WO2007090441A1 - Abtastsystem einer positionsmesseinrichtung - Google Patents
Abtastsystem einer positionsmesseinrichtung Download PDFInfo
- Publication number
- WO2007090441A1 WO2007090441A1 PCT/EP2006/009991 EP2006009991W WO2007090441A1 WO 2007090441 A1 WO2007090441 A1 WO 2007090441A1 EP 2006009991 W EP2006009991 W EP 2006009991W WO 2007090441 A1 WO2007090441 A1 WO 2007090441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carrier
- adapter
- scanning system
- scanning
- solid
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 claims abstract description 12
- 238000005452 bending Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 239000002241 glass-ceramic Substances 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 description 4
- 239000006094 Zerodur Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/347—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
- G01D5/34707—Scales; Discs, e.g. fixation, fabrication, compensation
Definitions
- the invention relates to a scanning system of a position-measuring device according to claim 1.
- a scanning system of a position measuring device for photoelectric scanning of a measuring graduation has a carrier with components.
- the components are, for example, optical components for guiding a scanning light bundle, wherein the guiding may be deflecting, collimating or splitting or, for example, electrical components, such as detector elements for converting the scanning light beam into electrical scanning signals.
- the scanning light beam is modulated in a position-dependent manner relative to the measuring graduation during the relative movement of a scanning graduation of the scanning system.
- the scanning system is attached to a first of the objects to be measured, and the measuring graduation is attached to a second object, which is movable relative to it, of the objects to be measured.
- the object of the invention is therefore to provide a scanning system which is designed such that the position measurement is not or only negligibly falsified by thermal influences.
- FIG. 1 shows a position-measuring device with a scanning system designed according to the invention
- FIG. 2 shows an adapter with a scanning graduation of the scanning system according to FIG.
- FIG. 1 A first figure.
- FIG. 3 shows a partial section of the scanning system according to FIG. 1 and FIG.
- Figure 4 shows a rod-shaped solid joint in detail.
- FIGS. 1 to 3 show a linear two-dimensionally measuring position measuring device with a scanning system 1 for the photoelectric scanning of a graduation 21 of a scale 2.
- the position measuring device is used in the example shown for two-dimensional incremental position measurement (X and Y direction) of two relatively movable objects 3 and 4.
- the measuring graduation 21 has this in a known manner extending fields with graduations in the X direction and running in the Y direction ,
- the photoelectric scanning is based on the detection of the displacement of the measuring graduation 21 relative to a scanning graduation 51.
- a scanning light beam is used, which is influenced by the scanning graduation 51 and the measuring graduation 21 and is modulated position-dependent.
- the measuring circuit thus extends from the first object 3 via the scanning graduation 51 to the measuring graduation 21 to the second object 4. In this part of the measuring circuit, thermal influences must not cause any relative displacements of the scanning graduation 51 relative to the measuring graduation 21.
- the scanning graduation 51 is assigned to an adapter 6 stationary.
- the scanning graduation 51 is applied to a scanning plate 5 and this scanning 5 is fixed to the adapter. 6 attached.
- This attachment may be a non-positive and / or positive attachment, such as clamping or wringing.
- the scanning graduation 51 can also be applied directly to the adapter 6, in which case the scanning plate 5 is formed by the adapter 6.
- the adapter 6 of the scanning system 1 is the user for fixed attachment, e.g. Screwing, clamping or wringing of the scanning 1 to the object to be measured 3 available.
- the scanning system 1 also contains further components, in particular optical and / or electrical components for guiding and / or converting the scanning light bundle.
- optical and electrical components are attached to a support 7.
- some of these optical and electrical components are shown schematically, an optical waveguide 71 for guiding light to the scanning system 1, lenses 72 and mirrors for continuation and shaping of the scanning light bundle and detector elements 73 for converting the scanning light bundle into position-dependent electrical scanning signals.
- the support 7 may also have other parts needed for scanning or holding these components, such as optical splitters, splitting grids, polarizers or printed circuit boards.
- the carrier 7 with the optical and electrical components 71, 72, 73 is held by means of a holder 8 on the adapter 6.
- This holder 8 is designed such that the carrier 7 is stationary in six degrees of freedom positioned on the adapter 6, but compensates for thermally induced expansions of the carrier 7 relative to the adapter 6. This ensures that expansion or tensioning of the carrier 7 caused by temperature changes is not transmitted to the adapter 6 and thus to the scanning graduation 51.
- Components which do not adversely affect the position of the scanning graduation 51 in the event of temperature changes may also be fastened directly to the adapter 6 in a manner not shown.
- optical Components that are made of the same material as the adapter 6, be sprinkled on the adapter 6.
- Extensions and thus length changes of the carrier 7 relative to the adapter 6 may be due to the fact that different materials are used or that different temperatures act.
