WO2007088981A1 - Process for producing carboxylic acid - Google Patents

Process for producing carboxylic acid Download PDF

Info

Publication number
WO2007088981A1
WO2007088981A1 PCT/JP2007/051827 JP2007051827W WO2007088981A1 WO 2007088981 A1 WO2007088981 A1 WO 2007088981A1 JP 2007051827 W JP2007051827 W JP 2007051827W WO 2007088981 A1 WO2007088981 A1 WO 2007088981A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
crystallization
containing liquid
cooler
cooling
Prior art date
Application number
PCT/JP2007/051827
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeho Tanaka
Yoshimasa Ando
Miezi Sugiyama
Haruki Sato
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to CN2007800112734A priority Critical patent/CN101410365B/en
Priority to KR1020087021330A priority patent/KR101306357B1/en
Priority to JP2007509798A priority patent/JP5114195B2/en
Publication of WO2007088981A1 publication Critical patent/WO2007088981A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to a method for producing a carboxylic acid comprising a crystallization step of crystallizing a carboxylic acid.
  • a purification process for removing impurities and solvents generated in the production process is indispensable.
  • a purification process extraction, distillation, crystallization, etc. are common, but when the substance to be removed is a substance having a high boiling point and a high melting point, or a substance having a high polymerization property.
  • crystallization methods that can be purified to high purity at low temperatures are used.
  • the most general crystallization method is a method in which the mixture to be purified is cooled by a cooling medium through a cooling surface.
  • the crystallization method is also required to be a method capable of obtaining a crystal particle force S of a certain particle size or more.
  • Patent Documents 1 to 4 and the like disclose a method of purifying by a sweating action in which a crystal is deposited on a stationary surface and then partially melted.
  • a method of purifying by a sweating action in which a crystal is deposited on a stationary surface and then partially melted.
  • low productivity and expensive equipment is required.
  • Patent Document 5 discloses a method for reducing the generation of scale on the cooling surface by adding a small amount of a solvent.
  • Patent Document 5 cannot sufficiently suppress the scale.
  • there is a method of strengthening the scraping by the scraping means but if the scraping is strengthened, the crystals in the tank are crushed, inhibiting the crystal growth, Coarse crystal grains cannot be obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-199931
  • Patent Document 2 Japanese Patent Laid-Open No. 11-199524
  • Patent Document 3 Japanese Patent Laid-Open No. 9-227445
  • Patent Document 4 Japanese Patent Laid-Open No. 7-48311
  • Patent Document 5 International Publication No. 99Z06348 Pamphlet
  • the present invention has been made in view of the above circumstances, and when crystallization of a carboxylic acid-containing liquid in a crystallization tank, the inner wall surface of the crystallization tank, in particular, the inner wall surface serving as a cooling surface is played.
  • the inner wall surface of the crystallization tank in particular, the inner wall surface serving as a cooling surface is played.
  • the method for producing a carboxylic acid according to the present invention is arranged at the front stage of the crystallization tank, having at least a part of the carboxylic acid-containing liquid, a cooling surface and a scraping means for scraping off the cooling surface.
  • a temperature force exceeding the crystallization start temperature of the carboxylic acid-containing liquid supplied to the cooler a preliminary step of cooling the carboxylic acid-containing liquid to the crystallization start temperature or lower to produce a cooled carboxylic acid-containing liquid;
  • the inner wall surface of the crystallization tank when the carboxylic acid-containing liquid is crystallized in the crystallization tank, the inner wall surface of the crystallization tank
  • the inner wall can suppress the formation of strong scales, and the coarse crystal particles with excellent drainage (for example, filterability and washability) in the subsequent process are stable and economical with high productivity. Can be industrially produced.
  • FIG. 1 is a schematic configuration diagram showing an example of a carboxylic acid production apparatus used in the carboxylic acid production method of the present invention.
  • FIG. 2 is a schematic view showing a scraping means in the cooler of the apparatus of FIG.
  • FIG. 3 is a schematic configuration diagram showing a carboxylic acid production apparatus used in Examples. Explanation of symbols
  • the method for producing a carboxylic acid of the present invention is such that at least a part of the carboxylic acid-containing liquid exceeds the crystallization start temperature before the crystallization step of crystallizing the carboxylic acid-containing liquid force carboxylic acid in the crystallization tank. It has a preliminary process of cooling to a temperature below the crystallization start temperature.
  • the carboxylic acid-containing liquid may be a liquid carboxylic acid as long as it contains at least a carboxylic acid and precipitates a carboxylic acid crystal as the temperature decreases. It may be a liquid in which carboxylic acid is dissolved in a solvent. Specifically, a liquid in which a carboxylic acid to be purified is dissolved in a solvent, a liquid containing a carboxylic acid obtained in the carboxylic acid production process (mother liquor), and after a carboxylic acid crystal is partially separated. A mother liquor, a melt of carboxylic acid crystals, etc. may be mentioned, and any treatment may be performed.
  • carboxylic acid is not particularly limited, but according to the present invention, even carboxylic acid having strong adhesion to the inner wall surface can suppress such adhesion.
  • carboxylic acid having strong adhesion to the inner wall surface can suppress such adhesion.
  • methacrylic acid is effective.
  • FIG. 1 is a schematic configuration diagram showing an example of a carboxylic acid production apparatus 10 used in the carboxylic acid production method of the present invention, and shows a first configuration installed in series for performing a crystallization process.
  • the crystallization tank 12 and the second crystallization tank 13, and a cooler 11 provided on the front side of the crystallization tanks 12 and 13 for performing the preliminary process are provided.
  • the cooler 11 used in this example is a double-cylindrical scooping-type heat exchanger ⁇ , where the inner surface 15 of the cylindrical outer cylinder and the outer surface 16 of the cylindrical inner cylinder are respectively It is on the cooling surface.
  • the inner surface of the outer cylinder (hereinafter referred to as the outer cylinder side cooling surface) 15 and the outer surface of the inner cylinder (hereinafter referred to as the inner cylinder side cooling surface) 16 can be controlled independently.
  • the temperature and flow rate of the cooling medium acting on each cooling surface can be individually adjusted. Specifically, such independent control is achieved by installing a cooling medium flow path and an automatic or manual flow control valve on the outer cylinder side cooling surface 15 and the inner cylinder side cooling surface 16, respectively. Can be possible.
  • the outer cylinder side cooling surface 15 is scraped off as a scraping means for scraping the cooling surface.
  • the outer cylinder side scraping means 18 and the inner cylinder side scraping means 19 for scraping the inner cylinder side cooling surface 16 are provided.
  • the outer cylinder side scraping means 18 includes a rotary scraper 20 that rotates about the axis of the cooler 11 (the longitudinal center line of the outer cylinder and the inner cylinder) along the longitudinal direction of the cooler 11.
  • Each scraper 20 is provided with a plate-shaped scraper (scraper) 21 made of polytetrafluoroethylene (PTFE) and having a thickness of 10 mm.
  • PTFE polytetrafluoroethylene
  • each scraping portion 20 by rotating each scraping portion 20 in the direction indicated by the arrow in the figure, the side end of each scraper 21 is in contact with the outer cylinder side cooling surface 15 and the deposits on the outer cylinder side cooling surface 15 are adhered. It is supposed to scrape off.
  • the two rows of scraping portions 20 are positioned symmetrically with respect to the axis of the cooler 11.
  • the inner cylinder side scraping means 19 is also configured to have two rows of scraper portions 22 having similar scrapers 21 along the longitudinal direction of the cooler 11, and each scraper By rotating the part 22 in the direction indicated by the arrow in the figure, the side end of each scraper 21 is in contact with the inner cylinder side cooling surface 16 and the deposits on the inner cylinder side cooling surface 16 are scraped off. It has become. In the cooler 11 of this example, the scraper 20 and the scraper 22 rotate together.
  • the first crystallization tank 12 and the second crystallization tank 13 are provided with cooling or cold insulation jackets (not shown) on the outside, and the inner wall surfaces of the crystallization tanks 12 and 13 are cooling surfaces. Or it is a cold surface.
  • Each of the crystallization tanks 12 and 13 is provided with a rotating type scraping means (scraping blade) (not shown) for scraping off deposits adhering to the inner wall surface.
  • the carboxylic acid-containing liquid supply pipe 23 is branched in the middle, one connected to the cooler 11 and the other connected to the first crystallization tank 12.
  • a supply valve 24 that can be freely opened and closed is provided in the middle of the supply pipe 23 branched to the cooler 11.
  • a temperature indicator 25 is provided to measure the cooler outlet temperature of the carboxylic acid-containing liquid.
  • the supply valve 24 provided in the middle of the line for supplying the carboxylic acid-containing liquid to the cooler 11 is closed, and the first liquid containing the carboxylic acid-containing liquid is directly supplied from the supply pipe 23 without going through the cooler 11.
  • the second crystallization tank 13 To the second crystallization tank 13, and then to the second crystallization tank 13 whose drain port (not shown) is closed.
  • the drainage port (not shown) of the first crystallization tank 12 is closed and the carboxylic acid-containing liquid in the first crystallization tank 12 is closed.
  • the acid-containing liquid reaches a predetermined amount, supply is stopped.
  • the scraping blades of the first crystallization tank 12 and the second crystallization tank 13 are operated, and a cooling medium is circulated through the respective cooling jackets, so that the first crystallization tank 12
  • the bath temperature and the second crystallization bath 13 are gradually cooled so that the bath temperature finally becomes lower than the crystallization start temperature.
  • the temperature in the tank varies depending on the type, concentration, solvent, etc. of the carboxylic acid to be handled, but in general, it is preferable to set the crystallization tank slurry concentration at which the solubility power is calculated to be 40% or less. Also, since the temperature inside the crystallization tank is usually set lower in the latter stage crystallization tank, the temperature in the second crystallization tank 13 is also higher than the temperature in the first crystallization tank 12 in this case. It is preferable to set the internal temperature low.
  • the supply valve 24 remains closed and the supply of the carboxylic acid-containing liquid is resumed.
  • the discharge ports of the first crystallization tank and the second crystallization tank 13 are opened, and the extraction of the carboxylic acid-containing liquid containing carboxylic acid crystals is started.
  • the supply rate of the carboxylic acid-containing liquid is the crystallization calorimetric force scaling to be removed in the first crystallization tank 12 and the second crystallization tank 13.
  • the amount is not particularly limited as long as the amount of the crystal obtained from the second crystallization tank 13 is not more than the target particle size.
  • the supply temperature is not particularly limited as long as it exceeds the crystallization start temperature, but is preferably within the heat removal capability range of the first crystallization tank 12 and the second crystallization tank 13.
  • the supply valve 24 is opened, and a part of the carboxylic acid-containing liquid is branched and introduced into the cooler 11.
  • the flow rate of the carboxylic acid-containing liquid that passes through the cooler 11, the flow rate that does not pass through the cooler 11, and the total flow rate to the first crystallization tank can be adjusted according to the target production amount.
  • the appropriate residence time of the carboxylic acid-containing liquid in the crystallization tank is the crystal growth rate, nucleation rate, target production rate, target crystal grain size, crystallization tank of the carboxylic acid-containing liquid force used. It depends on the amount of heat removed in the room, so it cannot be determined in general, but the appropriate staying time can be determined each time by chemical engineering techniques.
  • the outer cylinder side scraping means 18 and the inner cylinder side scraping means 19 are operated at a scraping frequency of 150 times Z or more respectively, and the outer cylinder side cooling surface 15 and the inner cylinder of the cooler 11 are operated.
  • a cooling medium is allowed to act on the side cooling surface 16 to perform a preliminary process for cooling the carboxylic acid-containing liquid.
  • the scraping frequency is preferably 180 times Z minutes or more, more preferably 200 times Z minutes or more.
  • the scraping frequency is preferably 1000 times Z minutes or less, more preferably 400 times Z minutes or less.
  • the carboxylic acid-containing liquid is cooled so that the cooler outlet temperature is equal to or lower than the crystallization start temperature of the carboxylic acid-containing liquid (hereinafter simply referred to as the crystallization start temperature).
  • the crystallization start temperature is a temperature at which carboxylic acid crystals begin to precipitate when the carboxylic acid-containing liquid is cooled.
  • the scraping frequency is "the number of operations per minute of the scraping member that acts directly on the cooling surface". Therefore, when the scraping member is composed of a rotary scraper 21 as shown in this example and two rows of scraping portions 20 and 22 equipped with the scraper 21 are provided, “150 times or more of Z min.
