 becomes an optical image for observation by the observer.
  • the diffused light that collides (incides) with the side wall 80 that defines the through-cavity 81 is absorbed by the side wall 80. As described above, a desired viewing angle as the screen 61D is achieved.
  • the external light NS incident on the anisotropic light absorbing sheet 71 at an angle enters the through-cavity 81, and is absorbed and removed by the side wall 80 having light absorbability that defines the through-cavity 81. Even if several percent of the external light NS is reflected, it is absorbed when it reaches the opposite side wall 80, and is completely absorbed as the reflection is multiplexed. Even if the incident angle of the external light NS is small to some extent, by selecting a long axial length of the through-cavity 81 (in other words, the thickness of the anisotropic light absorbing sheet 71), any of the side walls 80 can be selected. It reaches the spot and the outside light NS is absorbed. Even if the light diffusing layer 74 and the light reflecting layer 75 are reached, the direction of diffusion by the light diffusing layer 74 is smaller than that of the optical image. It reaches any part of the side wall 80 in the path after reflection and is absorbed there.
  • the front screen of the seventh embodiment is also configured using the anisotropic light absorption sheet of the fourth embodiment, it is easy to manufacture and can be expected to be low in cost, and absorbs and removes external light. Therefore, a high-quality optical image can be supplied to the observer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

A screen consisting of an optical sheet having a Fresnel surface on one side and a microlens array surface on the other side, and an anisotropic light absorption sheet exhibiting different light absorption characteristics depending on the incident angle of light entering at all incident surfaces, wherein the both sheets are arranged oppositely to the microlens array surface in proximity thereto. Alternatively, the screen is constituted of the optical sheet, the anisotropic light absorption sheet, and a pinhole array sheet that are arranged in this order in proximity to each other. Furthermore, the screen is constituted of the optical sheet, the anisotropic light absorption sheet, the pinhole array sheet, and a light diffusion sheet that are arranged in this order in proximity to each other. In the anisotropic light absorption sheet, a large number of through cavities surrounded by light absorbing sidewalls are assembled densely while sharing relative sidewalls.