- the adapter 6 with the scanning graduation 51 made of glass ceramic with a negligible coefficient of expansion and the carrier 7 made of metal. Metal may therefore be necessary because the carrier 7 as a housing shields the opto-electrical components such as detector elements 73 from electromagnetic radiation or shields the lenses 72 and splices from harmful optical radiation, for example UV radiation.
- the solid-state joints 81 to 86 are rod-shaped and rigid in the bar direction, but are deflectable in directions perpendicular thereto.
- At least one solid-body joint 81; 82, 83; 84, 85, 86 extends in one of the three coordinate directions X, Y, Z and fixed in this coordinate direction X, Y, Z the carrier 7 rigidly on the adapter 6, but in the two other coordinate directions X, Y, Z deflectable.
- the carrier 7 consists for example of Invar and the adapter 6 of Zero dur.
- the holder 8 is designed such that the carrier 7 is stationarily positioned on the adapter 6 in six degrees of freedom, that is, held or stored statically determined.
- the holder 8 also has the property that thermally induced different expansions of carrier 7 and adapter 6 are compensated or compensated.
- the holder 8 must allow compensation in at least the two coordinate directions X, Y, which span the dividing plane. An optimum is achieved if a compensation in all three coordinate directions X, Y, Z is possible. Such an embodiment is shown in Figures 1 to 3 and will now be further explained.
- the holder 8 has a spatial arrangement of solid joints 81 to 86.
- These solid joints 81 to 86 - also called flexures or flexures - each have at least one rod-shaped weak point as a bending section.
- Each of the solid-state hinges 81 to 86 is fastened with a portion on the carrier 7 and with a portion on the adapter 6, therebetween is the bending portion.
- the rod-shaped solid-state joints 81 to 86 each have a very high stiffness in the bar direction and a slight stiffness in directions normal to the bar direction.
- the scanning 5 is not shown in Figure 3 and the carrier 7 shown relative to the adapter 6 offset in the Z direction.
- the bending portion which acts as a hinge preferably has a round cross-section.
- the spatial arrangement of the solid-state joints 81 to 86 is selected such that the carrier 7 is mounted immovably on the adapter 6 in all three coordinate directions X, Y, Z.
- at least one solid-body joint 81, 82, 85 extends in each case in the bar direction in one of the coordinate directions X, Y, Z.
- the rotations about the coordinate axes X, Y, Z are blocked by the further solid joints 83, 84, 86.
- the solid-state joint 81 extends in the X direction and thus fixes and thus blocks the carrier 7 on the adapter 6 in the X direction.
- the solid-body joint 82 extends in the Y direction and for binding in the Z direction, the solid-body joint 85 extends in the Z direction.
- the rotation about the Z-axis is prevented by the arrangement of the further solid-state joint 83 parallel to the solid-state joint 82, wherein the solid-state joints 81, 82 and 83 are arranged in a plane parallel to the dividing plane.
- the rotation about the X- and Y-axis is prevented by the spatially staggered arrangement of three parallel to the Z-direction solid joints 84, 85, 86.
- the solid-state hinges 82, 83, 84, 85, 86 allow a longitudinal expansion of the carrier 7 in the X direction, starting from the fixation of the carrier 7 through the solid-body joint 81.
- the solid-state joints 81, 84, 85, 86 allow a longitudinal expansion of the carrier 7 in FIG Y-direction, starting from the fixation of the carrier 7 by the solid joints 82, 83.
- the solid joints 81, 82, 83 allow a longitudinal expansion of the carrier 7 in the Z direction, starting from the fixation of the carrier 7 by the solid joints 84, 85, 86.
- the solid joints 81 to 86 are so spatially arranged and formed that on the one hand fix the carrier 7 as stable as possible vibration stable on the adapter 6 in all six degrees of freedom and on the other hand allow length expansions without undue forces on the adapter 6 and thus the scanning graduation 51 transfer.
- the illustrated arrangement of the solid joints 81 to 86 is only one of several possibilities. It has the advantage that due to the plate-shaped structure of the carrier 7, which lies in the XY plane, the natural frequencies are particularly high.
- An alternative arrangement is, for example, the provision of two mutually parallel solid joints in each of the mutually perpendicular axes X, Y, Z, wherein the two mutually parallel rod-shaped solid joints each spanning a plane perpendicular to the planes that lie of the two other pairs of solid-state joints of the other two axes are formed.
- the holding function in the Z-direction can also be taken over by solid-state joints which reduce the thermally induced expansions of the carrier.
- these solid joints are formed for example as leaf springs or Blattfederparallelogramme. These leaf springs extend in the Z-direction to be blocked. One or more of the leaf springs thus lie in the XZ plane and block movements of the carrier 7 in the directions X and Z, but allow for expansion of the carrier 7 in the Y direction.
- One or more other leaf springs lie in the YZ plane and block movements of the carrier 7 in the directions Y and Z, but allow for expansion of the carrier 7 in the X direction.
