WO2007091539A1 - ガス濃縮装置およびその制御方法 - Google Patents

ガス濃縮装置およびその制御方法 Download PDF

Info

Publication number
WO2007091539A1
WO2007091539A1 PCT/JP2007/051977 JP2007051977W WO2007091539A1 WO 2007091539 A1 WO2007091539 A1 WO 2007091539A1 JP 2007051977 W JP2007051977 W JP 2007051977W WO 2007091539 A1 WO2007091539 A1 WO 2007091539A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption chamber
adsorbent
adsorption
oxygen
Prior art date
Application number
PCT/JP2007/051977
Other languages
English (en)
French (fr)
Inventor
Satoshi Nakagawa
Hiroshi Ogawa
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Publication of WO2007091539A1 publication Critical patent/WO2007091539A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M16/101Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the present invention relates to a gas concentrator that concentrates at least one gas in a gas fluid containing a plurality of gases, and a control method therefor, and more particularly, a gas concentrator that concentrates oxygen from air and a control method therefor About.
  • Concentration techniques for increasing the concentration ratio of at least one component from a gas fluid containing a plurality of gas components include concentration and purification separation of the target component from the gas fluid, for example, aerodynamic force It is widely used in various industrial fields, such as concentration of oxygen in water, removal of various harmful components contained in factory exhaust gas, concentration and separation of target components from various gas fluids, and the method is also based on adsorption separation. There are various types such as those using separation membranes and those using magnetic fields and electric fields.
  • a patient with a respiratory disease such as chronic bronchitis has a high concentration in order to be able to inhale the amount of oxygen necessary for respiration.
  • An oxygen concentrator that supplies oxygen at a certain degree can be mentioned.
  • This oxygen concentrator concentrates oxygen from air by using, as an adsorbent, zeolite or the like that can preferentially adsorb nitrogen contained in the air.
  • air which is a raw material, is supplied from the first end of a cylindrical adsorption chamber filled with an adsorbent, called an adsorption cylinder.
  • the nitrogen gas is mainly adsorbed to the adsorbent by increasing the pressure of the adsorbent, the remaining high-concentration oxygen gas is taken out as a product and the second end force of the adsorption cylinder is taken out. Since it is possible to obtain gas, it is widely used in industrial applications.
  • Adsorbents that have undergone gas adsorption in the above example, nitrogen gas in the above example
  • Adsorbents that have undergone gas adsorption do not undergo any further adsorption reaction.
  • the amount of many adsorbents adsorbed in an environment such as high pressure, high concentration, or low temperature is large, and conversely in an environment such as low pressure, low concentration, or high temperature. Since it has the characteristic that the amount to be adsorbed is small, the characteristic of this adsorbent is used.
  • the pressure of the gas fluid is lowered than at the time of adsorption, or the adsorbent that has adsorbed the gas is washed with a gas fluid containing the same gas component at a concentration lower than the concentration of the adsorbed gas component, or the temperature is
  • a method of desorbing a part of the adsorbed component from the adsorbent by increasing the degree is used.
  • PSA pressure swing adsorption
  • Patent Document 1 Pneumatic oxygen enrichment by the PSA method is a method of obtaining a product gas with a high oxygen concentration by applying the difference in the adsorption amount of nitrogen and oxygen due to pressure during gas adsorption. That is, in a high-pressure condition where the pressure of air is high, this method utilizes the preferential adsorption of nitrogen gas to the adsorbent over oxygen gas.
  • pressurized air serving as a raw material pressurized by the first end force pressurizing means of the adsorption cylinder is supplied, and is adsorbed by the adsorbent in the pressurized air in the adsorption cylinder.
  • Easy nitrogen is selectively or preferentially adsorbed.
  • oxygen remains in the gas phase without being adsorbed, and the remaining gas containing high-concentration oxygen is taken out as the product gas from the second end of the adsorption cylinder.
  • the nitrogen adsorbed in the adsorbent in the first process is desorbed from the adsorbent by lowering the pressure in the adsorption cylinder by the decompression means.
  • the desorbed gas containing high-concentration nitrogen gas is exhausted by the first end force of the adsorption cylinder.
  • a product gas with a high oxygen concentration is flowed at a flow rate of about 0.01 liter Z min to 1000 liter Z min, for example. It can be taken out.
  • a product gas containing high-concentration oxygen gas it is possible to take out a product gas containing high-concentration oxygen gas at a flow rate of about 0.1 liters Z to 10 liters Z and supply it to the patient who needs it. it can.
  • a pressurizing means for supplying pressurized air to the oxygen concentrator a compressor is generally used.
  • Sa is used.
  • a vacuum pump is used as a decompression means for exhausting nitrogen gas from the oxygen concentrator.
  • Switching between the first and second processes is generally performed by opening and closing a plurality of valves provided in the piping of the oxygen concentrator. This switching is automatically performed based on, for example, a preset time for each process preset in the oxygen concentrator or a simulation condition based on a physical quantity such as pressure at a predetermined observation point.
  • zeolite As an adsorbent that selectively adsorbs a desired gas component in a gas fluid used in the PSA method, for example, zeolite, activated carbon, activated alumina, silica gel, or the like is used. These adsorbents are used according to the target gas component to be separated or concentrated from the gas fluid. For example, when the gas fluid is air and it is desired to concentrate or separate oxygen in the air, Na-A type, Ca-A type, Na_X type, Ca-X type, which preferentially or selectively adsorb nitrogen. Alternatively, synthetic zeolite such as UX type is preferably used. In addition, the adsorbent need not be limited to one type, and may be used in combination with adsorbents having different characteristics.
  • FIG. 9 An example of an oxygen concentrator is shown in FIG. 9 (for example, Patent Document 2).
  • the air taken into the apparatus is first removed of dust by the dust filter 1101 and the intake filter 1102, and compressed by the compressor 105 via the silencer 1103, and then the cooling fan 1104, heat exchange. It is cooled down by 1106.
  • the cooled air is sent to an adsorption cylinder 1108 filled with an adsorbent via a switching valve 1107 for switching the pipe flow path.
  • a gas containing oxygen concentrated to a high concentration obtained by gas separation preferential adsorption of nitrogen to the adsorbent
  • the pressure and the gas flow rate are controlled via the pressure regulator 112 and the flow rate regulator 115 (the gas flow rate is detected by the flow rate sensor 113 and the oxygen concentration is detected by the oxygen concentration sensor 114).
  • the tube After being moderately humidified via the tube, it is configured to be supplied to the patient via a conduit such as the flexible extension tube 117 and the force-yura 118.
  • 1109 is a pressure equalizing valve
  • 110 is a check valve
  • 120 is a pressure sensor
  • 119 is an exhaust silencer for reducing exhaust noise caused by nitrogen and moisture.
  • a switching valve is used to regenerate the adsorbent in the other adsorption cylinder, using the adsorption cylinder for oxygen concentration.
  • one of the adsorption cylinders 1108 is supplied with pressurized air, adsorbs nitrogen in the air with an adsorbent, and is used to take out a gas containing high-concentration oxygen remaining without adsorption as a product gas (concentration). Process), at this time, the other adsorption cylinder 1108 is regenerated so that the inside of the adsorption cylinder 1108 is depressurized to desorb nitrogen from the adsorbent that has adsorbed nitrogen, and the adsorbent can adsorb nitrogen again (regeneration process). .
  • the concentration is continuously increased.
  • the adsorbent can be recycled while supplying concentrated oxygen to the patient.
  • Patent Document 1 Japanese Patent Application No. 2002-319231
  • Patent Document 2 Japanese Patent Application No. 2003-142151
  • an additional compressor such as a compressor for pressurizing and supplying the gas fluid to promote gas adsorption to the adsorbent is provided. It was necessary to prepare a separate depressurization means to accelerate the gas desorption from the adsorbent by depressurizing the pressure means and the adsorption cylinder. In addition, noise countermeasures were necessary when using a compressor. Therefore, the enlargement of the apparatus and the complexity of the configuration were inevitable.
  • the present invention has been made starting from solving the above-described problems of the prior art, and its purpose is to concentrate or concentrate a target gas component from a gas fluid containing a plurality of gas components. It is an object of the present invention to provide a gas concentrator capable of efficiently concentrating or separating a target gas component while preventing an increase in the size of the device and the complexity of the configuration, and a control method thereof.
  • a gas concentrator of the present invention for achieving the above object has the following configuration. That is, a gas concentrator for concentrating the first gas from a gas fluid containing at least a first gas and a second gas, comprising an adsorbent that adsorbs the second gas, and the gas fluid Before An adsorption chamber for concentrating the first gas, and increasing the pressure of the gas fluid introduced into the adsorption chamber by reducing the volume of the adsorption chamber to increase the adsorption amount of the second gas to the adsorbent. And pressure changing means to be applied.
  • the pressure changing means preferably desorbs the second gas adsorbed on the adsorbent by decreasing the pressure in the adsorption chamber by increasing the volume of the adsorption chamber.
  • the pressure changing means includes a rotating member arranged to rotate eccentrically, and the suction chamber forms a sealed space between the rotating member and the rotating member. It is preferable that the space is surrounded by an outer wall member formed.
  • the rotating member has a substantially cylindrical shape and the outer wall member has a substantially hollow cylindrical shape.
  • the adsorption chamber is preferably a section obtained by dividing the space surrounded by the rotating member and the outer wall member into at least two.
  • the adsorption chamber is preferably a section obtained by dividing the space surrounded by the rotating member and the outer wall member into a plurality of sections.
  • the pressure changing means includes a piston member capable of reciprocating, and the suction chamber includes an outer wall member that forms a sealed space between the piston member and the piston member. It is also preferable that the spatial force surrounded by
  • the piston member is preferably substantially cylindrical, and the outer wall member is preferably substantially hollow cylindrical.
  • the adsorption chamber is preferably each of two spaces surrounded by the piston member and the outer wall member.
  • a gas concentrator of the present invention for achieving the above object has the following configuration. That is, a gas concentrator for concentrating the first gas from a gas fluid containing at least a first gas and a second gas, comprising an adsorbent that adsorbs the second gas, and the gas fluid An adsorption chamber for concentrating the first gas therein, and a high pressure region and a low pressure region in the gas fluid introduced into the adsorption chamber to generate contact with the high pressure region. Pressure difference generating means for increasing the adsorption amount of the second gas to the agent. And features.
  • the pressure difference generating means has a hollow rotating member having a plurality of blades on the inner surface.
  • the adsorbing chamber has rotating means for rotating the adsorbent at a speed different from that of the rotating member, and the adsorbent adsorbing the second gas by the rotating means has a low pressure. It is preferable that the second gas is desorbed by coming into contact with the region.
  • the first gas is oxygen
  • the second gas is nitrogen
  • the gas concentrator is an oxygen concentrator that concentrates aerodynamic oxygen
  • a control method for a gas concentrator of the present invention to achieve the above object has the following configuration. That is, a gas concentrator having an adsorbent that adsorbs the second gas of a gas fluid containing at least a first gas and a second gas and having an adsorption chamber for concentrating the first gas in the gas fluid.
  • a control method the step of introducing the gas fluid into the adsorption chamber; and the volume of the adsorption chamber is decreased to increase the pressure of the gas fluid introduced into the adsorption chamber, and to the adsorbent. And a step of increasing the adsorption amount of the second gas.
  • the object when concentrating or separating a target gas component from a gas fluid containing a plurality of gas components, the object is efficiently achieved while preventing an increase in the size and complexity of the apparatus.
  • a gas concentrator capable of concentrating or separating gas components and a control method thereof can be provided.
  • FIG. 1 is a diagram showing an overall configuration of an oxygen concentrator according to a first embodiment of the present invention.
  • FIG. 2A Aerodynamic high concentration oxygen is concentrated using the adsorption chamber of the first embodiment of the present invention.
  • FIG. 2B is a diagram for explaining a method of concentrating aerodynamically high concentration oxygen using the adsorption chamber of the first embodiment of the present invention.
  • [2C] A diagram illustrating a method of concentrating oxygen with high aerodynamic force using the adsorption chamber of the first embodiment of the present invention.
  • FIG. 2D is a diagram for explaining a method of concentrating oxygen with high aerodynamic force using the adsorption chamber according to the first embodiment of the present invention.
  • FIG. 2E is a diagram for explaining a method of concentrating oxygen with high aerodynamic force using the adsorption chamber of the first embodiment of the present invention.
  • FIG. 2F is a diagram for explaining a method of concentrating oxygen with high aerodynamic force using the adsorption chamber of the first embodiment of the present invention.
  • FIG. 2G is a diagram illustrating a method for concentrating aerodynamically high concentration oxygen using the adsorption chamber of the first embodiment of the present invention.
  • FIG. 2H is a diagram illustrating a method for concentrating aerodynamically high concentration oxygen using the adsorption chamber of the first embodiment of the present invention.
  • ⁇ 3 It is a diagram showing an example of an adsorption chamber according to a second embodiment of the present invention.
  • FIG. 5 is a view showing an example of an adsorption chamber according to a fourth embodiment of the present invention.
  • FIG. 6A is a diagram illustrating a method of concentrating aerodynamically high concentration oxygen using the adsorption chamber of the fifth embodiment of the present invention.
  • FIG. 6B A diagram illustrating a method for concentrating oxygen with high aerodynamic force using the adsorption chamber of the fifth embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a method of concentrating oxygen with high aerodynamic force using the adsorption chamber of the fifth embodiment of the present invention.