Description

明 細 書  Specification
背面投射型画像投射装置用スクリーン  Screen for rear projection type image projector
技術分野  Technical field
[0001] 本発明は背面投射型画像投射装置用スクリーンに関する。  The present invention relates to a screen for a rear projection type image projection apparatus.
背景技術  Background art
[0002] CRTを用いたプロジェクタ、液晶プロジェクタ、マイクロミラーデバイスを用いたプロ ジ クタなどの背面投射型画像投射装置が、一段と普及しつつある。このような背面 投射型画像投射装置に用いられるスクリーンも、位置が異なる複数の観察者に対す る視認性が良好であることが求められる。  [0002] Rear projection type image projection apparatuses such as a projector using a CRT, a liquid crystal projector, and a projector using a micromirror device are becoming more widespread. The screen used in such a rear projection type image projection apparatus is also required to have good visibility for a plurality of observers with different positions.
[0003] このような従来の背面投射型画像投射装置用スクリーンは、その入射段に、入射光 を平行光にするフレネルレンズが設けられており、このフレネルレンズからの平行光 を、マイクロレンズアレイシート又はレンチキュラーシートなどを透過させることで、所 望する視野角を得るようにしている(特許文献 1参照)。また、マイクロレンズアレイシ ート又はレンチキュラーシートに近接して、外光の悪影響(映り込みや装置内迷光な ど)を防止するような構成も適宜設けられる。  [0003] Such a screen for a conventional rear projection type image projection apparatus is provided with a Fresnel lens that converts incident light into parallel light at the incident stage, and the parallel light from the Fresnel lens is converted into a microlens array. A desired viewing angle is obtained by transmitting a sheet or a lenticular sheet (see Patent Document 1). In addition, a configuration is also provided as appropriate in the vicinity of the microlens array sheet or lenticular sheet so as to prevent adverse effects of external light (such as reflections and stray light in the apparatus).
[0004] また、 CRTを用いたプロジェクタ、液晶プロジェクタ、マイクロミラーデバイスを用い たプロジェクタなどの画像投射装置が、一段と普及しつつある。このような画像投射 装置に用いられるスクリーンは、位置が異なる複数の観察者に対する視認性が良好 であることが求められる反面、画像投射装置が設置されて ヽる室内の光源力ゝらの光 線や窓などを通して室内に入り込む光線などの外光力 スクリーン上の投射画像の 画質を低下させな 、ことが求められて 、る。  [0004] In addition, image projection apparatuses such as projectors using CRTs, liquid crystal projectors, and projectors using micromirror devices are becoming increasingly popular. The screen used in such an image projection apparatus is required to have good visibility for a plurality of observers at different positions, but on the other hand, the light beam from the light source in the room where the image projection apparatus is installed. External light such as light that enters the room through windows and windows, etc. There is a need to reduce the image quality of the projected image on the screen.
[0005] 例えば、特許文献 2には、外光による画質低下を抑制するため、ルーバー状の光 吸収壁列を有するスクリーンが記載されている。ルーバー状の光吸収壁列は水平方 向に延長しており、透明部材の表面力 厚さ方向に入り込んで設けられている。透明 部材の表面で反射される入射角の外光は、その反射によって、観察者の視野とは無 関係な方向に進行する。  [0005] For example, Patent Document 2 describes a screen having a louver-like light absorption wall array in order to suppress deterioration in image quality due to external light. The louver-shaped light absorption wall row extends in the horizontal direction and is provided so as to enter the surface force thickness direction of the transparent member. The incident external light reflected by the surface of the transparent member travels in a direction unrelated to the visual field of the observer due to the reflection.
[0006] 透明部材の表面から内部に進行した外光は、ルーバー状の光吸収壁列によって吸 収され、観察者には到達しない。 [0006] External light traveling inward from the surface of the transparent member is absorbed by the louver-like light absorption wall array. And does not reach the observer.
[0007] また例えば、特許文献 3には、良好な視認性と外光による画質低下とを抑制するた め、高屈折率の柱状領域と低屈折率の柱状領域とを混在させたシートを利用してい る。なお、低屈折率の柱状領域として貫通孔を用いることも記載されている。入射方 向によって、高屈折率の柱状領域と低屈折率の柱状領域との境界を通過したり反射 したりすることによって、上記要求を満たしている。  [0007] For example, Patent Document 3 uses a sheet in which a columnar region having a high refractive index and a columnar region having a low refractive index are mixed in order to suppress good visibility and deterioration in image quality due to external light. is doing. It is also described that a through hole is used as a columnar region having a low refractive index. The above requirement is satisfied by passing or reflecting the boundary between the columnar region having a high refractive index and the columnar region having a low refractive index depending on the incident direction.
特許文献 1:特開 2000— 131506号公報  Patent Document 1: JP 2000-131506 A
特許文献 2 :特開平 11 167167号公報  Patent Document 2: JP-A-11 167167
特許文献 3:特開 2005 - 326824号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-326824
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、従来の背面投射型画像投射装置用スクリーンは、入射光を平行光に するための構成要素、所望する視野角を達成するための構成要素、外光の悪影響 を防止するための構成要素など、各種の構成要素を備えなければならず、部品点数 が多いものであった。そのため、製造工数が多ぐ製造時間も長くなつていた。  [0008] However, the conventional screen for a rear projection type image projection apparatus has components for converting incident light into parallel light, components for achieving a desired viewing angle, and for preventing adverse effects of external light. Various components such as components had to be provided, and the number of parts was large. For this reason, the manufacturing time is long and the manufacturing time is long.
[0009] そのため、部品点数が少なぐ製造面でのメリットが大きい背面投射型画像投射装 置用スクリーンが求められている。  [0009] Therefore, there is a need for a rear projection type image projection apparatus screen that has a small number of parts and a large manufacturing advantage.
[0010] また、ルーバー状の光吸収壁列を用いるスクリーンでは、光吸収壁列を透明部材 内に設けなければならず、製造が複雑になり、コスト高を招くという課題を有する。ま た、光吸収壁列を透明部材内に設けなければならず、大面積のものを製造すること が難しい。さらに、上方や下方力もの外光の悪影響を抑制できるが、左右方向からの 外光の悪影響を抑制することができな 、。  [0010] In addition, in a screen using a louver-like light absorption wall array, the light absorption wall array must be provided in the transparent member, and there is a problem that manufacturing becomes complicated and costs increase. In addition, it is difficult to manufacture a large area because the light absorption wall row must be provided in the transparent member. Furthermore, the adverse effect of external light from upward and downward forces can be suppressed, but the adverse effect of external light from the left and right directions cannot be suppressed.
[0011] また、高屈折率の柱状領域と低屈折率の柱状領域とを混在させたシートを用いるス クリーンでは、高屈折率の柱状領域と低屈折率の柱状領域とをシートに多数形成し なければならず、製造が複雑になり、コスト高を招くという課題を有する。さらに、外光 の影響を、散乱によって抑制する方式であるため、外光の一部が観察者の方に進行 することもあり得、外光の強度によっては、外光の影響の抑制が不十分になる恐れが ある。 [0012] そのため、外光の悪影響を吸収によって抑制できる低コストが期待できる画像投射 装置用スクリーンが求められている。また、入射方向によって吸収特性が異なる、製 造が容易で低コストが期待できるシート状光学部品が求められている。また、そのよう なシート状光学部品を簡単にかつ低コストで製造し得る、製造方法、又は、シート状 光学部品用金型の製造方法が求められている。 [0011] In a screen using a sheet in which a high refractive index columnar region and a low refractive index columnar region are mixed, a large number of high refractive index columnar regions and low refractive index columnar regions are formed on the sheet. Therefore, there is a problem that the manufacturing is complicated and the cost is increased. Furthermore, since the influence of external light is suppressed by scattering, a part of the external light may travel toward the observer, and depending on the intensity of external light, it is not possible to suppress the influence of external light. There is a risk of becoming sufficient. [0012] Therefore, there is a demand for a screen for an image projection apparatus that can be expected to be low-cost that can suppress adverse effects of external light by absorption. There is also a need for a sheet-like optical component that has different absorption characteristics depending on the direction of incidence and that can be easily manufactured and expected to be low in cost. There is also a need for a production method or a method for producing a mold for a sheet-like optical component that can produce such a sheet-like optical component easily and at low cost.
課題を解決するための手段  Means for solving the problem
[0013] 第 1の本発明は、背面投射型画像投射装置に適用するスクリーンにおいて、一面 にフレネルレンズ面が形成されて 、ると共に、他面にマイクロレンズアレイ面が形成さ れている光学シートと、全ての入射面から入射した入射光の入射角度によって光吸 収特性が異なる異方性光吸収シートとが上記マイクロレンズアレイ面に面して近接配 置されて構成されて ヽることを特徴とする。 [0013] A first aspect of the present invention is an optical sheet in which a Fresnel lens surface is formed on one surface and a microlens array surface is formed on the other surface in a screen applied to a rear projection type image projection apparatus. And an anisotropic light-absorbing sheet having different light absorption characteristics depending on the incident angle of incident light incident from all incident surfaces, and is arranged close to the microlens array surface. To do.
[0014] 第 2の本発明は、前記光学シートと前記異方性光吸収シートと、さらにピンホールァ レイシートとが、この順に近接して配置されて構成されて ヽることを特徴とする。 [0014] The second aspect of the present invention is characterized in that the optical sheet, the anisotropic light absorbing sheet, and further a pinhole array sheet are arranged close to each other in this order.
[0015] 第 3の本発明は、前記光学シートと前記異方性光吸収シートと前記ピンホールァレ ィシートと、さらに光拡散シートとが、この順に近接して配置されて構成されていること を特徴とする。 [0015] The third aspect of the present invention is characterized in that the optical sheet, the anisotropic light absorbing sheet, the pinhole array sheet, and a light diffusion sheet are arranged close to each other in this order.
[0016] 第 4の本発明の背面投射型画像投射装置用スクリーンは、背面投射型画像投射装 置に適用する背面投射型画像投射装置用スクリーンにおいて、光吸収性の側壁で 囲繞された貫通空洞が、互いの上記側壁を共有して多数密に集合してなる異方性 光吸収シート、光拡散層及び光反射層をこの順に有することを特徴とする。前記画像 投射装置用スクリーンにおいては、前記異方性光吸収シートと、マイクロレンズアレイ シートとを有することが望ま 、。上記マイクロレンズアレイシートを構成するマイクロ レンズ及び上記貫通空洞の光軸は同一であることが望ましい。一部の上記マイクロレ ンズは、両面を連通する貫通孔を有し、この貫通孔は同一光軸に係る上記貫通空洞 に連絡して 、ることが望ま 、。上記各マイクロレンズの焦点位置近傍にピンホール を有するピンホールアレイシートは、上記異方性光吸収シート及び上記マイクロレン ズアレイシート間に設けられて!/、ることが望まし!/、。  [0016] A screen for a rear projection type image projection apparatus according to a fourth aspect of the present invention is a screen for a rear projection type image projection apparatus applied to a rear projection type image projection apparatus, and is a through cavity surrounded by a light absorbing side wall. However, it has an anisotropic light-absorbing sheet, a light diffusion layer, and a light reflection layer formed in this order by sharing a plurality of side walls with each other. The image projector screen preferably includes the anisotropic light absorbing sheet and a microlens array sheet. It is desirable that the microlenses constituting the microlens array sheet and the optical axes of the through cavities are the same. Some of the above-mentioned microlenses have through-holes communicating on both sides, and it is desirable that this through-hole communicates with the above-mentioned through-cavity associated with the same optical axis. A pinhole array sheet having a pinhole near the focal position of each microlens is provided between the anisotropic light absorbing sheet and the microlens array sheet! / I want to be! /
発明の効果 [0017] 本発明の背面投射型画像投射装置用スクリーンによれば、一面にフレネルレンズ 面が形成され、他面にマイクロレンズアレイ面が形成された光学シートを用いている ので、従来に比較して部品点数を抑えることができる。その結果、製造工数の削減や 製造時間の短縮化が期待できる。 The invention's effect [0017] According to the screen for a rear projection type image projection apparatus of the present invention, an optical sheet having a Fresnel lens surface formed on one surface and a microlens array surface formed on the other surface is used. The number of parts can be reduced. As a result, reductions in manufacturing steps and manufacturing time can be expected.
[0018] また、外光の悪影響を吸収によって抑制できる低コストの画像投射装置用スクリー ンを提供できる。また、画像投射装置用スクリーンに適用可能な、入射方向によって 吸収特性が異なる、製造が容易で低コストの異方性光吸収シートを提供できる。さら に、本発明によれば、異方性光吸収シートを容易かつ低コストで製造することができ る。さらにまた、本発明によれば、射出成形、又は、打ち抜きプレスによって異方性光 吸収シートを製造する際に使用される金型を、容易かつ低コストで製造することがで きる。  [0018] Further, it is possible to provide a low-cost screen for an image projection apparatus that can suppress the adverse effect of external light by absorption. In addition, it is possible to provide an anisotropic light-absorbing sheet that can be applied to a screen for an image projection apparatus and that has different absorption characteristics depending on the incident direction and is easy to manufacture and low-cost. Furthermore, according to the present invention, an anisotropic light-absorbing sheet can be produced easily and at low cost. Furthermore, according to the present invention, a mold used for manufacturing an anisotropic light-absorbing sheet by injection molding or punching press can be manufactured easily and at low cost.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]第 1の実施形態の背面投射型画像投射装置用スクリーンを示す概略断面図で ある。  FIG. 1 is a schematic cross-sectional view showing a screen for a rear projection type image projection apparatus according to a first embodiment.
[図 2]第 1の実施形態のスクリーンを用いた背面投射型画像投射装置を示す概略断 面図である。  FIG. 2 is a schematic sectional view showing a rear projection type image projection apparatus using the screen of the first embodiment.
[図 3]第 1の実施形態の異方性光吸収シートを示す概略斜視図である。  FIG. 3 is a schematic perspective view showing the anisotropic light absorbing sheet of the first embodiment.