- the natural frequency of the scanning system should preferably be above about 700 Hz.
- the scanning system for highly accurate position measurement in lithography equipment.
- the first and second object 3, 4 are preferably made of a material with a negligible coefficient of expansion, in particular glass ceramic in the form of ZERODUR, ie of the same material as the adapter 6 and the scale 2.
- FIG. 4 shows a particularly advantageous embodiment of one of the solid-body joints 81 of the solid-state joints 81 to 86 in detail.
- the solid-state joint 81 has a first attachment portion 81 1 for attachment to the adapter 6 and a second attachment portion 812 for attachment to the carrier 7.
- To increase the stiffness in bar direction are in the example between the two mounting portions 811 and 812 two bar-spaced and by a non-bendable portion in the form of a thickening or reinforcement 815 separated rod-shaped bending sections 813 and 814.
- These bending sections 813 and 814 preferably have a round cross-section.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Bei einem Abtastsystem (1) einer Positionsmesseinrichtung zur lichtelektrischen Abtastung einer Messteilung (21 ) ist die Abtastteilung (51 ) von weiteren zur Abtastung benötigten optischen und /oder elektrischen Bauelementen (71 ,72 ,73) entkoppelt. Hierzu dient eine Halterung (8) mit einer räumlichen Anordnung von Festkörpergelenken (81 bis 86), die eine statisch bestimmte Positionierung gewährleisten, aber thermisch bedingte Längenausdehnungen ausgleichen.
Description
Abtastsystem einer Positionsmesseinrichtung
Die Erfindung betrifft ein Abtastsystem einer Positionsmesseinrichtung gemäß dem Anspruch 1.
Ein Abtastsystem einer Positionsmesseinrichtung zur lichtelektrischen Ab- tastung einer Messteilung weist einen Träger mit Bauelementen auf. Die Bauelemente sind beispielsweise optische Bauelemente zum Führen eines Abtastlichtbündels, wobei das Führen ein Umlenken, Kollimieren oder Aufspalten sein kann oder beispielsweise elektrische Bauelemente, wie Detektorelemente zur Wandlung des Abtastlichtbündels in elektrische Abtastsig- nale. Das Abtastlichtbündel wird bei der Relativbewegung einer Abtastteilung des Abtastsystems relativ zu der Messteilung positionsabhängig moduliert. Zur Positionsmessung ist das Abtastsystem an einem ersten der zu messenden Objekte und die Messteilung an einem relativ dazu beweglichen zweiten der zu messenden Objekte befestigt. Zur hochgenauen Positions- messung ist es erforderlich, dass das Abtastlichtbündel ausschließlich aufgrund einer Relativbewegung der zu messenden Objekte moduliert wird. Thermische Einflüsse auf das Abtastsystem sollen die Positionsmessung nicht beeinflussen.
Aufgabe der Erfindung ist es daher, ein Abtastsystem zu schaffen, das derart ausgestaltet ist, dass durch thermische Einflüsse die Positionsmessung nicht bzw. nur vernachlässigbar verfälscht wird.
Gelöst wird diese Aufgabe durch die Merkmale des Anspruchs 1.
Vorteilhafte Ausbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben. Vorteile der Erfindung sind in der nachfolgenden Beschreibung erörtert.
Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnungen näher erläutert.
Es zeigen
Figur 1 eine Positionsmesseinrichtung mit einem erfindungsgemäß ausgestalteten Abtastsystem;
Figur 2 einen Adapter mit einer Abtastteilung des Abtastsystems gemäß
Figur 1 ;
Figur 3 einen Teilschnitt des Abtastsystems gemäß Figur 1 und
Figur 4 ein stabförmiges Festkörpergelenk im Detail.
In den Figuren 1 bis 3 ist eine lineare zweidimensional messende Positionsmesseinrichtung mit einem Abtastsystem 1 zur lichtelektrischen Abtastung einer Messteilung 21 eines Maßstabs 2 dargestellt.
Die Positionsmesseinrichtung dient im dargestellten Beispiel zur zweidimensionalen inkrementalen Positionsmessung (X- und Y-Richtung) zweier relativ zueinander bewegbarer Objekte 3 und 4. Die Messteilung 21 weist hierzu in bekannter Weise Felder mit Teilstrichen in X-Richtung verlaufend sowie in Y- Richtung verlaufend auf.
Die lichtelektrische Abtastung beruht auf der Erfassung der Verschiebung der Messteilung 21 relativ zu einer Abtastteilung 51. Hierzu wird ein Abtast- lichtbündel verwendet, welches von der Abtastteilung 51 sowie von der Messteilung 21 beeinflusst wird und positionsabhängig moduliert wird. Der Messkreis verläuft also ausgehend vom ersten Objekt 3 über die Abtastteilung 51 zur Messteilung 21 zum zweiten Objekt 4. In diesem Teil des Messkreises dürfen thermische Einflüsse keine Relativverschiebungen der Ab- tastteilung 51 relativ zur Messteilung 21 verursachen.