  • the “frequency of scraping” can be achieved by rotating the scrapers 20, 22 at least 75 revolutions per minute. That is, when the number of rows of the scraping portions 20 and 22 is N, this can be achieved by rotating more than (150ZN) rotations per minute.
  • a crystallization process is performed in which the crystals are sequentially introduced into the crystallization tank 12 and the second crystallization tank 13 for crystallization.
  • Crystal growth is promoted by such a crystallization process.
  • the number of crystal nuclei per unit slurry volume is smaller than that of the slurry introduced from the cooler 11 to the crystallization tank 12.
  • a slurry-like carboxylic acid-containing liquid containing crystals is discharged.
  • the carboxylic acid-containing liquid need not be strongly cooled in the crystallization tanks 12 and 13. Therefore, it is possible to suppress the scale on the cooling surface of the crystallization tanks 12 and 13 and the generation of fine crystal particles due to the strong cooling, and excellent crystal drainage in the subsequent process and sufficient crystal growth. Coarse crystal particles of carboxylic acid can be obtained.
  • the operation of the apparatus can be performed stably, and a reduction in cooling efficiency due to adhesion of the scale to the cooling surface is suppressed, so that productivity can be maintained high.
  • the microcrystals dissolve and re-precipitate on the surface of larger crystals. For these reasons, crystal grains having a larger particle size are more likely to be generated in the crystallization process.
  • the scraping means 18 and 19 of the cooler 11 it is preferable to operate the scraping means 18 and 19 of the cooler 11 so that the scraping frequency is 150 times Z or more, respectively. Since the cooling efficiency of the cooler 11 is improved by suppressing the accumulation of scale on the chiller, the temperature force that exceeds the crystallization start temperature of the carboxylic acid-containing liquid can be easily and stably reduced to the crystallization start temperature or lower. Can be cooled. Further, as the scraping frequency is lower, the amount of heat generated by the friction between the scraper provided in the scraping means and the cooling surface is reduced, so that the cooling efficiency of the cooler 11 is improved.
  • the carboxylic acid-containing liquid may be cooled to a temperature not higher than the crystallization start temperature, but the slurry concentration at the outlet of the cooler 11 is not higher than a concentration that does not cause a problem in the subsequent transfer.
  • the slurry concentration is preferably 40% by volume or less, and more preferably 20% by volume or less.
  • the heat removal load of the first crystallization tank 12 and the second crystallization tank 13 in the crystallization process is less than or equal to the heat removal load that causes scaling, more specifically, 8.4 MjZhrZm. 2 or less, and it is more preferable to cool such that 7. 5MjZhrZm 2 below.
  • the heat removal load of the crystallization tanks 12 and 13 is the "heat transfer amount per lm 2 of the cooling surface of the crystallization tank", and the crystallization tanks 12 and 13 are in this example.
  • the cooling surface is cooled by the cooling jacket, it is possible to calculate the differential force between the amount of heat between the cooling medium flowing into the cooling jacket and the cooling medium flowing out from the cooling jacket. It is also possible to calculate the calorimetric change force of the carboxylic acid-containing liquid in the crystallization tanks 12 and 13. Here, it is defined by the following formula.
  • Cooling is performed so that the temperature of the carboxylic acid-containing liquid discharged from the cooler 11 does not become lower than the crystallization start temperature, that is, to a certain temperature (t) that exceeds the crystallization start temperature, for example, by applying a cooling medium.
  • a cooling medium is allowed to act on the other cooling surface, etc.
  • the carboxylic acid-containing liquid is cooled to a temperature not higher than the crystallization start temperature (second step).
  • the temperature (t) is a temperature that exceeds the crystallization start temperature, but is lower than the supply temperature of the carboxylic acid-containing liquid and not more than 2 ° C higher than the crystallization start temperature. Is preferable.
  • “Temperature stable” here means that the difference between the minimum and maximum temperature for at least 5 minutes is within 1 ° C! Uh.
  • the carboxylic acid-containing liquid is operated so that the temperature thereof does not become the crystallization start temperature or lower.
  • a method of allowing a cooling medium to act on only one of the side cooling surface 15 and the inner cylinder side cooling surface 16 is an easy and effective method.
  • a method for preventing the carboxylic acid-containing liquid from coming into contact with one cooling surface a method for adjusting the temperature and flow rate of the cooling medium to be passed may be employed, and depending on circumstances. For example, combine the heating method with a separate heating means.
  • the crystallization tanks 12, 13 can be obtained only by using an apparatus having a simple configuration without using an expensive apparatus. It is possible to suppress the formation of strong scale on the cooling surface, excellent liquid drainage in the subsequent process (for example, filterability and washability), and stable and high-quality coarse carboxylic acid crystal particles with sufficient crystal growth. Can be manufactured economically. In addition, since the heat removal load in the crystallization process can be reduced, even if the internal volume of the crystallization tank is increased and the area of the cooling surface is relatively reduced during industrial mass production, problems are unlikely to occur.
  • the cooler used in the preliminary process a plurality of independently controllable devices are used. Although a double-cylindrical scraped heat exchanger having a cooling surface is illustrated, there is no particular limitation on the form of the cooler. However, since it is preferable to start up the preliminary process step by step as described above, it is provided with a cooler capable of such start-up, that is, with a plurality of independently controllable cooling surfaces. I prefer a cooler that can activate the rest after actuating some first.
  • the form of the scraping means provided in the cooler and the scraping method should be capable of scraping the cooling surface and ensuring a scraping frequency of 150 times Z or more.
  • it is not limited to a rotary type, and may be a belt type, a screw type, a cooling surface rotary type, or the like.
  • the thickness of each scraper 21 is preferably 10 mm or less, more preferably 5 mm or less.
  • each has a scraping means, and each must operate at a scraping frequency of 150 times Z or more.
  • the form of the heat sink may be different or the same for each cooling surface.
  • a plurality of crystallization tanks may be provided in series as shown in the drawing, or a plurality of crystallization tanks may be provided in parallel.
  • Each crystallization tank can be a general stirring tank, tank, or the like, which is not limited in volume and form, as long as the residence time sufficient for the carboxylic acid to grow sufficiently can be secured.
  • the crystallization tank is preferably provided with a scraping means, but is not necessarily provided.
  • the residence time of the carboxylic acid-containing liquid in the cooler is preferably 1% or less, which is preferably 10% or less of the residence time of the carboxylic acid-containing liquid in the crystallization tank because fine crystals can be obtained. .
  • a first crystallization tank 12 and a second crystallization tank 13 each having a scraping blade were installed in series.
  • the volume of the cooler 11 was 0.16% of the total volume of the first crystallization tank 12 and the second crystallization tank 13.
  • liquid containing carboxylic acid in crystallization tanks 12 and 13 (mixed with 4% by weight of methanol in methacrylic acid, adjusted to a freezing point (crystallization start temperature) of 8.5 ° C, and cooled to 12 ° C. (Hereinafter referred to as the raw material liquid (A)), and the scraping blades of the crystallization tanks 12 and 13 were rotated so that the cooling surface scraping frequency was 40 times Z minutes. .
  • Each crystallization tank 12 and the final crystallization tank 12 so that the temperature in the first crystallization tank 12 is 6.3 ° C and the temperature in the second crystallization tank 13 is 5.4 ° C. Cooling was performed by adjusting the cooling medium flow rate of 13 cooling jackets.
  • the raw material liquid (A) was continuously supplied to the supply pipe 23 at a supply rate (flow rate) at which the total residence time in the crystallization tanks 12 and 13 was 6 hours.
  • a supply rate flow rate
  • each of the crystallization tanks 12, 13 is adjusted so that the temperature in the first crystallization tank 12 is 6.3 ° C. and the temperature in the second crystallization tank 13 is 5.4 ° C.
  • the cooling medium flow rate of the cooling jacket was adjusted.
  • the scraping blades of the crystallization tanks 12 and 13 were rotated so that the cooling surface scraping frequency was 40 times Z.
  • the supply valve 24 is opened, and the raw material liquid (A) of 27% of the total flow rate is branched and introduced into the cooler 11, and the inner cylinder side scraping means 19 and the outer cylinder side of the cooler 11 are introduced. Both the scraping means 18 and the scraping frequency are rotated 90 rpm each so that the scraping frequency is 180 times Z, and the outer cylinder side cooling surface 15 is only 10 ° C.
  • the heat removal load of the first crystallization tank 12 was 6.2 Mj / hr / m 2
  • the heat removal load of the second crystallization tank 13 was 7.4 MjZhrZm 2 .
  • the apparatus was operated in the same manner as in Example 1 except that the scraper 21 included in the inner cylinder side scraping means 19 and the outer cylinder side scraping means 18 was replaced with a 3.5 mm thick bakelite scraper.
  • the heat removal load of the first crystallization tank 12 was 6. OMj / hr / m 2
  • the heat removal load of the second crystallization tank 13 was 7.2 MjZhrZm 2 .
  • the apparatus was operated in the same manner as in Example 1 using an apparatus having the same configuration as in FIG. 1 except that the cooler 11 was not installed.
  • the torque of the scraping blade of the first crystallization tank 12 is significantly increased by scaling. After 100 hours, it increased by 5%, and after about 2000 hours the torque reached the upper limit and had to stop driving.
  • the apparatus 30 in FIG. 3 includes a crystallization tank 32 for performing a crystallization process, and a cooler 31 provided on the front side of the crystallization tank 32 for performing a preliminary process! /
  • the cooler 31 “ONRATOR (trade name, manufactured by Sakai Seisakusho Co., Ltd.)” was used as a cylindrical scooping-type heat exchanger.
  • the inner surface 33 of the cylinder is a cooling surface
  • a scraping means 34 for scraping off the cooling surface the rotary outer surface of the cooler 11 used in Example 1 is used.
  • the cylinder side scraping means 18 is the same.
  • a cooling jacket (not shown) is installed outside the crystallization tank 32, and the inner surface of the crystallization tank 32 is a cooling surface. Further, the crystallization tank 32 is provided with a rotary scraping means (scraping blade) (not shown) for scraping off deposits adhering to the cooling surface.
  • the volume of the cooler 31 was 0.5% of the volume of the crystallization tank 32.
  • a carboxylic acid-containing liquid (methacrylic acid and methanol 2.
  • the residence time in the crystallization tank 32 is 5.7. It was continuously supplied at a supply rate (flow rate) that is equivalent to time. The residence time of the carboxylic acid-containing liquid in the cooler was 1.7 minutes. The scraping blade of the crystallization tank 32 was rotated so that the cooling surface scraping frequency was 40 times Z.
  • the scraping means 34 of the cooler 31 is rotated at a rotation speed of 100 rotations Z so that the scraping frequency is 200 rotations Z minutes, and a 7 ° C cooling medium is The liquid was continuously passed through the cooler 31. During this time, the cooling medium was not supplied to the jacket of the crystallization tank 32 and the heat insulation was maintained (that is, the heat removal load of the crystallization tank 32 was 0 Mj / hr / m 2 ).
  • the cooler outlet temperature indicated by the temperature indicator 36 is 8.8 ° C.
  • the slurry-like carboxylic acid containing 40% by mass of crystal particles of methacrylic acid having a particle size of approximately 50 m is obtained.
  • the acid-containing liquid was continuously discharged. When this kind of operation was continued, The operating condition was stable even after the passage of time, and a slurry-like carboxylic acid-containing liquid containing 40% by mass of crystal particles of methacrylic acid having a particle size of approximately 200 m was obtained from the outlet of the crystallization tank 32.
  • the apparatus was operated in the same manner as in Example 3 except that the scraping means 34 was rotated at 70 revolutions Z minutes so that the scraping frequency was 140 times Z minutes.
  • the cooler outlet temperature was 10.2 ° C, and methacrylic acid crystals were observed in the carboxylic acid-containing liquid discharged from the cooler 31. Therefore, in this example, methacrylic acid crystals could not be obtained.
  • the carboxylic acid-containing liquid when the carboxylic acid-containing liquid is crystallized in the crystallization tank, it is possible to suppress the formation of a strong scale on the inner wall surface of the crystallization tank, and the liquid removal property in the subsequent process (for example, Coarse crystal particles excellent in filterability and cleanability) can be industrially produced stably and economically with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Before a crystallization step in which a carboxylic acid is crystallized from a carboxylic-acid-containing liquid in crystallization tanks (12) and (13) each having a cooling surface, a preliminary step is conducted in which at least part of the carboxylic-acid-containing liquid is fed to a cooling device (11) equipped with cooling surfaces (15) and (16) and scraping means (18) and (19) for scraping the cooling surfaces and is cooled from a temperature exceeding the crystallization initiation temperature to a temperature not higher than the crystallization initiation temperature. This process is preferable especially when the carboxylic acid is acrylic acid and/or methacrylic acid.