  • FIG. 6D is a diagram for explaining a method of concentrating oxygen with high aerodynamic force using the adsorption chamber of the fifth embodiment of the present invention.
  • FIG. 6E is a diagram illustrating a method of concentrating oxygen with high aerodynamic force using the adsorption chamber of the fifth embodiment of the present invention.
  • FIG. 6F is a diagram illustrating a method of concentrating oxygen with high aerodynamic force using the adsorption chamber of the fifth embodiment of the present invention.
  • FIG. 6G is a diagram showing an example of another adsorption chamber.
  • FIG. 8 is a view showing an example of an adsorption chamber according to a seventh embodiment of the present invention.
  • FIG. 9 is a diagram showing an overall configuration of a conventional oxygen concentrator.
  • a gas concentrator according to a preferred embodiment of the present invention will be described below with reference to the drawings.
  • an oxygen concentrator that concentrates and uses oxygen contained in the air is taken as an example.
  • the present invention is not limited to this.
  • the type of gas fluid and the gas components to be concentrated and separated can be changed as appropriate.
  • the configuration shown below is an example, and the configuration and arrangement can be changed in a timely manner as long as the technical idea of the present invention is satisfied.
  • the oxygen concentrator of the present invention uses a single adsorption cylinder to continuously reduce the adsorption chamber volume (concentration of oxygen from the air) and subsequently increase the adsorption chamber volume (adsorbent regeneration).
  • a compressor it is not necessary to use a compressor. for that reason, Since the oxygen concentrator of the present invention does not require a compressor or the like, unlike the conventional oxygen concentrator, it is unnecessary to increase the size of the oxygen concentrator and the complexity of its configuration. be able to. In addition, noise countermeasures when using a compressor are not required.
  • the oxygen concentrator of the present invention is characterized by an adsorption chamber whose volume continuously changes.
  • the overall configuration of the oxygen concentrator will be described first, and then the structure of the adsorption chamber and a method for concentrating high-concentration oxygen from air using the adsorption chamber will be described.
  • air as a raw material gas is introduced into an adsorption chamber 150 filled with an adsorbent after dust is removed by the dust filter 1101 and the intake filter / silence buffer 1102. . Since the adsorption chamber 150 can change the volume of the adsorption chamber, the volume in the adsorption chamber 150 is reduced when air is introduced into the adsorption chamber. As a result, the pressure of air increases as the volume in the adsorption chamber 150 decreases, and preferential adsorption of nitrogen to the adsorbent proceeds. At this time, the air in the adsorption chamber 150 is cooled using a cooling fan 1104 or the like.
  • the gas containing oxygen concentrated to a high concentration remaining without being adsorbed by the adsorbent is taken out from the adsorption chamber and temporarily stored in the product tank 111.
  • the gas containing high-concentration oxygen is controlled to have a desired pressure and gas flow rate using the pressure regulator 112 and the flow rate regulator 115 and is appropriately humidified through the humidifier 116. Supplied to the patient via conduits such as flexible extension tube 117, force-eura 118 and the like.
  • the adsorption chamber is controlled so as to increase the volume of the adsorption chamber after extracting oxygen concentrated to a high concentration in the adsorption chamber.
  • the pressure in the adsorption chamber decreases, nitrogen is desorbed from the adsorbent, and the adsorbent is regenerated.
  • the desorbed gas containing high-concentration nitrogen is discharged out of the adsorption chamber.
  • the adsorbent used in this oxygen concentrator is Na-A type, Ca-A type, Na-X type, Ca-X type, or in order to preferentially or selectively adsorb nitrogen.
  • Synthetic zeolite such as Li-X type is used alone or in combination.
  • FIGS. 2A to 2E showing the cross-sectional configuration of the adsorption chamber are used. This will be described in detail.
  • the concentrated oxygen remaining by adsorbing nitrogen to the adsorbent by increasing the pressure of the introduced air by reducing the volume by continuously rotating the rotating body that rotates eccentrically.
  • concentration process increase the volume of the adsorption chamber to desorb nitrogen adsorbed on the adsorbent and regenerate the adsorbent (regeneration process). Can be done automatically.
  • the suction chamber 150 of the present embodiment has a hollow cylindrical outer wall member that has a predetermined inner diameter and forms a hollow cylindrical sealed space, and an inner diameter of the outer wall.
  • the rotating body 102 which is a cylindrical rotating member, is arranged so that it has a smaller outer diameter and is eccentric with respect to the center axis 121 of the outer wall while being in contact with the outer wall and rotates in the direction of rotation 109 at a rotational speed V.
  • the adsorbent 101 is embedded in the rotating body 102, and the adsorbent 101 is installed so that the surface thereof forms a part of the outer surface of the rotating body 102.
  • the outer surface of the rotating body 102 includes the outer surface of the rotating body 102.
  • a partition plate 120 that is in a state of being abutted against is installed. Since the partition plate 120 has a panel mechanism 122 as shown in the figure, when the rotating body 102 rotates eccentrically, it can always follow and follow the outer surface of the rotating body 102.
  • the adsorption chamber 150 has an air inlet 106 for introducing air as a raw material into the adsorption chamber 150, a product gas outlet 108 for taking out highly concentrated oxygen from the adsorption chamber 150, and an adsorbent.
  • the exhaust 107 is installed to exhaust the highly concentrated nitrogen exhausted from the adsorption chamber 150, and the air inlet 106, the product gas outlet 108, and the exhaust 107 are opened and closed. Valves S1 to S3 are arranged.
  • the oxygen concentrating device includes a motor control unit for rotating the rotating body 102 and each unit of the device (motor control unit, valves, cooling fan, various sensors, etc.). A control unit is installed, and the control unit executes various controls described below using a RAM (not shown) as a work area based on a control program stored in a ROM (not shown).
  • the volume 104 of the adsorption chamber of the present embodiment is a volume of a sealed space surrounded by the outer wall, the rotating body, and the partition plate, and this volume decreases or increases as the rotating body rotates. It is configured. Therefore, the empty space introduced into the adsorption chamber using the volume change of the adsorption chamber Increase the pressure of the gas and efficiently adsorb nitrogen to the adsorbent to remove the concentrated oxygen, then lower the pressure in the adsorption chamber to desorb the nitrogen adsorbed on the adsorbent and regenerate the adsorbent That's right.
  • FIGS. 2A to 2H Method for concentrating high-concentration oxygen from air: FIGS. 2A to 2H
  • FIG. 4 is a diagram for explaining changes in the volume of the adsorption chamber and the positional relationship between the rotating body of the adsorption chamber and the partition plate.
  • FIG. 2B shows a state in which the rotating body 102 is rotated in the direction of the arrow in the figure from the state of FIG. 2A to reduce the adsorption chamber volume VI from V2, and the adsorption chamber pressure is increased from P1 to P2. Yes.
  • FIG. 2C shows a state in which the rotating body 102 is further rotated from FIG. 2B in the direction of the arrow to reduce the volume of the adsorption chamber from V2 to V3, and the adsorption chamber is pressurized, and FIG.
  • the rotating body 102 is further rotated from 2C in the direction of the arrow in the figure, the volume of the adsorption chamber decreases to V4, and the pressure increases to P4.
  • the preferential adsorption of nitrogen to the adsorbent 101 is the most advanced, and a gas containing oxygen concentrated in a high concentration without being adsorbed by the adsorbent remains in the gas phase.
  • S3 is opened, oxygen concentrated to a high concentration is taken out from the adsorption chamber 150 through the product gas outlet 108, and stored in the product tank 111.
  • the process so far is the concentration process for extracting oxygen concentrated by aerodynamic force.
  • Fig. 2E shows the oxygen concentration in the adsorption chamber increased to V4 force VI after taking out the highly concentrated oxygen in Fig. 2D and then closing the on-off valve S3 and rotating the rotating body 102 in the direction of the arrow in the figure.
  • the pressure in the adsorption chamber 150 is reduced to P4 force P5.
  • the volume of the adsorption chamber is reduced from VI to V2 until the pressure in the adsorption chamber 150 is reached as shown in Fig. 2F.
  • the gas containing nitrogen desorbed by opening the on-off valve S2 is exhausted from the adsorption chamber 150 through the exhaust port 107. Thereafter, with the on-off valve S2 kept open, the volume of the adsorption chamber is reduced from V2 to V4 from the state shown in FIG. 2G to FIG. 2H, and nitrogen is exhausted from the adsorption chamber 150 via the exhaust port 107. Thereafter, the on-off valve S2 is closed. As a result, the adsorbent 101 can be regenerated.
  • this oxygen concentrator by repeating the concentration process and the regeneration process described above with reference to FIGS. 2A to 2H, it is possible to continuously take out and use oxygen concentrated in high aerodynamics using one adsorption chamber. it can.
  • the radius of the outer wall 103 of the adsorption chamber is, for example, 10 mm to 1000 mm, preferably 20 mm to 200 mm, and the axial height is, for example, 10 mm to: LOOOmm, which is preferable. Is 20 mm to 300 mm.
  • the rotational speed of the rotating body is, for example, about 0.01 to about L00 Hz, and preferably about 0.1 to 50 Hz.
  • the supply flow rate of the product gas is, for example, 0.01 liters Z minutes to 100 liters Z minutes, and preferably 0.1 liters Z minutes to 10 liters Z minutes.
  • the pressure difference formed in the adsorption chamber is preferably 0.0OOMPa or more, more preferably 0. OlMPa or more.
  • the configuration used in the above description is an example, and the configuration and arrangement can be changed as appropriate as long as the technical idea of the present invention is satisfied.
  • a check valve or a throttle mechanism such as an orifice may be used alone or in combination.
  • the shape of the adsorbent can be changed as appropriate.
  • the oxygen concentrator of the second embodiment will be described.
  • the overall configuration of this oxygen concentrator is similar to the oxygen concentrator of the first embodiment described with reference to FIG. 1, and the air introduced by continuously reducing the volume of the adsorption chamber. After increasing the pressure and increasing the preferential adsorption of nitrogen to the adsorbent and removing the remaining concentrated oxygen-containing gas (concentration process), increase the volume of the adsorption chamber to increase the adsorbent capacity. The point of desorbing the adsorbed nitrogen to regenerate the adsorbent (regeneration process) is common.
  • the adsorption chamber 250 of the present embodiment is different in structure from the adsorption chamber 150 of the first embodiment. Therefore, in the following description, the description of the parts common to the oxygen concentrator of the first embodiment will be omitted because it overlaps, and only different points will be described. [0054] [Adsorption chamber structure: Fig. 3]
  • the adsorption chamber 250 of the present embodiment has an outer wall 203 that is a hollow cylindrical outer wall member that has a predetermined inner diameter and forms a hollow sealed space, and an outer diameter that is smaller than the inner diameter of the outer wall 203.
  • a rotating body 202 that is a cylindrical rotating body that rotates eccentrically with respect to the central axis of the outer wall 203 is disposed.
  • An adsorbent 201 is embedded in the rotator 202, and the adsorbent 201 is installed on the rotator 202 so that the surface thereof forms part of the outer surface of the rotator 202.
  • the rotating body 202 includes a plurality of partition plates in which the space between the outer wall 203 and the rotating body 202 is divided into a plurality of parts and the state in contact with the inner surface of the outer wall 203 is inseparable. 220 is arranged. Since the partition plate 220 has a panel mechanism 222 that can be expanded and contracted as shown in the drawing, the partition plate 220 can follow the inner surface of the outer wall 203 so as to always contact when the rotating body 102 rotates eccentrically.
  • the adsorption chamber 250 has an air inlet 206 that introduces the raw material air into the adsorption chamber 250, a product gas outlet 208 that also draws out the concentrated chamber 250 power, and when the adsorbent is regenerated.
  • Exhaust port 207 is installed to exhaust nitrogen concentrated at a high concentration from the adsorption chamber 250, and on-off valves S1 to S3 are arranged at the air inlet 206, product gas outlet 208, and exhaust port 207, respectively.
  • the volume of the adsorption chamber of this embodiment is the volume of each sealed space divided by a plurality of partitions surrounded by the outer wall 203, the rotating body 202, and the plurality of partition plates 220.
  • the pressure of the air introduced into the adsorption chamber is increased using each divided volume change of the adsorption chamber to efficiently adsorb nitrogen to the adsorbent, and the concentrated oxygen is taken out.
  • the adsorbent can be regenerated by reducing the pressure and desorbing the nitrogen adsorbed on the adsorbent.
  • Air is introduced into the adsorption chamber in the positional relationship between the rotating body of the adsorption chamber and the partition plate shown in FIG.
  • the on-off valves SI and S2 are opened, and the fan 130 empties the air inlet 206 to the adsorption chamber.
  • the on-off valves SI and S2 are closed.
  • On-off valve S3 is closed.
  • the adsorption chamber volume 204 at this time is VI, and its pressure is P1 (approximately atmospheric pressure).
  • the adsorbent is moved to the state B in FIG. 3 by rotating the rotator 202 in the direction of the arrow in the figure.
  • the adsorption chamber volume 204 then decreases from VI to V2, and as a result, the pressure increases from P1 to P2.
  • the adsorbent is moved to the state C in FIG. 3, the state D in FIG. 3, and the state E in FIG. Then, the adsorption chamber volume 204 decreases from V2 to V3, V3 to V4, and V4 force V5. As a result, the adsorption chamber pressure changes from P2 force P3, P3 force to P4, and P4 force to P5. Increase the amount of calories.
  • the adsorbent regeneration process will be described.
  • the on-off valve S3 is closed, and then the rotating body 202 is rotated in the direction of the arrow in the figure, so that the adsorbent is removed from the state of E in FIG. It moves to the state of F, the state of G in Figure 3, the state of H in Figure 3, and the state of A in Figure 3.
  • the volume of the adsorption chamber increases from V5 to V6, V6 to V7, V7 to V8, and V8 to VI.
  • the pressure in the adsorption chamber is P5 force, P6, P6 force, P7, P7 to P8, P8. Power drops with P9.