Gemäß der Erfindung ist hierzu die Abtastteilung 51 einem Adapter 6 ortsfest zugeordnet. Im dargestellten Beispiel ist die Abtastteilung 51 auf eine Abtastplatte 5 aufgebracht und diese Abtastplatte 5 ist ortsfest am Adapter 6
befestigt. Diese Befestigung kann eine kraftschlüssige und/oder formschlüssige Befestigung sein, beispielsweise Klemmen oder Ansprengen. Alternativ kann die Abtastteilung 51 auch direkt auf dem Adapter 6 aufgebracht sein, wobei dann die Abtastplatte 5 vom Adapter 6 gebildet wird.
Der Adapter 6 des Abtastsystems 1 steht dem Anwender zum ortsfesten Anbau, z.B. Anschrauben, Anklemmen oder Ansprengen des Abtastsystems 1 an das zu messende Objekt 3 zur Verfügung.
Das Abtastsystem 1 enthält außer der Abtastteilung 51 noch weitere Komponenten, insbesondere optische und/oder elektrische Bauelemente zur Führung und/oder Wandlung des Abtastlichtbündels. Diese optischen und elektrischen Bauelemente sind an einem Träger 7 befestigt. Bei dem Ausführungsbeispiel sind einige dieser optischen und elektrischen Bauelemente schematisch dargestellt, ein Lichtwellenleiter 71 zur Führung von Licht an das Abtastsystem 1 , Linsen 72 bzw. Spiegel zur Weiterführung und Formung des Abtastlichtbündels sowie Detektorelemente 73 zur Wandlung des Ab- tastiichtbündels in positionsabhängige elektrische Abtastsignale. Am Träger 7 können auch weitere zur Abtastung bzw. zum Halten dieser Bauelemente benötigten Teile, wie optische Teiler, Aufspaltgitter, Polarisatoren oder Leiterplatten befestigt sein.
Der Träger 7 mit den optischen und elektrischen Bauelementen 71 , 72, 73 wird mittels einer Halterung 8 am Adapter 6 gehalten. Diese Halterung 8 ist derart ausgebildet, dass der Träger 7 in sechs Freiheitsgraden stationär am Adapter 6 positioniert ist, aber thermisch bedingte Ausdehnungen des Trägers 7 relativ zum Adapter 6 ausgleicht. Dadurch ist gewährleistet, dass durch Temperaturänderungen verursachte Ausdehnungen bzw. Verspannungen des Trägers 7 nicht auf den Adapter 6 und somit auf die Abtastteilung 51 übertragen werden.
Bauelemente, welche die Lage der Abtastteilung 51 bei Temperaturänderungen nicht negativ beeinflussen, können in nicht gezeigter Weise auch direkt am Adapter 6 befestigt sein. So können z.B. optische
Bauelemente, die aus dem gleichen Material wie der Adapter 6 sind, am Adapter 6 angesprengt sein.
Ausdehnungen und somit Längenänderungen des Trägers 7 relativ zum Adapter 6 können ihre Ursache darin haben, dass verschiedene Materialien Verwendung finden bzw. dass unterschiedliche Temperaturen einwirken. So kann der Adapter 6 mit der Abtastteilung 51 aus Glaskeramik mit einem vernachlässigbaren Ausdehnungskoeffizienten bestehen und der Träger 7 aus Metall. Metall kann deshalb erforderlich sein, weil der Träger 7 als Gehäuse die optoelektrischen Bauelemente wie Detektorelemente 73 vor elektromagnetischen Strahlungen abschirmt bzw. die Linsen 72 sowie Klebestellen vor schädlichen optischen Strahlungen, beispielsweise UV-Strahlung abschirmt. Vorteilhaft ist, wenn die Festkörpergelenke 81 bis 86 stabförmig ausgebildet sind und in Stabrichtung steif sind, aber in Richtungen senkrecht dazu auslenkbar sind. Ebenfalls vorteilhaft ist, wenn sich jeweils zumindest ein Festkörpergelenk 81 ; 82, 83; 84, 85, 86 in einer der drei Koordinatenrichtungen X, Y, Z erstreckt und in dieser Koordinatenrichtung X, Y, Z den Träger 7 starr am Adapter 6 fixiert, aber in den beiden anderen Koordinatenrichtungen X, Y, Z auslenkbar hält.
Der Träger 7 besteht beispielsweise aus Invar und der Adapter 6 aus Zero- dur.
Die Halterung 8 ist derart ausgebildet, dass der Träger 7 am Adapter 6 in sechs Freiheitsgraden stationär positioniert ist, also statisch bestimmt gehalten bzw. gelagert ist. Die Halterung 8 hat weiterhin die Eigenschaft, dass thermisch bedingte unterschiedliche Ausdehnungen von Träger 7 und Adapter 6 ausgeglichen bzw. kompensiert werden. Zum Erreichen einer hohen Messgenauigkeit muss die Halterung 8 einen Ausgleich in zumindest den zwei Koordinatenrichtungen X, Y ermöglichen, welche die Teilungsebene aufspannen.