Description

明 細 書  Specification
カルボン酸の製造方法  Method for producing carboxylic acid
技術分野  Technical field
[0001] 本発明は、カルボン酸を晶析する晶析工程を備えたカルボン酸の製造方法に関す る。  [0001] The present invention relates to a method for producing a carboxylic acid comprising a crystallization step of crystallizing a carboxylic acid.
本願は、 2006年 2月 3日に日本国特許庁に出願された特願 2006— 026766号に 基づき優先権を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2006-026766 filed with the Japan Patent Office on February 3, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] (メタ)アクリル酸などのカルボン酸を工業的に製造する場合には、製造過程で生成 する不純物や溶媒などを取り除く精製工程が不可欠である。このような精製工程とし ては、抽出、蒸留、晶析などが一般的であるが、除去対象の物質が高沸点、高融点 の物質である場合や、重合性の高い物質である場合には、低温域で高い純度まで 精製可能な晶析法を採用することが多い。最も汎用的な晶析法は、精製対象である 混合物を冷却面を介して冷却媒体により冷却する方法である。  [0002] When industrially producing a carboxylic acid such as (meth) acrylic acid, a purification process for removing impurities and solvents generated in the production process is indispensable. As such a purification process, extraction, distillation, crystallization, etc. are common, but when the substance to be removed is a substance having a high boiling point and a high melting point, or a substance having a high polymerization property. Often, crystallization methods that can be purified to high purity at low temperatures are used. The most general crystallization method is a method in which the mixture to be purified is cooled by a cooling medium through a cooling surface.
[0003] ところが、カルボン酸のうち、例えば (メタ)アクリル酸をこのような方法で晶析すると、  However, among carboxylic acids, for example, when (meth) acrylic acid is crystallized by such a method,
(メタ)アクリル酸は冷却面に付着しやす!、ために、次第に冷却面にスケールを生じ、 装置の安定運転に支障をきたし、生産性が低下する場合があった。よって、スケール の生成を抑制できるような晶析法が求められている。  (Meth) acrylic acid easily adheres to the cooling surface! Therefore, a scale gradually formed on the cooling surface, which hindered stable operation of the apparatus and reduced productivity. Therefore, there is a need for a crystallization method that can suppress the formation of scale.
また、得られるカルボン酸の結晶が微細な粒子であると、後工程での脱液性が悪ィ匕 し、その結果、得られるカルボン酸の純度が低下するば力りでなぐ精製負荷の増大 や、生産性の低下などを招く。よって、晶析法には、ある程度の粒径以上の結晶粒子 力 S得られる方法であることも求められる。  In addition, if the resulting carboxylic acid crystals are fine particles, the liquid removal property in the post-process will be poor, and as a result, if the purity of the resulting carboxylic acid is reduced, an increase in purification load will be required. In addition, the productivity is reduced. Therefore, the crystallization method is also required to be a method capable of obtaining a crystal particle force S of a certain particle size or more.
さらに工業的な観点から、できるだけ安価な装置で実施でき、大量生産に適した晶 析法であることも求められる。  Furthermore, from an industrial point of view, it is required to be a crystallization method that can be carried out with as low an equipment as possible and is suitable for mass production.
[0004] 例えば特許文献 1〜4などには、静置面上に結晶を析出させた後、一部を融解させ る発汗作用により精製する方法が開示されているが、このような方法では、冷却面を 結晶の析出と精製とで共有するために生産性が低ぐしかも高額な装置が必要であり 、経済的に不利である。 [0004] For example, Patent Documents 1 to 4 and the like disclose a method of purifying by a sweating action in which a crystal is deposited on a stationary surface and then partially melted. In such a method, In order to share the cooling surface for crystal precipitation and purification, low productivity and expensive equipment is required. , Economically disadvantageous.
[0005] より安価な装置を使用した方法として、冷却面とこの冷却面を搔き取る搔き取り手段 とを備えた晶析槽を使用する方法がある。ところが、このような方法において高い生 産性を達成しょうとすると冷却を強めざるを得ず、冷却面に剥離困難な強固なスケー ルが生じ、安定運転が困難となりやすい。そこで、例えば特許文献 5には、溶媒を少 量添加することで、冷却面へのスケールの生成を低減しょうとする方法が開示されて いる。  [0005] As a method using a cheaper apparatus, there is a method using a crystallization tank provided with a cooling surface and a scraping means for scraping off the cooling surface. However, in order to achieve high productivity in such a method, cooling must be strengthened, and a strong scale that is difficult to peel off is generated on the cooling surface, and stable operation tends to be difficult. Thus, for example, Patent Document 5 discloses a method for reducing the generation of scale on the cooling surface by adding a small amount of a solvent.
[0006] し力しながら、特許文献 5に開示の方法ではスケールを十分に抑制することはでき ない。また、強固なスケールを低減するためには、搔き取り手段による搔き取りを強化 する方法もあるが、搔き取りを強化すると槽内の結晶を粉砕してしまい、結晶成長を 阻害し、粗大な結晶粒子が得られなくなる。  However, the method disclosed in Patent Document 5 cannot sufficiently suppress the scale. In addition, in order to reduce the solid scale, there is a method of strengthening the scraping by the scraping means, but if the scraping is strengthened, the crystals in the tank are crushed, inhibiting the crystal growth, Coarse crystal grains cannot be obtained.
さらに、このような晶析槽を用いて工業的に大量に生産しょうとする場合には、晶析 槽の内容積を大きくすることになるが、槽の内壁を冷却面とする通常の晶析槽では、 内容積が大きくなるにつれて冷却面の面積が相対的に小さくなるため、冷却面の面 積あたりの除熱負荷が増大し効果的な運転ができないし、内容積の大きな晶析槽内 では搔き取り手段を高速で作動させることも難しいなど、単に晶析槽の内容積を大き くすることで工業的な生産に対応するのは事実上困難である。  Furthermore, when trying to produce industrially in large quantities using such a crystallization tank, the internal volume of the crystallization tank will be increased, but the normal crystallization with the inner wall of the tank as the cooling surface will be used. In the tank, the area of the cooling surface becomes relatively smaller as the internal volume increases, so the heat removal load per area of the cooling surface increases and effective operation is not possible. However, it is difficult to respond to industrial production by simply increasing the internal volume of the crystallization tank, for example, it is difficult to operate the scraping means at high speed.
特許文献 1 :特開 2001— 199931号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-199931
特許文献 2:特開平 11— 199524号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-199524
特許文献 3:特開平 9 - 227445号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-227445
特許文献 4:特開平 7— 48311号公報  Patent Document 4: Japanese Patent Laid-Open No. 7-48311
特許文献 5:国際公開第 99Z06348号パンフレット  Patent Document 5: International Publication No. 99Z06348 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は上記事情に鑑みてなされたもので、晶析槽でカルボン酸含有液体を晶析 する際に、晶析槽の内壁面、特に冷却面の役割を果たしている内壁面への強固なス ケールの生成を抑制でき、後工程での脱液性 (例えば濾過性、洗浄性)に優れた粗 大な結晶粒子を高い生産性で安定かつ経済的に工業生産可能な方法の提供を課 題とする。 [0007] The present invention has been made in view of the above circumstances, and when crystallization of a carboxylic acid-containing liquid in a crystallization tank, the inner wall surface of the crystallization tank, in particular, the inner wall surface serving as a cooling surface is played. Providing stable, economical industrial production of coarse crystal particles with high productivity that can suppress the formation of strong scales and have excellent liquid drainage (for example, filterability and washability) in subsequent processes Impose The title.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らが鋭意検討を行った結果、晶析槽内でカルボン酸含有液体カゝらカルボ ン酸を晶析する晶析工程の前に、カルボン酸含有液体の少なくとも一部を特定条件 下で冷却する予備工程を実施することで上述の課題を解決できることを見出した。 すなわち、予備工程を実施すると、予備工程で生成した微結晶は晶析工程で種晶 として作用する。また、晶析槽でカルボン酸含有液体を強く冷却しなくてもすむため、 条件によっては液中の過飽和度が小さくなり微結晶が溶解して、より大きな結晶の表 面に再析出する。そのため、結晶の粗大化が促進され、また、強く冷却することに起 因するスケールや微細な結晶粒子の生成を抑制できる。このように、予備工程を実施 すると、後工程での脱液性に優れたカルボン酸の粗大な結晶粒子を高 、生産性で 安定に製造できることを見出し、本発明を完成するに至った。  As a result of intensive studies by the present inventors, at least a part of the carboxylic acid-containing liquid is removed before the crystallization step of crystallizing the carboxylic acid-containing liquid carbonate in the crystallization tank. It has been found that the above-mentioned problems can be solved by carrying out a preliminary process for cooling under specific conditions. That is, when the preliminary process is performed, the microcrystals generated in the preliminary process act as seed crystals in the crystallization process. In addition, since it is not necessary to strongly cool the carboxylic acid-containing liquid in the crystallization tank, depending on the conditions, the degree of supersaturation in the liquid decreases and the fine crystals dissolve and re-precipitate on the surface of larger crystals. Therefore, the coarsening of the crystal is promoted, and the generation of scale and fine crystal particles due to the strong cooling can be suppressed. As described above, when the preliminary process was carried out, it was found that coarse crystal particles of carboxylic acid having excellent liquid removal properties in the subsequent process could be stably produced with high productivity, and the present invention was completed.
[0009] 本発明のカルボン酸の製造方法は、カルボン酸含有液体の少なくとも一部を、冷却 面と該冷却面を搔き取る搔き取り手段とを有する、晶析槽の前段に配置された冷却 器に供給し、カルボン酸含有液体の結晶化開始温度を超える温度力 該結晶化開 始温度以下まで前記カルボン酸含有液体を冷却して冷却カルボン酸含有液体を作 製する予備工程と、晶析槽内で前記冷却カルボン酸含有液体を含むカルボン酸含 有液体力 カルボン酸を晶析する晶析工程とを有することを特徴とする。  [0009] The method for producing a carboxylic acid according to the present invention is arranged at the front stage of the crystallization tank, having at least a part of the carboxylic acid-containing liquid, a cooling surface and a scraping means for scraping off the cooling surface. A temperature force exceeding the crystallization start temperature of the carboxylic acid-containing liquid supplied to the cooler, a preliminary step of cooling the carboxylic acid-containing liquid to the crystallization start temperature or lower to produce a cooled carboxylic acid-containing liquid; And a crystallization step of crystallizing the carboxylic acid containing the cooled carboxylic acid-containing liquid in the precipitation tank.
発明の効果  The invention's effect
[0010] 本発明によれば、晶析槽でカルボン酸含有液体を晶析する際に、晶析槽の内壁面  According to the present invention, when the carboxylic acid-containing liquid is crystallized in the crystallization tank, the inner wall surface of the crystallization tank
(以下、内壁面という。)への強固なスケールの生成を抑制でき、後工程での脱液性( 例えば濾過性、洗浄性)に優れた粗大な結晶粒子を高い生産性で安定かつ経済的 に工業生産できる。  (Hereinafter referred to as the inner wall) can suppress the formation of strong scales, and the coarse crystal particles with excellent drainage (for example, filterability and washability) in the subsequent process are stable and economical with high productivity. Can be industrially produced.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明のカルボン酸の製造方法に使用されるカルボン酸製造装置の一例を示 す概略構成図である。  FIG. 1 is a schematic configuration diagram showing an example of a carboxylic acid production apparatus used in the carboxylic acid production method of the present invention.
[図 2]図 1の装置の冷却器における搔き取り手段を示す概略図である。  2 is a schematic view showing a scraping means in the cooler of the apparatus of FIG.
[図 3]実施例で使用されたカルボン酸製造装置を示す概略構成図である。 符号の説明 FIG. 3 is a schematic configuration diagram showing a carboxylic acid production apparatus used in Examples. Explanation of symbols
[0012] 10 カルボン酸製造装置  [0012] 10 Carboxylic acid production equipment
11 冷却器  11 Cooler
12 第 1の晶析槽  12 First crystallization tank
13 第 2の晶析槽  13 Second crystallization tank
30 カルボン酸製造装置  30 Carboxylic acid production equipment
31 冷却器  31 Cooler
32 晶析槽  32 Crystallization tank