  • the adsorption chamber 350 of the present embodiment is different from the adsorption chamber 250 of the second embodiment in that the adsorbent 201 is embedded on each rotating body 202 in the volume of each adsorption chamber partitioned by the partition plate 220. It is only a point that has been done. As in the present embodiment, by arranging a plurality of adsorbents 201 on the rotator 202, the volume of each separated adsorption chamber is utilized, and oxygen gas having a higher concentration than in the second embodiment is generated. A larger amount can be supplied.
  • the oxygen concentrator of the fourth embodiment will be described below. In the following description, only the structure of the adsorption chamber 450 that is different from the oxygen concentrators of the first to third embodiments will be described.
  • the adsorption chamber 450 of this embodiment is formed by stacking the adsorption chamber 350 of the third embodiment in three stages, and a gas containing high-concentration oxygen extracted from the first stage adsorption chamber is adsorbed in the second stage.
  • the air inlet force of the chamber is introduced and the second stage adsorption chamber force is extracted.
  • the gas containing higher concentration of oxygen is introduced and the air inlet force of the third stage adsorption chamber is introduced and the third stage adsorption chamber force is taken out.
  • the only difference is that the product gas is supplied to the product tank 111 in FIG. In this way, a higher concentration of oxygen gas can be supplied by adopting a multi-stage adsorption chamber.
  • an oxygen concentrator of a fifth embodiment will be described.
  • the overall configuration of this oxygen concentrator is similar to the oxygen concentrator of the first embodiment described with reference to FIG. 1, and the air introduced by continuously reducing the volume of the adsorption chamber. After increasing the pressure and increasing the preferential adsorption of nitrogen to the adsorbent and removing the remaining concentrated oxygen-containing gas (concentration process), increase the volume of the adsorption chamber to increase the adsorbent capacity. The point of desorbing the adsorbed nitrogen to regenerate the adsorbent (regeneration process) is common.
  • the suction chamber 550 of the present embodiment is different in structure from the suction chamber 150 of the first embodiment, and rotates with the rotating body eccentric.
  • the pressure in the adsorption chamber can be changed by changing the volume of the adsorption chamber. Therefore, in the following description, only the structure of the adsorption chamber 550 different from the oxygen concentrator of the first embodiment and a method of concentrating high concentration oxygen from air using the adsorption chamber 550 will be described.
  • the structure of the adsorption chamber 550 used in the oxygen concentrator of this embodiment and the method for producing high-concentration oxygen using this adsorption chamber will be described in detail with reference to FIGS. 6A to 6G showing the sectional configuration of the adsorption chamber. Explained.
  • the suction chamber 550 of the present embodiment has an outer wall 702 that is an outer wall member having a predetermined inner diameter and forming a hollow cylindrical sealed space, and an inner wall of the outer wall 702.
  • an adsorbent 701 arranged and a piston member 729 having an outer diameter smaller than the inner diameter of the outer wall 702 and arranged so as to reciprocate in the axial direction of the outer wall 702 while being in contact with the inner surface of the outer wall 702.
  • the piston member 729 is composed of a ferromagnetic body polarized in the axial direction, and a coil 731 is disposed around the outside of the adsorption chamber 550.
  • the piston member 729 can change the moving direction of the piston member 729 moving in the adsorption chamber 550 by switching the direction of the current flowing through the coil 731.
  • the adsorption chamber 550 has an air inlet 706 for introducing air as a raw material into the adsorption chamber 550, a product gas outlet 708 for extracting highly concentrated oxygen from the adsorption chamber 550, and an adsorbent.
  • Exhaust port 707 is installed to exhaust high-concentrated nitrogen exhausted from the adsorption chamber 550, and the air inlet 706, product gas outlet 708, and exhaust port 707 are opened and closed respectively.
  • Valves S1 to S3 are arranged.
  • this oxygen concentrator has a coil control unit for reciprocating the piston member 729 and each part of the device (coil control unit, various valves, cooling fan, various sensors, etc.). The control unit performs various controls described below using a RAM (not shown) as a work area based on a control program stored in a ROM (not shown).
  • the volume 704 of the adsorption chamber of the present embodiment is a sealed space surrounded by the inner surface of the outer wall 702, the piston member 729, and the adsorbent 7001, and the volume of the adsorption chamber is determined by the movement of the piston member 729. 704 is configured to decrease or increase. Therefore, the capacity of this adsorption chamber Using the product change, the pressure of the air introduced into the adsorption chamber was increased to efficiently adsorb nitrogen to the adsorbent, and the concentrated oxygen was taken out. Then, the pressure in the adsorption chamber was lowered and adsorbed to the adsorbent. The adsorbent can be regenerated by desorbing nitrogen.
  • FIGS. 6A to 6F [0071]
  • Figures 6A to 6F show the steps from the introduction of air into the adsorption chamber and removal of high-concentration oxygen as the product gas (concentration process) until the nitrogen is desorbed and exhausted to regenerate the adsorbent (regeneration process). It is a figure explaining the change of the positional relationship of the volume of an adsorption chamber and the rotary body of an adsorption chamber, and a partition plate in a process.
  • a method for concentrating high-concentration oxygen from air will be described with reference to FIGS.
  • Fig. 6A air is introduced into the adsorption chamber.
  • the on-off valve S1 is opened, air is introduced into the adsorption chamber, and then the on-off valve S1 is closed.
  • On-off valves S2 and S3 are closed.
  • the piston member 729 is disposed at the position shown in the figure, the volume 704 of the adsorption chamber is the maximum at VI, and the pressure of the air introduced into the adsorption chamber is P1 (approximately atmospheric pressure). .
  • FIG. 6B the state force of FIG. 6A also moved the piston member 729 in the direction of the arrow 730 in the figure to reduce the suction chamber volume 704 from VI to V2, and increased the suction chamber pressure from P1 to P2. It shows the state.
  • FIG. 6C shows a state in which the piston member 729 is further moved from FIG. 6B in the direction of the arrow 730 in the figure, the volume of the adsorption chamber is decreased from V2 to V3, and the pressure of the adsorption chamber is increased to P3.
  • preferential adsorption of nitrogen proceeds to the adsorbent 701, and a gas containing oxygen concentrated to a high concentration without being adsorbed by the adsorbent remains in the gas phase. Therefore, the on-off valve S 3 is opened, and the highly concentrated oxygen-containing gas remaining in the adsorption chamber volume 704 passes through the adsorbent 701 and is taken out via the product gas outlet 108 and is supplied to the product tank 111.
  • Store in. The process so far is the concentration process for extracting oxygen which is also concentrated by aerodynamic force.
  • Fig. 6D shows that the oxygen concentrated to a high concentration is taken out, and then the on-off valve S3 is closed to force the piston member 729, and the positional force in Fig. 6C is in the direction of the arrow 730 (opposite to the moving direction of the piston member in Figs. It has moved to the position shown in Fig. 6D.
  • the volume of the adsorption chamber is V shown in Fig. 6C.
  • the state force of 3 also increases to VI, and the pressure in the adsorption chamber 550 becomes P4, so that the desorption of nitrogen from the adsorbent 701 proceeds.
  • the on-off valve S2 is opened, and while the gas containing high-concentration nitrogen is exhausted from the outlet 107, the volume of the adsorption chamber is further reduced as shown in FIG. 6F. A gas containing nitrogen at a concentration is exhausted from the outlet 107. Thereafter, the on-off valve S2 is closed.
  • An adsorption chamber 650 in FIG. 6G is a diagram showing an example of a modification in which the position of the product gas outlet 708 of the adsorption chamber 550 of this embodiment is changed to be adjacent to the outlet 707 as shown in the figure.
  • a gas containing highly concentrated oxygen is directly taken out from the product gas outlet 108 without passing through the adsorbent 701, and is supplied to the product tank 111. Can be stored.
  • the oxygen concentrator of the sixth embodiment Since the adsorption chamber 750 of the present embodiment is a modification of the adsorption chamber 550 of the fifth embodiment, only the differences from the adsorption chamber 550 of the fifth embodiment will be described below.
  • the adsorption chamber 750 shown in FIG. 7 uses the volume change of the adsorption chamber described in the fifth embodiment to increase the pressure of the air introduced into the adsorption chamber and efficiently adsorb nitrogen to the adsorbent. After removing the concentrated oxygen, the principle of regenerating the adsorbent by desorbing nitrogen adsorbed on the adsorbent by lowering the pressure in the adsorption chamber is applied, and the explanation of the principle is omitted.
  • the difference between the adsorption chamber 750 of the present embodiment and the adsorption chamber 550 of the fifth embodiment is that the adsorption chamber 5 50, one adsorbent 701 is disposed at one end of the outer wall 702, and the force using one volume 704 of the volume of the adsorption chamber surrounded by the outer wall 702 and the piston member 729
  • Two adsorbents 701a, b are arranged at both ends of the outer wall 702, respectively, and two volumes 704, 705 of the adsorbing chamber volumes surrounded by the outer wall 702 and the piston member 729 containing the adsorbents 70 la, b respectively. Is used separately.
  • the reason why the two adsorbents 701a and 701b are arranged at both ends of the adsorption chamber 750 is as described in the adsorption chamber 550.
  • Air is introduced to adsorb nitrogen to the adsorbent, and high concentration oxygen is absorbed.
  • the concentration process to be taken out, and 2) the regeneration process to regenerate the adsorbent by desorbing the nitrogen adsorbent also by using the capacity of the adsorption chamber divided into two, 704 and 705, are performed alternately. This is to concentrate and supply more high-concentration oxygen.
  • the concentration process and the regeneration process are alternately performed using the volume 704, 705 of the adsorption chamber divided into two, and accordingly, the air inlet 706, the exhaust gas are discharged.
  • the position of the outlet 707 is changed at the center of the outer wall 702 as shown in the figure.
  • two product gas outlets 708 are prepared corresponding to each adsorbent 701.
  • the oxygen concentrator of the seventh embodiment will be described below.
  • the overall configuration of this oxygen concentrator is similar to the oxygen concentrator of the first embodiment described in FIG. 1, but the structure of the adsorption chamber and the oxygen concentrating method are different. That is, in the adsorption chamber 150 of the first embodiment, the pressure of the introduced air is increased by continuously reducing the volume of the adsorption chamber, and the preferential adsorption of nitrogen to the adsorbent is increased. It was.
  • the suction chamber 850 of the present embodiment like the suction chamber 150 of the first embodiment, has a central axis of the outer wall that does not form a pressure difference by changing the volume of the suction chamber.
  • a plurality of blades are provided in the rotating body that rotates, and the flow of air generated by the rotation of the rotating body is controlled by the plurality of blades provided in the rotating body, so that the high pressure portion and the low pressure portion are placed in the adsorption chamber.
  • the preferential adsorption of nitrogen to the adsorbent in contact with the high pressure part is increased. Therefore, in the following description, the description of parts common to the oxygen concentrator of the first embodiment is omitted because it overlaps, and the difference in the structure of the adsorption chamber 850 and the method of concentrating oxygen with high aerodynamic force I will explain only. [0083] [Adsorption chamber structure: Fig. 8]
  • the structure of the adsorption chamber 850 used in the oxygen concentrator of this embodiment and a method for producing high-concentration oxygen using the same will be described in detail with reference to FIG. 8 showing the cross-sectional configuration of the adsorption chamber.
  • the adsorption chamber 850 of the present embodiment has an outer wall 602 that is an outer wall member having a predetermined inner diameter and forming a hollow cylindrical sealed space, and an inner wall of the outer wall 602.
  • the adsorbent 601 is disposed and has an outer diameter smaller than the inner diameter of the outer wall 602, and rotates around the central axis of the outer wall 602 and without being in contact with the adsorbent 601 disposed on the inner surface of the outer wall 602.
  • a hollow cylindrical rotating body 603 is arranged.
  • a plurality of blades 625a and 625b are arranged on the hollow cylindrical inner wall of the rotating body 603 in the direction shown in the figure.
  • the outer wall 602 including the adsorbent 601 can also rotate at a slower speed than the rotating body 603.
  • the adsorption chamber 850 has an air inlet 606 for introducing air as a raw material into the adsorption chamber 850, a product gas outlet 608 for taking out highly concentrated oxygen from the adsorption chamber 850, nitrogen gas
  • the adsorbent force that adsorbs the gas is provided with a discharge port 607 for exhausting the highly concentrated nitrogen discharged from the adsorption chamber 850 when nitrogen is desorbed.
  • the oxygen concentrator has a motor control unit for rotating the rotating body 603 and the like, and a control for controlling each part of the device (motor control unit, various valves, cooling fan, various sensors, etc.).
  • the control unit executes various controls using a RAM (not shown) as a work area based on a control program stored in a ROM (not shown).
  • the hollow rotating body 603 has a blade 6 25a that has a shape in which air flows through a part of the circumference in the direction indicated by the arrow 60 9 while the inner force also flows outward.
  • the other part of the circumference is provided with a blade 625b having an appropriate shape so that air flows from the outside toward the inside as indicated by an arrow 626b with rotation.
  • the gas (including oxygen concentrated to a high concentration) that has passed through the adsorbent 601a without being adsorbed by the adsorbent 601a is taken out from the product gas outlet 608.
  • the pressure is reduced contrary to the above description.
  • a gas having a high nitrogen concentration is released toward the inside of the inner rotating body 603. Therefore, the gas having a high nitrogen concentration can be discharged from the discharge port 607 provided near the central axis of the adsorption chamber 850 indicated by the dotted line.
  • oxygen concentration from air by the PSA method has been described as an example, but the present invention is not limited to this and includes a gas containing a plurality of gas components. If there is a fluid and an adsorbent that adsorbs a specific gas in the gas fluid, the remaining gas that is not adsorbed by the adsorbent can be concentrated. Therefore, it can be used for concentration, separation and purification of the target gas from gas fluids containing various gas components, or removal of harmful components contained in gas fluids.