[図 4]第 2の実施形態の背面投射型画像投射装置用スクリーンを示す概略断面図で ある。  FIG. 4 is a schematic cross-sectional view showing a screen for a rear projection type image projection apparatus according to a second embodiment.
[図 5]第 3の実施形態の背面投射型画像投射装置用スクリーンを示す概略断面図で ある。  FIG. 5 is a schematic cross-sectional view showing a screen for a rear projection type image projection apparatus of a third embodiment.
[図 6]第 4の実施形態の画像投射装置用スクリーンを示す概略断面図である。  FIG. 6 is a schematic cross-sectional view showing a screen for an image projection apparatus according to a fourth embodiment.
[図 7]第 4の実施形態の画像投射装置用スクリーンを用いた背面投射型画像投射装 置を示す概略断面図である。  FIG. 7 is a schematic sectional view showing a rear projection type image projection apparatus using a screen for an image projection apparatus according to a fourth embodiment.
[図 8]第 4の実施形態の異方性光吸収シートに関する概略斜視図である。  FIG. 8 is a schematic perspective view of an anisotropic light absorbing sheet according to a fourth embodiment.
[図 9]第 4の実施形態の異方性光吸収シートに関する変形実施形態の概略斜視図で ある。  FIG. 9 is a schematic perspective view of a modified embodiment related to the anisotropic light-absorbing sheet of the fourth embodiment.
[図 10]第 4の実施形態の異方性光吸収シートに関する変形実施形態を示す概略断 面図である。 FIG. 10 is a schematic section showing a modified embodiment related to the anisotropic light-absorbing sheet of the fourth embodiment. FIG.
[図 11]第 5の実施形態の画像投射装置用スクリーンを示す概略断面図である。  FIG. 11 is a schematic sectional view showing a screen for an image projection apparatus according to a fifth embodiment.
[図 12]第 5の実施形態のマイクロレンズアレイシートにおける貫通孔の配置を示す概 略平面図である。  FIG. 12 is a schematic plan view showing the arrangement of through holes in the microlens array sheet of the fifth embodiment.
[図 13]第 6の実施形態の画像投射装置用スクリーンを示す概略断面図である。  FIG. 13 is a schematic sectional view showing a screen for an image projection apparatus according to a sixth embodiment.
[図 14]第 6の実施形態の画像投射装置用スクリーンに関する変形実施形態を示す概 略断面図である。  FIG. 14 is a schematic cross-sectional view showing a modified embodiment relating to the screen for an image projection apparatus of the sixth embodiment.
[図 15]第 7の実施形態の画像投射装置用スクリーンを示す概略断面図である。  FIG. 15 is a schematic sectional view showing a screen for an image projection apparatus according to a seventh embodiment.
符号の説明  Explanation of symbols
[0020] 10· ··背面投射型画像投射装置、 11、 11Α、 11Β· ··スクリーン、 20· ··光学シート、 2 1…異方性光吸収シート、 22· ··ピンホールアレイシート、 23· ··光拡散シート、 60…画 像投射装置、 61、 61A、 61B、 61C、 61D…スクリーン、 63· ··プロジェクタ本体、 70 、 70A、 70C…マイクロレンズアレイシート、 71· ··異方性光吸収シート、 72· ··ピンホ ールアレイシート、 73…透明平板、 74…光拡散層、 75…光反射層、 80· ··側壁、 81 …貫通空洞、 90· ··貫通孔、 100· ··ピンホールアレイシート本体、 101…ピンホール。 発明を実施するための最良の形態  [0020] 10 ··· rear projection type image projection device, 11, 11Α, 11Β ··· screen, 20 ··· optical sheet, 2 1 ··· anisotropic light absorbing sheet, 22 ··· pinhole array sheet, 23 ··· ··· Light diffusion sheet, 60… Image projection device, 61, 61A, 61B, 61C, 61D… Screen, 63 ··· Projector body, 70, 70A, 70C… Micro lens array sheet, 71 ··· Anisotropic light absorption Sheet, 72 ··· Pinhole array sheet, 73… Transparent flat plate, 74… Light diffusion layer, 75… Light reflection layer, 80 ··· Side wall, 81… Through cavity, 90 ··· Through hole, 100 ··· Pinhole Array sheet body, 101 ... pinhole. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] (A)第 1の実施形態 [0021] (A) First Embodiment
以下、本発明による背面投射型画像投射装置用スクリーンの第 1の実施形態を、図 面を参照しながら説明する。  Hereinafter, a first embodiment of a screen for a rear projection type image projection apparatus according to the present invention will be described with reference to the drawings.
[0022] 図 2は、第 1の実施形態のスクリーンを用いた背面投射型画像投射装置を示す概 略断面図である。 FIG. 2 is a schematic cross-sectional view showing a rear projection image projection apparatus using the screen of the first embodiment.
[0023] 図 2において、背面投射型画像投影装置 10は、第 1の実施形態のスクリーン 11と、 筐体フレーム 12とで喑箱を形成し、この暗箱中に、例えば、プロジェクタ本体 13とミラ 一 14とが配されている。プロジェクタ本体 13は、詳細構成の図示は省略する力 CR T、液晶パネル又はマイクロミラーデバイスなどを用いた光画像の形成部と、形成され た光画像を拡大投射させる投影レンズ装置、光源、及び駆動回路とからなり、プロジ ェクタ本体 13から出射された光画像は、ミラー 14で反射されて進行方向がスクリーン 11側に向けられ、スクリーン 11を介して観察者の方に到達する。 [0024] 第 1の実施形態のスクリーン 11は、図 1の概略断面図に示すように、ミラー 14側に 配置されている光学シート 20と、異方性光吸収シート 21とでなる。 In FIG. 2, the rear projection type image projection apparatus 10 forms a basket box with the screen 11 of the first embodiment and the housing frame 12, and, for example, the projector main body 13 and the mirror are placed in this dark box. 14 are arranged. The projector body 13 includes a power CRT, a liquid crystal panel or a micromirror device that does not show the detailed configuration, and a projection lens device, a light source, and a drive for enlarging and projecting the formed light image. The optical image, which is composed of a circuit and is emitted from the projector main body 13, is reflected by the mirror 14 so that the traveling direction is directed toward the screen 11, and reaches the observer through the screen 11. As shown in the schematic cross-sectional view of FIG. 1, the screen 11 of the first embodiment includes an optical sheet 20 disposed on the mirror 14 side and an anisotropic light absorbing sheet 21.
[0025] 光学シート 20は、フレネルレンズとしての機能と、マイクロレンズアレイシートとして の機能との 2つの機能を発揮するものである。光学シート 20のミラー 14側の面がフレ ネルレンズ面 20aになっており、光学シート 20の異方性光吸収シート 21側の面がマ イク口レンズアレイ面 20bになっている。  [0025] The optical sheet 20 exhibits two functions: a function as a Fresnel lens and a function as a microlens array sheet. The surface on the mirror 14 side of the optical sheet 20 is a Fresnel lens surface 20a, and the surface on the anisotropic light absorbing sheet 21 side of the optical sheet 20 is a microphone aperture lens array surface 20b.
[0026] 光学シート 20のフレネルレンズ面 20aは、一面が平面のフレネルレンズの凹凸面と 同様な面形状を有する。フレネルレンズ面 20aは、プロジェクタ本体 13から出射され 、ミラー 14で反射された発散光を平行光に変換する機能を担っている。  [0026] The Fresnel lens surface 20a of the optical sheet 20 has the same surface shape as the concave-convex surface of the Fresnel lens whose one surface is flat. The Fresnel lens surface 20a has a function of converting divergent light emitted from the projector body 13 and reflected by the mirror 14 into parallel light.
[0027] 光学シート 20のマイクロレンズアレイ面 20bは、一面が平面のマイクロレンズアレイ シートの凹凸面と同様な面形状を有する。マイクロレンズアレイ面 20bは、公知のよう に、多数のマイクロレンズを例えば縦横に配列したものであり、入射された光画像は、 各マイクロレンズによって微小領域ごとに集光される。  [0027] The microlens array surface 20b of the optical sheet 20 has the same surface shape as the concavo-convex surface of the microlens array sheet whose one surface is flat. As is well known, the microlens array surface 20b is formed by arranging a large number of microlenses, for example, vertically and horizontally, and an incident light image is condensed by each microlens for each minute region.
[0028] 光学シート 20は 1部材として当初力も製造されたものであっても良ぐ一面が平面 で他面がフレネルレンズ面 20aの第 1のサブ部材と、一面が平面で他面がマイクロレ ンズアレイ面 20bの第 2のサブ部材とを、両平面で貼り合わせて一体ィ匕したものであ つても良い。  [0028] The optical sheet 20 may be one member that was originally manufactured with force, and one surface may be flat and the other surface may be the first sub-member of the Fresnel lens surface 20a, and one surface may be flat and the other surface may be a micro-layer. The second sub-member of the sensor array surface 20b may be bonded together on both planes and integrated together.
[0029] 異方性光吸収シート 21は、光学シート 20のマイクロレンズアレイ面 20b側に、接触 して、又は、多少離間して設けられている。光学シート 20及び異方性光吸収シート 2 1を近接して設ける方法は問われないものである。例えば、両シートの周囲を枠部材 によって抑えて近接配置するようにしても良ぐ周囲などを接着、融着などによって近 接配置するようにしても良い。  The anisotropic light absorbing sheet 21 is provided in contact with the optical lens 20 on the side of the microlens array surface 20b or at some distance from it. The method of providing the optical sheet 20 and the anisotropic light absorbing sheet 21 close to each other is not limited. For example, the periphery of both sheets may be placed close to each other with a frame member, or the surrounding may be placed close together by adhesion, fusion, or the like.
[0030] 異方性光吸収シート 21は、光学シート 20から入射された光に対し、所定範囲の入 射方向の成分を通過させ、他の入射方向の成分を吸収するものであれば良い。図 1 及び図 3は、異方性光吸収シート 21の一例の構成を示している。異方性光吸収シー ト 21は、当該スクリーン 11の視野角として、許容している観測者の位置に応じた角度 を達成すると共に、室内の光源や窓を介した外部からの外光を吸収除去するための ものである。 [0031] 一般に、室内の光源は蛍光灯や白熱灯であり、窓を通して室内に入り込む光線は 太陽光である。異方性光吸収シート 12は可視光に対する吸収特性を有するようにし ておく。 [0030] The anisotropic light absorbing sheet 21 may be anything as long as it allows light incident from the optical sheet 20 to pass a component in the incident direction within a predetermined range and absorb the component in the other incident direction. 1 and 3 show an example of the configuration of the anisotropic light absorbing sheet 21. FIG. The anisotropic light absorption sheet 21 achieves an angle corresponding to the position of the permitted observer as the viewing angle of the screen 11 and absorbs and removes external light from the outside through a light source or window in the room. It is for. [0031] Generally, a light source in a room is a fluorescent lamp or an incandescent lamp, and a light beam entering the room through a window is sunlight. The anisotropic light absorbing sheet 12 is made to have an absorption characteristic for visible light.
[0032] 図 3は、第 1の実施形態のスクリーン 11で用いた異方性光吸収シート 21の構成を 示す概略斜視図である。  FIG. 3 is a schematic perspective view showing the configuration of the anisotropic light absorption sheet 21 used in the screen 11 of the first embodiment.
[0033] この異方性光吸収シート 21は、光吸収性の側壁 30で囲繞された貫通空洞 31が、 互いの側壁 30を共有して多数密に集合してなるネット状的なものである。貫通空洞 3 1は完全な空洞であり、言い換えると、そこには空気だけが存在しているものである。 なお、貫通空洞 31の部分が、透光性高分子材料などの透光性の材料で充填されて いても良い。  The anisotropic light absorbing sheet 21 is a net-like structure in which through cavities 31 surrounded by light absorbing side walls 30 share many side walls 30 and are densely assembled. The through-cavity 31 is a complete cavity, in other words, only air is present there. Note that the portion of the through cavity 31 may be filled with a light-transmitting material such as a light-transmitting polymer material.
[0034] 光吸収性の側壁 30は、その全体が単一の光吸収性材料で形成されていても良ぐ 側壁 30の表面だけが光吸収性材料で形成されていても良い。なお、異方性光吸収 シート 21の光学シート 20側の面(上面) 32や、その反対側の面(下面) 33も光吸収 性を有することが好ましい。  The light-absorbing side wall 30 may be entirely formed of a single light-absorbing material. Only the surface of the side wall 30 may be formed of a light-absorbing material. In addition, it is preferable that the surface (upper surface) 32 on the optical sheet 20 side of the anisotropic light absorbing sheet 21 and the opposite surface (lower surface) 33 also have light absorptivity.
[0035] 側壁 30に適用する光吸収性の材料として、例えば、金属を適用でき、光吸収性顔 料を含有するガラスを適用でき、光吸収性顔料又は光吸収性染料を含有する高分 子材料を適用でき、光吸収性セラミックを適用できる。 [0035] As the light-absorbing material applied to the side wall 30, for example, a metal can be applied, a glass containing a light-absorbing pigment can be applied, and a polymer containing a light-absorbing pigment or a light-absorbing dye. Material can be applied and light absorbing ceramic can be applied.
[0036] 高分子材料として、高分子エラストマ一やポリエチレン、あるいは塩化ビニルなどの 柔軟性を有する高分子材料を適用すると、異方性光吸収シート 21を柔軟なものにし 得る。 [0036] When a flexible polymer material such as a polymer elastomer, polyethylene, or vinyl chloride is applied as the polymer material, the anisotropic light-absorbing sheet 21 can be made flexible.
[0037] また、側壁 30の光吸収性の材料として、カーボン粒子を混合した導電性高分子材 料などを適用した場合には、静電気の帯電によるスクリーン表面にホコリが付着する ことを防止できる。同様に、カーボン粒子を混合した導電性高分子材料以外の非帯 電材料を用いたり、非帯電処理したりして帯電しないようにしても良い。非帯電処理 につ 、ては、光学シート 20につ ヽても同様に適用することは好まし!/、。  [0037] When a conductive polymer material mixed with carbon particles is applied as the light absorbing material of the sidewall 30, dust can be prevented from adhering to the screen surface due to electrostatic charging. Similarly, a non-charged material other than a conductive polymer material mixed with carbon particles may be used or non-charged so as not to be charged. For non-static treatment, it is preferable to apply the same to the optical sheet 20!
[0038] 金属を側壁 30に利用する場合において、その金属の表面に光吸収層を設けて光 吸収性の側壁 30を形成するようにしても良い。このような光吸収層を、光吸収性の塗 料を塗布することで形成しても良ぐ光吸収性顔料又は光吸収性染料を被覆すること で形成しても良い。金属としてアルミニウムを適用する場合であれば、黒アルマイト処 理で光吸収層を設けるようにしても良い。金属としてクロムを適用する場合であれば、 その表面の反射率を制御するための表面処理を行うことなどによって、光吸収層を設 けるようにしても良い。 In the case where a metal is used for the side wall 30, a light absorbing layer may be provided on the surface of the metal to form the light absorbing side wall 30. Such a light absorption layer may be formed by applying a light-absorbing coating, which is coated with a light-absorbing pigment or light-absorbing dye. May be formed. If aluminum is applied as the metal, a light absorption layer may be provided by black alumite treatment. If chromium is used as the metal, the light absorption layer may be provided by performing a surface treatment for controlling the reflectance of the surface.