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のカルボン酸の製造方法は、晶析槽内でカルボン酸含有液体力 カルボン 酸を晶析する晶析工程の前に、カルボン酸含有液体の少なくとも一部を、結晶化開 始温度を超えた温度力 結晶化開始温度以下まで冷却する予備工程を有するもの である。  The method for producing a carboxylic acid of the present invention is such that at least a part of the carboxylic acid-containing liquid exceeds the crystallization start temperature before the crystallization step of crystallizing the carboxylic acid-containing liquid force carboxylic acid in the crystallization tank. It has a preliminary process of cooling to a temperature below the crystallization start temperature.
[0014] カルボン酸含有液体としては、カルボン酸を少なくとも含有し、温度低下によりカル ボン酸の結晶を析出する液状のものであれば制限はなぐ液状のカルボン酸そのも のであってもよいし、カルボン酸が溶媒中に溶解している液体であってもよい。具体 的には、精製対象であるカルボン酸を溶媒に溶解させた液体、カルボン酸の製造ェ 程で得られたカルボン酸を含有する液体 (母液)、カルボン酸の結晶が一部分離され た後の母液、カルボン酸結晶の融解液などが挙げられ、いかなる処理がなされたも のでもよい。  [0014] The carboxylic acid-containing liquid may be a liquid carboxylic acid as long as it contains at least a carboxylic acid and precipitates a carboxylic acid crystal as the temperature decreases. It may be a liquid in which carboxylic acid is dissolved in a solvent. Specifically, a liquid in which a carboxylic acid to be purified is dissolved in a solvent, a liquid containing a carboxylic acid obtained in the carboxylic acid production process (mother liquor), and after a carboxylic acid crystal is partially separated. A mother liquor, a melt of carboxylic acid crystals, etc. may be mentioned, and any treatment may be performed.
カルボン酸の種類としても特に制限はないが、本発明によれば、内壁面への付着 性の強いカルボン酸であっても、そのような付着を抑制できることから、特に付着性の 高 、アクリル酸、メタクリル酸である場合が効果的である。  The type of carboxylic acid is not particularly limited, but according to the present invention, even carboxylic acid having strong adhesion to the inner wall surface can suppress such adhesion. The case of methacrylic acid is effective.
[0015] 図 1は、本発明のカルボン酸の製造方法に使用されるカルボン酸製造装置 10の一 例を示す概略構成図であって、晶析工程を行うために直列に設置された第 1の晶析 槽 12および第 2の晶析槽 13と、これら晶析槽 12, 13の前段側に設けられ、予備ェ 程を行うための冷却器 11とを具備して構成されて 、る。 この例で使用されている冷却器 11は、二重円筒型搔き取り式熱交^^であって、 円筒状の外筒の内表面 15と円筒状の内筒の外表面 16とがそれぞれ冷却面になつ ている。また、外筒の内表面 (以下、外筒側冷却面という。) 15と内筒の外表面 (以下 、内筒側冷却面という。) 16とはそれぞれ独立に制御できるようになつていて、それぞ れの冷却面に作用させる冷却媒体の温度、流量などを個別に調整できる。具体的に は、外筒側冷却面 15および内筒側冷却面 16に、それぞれ独立に冷却媒体の流通 経路や自動または手動の流量調整弁が設置されるなどして、このような独立制御を 可能とすることができる。 FIG. 1 is a schematic configuration diagram showing an example of a carboxylic acid production apparatus 10 used in the carboxylic acid production method of the present invention, and shows a first configuration installed in series for performing a crystallization process. The crystallization tank 12 and the second crystallization tank 13, and a cooler 11 provided on the front side of the crystallization tanks 12 and 13 for performing the preliminary process are provided. The cooler 11 used in this example is a double-cylindrical scooping-type heat exchanger ^^, where the inner surface 15 of the cylindrical outer cylinder and the outer surface 16 of the cylindrical inner cylinder are respectively It is on the cooling surface. The inner surface of the outer cylinder (hereinafter referred to as the outer cylinder side cooling surface) 15 and the outer surface of the inner cylinder (hereinafter referred to as the inner cylinder side cooling surface) 16 can be controlled independently. The temperature and flow rate of the cooling medium acting on each cooling surface can be individually adjusted. Specifically, such independent control is achieved by installing a cooling medium flow path and an automatic or manual flow control valve on the outer cylinder side cooling surface 15 and the inner cylinder side cooling surface 16, respectively. Can be possible.
[0016] また、この例の冷却器 11には、冷却面を搔き取るための搔き取り手段として、図 2の 概略図にも示すように、外筒側冷却面 15を搔き取るための外筒側搔き取り手段 18と 、内筒側冷却面 16を搔き取るための内筒側搔き取り手段 19とが設けられている。 外筒側搔き取り手段 18は、冷却器 11の軸線 (外筒および内筒の長手方向の中心 線)を中心として回転する回転式の搔き取り部 20を冷却器 11の長手方向に沿って 2 列有し、各搔き取り部 20には、ポリテトラフルォロエチレン (PTFE)製で厚み 10mm の板状のスクレーパー (搔き取り部材) 21が装着されている。よって、各搔き取り部 20 を図中矢印で示す方向に回転させることによって、各スクレーパー 21の側端部が外 筒側冷却面 15に接触しながら、外筒側冷却面 15上の付着物を搔き取るようになって いる。 [0016] In the cooler 11 of this example, as shown in the schematic diagram of FIG. 2, the outer cylinder side cooling surface 15 is scraped off as a scraping means for scraping the cooling surface. The outer cylinder side scraping means 18 and the inner cylinder side scraping means 19 for scraping the inner cylinder side cooling surface 16 are provided. The outer cylinder side scraping means 18 includes a rotary scraper 20 that rotates about the axis of the cooler 11 (the longitudinal center line of the outer cylinder and the inner cylinder) along the longitudinal direction of the cooler 11. Each scraper 20 is provided with a plate-shaped scraper (scraper) 21 made of polytetrafluoroethylene (PTFE) and having a thickness of 10 mm. Therefore, by rotating each scraping portion 20 in the direction indicated by the arrow in the figure, the side end of each scraper 21 is in contact with the outer cylinder side cooling surface 15 and the deposits on the outer cylinder side cooling surface 15 are adhered. It is supposed to scrape off.
また、この例では、 2列の搔き取り部 20は、冷却器 11の軸線に対して、互いに対称 に位置している。  Further, in this example, the two rows of scraping portions 20 are positioned symmetrically with respect to the axis of the cooler 11.
[0017] また、内筒側搔き取り手段 19も、同様のスクレーパー 21を備えた搔き取り部 22を冷 却器 11の長手方向に沿って 2列有して構成され、各搔き取り部 22を図中矢印で示 す方向に回転させることによって、各スクレーパー 21の側端部が内筒側冷却面 16に 接触しながら、内筒側冷却面 16上の付着物を搔き取るようになつている。なお、この 例の冷却器 11では、搔き取り部 20と搔き取り部 22とは、一体に回転するようになって いる。  The inner cylinder side scraping means 19 is also configured to have two rows of scraper portions 22 having similar scrapers 21 along the longitudinal direction of the cooler 11, and each scraper By rotating the part 22 in the direction indicated by the arrow in the figure, the side end of each scraper 21 is in contact with the inner cylinder side cooling surface 16 and the deposits on the inner cylinder side cooling surface 16 are scraped off. It has become. In the cooler 11 of this example, the scraper 20 and the scraper 22 rotate together.
[0018] 第 1の晶析槽 12と第 2の晶析槽 13は、外側には図示略の冷却用または保冷用ジャ ケットが設置され、各晶析槽 12, 13の内壁面が冷却面または保冷面になっている。 また、各晶析槽 12, 13には、内壁面に付着した付着物を搔き取るための図示略の回 転式の搔き取り手段 (搔き取り翼)がそれぞれ設けられている。 [0018] The first crystallization tank 12 and the second crystallization tank 13 are provided with cooling or cold insulation jackets (not shown) on the outside, and the inner wall surfaces of the crystallization tanks 12 and 13 are cooling surfaces. Or it is a cold surface. Each of the crystallization tanks 12 and 13 is provided with a rotating type scraping means (scraping blade) (not shown) for scraping off deposits adhering to the inner wall surface.
また、カルボン酸含有液体の供給配管 23は、途中で分岐していて、一方は冷却器 11に接続され、他方は第 1の晶析槽 12に接続されている。また、冷却器 11へと分岐 した供給配管 23の途中には、開閉自在な供給弁 24が設けられている。  The carboxylic acid-containing liquid supply pipe 23 is branched in the middle, one connected to the cooler 11 and the other connected to the first crystallization tank 12. A supply valve 24 that can be freely opened and closed is provided in the middle of the supply pipe 23 branched to the cooler 11.
また、カルボン酸含有液体の冷却器出口温度を測定するために温度指示計 25が 設けられている。  In addition, a temperature indicator 25 is provided to measure the cooler outlet temperature of the carboxylic acid-containing liquid.
[0019] 次に、このような装置 10を使用してカルボン酸含有液体力もカルボン酸を晶析する 具体的方法の一例について説明する。  [0019] Next, an example of a specific method for crystallizing carboxylic acid with carboxylic acid-containing liquid force using such an apparatus 10 will be described.
まず、カルボン酸含有液体を冷却器 11に供給するラインの途中に設けられた供給 弁 24を閉じておき、冷却器 11を経由させずに、供給配管 23から直接カルボン酸含 有液体を第 1の晶析槽 12に供給し、続いて抜液口(図示せず)を閉じた第 2の晶析 槽 13に供給する。第 2の晶析槽 13のカルボン酸含有液が所定の量に到達した時点 で、第 1の晶析槽 12の抜液口(図示せず)を閉じ、第 1の晶析槽 12のカルボン酸含 有液が所定の量に到達したところで供給を停止する。ついで、第 1の晶析槽 12およ び第 2の晶析槽 13の搔き取り翼を作動させるとともに、それぞれの冷却用ジャケット に冷却媒体を流通させて、第 1の晶析槽 12の槽内温度および第 2の晶析槽 13の槽 内温度が最終的に結晶化開始温度以下となるようにそれぞれ徐々に冷却する。槽内 温度は、取扱うカルボン酸の種類や濃度、溶媒などにより異なるが、一般的には溶解 度力も算出される晶析槽スラリー濃度が 40%以下となるように設定するのが好ましい 。また、通常、後段側の晶析槽ほど槽内温度が低くなるように設定するため、この場 合も、第 1の晶析槽 12の槽内温度よりも第 2の晶析槽 13の槽内温度を低く設定する のが好ましい。  First, the supply valve 24 provided in the middle of the line for supplying the carboxylic acid-containing liquid to the cooler 11 is closed, and the first liquid containing the carboxylic acid-containing liquid is directly supplied from the supply pipe 23 without going through the cooler 11. To the second crystallization tank 13, and then to the second crystallization tank 13 whose drain port (not shown) is closed. When the carboxylic acid-containing liquid in the second crystallization tank 13 reaches a predetermined amount, the drainage port (not shown) of the first crystallization tank 12 is closed and the carboxylic acid-containing liquid in the first crystallization tank 12 is closed. When the acid-containing liquid reaches a predetermined amount, supply is stopped. Next, the scraping blades of the first crystallization tank 12 and the second crystallization tank 13 are operated, and a cooling medium is circulated through the respective cooling jackets, so that the first crystallization tank 12 The bath temperature and the second crystallization bath 13 are gradually cooled so that the bath temperature finally becomes lower than the crystallization start temperature. The temperature in the tank varies depending on the type, concentration, solvent, etc. of the carboxylic acid to be handled, but in general, it is preferable to set the crystallization tank slurry concentration at which the solubility power is calculated to be 40% or less. Also, since the temperature inside the crystallization tank is usually set lower in the latter stage crystallization tank, the temperature in the second crystallization tank 13 is also higher than the temperature in the first crystallization tank 12 in this case. It is preferable to set the internal temperature low.
[0020] ついで、第 1の晶析槽 12および第 2の晶析槽 13の槽内温度が所定温度で安定ィ匕 した後に、供給弁 24は閉じたままで、カルボン酸含有液体の供給を再開するともに、 第 1の晶析槽および第 2の晶析槽 13の抜液口を開けてカルボン酸結晶を含むカル ボン酸含有液の抜出しも開始する。この時、カルボン酸含有液体の供給速度は、第 1 の晶析槽 12および第 2の晶析槽 13において除去すべき結晶化熱量力スケーリング を起こさない量以下であり、かつ第 2の晶析槽 13から得られる結晶が目的とする粒径 以上となる量以下であれば、特に限定されない。また、供給温度は、結晶化開始温 度を超えた温度であれば特に限定されないが、第 1の晶析槽 12および第 2の晶析槽 13の除熱能力範囲内が好ましい。 [0020] Next, after the internal temperatures of the first crystallization tank 12 and the second crystallization tank 13 stabilize at a predetermined temperature, the supply valve 24 remains closed and the supply of the carboxylic acid-containing liquid is resumed. At the same time, the discharge ports of the first crystallization tank and the second crystallization tank 13 are opened, and the extraction of the carboxylic acid-containing liquid containing carboxylic acid crystals is started. At this time, the supply rate of the carboxylic acid-containing liquid is the crystallization calorimetric force scaling to be removed in the first crystallization tank 12 and the second crystallization tank 13. The amount is not particularly limited as long as the amount of the crystal obtained from the second crystallization tank 13 is not more than the target particle size. The supply temperature is not particularly limited as long as it exceeds the crystallization start temperature, but is preferably within the heat removal capability range of the first crystallization tank 12 and the second crystallization tank 13.