Abstract

 複数のガス成分を含むガス流体から目的ガスを濃縮する際に、装置の大型化や構成の複雑さを防ぎながら効率的に目的ガスを濃縮する。  第1ガスと第2ガスとを含むガス流体中から第1ガスを濃縮する場合には、ガス流体中の第1ガスを濃縮する吸着室内に第2ガスを吸着する吸着剤を配置し、吸着室内にガス流体が導入した後に吸着室の容積を減少させることによりガス流体の圧力を増加して吸着剤への第2ガスの吸着量を増加させて残った濃縮された酸素を含むガスを取り出した後、吸着室の体積を増加して吸着剤に吸着した窒素を脱離させて吸着剤を再生する。

Description

明 細 書
ガス濃縮装置およびその制御方法
技術分野
[0001] 本発明は、複数のガスを含むガス流体の中カゝら少なくとも一つのガスを濃縮するガ ス濃縮装置及びその制御方法、特に空気から酸素を濃縮するガス濃縮装置及びそ の制御方法に関する。
背景技術
[0002] 複数のガス成分を含むガス流体から、少なくとも一つの成分の成分割合を高める、 すなわち、濃縮する濃縮技術としては、ガス流体中からの目的成分の濃縮や精製分 離、例えば、空気力 の酸素の濃縮あるいは工場排ガス中に含まれる各種有害成分 の除去、各種ガス流体中からの目的成分の濃縮や分離など、色々な産業分野で広く 用いられており、その方法にも吸着分離によるもの、分離膜を使用するもの、磁場や 電場を利用したものなど様々なものがある。
[0003] 例えば、ガス流体中からの一成分ガスの濃縮例としては、慢性気管支炎等の呼吸 器疾患の患者に対して、呼吸に必要な酸素量を吸入できるようにするために、高濃 度の酸素を供給する酸素濃縮装置が挙げられる。この酸素濃縮装置は、空気中に 含まれる窒素を優先的に吸着しうるゼォライトなどを吸着剤として用いて、空気から酸 素を濃縮するものである。この様な吸着剤による大気中からの酸素ガスの濃縮分離 では、吸着筒と呼ばれる、吸着剤を充填した筒状の吸着室の第一の端部から原料と なる空気を供給し、吸着筒内の圧力を上げて吸着剤に主に窒素ガスを吸着させなが ら、残った高濃度の酸素ガスを製品として吸着筒の第二の端部力 取り出すことで、 安価で効率よく高濃度の酸素ガスを得ることができるため、工業用途などで広く普及 している。
[0004] し力しながら、ガス吸着(上記の例では、窒素ガスなど)を起こしておおむね平衡状 態となつた吸着剤は、それ以上の吸着反応を行わないため、再生と呼ばれる工程に より、吸着した成分 (窒素ガスなど)の少なくとも一部を脱離させ、再度吸着可能な状 態にする必要がある。 [0005] この再生の手段としては、多くの吸着剤が、高圧、高濃度、あるいは、低温等の環 境で吸着する量が大きぐ逆に、低圧、低濃度、あるいは、高温等の環境で吸着する 量が小さいという特性を有するので、この吸着剤の特性を利用する。例えば、吸着時 よりもガス流体の圧力を低くしたり、あるいは、ガスを吸着した吸着剤を、吸着したガス 成分の濃度より低い濃度の同じガス成分を含むガス流体で洗浄したり、あるいは、温 度を上げたりすることで、吸着剤から吸着した成分の一部を脱離させる方法等が用い られる。
[0006] この様に吸着剤へのガス吸着と吸着剤の再生(吸着したガスの脱離など)を繰り返 す方法としては、圧力スイング吸着法 (PSA)と呼ばれる方法が多く用いられている( 例えば、特許文献 1)。 PSA法による空気力もの酸素濃縮では、ガス吸着時において 圧力による窒素と酸素の吸着量の差を応用して、高い酸素濃度の製品ガスを得る方 法である。すなわち、空気の圧力が高い高圧条件では、窒素ガスが酸素ガスより吸 着剤に選択的にある ヽは優先的に吸着するのを利用する方法である。
[0007] 酸素濃縮装置におけるガス吸着と吸着剤の再生方法の概略は以下の通りである。
まず、第一のプロセスでは、吸着筒の第一の端部力 加圧手段により加圧された原 料となる加圧空気が供給され、吸着筒内では加圧空気中の吸着剤に吸着されやす い窒素が選択的にあるいは優先的に吸着される。その結果、気相中には、吸着され ずに酸素が残るので、残った高濃度の酸素を含むガスを製品ガスとして吸着筒の第 二の端部から取り出す。
[0008] 次に、第二のプロセスでは、吸着筒内の圧力を減圧手段により下げることにより第 一のプロセスで吸着剤に吸着された窒素を吸着剤から脱離させる。そして、脱離した 高濃度の窒素ガスを含むガスを吸着筒の第一の端部力 排気する。
[0009] 上記第一のプロセスと第二のプロセスを交互に数秒力 数分の間隔で繰り返し行う ことにより、高酸素濃度の製品ガスを例えば、 0.01リットル Z分〜 1000リットル Z分 程度の流量で取り出すことができる。特に、医療用酸素濃縮器の場合には、 0.1リット ル Z分〜 10リットル Z分程度の流量で、高濃度の酸素ガスを含む製品ガスを取り出 し、必要とする患者に供給することができる。
[0010] ここで、酸素濃縮器への加圧空気を給気する加圧手段としては一般的にコンプレツ サが用いられる。また、酸素濃縮器から窒素ガスを排気する減圧手段としては、例え ば、真空ポンプを用いる。第一と第二のプロセスの切り替え等は、酸素濃縮器の配管 中に設けられた複数の弁の開閉操作によって行われるのが一般的である。この切り 替えは、例えば、酸素濃縮器に予め設定されているプロセスごとの設定時間や、所 定の観測点における圧力等の物理量を基準としたシミュレーション条件などによって 自動的に行われる。
[0011] PSA法で用いられるガス流体中の所望のガス成分を選択的に吸着する吸着剤とし ては、例えば、ゼォライト、活性炭、活性アルミナあるいはシリカゲル等が利用される。 これらの吸着剤は、ガス流体から分離または濃縮する目的ガス成分に応じて使い分 けられる。例えば、ガス流体が空気であって空気中の酸素を濃縮あるいは分離した い場合には、窒素を優先的あるいは選択的に吸着する Na-A型、 Ca-A型、 Na_X型、 Ca- X型、あるいは、 U-X型等の合成ゼォライトが好適に用いられる。また、吸着剤は 一種に限定する必要はなく異なる特性の吸着剤を組み合わせて用いられる場合もあ る。
[0012] 酸素濃縮装置の一例を図 9に示す (例えば、特許文献 2)。この酸素濃縮装置では 、装置内に取り込まれる空気は、まず、防塵フィルター 1101と吸気フィルター 1102と によりゴミが除去され、消音器 1103を介してコンプレッサ 105で圧縮された後、冷却 ファン 1104、熱交翻1106で冷却される。次に、冷却された空気は配管流路を切 替える切換弁 1107を介して、吸着剤が充填された吸着筒 1108に送り込まれる。吸 着筒 1108内ではガス分離 (窒素の吸着剤への優先的な吸着)によって得られる高 濃度に濃縮された酸素を含むガスは一時的に製品タンク 111に送り込まれる。その 後、圧力調整器 112と流量調節器 115とを介して圧力とガス流量とがコントロールさ れ (ガス流量は流速センサ 113で、酸素濃度は酸素濃度センサ 114で検知する)、加 湿器 116を介して適度に加湿された後、可撓性延長チューブ 117、力-ユーラ 118 等の導管を介して患者に供給されるように構成されている。 1109は圧均等弁、 110 は逆止弁、 120は圧力センサ、 119は窒素と水分とによる排気音を低減するための 排気用消音器である。
[0013] 図 9に示す 2本の吸着筒 1108で構成されている酸素濃縮装置の場合には、 1本の 吸着筒を酸素の濃縮に用い、他方の吸着筒では吸着剤を再生するために、切換弁
1107により 2本の吸着筒 1108を切り替えて使用する。例えば、一方の吸着筒 1108 には加圧空気が導入され空気中の窒素を吸着剤で吸着し、吸着されずに残った高 濃度の酸素を含むガスを製品ガスとして取り出すために使用し (濃縮工程)、このとき 、他方の吸着筒 1108では、吸着筒 1108内を減圧にして窒素を吸着した吸着剤から 窒素を脱離させ、吸着剤が再び窒素を吸着できるように再生する(再生工程)。このと き、濃縮工程に用いる吸着筒 1108内において吸着剤の吸着破過が起こる前に切換 弁 1107を用いて、他方の吸着筒 1108に切替えることを繰り返し行うことにより、連続 的に高濃度に濃縮された酸素を患者に供給しながら、吸着剤を再生使用できるよう な構成としている。
特許文献 1:特願 2002— 319231号公報
特許文献 2 :特願 2003— 142151号公報
発明の開示
発明が解決しょうとする課題
[0014] し力しながら、上記説明した PSA法などでは、吸着筒などの吸着室とは別に吸着剤 へのガス吸着を促進するためにガス流体を加圧して供給するためのコンプレッサなど の加圧手段や吸着筒を減圧にして吸着剤からのガス脱離を促進するための減圧手 段を別途用意する必要があった。また、コンプレッサを使用する場合には、騒音対策 が必要であった。そのため、装置の大型化や構成の複雑さが避けられなかった。
[0015] 本発明は、上記説明した従来技術の問題点を解決することを出発点としてなされた ものであり、その目的は、複数のガス成分を含むガス流体から目的とするガス成分を 濃縮または分離する際に、装置の大型化や構成の複雑さを防ぎながら効率的に目 的とするガス成分を濃縮または分離することができるガス濃縮装置及びその制御方 法を提供することである。
課題を解決するための手段
[0016] 上記目的を達成するための本発明のガス濃縮装置は、以下の構成を有する。すな わち、少なくとも第 1ガスと第 2ガスとを含むガス流体中から前記第 1ガスを濃縮するガ ス濃縮装置であって、前記第 2ガスを吸着する吸着剤を含み、前記ガス流体中の前 記第 1ガスを濃縮する吸着室と、前記吸着室の容積を減少させて前記吸着室に導入 された前記ガス流体の圧力を増加して前記吸着剤への前記第 2ガスの吸着量を増 加させる圧力変更手段と、を有することを特徴とする。
[0017] ここで例えば、前記圧力変更手段は、前記吸着室の容積を増加させることにより前 記吸着室内の圧力を減少して前記吸着剤に吸着した前記第 2ガスを脱離させること が好ましい。
[0018] ここで例えば、前記圧力変更手段は、偏心して回転するように配置されている回転 部材を有し、前記吸着室は、前記回転部材と、前記回転部材との間で密閉空間を形 成する外壁部材とによって囲まれた空間からなることが好ましい。
[0019] ここで例えば、前記回転部材は略円筒状であり、前記外壁部材は略中空円筒状で あることが好ましい。
[0020] ここで例えば、前記吸着室は、前記回転部材と前記外壁部材とによって囲まれる前 記空間を少なくとも 2つに区切った一区画であることが好ましい。
[0021] ここで例えば、前記吸着室は、前記回転部材と前記外壁部材とによって囲まれた前 記空間を複数に区切ったそれぞれの区画であることが好ましい。
[0022] ここで例えば、前記圧力変更手段は、往復運動可能なピストン部材を有し、前記吸 着室は、前記ピストン部材と、前記ピストン部材との間で密閉空間を形成する外壁部 材とによって囲まれた空間力もなることが好ましい。
[0023] ここで例えば、前記ピストン部材は略円筒状であり、前記外壁部材は略中空円筒状 であることが好ましい。
[0024] ここで例えば、前記吸着室は、前記ピストン部材と前記外壁部材とによって囲まれ た 2つの空間のそれぞれであることが好まし 、。
[0025] 上記目的を達成するための本発明のガス濃縮装置は、以下の構成を有する。すな わち、少なくとも第 1ガスと第 2ガスとを含むガス流体中から前記第 1ガスを濃縮するガ ス濃縮装置であって、前記第 2ガスを吸着する吸着剤を含み、前記ガス流体中の前 記第 1ガスを濃縮する吸着室と、前記吸着室に導入された前記ガス流体中に圧力の 高い領域と圧力の低い領域とを生成させることにより前記圧力の高い領域に接する 前記吸着剤への前記第 2ガスの吸着量を増加させる圧力差生成手段と、を有するこ とを特徴とする。
[0026] ここで、前記圧力差生成手段は、内面に複数の羽根を有する中空状の回転部材を 有することが好ましい。
[0027] ここで、前記吸着室は、前記吸着剤を前記回転部材と異なる速度で回転させる回 転手段を有し、前記回転手段により前記第 2ガスを吸着した吸着剤が前記圧力の低 い領域に接することにより前記第 2ガスが脱離することが好ましい。
[0028] ここで例えば、前記第 1ガスは酸素であり、前記第 2ガスは窒素であり、前記ガス濃 縮装置は空気力 酸素を濃縮する酸素濃縮器であることが好ましい。