Ein Optimum wird erreicht, wenn ein Ausgleich in allen drei Koordinatenrichtungen X, Y, Z ermöglicht ist. Ein derartiges Ausführungsbeispiel ist in den Figuren 1 bis 3 dargestellt und wird nun weiter erläutert.
Die Halterung 8 weist eine räumliche Anordnung von Festkörpergelenken 81 bis 86 auf. Diese Festkörpergelenke 81 bis 86 - auch Biegegelenke bzw. flexures genannt - weisen jeweils zumindest eine stabförmige Schwachstelle als Biegeabschnitt auf. Jedes der Festkörpergelenke 81 bis 86 ist mit einem Abschnitt am Träger 7 befestigt und mit einem Abschnitt am Adapter 6, dazwischen befindet sich der Biegeabschnitt. Die stabförmigen Festkörpergelenke 81 bis 86 weisen in Stabrichtung jeweils eine sehr hohe Steifigkeit auf und in Richtungen normal zur Stabrichtung eine geringfügige Steifigkeit auf. Zur besseren Sichtbarkeit der Festkörpergelenke 81 bis 86 ist in Figur 3 die Abtastplatte 5 nicht dargestellt und der Träger 7 relativ zum Adapter 6 in Z-Richtung versetzt dargestellt. Um die freie Auslenkbarkeit normal zur Stabrichtung ohne Vorzugsrichtung zu gewährleisten, hat der Biegeabschnitt, der als Scharnier wirkt vorzugsweise einen runden Querschnitt.
Die räumliche Anordnung der Festkörpergelenke 81 bis 86 ist derart gewählt, dass der Träger 7 in allen drei Koordinatenrichtungen X, Y, Z unverschieblich am Adapter 6 gelagert ist. Hierzu erstreckt sich zumindest ein Festkörpergelenk 81 , 82, 85 jeweils in Stabrichtung in einer der Koordinatenrichtungen X, Y, Z. Die Verdrehungen um die Koordinatenachsen X, Y, Z werden durch die weiteren Festkörpergelenke 83, 84, 86 gesperrt.
Im Detail erstreckt sich das Festkörpergelenk 81 in X-Richtung und fixiert und sperrt somit den Träger 7 am Adapter 6 in X-Richtung. Zur Fesselung in Y-Richtung erstreckt sich das Festkörpergelenk 82 in Y-Richtung und zur Fesselung in Z-Richtung erstreckt sich das Festkörpergelenk 85 in Z- Richtung.
Die Verdrehung um die Z-Achse wird durch die Anordnung des weiteren Festkörpergelenkes 83 parallel zum Festkörpergelenk 82 verhindert, wobei
die Festkörpergelenke 81 , 82 und 83 in einer Ebene parallel zur Teilungsebene angeordnet sind. Die Verdrehung um die X- und Y-Achse wird durch die räumlich versetzte Anordnung von drei parallel zur Z-Richtung verlaufenden Festkörpergelenken 84, 85, 86 verhindert.
Die Festkörpergelenke 82, 83, 84, 85, 86 ermöglichen eine Längenausdehnung des Trägers 7 in X-Richtung, ausgehend von der Fixierung des Trägers 7 durch das Festkörpergelenk 81. Die Festkörpergelenke 81 , 84, 85, 86 ermöglichen eine Längenausdehnung des Trägers 7 in Y-Richtung, ausgehend von der Fixierung des Trägers 7 durch die Festkörpergelenke 82, 83. Die Festkörpergelenke 81 , 82, 83 ermöglichen eine Längenausdehnung des Trägers 7 in Z-Richtung, ausgehend von der Fixierung des Trägers 7 durch die Festkörpergelenke 84, 85, 86. Die Festkörpergelenke 81 bis 86 sind also derart räumlich angeordnet und ausgebildet, dass sie einerseits den Träger 7 ortsfest möglichst schwingungsstabil am Adapter 6 in allen sechs Freiheitsgraden fixieren und andererseits Längenausdehnungen ermöglichen, ohne unzulässige Kräfte auf den Adapter 6 und somit die Abtastteilung 51 zu übertragen.
Die dargestellte Anordnung der Festkörpergelenke 81 bis 86 ist nur eine von mehreren Möglichkeiten. Sie hat den Vorteil, dass aufgrund der plattenförmigen Struktur des Trägers 7, welche in der XY-Ebene liegt, die Eigenfrequenzen besonders hoch sind.