[0039] 図 3の例の場合、各貫通空洞 31は同一形状をしており、規則性を持って配列され ている。ここでは、貫通空洞 31は、その光の進行方向に直交する面での断面周囲形 状 (以下、輪郭と呼ぶ)が正方形のものを示している。図 1に示すように、第 1の実施 形態のスクリーン 11は、光学シート 20の各マイクロレンズの光軸と、異方性光吸収シ ート 21の各貫通空洞 31の中心軸(上記正方形の中心を光の進行方向に延長した軸 )とが一致して!/、るものである。  In the example of FIG. 3, the through cavities 31 have the same shape and are arranged with regularity. Here, the through-cavity 31 has a square cross-sectional shape (hereinafter referred to as an outline) on a plane orthogonal to the light traveling direction. As shown in FIG. 1, the screen 11 of the first embodiment includes the optical axis of each microlens of the optical sheet 20 and the central axis of each through-cavity 31 of the anisotropic light absorbing sheet 21 (the center of the square is the same). The axis extending in the direction of travel of light) matches! / What is it.
[0040] 同一輪郭の貫通空洞 31を規則的に配列して異方性光吸収シート 21を形成した場 合、貫通空洞 31の中心軸を、光学シート 20の各マイクロレンズの光軸と一致させるこ とが容易であると共に、異方性光吸収シート 21を製造し易い。  [0040] When the anisotropic light-absorbing sheet 21 is formed by regularly arranging the through cavities 31 having the same contour, the central axis of the through cavities 31 should coincide with the optical axis of each microlens of the optical sheet 20. And the anisotropic light-absorbing sheet 21 is easy to manufacture.
[0041] なお、異方性光吸収シート 21は、図 1及び図 3に示す例のものに限定されず、多数 の貫通空洞 31が不規則的に配列されているものであっても良ぐまた、貫通空洞 31 の輪郭も正方形に限定されるものではなぐ各貫通空洞 31の輪郭の大きさ(面積)が 揃っていなくても良い。さらに、輪郭が異なる複数種類 (例えば、 2、 3種類程度)の貫 通空洞 31を規則的に配置したものであっても良!、。  [0041] The anisotropic light-absorbing sheet 21 is not limited to the example shown in FIGS. 1 and 3, and a large number of through cavities 31 may be irregularly arranged. The outlines of the through cavities 31 are not limited to squares, and the sizes (areas) of the outlines of the through cavities 31 may not be uniform. Furthermore, a plurality of types of through-cavities 31 with different contours (for example, about two or three types) may be regularly arranged!
[0042] 異方性光吸収シート 21の表面に、塵埃の侵入や機械的損傷を防ぐための保護フィ ルムが貼り合わせられて 、ることは好まし!/、。  [0042] It is preferable that a protective film for preventing intrusion of dust and mechanical damage is bonded to the surface of the anisotropic light absorbing sheet 21! /.
[0043] プロジェクタ本体 13から出射され、ミラー 14で反射された光画像 (発散光)は、スク リーン 11に向けられる。スクリーン 11における入射段には、光学シート 20が設けられ ており、ミラー 14からの発散光は、光学シート 20のフレネルレンズ面 20aに入射され る。このフレネルレンズ面 20aにより、ミラー 14からの発散光は平行光に変換されて、 光学シート 20のマイクロレンズアレイ面 20bに入射される。  An optical image (diverged light) emitted from the projector main body 13 and reflected by the mirror 14 is directed to the screen 11. An optical sheet 20 is provided at the incident stage of the screen 11, and divergent light from the mirror 14 enters the Fresnel lens surface 20 a of the optical sheet 20. The divergent light from the mirror 14 is converted into parallel light by the Fresnel lens surface 20a and is incident on the microlens array surface 20b of the optical sheet 20.
[0044] マイクロレンズアレイ面 20bに係る各マイクロレンズに入射した平行光は、各マイクロ レンズによって、例えば、異方性光吸収シート 21の対応する貫通空洞 31内の出射 側に近い所定の点(焦平面上の点)に向かうように集光され (なお、焦平面上の点は 他の位置であっても良い)、その所定の点を通過した後は、発散光となる。集光点 (焦 平面上の点)の位置は、所望の視野角を達成できるような発散角を考慮すると共に、 側壁 30での光吸収が実行されな 、ことを考慮して選定すれば良 、。発散光は大半 力 貫通空洞 31を規定する側壁 30に衝突 (入射)することなぐ貫通空洞 31を通過 し、観察者によって観察される。集光光及び発散光のうち、貫通空洞 31を規定する 側壁 30に衝突 (入射)したものは、側壁 30によって吸収される。以上のようにして、ス クリーン 11としての所望の視野角が達成される。 The parallel light incident on each microlens related to the microlens array surface 20b is, for example, a predetermined point (focal plane) close to the exit side in the corresponding through-cavity 31 of the anisotropic light absorbing sheet 21 by each microlens. (Points on the focal plane are Other positions may be used), and after passing through the predetermined point, it becomes divergent light. The position of the condensing point (point on the focal plane) should be selected in consideration of the divergence angle that can achieve the desired viewing angle and the fact that light absorption at the side wall 30 is not performed. ,. Most of the diverging light passes through the penetration cavity 31 without impinging on (incident on) the side wall 30 that defines the force penetration cavity 31, and is observed by the observer. Of the condensed light and the diverging light, the light that collides (incides) with the side wall 30 that defines the through-cavity 31 is absorbed by the side wall 30. As described above, a desired viewing angle as the screen 11 is achieved.
[0045] 天井の蛍光灯などの室内光源が出射した光線が、外光 (外乱光)としてスクリーン 1 1に到来したとする。スクリーン 11の外部に露出している面側に、異方性光吸収シー ト 21が設けられている。 It is assumed that a light beam emitted from an indoor light source such as a fluorescent lamp on the ceiling has arrived on the screen 11 as external light (disturbance light). An anisotropic light absorbing sheet 21 is provided on the surface exposed to the outside of the screen 11.
[0046] 異方性光吸収シート 21に角度をもって入射した外光は、貫通空洞 31内に入り込み 、その貫通空洞 31を規定する光吸収性を有する側壁 30によって吸収され、除去され る。  [0046] External light incident on the anisotropic light absorption sheet 21 with an angle enters the through-cavity 31, and is absorbed and removed by the side wall 30 having light absorption property that defines the through-cavity 31.
[0047] 仮に、外光の数パーセントが反射されたとしても、対向する側壁 30に到達した際には 吸収され、反射が多重になればなるほど完全に吸収される。入射角が小さくても、貫 通空洞 31の軸方向の長さ(言い換えると、異方性光吸収シート 21の厚み)を長く選 定しておくことにより、側壁 30のいずれかの箇所に到達するようになり、外光は吸収さ れる。  [0047] Even if several percent of the external light is reflected, it is absorbed when it reaches the opposing side wall 30, and is more completely absorbed as the reflection is multiplexed. Even if the incident angle is small, the axial length of the through-hole 31 (in other words, the thickness of the anisotropic light-absorbing sheet 21) is selected to be long so that it reaches any part of the side wall 30. And external light is absorbed.
[0048] 上述したように、貫通空洞 31の輪郭がどのようなものであっても良いが、輪郭の内 接円又は外接円の直径平均値が 50〜 200 m程度で、貫通空洞 31の軸方向の長 さ(異方性光吸収シート 21の厚み)が 50〜200 m程度であることが好ましい。これ ら範囲の中から、スクリーン 11に求められる視野角と外光の吸収特性を考慮して、具 体的な値を選定すれば良!、。  [0048] As described above, the outline of the through-cavity 31 may be any shape, but the average diameter of the inscribed circle or circumscribed circle of the outline is about 50 to 200 m, and the axis of the through-cavity 31 The length in the direction (the thickness of the anisotropic light absorbing sheet 21) is preferably about 50 to 200 m. From these ranges, you can select specific values in consideration of the viewing angle required for the screen 11 and the absorption characteristics of external light.
[0049] 第 1の実施形態の背面投射型画像投射装置用スクリーンによれば、一面にフレネ ルレンズ面が形成され、他面にマイクロレンズアレイ面が形成された光学シートを用 いているので、従来に比較して部品点数を抑えることができる。その結果、製造工数 の削減や製造時間の短縮化が期待できる。  [0049] According to the screen for the rear projection type image projection apparatus of the first embodiment, since an optical sheet having a Fresnel lens surface formed on one surface and a microlens array surface formed on the other surface is used, The number of parts can be reduced compared to As a result, reductions in manufacturing steps and manufacturing time can be expected.
[0050] (B)第 2の実施形態 次に、本発明による背面投射型画像投射装置用スクリーンの第 2の実施形態を、図 面を参照しながら説明する。 [0050] (B) Second Embodiment Next, a second embodiment of the screen for a rear projection type image projector according to the present invention will be described with reference to the drawings.
[0051] 図 4は、第 2の実施形態のスクリーン 11Aを示す概略断面図である。第 2の実施形 態のスクリーン 11Aは、光学シート 20、異方性光吸収シート 21及びピンホールアレイ シート 22を、順に配したものである。 FIG. 4 is a schematic cross-sectional view showing a screen 11A of the second embodiment. In the screen 11A of the second embodiment, an optical sheet 20, an anisotropic light absorbing sheet 21, and a pinhole array sheet 22 are arranged in order.
[0052] 光学シート 20及び異方性光吸収シート 21は、第 1の実施形態のものと同様のもの でも良い。異方性光吸収シート 21はピンホールアレイシート 22と一体ィ匕されたもので あっても良い。 [0052] The optical sheet 20 and the anisotropic light absorbing sheet 21 may be the same as those in the first embodiment. The anisotropic light absorbing sheet 21 may be integrated with the pinhole array sheet 22.
[0053] ピンホールアレイシート 22は、光吸収性のピンホールアレイシート本体 50に対して ピンホール 51が設けられているものである。ピンホールアレイシート 22は、単体の構 成要素として形成されていても良ぐまた、異方性光吸収シート 21の出射面に一体 的に形成されたものであっても良い。ピンホール 51は、例えば、フォトエッチング法を 適用して形成することができる。  The pinhole array sheet 22 is provided with pinholes 51 with respect to the light-absorbing pinhole array sheet main body 50. The pinhole array sheet 22 may be formed as a single component, or may be formed integrally with the exit surface of the anisotropic light absorbing sheet 21. The pinhole 51 can be formed by applying a photo etching method, for example.
[0054] 各ピンホール 51は、光学シート 20のマイクロレンズと異方性光吸収シート 21の貫 通空洞 31とに対応するものであり、これらの光軸や中心軸は一致している。各ピンホ ール 51は、対応するマイクロレンズの焦点位置又はその近傍に設けられている。  Each pinhole 51 corresponds to the microlens of the optical sheet 20 and the through-cavity 31 of the anisotropic light-absorbing sheet 21, and their optical axes and central axes coincide with each other. Each pinhole 51 is provided at or near the focal position of the corresponding microlens.
[0055] ピンホール 51は、空洞(空気層)によって形成されていても良ぐまた、透明材料が 存在する微小な光学的な窓になっていても良い。また、ピンホール 51は、透過光に 対し、拡散性を付与するような処理が施されていても良い。ピンホール 51は、円筒状 の光学的な開口になっていても良ぐ錐体台形状の光学的な開口になっていても良 い。  [0055] The pinhole 51 may be formed by a cavity (air layer) or may be a minute optical window in which a transparent material is present. Further, the pinhole 51 may be subjected to a treatment that imparts diffusibility to transmitted light. The pinhole 51 may have a cylindrical trapezoidal optical opening which may be a cylindrical optical opening.
[0056] この第 2の実施形態において、ピンホール 51は、対応するマイクロレンズの集光点 近傍に形成されているため、マイクロレンズによって集光された光はピンホール 51に 妨げられることなく透過する。ピンホール 51を通過した光は、第 1の実施形態と同様 にして、観察者によって観察される。  In the second embodiment, since the pinhole 51 is formed in the vicinity of the condensing point of the corresponding microlens, the light collected by the microlens is transmitted without being blocked by the pinhole 51. To do. The light that has passed through the pinhole 51 is observed by an observer in the same manner as in the first embodiment.
[0057] 図 4では、異方性光吸収シート 21の端部にピンホール 51が設けられている例を示 している力 マイクロレンズによる集光点近傍であれば異方性光吸収シート 21の中央 部(貫通空洞 31における光の進行方向に見たときの中間部)にピンホール 51が設け られて 、ても良!、ことは言うまでもな 、。後述する第 3の実施形態にっ 、ても同様で ある。 FIG. 4 shows an example in which the pinhole 51 is provided at the end of the anisotropic light-absorbing sheet 21. If the force is in the vicinity of the condensing point by the microlens, A pinhole 51 is provided in the middle part of the through-cavity 31 when viewed in the light traveling direction. Needless to say, it's okay! The same applies to the third embodiment described later.
[0058] ピンホールアレイシート本体 50の存在によって、実質的な開口が小さくなつて、画 面上における黒領域が広がるために、高コントラストの表示画像を観察者に提供でき る。  [0058] Due to the presence of the pinhole array sheet main body 50, the substantial opening is reduced and the black region on the screen is widened, so that a high-contrast display image can be provided to the observer.
[0059] ピンホールアレイシート 22を透過する外光入射角が狭くなり、外光がピンホールァ レイシート本体 50によって吸収除去され、仮に、ピンホール 51を介して、異方性光吸 収シート 21側に入り込んだとしても、異方性光吸収シート 21によって吸収除去される  [0059] The incident angle of the external light transmitted through the pinhole array sheet 22 is narrowed, and the external light is absorbed and removed by the pinhole array sheet main body 50, and temporarily enters the anisotropic light absorption sheet 21 side through the pinhole 51. Even so, it is absorbed and removed by the anisotropic light absorbing sheet 21.
[0060] 以上のように、第 2の実施形態によれば、第 1の実施形態と同様な効果に加え、ピ ンホールアレイシートを設けたことによる画質向上効果を期待できる。特に、コントラス トの向上が期待できる。 [0060] As described above, according to the second embodiment, in addition to the same effects as those of the first embodiment, an image quality improvement effect can be expected by providing the pinhole array sheet. In particular, the contrast can be improved.
[0061] (C)第 3の実施形態 [0061] (C) Third Embodiment
次に、本発明による背面投射型画像投射装置用スクリーンの第 3の実施形態を、図 面を参照しながら説明する。  Next, a third embodiment of the screen for a rear projection type image projector according to the present invention will be described with reference to the drawings.
[0062] 図 5は、第 3の実施形態のスクリーン 11Bを示す概略断面図である。図 5においてFIG. 5 is a schematic cross-sectional view showing a screen 11B of the third embodiment. In Figure 5
、第 3の実施形態のスクリーン 11Bは、光学シート 20、異方性光吸収シート 21、ピン ホールアレイシート 22及び光拡散シート 23を、この順に配したものである。 The screen 11B according to the third embodiment includes an optical sheet 20, an anisotropic light absorption sheet 21, a pinhole array sheet 22, and a light diffusion sheet 23 arranged in this order.
[0063] 光学シート 20、異方性光吸収シート 21及びピンホールアレイシート 22は、第 2の実 施形態のものと同様である。 [0063] The optical sheet 20, the anisotropic light absorbing sheet 21, and the pinhole array sheet 22 are the same as those in the second embodiment.
[0064] 光拡散シート 23は、入射光が当該光拡散シート 23を透過していくことにより拡散さ せるものである。光拡散シート 23は、例えば、ピンホールアレイシート 22に接着、融 着などによって取り付けられている。 [0064] The light diffusion sheet 23 diffuses incident light by passing through the light diffusion sheet 23. The light diffusion sheet 23 is attached to the pinhole array sheet 22 by adhesion, fusion, or the like, for example.