[0021] っ 、で、供給弁 24を開き、カルボン酸含有液体の一部を冷却器 11に分岐導入す る。 Thus, the supply valve 24 is opened, and a part of the carboxylic acid-containing liquid is branched and introduced into the cooler 11.
カルボン酸含有液体の冷却器 11を経由する流量、経由しない流量、およびこれら の合計である第 1の晶析槽への総流量は目的とする生産量に合せて調節することが できる。また、カルボン酸含有液体の晶析槽における適正な滞在時間は、使用する カルボン酸含有液体力 の結晶成長速度、核発生速度、目的とする生産速度、目的 とする結晶粒径、各晶析槽での除熱量などに依存するので、一概に決められないが 、化学工学的手法により適正な滞在時間を都度決定することができる。そして、外筒 側搔き取り手段 18と内筒側搔き取り手段 19とをそれぞれ 150回 Z分以上の搔き取り 頻度で作動させるとともに、冷却器 11の外筒側冷却面 15と内筒側冷却面 16に冷却 媒体を作用させて、カルボン酸含有液体を冷却する予備工程を行う。搔き取り頻度 は 180回 Z分以上が好ましぐ 200回 Z分以上がより好ましい。また搔き取り頻度は、 1000回 Z分以下が好ましぐ 400回 Z分以下がより好ましい。  The flow rate of the carboxylic acid-containing liquid that passes through the cooler 11, the flow rate that does not pass through the cooler 11, and the total flow rate to the first crystallization tank can be adjusted according to the target production amount. In addition, the appropriate residence time of the carboxylic acid-containing liquid in the crystallization tank is the crystal growth rate, nucleation rate, target production rate, target crystal grain size, crystallization tank of the carboxylic acid-containing liquid force used. It depends on the amount of heat removed in the room, so it cannot be determined in general, but the appropriate staying time can be determined each time by chemical engineering techniques. Then, the outer cylinder side scraping means 18 and the inner cylinder side scraping means 19 are operated at a scraping frequency of 150 times Z or more respectively, and the outer cylinder side cooling surface 15 and the inner cylinder of the cooler 11 are operated. A cooling medium is allowed to act on the side cooling surface 16 to perform a preliminary process for cooling the carboxylic acid-containing liquid. The scraping frequency is preferably 180 times Z minutes or more, more preferably 200 times Z minutes or more. The scraping frequency is preferably 1000 times Z minutes or less, more preferably 400 times Z minutes or less.
このような予備工程により、カルボン酸含有液体は、冷却器出口温度がカルボン酸 含有液体の結晶化開始温度 (以下、単に結晶化開始温度という。)以下となるように 冷却され、カルボン酸含有液体に含まれるカルボン酸の一部が結晶微細粒子として 析出する。なお、結晶化開始温度とは、カルボン酸含有液体を冷却していった際に、 カルボン酸の結晶が析出し始める温度のことである。  By such a preliminary process, the carboxylic acid-containing liquid is cooled so that the cooler outlet temperature is equal to or lower than the crystallization start temperature of the carboxylic acid-containing liquid (hereinafter simply referred to as the crystallization start temperature). Part of the carboxylic acid contained in the precipitates as fine crystal particles. The crystallization start temperature is a temperature at which carboxylic acid crystals begin to precipitate when the carboxylic acid-containing liquid is cooled.
[0022] なお、ここで搔き取り頻度とは、「冷却面に直に作用する搔き取り部材の 1分間にお ける作用回数」である。よって、この例のように搔き取り部材が回転式のスクレーパー 21からなり、スクレーパー 21を具備した搔き取り部 20, 22が 2列設けられている場合 には、「150回 Z分以上の搔き取り頻度」とは、搔き取り部 20, 22を 1分間に 75回転 以上回転させることで達成できる。すなわち、搔き取り部 20, 22の列数を Nとした場 合、 1分間に(150ZN)回転以上回転させることで達成できる。 [0023] このような予備工程により結晶化開始温度以下の温度にまで冷却され、一部のカル ボン酸が析出したスラリー状のカルボン酸含有液体 (冷却カルボン酸含有液体)を、 第 1の晶析槽 12、第 2の晶析槽 13へと順次導入し、晶析する晶析工程を行う。 [0022] Here, the scraping frequency is "the number of operations per minute of the scraping member that acts directly on the cooling surface". Therefore, when the scraping member is composed of a rotary scraper 21 as shown in this example and two rows of scraping portions 20 and 22 equipped with the scraper 21 are provided, “150 times or more of Z min. The “frequency of scraping” can be achieved by rotating the scrapers 20, 22 at least 75 revolutions per minute. That is, when the number of rows of the scraping portions 20 and 22 is N, this can be achieved by rotating more than (150ZN) rotations per minute. [0023] The slurry-like carboxylic acid-containing liquid (cooled carboxylic acid-containing liquid) that has been cooled to a temperature lower than or equal to the crystallization start temperature by such a preliminary process and in which a part of the carboxylic acid has precipitated is converted into the first crystal. A crystallization process is performed in which the crystals are sequentially introduced into the crystallization tank 12 and the second crystallization tank 13 for crystallization.
このような晶析工程により結晶成長が促進され、第 2晶析槽からは、冷却器 11より 晶析槽 12に導入されたスラリーよりも単位スラリー体積あたりの結晶核数が少なぐ粗 大な結晶を含有するスラリー状のカルボン酸含有液体が排出される。  Crystal growth is promoted by such a crystallization process. From the second crystallization tank, the number of crystal nuclei per unit slurry volume is smaller than that of the slurry introduced from the cooler 11 to the crystallization tank 12. A slurry-like carboxylic acid-containing liquid containing crystals is discharged.
このような晶析工程の後には、排出されたカルボン酸含有液体から、濾過工程、洗 浄工程、乾燥工程などの後工程が必要に応じて実施され、カルボン酸の結晶粒子が 回収される。  After such a crystallization process, post-processes such as a filtration process, a washing process, and a drying process are performed as necessary from the discharged carboxylic acid-containing liquid, and carboxylic acid crystal particles are recovered.
[0024] このようにカルボン酸含有液体の少なくとも一部を予備工程で冷却してから、晶析 工程に供給することにより、晶析槽 12, 13でカルボン酸含有液体を強く冷却しなくて もすむため、強く冷却することに起因する晶析槽 12, 13の冷却面へのスケールや、 微細な結晶粒子の生成を抑制でき、後工程での脱液性に優れ、十分に結晶成長し たカルボン酸の粗大な結晶粒子を得ることができる。また、スケールが発生しないた めに、装置の運転が安定に行え、し力も、スケールの冷却面への付着による冷却効 率の低下も抑制されるため、生産性も高く維持できる。また、スケールを破砕しようとし て晶析槽 12, 13の搔き取り翼を過度に作動させる必要もないため、搔き取り翼に破 砕されることによる微細粒子の生成も抑えることができる。また、予備工程で析出した 結晶粒子は、晶析槽 12、 13の過飽和度が小さいため、条件によっては、微結晶は 溶解して、より大きな結晶の表面に再析出する。これらの理由により、晶析工程では より大粒径の結晶粒子が生成しやすくなる。  [0024] By cooling at least a part of the carboxylic acid-containing liquid in the preliminary step and then supplying it to the crystallization step, the carboxylic acid-containing liquid need not be strongly cooled in the crystallization tanks 12 and 13. Therefore, it is possible to suppress the scale on the cooling surface of the crystallization tanks 12 and 13 and the generation of fine crystal particles due to the strong cooling, and excellent crystal drainage in the subsequent process and sufficient crystal growth. Coarse crystal particles of carboxylic acid can be obtained. In addition, since no scale is generated, the operation of the apparatus can be performed stably, and a reduction in cooling efficiency due to adhesion of the scale to the cooling surface is suppressed, so that productivity can be maintained high. Further, since it is not necessary to excessively operate the scraping blades of the crystallization tanks 12 and 13 in order to crush the scale, it is possible to suppress the generation of fine particles due to the shattering blades. In addition, since the crystal grains precipitated in the preliminary process have a low degree of supersaturation in the crystallization tanks 12 and 13, depending on the conditions, the microcrystals dissolve and re-precipitate on the surface of larger crystals. For these reasons, crystal grains having a larger particle size are more likely to be generated in the crystallization process.
[0025] また、予備工程において、冷却器 11の各搔き取り手段 18, 19を搔き取り頻度が 15 0回 Z分以上となるようにそれぞれ作動させることが好ましぐ冷却面 15, 16へのスケ ールの蓄積が抑制されることなどにより冷却器 11の冷却効率が向上するため、容易 かつ安定に、カルボン酸含有液体を結晶化開始温度を超えた温度力 結晶化開始 温度以下まで冷却することができる。また、この搔き取り頻度は低いほど搔き取り手段 に備えられているスクレーパーと冷却面との摩擦によって発生する熱量が少なくなる ので冷却器 11の冷却効率が向上する。 [0026] また、予備工程では、カルボン酸含有液体は結晶化開始温度以下の温度まで冷却 されればよいが、冷却器 11出口のスラリー濃度が以降の移送に問題を起こさない濃 度以下となる温度範囲とすることが好まし 、。該スラリー濃度は 40容量%以下が好ま しぐさらに 20容量%以下がより好ましい。 [0025] Further, in the preliminary process, it is preferable to operate the scraping means 18 and 19 of the cooler 11 so that the scraping frequency is 150 times Z or more, respectively. Since the cooling efficiency of the cooler 11 is improved by suppressing the accumulation of scale on the chiller, the temperature force that exceeds the crystallization start temperature of the carboxylic acid-containing liquid can be easily and stably reduced to the crystallization start temperature or lower. Can be cooled. Further, as the scraping frequency is lower, the amount of heat generated by the friction between the scraper provided in the scraping means and the cooling surface is reduced, so that the cooling efficiency of the cooler 11 is improved. [0026] Further, in the preliminary process, the carboxylic acid-containing liquid may be cooled to a temperature not higher than the crystallization start temperature, but the slurry concentration at the outlet of the cooler 11 is not higher than a concentration that does not cause a problem in the subsequent transfer. Preferably in the temperature range. The slurry concentration is preferably 40% by volume or less, and more preferably 20% by volume or less.
さらに、予備工程では、晶析工程における第 1の晶析槽 12および第 2の晶析槽 13 の除熱負荷がそれぞれスケーリングを起こす除熱負荷以下であること、より具体的に は 8. 4MjZhrZm2以下、さらには 7. 5MjZhrZm2以下となるように冷却すること が好ましい。予備工程でこのような程度まであら力じめ冷却しておくことにより、晶析 工程でカルボン酸含有液体を強く冷却する必要がなくなり、晶析槽内で強く冷却する ことに起因する晶析槽 12, 13の冷却面でのスケール発生や、晶析槽内での微細粒 子の生成を低減することができる他、予備工程で生成した微結晶が溶解して結晶化 成分がより粗大な結晶の表面に析出し、脱液性、洗浄性に優れた粗大な結晶を得や すくなる。 Furthermore, in the preliminary process, the heat removal load of the first crystallization tank 12 and the second crystallization tank 13 in the crystallization process is less than or equal to the heat removal load that causes scaling, more specifically, 8.4 MjZhrZm. 2 or less, and it is more preferable to cool such that 7. 5MjZhrZm 2 below. By vigorously cooling to such a degree in the preliminary process, there is no need to strongly cool the carboxylic acid-containing liquid in the crystallization process, and the crystallization tank resulting from the strong cooling in the crystallization tank. In addition to reducing the generation of scales on the cooling surfaces of 12 and 13 and the generation of fine particles in the crystallization tank, the crystals produced in the preliminary process dissolve and the crystallized components are coarser. It is easy to obtain coarse crystals that deposit on the surface of the material and have excellent dewatering and cleaning properties.
[0027] なお、晶析槽 12, 13の除熱負荷とは、「晶析槽の冷却面 lm2あたりの熱移動量」の ことであって、晶析槽 12, 13がこの例のように冷却用ジャケットにより冷却面を冷却す る形態のものである場合には、その冷却用ジャケットに流入する冷却媒体と冷却用ジ ャケットから流出する冷却媒体の熱量の差力 算出することもできるし、晶析槽 12, 1 3内のカルボン酸含有液体の熱量変化力 算出することもできる。ここでは以下の式 で定義する。 [0027] The heat removal load of the crystallization tanks 12 and 13 is the "heat transfer amount per lm 2 of the cooling surface of the crystallization tank", and the crystallization tanks 12 and 13 are in this example. In the case where the cooling surface is cooled by the cooling jacket, it is possible to calculate the differential force between the amount of heat between the cooling medium flowing into the cooling jacket and the cooling medium flowing out from the cooling jacket. It is also possible to calculate the calorimetric change force of the carboxylic acid-containing liquid in the crystallization tanks 12 and 13. Here, it is defined by the following formula.
(除熱負荷) = { (晶析槽流入ェンタルピー) - (晶析槽流出ェンタルピー) }/  (Heat removal load) = {(crystallization tank inflow enthalpy)-(crystallization tank outflow enthalpy)} /
(冷却面の面積)  (Cooling surface area)
ただし、  However,
(ェンタルピー) = (上清流量) X (液比熱) X (温度) + (結晶流量) X (結晶比熱) X ( 温度) (結晶流量) X (結晶化熱 (絶対値))  (Enthalpy) = (supernatant flow) X (liquid specific heat) X (temperature) + (crystal flow) X (crystal specific heat) X (temperature) (crystal flow) X (crystallization heat (absolute value))
[0028] さらに、予備工程では、カルボン酸含有液体を冷却器 11で結晶化開始温度以下 の温度にまで冷却する力 好ましくは、次のように段階的に予備工程をスタートアップ することが好ましい。 [0028] Further, in the preliminary process, the power for cooling the carboxylic acid-containing liquid to a temperature not higher than the crystallization start temperature by the cooler 11, preferably, the preliminary process is preferably started up stepwise as follows.
まず、外筒側冷却面 15または内筒側冷却面 16の 、ずれか一方の冷却面のみに 冷却媒体を作用させるなどして、冷却器 11から排出されるカルボン酸含有液体の温 度が結晶化開始温度以下とならないように、すなわち、結晶化開始温度を超えたある 温度 (t)まで冷却する。(第 1ステップ)。そして、冷却器 11から排出されるカルボン酸 含有液体の温度が、結晶化開始温度を超えたこの温度 (t)で安定してから、他方の 冷却面にも冷却媒体を作用させるなどして、カルボン酸含有液体を結晶化開始温度 以下の温度にまで冷却する (第 2ステップ)。 First, apply to only one of the cooling surfaces of the outer cylinder side cooling surface 15 or the inner cylinder side cooling surface 16. Cooling is performed so that the temperature of the carboxylic acid-containing liquid discharged from the cooler 11 does not become lower than the crystallization start temperature, that is, to a certain temperature (t) that exceeds the crystallization start temperature, for example, by applying a cooling medium. To do. (First step). Then, after the temperature of the carboxylic acid-containing liquid discharged from the cooler 11 is stabilized at this temperature (t) that exceeds the crystallization start temperature, a cooling medium is allowed to act on the other cooling surface, etc. The carboxylic acid-containing liquid is cooled to a temperature not higher than the crystallization start temperature (second step).
ここで温度 (t)は、結晶化開始温度を超えた温度であるが、カルボン酸含有液体の 供給温度よりも低い温度であり、かつ、結晶化開始温度よりも 2°C高い温度以下であ ることが好適である。  Here, the temperature (t) is a temperature that exceeds the crystallization start temperature, but is lower than the supply temperature of the carboxylic acid-containing liquid and not more than 2 ° C higher than the crystallization start temperature. Is preferable.
このようにして予備工程を段階的にスタートアップさせることにより、予備工程におい てカルボン酸含有液体を容易かつ安定に結晶化開始温度以下まで冷却できるため 好ましい。ここで「温度が安定する」とは、少なくとも 5分間の間の最低温度と最高温 度との差が 1°C以内であることを!、う。  It is preferable to start up the preliminary process stepwise in this manner, because the carboxylic acid-containing liquid can be easily and stably cooled to the crystallization start temperature or lower in the preliminary process. “Temperature stable” here means that the difference between the minimum and maximum temperature for at least 5 minutes is within 1 ° C! Uh.
[0029] このように第 1ステップではカルボン酸含有液体の温度が結晶化開始温度以下とな らないように運転するが、そのような温度条件とするためには、上述のように、外筒側 冷却面 15または内筒側冷却面 16のいずれか一方の冷却面のみに冷却媒体を作用 させる方法が容易で効果的な方法である。この他にも、カルボン酸含有液体が一方 の冷却面と接触しな!、ようにする方法や、通液する冷却媒体の温度や流量を調整す る方法を採用してもよいし、場合によっては、冷却面を別途用意した加熱手段で加熱 する方法を組み合わせるなどしてもょ 、。  [0029] As described above, in the first step, the carboxylic acid-containing liquid is operated so that the temperature thereof does not become the crystallization start temperature or lower. A method of allowing a cooling medium to act on only one of the side cooling surface 15 and the inner cylinder side cooling surface 16 is an easy and effective method. In addition to this, a method for preventing the carboxylic acid-containing liquid from coming into contact with one cooling surface, a method for adjusting the temperature and flow rate of the cooling medium to be passed may be employed, and depending on circumstances. For example, combine the heating method with a separate heating means.
[0030] 以上説明したように、上述した予備工程と晶析工程とを有する方法によれば、高価 な装置を使用することなぐ簡単な構成の装置を使用するだけで、晶析槽 12, 13の 冷却面への強固なスケールの生成を抑制でき、後工程での脱液性 (例えば濾過性、 洗浄性)に優れ、十分に結晶成長した粗大なカルボン酸結晶粒子を高い生産性で 安定かつ経済的に製造できる。また、晶析工程での除熱負荷を低減できることから、 工業的な大量生産に際して晶析槽の内容積を大きくし、冷却面の面積が相対的に 小さくなつたとしても問題は生じにくい。  [0030] As described above, according to the method having the preliminary process and the crystallization process described above, the crystallization tanks 12, 13 can be obtained only by using an apparatus having a simple configuration without using an expensive apparatus. It is possible to suppress the formation of strong scale on the cooling surface, excellent liquid drainage in the subsequent process (for example, filterability and washability), and stable and high-quality coarse carboxylic acid crystal particles with sufficient crystal growth. Can be manufactured economically. In addition, since the heat removal load in the crystallization process can be reduced, even if the internal volume of the crystallization tank is increased and the area of the cooling surface is relatively reduced during industrial mass production, problems are unlikely to occur.
[0031] なお、以上の説明では、予備工程で使用する冷却器として、独立制御可能な複数 の冷却面を有する二重円筒型搔き取り式熱交換器を例示したが、冷却器の形態に は特に制限はない。し力しながら、予備工程を上述したように段階的にスタートアップ することが好適なことから、このようなスタートアップが可能な形態の冷却器、すなわち 、複数の独立制御可能な冷却面を備え、その一部を先に作動させた後に残りを作動 させることができるような冷却器が好まし 、。 [0031] In the above description, as the cooler used in the preliminary process, a plurality of independently controllable devices are used. Although a double-cylindrical scraped heat exchanger having a cooling surface is illustrated, there is no particular limitation on the form of the cooler. However, since it is preferable to start up the preliminary process step by step as described above, it is provided with a cooler capable of such start-up, that is, with a plurality of independently controllable cooling surfaces. I prefer a cooler that can activate the rest after actuating some first.
[0032] また、冷却器の具備する搔き取り手段の形態、搔き取り手法としても、冷却面を搔き 取れるものであって、搔き取り頻度 150回 Z分以上を確保できるものであれば、回転 式に限定されず、ベルト式、スクリュー式、冷却面回転式などでもよい。また、図示例 のように、冷却器 11の軸線を中心として回転する回転式の搔き取り部 20, 22を冷却 器の長手方向に 1列以上有していて、それぞれに搔き取り部材としてスクレーパー 21 が装着されているものの場合には、各スクレーパー 21は、厚みが 10mm以下である ことが好ましぐさらに好ましくは 5mm以下である。また、冷却面を複数具備する冷却 器の場合には、それぞれに搔き取り手段が設けられ、それぞれが搔き取り頻度 150 回 Z分以上で作動することが必要であるが、搔き取り手段の形態などは、各冷却面 ごとに異なって ヽても同一でもよ 、。  [0032] Also, the form of the scraping means provided in the cooler and the scraping method should be capable of scraping the cooling surface and ensuring a scraping frequency of 150 times Z or more. For example, it is not limited to a rotary type, and may be a belt type, a screw type, a cooling surface rotary type, or the like. Also, as shown in the example, there are one or more rows of rotary scrapers 20, 22 that rotate about the axis of the cooler 11 in the longitudinal direction of the cooler. In the case where the scraper 21 is mounted, the thickness of each scraper 21 is preferably 10 mm or less, more preferably 5 mm or less. In addition, in the case of a cooler having a plurality of cooling surfaces, each has a scraping means, and each must operate at a scraping frequency of 150 times Z or more. The form of the heat sink may be different or the same for each cooling surface.
[0033] 晶析槽は、図示例のように複数が直列に設けられていても、複数が並列に設けられ ていてもよいし、 1基のみでもよい。また、各晶析槽は、カルボン酸が十分に結晶成長 するだけの滞在時間が確保できるものであれば、その容積、形態に制限はなぐ一般 的な撹拌槽、タンクなどを使用できる。また、晶析槽には、搔き取り手段が設けられて いることが好ましいが、必ずしも設けられていなくてもよい。冷却器におけるカルボン 酸含有液体の滞在時間は、晶析槽でのカルボン酸含有液体の滞在時間の 10%以 下であることが微細な結晶が得られることから好ましぐ 1%以下がより好ましい。 晶析槽の容積と冷却器の容積の比率にも特に制限はないが、省スペース、低コスト で装置を構成するには、晶析工程での過剰な熱量を必要十分に除去できる能力の 冷却器を選定することで達成できる。  [0033] A plurality of crystallization tanks may be provided in series as shown in the drawing, or a plurality of crystallization tanks may be provided in parallel. Each crystallization tank can be a general stirring tank, tank, or the like, which is not limited in volume and form, as long as the residence time sufficient for the carboxylic acid to grow sufficiently can be secured. The crystallization tank is preferably provided with a scraping means, but is not necessarily provided. The residence time of the carboxylic acid-containing liquid in the cooler is preferably 1% or less, which is preferably 10% or less of the residence time of the carboxylic acid-containing liquid in the crystallization tank because fine crystals can be obtained. . There is no particular restriction on the ratio between the volume of the crystallization tank and the volume of the cooler, but in order to configure the equipment in a space-saving and low-cost manner, it has sufficient cooling capacity to remove the excessive amount of heat during the crystallization process This can be achieved by selecting a vessel.
[0034] また、図示例では、カルボン酸含有液体の一部のみを予備工程に供し、残りを直接 晶析工程に供して ヽるが、カルボン酸含有液体の全量を予備工程に供してもよ!ヽ。 また、冷却器で効率的に微細な結晶を発生させるにはカルボン酸含有液体を冷却 器にワンパスで供給することが好ま 、。 In the illustrated example, only a part of the carboxylic acid-containing liquid is subjected to the preliminary process and the rest is directly subjected to the crystallization process. However, the entire amount of the carboxylic acid-containing liquid may be subjected to the preliminary process. ! ヽ. In order to efficiently generate fine crystals in the cooler, cool the carboxylic acid-containing liquid. It is preferable to supply the container with a single pass.
実施例  Example
[0035] 以下、本発明の方法を実施例により具体的に説明するが、本発明はこれらの実施 例によって限定されるものではない。  Hereinafter, the method of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[実施例 1]  [Example 1]
図 1に示す装置を使用して、予備工程と晶析工程を行った。  Using the apparatus shown in Fig. 1, the preliminary process and the crystallization process were performed.
冷却器 11には、二重円筒型搔き取り式熱交換器として、「ター口サーム (商品名、 N •V. Machinefabriek Terlet社製)」を使用した。この熱交^^は、外筒側搔き取り手段 18および内筒側搔き取り手段 19として、スクレーパー(厚み 10mm、 PTFE製) 21が 取り付けられた搔き取り部 20, 22をそれぞれ 2列有するものである。  As the cooler 11, “Tarmouth Therm (trade name, manufactured by N • V. Machinefabriek Terlet)” was used as a double-cylindrical type heat exchanger. This heat exchange ^^ consists of two rows of scrapers 20, 22 with scrapers (thickness 10mm, made of PTFE) 21 as outer cylinder side scraping means 18 and inner cylinder side scraping means 19. It is what you have.
冷却器 11の後段側には、搔き取り翼をそれぞれ有する第 1の晶析槽 12と第 2の晶 析槽 13とを直列に設置した。冷却器 11の容積は、第 1の晶析槽 12と第 2の晶析槽 1 3の総容積の 0. 16%であった。  On the rear stage side of the cooler 11, a first crystallization tank 12 and a second crystallization tank 13 each having a scraping blade were installed in series. The volume of the cooler 11 was 0.16% of the total volume of the first crystallization tank 12 and the second crystallization tank 13.
まず、晶析槽 12および 13にカルボン酸含有液体 (メタクリル酸にメタノールを 4質量 %混合し、凝固点(結晶化開始温度)が 8. 5°Cとなるように調整し、 12°Cまで冷却し たもの。以下、原料液 (A)という。)を仕込み、各晶析槽 12および 13の搔き取り翼を、 冷却面の搔き取り頻度が 40回 Z分となるように回転させた。最終的に第 1の晶析槽 1 2の槽内温度が 6. 3°C、第 2の晶析槽 13の槽内温度が 5. 4°Cとなるように、各晶析 槽 12および 13の冷却用ジャケットの冷却媒体流量を調整し冷却を行った。  First, liquid containing carboxylic acid in crystallization tanks 12 and 13 (mixed with 4% by weight of methanol in methacrylic acid, adjusted to a freezing point (crystallization start temperature) of 8.5 ° C, and cooled to 12 ° C. (Hereinafter referred to as the raw material liquid (A)), and the scraping blades of the crystallization tanks 12 and 13 were rotated so that the cooling surface scraping frequency was 40 times Z minutes. . Each crystallization tank 12 and the final crystallization tank 12 so that the temperature in the first crystallization tank 12 is 6.3 ° C and the temperature in the second crystallization tank 13 is 5.4 ° C. Cooling was performed by adjusting the cooling medium flow rate of 13 cooling jackets.
次に、供給配管 23に、原料液 (A)を、晶析槽 12, 13での総滞在時間が 6時間とな る供給速度 (流量)で連続的に供給した。この際、第 1の晶析槽 12の槽内温度が 6. 3°C、第 2の晶析槽 13の槽内温度が 5. 4°Cとなるように、各晶析槽 12, 13の冷却用 ジャケットの冷却媒体流量を調整した。また、各晶析槽 12, 13の搔き取り翼を、冷却 面の搔き取り頻度が 40回 Z分となるように回転させた。  Next, the raw material liquid (A) was continuously supplied to the supply pipe 23 at a supply rate (flow rate) at which the total residence time in the crystallization tanks 12 and 13 was 6 hours. At this time, each of the crystallization tanks 12, 13 is adjusted so that the temperature in the first crystallization tank 12 is 6.3 ° C. and the temperature in the second crystallization tank 13 is 5.4 ° C. The cooling medium flow rate of the cooling jacket was adjusted. In addition, the scraping blades of the crystallization tanks 12 and 13 were rotated so that the cooling surface scraping frequency was 40 times Z.
[0036] 次に、供給弁 24を開として、冷却器 11に総流量の 27%の原料液 (A)を分岐導入 するとともに、冷却器 11の内筒側搔き取り手段 19と外筒側搔き取り手段 18とをいず れも搔き取り頻度 180回 Z分となるように、それぞれ 90回転 Z分の回転数で回転さ せ、また、外筒側冷却面 15のみに 10°Cの冷却媒体を連続的に通液して作用させ 、冷却器 11から排出されるカルボン酸含有液体を 1. 3時間かけてその冷却器出口 温度が 9. 5°C (=t)となるまで冷却した。 [0036] Next, the supply valve 24 is opened, and the raw material liquid (A) of 27% of the total flow rate is branched and introduced into the cooler 11, and the inner cylinder side scraping means 19 and the outer cylinder side of the cooler 11 are introduced. Both the scraping means 18 and the scraping frequency are rotated 90 rpm each so that the scraping frequency is 180 times Z, and the outer cylinder side cooling surface 15 is only 10 ° C. The cooling medium is continuously passed through The carboxylic acid-containing liquid discharged from the cooler 11 was cooled until the cooler outlet temperature reached 9.5 ° C. (= t) over 1.3 hours.
冷却器 11から排出されるカルボン酸含有液体の温度が 9. 5°Cで安定したことを確 認した後、冷却器 11の内筒側冷却面 16へ- 10°Cの冷却媒体を連続的に通液開始 した。  After confirming that the temperature of the carboxylic acid-containing liquid discharged from the cooler 11 was stable at 9.5 ° C, continuously apply a cooling medium of -10 ° C to the inner cylinder side cooling surface 16 of the cooler 11. The liquid started to pass through.
その結果、冷却器 11からは、冷却器出口温度が 8. 3°Cであって、粒径およそ 80 mのメタクリル酸の結晶粒子 3. 3質量%を含むスラリー状のカルボン酸含有液体が 連続的に排出された。このような運転を継続したところ、 100時間経過後も運転状況 は安定しており、第 2の晶析槽 13の出口からは、粒径およそ 225 mのメタクリル酸 の結晶粒子を 37質量%含むスラリー状のカルボン酸含有液体が得られた。冷却器 でのカルボン酸含有液体の滞在時間は 1. 8分であった。  As a result, from the cooler 11, a slurry-like carboxylic acid-containing liquid containing 3.3% by mass of methacrylic acid crystal particles having a cooler outlet temperature of 8.3 ° C and a particle size of approximately 80 m was continuously produced. Were exhausted. When such operation was continued, the operation status was stable even after 100 hours had passed, and the outlet of the second crystallization tank 13 contained 37% by mass of methacrylic acid crystal particles having a particle size of approximately 225 m. A slurry-like carboxylic acid-containing liquid was obtained. The residence time of the carboxylic acid-containing liquid in the cooler was 1.8 minutes.
また、このとき、第 1の晶析槽 12の除熱負荷は 6. 2Mj/hr/m2,第 2の晶析槽 13 の除熱負荷は 7. 4MjZhrZm2であった。 At this time, the heat removal load of the first crystallization tank 12 was 6.2 Mj / hr / m 2 , and the heat removal load of the second crystallization tank 13 was 7.4 MjZhrZm 2 .
[0037] [実施例 2] [0037] [Example 2]
内筒側搔き取り手段 19および外筒側搔き取り手段 18の具備するスクレーパー 21 を、厚み 3. 5mmのベークライト製のスクレーパーに変更した以外は実施例 1と同様 に装置を運転した。  The apparatus was operated in the same manner as in Example 1 except that the scraper 21 included in the inner cylinder side scraping means 19 and the outer cylinder side scraping means 18 was replaced with a 3.5 mm thick bakelite scraper.
その結果、冷却器 11からは、冷却器出口温度が 8. 0°Cであって、粒径およそ 80 mのメタクリル酸の結晶粒子 8. 9質量%を含むスラリー状のカルボン酸含有液体が 連続的に排出された。このような運転を継続したところ、 100時間経過後も運転状況 は安定しており、第 2の晶析槽 13の出口からは、粒径およそ 225 mのメタクリル酸 の結晶粒子を 37質量%含むスラリー状のカルボン酸含有液体が得られた。  As a result, from the cooler 11, a slurry-like carboxylic acid-containing liquid having a cooler outlet temperature of 8.0 ° C and containing 8.9% by mass of crystal particles of methacrylic acid having a particle size of approximately 80 m was continuously produced. Were exhausted. When such operation was continued, the operation status was stable even after 100 hours had passed, and the outlet of the second crystallization tank 13 contained 37% by mass of methacrylic acid crystal particles having a particle size of approximately 225 m. A slurry-like carboxylic acid-containing liquid was obtained.
また、このとき、第 1の晶析槽 12の除熱負荷は 6. OMj/hr/m2,第 2の晶析槽 13 の除熱負荷は 7. 2MjZhrZm2であった。 At this time, the heat removal load of the first crystallization tank 12 was 6. OMj / hr / m 2 , and the heat removal load of the second crystallization tank 13 was 7.2 MjZhrZm 2 .
[0038] [比較例 1] [0038] [Comparative Example 1]
冷却器 11が設置されていない以外は図 1と同様の構成の装置を用いて、実施例 1 と同様に装置を運転した。  The apparatus was operated in the same manner as in Example 1 using an apparatus having the same configuration as in FIG. 1 except that the cooler 11 was not installed.
その結果、スケーリングにより第 1の晶析槽 12の搔き取り翼のトルクが顕著に上昇し 、 100時間後には 5%上昇し、約 2000時間後にはトルク値が上限に達して運転を停 止せざるを得な力つた。 As a result, the torque of the scraping blade of the first crystallization tank 12 is significantly increased by scaling. After 100 hours, it increased by 5%, and after about 2000 hours the torque reached the upper limit and had to stop driving.
このとき、第 1の晶析槽 12の除熱負荷は 10. OMjZhrZm2であった。 At this time, the heat removal load of the first crystalliser 12 was 10. OMjZhrZm 2.
[0039] [実施例 3] [0039] [Example 3]
3に示すカルボン酸製造装置 30を使用して、予備工程と晶析工程を行った。 図 3の装置 30は、晶析工程を行うための晶析槽 32と、この晶析槽 32の前段側に設 けられ、予備工程を行うための冷却器 31とを具備して!/、る。 Use carboxylic acid production apparatus 30 shown in FIG. 3, it was carried out a preliminary step and crystallization step. The apparatus 30 in FIG. 3 includes a crystallization tank 32 for performing a crystallization process, and a cooler 31 provided on the front side of the crystallization tank 32 for performing a preliminary process! /
冷却器 31には、円筒型の搔き取り式熱交^^として、「オンレーター(商品名、櫻 製作所社製)」を使用した。この熱交換器は、円筒の内表面 33が冷却面になってい るとともに、この冷却面を搔き取るための搔き取り手段 34として、実施例 1で使用した 冷却器 11における回転式の外筒側搔き取り手段 18と同様のものを有している。 晶析槽 32の外側には図示略の冷却用ジャケットが設置され、晶析槽 32の内表面 が冷却面になっている。また、晶析槽 32には、冷却面に付着した付着物を搔き取る ための図示略の回転式の搔き取り手段 (搔き取り翼)が設けられている。  As the cooler 31, “ONRATOR (trade name, manufactured by Sakai Seisakusho Co., Ltd.)” was used as a cylindrical scooping-type heat exchanger. In this heat exchanger, the inner surface 33 of the cylinder is a cooling surface, and as a scraping means 34 for scraping off the cooling surface, the rotary outer surface of the cooler 11 used in Example 1 is used. The cylinder side scraping means 18 is the same. A cooling jacket (not shown) is installed outside the crystallization tank 32, and the inner surface of the crystallization tank 32 is a cooling surface. Further, the crystallization tank 32 is provided with a rotary scraping means (scraping blade) (not shown) for scraping off deposits adhering to the cooling surface.
なお、冷却器 31の容積は、晶析槽 32の容積の 0. 5%であった。  The volume of the cooler 31 was 0.5% of the volume of the crystallization tank 32.
[0040] この装置 30の供給配管 35に、カルボン酸含有液体 (メタクリル酸にメタノールを 2. [0040] A carboxylic acid-containing liquid (methacrylic acid and methanol 2.
6質量%混合し、凝固点(結晶化開始温度)が 10. 0°Cとなるように調整し、 20. 4°C まで冷却したもの)を、晶析槽 32での滞在時間が 5. 7時間となる供給速度 (流量)で 連続的に供給した。冷却器でのカルボン酸含有液体の滞在時間は 1. 7分であった。 晶析槽 32の搔き取り翼を、冷却面の搔き取り頻度が 40回 Z分となるように回転させ た。  6% by mass, adjusted so that the freezing point (crystallization start temperature) becomes 10.0 ° C and cooled to 20.4 ° C), the residence time in the crystallization tank 32 is 5.7. It was continuously supplied at a supply rate (flow rate) that is equivalent to time. The residence time of the carboxylic acid-containing liquid in the cooler was 1.7 minutes. The scraping blade of the crystallization tank 32 was rotated so that the cooling surface scraping frequency was 40 times Z.
[0041] 次に、冷却器 31の搔き取り手段 34を搔き取り頻度 200回 Z分となるように、 100回 転 Z分の回転数で回転させ、また、 7°Cの冷却媒体を冷却器 31に連続的に通液 した。この間、晶析槽 32のジャケットには冷却媒体は供給せず断熱保温状態とした( すなわち晶析槽 32の除熱負荷は 0Mj/hr/m2)。 [0041] Next, the scraping means 34 of the cooler 31 is rotated at a rotation speed of 100 rotations Z so that the scraping frequency is 200 rotations Z minutes, and a 7 ° C cooling medium is The liquid was continuously passed through the cooler 31. During this time, the cooling medium was not supplied to the jacket of the crystallization tank 32 and the heat insulation was maintained (that is, the heat removal load of the crystallization tank 32 was 0 Mj / hr / m 2 ).
その結果、冷却器 31からは、温度指示計 36で示される冷却器出口温度が 8. 8°C であって、粒径およそ 50 mのメタクリル酸の結晶粒子 40質量%を含むスラリー状 のカルボン酸含有液体が連続的に排出された。このような運転を継続したところ、 6時 間経過後も運転状況は安定しており、晶析槽 32の出口からは、粒径およそ 200 m のメタクリル酸の結晶粒子を 40質量%含むスラリー状のカルボン酸含有液体が得ら れた。 As a result, from the cooler 31, the cooler outlet temperature indicated by the temperature indicator 36 is 8.8 ° C., and the slurry-like carboxylic acid containing 40% by mass of crystal particles of methacrylic acid having a particle size of approximately 50 m is obtained. The acid-containing liquid was continuously discharged. When this kind of operation was continued, The operating condition was stable even after the passage of time, and a slurry-like carboxylic acid-containing liquid containing 40% by mass of crystal particles of methacrylic acid having a particle size of approximately 200 m was obtained from the outlet of the crystallization tank 32.
[0042] [比較例 2] [0042] [Comparative Example 2]
搔き取り頻度が 140回 Z分となるように、搔き取り手段 34を 70回転 Z分で回転させ た以外は実施例 3と同様に装置を運転した。  The apparatus was operated in the same manner as in Example 3 except that the scraping means 34 was rotated at 70 revolutions Z minutes so that the scraping frequency was 140 times Z minutes.
その結果、冷却器出口温度は 10. 2°Cとなり、冷却器 31から排出されるカルボン酸 含有液体中にメタクリル酸の結晶は認められな力つた。そのため、本例ではメタクリル 酸の結晶を得ることはできな力つた。  As a result, the cooler outlet temperature was 10.2 ° C, and methacrylic acid crystals were observed in the carboxylic acid-containing liquid discharged from the cooler 31. Therefore, in this example, methacrylic acid crystals could not be obtained.
産業上の利用可能性  Industrial applicability
[0043] 本発明によれば、晶析槽でカルボン酸含有液体を晶析する際に、晶析槽の内壁面 への強固なスケールの生成を抑制でき、後工程での脱液性 (例えば濾過性、洗浄性 )に優れた粗大な結晶粒子を高い生産性で安定かつ経済的に工業生産できる。 [0043] According to the present invention, when the carboxylic acid-containing liquid is crystallized in the crystallization tank, it is possible to suppress the formation of a strong scale on the inner wall surface of the crystallization tank, and the liquid removal property in the subsequent process (for example, Coarse crystal particles excellent in filterability and cleanability) can be industrially produced stably and economically with high productivity.

Claims

請求の範囲 The scope of the claims
[1] カルボン酸含有液体の少なくとも一部を、冷却面と該冷却面を搔き取る搔き取り手 段とを有する、晶析槽の前段に配置された冷却器に供給し、カルボン酸含有液体の 結晶化開始温度を超える温度から該結晶化開始温度以下まで前記カルボン酸含有 液体を冷却して冷却カルボン酸含有液体を作製する予備工程と、  [1] At least a part of the carboxylic acid-containing liquid is supplied to a cooler disposed in the front stage of the crystallization tank, which has a cooling surface and a scooping means for scraping off the cooling surface. A preliminary step of producing a cooled carboxylic acid-containing liquid by cooling the carboxylic acid-containing liquid from a temperature exceeding the crystallization start temperature of the liquid to not more than the crystallization start temperature;
晶析槽内で前記冷却カルボン酸含有液体を含むカルボン酸含有液体からカルボ ン酸を晶析する晶析工程と  A crystallization step of crystallizing carboxylic acid from a carboxylic acid-containing liquid including the cooled carboxylic acid-containing liquid in a crystallization tank;
を有するカルボン酸の製造方法。  The manufacturing method of carboxylic acid which has this.
[2] 前記冷却器の搔き取り手段は、 150回 Z分以上の搔き取り頻度で作動する請求項 [2] The scraper of the cooler operates at a scraping frequency of 150 times Z or more.
1記載のカルボン酸の製造方法。 The method for producing a carboxylic acid according to 1.
[3] 前記予備工程において、さらに、前記晶析工程における晶析槽の除熱負荷カ^ケ 一リングを起こす除熱負荷以下となるように、前記冷却器で前記カルボン酸含有液体 を冷却する請求項 1記載のカルボン酸の製造方法。 [3] In the preliminary step, the carboxylic acid-containing liquid is further cooled by the cooler so as to be equal to or less than a heat removal load causing the heat removal load of the crystallization tank in the crystallization step. The method for producing a carboxylic acid according to claim 1.
[4] 前記予備工程にぉ 、て、前記冷却器のカルボン酸含有液体の滞在時間が前記晶 析工程における晶析槽でのカルボン酸含有液体の滞在時間の 1%以下である請求 項 1記載のカルボン酸の製造方法。 [4] The residence time of the carboxylic acid-containing liquid in the cooler during the preliminary step is 1% or less of the residence time of the carboxylic acid-containing liquid in the crystallization tank in the crystallization step. The manufacturing method of carboxylic acid of this.
[5] 前記予備工程の運転開始時において、 [5] At the start of operation of the preliminary process,
前記冷却器力 排出される前記カルボン酸含有液体の温度が前記結晶化開始温 度を超えた温度まで冷却する第 1ステップと、  A first step of cooling to a temperature at which the temperature of the carboxylic acid-containing liquid discharged exceeds the crystallization start temperature;
前記カルボン酸含有液体を前記結晶化開始温度以下の温度まで冷却する第 2ス テツプと  A second step of cooling the carboxylic acid-containing liquid to a temperature not higher than the crystallization start temperature;
を有する請求項 1記載のカルボン酸の製造方法。  The method for producing a carboxylic acid according to claim 1, comprising:
[6] 前記冷却器が、複数の冷却面を有する二重円筒型搔き取り式熱交換器である請求 項 1記載のカルボン酸の製造方法。 6. The method for producing carboxylic acid according to claim 1, wherein the cooler is a double cylindrical scraped heat exchanger having a plurality of cooling surfaces.
PCT/JP2007/051827 2006-02-03 2007-02-02 Process for producing carboxylic acid WO2007088981A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800112734A CN101410365B (en) 2006-02-03 2007-02-02 Process for producing carboxylic acid
KR1020087021330A KR101306357B1 (en) 2006-02-03 2007-02-02 Process for producing carboxylic acid
JP2007509798A JP5114195B2 (en) 2006-02-03 2007-02-02 Method for producing carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006026766 2006-02-03
JP2006-026766 2006-02-03

Publications (1)

Publication Number Publication Date
WO2007088981A1 true WO2007088981A1 (en) 2007-08-09

Family

ID=38327549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051827 WO2007088981A1 (en) 2006-02-03 2007-02-02 Process for producing carboxylic acid

Country Status (4)

Country Link
JP (1) JP5114195B2 (en)
KR (1) KR101306357B1 (en)
CN (1) CN101410365B (en)
WO (1) WO2007088981A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134434A1 (en) 2009-05-19 2010-11-25 株式会社日本触媒 Process for production of (meth)acrylic acid
JP2011011986A (en) * 2009-06-30 2011-01-20 Mitsubishi Rayon Co Ltd Method for purifying (meth)acrylic acid
JP2011219376A (en) * 2010-04-05 2011-11-04 Mitsubishi Rayon Co Ltd Purification method of (meth)acrylic acid
JP2012140471A (en) * 2012-02-01 2012-07-26 Mitsubishi Rayon Co Ltd Method of purifying methacrylic acid
JP2012246263A (en) * 2011-05-30 2012-12-13 Mitsubishi Rayon Co Ltd Scraper unit for crystallizer of methacrylic acid, crystallizer and crystallization method
JP2013091653A (en) * 2012-12-26 2013-05-16 Mitsubishi Rayon Co Ltd Method for purifying methacrylic acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537175B (en) * 2017-10-18 2024-04-30 无锡力马化工机械有限公司 Elastic scraper crystallizer
KR101829655B1 (en) * 2017-11-08 2018-03-29 주식회사 코센코리아 Method for purifying polluted wash water used for cleaning exhaust gas of SCRUBBER for ship

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329583A (en) * 1993-05-25 1994-11-29 Mitsubishi Kasei Corp Production of terephthalic acid excellent in powder properties and slurry properties
JPH08208561A (en) * 1994-11-16 1996-08-13 Mitsubishi Chem Corp Production of terephthalic acid
JPH08225489A (en) * 1994-11-16 1996-09-03 Mitsubishi Chem Corp Production of terephthalic acid
WO2002028499A1 (en) * 2000-10-02 2002-04-11 Mitsubishi Gas Chemical Company, Inc. Method of crystallization
WO2005012218A1 (en) * 2003-08-05 2005-02-10 Mitsui Chemicals, Inc. Method for producing terephthalic acid and terephthalic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279491B2 (en) * 1996-12-16 2002-04-30 株式会社日本触媒 Method for producing (meth) acrylic acid
MY120051A (en) * 1997-07-30 2005-08-30 Mitsubishi Rayon Co Process for purification of (meth)acrylic acid
DE10211686A1 (en) * 2002-03-15 2003-10-02 Stockhausen Chem Fab Gmbh (Meth) acrylic acid crystal and process for the production and purification of aqueous (meth) acrylic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329583A (en) * 1993-05-25 1994-11-29 Mitsubishi Kasei Corp Production of terephthalic acid excellent in powder properties and slurry properties
JPH08208561A (en) * 1994-11-16 1996-08-13 Mitsubishi Chem Corp Production of terephthalic acid
JPH08225489A (en) * 1994-11-16 1996-09-03 Mitsubishi Chem Corp Production of terephthalic acid
WO2002028499A1 (en) * 2000-10-02 2002-04-11 Mitsubishi Gas Chemical Company, Inc. Method of crystallization
WO2005012218A1 (en) * 2003-08-05 2005-02-10 Mitsui Chemicals, Inc. Method for producing terephthalic acid and terephthalic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THE CHEMICAL SOCIETY OF JAPAN, JIKKEN KAGAKU KOZA 1 KIHON SOSA I, DAI 4 HAN, 5 November 1990 (1990-11-05), pages 184 - 186, XP003016176 *
THE CHEMICAL SOCIETY OF JAPAN, JIKKEN KAGAKU KOZA 2 KIHON SOSA II, DAI 4 HAN, 5 December 1990 (1990-12-05), pages 354 - 358, XP003016177 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134434A1 (en) 2009-05-19 2010-11-25 株式会社日本触媒 Process for production of (meth)acrylic acid
US8530699B2 (en) 2009-05-19 2013-09-10 Nippon Shokubai Co., Ltd. Process for production of (meth) acrylic acid
JP2011011986A (en) * 2009-06-30 2011-01-20 Mitsubishi Rayon Co Ltd Method for purifying (meth)acrylic acid
JP2011219376A (en) * 2010-04-05 2011-11-04 Mitsubishi Rayon Co Ltd Purification method of (meth)acrylic acid
JP2012246263A (en) * 2011-05-30 2012-12-13 Mitsubishi Rayon Co Ltd Scraper unit for crystallizer of methacrylic acid, crystallizer and crystallization method
JP2012140471A (en) * 2012-02-01 2012-07-26 Mitsubishi Rayon Co Ltd Method of purifying methacrylic acid
JP2013091653A (en) * 2012-12-26 2013-05-16 Mitsubishi Rayon Co Ltd Method for purifying methacrylic acid

Also Published As

Publication number Publication date
CN101410365A (en) 2009-04-15
CN101410365B (en) 2012-06-06
KR20080103981A (en) 2008-11-28
KR101306357B1 (en) 2013-09-09
JP5114195B2 (en) 2013-01-09
JPWO2007088981A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
WO2007088981A1 (en) Process for producing carboxylic acid
JP5394147B2 (en) (Meth) acrylic acid purification method
CN105294384A (en) Device for separating p-xylene crystal
KR101516601B1 (en) Purification of Phosphoric Acid Rich Streams
WO2011001887A1 (en) Device for crystallizing acrylic acid and method for crystallizing acrylic acid using same
KR100841502B1 (en) Method and apparatus for crystallization
EP1669343B1 (en) Method for producing high purity terephthalic acid
KR100659217B1 (en) Improved continuous crystallization method
WO1999041225A1 (en) Method and apparatus for recovering terephthalic acid
JP2008273933A (en) Method for producing bisphenol a
JP4731980B2 (en) Method and system for crystallizing sterols
JP5857730B2 (en) Centrifuge, method for producing bisphenol A
CN205152113U (en) P xylene's crystal separation device
PL81410B1 (en)
EP0976762A1 (en) Crystallization of Alpha-L-aspartyl-L-phenylalanine methyl ester
JPH1128455A (en) Freezing concentration method and device thereof
WO2022255371A1 (en) Method for producing easily polymerizable compound
CN115849487B (en) Method for separating single salt and water from multi-component wastewater based on cascade concentrated eutectic freezing
WO2022107812A1 (en) Purification device
JPH05178889A (en) Method for crystallizing alpha-l-aspartyl-l-phenylalanine methyl ester
US6100422A (en) Crystallization of alpha-L-aspartyl-L-phenylalanine methyl esther
US6090972A (en) Crystallization of α-L-aspartyl-L-phenylalanine methyl ester
JP2013000737A (en) Apparatus (flaker) for manufacturing flake to purify solid crystal
JP2004202318A (en) Crystallization tank having anchor type stirring blade
JP2004345993A (en) Method for purifying n-vinyl-2-pyrrolidone and purified n-vinyl-2-pyrrolidone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007509798

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087021330

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780011273.4

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07707976

Country of ref document: EP

Kind code of ref document: A1