Eine alternative Anordnung ist beispielsweise das Vorsehen von jeweils zwei parallel zueinander verlaufenden Festkörpergelenken in jeder der aufeinander senkrecht stehenden Achsen X, Y, Z, wobei die zwei parallel zueinander verlaufenden stabförmigen Festkörpergelenke jeweils eine Ebene aufspannen, die senkrecht zu den Ebenen liegen, die von den beiden anderen Paaren von Festkörpergelenken der beiden anderen Achsen gebildet werden.
Die Haltefunktion in Z-Richtung kann auch von Festkörpergelenken übernommen werden, welche die thermisch bedingten Ausdehnungen des Trä-
gers 7 relativ zum Adapter 6 in den zwei Koordinatenrichtungen X1 Y ausgleichen. Hierzu sind diese Festkörpergelenke beispielsweise als Blattfedern oder Blattfederparallelogramme ausgebildet. Diese Blattfedern erstrecken sich in der zu sperrenden Z-Richtung. Eine oder mehrere der Blattfedern liegen also in der XZ-Ebene und sperren Bewegungen des Trägers 7 in den Richtungen X und Z, lassen aber Ausdehnungen des Trägers 7 in Y- Richtung zu. Eine oder mehrere weitere Blattfedern liegen in der YZ-Ebene und sperren Bewegungen des Trägers 7 in den Richtungen Y und Z, lassen aber Ausdehnungen des Trägers 7 in X-Richtung zu.
Bei allen Ausführungen sollte die Eigenfrequenz des Abtastsystems vorzugsweise über etwa 700 Hz liegen.
Vorteilhaft einsetzbar ist das Abtastsystem zur hochgenauen Positionsmes- sung in Lithografie-Geräten. Dabei ist das erste und zweite Objekt 3, 4 vorzugsweise aus einem Material mit vernachlässigbarem Ausdehnungskoeffizienten, insbesondere Glaskeramik in Form von ZERODUR, also aus dem gleichen Material wie der Adapter 6 und der Maßstab 2.
In Figur 4 ist eine besonders vorteilhafte Ausgestaltung eines der Festkörpergelenke 81 der Festkörpergelenke 81 bis 86 im Detail dargestellt. Das Festkörpergelenk 81 weist einen ersten Befestigungsabschnitt 81 1 zum Anbringen an den Adapter 6 auf und einen zweiten Befestigungsabschnitt 812 zum Anbringen an den Träger 7 auf. Dazwischen befindet sich zumindest ein stabförmiger Biegeabschnitt 813. Zur Erhöhung der Steifigkeit in Stabrichtung befinden sich im Beispiel zwischen den beiden Befestigungsabschnitten 811 und 812 zwei in Stabrichtung voneinander beabstandete und durch einen nicht biegbaren Abschnitt in Form einer Verdickung oder Verstärkung 815 voneinander getrennte stabförmige Biegeabschnitte 813 und 814. Diese Biegeabschnitte 813 und 814 haben vorzugsweise einen runden Querschnitt.
Claims
1. Abtastsystem einer Positionsmesseinrichtung zur lichtelektrischen Abtastung einer Messteilung (21), mit
- einem Träger (7), welcher optische und/oder elektrische Bauelemente (71 , 72, 73) trägt; - einem Adapter (6) mit einer Abtastteilung (51) in einer Teilungsebene, und
- einer Halterung (8) zum Halten des Trägers (7) am Adapter (6), wobei diese Halterung (8) derart ausgebildet ist, dass der Träger (7) am Adapter (6) in sechs Freiheitsgraden stationär positioniert ist, aber thermisch bedingte Ausdehnungen des Trägers (7) relativ zum
Adapter (6) in zumindest den zwei Koordinatenrichtungen (X, Y) ausgleicht, welche die Teilungsebene aufspannen.
2. Abtastsystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Halterung (8) zusätzlich thermisch bedingte Ausdehnungen des Trägers
(7) relativ zum Adapter (6) in einer Koordinatenrichtung (Z) senkrecht zur Teilungsebene ausgleicht.
3. Abtastsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Halterung (8) eine räumliche Anordnung von Festkörpergelenken
(81 bis 86) aufweist.
4. Abtastsystem nach Anspruch 3, dadurch gekennzeichnet, dass die Festkörpergelenke (81 bis 86) stabförmig ausgebildet sind und in Stabrich- tung steif sind, aber in Richtungen senkrecht dazu auslenkbar sind.
5. Abtastsystem nach Anspruch 4, dadurch gekennzeichnet, dass die Festkörpergelenke (81 bis 86) jeweils zwei in Stabrichtung verlaufende Biegeabschnitte (813, 814) aufweisen, die durch einen nicht biegbaren Abschnitt (815) voneinander getrennt sind.
6. Abtastsystem nach Anspruch 5, dadurch gekennzeichnet, dass die Biegeabschnitte (813, 814) jeweils einen runden Querschnitt aufweisen.