[0065] 光拡散シート 23として、例えば、アクリルやスチレンで作った多数の透明ビーズを 内部に有するものを適用できる。また、光拡散シート 23として、例えば、散乱性の酸 化物(MgSO、 MgO、 BaSOなど)パウダーを高分子材料でバインドしたものを適用 [0065] As the light diffusion sheet 23, for example, a sheet having a large number of transparent beads made of acrylic or styrene can be used. In addition, as the light diffusion sheet 23, for example, a material obtained by binding a scattering oxide powder (MgSO, MgO, BaSO, etc.) with a polymer material is applied.
4 4  4 4
し得る。  Can do.
[0066] ミラー 14からの発散光は、光学シート 20のフレネルレンズ面 20aに入射され、平行 光に変換されて、光学シート 20のマイクロレンズアレイ面 20bに入射される。マイクロ レンズアレイ面 20bに係る各マイクロレンズに入射した平行光は、図 5に示すように、 各マイクロレンズによって、例えば、異方性光吸収シート 21の対応する貫通空洞 31 内の出射側に近い所定の点(焦平面上の点)に向力うように集光され、その所定の点 を通過した後は、発散光となる。この発散光は、ピンホール 51を通過して光拡散シー ト 23に入射され、拡散されて外部に出射される。これにより、所望する視野角が達成 される。 [0066] The divergent light from the mirror 14 enters the Fresnel lens surface 20a of the optical sheet 20 and is parallel to it. It is converted into light and incident on the microlens array surface 20b of the optical sheet 20. As shown in FIG. 5, the parallel light incident on each microlens related to the microlens array surface 20b is, for example, a predetermined close to the emission side in the corresponding through-cavity 31 of the anisotropic light absorbing sheet 21 by each microlens. After being focused toward a point (a point on the focal plane) and passing through that predetermined point, it becomes divergent light. The divergent light passes through the pinhole 51, enters the light diffusion sheet 23, is diffused, and is emitted to the outside. This achieves the desired viewing angle.
[0067] 天井の白熱灯などの室内光源が出射した光線が、外光 (外乱光)として、第 3の実 施形態のスクリーン 11Bに到来したとしても、光拡散シート 23によって反射拡散、透 過拡散されるので、ピンホールアレイシート本体 50に照射される割合を第 2の実施形 態以上に抑えることができる。また、表面に、光拡散シート 23を有するので、表面で の映り込みを抑えることができ、また、異方性光吸収シート 21又はピンホールアレイ シート 22の表面に保護フィルムが設けられていなくても、ピンホール 51を介した塵埃 の内部侵入を防止することができる。  [0067] Even if a light beam emitted from an indoor light source such as an incandescent lamp on the ceiling reaches the screen 11B of the third embodiment as external light (disturbance light), it is reflected and diffused and transmitted by the light diffusion sheet 23. Since it is diffused, the rate of irradiation to the pinhole array sheet main body 50 can be suppressed to be higher than that in the second embodiment. Further, since the light diffusion sheet 23 is provided on the surface, reflection on the surface can be suppressed, and even if the protective film is not provided on the surface of the anisotropic light absorption sheet 21 or the pinhole array sheet 22, It is possible to prevent dust from entering through the pinhole 51.
[0068] なお、光拡散シート 23を用いながらコントラストを高くするには、光拡散シート 23の 表面に無反射コーティングを施すことが良 、。  [0068] In order to increase the contrast while using the light diffusing sheet 23, it is preferable to apply a non-reflective coating to the surface of the light diffusing sheet 23.
[0069] 以上のように、第 3の実施形態によれば、第 2の実施形態と同様な効果に加え、光 拡散シート 23を設けたことによる画質向上効果や塵埃の内部侵入防止効果を期待 できる。  [0069] As described above, according to the third embodiment, in addition to the same effects as those of the second embodiment, the improvement of image quality and the effect of preventing the intrusion of dust due to the provision of the light diffusion sheet 23 are expected. it can.
[0070] (D)上記第 1〜3の実施形態の変形例  [0070] (D) Modified examples of the first to third embodiments
上記各実施形態における各種シート同士を連結する方法は、上記実施形態の説 明で言及した方法に限定されないことは勿論である。例えば、周囲をホッチキス止め するような方法をも適用可能である。  Of course, the method of connecting the various sheets in the above embodiments is not limited to the method mentioned in the description of the above embodiments. For example, it is possible to apply a method that staples the periphery.
[0071] 上記第 1の実施形態では、光学シート 20及び異方性光吸収シート 21を有するスク リーン 11、上記第 2の実施形態では、光学シート 20、異方性光吸収シート 21及びピ ンホールアレイシート 22を有するスクリーン 11A、上記第 3の実施形態では、光学シ ート 20、異方性光吸収シート 21、ピンホールアレイシート 22及び光拡散シート 23を 有するスクリーン 11Bを示したが、光学シート、異方性光吸収シート及び光拡散シー トを順に配してスクリーンを構成するようにしても良 、。 [0071] In the first embodiment, the screen 11 includes the optical sheet 20 and the anisotropic light absorbing sheet 21, and in the second embodiment, the optical sheet 20, the anisotropic light absorbing sheet 21, and the pinhole array sheet 22. In the third embodiment, the screen 11B having the optical sheet 20, the anisotropic light absorbing sheet 21, the pinhole array sheet 22, and the light diffusing sheet 23 is shown. Sheet and light diffusion sheet You can also arrange the screens in order to make up the screen.
[0072] (E)異方性光吸収シート及び画像投射装置用スクリーンの第 4の実施形態  (E) Fourth embodiment of anisotropic light absorbing sheet and screen for image projection apparatus
以下、本発明による異方性光吸収シート及び画像投射装置用スクリーンの第 4の実 施形態を、図面を参照しながら説明する。  Hereinafter, a fourth embodiment of the anisotropic light-absorbing sheet and the screen for an image projection apparatus according to the present invention will be described with reference to the drawings.
[0073] 図 7は、第 4の実施形態の画像投射装置用スクリーンを用いた背面投射型画像投 射装置を示す概略断面図である。すなわち、第 4の実施形態のスクリーンは、いわゆ るリアスクリーンである。 FIG. 7 is a schematic cross-sectional view showing a rear projection type image projection apparatus using the screen for an image projection apparatus of the fourth embodiment. That is, the screen of the fourth embodiment is a so-called rear screen.
[0074] 図 7において、画像投射装置 60は、第 4の実施形態のスクリーン 61と、筐体フレー ム 62とで喑箱を形成し、この暗箱中に、例えば、プロジェクタ本体 63とミラー 64とが 配されている。プロジェクタ本体 63は、詳細構成の図示は省略する力 CRT,液晶 パネル又はマイクロミラーデバイスなどを用いた光画像の形成部と、形成された光画 像を拡大投射させる投射レンズ装置とからなり、プロジェクタ本体 63から出射された 光画像は、ミラー 64で反射されて進行方向がスクリーン 61側に向けられ、スクリーン 61を介して観察者の方に到達する。  In FIG. 7, an image projection apparatus 60 forms a basket box with the screen 61 of the fourth embodiment and the casing frame 62, and, for example, a projector main body 63 and a mirror 64 are provided in the dark box. Is arranged. The projector main body 63 is composed of an optical image forming unit using a CRT, a liquid crystal panel, or a micromirror device, and a projection lens device for enlarging and projecting the formed optical image. The optical image emitted from 63 is reflected by the mirror 64 and the traveling direction is directed to the screen 61 side, and reaches the observer through the screen 61.
[0075] 第 4の実施形態のスクリーン 61は、図 6の概略断面図に示すように、入射側に配置 されて 、るマイクロレンズアレイシート 70と、第 4の実施形態の異方性光吸収シート 7 1とでなる。  As shown in the schematic cross-sectional view of FIG. 6, the screen 61 of the fourth embodiment is arranged on the incident side, and the microlens array sheet 70 and the anisotropic light-absorbing sheet 7 of the fourth embodiment. 1 and
[0076] マイクロレンズアレイシート 70は、公知のように、多数のマイクロレンズを例えば縦横 に配列したものであり、入射された光画像は、各マイクロレンズによって微小領域ごと に集光される。各マイクロレンズは、両面とも曲面のものであっても良いが、図 6では、 片面が平面の例を示して!/、る。  As is well known, the microlens array sheet 70 has a large number of microlenses arranged, for example, vertically and horizontally, and an incident optical image is collected for each micro area by each microlens. Each microlens may be curved on both sides, but Fig. 6 shows an example where one side is flat!
[0077] 異方性光吸収シート 71は、マイクロレンズアレイシート 70の平面側に接して設けら れている。マイクロレンズアレイシート 70及び異方性光吸収シート 71を接合する方法 は、問われないものである。例えば、両シートの周囲を枠部材によって抑えて接合す るようにしても良ぐ接着、融着などによって接合するようにしても良い。  The anisotropic light absorbing sheet 71 is provided in contact with the plane side of the microlens array sheet 70. The method for joining the microlens array sheet 70 and the anisotropic light absorbing sheet 71 is not limited. For example, the periphery of both sheets may be suppressed by a frame member, or may be bonded by good adhesion or fusion.
[0078] 異方性光吸収シート 71は、後述するように、入射方向によって光吸収特性が異な る異方性を有するシート状光学部品であるので、「異方性光吸収シート」とネーミング している。異方性光吸収シート 71は、マイクロレンズアレイシート 70から入射された光 画像に対し、所定範囲の入射方向の成分を通過させ、他の入射方向の成分を吸収 するものである。スクリーン 61の視野角として、許容している観測者の位置に応じた 角度を達成すると共に、室内の光源や窓を介した外部からの外光を吸収除去するた めのものである。 As will be described later, the anisotropic light absorbing sheet 71 is a sheet-like optical component having anisotropy having different light absorption characteristics depending on the incident direction. The anisotropic light-absorbing sheet 71 is the light incident from the microlens array sheet 70. A component in an incident direction within a predetermined range is allowed to pass through the image and a component in another incident direction is absorbed. The viewing angle of the screen 61 is to achieve an angle according to the position of the permitted observer, and to absorb and remove external light from the outside through an indoor light source or window.
[0079] 一般に、室内の光源は蛍光灯であり、窓を通して室内に入り込む光線は太陽光で あるので、異方性光吸収シート 71は白色光に対する吸収特性を有するようにしてお [0079] Generally, the indoor light source is a fluorescent lamp, and the light that enters the room through the window is sunlight. Therefore, the anisotropic light absorbing sheet 71 has an absorption characteristic for white light.
<o <o
[0080] 図 8は、第 4の実施形態の異方性光吸収シート 71の概略斜視図である。第 4の実 施形態の異方性光吸収シート 71は、光吸収性の側壁 80で囲繞された貫通空洞 81 力 互いの側壁 80を共有して多数密に集合してなるネット状的なものである。貫通空 洞 81は完全な空洞であり、言い換えると、そこには空気だけが存在しているものであ る。  FIG. 8 is a schematic perspective view of the anisotropic light-absorbing sheet 71 of the fourth embodiment. The anisotropic light-absorbing sheet 71 of the fourth embodiment is a net-like structure in which a large number of through-holes 81 surrounded by light-absorbing side walls 80 are shared by sharing the side walls 80. . The through-cavity 81 is a complete cavity, in other words, only air is present there.
[0081] 光吸収性の側壁 80は、その全体が単一の光吸収性材料で形成されていても良ぐ 側壁 80の表面だけが光吸収性材料で形成されていても良い。なお、光画像の入射 側の面 (上面) 82や、光画像の出射側の面(下面) 83も光吸収性を有することが好ま しい。  The light absorbing side wall 80 may be entirely formed of a single light absorbing material. Only the surface of the side wall 80 may be formed of a light absorbing material. It is preferable that the light image incident side surface (upper surface) 82 and the light image output side surface (lower surface) 83 also have light absorptivity.
[0082] 側壁 80に適用する光吸収性の材料として、例えば、金属を適用でき、光吸収性顔 料を含有するガラスを適用でき、光吸収性顔料又は光吸収性染料を含有する高分 子材料を適用でき、導電性セラミックを適用できる。  [0082] As a light-absorbing material to be applied to the side wall 80, for example, a metal can be applied, a glass containing a light-absorbing face can be applied, and a polymer containing a light-absorbing pigment or a light-absorbing dye. Materials can be applied, and conductive ceramics can be applied.
[0083] 高分子材料として塩ィ匕ビュルなどの柔軟性を有する高分子材料を適用すると、異 方性光吸収シート 71、従って、スクリーン 61を柔軟なものにし得る。  [0083] When a polymer material having flexibility, such as salt or blue, is applied as the polymer material, the anisotropic light-absorbing sheet 71, and thus the screen 61, can be made flexible.
[0084] また、側壁 80の光吸収性の材料として導電性セラミックを適用した場合には、静電 気の帯電によるスクリーン表面にホコリが付着することを防止できる。同様に、導電性 セラミック以外の非帯電材料を用いたり、非帯電処理したりして帯電しないようにして も良い。非帯電処理については、マイクロレンズアレイシート 70についても同様に適 用することは好ましい。  In addition, when a conductive ceramic is applied as the light absorbing material of the sidewall 80, it is possible to prevent dust from adhering to the screen surface due to electrostatic charging. Similarly, non-charged materials other than conductive ceramics may be used or non-charged so as not to be charged. As for the non-charging treatment, it is preferable to apply the same to the microlens array sheet 70 as well.
[0085] 金属を側壁 80に利用する場合において、その金属の表面に光吸収層を設けて光 吸収性の側壁 80を形成するようにしても良い。このような光吸収層を、光吸収性の塗 料を塗布することで形成しても良ぐ光吸収性顔料又は光吸収性染料を被覆すること で形成しても良い。金属としてアルミニウムを適用する場合であれば、黒アルマイト処 理で光吸収層を設けるようにしても良い。金属としてクロムを適用する場合であれば、 その化合物への変化を引き起こす表面処理などによって、光吸収層を設けるようにし ても良い。 When a metal is used for the side wall 80, a light absorbing layer may be provided on the surface of the metal to form the light absorbing side wall 80. Such a light-absorbing layer is applied to a light-absorbing coating. It may be formed by coating a light-absorbing pigment or light-absorbing dye that may be formed by applying a coating material. If aluminum is applied as the metal, a light absorption layer may be provided by black alumite treatment. If chromium is used as the metal, the light absorption layer may be provided by a surface treatment that causes a change to the compound.
[0086] 図 6及び図 8の例の場合、各貫通空洞 81は同一形状をしており、規則性を持って 配列されている。ここでは、貫通空洞 81は、輪郭が正方形のものを示している。図 6 に示すように、第 4の実施形態のスクリーン 61は、マイクロレンズアレイシート 70の各 マイクロレンズの光軸と、異方性光吸収シート 71の各貫通空洞 81の光軸とがー致し ているものである。  In the example of FIGS. 6 and 8, the through cavities 81 have the same shape and are arranged with regularity. Here, the through-cavity 81 has a square outline. As shown in FIG. 6, in the screen 61 of the fourth embodiment, the optical axis of each microlens of the microlens array sheet 70 and the optical axis of each through-cavity 81 of the anisotropic light absorbing sheet 71 are aligned. Is.
[0087] 同一輪郭の貫通空洞 81を規則性を持って配列して異方性光吸収シート 71を形成 した場合、マイクロレンズアレイシート 70の各マイクロレンズの光軸と一致させることが 容易であると共に、異方性光吸収シート 71を製造し易い。  [0087] When the anisotropic light-absorbing sheet 71 is formed by arranging the through cavities 81 having the same contour with regularity, it is easy to match the optical axis of each microlens of the microlens array sheet 70, The anisotropic light absorbing sheet 71 is easy to manufacture.