[0029] 上記目的を達成するための本発明のガス濃縮装置の制御方法は、以下の構成を 有する。すなわち、少なくとも第 1ガスと第 2ガスとを含むガス流体の前記第 2ガスを吸 着する吸着剤を備え、前記ガス流体中の前記第 1ガスを濃縮する吸着室を有するガ ス濃縮装置の制御方法であって、前記吸着室に前記ガス流体を導入する工程と、前 記吸着室の容積を減少させて前記吸着室に導入された前記ガス流体の圧力を増加 して前記吸着剤への前記第 2ガスの吸着量を増加させる工程と、を有することを特徴 とする。
発明の効果
[0030] 本発明によれば、複数のガス成分を含むガス流体から目的とするガス成分を濃縮 または分離する際に、装置の大型化や構成の複雑さを防ぎながら効率的に目的とす るガス成分を濃縮または分離することができるガス濃縮装置及びその制御方法を提 供することができる。
[0031] 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明ら かになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ 参照番号を付す。
図面の簡単な説明
[0032] 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、そ の記述と共に本発明の原理を説明するために用いられる。
[図 1]本発明の第 1の実施形態の酸素濃縮装置の全体構成を示す図である。
[図 2A]本発明の第 1の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 2B]本発明の第 1の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 2C]本発明の第 1の実施形態の吸着室を用いて空気力も高濃度の酸素を濃縮す る方法を説明する図である。
圆 2D]本発明の第 1の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 2E]本発明の第 1の実施形態の吸着室を用いて空気力も高濃度の酸素を濃縮す る方法を説明する図である。
圆 2F]本発明の第 1の実施形態の吸着室を用いて空気力も高濃度の酸素を濃縮す る方法を説明する図である。
圆 2G]本発明の第 1の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 2H]本発明の第 1の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 3]本発明の第 2の実施形態の吸着室の一例を示す図である。
圆 4]本発明の第 3の実施形態の吸着室の一例を示す図である。
圆 5]本発明の第 4の実施形態の吸着室の一例を示す図である。
圆 6A]本発明の第 5の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 6B]本発明の第 5の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 6C]本発明の第 5の実施形態の吸着室を用いて空気力も高濃度の酸素を濃縮す る方法を説明する図である。
圆 6D]本発明の第 5の実施形態の吸着室を用いて空気力 高濃度の酸素を濃縮す る方法を説明する図である。
圆 6E]本発明の第 5の実施形態の吸着室を用いて空気力も高濃度の酸素を濃縮す る方法を説明する図である。 圆 6F]本発明の第 5の実施形態の吸着室を用いて空気力も高濃度の酸素を濃縮す る方法を説明する図である。
[図 6G]別の吸着室の一例を示す図である。
圆 7]本発明の第 6の実施形態の吸着室の一例を示す図である。
圆 8]本発明の第 7の実施形態の吸着室の一例を示す図である。
[図 9]従来の酸素濃縮装置の全体構成を示す図である。
符号の説明
101、 201、 601, 701 吸着剤
102、 202 回転体
103、 203、 702 外壁
150、 250、 350、 450、 550、 650、 750、 850 吸着室
104、 204、 404、 704、 904 吸着室の容積
106、 206、 306、 606, 706 空気流入口
107、 207、 307、 607、 707 排出口
108、 208、 308、 608、 708 取り出し口
109、 209 回転方向を示す矢印
120、 220 仕切板
121、 221 回転の中心軸
122、 222 パネ機構
625 羽
626 羽によって制御された空気の流れを示す矢印
729 ピストン
730 ピストンの運動を示す矢印
731 電磁石用コイル
336 上行流路
337 下行流路
338 第二流入口 340 区画間の隔壁
発明を実施するための最良の形態
[0034] <第 1の実施形態 >
以下、本発明に係る好適な実施形態のガス濃縮装置について図面を参照しながら 説明する。なお、以下の説明では、複数のガス成分を含むガス流体から目的とする ガス成分を濃縮分離する例として、空気中に含まれる酸素を高濃度に濃縮して使用 する酸素濃縮装置を例に取り説明するが、本発明はこれに限定されるものではなぐ ガス流体および濃縮分離するガス成分の種類は適宜変更が可能である。また、以下 に示す構成は、一例であり、本発明の技術的思想を満足するものであれば、その構 成や配置は適時変更が可能である。
[0035] 以下の説明では、まず、各実施形態の酸素濃縮装置に共通する本発明の特徴に ついて、従来の酸素濃縮装置と比較して説明する。
[0036] [本発明の特徴]
従来の酸素濃縮装置では、(1)コンプレッサで加圧した空気を吸着剤を含む吸着 室に導入し、吸着室では、窒素を吸着剤に吸着した後、吸着されずに高濃度に濃縮 されて残った酸素を取り出して使用する (濃縮工程)、(2)次に、吸着室を真空ポンプ で減圧して窒素を吸着した吸着剤から窒素を脱離して吸着剤を再生する (再生工程 )。このとき濃縮された酸素を連続的に取り出すために、 2つの吸着筒を使用して濃 縮工程と再生工程とが交互に行われるようにする。
[0037] 一方、本発明の酸素濃縮装置では、(1)略大気圧の空気を吸着剤を含む吸着室 に導入し、続いて、吸着室の容積を減少することにより導入された空気の圧力を増加 させ、吸着剤への窒素の優先的な吸着を増加させる。その後、吸着剤に吸着されず に高濃度に濃縮されて残った高圧の酸素を吸着室力 取り出して使用する (濃縮ェ 程)、(2)続いて、吸着室の容積を増加することにより、吸着室の圧力を低減して窒素 を吸着した吸着剤から窒素を脱離させ、吸着剤を再生するとともに窒素ガスを排出す る (再生工程)。本発明の酸素濃縮装置では、 1つの吸着筒を使用して、吸着室の容 積の減少 (空気からの酸素の濃縮)とそれに続く吸着室の容積の増加(吸着剤の再 生)を連続的に行うが、その際に、コンプレッサなどを用いる必要はない。そのため、 本発明の酸素濃縮装置では、従来の酸素濃縮装置のように複数の吸着室を配置す る必要はなぐコンプレッサなども不要であるので、酸素濃縮装置の大型化やその構 成の複雑さを避けることができる。また、コンプレッサ使用時の騒音対策も不要である
[0038] 本発明の酸素濃縮装置では、連続的に容積が変化する吸着室に特徴がある。以 下の説明では、まず、酸素濃縮装置の全体構成について説明し、次に、吸着室の構 造とこの吸着室を用いた空気から高濃度の酸素を濃縮する方法について、説明する
[0039] [酸素濃縮装置の全体構成:図 1]
本実施形態の酸素濃縮装置の全体構成について図 1を用いて説明する。
[0040] 本酸素濃縮装置では、まず原料ガスである空気が、防塵フィルター 1101と吸気フ ィルター兼消音バッファ 1102とによりゴミが除去された後、吸着剤が充填された吸着 室 150に導入される。吸着室 150は、吸着室の容積を変更することができるので、吸 着室内に空気が導入されると、吸着室 150内の容積を減少させる。その結果、空気 の圧力は吸着室 150内の容積の減少とともに増加し、吸着剤への窒素の優先的な 吸着が進む。このとき、吸着室 150内の空気は、冷却ファン 1104等を使用して冷却 される。続いて、吸着剤に吸着されずに残った高濃度に濃縮された酸素を含むガス を吸着室力 取り出して製品タンク 111に一時的に貯蔵する。このとき、高濃度の酸 素を含むガスは、その後、圧力調整器 112と流量調節器 115を用いて所望の圧力と ガス流量とが制御され、加湿器 116を介して適度に加湿された後、可撓性延長チュ ーブ 117、力-ユーラ 118等の導管を介して患者に供給される。
[0041] 一方、吸着室では、吸着室力 高濃度に濃縮された酸素を取り出したのち、吸着室 の容積を増加するように制御される。その結果、吸着室内の圧力が低減し、吸着剤か ら窒素が脱離して吸着剤が再生する。脱離した高濃度の窒素を含むガスは、吸着室 外に排出される。なお、本酸素濃縮装置で使用する吸着剤は、窒素を優先的あるい は選択的に吸着させるために、 Na-A型、 Ca-A型、 Na-X型、 Ca-X型、あるいは、 Li- X型等の合成ゼォライトが 1種又は組み合わせて使用される。
[0042] [吸着室の構造:図 2A] 次に、本実施形態の酸素濃縮装置で使用する吸着室 150の構造及び本吸着室を 用いた高濃度の酸素を製造する方法について、吸着室の断面構成を示す図 2A〜2 Eを用いて詳細に説明する。本吸着室では、偏心して回転する回転体を連続的に回 転させることによってその体積を減少させることによって導入した空気の圧力を増加 して窒素を吸着剤に吸着させて残った濃縮された酸素を含むガスを取り出した後 (濃 縮工程)、吸着室の体積を増カロして吸着剤に吸着した窒素を脱離させて吸着剤を再 生する(再生工程) 2つの工程を交互に連続的に行うことができる。
[0043] 図 2Aに示すように、本実施形態の吸着室 150には、所定内径を有し中空円筒形 状の密閉空間を形成する中空円筒形状の外壁部材である外壁 103、外壁の内径よ りも小さい外径を有し、外壁に接しながら外壁の中心軸 121に対して偏心して回転速 度 Vで回転方向 109の方向に回転するように円筒状の回転部材である回転体 102が 配置されている。回転体 102中には吸着剤 101が埋設され、吸着剤 101はその表面 が回転体 102の外表面の一部を形成するように設置され、回転体 102の外面には、 回転体 102の外面に対して当接した状態が不勢されている仕切板 120が設置されて いる。仕切板 120は、図に示すようなパネ機構 122を有するため、回転体 102が偏心 して回転したときに回転体 102の外面に常に接して追従することができる。
[0044] また、吸着室 150には、原料である空気を吸着室 150内に導入する空気流入口 10 6、高濃度に濃縮された酸素を吸着室 150から取り出す製品ガス取出口 108、吸着 剤を再生したときに排出される高濃度に濃縮された窒素を吸着室 150から排気する 排出口 107が設置され、空気流入口 106、製品ガス取出口 108、排出口 107にはそ れぞれ開閉弁 S1〜S3が配置されている。なお、図には示さなかったが、本酸素濃 縮装置には、回転体 102を回転させるためのモータ制御部、本装置の各部(モータ 制御部、各弁、冷却ファン、各種センサなど)を制御する制御部が設置されており、 制御部は、不図示の ROMに記憶された制御プログラムに基づいて、不図示の RAM を作業領域として使用して以下に述べる各種制御を実行する。
[0045] 本実施形態の吸着室の容積 104は、外壁と、回転体と、仕切板とで囲まれた密閉 空間の容積であり、この容積は回転体が回転することにより減少または増加するよう に構成されている。そこで、吸着室の容積変化を利用して吸着室内に導入された空 気の圧力を増カロして効率よく吸着剤に窒素を吸着させて濃縮した酸素を取り出した 後、吸着室内の圧力を下げて吸着剤に吸着された窒素を脱離させて吸着剤を再生 させることがでさる。
[0046] [空気から高濃度の酸素を濃縮する方法:図 2A〜2H]
図 2A〜2Eは、吸着室へ空気が導入され、高濃度の酸素を製品ガスとして取り出し た後、吸着剤に吸着された窒素を脱離させて吸着剤を再生するまでの各工程におけ る、吸着室の容積、吸着室の回転体と仕切板との位置関係の変化を説明する図であ る。
[0047] まず、高濃度の酸素を製品ガスとして取り出す工程について説明する。図 2Aにお いて、吸着室へ空気が導入される。このとき、開閉弁 SI, S2を開き、ファン 130によ つて空気流入口 106から吸着室へ空気を導入したのち開閉弁 SI, S2を閉じる。また 、開閉弁 S3は閉じている。このときの吸着室の容積 104は VIであり、導入された空 気の圧力は P1 (略、大気圧)である。