7. Abtastsystem nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass sich jeweils zumindest ein Festkörpergelenk (81 ; 82, 83; 84, 85, 86) in einer der drei Koordinatenrichtungen (X, Y, Z) erstreckt und in dieser Koordinatenrichtung (X, Y, Z) den Träger (7) starr am Adapter (6) fixiert, aber in den beiden anderen Koordinatenrichtungen (X, Y, Z) auslenkbar hält.
8. Abtastsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Adapter (6) aus einem Material mit vernachlässigbarem Ausdehnungskoeffizienten, insbesondere Glaskeramik besteht.
9. Abtastsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrischen Bauelemente des Trägers (7) Detektorelemente (73) sind.
10. Abtastsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (7) in einer Ausnehmung des Adapters (6) angeordnet ist.
11. Abtastsystem nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass der Träger (7) eine umschlossene Aufnahme bildet, in dessen Innenraum die optischen und/oder elektrischen Bauelemente (71 , 72, 73) angeordnet sind.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06806325A EP1984698B1 (de) | 2006-02-03 | 2006-10-17 | Abtastsystem einer positionsmesseinrichtung |
AT06806325T ATE554369T1 (de) | 2006-02-03 | 2006-10-17 | Abtastsystem einer positionsmesseinrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006004898A DE102006004898A1 (de) | 2006-02-03 | 2006-02-03 | Abtastsystem einer Positionsmesseinrichtung |
DE102006004898.9 | 2006-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007090441A1 true WO2007090441A1 (de) | 2007-08-16 |
Family
ID=37546328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/009991 WO2007090441A1 (de) | 2006-02-03 | 2006-10-17 | Abtastsystem einer positionsmesseinrichtung |
Country Status (5)
Country | Link |
---|---|
US (1) | US7475489B2 (de) |
EP (1) | EP1984698B1 (de) |
AT (1) | ATE554369T1 (de) |
DE (1) | DE102006004898A1 (de) |
WO (1) | WO2007090441A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1742023A1 (de) * | 2005-07-06 | 2007-01-10 | Schneeberger Holding AG | Linearführungssystem mit Vorrichtung zur Positionsmessung |
DE102006004898A1 (de) * | 2006-02-03 | 2007-08-09 | Dr. Johannes Heidenhain Gmbh | Abtastsystem einer Positionsmesseinrichtung |
JP4991365B2 (ja) * | 2007-03-29 | 2012-08-01 | カヤバ工業株式会社 | 寸法測定装置及び寸法測定方法 |
DE202008008821U1 (de) | 2008-08-28 | 2010-02-11 | STABILA Messgeräte Gustav Ullrich GmbH | Laservorrichtung |
DE102012218890A1 (de) * | 2012-10-17 | 2014-04-17 | Dr. Johannes Heidenhain Gmbh | Absolutes Positionsmessgerät |
EP2908098B1 (de) * | 2014-02-18 | 2016-11-30 | Hexagon Technology Center GmbH | Lineargeber mit Kalibrierfunktionalität |
EP3076218A1 (de) * | 2015-03-31 | 2016-10-05 | Canon Kabushiki Kaisha | Stufenvorrichtung und mikroskop |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2505587A1 (de) * | 1975-02-11 | 1976-08-19 | Heidenhain Gmbh Dr Johannes | Laengenmesseinrichtung |
US4892416A (en) * | 1988-07-08 | 1990-01-09 | Parker Hannifin Corporation | Precision carriage and housing for relative position sensing device |
US5760392A (en) * | 1994-12-27 | 1998-06-02 | Canon Kabushiki Kaisha | Scale for use with a displacement sensor |
DE10311111A1 (de) * | 2003-03-12 | 2004-09-30 | Universität Karlsruhe (TH) - Körperschaft des öffentlichen Rechts | Positionierverfahren und -vorrichtung |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816003A (en) * | 1973-03-12 | 1974-06-11 | Dynamics Res Corp | Sealed linear encoder |
DE2844066C2 (de) * | 1978-10-10 | 1982-04-22 | Dr. Johannes Heidenhain Gmbh, 8225 Traunreut | Längen- oder Winkelmeßeinrichtung |
DE3915679A1 (de) * | 1989-05-13 | 1990-11-15 | Heidenhain Gmbh Dr Johannes | Positionsmesseinrichtung mit einer justiervorrichtung |
ES2160294T3 (es) * | 1996-11-11 | 2001-11-01 | Heidenhain Gmbh Dr Johannes | Dispositivo de medicion de longitudes. |
DE10041692A1 (de) * | 2000-08-24 | 2002-03-07 | Heidenhain Gmbh Dr Johannes | Längen- oder Winkelmeßgerät |
JP3806328B2 (ja) * | 2001-09-27 | 2006-08-09 | 株式会社ミツトヨ | ユニット型直線変位測定装置、及び、その端部固定具 |