[0088] しかし、本発明の異方性光吸収シートは、図 6及び図 8に示す異方性光吸収シート 71に限定されず、多数の貫通空洞 81が不規則的に配列されているものであっても 良ぐまた、貫通空洞 81の輪郭も正方形に限定されるものではなぐ各貫通空洞 81 の輪郭の大きさ(面積)が揃って 、なくても良 、。  However, the anisotropic light-absorbing sheet of the present invention is not limited to the anisotropic light-absorbing sheet 71 shown in FIGS. 6 and 8, and even if a large number of through cavities 81 are irregularly arranged. Also, the outlines of the through cavities 81 are not limited to squares, and the sizes (areas) of the outlines of the respective through cavities 81 are not necessarily required.
[0089] 図 9 (A)は、輪郭の大きさが異なる矩形状の貫通空洞 81を不規則的に配した異方 性光吸収シート 71を示している。また、図 9 (B)は、輪郭の大きさが異なる円形状の 貫通空洞 81を不規則的に配した異方性光吸収シート 71を示している。その他、例え ば、輪郭として正三角形や六角形を適用することも可能である。図 10は、貫通空洞 8 1を不規則的に配した異方性光吸収シート 71の概略断面図である。ここで、貫通空 洞 81を不規則的に配する場合においても、マイクロレンズアレイシート 70の各マイク 口レンズが各貫通空洞 81と 1対 1で対応させ、光軸を一致させることが好ましい。  FIG. 9A shows an anisotropic light-absorbing sheet 71 in which rectangular through cavities 81 having different outline sizes are irregularly arranged. FIG. 9B shows an anisotropic light-absorbing sheet 71 in which circular through cavities 81 having different contour sizes are irregularly arranged. In addition, for example, an equilateral triangle or a hexagon can be applied as the contour. FIG. 10 is a schematic cross-sectional view of the anisotropic light absorbing sheet 71 in which the through cavities 81 are irregularly arranged. Here, even when the through cavities 81 are irregularly arranged, it is preferable that the microphone lenses of the microlens array sheet 70 correspond to the through cavities 81 on a one-to-one basis so that the optical axes coincide.
[0090] ここで、貫通空洞を不規則的に配した異方性光吸収シートは規則的に配した異方 性光吸収シートに比較して製造などが難しくなる反面、モアレ現象を抑制できるという メリットを有する。  [0090] Here, the anisotropic light-absorbing sheet in which the through cavities are irregularly arranged is more difficult to manufacture than the anisotropic light-absorbing sheet in which the through-cavities are regularly arranged, but has the advantage that the moire phenomenon can be suppressed. Have.
[0091] なお、輪郭が異なる複数種類 (例えば、 2、 3種類程度)の貫通空洞 81を規則的に 配置しても良いことは勿論である。 [0091] It should be noted that a plurality of types (for example, about two or three types) of through cavities 81 having different contours are regularly arranged. Of course, it may be arranged.
[0092] プロジェクタ本体 63から出射され、ミラー 64で反射された光画像は、スクリーン 61 に向けられる。スクリーン 61における入射側には、マイクロレンズアレイシート 70が設 けられている。各マイクロレンズが形成されている領域は微小領域であるために、各 マイクロレンズへの光画像は近似的に平行光であると考えることができる。  The optical image emitted from the projector main body 63 and reflected by the mirror 64 is directed to the screen 61. On the incident side of the screen 61, a microlens array sheet 70 is provided. Since the area where each microlens is formed is a minute area, the optical image to each microlens can be considered to be approximately parallel light.
[0093] 各マイクロレンズに入射した平行光 PLは、図 6に示すように、各マイクロレンズによ つて、例えば、異方性光吸収シート 71の対応する貫通空洞 81内の所定の点(焦点) に向力うように集光され (なお、焦点は他の位置であっても良い)、その所定の点(焦 点)を通過した後は、貫通空洞 81内部で発散光となる。その発散光のうち、貫通空洞 81を規定する側壁 80に衝突 (入射)することなぐ貫通空洞 81を通過したものが、観 察者の観察に供する光画像となる。発散光のうち貫通空洞 81を規定する側壁 80に 衝突 (入射)したものは、その大半が側壁 80によって吸収される。以上のようにして、 スクリーン 61としての所望の視野角が達成される。  As shown in FIG. 6, the parallel light PL that has entered each microlens is, for example, a predetermined point (focal point) in the corresponding through-cavity 81 of the anisotropic light absorbing sheet 71 by each microlens. The light is condensed so as to be directed (the focal point may be at another position), and after passing through the predetermined point (focal point), it becomes divergent light inside the through-cavity 81. Of the diverging light, light that has passed through the through-cavity 81 without colliding (incident) with the side wall 80 that defines the through-cavity 81 becomes an optical image for observation by the observer. Most of the diverging light that has collided (incident) with the side wall 80 defining the through-cavity 81 is absorbed by the side wall 80. As described above, a desired viewing angle as the screen 61 is achieved.
[0094] 天井の蛍光灯などの室内光源が出射した光線が、図 6に示すように、外光 (外乱光 ) NSとしてスクリーン 61に到来したとする。この第 4の実施形態の場合、外部に露出 しているスクリーン 61の面側に、異方性光吸収シート 71が設けられている。  It is assumed that a light beam emitted from an indoor light source such as a fluorescent lamp on the ceiling arrives at the screen 61 as external light (disturbance light) NS as shown in FIG. In the case of the fourth embodiment, an anisotropic light absorbing sheet 71 is provided on the surface side of the screen 61 exposed to the outside.
[0095] 異方性光吸収シート 71に角度をもって入射した外光 NSは、貫通空洞 81内に入り 込み、その貫通空洞 81を規定する光吸収性を有する側壁 80によって吸収され、除 去される。仮に、外光 NSの数パーセントが反射されたとしても、対向する側壁 80に 到達した際には吸収され、反射が多重になればなるほど完全に吸収される。入射角 力 S小さくても、貫通空洞 81の軸方向の長さ(言い換えると、異方性光吸収シート 71の 厚み)を長く選定しておくことにより、側壁 80のいずれかの箇所に到達するようになり 、外光 NSは吸収される。また仮に、マイクロレンズアレイシート 70の平面に到達し、 その平面で反射されたとしても、反射後の経路で側壁 80の 、ずれかの箇所に到達 するとそこで吸収される。  The external light NS incident on the anisotropic light absorbing sheet 71 at an angle enters the through-cavity 81 and is absorbed and removed by the side wall 80 having light absorption property that defines the through-cavity 81. Even if several percent of the external light NS is reflected, it is absorbed when it reaches the opposite side wall 80, and is completely absorbed as the reflection is multiplexed. Even if the incident angle force S is small, by selecting a long axial length of the through-cavity 81 (in other words, the thickness of the anisotropic light-absorbing sheet 71), it is possible to reach any part of the side wall 80. The outside light NS is absorbed. Further, even if the light reaches the plane of the microlens array sheet 70 and is reflected by the plane, it is absorbed there when it reaches a shifted part of the side wall 80 in the path after reflection.
[0096] 上述したように、貫通空洞 81の輪郭がどのようなものであっても良いが、輪郭の内 接円又は外接円の直径平均値が 100〜 200 μ m程度で、貫通空洞 81の軸方向の 長さ(異方性光吸収シート 71の厚み)が 100〜200 m程度であることが好ましい。 これら範囲の中から、スクリーン 61に求められる視野角と外光の吸収特性を考慮して[0096] As described above, the outline of the through-cavity 81 may be any shape, but the average diameter of the inscribed circle or circumscribed circle of the outline is about 100 to 200 μm, and The axial length (the thickness of the anisotropic light absorbing sheet 71) is preferably about 100 to 200 m. From these ranges, consider the viewing angle required for the screen 61 and the absorption characteristics of external light.
、具体的な値を選定すれば良い。 A specific value may be selected.
[0097] 第 4の実施形態の異方性光吸収シートによれば、光吸収性の側壁で囲繞された貫 通空洞が、互 、の側壁を共有して多数密に集合してなるネット状的な構成であるの で、製造が容易で低コストが期待できる。 [0097] According to the anisotropic light-absorbing sheet of the fourth embodiment, the through-cavity surrounded by the light-absorbing side walls is a net-like structure in which a large number of the through-cavities share a common side wall. Due to the configuration, manufacturing is easy and low cost can be expected.
[0098] 第 4の実施形態のスクリーンによれば、マイクロレンズアレイシートと異方性光吸収 シートとで構成されているので、製造が容易で低コストが期待でき、また、外光を吸収 除去するので、観察者に高画質の光画像を供給できる。 [0098] According to the screen of the fourth embodiment, since the microlens array sheet and the anisotropic light absorption sheet are used, manufacturing is easy and low cost can be expected, and external light is absorbed and removed. , A high-quality optical image can be supplied to the observer.
[0099] (F)画像投射装置用スクリーンの第 5の実施形態 (F) Fifth Embodiment of Screen for Image Projection Device
次に、本発明による画像投射装置用スクリーンの第 5の実施形態を、図面を参照し ながら説明する。  Next, a fifth embodiment of the screen for an image projection apparatus according to the present invention will be described with reference to the drawings.
[0100] 第 5の実施形態のスクリーンも、第 4の実施形態のスクリーン 61と同様に、背面投射 型画像投射装置(図 7参照)に適用されるリアスクリーンである。この第 5の実施形態 のスクリーンが適用される画像投射装置は、例えば、その装置筐体内部に音源を有 している。  [0100] The screen of the fifth embodiment is also a rear screen applied to the rear projection type image projection apparatus (see FIG. 7), similarly to the screen 61 of the fourth embodiment. The image projection apparatus to which the screen of the fifth embodiment is applied has, for example, a sound source inside the apparatus casing.
[0101] 図 11は、第 5の実施形態のスクリーン 61 Aを示す概略断面図である。第 5の実施形 態のスクリーン 61Aも、入射側に配置されているマイクロレンズアレイシート 70Aと、 異方性光吸収シート 71とでなる。  [0101] FIG. 11 is a schematic sectional view showing a screen 61A of the fifth embodiment. The screen 61A of the fifth embodiment is also composed of a microlens array sheet 70A disposed on the incident side and an anisotropic light absorbing sheet 71.
[0102] 第 5の実施形態のスクリーン 61A力 第 4の実施形態のものと異なる点は、マイクロ レンズアレイシート 70Aのいくつかのマイクロレンズに、光軸に沿った貫通孔 90が設 けられている点であり、異方性光吸収シート 71は第 4の実施形態のものと同様である  [0102] The screen 61A force of the fifth embodiment The difference from the screen of the fourth embodiment is that through-holes 90 along the optical axis are provided in some microlenses of the microlens array sheet 70A. The anisotropic light absorbing sheet 71 is the same as that of the fourth embodiment.
[0103] 貫通孔 90は、そのマイクロレンズに対応する、異方性光吸収シート 71の貫通空洞 81 と連通している。 The through hole 90 communicates with the through cavity 81 of the anisotropic light absorbing sheet 71 corresponding to the microlens.
[0104] このような複数の貫通孔 90の配置は任意である。例えば、図 12に示すように、縦横 に所定距離 DIS (例えば 5cm)を隔てたマイクロレンズ毎に設けるようにしても良い。  [0104] The arrangement of the plurality of through-holes 90 is arbitrary. For example, as shown in FIG. 12, it may be provided for each microlens having a predetermined distance DIS (for example, 5 cm) vertically and horizontally.
[0105] このような離間距離は、観察者がスクリーン 61Aを介した光画像から貫通孔 90の存 在を認識し得な!、程度の距離とすることが好ま 、。 [0106] 第 5の実施形態のスクリーンによれば、第 4の実施形態のスクリーンと同様な効果を 奏することができる。さらに、第 5の実施形態のスクリーンによれば、画像投射装置の 筐体内部の音源が発した音響が、連通している貫通孔 90及び貫通空洞 81を介して 外部に導出され、観察者が音響を適切に聴取することができる。また、画像投射装置 の筐体内部が投射動作などで高温になろうとしても、貫通孔 90及び貫通空洞 81を 介して筐体の内外が連通して 、るので、冷却させることができる。 [0105] Such a separation distance is preferably set to such a distance that the observer cannot recognize the presence of the through-hole 90 from the optical image via the screen 61A! [0106] According to the screen of the fifth embodiment, the same effects as the screen of the fourth embodiment can be obtained. Furthermore, according to the screen of the fifth embodiment, the sound generated by the sound source inside the housing of the image projection apparatus is led out to the outside through the communicating through-hole 90 and the through-cavity 81, so that the observer can Sound can be heard properly. Further, even if the inside of the casing of the image projection apparatus is heated to a high temperature due to a projection operation or the like, the inside and outside of the casing communicate with each other through the through-hole 90 and the through-cavity 81, so that it can be cooled.
[0107] (G)画像投射装置用スクリーンの第 6の実施形態  (G) Sixth Embodiment of Screen for Image Projection Device
次に、本発明による画像投射装置用スクリーンの第 6の実施形態を、図面を参照し ながら説明する。  Next, a sixth embodiment of the image projection apparatus screen according to the present invention will be described with reference to the drawings.
[0108] 第 6の実施形態のスクリーンも、第 4の実施形態のスクリーン 61と同様に、背面投射 型画像投射装置(図 7参照)に適用されるリアスクリーンである。  The screen of the sixth embodiment is also a rear screen applied to the rear projection type image projection apparatus (see FIG. 7), like the screen 61 of the fourth embodiment.
[0109] 図 13は、第 6の実施形態のスクリーン 61Bを示す概略断面図である。第 6の実施形 態のスクリーン 61Bも、入射側に配置されているマイクロレンズアレイシート 70と、異 方性光吸収シート 71と、マイクロレンズアレイシート 70及び異方性光吸収シート 71間 に設けられたピンホールアレイシート 72から構成されて 、る。これら 3枚の配置順序 は、図 13に示すものの逆であっても良い。  FIG. 13 is a schematic cross-sectional view showing a screen 61B of the sixth embodiment. The screen 61B of the sixth embodiment also has a microlens array sheet 70, an anisotropic light absorption sheet 71, and a pinhole provided between the microlens array sheet 70 and the anisotropic light absorption sheet 71 arranged on the incident side. It consists of an array sheet 72. The arrangement order of these three sheets may be the reverse of that shown in FIG.
[0110] マイクロレンズアレイシート 70及び異方性光吸収シート 71は、第 4の実施形態のも のと同様である。  [0110] The microlens array sheet 70 and the anisotropic light absorbing sheet 71 are the same as those in the fourth embodiment.
[0111] ピンホールアレイシート 72は、光吸収性のピンホールアレイシート本体 100に対し てピンホール 101が設けられているものである。ピンホールアレイシート 72は、単体の 構成要素として形成されて、マイクロレンズアレイシート 70及び異方性光吸収シート 7 1間に接合されても良ぐまた、マイクロレンズアレイシート 70の出射面に一体的に形 成されたものであっても良ぐさらに、異方性光吸収シート 71の入射面に一体的に形 成されたものであっても良い。ピンホール 101は、例えば、フォトエッチング法を適用 して形成することができる。  The pinhole array sheet 72 is provided with pinholes 101 with respect to the light-absorbing pinhole array sheet main body 100. The pinhole array sheet 72 may be formed as a single component and may be joined between the microlens array sheet 70 and the anisotropic light absorbing sheet 71. Also, the pinhole array sheet 72 may be integrated with the light exit surface of the microlens array sheet 70. It may be formed, or may be formed integrally with the incident surface of the anisotropic light absorbing sheet 71. The pinhole 101 can be formed by applying, for example, a photoetching method.
[0112] 各ピンホール 101は、入射側のマイクロレンズと出射側の貫通空洞 81とに対応する ものであり、これらの光軸は一致している。各ピンホール 101は、対応するマイクロレ ンズの焦点位置又はその近傍に設けられている。なお、図 13では、同一形状の貫通 空洞 81が規則的に配置されている場合を示している力 種々の大きさの貫通空洞 8 1が不規則に配置されている場合でも、各ピンホール 101は、対応する貫通空洞 81 の入射側に光軸を合わせて設けられる。 [0112] Each pinhole 101 corresponds to the incident-side microlens and the exit-side through-cavity 81, and their optical axes coincide with each other. Each pinhole 101 is provided at or near the focal position of the corresponding microlens. In addition, in FIG. Forces showing the case where the cavities 81 are regularly arranged Even if the through cavities 8 1 of various sizes are arranged irregularly, each pinhole 101 is connected to the incident side of the corresponding through cavity 81. Are provided with the optical axis aligned.
[0113] ピンホール 101は、空洞(空気層)によって形成されていても良ぐまた、透明材料 が存在する微小な光学的な窓になっていても良い。また、ピンホール 101は、透過光 に対し、拡散性を付与するような処理が施されていても良い。ピンホール 101は、円 筒状の光学的な開口になっていても良ぐ錐体台形状の光学的な開口になっていて も良い。 [0113] The pinhole 101 may be formed by a cavity (air layer), or may be a minute optical window in which a transparent material is present. Further, the pinhole 101 may be subjected to a treatment that imparts diffusibility to transmitted light. The pinhole 101 may be a cylindrical trapezoidal optical opening which may be a cylindrical optical opening.
[0114] この第 6の実施形態において、ピンホール 101は、対応するマイクロレンズの焦点 近傍に形成されているため、マイクロレンズによって集光された光画像の光はピンホ ール 101に妨げられることなく透過する。ピンホール 101を通過した光は、第 4の実施 形態と同様にして、観察者の観察に供する光画像となる。  [0114] In the sixth embodiment, since the pinhole 101 is formed in the vicinity of the focal point of the corresponding microlens, the light of the light image collected by the microlens is blocked by the pinhole 101. It is transparent. The light that has passed through the pinhole 101 becomes a light image that is used for observation by the observer, as in the fourth embodiment.
[0115] ピンホールアレイシート本体 100の存在によって、マイクロレンズアレイシート 70の 一面が、観察者側から見えなくなるので、言い換えると、黒ベースの所からの光画像 を観察者が観察するので、高コントラストの光画像を観察者に提供できる。  [0115] The presence of the pinhole array sheet main body 100 makes one surface of the microlens array sheet 70 invisible from the observer side. In other words, the observer observes the light image from the black base. A contrast light image can be provided to the observer.
[0116] 外光も、基本的には、第 4の実施形態と同様に、異方性光吸収シート 71によって吸 収除去される。仮に、ピンホールアレイシート 72に到達したとしても、ピンホールァレ ィシート 72のピンホール 101以外の部分である光吸収性のピンホールアレイシート 本体 100によって吸収除去される。言い換えると、ピンホール 101を介して、装置筐 体内部に入り込む外光はほぼ皆無と見なすことができ、装置筐体内部に外光が入つ て迷光となって悪影響を与えることを防止できる。  [0116] Basically, external light is also absorbed and removed by the anisotropic light-absorbing sheet 71 as in the fourth embodiment. Even if the pinhole array sheet 72 is reached, it is absorbed and removed by the light-absorbing pinhole array sheet main body 100, which is a portion other than the pinhole 101 of the pinhole array sheet 72. In other words, it can be considered that almost no external light enters the inside of the apparatus housing through the pinhole 101, and it is possible to prevent external light from entering the inside of the apparatus housing and causing adverse effects as stray light.
[0117] 以上のように、第 6の実施形態によれば、第 4の実施形態と同様な効果に加え、ピ ンホールアレイシートを設けたことによる画質向上効果を期待できる。  [0117] As described above, according to the sixth embodiment, in addition to the same effects as those of the fourth embodiment, an image quality improvement effect due to the provision of the pinhole array sheet can be expected.
[0118] 図 14は、第 6の実施形態のスクリーンの変形実施形態を示している。図 14に示す スクリーン 61Cは、マイクロレンズアレイシート 70C、透明平板 73、ピンホールアレイ シート 72及び異方性光吸収シート 71を有する。  FIG. 14 shows a modified embodiment of the screen of the sixth embodiment. The screen 61C shown in FIG. 14 includes a microlens array sheet 70C, a transparent flat plate 73, a pinhole array sheet 72, and an anisotropic light absorbing sheet 71.
[0119] この変形実施形態におけるマイクロレンズアレイシート 70C及び透明平板 73の部 分力 第 6の実施形態のマイクロレンズアレイシート 70と同様なものとなっている。ピ ンホールアレイシート 72及び異方性光吸収シート 71の部分を一部材として製造する ことは困難を伴うが、透明平板 73を含め、透明平板 73、ピンホールアレイシート 72及 び異方性光吸収シート 71の部分を一部材として製造することは容易になる。また、光 吸収性を有するシート状光学部品として取り扱いや販売もし易いものとなる。 [0119] Partial force of the microlens array sheet 70C and the transparent flat plate 73 in this modified embodiment is the same as the microlens array sheet 70 of the sixth embodiment. Pi It is difficult to manufacture the entire hole array sheet 72 and the anisotropic light absorbing sheet 71 as one member, but the transparent flat plate 73, the transparent flat plate 73, the pinhole array sheet 72, and the anisotropic light absorbing sheet 71 part. Can be manufactured as a single member. Moreover, it becomes easy to handle and sell as a sheet-like optical component having light absorption.
[0120] また、第 5の実施形態におけるような、いくつかのマイクロレンズに貫通孔を設けると いう技術思想と、第 6の実施形態におけるようなピンホールアレイシートを設けるという 技術思想とを組み合わせて良 、ことは勿論である。この場合のピンホールは空洞とな る。 [0120] Also, the technical idea of providing through holes in some microlenses as in the fifth embodiment and the technical idea of providing pinhole array sheets as in the sixth embodiment are combined. Of course, of course. In this case, the pinhole is hollow.
[0121] (H)画像投射装置用スクリーンの第 7の実施形態  (H) Seventh Embodiment of Screen for Image Projection Device
次に、本発明による画像投射装置用スクリーンの第 7の実施形態を、図面を参照し ながら説明する。  Next, a seventh embodiment of the screen for an image projection apparatus according to the present invention will be described with reference to the drawings.
[0122] 第 7の実施形態のスクリーンは、前面投射型画像投射装置に適用されるいわゆるフ ロントスクリーンである。光画像を投射するプロジェクタ本体とフロントスクリーンとの位 置関係は、恰も、図 7におけるプロジェクタ本体 63とミラー 64との位置関係と同様で ある。  [0122] The screen of the seventh embodiment is a so-called front screen applied to a front projection type image projection apparatus. The positional relationship between the projector main body that projects the optical image and the front screen is similar to the positional relationship between the projector main body 63 and the mirror 64 in FIG.
[0123] 図 15は、第 7の実施形態のスクリーン 61Dを示す概略断面図である。第 7の実施形 態のスクリーン 61Dは、入射及び出射面側から、異方性光吸収シート 71、光拡散層 74及び光反射層 75を有する。  FIG. 15 is a schematic cross-sectional view showing a screen 61D of the seventh embodiment. The screen 61D of the seventh embodiment includes an anisotropic light absorbing sheet 71, a light diffusing layer 74, and a light reflecting layer 75 from the entrance and exit surface sides.
[0124] 異方性光吸収シート 71は、第 4の実施形態のものと同様なものである。但し、プロジ ェクタ本体からの光画像が、貫通空洞 81を往復進行するので、貫通空洞 81の軸方 向の長さ、言い換えると、異方性光吸収シート 71の厚さは、例えば、上記各実施形 態のリアスクリーンの場合より短くなる。なお、図 15では、種々の大きさの貫通空洞 81 が不規則に配置された異方性光吸収シート 71を示したが、同一形状の貫通空洞 81 を規則的に配置した異方性光吸収シート 71を、第 7の実施形態のスクリーン 61Dに 適用しても良 、ことは勿論である。  [0124] The anisotropic light-absorbing sheet 71 is the same as that of the fourth embodiment. However, since the optical image from the projector main body reciprocates through the through-cavity 81, the length of the through-cavity 81 in the axial direction, in other words, the thickness of the anisotropic light-absorbing sheet 71 is, for example, It becomes shorter than the case of the rear screen. FIG. 15 shows the anisotropic light absorbing sheet 71 in which the through cavities 81 of various sizes are irregularly arranged. However, the anisotropic light absorbing sheet 71 in which the through cavities 81 of the same shape are regularly arranged is shown in FIG. Of course, it may be applied to the screen 61D of the seventh embodiment.
[0125] 光拡散層 74は、入射光が当該光拡散層 74を透過していくことにより拡散させるもの であり、光反射層 75は、入射光を反射させるものである。光拡散層 74及び光反射層 75は、既存のフロントスクリーンのものと同様である。光反射層 75として、例えば、 PE Tなどの基板に対して、アルミニウム、銀などを蒸着して形成したものを適用できる。 [0125] The light diffusion layer 74 diffuses the incident light by passing through the light diffusion layer 74, and the light reflection layer 75 reflects the incident light. The light diffusion layer 74 and the light reflection layer 75 are the same as those of the existing front screen. As the light reflecting layer 75, for example, PE A substrate formed by evaporating aluminum, silver or the like on a substrate such as T can be applied.
[0126] 光拡散層 74として、例えば、アクリルやスチレンで作った多数の透明ビーズを接着し たものを適用できる。また、光拡散層 74として、例えば、散乱性の酸ィ匕物(MgSO、 [0126] As the light diffusion layer 74, for example, a material obtained by bonding a large number of transparent beads made of acrylic or styrene can be used. Further, as the light diffusion layer 74, for example, a scattering acid oxide (MgSO,
4 Four
MgO、 BaSOなど)パウダーを高分子材料でバインドしたものを適用し得る。 (MgO, BaSO, etc.) Powder bound with a polymer material can be applied.
4  Four
[0127] ここで、異方性光吸収シート 71の貫通空洞 81の光軸と、光反射層 75の法線方向と は平行であることが好ましいが、これに限定されるものではない。  Here, the optical axis of the through-cavity 81 of the anisotropic light-absorbing sheet 71 and the normal direction of the light reflecting layer 75 are preferably parallel, but the present invention is not limited to this.
[0128] 図示しないプロジェクタ本体から出射された光画像は、直接、又は、図示しないミラ 一などによって反射されて、第 7の実施形態のスクリーン 61Dに入射される。このよう に入射される光画像は、異方性光吸収シート 71の小断面積の各貫通空洞 81から見 ると、その貫通空洞 81の光軸に沿った平行光と見なすことができる。  An optical image emitted from a projector main body (not shown) is reflected directly or by a mirror (not shown) or the like and is incident on the screen 61D of the seventh embodiment. The incident light image can be regarded as parallel light along the optical axis of the through-cavity 81 when viewed from each through-cavity 81 having a small cross-sectional area of the anisotropic light absorbing sheet 71.
[0129] 各貫通空洞 81内を、その光軸に沿って進行する平行光 PLは、光拡散層 74を透過 していくことにより拡散されて光反射層 75に至る。光反射層 75で反射された光 (拡散 光)は、再度、光拡散層 74を透過していくことにより拡散される。この拡散によっても、 貫通空洞 81内を、側壁 80に到達することなく進行し、貫通空洞 81外部に出射され た光は、観察者の観察に供する光画像となる。なお、拡散光のうち貫通空洞 81を規 定する側壁 80に衝突 (入射)したものは、側壁 80によって吸収される。以上のように して、スクリーン 61Dとしての所望の視野角が達成される。  The parallel light PL traveling along the optical axis in each through-cavity 81 is diffused by passing through the light diffusion layer 74 and reaches the light reflection layer 75. The light (diffused light) reflected by the light reflecting layer 75 is diffused by passing through the light diffusing layer 74 again. Also by this diffusion, light that travels through the through-cavity 81 without reaching the side wall 80 and is emitted to the outside of the through-cavity 81 becomes an optical image for observation by the observer. The diffused light that collides (incides) with the side wall 80 that defines the through-cavity 81 is absorbed by the side wall 80. As described above, a desired viewing angle as the screen 61D is achieved.
[0130] 天井の蛍光灯などの室内光源が出射した光線が、図 15に示すように、外光 (外乱 光) NSとしてスクリーン 61Dの観察面に到来したとする。この第 7の実施形態の場合 、観察面側に、異方性光吸収シート 71が設けられている。  [0130] As shown in FIG. 15, it is assumed that a light beam emitted from an indoor light source such as a fluorescent lamp on the ceiling has arrived on the observation surface of screen 61D as external light (disturbance light) NS. In the case of the seventh embodiment, an anisotropic light absorbing sheet 71 is provided on the observation surface side.
[0131] 異方性光吸収シート 71に角度をもって入射した外光 NSは、貫通空洞 81内に入り 込み、その貫通空洞 81を規定する光吸収性を有する側壁 80によって吸収され、除 去される。仮に、外光 NSの数パーセントが反射されたとしても、対向する側壁 80に 到達した際には吸収され、反射が多重になればなるほど完全に吸収される。外光 NS の入射角がある程度小さくても、貫通空洞 81の軸方向の長さ(言い換えると、異方性 光吸収シート 71の厚み)を長く選定しておくことにより、側壁 80のいずれかの箇所に 到達するようになり、外光 NSは吸収される。また仮に、光拡散層 74及び光反射層 75 の部位に到達したとしても、光拡散層 74による拡散方向は、光画像の場合より、角度 を持ったものとなり、反射後の経路で側壁 80のいずれかの箇所に到達し、そこで吸 収される。 [0131] The external light NS incident on the anisotropic light absorbing sheet 71 at an angle enters the through-cavity 81, and is absorbed and removed by the side wall 80 having light absorbability that defines the through-cavity 81. Even if several percent of the external light NS is reflected, it is absorbed when it reaches the opposite side wall 80, and is completely absorbed as the reflection is multiplexed. Even if the incident angle of the external light NS is small to some extent, by selecting a long axial length of the through-cavity 81 (in other words, the thickness of the anisotropic light absorbing sheet 71), any of the side walls 80 can be selected. It reaches the spot and the outside light NS is absorbed. Even if the light diffusing layer 74 and the light reflecting layer 75 are reached, the direction of diffusion by the light diffusing layer 74 is smaller than that of the optical image. It reaches any part of the side wall 80 in the path after reflection and is absorbed there.
第 7の実施形態のフロントスクリーンによっても、第 4の実施形態の異方性光吸収シ ートを用いて構成されているので、製造が容易で低コストが期待でき、また、外光を吸 収除去するので、観察者に高画質の光画像を供給できる。  Since the front screen of the seventh embodiment is also configured using the anisotropic light absorption sheet of the fourth embodiment, it is easy to manufacture and can be expected to be low in cost, and absorbs and removes external light. Therefore, a high-quality optical image can be supplied to the observer.

Claims

請求の範囲 The scope of the claims
[1] 背面投射型画像投射装置に適用するスクリーンにおいて、  [1] In a screen applied to a rear projection type image projector,
一面にフレネルレンズ面が形成されていると共に、他面にマイクロレンズアレイ面が 形成されている光学シートと、全ての入射面から入射した入射光の入射角度によって 光吸収特性が異なる異方性光吸収シートとが上記マイクロレンズアレイ面に面して近 接配置されて構成されていることを特徴とする背面投射型画像投射装置用スクリーン  An optical sheet that has a Fresnel lens surface on one side and a microlens array surface on the other side, and an anisotropic light-absorbing sheet that has different light absorption characteristics depending on the incident angle of incident light incident from all incident surfaces Are arranged close to each other so as to face the surface of the microlens array.
[2] 請求項 1に記載の背面投射型画像投射装置用スクリーンにおいて、 [2] In the screen for a rear projection type image projection device according to claim 1,
前記光学シートと前記異方性光吸収シートと、さらにピンホールアレイシートとが、こ の順に近接して配置されて構成されていることを特徴とする背面投射型画像投射装 置用スクリーン。  A screen for a rear projection type image projection apparatus, wherein the optical sheet, the anisotropic light absorption sheet, and a pinhole array sheet are arranged close to each other in this order.
[3] 請求項 2に記載の背面投射型画像投射装置用スクリーンにおいて、  [3] In the screen for a rear projection type image projection device according to claim 2,
前記光学シートと前記異方性光吸収シートと前記ピンホールアレイシートと、さらに 光拡散シートとが、この順に近接して配置されて構成されていることを特徴とする背 面投射型画像投射装置用スクリーン。  A screen for a rear projection type image projection apparatus, wherein the optical sheet, the anisotropic light absorption sheet, the pinhole array sheet, and a light diffusion sheet are arranged close to each other in this order. .
[4] 請求項 1に記載の背面投射型画像投射装置用スクリーンにおいて、 [4] In the screen for a rear projection type image projection device according to claim 1,
前記異方性光吸収シートが、互いの側壁を共有して多数密に集合してなる、光吸 収性の前記側壁で囲繞された貫通空洞を備えたことを特徴とする背面投射型画像 投射装置用スクリーン。  For the rear projection type image projection apparatus, wherein the anisotropic light-absorbing sheet includes a through-cavity surrounded by the light-absorbing side wall, which is formed by densely gathering a plurality of the side walls sharing each other. screen.
[5] 上記光吸収性の側壁は、金属、光吸収性顔料を含有するガラス、又は、光吸収性 顔料若しくは染料を含有する高分子材料でなって!/ヽることを特徴とする請求項 4に記 載の背面投射型画像投射装置用スクリーン。  [5] The light-absorbing side wall is made of a metal, glass containing a light-absorbing pigment, or a polymer material containing a light-absorbing pigment or dye. 4. Screen for rear projection type image projector as described in 4.
[6] 上記光吸収性の側壁は、その表面に光吸収層が形成されているものであることを 特徴とする請求項 4に記載の背面投射型画像投射装置用スクリーン。 6. The screen for a rear projection type image projection apparatus according to claim 4, wherein the light absorbing side wall has a light absorbing layer formed on a surface thereof.
[7] 上記各貫通空洞は同一形状をしており、複数の上記貫通空洞が規則性を持って 配列されていることを特徴とする請求項 4に記載の背面投射型画像投射装置用スクリ ーン。 [7] The screen for a rear projection type image projector according to claim 4, wherein each of the through cavities has the same shape, and the plurality of through cavities are arranged with regularity. N.
[8] 上記各貫通空洞は、その光軸方向に直交する断面での輪郭が一様ではなぐ複数 の上記貫通空洞が不規則に配されていることを特徴とする請求項 4に記載の背面投 射型画像投射装置用スクリーン。 [8] Each of the through cavities has a plurality of contours that are not uniform in a cross section perpendicular to the optical axis direction. 5. The screen for a rear projection type image projection apparatus according to claim 4, wherein the through cavities are irregularly arranged.
背面投射型画像投射装置に適用する背面投射型画像投射装置用スクリーンにお いて、  In a screen for a rear projection type image projection apparatus applied to a rear projection type image projection apparatus,
光吸収性の側壁で囲繞された貫通空洞が、互いの上記側壁を共有して多数密に 集合してなる異方性光吸収シート、光拡散層及び光反射層をこの順に有することを 特徴とする背面投射型画像投射装置用スクリーン。  A back surface characterized in that a through-cavity surrounded by light-absorbing side walls has an anisotropic light-absorbing sheet, a light diffusing layer, and a light-reflecting layer in this order, each of which is shared by the side walls. Screen for projection type image projector.
背面投射型画像投射装置に適用される背面投射型画像投射装置用スクリーンに おいて、  In a screen for a rear projection type image projection apparatus applied to a rear projection type image projection apparatus,
請求項 4に記載の異方性光吸収シートと、マイクロレンズアレイシートとを有すること を特徴とする背面投射型画像投射装置用スクリーン。  5. A screen for a rear projection type image projection apparatus, comprising the anisotropic light absorbing sheet according to claim 4 and a microlens array sheet.
上記マイクロレンズアレイシートを構成するマイクロレンズ及び上記貫通空洞の光軸 が同一であることを特徴とする請求項 10に記載の背面投射型画像投射装置用スクリ ーン。  11. The screen for a rear projection type image projection apparatus according to claim 10, wherein the microlens constituting the microlens array sheet and the through-cavity have the same optical axis.
一部の上記マイクロレンズは、両面を連通する貫通孔を有し、この貫通孔は同一光 軸に係る上記貫通空洞に連絡して 、ることを特徴とする請求項 11に記載の背面投 射型画像投射装置用スクリーン。  12. The rear projection according to claim 11, wherein some of the microlenses have through-holes communicating with both surfaces, and the through-holes communicate with the through-cavities associated with the same optical axis. Type image projector screen.
上記各マイクロレンズの焦点位置近傍にピンホールを有するピンホールァレイシー トが、上記異方性光吸収シート及び上記マイクロレンズアレイシート間に設けられて いることを特徴とする請求項 9に記載の背面投射型画像投射装置用スクリーン。  10. The rear projection according to claim 9, wherein a pinhole array sheet having a pinhole in the vicinity of a focal position of each microlens is provided between the anisotropic light absorbing sheet and the microlens array sheet. Type image projector screen.
PCT/JP2007/052527 2006-02-10 2007-02-13 Screen for rear projection type image projector WO2007091709A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006034298A JP2007212887A (en) 2006-02-10 2006-02-10 Anisotropic light absorbing sheet, manufacturing method of anisotropic light absorbing sheet, manufacturing method of die for anisotropic light absorbing sheet, and screen for image projection apparatus
JP2006-034298 2006-02-10
JP2006-066636 2006-03-10
JP2006066636A JP2007241139A (en) 2006-03-10 2006-03-10 Screen for rear projection-type image projector

Publications (1)

Publication Number Publication Date
WO2007091709A1 true WO2007091709A1 (en) 2007-08-16

Family

ID=38345297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052527 WO2007091709A1 (en) 2006-02-10 2007-02-13 Screen for rear projection type image projector

Country Status (1)

Country Link
WO (1) WO2007091709A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471246A (en) * 2018-05-10 2019-11-19 深圳光峰科技股份有限公司 Ray machine regulating system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105502A (en) * 1984-10-29 1986-05-23 Kojima Press Co Ltd Production for light transmission range control screen
JPH01172939A (en) * 1987-12-28 1989-07-07 Kawasaki Heavy Ind Ltd Projection screen
JPH02183241A (en) * 1989-01-10 1990-07-17 Asahi Glass Co Ltd Screen for back projection type display
JPH04355745A (en) * 1991-06-03 1992-12-09 Dainippon Printing Co Ltd Reflection type projection screen
JPH0635069A (en) * 1992-07-14 1994-02-10 Dainippon Printing Co Ltd Reflection type projection screen
JP2000321675A (en) * 1999-05-14 2000-11-24 Toppan Printing Co Ltd Microlens array sheet and its production and rear transmission type screen using this sheet
JP2001005103A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Rear projection type screen, the manufacture of the same, and rear projection type display
JP2003114481A (en) * 2001-10-05 2003-04-18 Mitsubishi Electric Corp Translucent screen and projection type display
JP2004240159A (en) * 2003-02-06 2004-08-26 Sony Corp Screen and its manufacturing method
JP2005070639A (en) * 2003-08-27 2005-03-17 Fuji Photo Film Co Ltd Viewing angle adjustment filter and display device
JP2005208558A (en) * 2003-12-25 2005-08-04 Arisawa Mfg Co Ltd Reflex-type screen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105502A (en) * 1984-10-29 1986-05-23 Kojima Press Co Ltd Production for light transmission range control screen
JPH01172939A (en) * 1987-12-28 1989-07-07 Kawasaki Heavy Ind Ltd Projection screen
JPH02183241A (en) * 1989-01-10 1990-07-17 Asahi Glass Co Ltd Screen for back projection type display
JPH04355745A (en) * 1991-06-03 1992-12-09 Dainippon Printing Co Ltd Reflection type projection screen
JPH0635069A (en) * 1992-07-14 1994-02-10 Dainippon Printing Co Ltd Reflection type projection screen
JP2000321675A (en) * 1999-05-14 2000-11-24 Toppan Printing Co Ltd Microlens array sheet and its production and rear transmission type screen using this sheet
JP2001005103A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Rear projection type screen, the manufacture of the same, and rear projection type display
JP2003114481A (en) * 2001-10-05 2003-04-18 Mitsubishi Electric Corp Translucent screen and projection type display
JP2004240159A (en) * 2003-02-06 2004-08-26 Sony Corp Screen and its manufacturing method
JP2005070639A (en) * 2003-08-27 2005-03-17 Fuji Photo Film Co Ltd Viewing angle adjustment filter and display device
JP2005208558A (en) * 2003-12-25 2005-08-04 Arisawa Mfg Co Ltd Reflex-type screen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471246A (en) * 2018-05-10 2019-11-19 深圳光峰科技股份有限公司 Ray machine regulating system and method
CN110471246B (en) * 2018-05-10 2021-02-02 深圳光峰科技股份有限公司 Optical machine adjusting system and method

Similar Documents

Publication Publication Date Title
WO2007091708A1 (en) Optical sheet, image display and screen for image projector
KR100918713B1 (en) Double-sided lens sheet and projection screen
WO2002099530A1 (en) Micro-lens sheet and projection screen
US3704055A (en) Projection screen
TW200304550A (en) Lens array sheet, transparent screen, and rear-projection
JP2006526811A (en) Microlens array-based high-resolution, low-image artifact transmissive screen
JP2006337944A (en) Semi-transmission type reflection screen
JP2007212887A (en) Anisotropic light absorbing sheet, manufacturing method of anisotropic light absorbing sheet, manufacturing method of die for anisotropic light absorbing sheet, and screen for image projection apparatus
JP2007058030A (en) Fresnel lens sheet, transmission screen and rear projection type display device
WO2018166177A1 (en) Transparent display device
WO2007091709A1 (en) Screen for rear projection type image projector
JP6806911B2 (en) Backlight unit and liquid crystal display
WO2019201012A1 (en) Fresnel projection screen and projection system
JP6944093B2 (en) Optical element and image display device using it
JP2007310253A (en) Lens array sheet, method for manufacturing lens array sheet, transmission type screen and back projection type display device
JP2007316415A (en) Sheet member, transmissive screen and rear projection type image display device
JP2007025207A (en) Fresnel lens sheet and transmission type screen using the same
JP4815789B2 (en) Diffuse lens array sheet, transmissive screen, and rear projection display device
JP2007241139A (en) Screen for rear projection-type image projector
TW200304579A (en) Micro-lens sheet and projection screen
JP2005215417A (en) Microlens array
JP3418766B2 (en) Multi-projection television
JP2014199338A (en) Transmission type screen, rear projection display unit and automobile
US20160231646A1 (en) Display system for ambient light discrimination
JP2001209130A (en) Back projection type screen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714109

Country of ref document: EP

Kind code of ref document: A1