[0048] 図 2Bは、図 2Aの状態から回転体 102を図の矢印方向に回転させて吸着室の容積 VIから V2に減少させ、吸着室の圧力を P1から P2に増加した状態を示している。
[0049] 図 2Cは、図 2Bから回転体 102を図の矢印方向にさらに回転させて吸着室の容積 を V2から V3に減少させ、吸着室を加圧した状態を示し、図 2Dは、図 2Cから回転体 102を図の矢印方向にさらに回転させて吸着室の容積が V4まで減少し圧力が P4に 増加した状態である。図 2Dの状態において、吸着剤 101への窒素の優先的な吸着 が最も進み、気相には吸着剤に吸着されずに高濃度に濃縮された酸素を含むガス が残っているので、開閉弁 S3を開き、吸着室 150から製品ガス取出口 108を介して 高濃度に濃縮された酸素を取り出して製品タンク 111に貯蔵する。ここまでの工程が 、空気力 濃縮した酸素を取り出す濃縮工程である。
[0050] 続いて、吸着剤の再生工程を説明する。図 2Eは、図 2Dにおいて、高濃度に濃縮 された酸素を取り出した後、開閉弁 S3を閉じてから回転体 102を図の矢印方向に回 転させて吸着室の容積を V4力 VIに増加させ、吸着室 150の圧力を P4力 P5に 減圧した状態である。この状態において、吸着剤 101からの窒素の脱離が進む。次 に、図 2Fの状態まで吸着室の容積を VIから V2に減少させて、吸着室 150の圧力を P5力 P6 (例えば、略大気圧)に増カロさせた後、開閉弁 S2を開いて脱離した窒素を 含むガスを、吸着室 150から排出口 107を介して排気する。その後、開閉弁 S2を開 いたままさらに、図 2Gから図 2Hの状態まで吸着室の容積を V2から V4に減少させて 、吸着室 150から排出口 107を介して窒素を排気する。その後、開閉弁 S2を閉じる。 この結果、吸着剤 101を再生することができる。本酸素濃縮装置では、上記説明した 図 2A〜 2Hの濃縮工程と再生工程を繰り返すことにより、 1つの吸着室を使用して空 気力 高濃度に濃縮した酸素を連続的に取り出して使用することができる。
[0051] なお、吸着室の外壁 103の半径は、例えば、 10mm〜 1000mmであり、好ましくは 、 20mm〜200mmであり、軸方向の高さは、例えば、 10mm〜: LOOOmmであり、好 ましくは、 20mm〜 300mmである。また、回転体の回転数は、例えば、 0. 01〜: L00 Hz程度であり、好ましくは 0. l〜50Hz程度である。製品ガスの供給流量は、例えば 、 0. 01リットル Z分〜 100リットル Z分であり、好ましくは、 0. 1リットル Z分〜 10リツ卜 ル Z分である。また、吸着室内部に形成される圧力差は、 0. OOlMPa以上であるこ と力 子ましく、 0. OlMPa以上の圧力差であることが更に好ましい。
[0052] なお、上記説明で使用した構成は、一例であり、本発明の技術的思想を満足する ものであれば、その構成や配置は適時変更が可能である。例えば、開閉弁の代わり に逆止弁や、オリフィスなどの絞り機構を、単独で、または組み合わせて使用してもよ い。また、吸着剤の形状は、適時、変更することができる。
[0053] <第 2実施形態 >
以下、第 2の実施形態の酸素濃縮装置について説明する。本酸素濃縮装置は、そ の全体構成は、図 1で説明した第 1の実施形態の酸素濃縮装置と類似しており、吸 着室の容積を連続的に減少することにより導入された空気の圧力を増加させ、吸着 剤への窒素の優先的な吸着を増加させて残った濃縮された酸素を含むガスを取り出 した後 (濃縮工程)、吸着室の体積を増カロして吸着剤に吸着した窒素を脱離させて 吸着剤を再生する(再生工程)点は共通している。ただし、本実施形態の吸着室 250 は、第 1の実施形態の吸着室 150とその構造が異なる。そこで、以下の説明では、第 1の実施形態の酸素濃縮装置と共通する部分の説明は、重複するので省略し、異な る点についてのみ説明する。 [0054] [吸着室の構造:図 3]
図 3に示すように、本実施形態の吸着室 250は、所定内径を有し中空密閉空間を 形成する中空円筒形状の外壁部材である外壁 203と、外壁 203の内径よりも小さい 外径を有し、外壁 203の中心軸に対して偏心して回転する円筒状の回転体である回 転体 202が配置されている。回転体 202中には吸着剤 201が埋設され、吸着剤 201 はその表面が回転体 202の外表面の一部を形成するように回転体 202に設置され ている。また、回転体 202には、図に示すように外壁 203と回転体 202の間の空間を 複数に分割し、外壁 203の内面に対して当接した状態が不勢されている複数の仕切 板 220が配置されている。仕切板 220は、図に示すような伸縮可能なパネ機構 222 を有するため、回転体 102が偏心して回転したときに仕切板 220が外壁 203の内面 に常に接するように追従することができる。また、吸着室 250には、原料である空気を 吸着室 250内に導入する空気流入口 206、高濃度に濃縮された酸素を吸着室 250 力も取り出す製品ガス取出口 208、吸着剤を再生したときに排出される高濃度に濃 縮された窒素を吸着室 250から排気する排出口 207が設置され、空気流入口 206、 製品ガス取出口 208、排出口 207にはそれぞれ開閉弁 S1〜S3が配置されている。 本実施形態の吸着室の容積は外壁 203と回転体 202と複数の仕切板 220で囲まれ 、複数に分割された各密閉空間の容積である。そこで、吸着室の各分割された容積 変化を利用して吸着室内に導入された空気の圧力を増加して効率よく吸着剤に窒 素を吸着させて濃縮した酸素を取り出した後、吸着室内の圧力を下げて吸着剤に吸 着された窒素を脱離させて吸着剤を再生させることができる。
[0055] [空気から高濃度の酸素を濃縮する方法:図 3]
次に、図 3を用いて、吸着室 250へ空気が導入され、高濃度の酸素を製品ガスとし て取り出した後、吸着剤に吸着された窒素を脱離させて吸着剤を再生するまでの各 工程における、吸着室の容積、吸着室の回転体と仕切板との位置関係の変化を説 明する。
[0056] まず、高濃度の酸素を製品ガスとして取り出す工程について説明する。図 3の Aに 示す吸着室の回転体と仕切板との位置関係において、吸着室へ空気が導入される。 このとき、開閉弁 SI, S2が開き、ファン 130によって空気流入口 206から吸着室へ空 気が導入されたのち開閉弁 SI, S2は閉じられる。また、開閉弁 S3は閉じている。こ のときの吸着室の容積 204は VIであり、その圧力は P1 (略、大気圧)である。
[0057] 次に、回転体 202を図の矢印方向に回転させることにより吸着剤を図 3の Bの状態 に移動する。すると、吸着室の容積 204は、 VIから V2に減少し、その結果、圧力が P1から P2に増加する。
[0058] 同様にして、回転体 102をさらに回転させることにより、吸着剤を図 3の Cの状態、 図 3の Dの状態、図 3の Eの状態へと移動する。すると、吸着室の容積 204は、 V2か ら V3、 V3から V4、 V4力 V5へと減少し、その結果、吸着室の圧力は、 P2力 P3、 P3力ら P4、 P4力ら P5へと増カロする。
[0059] 次に、図 3の E、すなわち、吸着室の容積 204が V5まで減少し圧力力P45増加した 状態では、吸着剤 201への窒素の優先的な吸着が進み、気相には吸着剤に吸着さ れずに高濃度に濃縮された酸素を含むガスが残っているので、開閉弁 S3を開き、吸 着室 250から製品ガス取出口 208を介して高濃度に濃縮された酸素を取り出して製 品タンク 111に貯蔵する。ここまでの工程が、空気力も濃縮した酸素を取り出す濃縮 工程である。
[0060] 続いて、吸着剤の再生工程を説明する。次に、高濃度に濃縮された酸素を取り出し た後、開閉弁 S3を閉じてから回転体 202を図の矢印方向に回転させることにより、吸 着剤を図 3の Eの状態から、図 3の Fの状態、図 3の Gの状態、図 3の Hの状態、図 3の Aの状態へと移動する。すると、吸着室の容積は V5から V6、 V6から V7、 V7から V8 、 V8から VIと増加し、その結果、吸着室の圧力は、 P5力ら P6、 P6力ら P7、 P7から P8、 P8力ら P9と低下する。
[0061] そこで、図 3の Aの状態 (圧力 P9)の状態において、吸着剤 201からの窒素の脱離 が進むので、高濃度の窒素を含むガスを開閉弁 S2を開いて、吸着室 250から排出 口 207を介して排気する。その後、開閉弁 S2を閉じる。本酸素濃縮装置では、上記 説明した図 3の A〜Hの各工程を繰り返すことにより、 1つの吸着室を使用して空気か ら高濃度に濃縮した酸素を連続的に取り出して使用することができる。
[0062] <第 3実施形態 >
以下、第 3の実施形態の酸素濃縮装置について説明する。以下の説明では、第 1 および第 2の実施形態の酸素濃縮装置と異なる吸着室 350の構造についてのみ説 明する。
[0063] [吸着室の構造:図 4]
本実施形態の吸着室 350が、第 2の実施形態の吸着室 250と異なる点は、仕切板 220によって仕切られた各吸着室の容積内の各回転体 202上にそれぞれ吸着剤 20 1が埋設されている点だけである。本実施形態のように、回転体 202上に複数の吸着 剤 201を配置することによって各区切られた吸着室の容積を利用して、第 2の実施形 態に比べて高濃度の酸素ガスをより多量に供給することができる。
[0064] <第 4実施形態 >
以下、第 4の実施形態の酸素濃縮装置について説明する。以下の説明では、第 1 〜第 3の実施形態の酸素濃縮装置と異なる吸着室 450の構造についてのみ説明す る。
[0065] [吸着室の構造:図 5]
本実施形態の吸着室 450は、第 3の実施形態の吸着室 350を 3段に積層したもの であり、 1段目の吸着室から取り出される高濃度の酸素を含むガスを 2段目の吸着室 の空気流入口力 導入し、 2段目の吸着室力 取り出されるより高濃度の酸素を含む ガスを 3段目の吸着室の空気流入口力 導入し、 3段目の吸着室力 取り出される製 品ガスを図 1の製品タンク 111に供給する構成とした点のみが異なる点である。このよ うに、吸着室を多段構造とすることで、より高濃度の酸素ガスを供給することができる
[0066] <第 5実施形態 >
以下、第 5の実施形態の酸素濃縮装置について説明する。本酸素濃縮装置は、そ の全体構成は、図 1で説明した第 1の実施形態の酸素濃縮装置と類似しており、吸 着室の容積を連続的に減少することにより導入された空気の圧力を増加させ、吸着 剤への窒素の優先的な吸着を増加させて残った濃縮された酸素を含むガスを取り出 した後 (濃縮工程)、吸着室の体積を増カロして吸着剤に吸着した窒素を脱離させて 吸着剤を再生する(再生工程)点は共通している。ただし、本実施形態の吸着室 550 は、第 1の実施形態の吸着室 150とその構造が異なり、回転体を偏心して回転する 代わりに吸着室内に設けられたピストンを利用することで、吸着室の容積を変更する ことにより吸着室内の圧力を変更することができる。そこで、以下の説明では、第 1の 実施形態の酸素濃縮装置と異なる吸着室 550の構造と吸着室 550を用いて空気か ら高濃度の酸素を濃縮する方法にっ 、てのみ説明する。
[0067] [吸着室の構造:図 6A]
本実施形態の酸素濃縮装置で使用する吸着室 550の構造及び本吸着室を用いた 高濃度の酸素を製造する方法にっ 、て、吸着室の断面構成を示す図 6A〜6Gを用 いて詳細に説明する。
[0068] 図 6Aに示すように、本実施形態の吸着室 550には、所定内径を有し、中空円筒状 の密閉空間を形成する外壁部材である外壁 702と、外壁 702の内壁に接して配置さ れた吸着剤 701と、外壁 702の内径よりも小さい外径を有し、外壁 702の内面に接し ながら外壁 702の軸方向に往復移動可能に配置されているピストン部材 729とが配 置されている。ピストン部材 729は軸方向に分極された強磁性体カゝら構成されており 、吸着室 550の外部の周囲には、コイル 731が配置されている。ピストン部材 729は 、コイル 731に流す電流の方向を切替えることで、吸着室 550内で移動するピストン 部材 729の移動方向を変更することができる。
[0069] また、吸着室 550には、原料である空気を吸着室 550内に導入する空気流入口 70 6、高濃度に濃縮された酸素を吸着室 550から取り出す製品ガス取出口 708、吸着 剤を再生したときに排出される高濃度に濃縮された窒素を吸着室 550から排気する 排出口 707が設置され、空気流入口 706、製品ガス取出口 708、排出口 707にはそ れぞれ開閉弁 S1〜S3が配置されている。なお、図には示さなかったが、本酸素濃 縮装置には、ピストン部材 729を往復移動させるためのコイル制御部、本装置の各部 (コイル制御部、各種弁、冷却ファン、各種センサなど)を制御する制御部が設置され ており、制御部は、不図示の ROMに記憶された制御プログラムに基づいて、不図示 の RAMを作業領域として使用して以下に述べる各種制御を実行する。
[0070] 本実施形態の吸着室の容積 704は、外壁 702の内面とピストン部材 729と吸着剤 7 01とによって囲まれた密閉空間であり、ピストン部材 729が移動することにより、吸着 室の容積 704が減少または増加するように構成されている。そこで、この吸着室の容 積変化を利用して吸着室内に導入された空気の圧力を増加して効率よく吸着剤に 窒素を吸着させて濃縮した酸素を取り出した後、吸着室内の圧力を下げて吸着剤に 吸着された窒素を脱離させて吸着剤を再生させることができる。
[0071] [空気から高濃度の酸素を濃縮する方法:図 6A〜6F]
図 6A〜6Fは、吸着室へ空気が導入され、高濃度の酸素を製品ガスとして取り出し た後 (濃縮工程)、窒素を脱離させて排気し吸着剤を再生する (再生工程)までの各 工程における、吸着室の容積、吸着室の回転体と仕切板との位置関係の変化を説 明する図である。以下、図 6A〜6Fを用いて、空気から高濃度の酸素を濃縮する方 法について説明する。
[0072] まず、高濃度の酸素を製品ガスとして取り出す工程にっ 、て説明する。図 6Aにお いて、吸着室へ空気が導入される。このとき、開閉弁 S1を開き、吸着室へ空気を導 入したのち開閉弁 S1を閉じる。また、開閉弁 S2, S3は閉じている。このとき、ピストン 部材 729は、図に示す位置に配置されているので、吸着室の容積 704は VIで最大 であり、吸着室へ導入された空気の圧力は P1 (略、大気圧)である。
[0073] 図 6Bは、図 6Aの状態力もピストン部材 729を図の矢印方向 730に移動させて吸 着室の容積 704を VIから V2に減少させ、吸着室の圧力を P1から P2に増加した状 態を示している。
[0074] 図 6Cは、図 6Bからピストン部材 729を図の矢印方向 730にさらに移動させて吸着 室の容積を V2から V3に減少させ、吸着室の圧力を P3に増加した状態を示し、図 6 Cの状態において、吸着剤 701への窒素の優先的な吸着が進み、気相には吸着剤 に吸着されずに高濃度に濃縮された酸素を含むガスが残っている。そこで、開閉弁 S 3を開き、吸着室の容積 704内に残っている高濃度に濃縮された酸素を含むガスは 吸着剤 701を通り製品ガス取出口 108を経由して取り出されて製品タンク 111に貯 蔵する。ここまでの工程が、空気力も濃縮した酸素を取り出す濃縮工程である。
[0075] 続いて、吸着剤の再生工程を説明する。図 6Dは、高濃度に濃縮された酸素を取り 出した後、開閉弁 S3を閉じて力もピストン部材 729を図 6Cの位置力も矢印方向 730 (図 6A〜6Cでのピストン部材の移動方向と反対方向)に移動させることにより図 6D の位置まで移動した状態である。この状態において、吸着室の容積は図 6Cに示す V 3の状態力も VIまで増加し、吸着室 550の圧力は P4となるので、吸着剤 701からの 窒素の脱離が進む。
[0076] 次に、図 6Eに示すように開閉弁 S2を開いて、高濃度の窒素を含むガスを排出口 1 07から排気しながら図 6Fに示すようにさらに吸着室の体積を減らして高濃度の窒素 を含むガスを排出口 107から排気する。その後、開閉弁 S2を閉じる。
[0077] 本酸素濃縮装置では、上記説明した図 6A〜6Fの濃縮工程と再生工程を繰り返す ことにより、 1つの吸着筒を使用して空気力 高濃度に濃縮した酸素を連続的に取り 出して使用することができる。なお、上記説明で使用した構成は、一例であり、本発 明の技術的思想を満足するものであれば、その構成や配置は適時変更が可能であ る。例えば、開閉弁の代わりに逆止弁や、オリフィスなどの絞り機構を、単独で、また は組み合わせて使用してもょ 、。
[0078] [吸着室の構造の変形例:図 6G]
図 6Gの吸着室 650は、本実施形態の吸着室 550の製品ガス取り出し口 708の位 置を図に示すように排出口 707に隣接するように変更した変形例の一例を示す図で ある。吸着室 650のように製品ガス取り出し口 708を配置することにより、高濃度に濃 縮された酸素を含むガスを吸着剤 701を通過させずに製品ガス取出口 108から直接 取り出して製品タンク 111に貯蔵することができる。
[0079] <第 6実施形態 >
以下、第 6の実施形態の酸素濃縮装置について説明する。本実施形態の吸着室 7 50は、第 5の実施形態の吸着室 550の変形例であるので、以下の説明では、第 5の 実施形態の吸着室 550と異なる点についてのみ説明する。
[0080] [吸着室の構造:図 7]
図 7に示す吸着室 750は、第 5の実施形態で説明した吸着室の容積変化を利用し て吸着室内に導入された空気の圧力を増カロして効率よく吸着剤に窒素を吸着させて 濃縮した酸素を取り出した後、吸着室内の圧力を下げて吸着剤に吸着された窒素を 脱離させて吸着剤を再生させる原理を応用したものであるので、その原理の説明は 省略する。
[0081] 本実施形態の吸着室 750が第 5の実施形態の吸着室 550と異なる点は、吸着室 5 50では、 1つの吸着剤 701は外壁 702の一端に配置され、外壁 702とピストン部材 7 29で囲まれた吸着室の容積のうちの 1つの容積 704を用いていた力 本吸着室 750 では、 2つの吸着剤 701a、 bが外壁 702の両端にそれぞれ配置され、この吸着剤 70 la、 bをそれぞれ含む外壁 702とピストン部材 729で囲まれた吸着室の容積のうちの 2つの容積 704、 705を別々に用いる点である。本実施形態において、吸着室 750 の両端に 2つの吸着剤 701a、 bを配置した理由は、吸着室 550で説明した、 1)空気 を導入して窒素を吸着剤に吸着させ高濃度の酸素を取り出す濃縮工程と、 2)窒素を 吸着した吸着剤力も窒素を脱離させて吸着剤を再生する再生工程とを、 2つに分割 された吸着室の容積 704, 705を利用して交互に行うことにより、より多くの高濃度の 酸素を濃縮して供給するためである。このように、本実施形態の吸着室 750では、 2 つに分割された吸着室の容積 704, 705を用いて交互に濃縮工程と再生工程とを行 うため、それに伴い空気流入口 706、排出口 707の位置が図に示すように外壁 702 の中央部の変更されている。また、製品ガス取出口 708は、各吸着剤 701に対応し て 2つ用意されている。
<第 7実施形態 >
以下、第 7の実施形態の酸素濃縮装置について説明する。本酸素濃縮装置は、そ の全体構成は、図 1で説明した第 1の実施形態の酸素濃縮装置と類似しているが、 吸着室の構造及び酸素濃縮方法が異なる。すなわち、第 1の実施形態の吸着室 15 0では、吸着室の容積を連続的に減少することにより導入された空気の圧力を増加さ せ、吸着剤への窒素の優先的な吸着を増加させた。し力しながら、本実施形態の吸 着室 850は、第 1の実施形態の吸着室 150のように、吸着室の容積を変化させること で圧力差を形成するのではなぐ外壁の中心軸に対して回転する回転体に複数の羽 根を設け、回転体の回転によって生じる空気の流れを、回転体に設けられた複数の 羽根によって制御することにより吸着室内に圧力の高い部分と低い部分を形成する ことにより、圧力の高い部分に接する吸着剤への窒素の優先的な吸着を増加させる ものである。そこで、以下の説明では、第 1の実施形態の酸素濃縮装置と共通する部 分の説明は、重複するので省略し、吸着室 850の構造の違いと空気力 高濃度の酸 素を濃縮する方法にっ 、てのみ説明する。 [0083] [吸着室の構造:図 8]
本実施形態の酸素濃縮装置で使用する吸着室 850の構造とこれを用いる高濃度 の酸素を製造する方法について、吸着室の断面構成を示す図 8を用いて詳細に説 明する。
[0084] 図 8に示すように、本実施形態の吸着室 850には、所定内径を有し、中空円筒状の 密閉空間を形成する外壁部材である外壁 602と、外壁 602の内壁に接して配置され た吸着剤 601と、外壁 602の内径よりも小さい外径を有し、外壁 602の中心軸を軸と してかつ外壁 602の内面に配置された吸着剤 601に接しな 、で回転する中空円筒 状の回転体 603とが配置されている。回転体 603の中空円筒状の内壁には複数の 羽根 625a、 625bが図の向きに配置されている。なお、本実施形態の吸着室 850で は、吸着剤 601を含む外壁 602も回転体 603より遅い速度で回転することができる。
[0085] また、吸着室 850には、原料である空気を吸着室 850内に導入する空気流入口 60 6、高濃度に濃縮された酸素を吸着室 850から取り出す製品ガス取出口 608、窒素 ガスを吸着した吸着剤力 窒素が脱離したときに排出される高濃度に濃縮された窒 素を吸着室 850から排気する排出口 607が設置されている。なお、図示はしないが、 本酸素濃縮装置には、回転体 603などを回転させるためのモータ制御部、本装置の 各部 (モータ制御部、各種弁、冷却ファン、各種センサなど)を制御する制御部が設 置されており、制御部は、不図示の ROMに記憶された制御プログラムに基づいて、 不図示の RAMを作業領域として各種制御を実行する。
[0086] 次に、図 8を用いて吸着室 850において、吸着室内に圧力の高い部分と低い部分 を形成することにより、吸着剤への窒素の優先的な吸着を増加させる方法について 説明する。図 8に例示する様に、中空の回転体 603には、その周上の一部に矢印 60 9の方向の回転に伴い内側力も外側に向力つて空気が流れる様な形状とした羽根 6 25aを設けられ、円周上の他の部分には回転に伴って矢印 626bの様に外側から内 側に向力つて空気が流れる様に適切な形状とした羽根 625bを設けられている。
[0087] 従って、吸着室 850の回転体 603の内部に点線で示す流入口 606から空気が導 入されると、吸着室 850の外壁 602と回転体 603の間に設けられた吸着剤 601の各 部分は、羽根 625aが設けられた部分が回転体 603の回転により回ってきた時には 内側から外側に向かって空気が流れるため加圧される。その結果、加圧され空気と 接触する部分の吸着剤 601a, 601bでは窒素の吸着反応が促進される。そこで、吸 着剤 601aに吸着されずに吸着剤 601aを通過したガス(高濃度に濃縮された酸素を 含む)は、製品ガス取出口 608から取り出される。一方、羽根 625bの部分の場合は、 上記説明とは逆に減圧される。その結果、減圧された空気と接触する部分の吸着剤 では窒素の脱離反応が促進されるため内側の回転体 603の内部方向に向けて窒素 濃度の高いガスを放出することになる。そこで、点線で示す吸着室 850の中心軸付 近に設けられた排出口 607から窒素濃度の高 、ガスを排出することができる。
[0088] なお、上記説明した各実施形態の説明では、 PSA法による空気からの酸素の濃縮 を例に説明しているが、本発明は、これに限ることはなぐ複数のガス成分を含むガス 流体と、そのガス流体中の特定のガスを吸着する吸着剤があれば、吸着剤に吸着さ れない残りのガスを濃縮することができる。そのため、各種ガス成分を含むガス流体 から目的とするガスの濃縮、分離精製、あるいは、ガス流体に含まれる有害成分の除 去などにも利用が可能である。
[0089] 本発明は上記実施の形態に制限されるものではなぐ本発明の精神及び範囲から 離脱することなぐ様々な変更及び変形が可能である。従って、本発明の範囲を公に するために、以下の請求項を添付する。

Claims

請求の範囲
[1] 少なくとも第 1ガスと第 2ガスとを含むガス流体中カゝら前記第 1ガスを濃縮するガス濃 縮装置であって、
前記第 2ガスを吸着する吸着剤を含み、前記ガス流体中の前記第 1ガスを濃縮する 吸着室と、
前記吸着室の容積を減少させて前記吸着室に導入された前記ガス流体の圧力を 増加して前記吸着剤への前記第 2ガスの吸着量を増加させる圧力変更手段と、 を有することを特徴とするガス濃縮装置。
[2] 前記圧力変更手段は、前記吸着室の容積を増カロさせることにより前記吸着室内の 圧力を減少して前記吸着剤に吸着した前記第 2ガスを脱離させることを特徴とする請 求項 1に記載のガス濃縮装置。
[3] 前記圧力変更手段は、偏心して回転するように配置されている回転部材を有し、前 記吸着室は、前記回転部材と、前記回転部材との間で密閉空間を形成する外壁部 材とによって囲まれた空間からなることを特徴とする請求項 1または 2に記載のガス濃 縮装置。
[4] 前記回転部材は略円筒状であり、前記外壁部材は略中空円筒状であることを特徴 とする請求項 3に記載のガス濃縮装置。
[5] 前記吸着室は、前記回転部材と前記外壁部材とによって囲まれる前記空間を少な くとも 2つに区切った一区画であることを特徴とする請求項 3に記載のガス濃縮装置。
[6] 前記吸着室は、前記回転部材と前記外壁部材とによって囲まれた前記空間を複数 に区切ったそれぞれの区画であることを特徴とする請求項 3に記載のガス濃縮装置。
[7] 前記圧力変更手段は、往復運動可能なピストン部材を有し、前記吸着室は、前記 ピストン部材と、前記ピストン部材との間で密閉空間を形成する外壁部材とによって 囲まれた空間からなることを特徴とする請求項 1または 2に記載のガス濃縮装置。
[8] 前記ピストン部材は略円筒状であり、前記外壁部材は略中空円筒状であることを特 徴とする請求項 7に記載のガス濃縮装置。
[9] 前記吸着室は、前記ピストン部材と前記外壁部材とによって囲まれた 2つの空間の それぞれであることを特徴とする請求項 7に記載のガス濃縮装置。
[10] 少なくとも第 1ガスと第 2ガスとを含むガス流体中カゝら前記第 1ガスを濃縮するガス濃 縮装置であって、
前記第 2ガスを吸着する吸着剤を含み、前記ガス流体中の前記第 1ガスを濃縮する 吸着室と、
前記吸着室に導入された前記ガス流体中に圧力の高い領域と圧力の低い領域と を生成させることにより前記圧力の高い領域に接する前記吸着剤への前記第 2ガス の吸着量を増加させる圧力差生成手段と、
を有することを特徴とするガス濃縮装置。
[11] 前記圧力差生成手段は、内面に複数の羽根を有する中空状の回転部材を有する ことを特徴とする請求項 10に記載のガス濃縮装置。
[12] 前記吸着室は、前記吸着剤を前記回転部材と異なる速度で回転させる回転手段を 有し、前記回転手段により前記第 2ガスを吸着した吸着剤が前記圧力の低い領域に 接することにより前記第 2ガスが脱離することを特徴とする請求項 11に記載のガス濃 縮装置。
[13] 前記第 1ガスは酸素であり、前記第 2ガスは窒素であり、前記ガス濃縮装置は空気 力も酸素を濃縮する酸素濃縮器であることを特徴とする請求項 1乃至請求項 12のい ずれか 1項に記載のガス濃縮装置。
[14] 少なくとも第 1ガスと第 2ガスとを含むガス流体の前記第 2ガスを吸着する吸着剤を 備え、前記ガス流体中の前記第 1ガスを濃縮する吸着室を有するガス濃縮装置の制 御方法であって、
前記吸着室に前記ガス流体を導入する工程と、
前記吸着室の容積を減少させて前記吸着室に導入された前記ガス流体の圧力を 増加して前記吸着剤への前記第 2ガスの吸着量を増加させる工程と、
を有することを特徴とするガス濃縮装置の制御方法。
PCT/JP2007/051977 2006-02-09 2007-02-06 ガス濃縮装置およびその制御方法 WO2007091539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006032836A JP2007237004A (ja) 2006-02-09 2006-02-09 ガス濃縮装置およびその制御方法
JP2006-032836 2006-02-09

Publications (1)

Publication Number Publication Date
WO2007091539A1 true WO2007091539A1 (ja) 2007-08-16

Family

ID=38345136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051977 WO2007091539A1 (ja) 2006-02-09 2007-02-06 ガス濃縮装置およびその制御方法

Country Status (2)

Country Link
JP (1) JP2007237004A (ja)
WO (1) WO2007091539A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881004A (zh) * 2017-04-28 2017-06-23 广州环天环境科技有限公司 用于挥发性有机物处理系统的吸附脱附装置
EP3069783A4 (en) * 2013-11-15 2017-07-19 IP Tech Pte. Ltd. Membrane separation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103432863B (zh) * 2013-09-10 2015-03-11 周小山 变压吸附装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524374A (ja) * 1997-12-01 2001-12-04 ウエストエアー・テクノロジーズ・インコーポレイテッド モジュール圧力スイング吸収装置
JP2004344241A (ja) * 2003-05-20 2004-12-09 Terumo Corp 酸素濃縮装置およびその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524374A (ja) * 1997-12-01 2001-12-04 ウエストエアー・テクノロジーズ・インコーポレイテッド モジュール圧力スイング吸収装置
JP2004344241A (ja) * 2003-05-20 2004-12-09 Terumo Corp 酸素濃縮装置およびその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3069783A4 (en) * 2013-11-15 2017-07-19 IP Tech Pte. Ltd. Membrane separation apparatus
US10195568B2 (en) * 2013-11-15 2019-02-05 Ip Tech Pte. Ltd. Membrane separation device
CN106881004A (zh) * 2017-04-28 2017-06-23 广州环天环境科技有限公司 用于挥发性有机物处理系统的吸附脱附装置

Also Published As

Publication number Publication date
JP2007237004A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
US10300427B2 (en) System and method for concentrating gas
US7637989B2 (en) Rapid cycle pressure swing adsorption oxygen concentration method and mechanical valve for the same
JP4301452B2 (ja) 気体濃縮方法およびその装置
JP2003211955A (ja) 酸素供給機能を有する車両用空気浄化装置
EP2059326A2 (en) Oxygen concentration system
JP2001187310A (ja) 改良された封止部を有するバルブを備えた吸着作用による流体のサイクル処理用装置
WO2008035817A1 (en) Oxygen concentrator
KR20040010623A (ko) 가스 분리 방법 및 그 장치
KR101647017B1 (ko) 응축 수분 배출 기능을 가지는 산소 농축 방법 및 장치
WO2007091539A1 (ja) ガス濃縮装置およびその制御方法
JP2009066562A (ja) 気体分離装置並びに酸素濃縮装置及びエアロバイク
KR100495973B1 (ko) 자동차용 산소발생장치
JP3654658B2 (ja) 圧力変動吸着式酸素製造方法及び装置
JPH10272332A (ja) ガス分離装置及びその運転方法
JPH11267439A (ja) ガス分離方法及びこの方法を実施するガス分離装置
JPH10194708A (ja) 酸素濃縮装置
KR100484549B1 (ko) 두 개의 진공원을 이용한 산소발생장치 및 방법
JP2009061110A (ja) 酸素濃縮装置
JP2005006732A (ja) 酸素濃縮装置
JP2005006731A (ja) 酸素濃縮装置
JPH0731826A (ja) ガス濃縮装置
JP2007209900A (ja) 成分濃縮分離装置および成分濃縮分離方法
JP3764370B2 (ja) ガス濃縮装置
JP5524574B2 (ja) 酸素濃縮装置
JP3576201B2 (ja) 圧力振動吸着法による高純度ガス製造装置及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708095

Country of ref document: EP

Kind code of ref document: A1