JP4416544B2 (ja) * | 2004-03-12 | 2010-02-17 | 株式会社ミツトヨ | 光学式変位測定装置 |
DE102004047458A1 (de) * | 2004-09-30 | 2006-04-06 | Dr. Johannes Heidenhain Gmbh | Positionsmesseinrichtung |
DE102006004898A1 (de) * | 2006-02-03 | 2007-08-09 | Dr. Johannes Heidenhain Gmbh | Abtastsystem einer Positionsmesseinrichtung |
-
2006
- 2006-02-03 DE DE102006004898A patent/DE102006004898A1/de not_active Withdrawn
- 2006-10-17 AT AT06806325T patent/ATE554369T1/de active
- 2006-10-17 WO PCT/EP2006/009991 patent/WO2007090441A1/de active Search and Examination
- 2006-10-17 EP EP06806325A patent/EP1984698B1/de active Active
-
2007
- 2007-01-24 US US11/657,509 patent/US7475489B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2505587A1 (de) * | 1975-02-11 | 1976-08-19 | Heidenhain Gmbh Dr Johannes | Laengenmesseinrichtung |
US4892416A (en) * | 1988-07-08 | 1990-01-09 | Parker Hannifin Corporation | Precision carriage and housing for relative position sensing device |
US5760392A (en) * | 1994-12-27 | 1998-06-02 | Canon Kabushiki Kaisha | Scale for use with a displacement sensor |
DE10311111A1 (de) * | 2003-03-12 | 2004-09-30 | Universität Karlsruhe (TH) - Körperschaft des öffentlichen Rechts | Positionierverfahren und -vorrichtung |
Non-Patent Citations (1)
Title |
---|
KWAN Y-B P ET AL: "MASSARBEIT. NANOMETERGENAUE POSITIONSMESSUNG IN ALLEN FREIHEITSGRADEN", F & M FEINWERKTECHNIK MIKROTECHNIK MIKROELEKTRONIK, HANSER, MUNCHEN, DE, vol. 108, no. 9, 2000, pages 60 - 64, XP001006324, ISSN: 1437-9503 * |
Also Published As
Publication number | Publication date |
---|---|
EP1984698B1 (de) | 2012-04-18 |
US7475489B2 (en) | 2009-01-13 |
DE102006004898A1 (de) | 2007-08-09 |
EP1984698A1 (de) | 2008-10-29 |
ATE554369T1 (de) | 2012-05-15 |
US20070180724A1 (en) | 2007-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1984698B1 (de) | Abtastsystem einer positionsmesseinrichtung | |
EP1039267B1 (de) | Positionsmesseinrichtung | |
EP3026389B1 (de) | Längenmesseinrichtung | |
DE102008010284A1 (de) | XY-Tisch mit einer Messanordnung zur Positionsbestimmung | |
DE102006060088A1 (de) | Optische Baugruppe und optische Komponente | |
DE102011079464A1 (de) | Längenmesseinrichtung | |
WO2006133753A1 (de) | Halterung für einen massstab | |
EP2302332A2 (de) | Längenmesseinrichtung | |
DE4406798C2 (de) | Positionsmeßeinrichtung | |
EP1852674B1 (de) | Messvorrichtung zur Bestimmung des relativen Versatzes zwischen zwei Bauteilen | |
DE102005053787B4 (de) | Optische Abtasteinheit sowie Verfahren zur Montage | |
DE102019203838A1 (de) | Projektionsbelichtungsanlage für die Halbleiterlithographie mit einem optischen Element mit Sensorreferenz und Verfahren zur Ausrichtung der Sensorreferenz | |
EP3736542B1 (de) | Anordnung zum endseitigen befestigen eines sich in einer längsrichtung erstreckenden trägers mit einer messteilung zur positionsmessung zumindest in längsrichtung an einer anbaufläche eines grundkörpers | |
AT394271B (de) | Messsystem zur messung der laengs- und querausdehnung eines werkstuecks | |
DE102005037160B4 (de) | Verfahren und Vorrichtung zur taktilen Erfassung | |
DE102006059440A1 (de) | Maskenvermessungsvorrichtung und Meßverfahren für eine Maske | |
DD283528A7 (de) | Interferometrische kraftmessvorrichtung | |
DE102012212759B4 (de) | Vorrichtung zur Messung der linearen Abmessung einer Probe | |
DD220698A1 (de) | Vorrichtung insbesondere zur wegmessung | |
DE10019059B4 (de) | Verfahren und Vorrichtung zur Messung von Profilabweichungen | |
DE3606754A1 (de) | Messstabfassung fuer laengenmesssysteme | |
DD298327A5 (de) | Einrichtung zum positionieren eines langen schlanken teilungstraegers relativ zur optischen achse und zur bildebene eines optisch abbildenden systems | |
DD252233A1 (de) | Tasteranordnung mit fotoelektrischer signalgewinnung | |
DE20106831U1 (de) | Vorrichtung zur Feinpositionierung | |
DE29521910U1 (de) | Positionsmeßeinrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006806325 Country of ref document: EP |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |