WO2007088974A1 - Method of imparting water repellency and oil resistance with use of cellulose nanofiber - Google Patents

Method of imparting water repellency and oil resistance with use of cellulose nanofiber Download PDF

Info

Publication number
WO2007088974A1
WO2007088974A1 PCT/JP2007/051810 JP2007051810W WO2007088974A1 WO 2007088974 A1 WO2007088974 A1 WO 2007088974A1 JP 2007051810 W JP2007051810 W JP 2007051810W WO 2007088974 A1 WO2007088974 A1 WO 2007088974A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
paper
treatment
treatment liquid
substrate
Prior art date
Application number
PCT/JP2007/051810
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Kondo
Wakako Kasai
Original Assignee
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, National University Corporation filed Critical Kyushu University, National University Corporation
Priority to JP2007556933A priority Critical patent/JP5419120B2/en
Publication of WO2007088974A1 publication Critical patent/WO2007088974A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/34Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape

Abstract

A method of reforming, including the steps of obtaining a cellulose-nanofiber-containing treating liquid by opposed collision treatment of cellulose fiber derived from herbaceous plant or bacterial cellulose, impregnating a base material with the treating liquid and/or applying the treating liquid onto the surface of the base material, and drying to thereby attain forming of a cellulose nanofiber coating on the surface of the base material. Especially suitable example of the base material is paper. Further, there is provided a cellulose-nanofiber-containing coating composition produced by opposed collision treatment of cellulose fiber derived from herbaceous plant or bacterial cellulose.

Description

明 細 書  Specification
セルロースナノ繊維を用いる撥水性と耐油性の付与方法  Method for imparting water repellency and oil resistance using cellulose nanofibers
技術分野  Technical field
[0001] 本発明は、セルロースナノ繊維を用いる撥水性と耐油性の付与方法に関する。より 詳細には、ノ クテリアセルロースの対向衝突処理物を、紙等の表面のコーティングに 用いることに関する。本発明は、食品保存用紙製成型物の表面を保護するために特 に有用である。  The present invention relates to a method for imparting water repellency and oil resistance using cellulose nanofibers. More specifically, the present invention relates to the use of a non-terrier cellulose anti-collision treated product for coating the surface of paper or the like. The present invention is particularly useful for protecting the surface of a molded product for food storage paper.
背景技術  Background art
[0002] 酢酸菌の一種は、培養すると菌体外にゲル状のセルロース膜を生産する。この菌 が生産するセルロースはバクテリアセルロースと呼ばれる。バクテリアセルロースは、 平均で幅約 50nm、厚み約 10nmの高結晶性のリボン状セルロースナノ繊維として分泌 される力 分泌後にすぐにランダムネットワークを形成して、ナノサイズの網目状のぺ リクルと呼ばれるゲル状膜を形成する。  [0002] One type of acetic acid bacterium produces a gel-like cellulose membrane outside the cell when cultured. The cellulose produced by this fungus is called bacterial cellulose. Bacterial Cellulose is secreted as highly crystalline ribbon-like cellulose nanofibers with an average width of about 50 nm and a thickness of about 10 nm. A gel called a nano-sized network pelicle forms a random network immediately after secretion. A film is formed.
[0003] ノクテリアセルロースの利用法としては、ゲル状膜をそのままの形態で利用すること が考えられている。微細な網目構造や保水性の良さを生かし、分離膜や医療用'ィ匕 粧用パッドなどへの利用が検討されている。また、ゲル状膜を機械的処理に粉砕し、 材料中に混練して、材料の強度等を改善する試みもある。  [0003] As a method of using nocteria cellulose, it is considered to use a gel-like membrane as it is. Utilizing the fine mesh structure and good water retention, its use in separation membranes and medical cosmetic pads has been studied. There is also an attempt to improve the strength and the like of the material by pulverizing the gel film into a mechanical treatment and kneading it into the material.
[0004] さらに、バクテリアセルロースを材料表面のコーティングに用いるための技術として 次のものが提案されている。例えば、特許文献 1は、バクテリアセルロースと界面活性 剤を含有することを特徴とするコーティング液、及びそれを用いた記録媒体を開示す る。また、特許文献 2は、セルロース水分散体中にキトサン塩と、 2価以上のァ-オン 性物質を含有することを特徴とするコーティング液、及びそれを用いた記録媒体を開 示する。特許文献 3は、有機繊維をフイブリルィ匕して得られる有機繊維パルプであつ て、その表面の少なくとも一部にバクテリアセルロースが固着されていることを特徴と する有機繊維パルプを開示する。特許文献 4は、撹拌培養で生産されたバクテリアセ ルロースを原料として得られるセルロースの可溶化物、セルロースの可溶化物を含む コーティング用組成物又は複合物、及びセルロースの可溶ィ匕物を含む成型用組成 物又は複合物を開示する。 [0004] Further, the following has been proposed as a technique for using bacterial cellulose for coating the material surface. For example, Patent Document 1 discloses a coating liquid characterized by containing bacterial cellulose and a surfactant, and a recording medium using the coating liquid. Patent Document 2 discloses a coating liquid characterized by containing a chitosan salt and a divalent or higher ionic substance in an aqueous cellulose dispersion, and a recording medium using the same. Patent Document 3 discloses an organic fiber pulp obtained by fibrillating organic fibers, characterized in that bacterial cellulose is fixed to at least a part of the surface thereof. Patent Document 4 includes a solubilized cellulose obtained from bacterial cellulose produced by stirring culture, a coating composition or composite containing a solubilized cellulose, and a solubilized cellulose. Molding composition An article or composite is disclosed.
[0005] 本発明者らは、これまでに、一軸方向に分子配向しているセルローステンプレート 上でセルロース生産菌を培養することにより、菌カゝら分泌されるバクテリアセルロース ナノ繊維が、その配向方向と一致するように堆積させることに成功し、結果としてペリ クルではなくて、ナノ繊維が一方向に配向した 3次元シート構造を構築することに成 功した (非特許文献 1及び特許文献 5)。  [0005] The present inventors have so far cultivated cellulose-producing bacteria on a cellulose template that is molecularly oriented in a uniaxial direction, whereby bacterial cellulose nanofibers secreted by fungi have been aligned in the orientation direction. As a result, we succeeded in constructing a three-dimensional sheet structure in which nanofibers are oriented in one direction instead of a pellicle (Non-patent Document 1 and Patent Document 5). .
[0006] 他方で、本発明者らは、榭木細胞壁由来の微結晶性セルロース繊維 (重合度 200 程度)の対向衝突による水溶ィ匕に成功した (特許文献 6)。 [0006] On the other hand, the present inventors have succeeded in water-soluble soot by opposing collision of microcrystalline cellulose fibers (degree of polymerization of about 200) derived from the cell wall of a persimmon (Patent Document 6).
特許文献 1:特開 2004-249573号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-249573
特許文献 2:特開 2005-162897号公報  Patent Document 2: JP 2005-162897 A
特許文献 3:特開 2005— 194648号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-194648
特許文献 4:特開平 10— 77302号公報  Patent Document 4: Japanese Patent Laid-Open No. 10-77302
特許文献 5:特開 2002-142796  Patent Document 5: JP 2002-142796
特許文献 6:特開 2005 -270891  Patent Document 6: JP 2005-270891
非特干文献 1 : Kondo, T., Nojiri, M., Hishikawa, Y., Togawa, E., Romanovicz, D. an d Brown, Jr., R. M., Bio-directed epitaxial nanodeposition of polymers on oriented macromolecular templates, Proc. Natl. Acad. Sci. USA, 99(22), 14008—14013 (2002) 発明の開示  Non-patent literature 1: Kondo, T., Nojiri, M., Hishikawa, Y., Togawa, E., Romanovicz, D. an d Brown, Jr., RM, Bio-directed epitaxial nanodeposition of polymers on oriented macromolecular templates, Proc. Natl. Acad. Sci. USA, 99 (22), 14008—14013 (2002) Disclosure of the Invention
[0007] ノ クテリアセルロースを利用しょうとした場合、通常、ナノ繊維そのものではなぐこ のペリクル (膜)を用いることとなる。し力しながら、本発明者らは、ノ クテリアセルロー スの用途拡大のためには、ノ クテリアセルロースをナノ繊維として取り出すことが必要 であると考えた。また、本発明者らの検討によれば、ノ クテリアセルロースナノ繊維の 結晶表面は、植物由来のコットンとは違うセルロース I alpha (アルファ)と呼ばれる三 斜晶の結晶構造を持つことが明ら力となった (未発表)。したがって、上述したように ナノ繊維として取り出すことができれば、新たな性質を発現する繊維として期待できる  [0007] When trying to use nocteria cellulose, nangu pellicle (membrane) is usually used for the nanofiber itself. However, the present inventors considered that it is necessary to take out the nocteria cellulose as nanofibers in order to expand the use of the nocteria cellulose. In addition, according to the study by the present inventors, it is clear that the crystal surface of the nocteria cellulose nanofiber has a triclinic crystal structure called cellulose I alpha (alpha), which is different from plant-derived cotton. (Unpublished). Therefore, as described above, if it can be taken out as a nanofiber, it can be expected as a fiber expressing new properties.
[0008] 一方、セルロース、キチンなどのバイオマス資源は、ダルコビラノース骨格からなる 多糖である。この糖骨格分子構造には、骨格に平行な方向へ水酸基に由来する親 水性、及び骨格に垂直な方向へ C-H基に由来する疎水性サイトが存在する(図 1)。 そのような分子が集合したセルロース天然繊維表面でも同様に、それぞれ性質が異 なる親水性 ·疎水性サイトに分かれる。例えば、親水性面が固体表面に現れれば水 と親和するが、疎水性面が表面に配列した場合、その表面はテフロン™並みの撥水 性を有することになる(図 2)。 On the other hand, biomass resources such as cellulose and chitin are polysaccharides having a dalcoviranose skeleton. This sugar skeleton molecular structure has a parent group derived from a hydroxyl group in a direction parallel to the skeleton. Hydrophobic sites derived from CH groups exist in the direction perpendicular to the aqueous and skeleton (Fig. 1). Similarly, the cellulose natural fiber surface on which such molecules are assembled is divided into hydrophilic / hydrophobic sites having different properties. For example, if a hydrophilic surface appears on the surface of the solid, it has an affinity for water, but if the hydrophobic surface is arranged on the surface, the surface will have a water repellency similar to that of Teflon ™ (Fig. 2).
[0009] ナノサイズの天然繊維においては、比表面積が大きぐ相手物質との界面で、強い 相互作用が可能になると推定される。とくに、この両親媒性 (親水と疎水)を有する界 面相互作用しゃす 、天然セルロースナノ繊維で材料表面をコーティングすれば、似 た性質を示す繊維側の面が材料表面に吸着し、得られる表面は逆の性質を示す繊 維の影響が現れてくる。すなわち、親水表面はより疎水化され、疎水表面はより親水 化され、その性質の変更が可能になると期待される。  [0009] It is estimated that nano-sized natural fibers are capable of strong interaction at the interface with a partner substance having a large specific surface area. In particular, if the surface of the material is coated with natural cellulose nanofibers, this interfacial interaction with amphipathic properties (hydrophilic and hydrophobic) will be adsorbed on the surface of the material, and the resulting surface will be absorbed. The effect of fibers exhibiting the opposite properties appears. That is, it is expected that the hydrophilic surface is made more hydrophobic and the hydrophobic surface is made more hydrophilic, and the property can be changed.
[0010] 本発明者らは、ナノ繊維を用いれば、上述のコンセプトでの表面改質が可能になる と考え、本発明を完成した。  [0010] The inventors of the present invention have completed the present invention, assuming that the use of nanofibers enables surface modification based on the above-described concept.
[0011] 本発明は、すなわち、ノ クテリアセルロースを対向衝突処理することにより得られる セルロースナノ繊維で被覆する工程を含む、基材表面の改質方法を提供する。また 、本発明は、バクテリアセルロースを対向衝突処理する工程を含む、セルロースナノ 繊維の製造方法、並びにバクテリアセルロースを対向衝突処理してセルロースナノ繊 維を含む処理液を得て、該処理液に基材を含浸し、及び,又は該処理液を基材表 面に塗布し、そして乾燥することにより形成される、セルロースナノ繊維被膜を提供す る。  [0011] The present invention provides a method for modifying a substrate surface, which includes a step of coating cellulose nanofibers obtained by subjecting nocteria cellulose to an opposing collision treatment. In addition, the present invention provides a method for producing cellulose nanofibers including a step of subjecting bacterial cellulose to opposing collision treatment, and a treatment liquid containing cellulose nanofibers obtained by subjecting bacterial cellulose to opposing collision treatment. A cellulose nanofiber coating is provided that is formed by impregnating a material and / or applying the treatment liquid to a substrate surface and drying.
[0012] 基材の被覆に用いられるセルロースナノ繊維は、ペリクルではなく単独でナノ繊維 となっており、平均幅 25nm以下 (好ましくは 20nm以下、より好ましくは 15nm以下、さら に好ましくは 8〜12nm)であり、平均厚み 8〜12nmである。  [0012] Cellulose nanofibers used for coating a substrate are not pellicles but are single nanofibers, and have an average width of 25 nm or less (preferably 20 nm or less, more preferably 15 nm or less, and even more preferably 8 to 12 nm. The average thickness is 8 to 12 nm.
[0013] 本明細書で単に「セルロース」というときは、特別な場合を除き、由来、製法、性状 等に限定はなぐ植物性セルロース、バクテリアセルロース、セルロース繊維、結晶セ ルロース等を含む。 In the present specification, the term “cellulose” includes vegetable cellulose, bacterial cellulose, cellulose fiber, crystalline cellulose and the like, which are not limited in origin, production method, properties, etc., unless otherwise specified.
[0014] 本明細書で!/、う「バクテリアセルロース」は、特別な場合を除き、微生物が生産する セルロース 1, 4 ダルコシド結合を主たる結合形式とする多糖)をいい、特に 示した場合を除き、ゲル状膜の形態のものを指す。ノ クテリアセルロースは、当業者 にはよく知られた方法により、製造することができる。セルロース産生菌としては、ァセ トノヽクグ ~~ シリナム、 Acetobactor xyiinumあるいは luconacetobactor xylinusとも呼 ばれる)、ァセトパクターノスッリアヌム (Acetobactor pasteurianum)、ァセトパクター ランセンス (Acetobactor rancens)等の酢酸菌、サノレシナベントキユリ (Sarcina ventric uli)、ノ クテリゥムキシロイテス (Bacteirum xvloides)、シユードモナス (Pseudomonas) 属菌、ァグロパクテリゥム (Agrobacterium)属菌等を用いることができる 用いる培養 液及び培養条件等は、当業者であれば、適宜決定することができる。 [0014] In the present specification, "bacterial cellulose" refers to a cellulose produced by microorganisms, except for special cases, which is a polysaccharide mainly composed of cellulose 1, 4 darcoside bonds, Except where indicated, it refers to that in the form of a gel film. Nocteria cellulose can be produced by methods well known to those skilled in the art. Cellulose-producing bacteria include acetic acid bacteria such as Acetobactor pasteurianum, Acetobactor pasteurianum, and Acetobactor rancens. Sarcina ventric uli, Bacteirum xvloides, Pseudomonas spp., Agrobacterium spp., Etc. Those skilled in the art can appropriately determine the above.
[0015] 本明細書において「セルロースナノ繊維」というときは、平均幅及び平均厚みが 100 nm以下であるセルロース繊維をいう。セルロース繊維の平均幅及び平均厚みは、光 散乱装置、レーザー顕微鏡、電子顕微鏡等の当業者には周知の手法によって計測 することができる。平均幅は、計測される長さのうち、長いほうのものを数点、例えば 1 0〜200点、好ましくは 30〜80点を測定し、その平均値をとつたものである。平均厚み は、計測される長さのうち、短いほうのものを数点、例えば 10〜200点、好ましくは 30 〜80点測定し、その平均値をとつたものである。本発明において用いられるセルロー スナノ繊維の好ましい例は、平均幅及び平均厚みが、ノ クテリアセルロースと同等か 、それ以下(例えば平均幅 25nm以下、好ましくは 20nm以下、より好ましくは 15nm以下 、さらに好ましくは 8〜12nm)であり、平均厚み 8〜12nmである。  In the present specification, “cellulose nanofiber” refers to a cellulose fiber having an average width and an average thickness of 100 nm or less. The average width and average thickness of the cellulose fiber can be measured by methods well known to those skilled in the art, such as a light scattering device, a laser microscope, and an electron microscope. The average width is obtained by measuring several points, for example, 10 to 200 points, preferably 30 to 80 points, of the measured length, and taking the average value. The average thickness is obtained by measuring several points, for example, 10 to 200 points, preferably 30 to 80 points, of the measured length, and taking the average value. Preferred examples of the cellulose nanofibers used in the present invention have an average width and an average thickness equal to or less than that of nocteria cellulose (for example, an average width of 25 nm or less, preferably 20 nm or less, more preferably 15 nm or less, more preferably 8-12 nm) with an average thickness of 8-12 nm.
[0016] 本明細書において、「対向衝突 (処理)」というときは、特別な場合を除き、多糖類の 分散液を一対のノズルから 70〜250MPaの高圧でそれぞれ噴射させると共に、その噴 射流を互いに衝突させてセルロース繊維を粉砕する、湿式粉砕方法をいう。この方 法の詳細は、特開 2005— 270891 (特許文献 1)に開示されている。  [0016] In the present specification, "opposite collision (treatment)" refers to a case where a polysaccharide dispersion is injected from a pair of nozzles at a high pressure of 70 to 250 MPa, respectively, except for special cases. A wet pulverization method in which cellulose fibers are pulverized by colliding with each other. Details of this method are disclosed in JP-A-2005-270891 (Patent Document 1).
[0017] 対向衝突処理は、超高圧水の衝突エネルギーを利用して、材料を超微粒化する湿 式微粒化方法である。他の粉砕化方法、ビーズミル、ジェットミル、撹拌機、高圧ホモ ジナイザー等と比較し、様々な優れた利点を有する。例えば、粉砕媒体を使用しない ため媒体の磨耗粉の混入がなぐまた媒体攪拌式より均一でシャープな粒度分布が 得られ、さらに連続処理、大容量化が容易、大気との接触時間が少なぐ処理品の酸 化を極力抑えることができる等の点を挙げることができる。 [0018] 対向衝突処理のための装置としては、高圧洗浄装置又は粉砕'分散 ·乳化等のた めの高圧ホモジナイザー装置を利用することができる。 [0017] Opposite collision treatment is a wet atomization method that uses the collision energy of ultra-high pressure water to ultrafine the material. Compared to other pulverization methods, bead mill, jet mill, stirrer, high-pressure homogenizer, etc., it has various excellent advantages. For example, since no grinding media is used, there is no mixing of wear powder in the media, and a more uniform and sharp particle size distribution than the media agitation method is obtained. Furthermore, continuous treatment, large capacity is easy, and treatment with less contact time with the atmosphere For example, the oxidation of the product can be suppressed as much as possible. [0018] As a device for the counter collision treatment, a high-pressure washing device or a high-pressure homogenizer device for pulverization / dispersion / emulsification can be used.
[0019] 対向衝突処理の際、セルロースは水に分散される。セルロースは、必要に応じ、予 め粉砕してもよい。分散濃度は、分散スラリーとして配管を通過するのに適当な濃度 であることが好ましぐ 0.1〜10質量%が好ましい。  [0019] During the facing collision treatment, cellulose is dispersed in water. Cellulose may be pulverized in advance if necessary. The dispersion concentration is preferably 0.1 to 10% by mass, which is preferably an appropriate concentration for passing through the pipe as a dispersion slurry.
[0020] 対向衝突処理においては、分散液を一対のノズルから 70〜250MPaの高圧でそれ ぞれ噴射させると共に、その噴射流を互いに衝突させて粉砕するが、上記一対のノ ズルから噴射される分散液の高圧噴射流の角度を、噴射流同士が各々のノズル出 口より先方の一点で適正な角度において衝合衝突するように調製する力 又は高圧 流体の噴射回数を調整して粉砕回数を調整することにより、セルロース繊維の平均 粒子長を 1Z4以下又は 10 μ mにまで粉砕することができる一方で、セルロースの重 合度の低下を抑制することもできる。  [0020] In the counter-collision process, the dispersion liquid is ejected from a pair of nozzles at a high pressure of 70 to 250 MPa, and the jet streams collide with each other to be pulverized, but are ejected from the pair of nozzles. Adjust the angle of the high-pressure jet flow of the dispersion to adjust the number of times of pulverization by adjusting the force or the number of jets of high-pressure fluid to adjust the jet flow so that the jets collide at an appropriate angle at one point ahead of each nozzle outlet. By adjusting, the average particle length of the cellulose fibers can be pulverized to 1Z4 or less or 10 μm, while the decrease in the degree of polymerization of cellulose can also be suppressed.
[0021] 衝合角度 Θとしては、 95〜178° 、例えば、 100〜170° とすることができる。 95° より 小さい場合、例えば 90° で衝合するようにすると、構造的に衝合分散液はチャンバ 一の壁部分に直接衝突してしまう部分が生じやすくなり、 1回の衝突でセルロースの 重合度の低下が 10%を超えることが多くなる。一方、 178° より大きい場合、例えば衝 合が 180° 、すなわち正面対向して衝突させる場合には、その衝突のエネルギーが 大きぐ 1回の衝突での重合度の低下が激しくなることがある。  [0021] The collision angle Θ can be 95 to 178 °, for example, 100 to 170 °. If it is smaller than 95 °, for example, if it is made to collide at 90 °, structurally, the collision dispersion liquid tends to generate a portion that directly collides with the wall of the chamber, and cellulose polymerization occurs in one collision. Degradation often exceeds 10%. On the other hand, when the angle is larger than 178 °, for example, when the collision is 180 °, that is, when the collision is made in the face-to-face relationship, the degree of polymerization in one collision may be severely reduced when the collision energy is large.
[0022] また、衝突回数としては、 1〜200回、例えば 5〜120回、〜60回、〜30回、〜15回、 〜10回とすることができる。粉砕回数が多いと、セルロースの重合度の低下が 10%を 超えることがある。  [0022] The number of collisions may be 1 to 200 times, for example, 5 to 120 times, -60 times, -30 times, -15 times, -10 times. If the number of pulverization is large, the decrease in the degree of polymerization of cellulose may exceed 10%.
[0023] 衝合角度及び Z又は衝突回数は、セルロースによる分解効率等を加味して、適宜 設計することができる。衝合角度及び Z又は衝突回数の調整により、衝突処理後の セルロースの平均粒子長が、処理前の 1Z4以下、 1Z5〜1Z100、 1Z6〜1Z50、 1 Z7〜lZ20とすることができる。同様に、平均粒子長は、 10 m以下、 0. 01〜9 /ζ πι、 0. 1〜8 ^ πι、0. 1〜5 ^ πιとすることができる。セルロース繊維は、平均粒子長に対し て直角方向に粒子幅が存在することになる。この幅を平均粒子幅というが、これも、衝 合角度及び Ζ又は衝突回数の調整により、 10 m以下、 0. 01〜9 /ζ πι、 0. 1〜8 /ζ πιと することができる。 [0023] The collision angle and Z or the number of collisions can be appropriately designed in consideration of decomposition efficiency by cellulose and the like. By adjusting the collision angle and Z or the number of collisions, the average particle length of cellulose after the collision treatment can be 1Z4 or less, 1Z5 to 1Z100, 1Z6 to 1Z50, 1 Z7 to lZ20 before treatment. Similarly, the average particle length can be 10 m or less, 0.01-9 / ζ πι, 0.1-8 ^ πι, 0.1-5 ^ πι. Cellulose fibers have a particle width perpendicular to the average particle length. This width is called the average particle width, which is also less than 10 m, 0.01 to 9 / ζ πι, and 0.1 to 8 / ζ πι by adjusting the collision angle and Ζ or the number of collisions. can do.
[0024] 対向衝突処理は、回数を重ねるに従!、、処理物の温度が上昇するので、一度衝突 処理された後の処理物は、必要に応じ、例えば、 4〜20°C、又は 5〜15°Cに冷却して もよい。対向衝突処理装置に、冷却のための設備を組み込むこともできる。  [0024] Since the temperature of the processed object rises as the counter-collision process repeats the number of times !, the processed object once subjected to the collision process is, for example, 4 to 20 ° C, or 5 as necessary. It may be cooled to ~ 15 ° C. Equipment for cooling can be incorporated in the opposing collision processing apparatus.
[0025] また、本発明にお 、て、処理物力も特にセルロース繊維が細力べなった部分だけを 取り出す方法として、処理物を遠心分離して、上澄みを分取することにより、平均粒 子長 1 μ m未満のセルロース微粒子を得ることができる。  [0025] In the present invention, the average particle size is obtained by centrifuging the processed product and fractionating the supernatant as a method for taking out only the portion where the processed product has particularly strong cellulose fiber strength. Cellulose fine particles with a length of less than 1 μm can be obtained.
[0026] また、本発明者らの検討によれば、ノ クテリアセルロースのみならず、葦及び竹から 得られたパルプを対向衝突処理して得られたセルロースナノ繊維を用いた場合も、 ノ クテリアセルロースを用いた場合と同様、基材表面の改質効果が得られた。したが つて、本発明はまた、草本植物由来のセルロース繊維を対向衝突処理することにより 得られるセルロースナノ繊維で被覆する工程を含む、基材表面の改質方法;草本植 物由来のセルロース繊維を対向衝突処理する工程を含む、セルロースナノ繊維の製 造方法、並びに草本植物由来のセルロース繊維を対向衝突処理してセルロースナノ 繊維を含む処理液を得て、該処理液に基材を含浸し、及び,又は該処理液を基材 表面に塗布し、そして乾燥することにより形成される、セルロースナノ繊維被膜を提供 する。  [0026] Further, according to the study of the present inventors, not only cellulose cellulose, but also cellulose nanofibers obtained by opposing collision treatment of pulp obtained from straw and bamboo were used. As in the case of using cellulose, the effect of modifying the substrate surface was obtained. Therefore, the present invention also includes a method for modifying a substrate surface comprising a step of coating a cellulose nanofiber obtained by subjecting a herbaceous plant-derived cellulose fiber to opposing collision; a cellulose fiber derived from a herbaceous plant; A method for producing cellulose nanofibers, including a step of carrying out a counter-collision treatment, and a counter-collision treatment of the cellulose fibers derived from herbaceous plants to obtain a treatment liquid containing the cellulose nano-fibers, impregnating the substrate with the treatment liquid And / or providing a cellulose nanofiber coating formed by applying the treatment liquid to the surface of a substrate and drying.
[0027] 草本植物とは、木部があまり発達しない草質又は多肉質の茎をもち,地上部は多く は 1年で枯れる植物体をいう。し力し地下茎が発達して二年生 ·多年生のものや常緑 葉のものもある。草本植物野中では、イネ科植物を好適に用いることができ、また、好 ましいイネ科植物の例は、葦及び竹である。葦(Phragmites communis) (ァシ、芦、蘆 、葭、ヨシということもある。)は、イネ科ヨシ属に属し、熱帯力も温帯にかけての湿地帯 に分布する草本植物である。 3〜4の種に分ける場合がある力 一般的にはヨシ属に 属する唯一の種とみなされている。竹は、イネ科タケ亜科に属し、熱帯から温帯にか けて分布する多年生草本植物である。竹には、ホウライチタ、マダケ、モウソゥチタ、 チシマザサ、スズタケ、メダケが含まれる。  [0027] Herbaceous plants refer to plants that have grassy or fleshy stems that do not develop much xylem, and the above-ground parts often die within a year. There are two kinds of perennials, perennials, and evergreen leaves that have been developed with strong strength. In the herbaceous plant field, gramineous plants can be suitably used, and examples of preferred gramineous plants are bamboo and bamboo. Rag (Phragmites communis) (sometimes called oak, 葭, 蘆, 葭, reed) is a herbaceous plant belonging to the genus Gramineae reed and distributed in wetlands over temperate zones. Forces that can be divided into three to four species are generally considered the only species belonging to the genus Reed. Bamboo is a perennial herbaceous plant that belongs to the Gramineae bamboo subfamily and is distributed from the tropics to the temperate zone. Bamboo includes Horaiichita, Madatake, Mosouchita, Chishimazasa, Suzutake, and Medake.
[0028] 本発明において対向衝突処理に供される草本植物由来のセルロース繊維は、紙 の原料としてのノルプ(セルロース繊維をバラバラにして取り出したものの集合物)を 調製するのと同様の工程により、得たものでもよい。パルプの調製工程は、例えば、 原料を薬品と混合して高温高熱で処理することにより蒸解し、繊維分とそれ以外 (リグ ニン成分等)とに分離し、そして、繊維分を、必要に応じ洗浄することを含む。 [0028] In the present invention, the herbaceous plant-derived cellulose fiber subjected to the counter-collision treatment is obtained by using a norp (a collection of cellulose fibers taken apart) as a raw material for paper. What was obtained by the process similar to preparing may be used. In the pulp preparation process, for example, the raw material is mixed with chemicals and processed at high temperature and heat to separate the fiber and other components (such as lignin components), and the fiber is separated as necessary. Including washing.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、セルロース分子の親水性サイトと疎水性サイトとを示した図である。セル ロース、キチン等の分子には、骨格に平行な方向へ水酸基に由来する親水性、及び 骨格に垂直な方向へ C-H基に由来する疎水性サイトが存在する。 [FIG. 1] FIG. 1 is a view showing hydrophilic sites and hydrophobic sites of cellulose molecules. In molecules such as cellulose and chitin, there are hydrophilic sites derived from hydroxyl groups in the direction parallel to the skeleton, and hydrophobic sites derived from C—H groups in the direction perpendicular to the skeleton.
[図 2]図 2は、表面におけるグルコース環の配向角度が表面特性に与える影響を示し た図である。親水性面が固体表面に現れれば水と親和する力 疎水性面が表面に 配列した場合、その表面はテフロン™並みの撥水性を有することになる。 [FIG. 2] FIG. 2 is a diagram showing the influence of the orientation angle of the glucose ring on the surface on the surface characteristics. If hydrophilic surface appears on the surface of solid, it has affinity to water. If hydrophobic surface is arranged on the surface, the surface will have the same water repellency as Teflon ™.
[図 3]図 3は、対向衝突処理前後におけるバクテリアセルロースナノ繊維の変化を示し た写真を含む図である。対向衝突処理により、ペリクル中のナノ繊維のネットワーク構 造が破壊され、ペリクルでなく単独の繊維として水中に分散することが判明した。また 、ナノ繊維の幅が約 10應と 1/4程度に小さくなり、断面が正方形に近い形状を持つ繊 維となることが TEM写真力も判明した。 [FIG. 3] FIG. 3 includes photographs showing changes in bacterial cellulose nanofibers before and after the oncoming collision treatment. It was found that the network structure of the nanofibers in the pellicle was destroyed by the facing collision treatment and dispersed in water as a single fiber instead of the pellicle. The TEM photographic power was also found to be a fiber with a cross-sectional shape close to a square, with the width of the nanofibers reduced to about 10 and 1/4.
[図 4]図 4は、対向衝突処理したバクテリアセルロースをコーティングしたろ紙表面の、 撥水性 (水の接触角)を測定した際の写真である。未処理のろ紙の場合、水のろ紙へ の吸い込みが激しく接触角を測定することができな力つた力 コーティング処理により 接触角 51° の値を得ることができた。  [FIG. 4] FIG. 4 is a photograph of water repellency (water contact angle) measured on the surface of a filter paper coated with bacterial cellulose subjected to counter collision. In the case of untreated filter paper, it was possible to obtain a contact angle of 51 ° by the coating process because of the strong suction of water into the filter paper and the inability to measure the contact angle.
[図 5]図 5は、対向衝突処理したバクテリアセルロースをコーティングしたろ紙表面の、 耐油性を試験した際の写真である。赤 、染色剤 (ズダン IV)を混ぜたサラダ油を滴下 し、そのときの表面を観察したところ、未処理のろ紙では、速やかに浸透し、裏側に染 み出してきた力 コーティング処理により、サラダ油はろ紙表面上で広がったものの浸 透せず、裏側に油が染み出してくることはな力つた。  [FIG. 5] FIG. 5 is a photograph of the surface of a filter paper coated with bacterial cellulose subjected to counter collision treatment when tested for oil resistance. When the salad oil mixed with red and dye (Zudan IV) was dropped, and the surface at that time was observed, the untreated filter paper quickly penetrated and oozed out on the backside. Although it spread on the surface of the filter paper, it did not penetrate and the oil oozed out on the back side.
[図 6]図 6は、対向衝突処理した植物由来の微結晶セルロース繊維を塗布したろ紙表 面の耐油性を試験した際の写真である。左から、塗布回数が 1回、 3回、 5回のもので ある。サラダ油は直ちに浸透し、また、塗布回数力 ¾回以上のものは、塗布したものが フィルム化してろ紙からはがれた。 [図 7]図 7は、ホモジナイザーで解繊したバクテリアセルロースを塗布したろ紙表面の 耐油性を試験した際の写真である。左から、塗布回数が 1回、 3回、 5回のものである。 サラダ油は直ちに浸透した。 [Fig. 6] Fig. 6 is a photograph when the oil resistance of a filter paper surface coated with a microcrystalline cellulose fiber derived from a plant subjected to opposing collision treatment was tested. From the left, the number of applications is 1, 3, and 5. Salad oil permeated immediately, and those with a coating frequency of more than 3 times were filmed and peeled off the filter paper. [FIG. 7] FIG. 7 is a photograph of the oil resistance of the filter paper surface coated with bacterial cellulose defibrated with a homogenizer. From left to right, the number of applications is 1, 3, and 5. Salad oil penetrated immediately.
[図 8]図 8は、対向衝突処理したバクテリアセルロースを PETフィルム上に展開した際 の写真である。バクテリアセルロースは PETフィルムとよく密着した。  [FIG. 8] FIG. 8 is a photograph of the bacterial cellulose treated with facing collisions when spread on a PET film. Bacterial cellulose adhered well to the PET film.
[図 9]図 9は、対向衝突処理した微結晶性セルロース繊維を PETフィルム上に展開し た際の写真である。展開物はフィルムからはがれた。 [Fig. 9] Fig. 9 is a photograph of the microcrystalline cellulose fiber that has been subjected to opposing collision treatment, developed on a PET film. The development was peeled off the film.
[図 10]図 10は、対向衝突処理したバクテリアセルロースをコーティングしたろ紙表面 の、耐水性を試験した際の写真である。青い染色剤(Coomassie brilliant blue R-250 )の 1%溶液を滴下し、そのときの表面を観察したところ、未処理のろ紙では、速やかに 浸透し、裏側に染み出してきたが、コーティング処理により、溶液はろ紙表面上で広 がったものの浸透せず、裏側に染み出してくることはな力つた。  [Fig. 10] Fig. 10 is a photograph of the surface of the filter paper coated with bacterial cellulose subjected to the counter-impact treatment, when the water resistance was tested. When a 1% solution of blue stain (Coomassie brilliant blue R-250) was added dropwise and the surface at that time was observed, the untreated filter paper quickly penetrated and exuded to the back side. Although the solution spread on the surface of the filter paper, it did not permeate and did not penetrate into the back side.
[図 11]図 11は、対向衝突処理したバクテリアセルロースをコーティングした PE、 PP、 P ETの撥水性 (水の接触角)を測定した際の写真である。コーティング処理により、より 接触角が小さくなり、親水'性となった。 [FIG. 11] FIG. 11 is a photograph of the water repellency (water contact angle) of PE, PP, and PET coated with bacterial cellulose subjected to opposing collision treatment. The coating treatment made the contact angle smaller and made it hydrophilic.
[図 12]図 12は、対向衝突処理したァシ由来セルロースナノ繊維をコ一ティングしたろ 紙表面の、耐水性及び耐油性を試験した際の写真である。青い染色剤(Coomassie brilliant blue R-250)の 1%水溶液を滴下したところ、コーティング処理により、溶液は ろ紙表面上で広がったものの浸透せず、裏側に水が染み出してくることはな力つた( 左写真)。また、赤い染色剤 (ズダン IV)を混ぜたサラダ油を滴下したところ、サラダ油 はろ紙表面上で広がったものの浸透せず、裏側に油が染み出してくることはな力つた (右写真)。  [FIG. 12] FIG. 12 is a photograph of water and oil resistance tests on the filter paper surface coated with the cellulose nanofibers that were subjected to opposing collision treatment. When a 1% aqueous solution of blue stain (Coomassie brilliant blue R-250) was dropped, the solution spread on the surface of the filter paper but did not permeate, and water did not ooze out on the back side. (Left photo). In addition, when salad oil mixed with a red dye (Zudan IV) was dropped, the salad oil spread on the filter paper surface but did not penetrate, and the oil did not ooze out on the back side (right photo).
[図 13]図 13は、対向衝突処理した竹由来セルロースナノ繊維をコーティングしたろ紙 表面の、耐水性及び耐油性を試験した際の写真である。青い染色剤(Coomassie bri lliant blue R-250)の 1%水溶液を滴下したところ、わずかにろ紙への水の滲みこみが 見られたが、その染みこみ速度はゆるやかだった (左写真)。また、赤い染色剤 (ズダ ン IV)を混ぜたサラダ油を滴下したところ、まったくろ紙への染みこみが見られなかつ た (右写真)。 [図 14]図 14は、塗料組成物について、耐水性及び耐油性を試験した際の写真である 。耐油性、撥水性は、実施例 1と同様に維持されていた。 [FIG. 13] FIG. 13 is a photograph of the surface of the filter paper coated with the bamboo-derived cellulose nanofibers subjected to the counter collision treatment when tested for water resistance and oil resistance. When a 1% aqueous solution of blue stain (Coomassie brilliant blue R-250) was added dropwise, a slight oozing of water into the filter paper was observed, but the rate of soaking was slow (left photo). Moreover, when salad oil mixed with red dye (Zudan IV) was dropped, no soaking into the filter paper was observed (right photo). [FIG. 14] FIG. 14 is a photograph of the coating composition when tested for water resistance and oil resistance. The oil resistance and water repellency were maintained as in Example 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 〔被覆方法〕  [0030] [Coating method]
本発明にお 、てセルロースナノ繊維被膜で基材表面を被覆 (「コーティング」 t 、う こともある。)する際、その方法に特に制限はないが、通常、該液に基材を含浸 (浸漬 ということもある。)するか、又は該液を基材表面に塗布し、そして乾燥すること〖こよる 。含浸と塗布とは、組み合わせて行ってもよぐそれぞれを繰り返し行ってもよい。塗 布手段に、特に制限はなぐエアースプレー、ハケ、ローラー等で行うことができる。 乾燥は、加熱乾燥、強制乾燥、及び Z又は常温乾燥により行うことができる。  In the present invention, when the substrate surface is coated with a cellulose nanofiber coating (“coating” t), the method is not particularly limited, but the liquid is usually impregnated with the substrate ( Dipping) or applying the liquid to the substrate surface and drying. The impregnation and application may be performed in combination or repeatedly. There are no particular restrictions on the application means, and air spray, brush, roller, etc. can be used. Drying can be performed by heat drying, forced drying, and Z or room temperature drying.
[0031] 〔基材の例、及び紙'紙製品への本発明の適用〕  [0031] [Example of substrate and application of the present invention to paper and paper products]
本発明により、プラスチック、木材、紙等の有機基材表面;コンクリート、石材、ガラス 、セラミック等の無機基材表面;鉄、アルミニウム等の金属表面を被覆することができ る。本発明によりコーティングされ、改質される基材の好ましい例は、紙、ポリエチレン テレフタレート、ポリエチレン、ポリプロピレンである。特に好適な基材の例は、紙であ る。  According to the present invention, it is possible to coat an organic base material surface such as plastic, wood and paper; an inorganic base material surface such as concrete, stone, glass and ceramic; and a metal surface such as iron and aluminum. Preferred examples of substrates to be coated and modified according to the present invention are paper, polyethylene terephthalate, polyethylene, polypropylene. An example of a particularly suitable substrate is paper.
[0032] 本明細書で「紙」というときは、特別な場合を除き、植物繊維その他の繊維を絡み合 わせ、こう着させて作ったものをいう。原料、構成する繊維の種類及び配合の割合に 特に限定はなぐ板紙、成型物等、形態はいずれでもあり得る。ノルプモールドも含 まれる。また、繊維以外の防かび成分、抗菌成分等を含むものであってもよい。  [0032] In the present specification, "paper" refers to a product made by intertwining and attaching plant fibers and other fibers, except in special cases. The form can be any, such as a paperboard, a molded product, and the like, with no particular limitations on the raw material, the type of fiber constituting, and the proportion of blending. Norp mold is also included. Further, it may contain a fungicidal component other than fibers, an antibacterial component and the like.
[0033] 紙表面へは、セルロースナノ繊維は 0.01〜30g/m2 (好ましくは 0.05〜20g/m2、より好 ましくは、 0.1〜10g/m2、さらに好ましくは 0.2〜5g/m2)で基材表面に被覆される。被覆 方法は、浸漬、スプレー等による塗布等、基材の被覆の際に用いられる種々の方法 を適用することができる。 [0033] On the paper surface, the cellulose nanofibers are 0.01 to 30 g / m 2 (preferably 0.05 to 20 g / m 2 , more preferably 0.1 to 10 g / m 2 , more preferably 0.2 to 5 g / m 2. ) To cover the substrate surface. As the coating method, various methods used for coating the substrate, such as application by dipping or spraying, can be applied.
[0034] PETなど表面が疎水性 (撥水性)の基材に本発明のコーティングを施した場合、基 材表面は親水性に改質される。親水性であれば、コーティングされた基材の上に水 性インクや鉛筆で印字することができる。  [0034] When the coating of the present invention is applied to a substrate having a hydrophobic surface (water repellency) such as PET, the surface of the substrate is modified to be hydrophilic. If it is hydrophilic, it can be printed on the coated substrate with aqueous ink or pencil.
[0035] 本発明はまた、セルロースナノ繊維被膜により表面の一部又は全部が被覆されて いる、紙製品又は紙製成型物であって;該セルロースナノ繊維被膜が、バクテリアセ ルロースを対向衝突処理してセルロースナノ繊維を含む処理液を得て、該処理液に 基材を含浸し、及び Z又は該処理液を基材表面に塗布し、そして乾燥することにより 形成されるものである、前記紙製品又は紙製成型物を提供する。 [0035] In the present invention, a part or the whole of the surface is coated with a cellulose nanofiber coating. A paper product or a molded article made of paper; the cellulose nanofiber coating impinges bacterial cellulose on the opposite surface to obtain a treatment liquid containing cellulose nanofibers, and the treatment liquid is impregnated with a substrate. And the paper product or the molded article made of paper, which is formed by applying Z or the treatment liquid to the surface of the substrate and drying.
[0036] 紙製品又は紙製成型物の例としては、食品容器 (例えば、弁当容器)、食器 (紙コッ プ、 m.)、袋状物、カード類、書籍、雑誌、印刷用紙、文房具、印刷用記録紙、接 着紙、フィルタ一等が挙げられる。  [0036] Examples of paper products or molded articles include food containers (for example, bento containers), tableware (paper cups, m.), Bags, cards, books, magazines, printing paper, stationery Printing paper, adhesive paper, filter, etc.
[0037] 本発明はまた、紙製品又は紙製成型物等の基材表面に撥水性若しくは親水性、又 は耐油脂性を付与する方法であって;耐水性若しくは親水性、又は及び耐油脂性の 付与が、紙製品又は紙製成型物等の基材表面の一部又は全部をセルロースナノ繊 維被膜により被覆することによるものであり;該セルロースナノ繊維被膜が、バクテリア セルロース又はイネ科の植物由来のセルロース繊維を対向衝突処理してセルロース ナノ繊維を含む処理液を得て、該処理液に基材を含浸し、及び Z又は該処理液を 基材表面に塗布し、そして乾燥することにより形成されるものである、前記方法を提 供する。  [0037] The present invention is also a method for imparting water repellency or hydrophilicity, or oil and fat resistance to the surface of a substrate such as paper products or paper moldings; water resistance or hydrophilicity, and oil and fat resistance. Is imparted by coating part or all of the surface of a substrate such as a paper product or a paper molded product with a cellulose nanofiber coating; the cellulose nanofiber coating is formed of bacterial cellulose or gramineous Plant-derived cellulose fibers are subjected to opposing collision treatment to obtain a treatment liquid containing cellulose nanofibers, the treatment liquid is impregnated with a substrate, and Z or the treatment liquid is applied to the substrate surface and dried. The above method is provided.
[0038] 本発明の処理により、紙に種々の抵抗性、特に液体及びガスの浸透に対する抵抗 性を付与することができる。液体に対する抵抗性には、撥水性、耐油脂性 (耐油性及 び耐脂性)、耐水性が含まれる。各々の評価法は、当業者にはよく知られている。こ れらの評価は、通常、表面に水滴,油滴を滴下して評価する力 滴の着地直後のみ ならず、目的とする用途に応じ、着地後数時間経過後の状態を評価してもよい。本発 明者の検討では、最も濡れやす 、多孔性のろ紙に対してもスプレー加工により容易 に耐油性を付与することができ、この耐油性は、着地後数時間経過しても変化はな かった。  [0038] By the treatment of the present invention, various resistances, particularly resistance to penetration of liquids and gases, can be imparted to the paper. Resistance to liquids includes water repellency, oil and fat resistance (oil resistance and oil resistance), and water resistance. Each evaluation method is well known to those skilled in the art. These evaluations are usually performed not only immediately after the landing of water droplets or oil droplets on the surface, but also after the landing for several hours depending on the intended use. Good. According to the study of the present inventors, even the most wet and porous filter paper can be easily imparted with oil resistance by spraying, and this oil resistance does not change even after several hours after landing. won.
[0039] 評価の結果、目的とする用途に適した効果が認められない場合、コーティング方法 の改変により、改善することができる。例えば、スプレーによる 1〜数回の拭きつけで は充分な撥水性が得られない場合は、コーティング液への浸漬や、繰り返しの吹きつ け等の方法により改善することができる。  [0039] As a result of the evaluation, when an effect suitable for the intended use is not recognized, it can be improved by modifying the coating method. For example, if sufficient water repellency cannot be obtained by wiping one to several times by spraying, it can be improved by immersion in a coating solution or repeated spraying.
[0040] 〔塗料組成物〕 本発明はまた、ノ クテリアセルロース又は草本植物由来のセルロース繊維を対向衝 突処理して得られたセルロースナノ繊維を含む、塗料組成物を提供する。本発明の 塗料組成物は、塗料として、またインクとして用いることができる。 [0040] [Coating composition] The present invention also provides a coating composition comprising cellulose nanofibers obtained by opposing collision treatment of cellulose fibers derived from nocteria cellulose or herbaceous plants. The coating composition of the present invention can be used as a paint or as an ink.
[0041] 本発明の塗料組成物は、塗膜結性成分としてのセルロースナノ繊維のほか、展開 剤としての水、顔料及び各種の添加剤を含んでもよい。顔料の例としては、無機顔料 、レーキ、着色顔料,体質顔料、光輝性顔料を挙げることができ、添加剤の例として は、分散剤、乳化剤、沈殿防止剤、色分かれ防止剤、乾燥剤、垂れ防止剤、レベリン グ剤、可塑剤、艷消し剤、消泡剤、防火剤、防腐剤、防カビ剤、殺菌剤、塗膜にすべ り性を与えるための剤を挙げることができる。  [0041] The coating composition of the present invention may contain water, a pigment, and various additives as a developing agent in addition to cellulose nanofibers as a film-binding component. Examples of pigments include inorganic pigments, lakes, colored pigments, extender pigments, and glitter pigments. Examples of additives include dispersants, emulsifiers, suspending agents, color separation inhibitors, drying agents, Anti-sagging agents, leveling agents, plasticizers, anti-fogging agents, antifoaming agents, fireproofing agents, antiseptics, antifungal agents, disinfectants, and agents for imparting slipperiness to the coating film can be mentioned.
[0042] 本発明の塗料組成物は、各種基材表面及び旧塗膜表面に適用でき、基材表面の 例としては、プラスチック、木材、紙等の有機基材表面;コンクリート、石材、ガラス、セ ラミック等の無機基材表面;鉄、アルミニウム等の金属表面を挙げることができ、旧塗 膜としてはアクリル榭脂系、アクリルウレタン榭脂系、ポリウレタン榭脂系、フッ素榭脂 系、シリコンアクリル榭脂系、酢酸ビニル榭脂系、エポキシ榭脂系、アルキド榭脂等の 旧塗膜を挙げることができる。本発明の塗料組成物は、下塗り材、上塗り材と組み合 わせて用いることもできる。本発明の塗料組成物の塗装方法は、特に限定されず、浸 漬、エアースプレー、ハケ、ローラー等で行うことができる。  [0042] The coating composition of the present invention can be applied to the surface of various base materials and the surface of an old coating film. Examples of the base material surface include organic base material surfaces such as plastic, wood, and paper; concrete, stone, glass, Surfaces of inorganic base materials such as ceramics; metal surfaces such as iron and aluminum can be listed. Old coatings include acrylic resin, acrylic urethane resin, polyurethane resin, fluorine resin, silicon acrylic Examples include old coatings such as rosin, vinyl acetate, epoxy, and alkyd resins. The coating composition of the present invention can also be used in combination with an undercoat material and an overcoat material. The coating method of the coating composition of the present invention is not particularly limited, and can be performed by immersion, air spray, brush, roller or the like.
[0043] 従来の塗料組成物は、水性塗料として用いられるものであっても大多数にぉ 、て、 シックハウス症候群の原因の一つとされる VOC (揮発性有機化合物)成分を要するが 、本発明の塗料組成物は VOCを含まないように構成することができる。このような本 発明の塗料組成物は、主として、ァメ-ティが要求される (VOCを出さない)内装用汎 用材料や接触して用いるような材料 (例えば、老人福祉材料、病院に使用される金属 代替材料)に特に適する。具体例としては、建築用内装材、自動車の内装材、食品 用包装、プラスチックトレィを挙げることができる。  [0043] Most of the conventional coating compositions, even if used as water-based coatings, require a VOC (volatile organic compound) component that is one of the causes of sick house syndrome. The coating composition can be configured to be free of VOCs. Such a coating composition of the present invention is mainly used for interior materials that require a texture (does not generate VOCs) or materials that are used in contact (for example, welfare materials for the elderly, used in hospitals). Particularly suitable for metal substitute materials). Specific examples include architectural interior materials, automotive interior materials, food packaging, and plastic trays.
[0044] 本発明の塗料組成物は、ナノセルロース繊維の基材表面への吸着性が強いこと、 及び一緒に用いる顔料成分等の素材表面へのアンカー効果により、形成された塗膜 が基材表面を強く被覆することができると考えられる。したがって、本発明の塗料組 成物は、塗膜が充分な耐久性を発揮するように構成することができる。 [0045] 本発明の塗料組成物により、塗装又は染色と、耐油性'撥水性処理を同時に行うこ とがでさる。 [0044] The coating composition of the present invention has a coating film formed on the substrate due to the strong adsorptivity of the nanocellulose fibers to the substrate surface and the anchor effect on the material surface of the pigment component used together. It is thought that the surface can be strongly coated. Therefore, the coating composition of the present invention can be configured such that the coating film exhibits sufficient durability. [0045] With the coating composition of the present invention, painting or dyeing and oil resistance and water repellency treatment can be simultaneously performed.
[0046] 〔セルロースナノ繊維の表面構造と性質〕  [Surface structure and properties of cellulose nanofibers]
本発明により、セルロースナノ繊維及びセルロースナノ繊維被膜が提供される。ノ ク テリアセルロースは、脱脂綿 (コットン)にはみられない生体適合性を示すことも最近 報告されている力 これは、まさに表面の構造の違いが、接触面で細胞への影響の 違いに反映すことを示すものと思われる。前述したとおり、ノ クテリアセルロース表面 は、同じセルロース分子で構成されていても、集合状態が三斜晶(トリクリニック)の I al pha (アルファ)と呼ばれる結晶形態をとる。一方、植物由来の表面の分子の集合形態 は、 I beta (ベータ)と呼ばれる単斜晶の結晶形態をとるので、ナノ繊維におけるそれ ぞれの表面の性質が異なってくる。従来の植物セルロース繊維と本発明によるバクテ リアセルロースナノ繊維とは、構成分子の配列に違いがあり、結果として繊維表面の 分子の集合状態が異なり、そのため、繊維表面の示す性質が異なっていると考えら れる。本発明者らの検討によると、木本植物由来の結晶セルロース繊維の対向処理 物では、ノ クテリアセルロースの対向処理物を用いた場合と同様の効果は得られな かった (比較例参照)。また、ノ クテリアセルロースの高圧ホモジナイザーによる処理 物によっても、バクテリアセルロースの対向処理物を用いた場合と同様の効果は得ら れなかった。高圧ホモジナイザーによる処理は、セルロースの水溶化の観点からは有 用かもしれないが、当然物理的に分子切断を伴うため、セルロースを低分子化し、重 合度を低下させることとなる。しかしながら、対向衝突は、分子を引き剥がすように作 用し、重合度の低下はそれほど起こらない。そして、繊維表面の分子の集合状態は、 処理法によって異なることが予想される。したがって、ナノサイズでの考察では、出発 物質が同じでも、処理法により表面の性質が異なる繊維を生む。対向衝突処理技術 は、重合度低下を伴わず、分子構造非破壊操作である点で、重要である。  According to the present invention, cellulose nanofibers and cellulose nanofiber coatings are provided. Cellulose cellulose has recently been reported to exhibit biocompatibility not found in cotton wool. This is because the difference in the structure of the surface reflects the difference in the effect on the cells at the contact surface. It seems to show that. As described above, the surface of the nocteria cellulose takes a crystal form called I al pha (alpha) in which the aggregate state is triclinic even if it is composed of the same cellulose molecules. On the other hand, the molecular morphology of the plant-derived surface takes the form of a monoclinic crystal called I beta, so the surface properties of nanofibers differ. The conventional plant cellulose fiber and the bacterial cellulose nanofiber according to the present invention have a difference in the arrangement of the constituent molecules, and as a result, the aggregation state of the molecules on the fiber surface is different, and therefore the properties exhibited by the fiber surface are different. Conceivable. According to the study by the present inventors, the same effect as in the case of using the opposite treatment product of nocteria cellulose was not obtained with the opposite treatment product of the crystalline cellulose fiber derived from the woody plant (see Comparative Example). In addition, the same effect as that obtained when the opposite treatment product of bacterial cellulose was used was not obtained by the treatment with the high-pressure homogenizer of nocteria cellulose. The treatment with a high-pressure homogenizer may be useful from the viewpoint of water-solubilization of cellulose, but naturally it involves physical molecular cleavage, so that cellulose is reduced in molecular weight and the degree of polymerization is reduced. However, oncoming collisions act to tear off the molecules and the degree of polymerization does not decrease much. And the aggregation state of the molecules on the fiber surface is expected to differ depending on the treatment method. Therefore, nano-sized considerations produce fibers with different surface properties depending on the treatment method, even if the starting material is the same. Opposing collision treatment technology is important in that it is a non-destructive operation of molecular structure without lowering the degree of polymerization.
[0047] このような意味では、本願は、現時点では、対向衝突処理したバクテリアセルロース しか発現できない性質を提供するものである。本発明は、ナノ繊維の表面特性を利 用するものであり、現時点では適切な回数の対向衝突処理を施したバクテリアセル口 ースの表面構造とサイズが、セルロース分子及びその集合体の持つ両親媒性と!、う 潜在的特性をより明確に発現させて!/、ると!/、うことになる。 [0047] In this sense, the present application provides the property that only bacterial cellulose that has been subjected to facing collision treatment can be expressed at the present time. The present invention makes use of the surface properties of nanofibers. At present, the surface structure and size of a bacterial cell mouth that has been subjected to an appropriate number of counter-collision treatments are the same as the parents of cellulose molecules and their aggregates. It ’s medium! The potential characteristics will be expressed more clearly! /!
[0048] 本発明はまた、対向衝突処理した草本植物由来のセルロース繊維の繊維表面の 分子の集合状態 (結晶化度やパッキング状態)に起因する性質を提供するものでも ある。植物由来という点では同じであり、同じ結晶構造を有するァシ ·竹由来のセル口 ース繊維と、木材 (榭木)のセルロース繊維であっても、繊維表面の分子の集合状態 (結晶化度やパッキング状態)が異なり、繊維表面の示す性質が異なっていると考え られる。そのため、水中対向衝突によるナノ繊維の表面活性ィ匕効果も、異なることとな る。木材やコットン繊維に比べて、柔らかぐ結晶性の低い草本由来のセルロース繊 維は、対向衝突処理した際の表面でのナノ繊維のの毛羽立ちが多ぐその結果、比 表面積がきわめて大きくなり、基材に吸着しやすくなると考えられる。その結果、基材 の表面改質においては、バクテリアセルロースナノ繊維と同様に優れた効果を発揮 するものとなっている。  [0048] The present invention also provides a property resulting from the molecular aggregation state (crystallinity and packing state) of the fiber surface of the cellulose fiber derived from the herbaceous plant subjected to the counter collision treatment. It is the same in terms of plant origin, and it is the same crystalline structure of cell mouth fiber derived from bamboo and bamboo, and cellulose fiber of wood (wood). It is thought that the properties exhibited by the fiber surface are different. Therefore, the surface activity effect of nanofibers due to underwater collision will also be different. Cellulose fibers derived from herbs that are softer and less crystalline than wood and cotton fibers have a lot of fluffing of nanofibers on the surface when facing each other, resulting in an extremely large specific surface area. It is thought that it becomes easy to adsorb to the material. As a result, in the surface modification of the base material, the same excellent effect as that of the bacterial cellulose nanofiber is exhibited.
実施例  Example
[0049] 〔実施例 1〕 [Example 1]
<バクテリアセルロースナノ繊維懸濁液の調製 > <Preparation of bacterial cellulose nanofiber suspension>
ァセトノ クタ ~~ ヤンリナム (Acetobactor xylinumめ ヽ 3~Gluconacetobactor xvnnus ) (生産菌株: ATCC 53582)を培養して(バクテリアセルロース培養のための培地の調 製方法は、 Hestrin, S. & Schramm, M. (1954) Biochem. T. 58, 345— 352に従った。 ) 得られたセルロースペリクルを、そのまま lcm角サイズに裁断して、水に懸濁させた後 、対向衝突 (使用機器 アルチマイザ一 (スギノマシン製)、圧力 200mPa、衝突回数 Acetobactor xylinum (3 ~ Gluconacetobactor xvnnus) (producing strain: ATCC 53582) was cultured (the preparation method of the medium for bacterial cellulose culture is Hestrin, S. & Schramm, M. ( 1954) According to Biochem. T. 58, 345—352.) The obtained cellulose pellicle was cut into lcm square size as it was, suspended in water, Manufactured), pressure 200mPa, number of collisions
34回、懸濁液の固形濃度 約 0.4%)に供することで、セルロースナノ繊維懸濁液を 得た。 A suspension of cellulose nanofibers was obtained by applying the suspension 34 times to a solid concentration of about 0.4%.
[0050] <懸濁液によるろ紙表面のコーティング >  [0050] <Coating of filter paper surface with suspension>
ろ紙を基材物質として用い、セルロースナノ繊維懸濁液中に浸漬させ、 105°Cで乾 燥させることにより、ろ紙表面をナノ繊維でコーティングした。コーティング量は 2〜3g/ m あつ 7こ。  The filter paper surface was coated with nanofibers by using filter paper as a base material, dipping in a suspension of cellulose nanofibers and drying at 105 ° C. The coating amount is 2-3g / m 7 hot.
[0051] このナノ繊維でコーティングされたろ紙表面状態がどのように変化したかを、表面構 造と疎水性、又は耐油性の向上との相関に着目して評価を試みた。まず接触角法を 用いて、水の接触角を測定し、表面の疎水性を検討した。方法としては、 1 μ 1の超純 水を滴下し、ろ紙に着地 1秒後に計測した。また耐油性については、サラダ油 (製造 元 J-オイルミルズ、製品名 AJINOMOTO サラダ油 1500gェコボトル、原材料名 食用大豆油、食用なたね油)に赤い染料 (ズダン IV)をまぜて、ろ紙に滴下したときの 吸い込みで検討した。 [0051] How the surface condition of the filter paper coated with the nanofibers changed was determined by the surface structure. The evaluation was attempted by paying attention to the correlation between the structure and the improvement of hydrophobicity or oil resistance. First, using the contact angle method, the contact angle of water was measured to examine the hydrophobicity of the surface. As a method, 1 μ 1 of ultrapure water was dropped and the measurement was made 1 second after landing on the filter paper. In addition, oil resistance is obtained by mixing red oil (Zudan IV) with salad oil (manufacturer J-Oil Mills, product name AJINOMOTO Salad Oil 1500g Eco Bottle, raw material name edible soybean oil, edible rapeseed oil) and dripping into filter paper. investigated.
[0052] 結果: [0052] Results:
くバクテリアセルロースナノ繊維懸濁液 >  Bacterial Cellulose Nanofiber Suspension>
対向衝突処理の効果、特に繊維幅サイズへの影響を検討するため、透過型電子 顕微鏡 (TEM)により懸濁液中のセルロースナノ繊維の形態観察を行った。図 3に、 T EM写真を示す。ペリクル中のナノ繊維のネットワーク構造が破壊され、ペリクルでなく 単独の繊維として水中に分散することが判明した。さらにバクテリアセルロースナノ繊 維は通常幅 40〜60nm、厚み 10nmである力 衝突処理後、このナノ繊維の幅が約 10η mと 1/4程度に小さくなり、断面が正方形に近い形状を持つ繊維となることが TEM写 真力も判明した。  In order to investigate the effect of the opposing collision treatment, especially the influence on the fiber width size, the morphology of the cellulose nanofibers in the suspension was observed with a transmission electron microscope (TEM). Figure 3 shows a TEM photograph. It was found that the nanofiber network structure in the pellicle was destroyed and dispersed in water as a single fiber rather than a pellicle. Furthermore, bacterial cellulose nanofibers usually have a width of 40-60 nm and a thickness of 10 nm. After the impact treatment, the nanofiber width is reduced to about 10 ηm, about 1/4, and the cross-section is nearly square. It became clear that TEM photography power became.
[0053] このことから、純粋にナノ繊維表面とろ紙表面との間の相互作用のみによるろ紙表 面への繊維吸着は、ペリクルを形成して 、るバクテリアナノ繊維の場合よりも著しく向 上すると考えられた。すなわち、ろ紙は親水性であることから、その表面にナノ繊維の 親水性サイドが吸着し、疎水性サイドは空気側に向くことになるので、表面には疎水 性が付与されると考えられる。  [0053] From this, the fiber adsorption on the filter paper surface by purely the interaction between the nanofiber surface and the filter paper surface forms a pellicle, which is significantly better than the case of bacterial nanofibers. it was thought. That is, since the filter paper is hydrophilic, the hydrophilic side of the nanofibers is adsorbed on the surface, and the hydrophobic side is directed to the air side, so that the surface is considered to be hydrophobic.
[0054] <懸濁液によるろ紙表面のコーティング >  <Coating of filter paper surface with suspension>
0水との影響 (撥水性):  0 Influence with water (water repellency):
懸濁液に浸漬させたろ紙表面の接触角を測定した(図 4)。未処理のろ紙の場合、 水のろ紙への吸い込みが激しく接触角を測定することができな力つた。しかし、浸漬 処理したろ紙では、水の吸い込みが著しく遅くなり、接触角を測定することができ、一 回の浸漬処理で 51° という数値を得ることができ、疎水性を付与させることができたと 考えられた。  The contact angle of the surface of the filter paper immersed in the suspension was measured (Fig. 4). In the case of untreated filter paper, the suction of water into the filter paper was so strong that the contact angle could not be measured. However, with the filter paper that has been soaked, the suction of water was significantly slowed, the contact angle could be measured, and a numerical value of 51 ° could be obtained with a single soaking treatment, giving hydrophobicity. it was thought.
[0055] 水の接触角は、ガラスでは 20° 、ステンレスでは 45。 、そしてアルミニウムでは 70。 である(デュポン社 HP HYPERLINK "http://www.dupont.co.jp/tc/seinou/" http://w ww.duDont.co.iD/tc/seinou/参照)。浸漬処理したろ紙の 51° という数値はこれらと比 較するとステンレス並みの撥水性を持たせることができたと考えられる。 [0055] The contact angle of water is 20 ° for glass and 45 for stainless steel. And 70 for aluminum. (Refer to DuPont HP HYPERLINK "http://www.dupont.co.jp/tc/seinou/" http://www.duDont.co.iD/tc/seinou/). Compared with these values, the 51 ° value of the filter paper that had been soaked was considered to have the same water repellency as stainless steel.
[0056] ii)油との影響 (耐油性):  [0056] ii) Effect with oil (oil resistance):
ろ紙表面に油(サラダ油)を滴下し、そのときの表面を観察した(図 5)。通常のろ紙 では、水ほどではないが、速やかに浸透し、裏側に染み出してきた。しかし、浸漬処 理したろ紙に関しては、サラダ油はろ紙表面上で広がったものの浸透せず、裏側に 油が染み出してくることはな力つた。このことから耐油性が示された。  Oil (salad oil) was dropped onto the filter paper surface, and the surface at that time was observed (Fig. 5). Ordinary filter paper penetrated quickly and oozed out to the back, although not as much as water. However, for the filter paper that had been soaked, the salad oil spread on the surface of the filter paper but did not penetrate, and the oil did not ooze out on the back side. This showed oil resistance.
[0057] 〔比較例 1〕  [Comparative Example 1]
植物由来のセルロース微結晶性繊維(フナセル II:平均粒径 80マイクロメートル:フ ナコシ (株))を対向衝突処理 (衝突回数 30回、懸濁液の固形濃度 約 0.5%とした以 外は、実施例 1と同様の条件)に供することにより得られた懸濁液をスプレーでろ紙に 塗布し、 105°Cで乾燥し、ろ紙の耐油性を試験した(図 6)。  Plant-derived cellulose microcrystalline fibers (Funacel II: average particle size 80 micrometers: Funakoshi Co., Ltd.) are subjected to opposing collision treatment (30 collisions, suspension solid concentration about 0.5%), The suspension obtained by subjecting to the same conditions as in Example 1 was applied to the filter paper by spraying, dried at 105 ° C., and the oil resistance of the filter paper was tested (FIG. 6).
[0058] サラダ油はろ紙に直ちに浸透した。また、塗布回数力 ¾回以上のものは、塗布したも のがフィルム化してろ紙からはがれた。これは、用いたセルロースのろ紙との相互作 用が、バクテリアセルロースの場合と比較して弱いことに起因すると考えられた。  [0058] The salad oil immediately penetrated the filter paper. In addition, when the number of times of coating was more than 3,000 times, the coated material turned into a film and peeled off the filter paper. This was thought to be due to the fact that the interaction of the cellulose used with the filter paper was weaker than that of bacterial cellulose.
[0059] さらに、バクテリアセルロースをホモジナイザー(製品名 ヒスコトロン、マイクロテック • -チオン製)で 20,000rpm、 5min処理することにより得られた懸濁液をスプレーで塗 布し、それ以外の条件は実施例 1と同様にして、ろ紙の耐油性を試験した(図 7)。  [0059] Furthermore, the suspension obtained by treating bacterial cellulose with a homogenizer (product name: Hiscotron, manufactured by Microtec •-Thion) at 20,000 rpm for 5 minutes was applied by spraying, and the other conditions were as in Examples. The oil resistance of the filter paper was tested in the same way as in Fig. 1 (Fig. 7).
[0060] サラダ油はろ紙に直ちに浸透した。また、対向衝突処理した場合に比較して、ろ紙 表面に均一に塗布することが難し力つた。  [0060] The salad oil immediately penetrated the filter paper. In addition, it was difficult and evenly applied to the surface of the filter paper as compared with the case of opposing collision treatment.
[0061] 〔実施例 2〕  [Example 2]
実施例 1で得られたバクテリアセルロース懸濁液を、 PETフィルム上に展開した(図 8 ) o対向衝突処理したバクテリアセルロースは PETフィルムとよく密着した。紙以外の P ET、 PP、 PE等の基材にもバクテリアセルロースをコーティングすることができた。  The bacterial cellulose suspension obtained in Example 1 was developed on a PET film (FIG. 8). The bacterial cellulose subjected to the counter collision treatment was in good contact with the PET film. Other than paper, PET, PP, PE, and other substrates could be coated with bacterial cellulose.
[0062] 〔比較例 2〕 [Comparative Example 2]
比較例 2で得られた植物由来の微結晶性繊維の懸濁液を、 PETフィルム上に展開 した(図 9)。展開物がフィルムからはがれてしまった。 [0063] 〔実施例 3〕 The suspension of plant-derived microcrystalline fibers obtained in Comparative Example 2 was developed on a PET film (FIG. 9). The developed material peeled off the film. [Example 3]
実施例 1と同様にして、対向処理を 34回行ったバクテリアセルロース懸濁液をスプレ 一して気乾することを 15回繰り返し、最後に 40°Cで約 1時間乾燥させて得られたろ紙 の耐水性を評価した。  Filter paper obtained by spraying the bacterial cellulose suspension that had been subjected to the counter-treatment 34 times in the same manner as in Example 1 and air-drying it 15 times, and finally drying at 40 ° C for about 1 hour. The water resistance of was evaluated.
[0064] Coomassie (登録商標) brilliant blue R-250を 1%水に溶解させた溶液をろ紙に滴下 し、表面を観察した(図 10)。  [0064] A solution of Coomassie (registered trademark) brilliant blue R-250 dissolved in 1% water was dropped onto a filter paper, and the surface was observed (FIG. 10).
[0065] 〔実施例 4〕ナノセルロースを塗布した合成高分子フィルムの接触角測定 [Example 4] Contact angle measurement of a synthetic polymer film coated with nanocellulose
試料調製:  Sample preparation:
1. まず、合成高分子 (PE, PP, PET)フィルム上にナノセルロースをスプレーで吹き つけた後、風乾し、その後 40度で 30分〜 1時間乾燥させた。  1. First, nanocellulose was sprayed onto a synthetic polymer (PE, PP, PET) film, then air-dried, and then dried at 40 degrees for 30 minutes to 1 hour.
[0066] 2. 次に、このフィルム上にナノセルロースを滴下し、ワイヤーバー(精密シャフトに ステンレス鋼線を精密に巻き付けた製品)を使ってフィルム表面全体に塗布した。風 乾し、その後 40度で 30分〜 1時間乾燥させた。 [0066] 2. Next, nanocellulose was dropped onto the film and applied to the entire film surface using a wire bar (a product in which a stainless steel wire was precisely wound around a precision shaft). It was air dried and then dried at 40 degrees for 30 minutes to 1 hour.
[0067] 3. 2の操作を 2〜5回繰り返して接触角測定に供した。 [0067] 3. The operation in 2 was repeated 2 to 5 times for contact angle measurement.
[0068] 接触角測定の条件は、実施例 1と同じとした。 [0068] The contact angle measurement conditions were the same as in Example 1.
[0069] ¾: [0069] ¾:
結果を以下、及び図 11に示した。  The results are shown below and in FIG.
[0070] [表 1] [0070] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0002
( 4回測定した時の平均値) 接触角 (度) コーティングにより、接触角はより低くなり、表面はより親水性となった。この性質は、 着地後数時間経過しても変わらなかった。  (Average value when measured four times) Contact angle (degree) The coating made the contact angle lower and the surface more hydrophilic. This property did not change even after several hours after landing.
[0071] 〔実施例 5〕ァシ由来のセルロースナノ繊維のコーティング [Example 5] Coating of cellulose nanofiber derived from oak
ァシ由来のセルロースナノ繊維をコーティングに用レ、ると、ろ紙に耐水性及び耐油 性が付与されたことを確認した。  It was confirmed that water resistance and oil resistance were imparted to the filter paper when cellulose nanofibers derived from oil were used for coating.
1. ァシのパルプを水中で攪拌することでほぐし、ァシの懸濁液を調製した。  1. Pear pulp was loosened by stirring in water to prepare a suspension of pear.
2. これを対向衝突に供した。条件は、実施例 1と同様、アルチマイザ一 (スギノマシ ン製)を用い、圧力 200raPa、衝突回数 34回、懸濁液の固形濃度 約 0.4°/。とした。 2. This was subjected to an oncoming collision. The conditions were the same as in Example 1, using an optimizer (manufactured by Suginomashin), pressure 200 raPa, number of collisions 34 times, and solid concentration of suspension about 0.4 ° /. It was.
3. 対向衝突処理したァシの処理液を、実施例 1と同様にろ紙にコーティングした。3. The treatment liquid of the oil subjected to the counter collision treatment was coated on the filter paper in the same manner as in Example 1.
4. コーティングしたろ紙の耐水性試験、耐油性試験を行った。 4. Water resistance test and oil resistance test were performed on the coated filter paper.
[0072] 結果を図 12に示した。 [0072] The results are shown in FIG.
[0073] 〔実施例 6〕竹由来のセルロースナノ繊維のコーティング  [Example 6] Coating of bamboo-derived cellulose nanofibers
竹力 得られたパルプを用いて、実施例 4と同様にろ紙にコーティングし、耐水性、 耐油性試験を行った。  Bamboo force Using the obtained pulp, the filter paper was coated in the same manner as in Example 4, and water resistance and oil resistance tests were conducted.
[0074] 結果を図 13に示した。 [0074] The results are shown in FIG.
差替え用紙(規則 26) [0075] 〔実施例 7〕塗料組成物 Replacement paper (Rule 26) [Example 7] Coating composition
実施例 1で得た衝突回数 34回のセルロースナノ繊維懸濁液に、濃度が 0.1%になるよ うに青い染色剤(Coomassie brilliant blue R-250)を加え、塗料組成物とした。これを A blue dyeing agent (Coomassie brilliant blue R-250) was added to the cellulose nanofiber suspension with 34 collisions obtained in Example 1 to a concentration of 0.1% to obtain a coating composition. this
、ろ紙表面にスプレーで塗布し、耐油性、撥水性試験に供した。 Then, it was applied to the surface of the filter paper by spraying and subjected to oil resistance and water repellency tests.
[0076] 結果を図 14に示した。耐油性、撥水性は、実施例 1と同様に維持されていた。このこ とから、セルロースナノ繊維懸濁液を用いることにより、塗装又は染色と、耐油性'撥 水性処理を同時に行うことができると考えられた。 The results are shown in FIG. The oil resistance and water repellency were maintained as in Example 1. From this, it was considered that by using the cellulose nanofiber suspension, coating or dyeing and oil-resistant / water-repellent treatment can be performed simultaneously.

Claims

請求の範囲 The scope of the claims
[1] ノ クテリアセルロース又は草本植物由来のセルロース繊維を対向衝突処理してセ ルロースナノ繊維を含む処理液を得て、該処理液に基材を含浸し、及び Z又は該処 理液を基材表面に塗布し、そして乾燥することにより形成されるセルロースナノ繊維 被膜で基材表面を被覆する工程を含む、基材表面の改質方法。  [1] Nocteria cellulose or herbaceous plant-derived cellulose fibers are subjected to opposing collision treatment to obtain a treatment liquid containing cellulose nanofibers, the treatment liquid is impregnated with a base material, and Z or the treatment liquid is used as a base material. A method for modifying a substrate surface, comprising a step of coating the surface of a substrate with a cellulose nanofiber coating formed by applying to the surface and drying.
[2] 平均幅 25nm以下 (好ましくは 20nm以下、より好ましくは 15nm以下、さらに好ましくは [2] Average width of 25 nm or less (preferably 20 nm or less, more preferably 15 nm or less, more preferably
8〜12nm)であり、平均厚み 8〜12nmであるセルロースナノ繊維で被覆する工程を含 む、基材表面の改質方法。 A method for modifying the surface of a substrate, comprising a step of coating with cellulose nanofibers having an average thickness of 8 to 12 nm.
[3] 基材が紙、ポリエチレンテレフタレート、ポリエチレン又はポリプロピレンである、請 求項 1又は 2に記載の改質方法。 [3] The modification method according to claim 1 or 2, wherein the substrate is paper, polyethylene terephthalate, polyethylene, or polypropylene.
[4] セルロースナノ繊維が 0.01〜30g/m2 (好ましくは 0.05〜20g/m2、より好ましくは、 0.1[4] 0.01-30 g / m 2 of cellulose nanofibers (preferably 0.05-20 g / m 2 , more preferably 0.1
〜10g/m2、さらに好ましくは 0.2〜5g/m2)で基材表面に被覆される、請求項 3に記載 の改質方法。 The modification method according to claim 3, wherein the substrate surface is coated at -10 g / m 2 , more preferably 0.2-5 g / m 2 ).
[5] 基材に撥水性若しくは親水性、耐水性及び Z又は耐油脂性を付与するものである [5] It imparts water repellency or hydrophilicity, water resistance and Z or oil resistance to the substrate.
、請求項 4に記載の改質方法。 The reforming method according to claim 4.
[6] 食品保存用紙製成型物の表面を保護するための、請求項 6に記載の方法。 [6] The method according to claim 6, for protecting the surface of a molded product made of food storage paper.
[7] セルロースナノ繊維被膜により表面の一部又は全部が被覆されている、紙製品又 は紙製成型物であって; [7] A paper product or a paper molding, part or all of which is coated with a cellulose nanofiber coating;
該セルロースナノ繊維被膜力、バクテリアセルロースを対向衝突処理してセルロー スナノ繊維を含む処理液を得て、該処理液に基材を含浸し、及び,又は該処理液を 基材表面に塗布し、そして乾燥することにより形成されるものである、前記紙製品又 は紙製成型物。  The cellulose nanofiber coating force and bacterial cellulose are subjected to opposing collision treatment to obtain a treatment liquid containing cellulose nanofibers, the treatment liquid is impregnated with a substrate, and / or the treatment liquid is applied to the substrate surface, And the said paper product or paper-made molding formed by drying.
[8] 紙製品又は紙製成型物に耐水性及び耐油脂性を付与する方法であって;  [8] A method of imparting water resistance and oil resistance to paper products or paper moldings;
耐水性及び耐油脂性の付与が、紙製品又は紙製成型物表面の一部又は全部をセ ルロースナノ繊維被膜により被覆することによるものであり;  The provision of water resistance and oil resistance is by covering part or all of the surface of the paper product or paper molding with a cellulose nanofiber coating;
該セルロースナノ繊維被膜力 バクテリアセルロース又は草本植物由来のセルロー ス繊維を対向衝突処理してセルロースナノ繊維を含む処理液を得て、該処理液に基 材を含浸し、及び Z又は該処理液を基材表面に塗布し、そして乾燥することにより形 成されるものである、前記方法。 Cellulose nanofiber coating strength Cellulose fibers derived from bacterial cellulose or herbaceous plants are subjected to opposing collision treatment to obtain a treatment liquid containing cellulose nanofibers, the treatment liquid is impregnated with a base material, and Z or the treatment liquid is used. Form by applying to substrate surface and drying The method as defined above.
[9] ノ クテリアセルロース又は草本植物由来のセルロース繊維を対向衝突処理するェ 程を含む、セルロースナノ繊維の製造方法。  [9] A method for producing cellulose nanofibers, comprising a step of subjecting cellulose fibers derived from nocteria cellulose or herbaceous plants to opposing collision treatment.
[10] バクテリアセルロース又は草本植物由来のセルロース繊維を対向衝突処理してセ ルロースナノ繊維を含む処理液を得て、該処理液に基材を含浸し、及び Z又は該処 理液を基材表面に塗布し、そして乾燥することにより形成される、セルロースナノ繊維 被膜。 [10] Cellulose fibers derived from bacterial cellulose or herbaceous plants are subjected to opposing collision treatment to obtain a treatment liquid containing cellulose nanofibers, the treatment liquid is impregnated with a substrate, and Z or the treatment liquid is applied to the substrate surface. A cellulose nanofiber coating formed by applying to and drying.
[11] ノ クテリアセルロース又は草本植物由来のセルロース繊維を対向衝突処理して得 られたセルロースナノ繊維を含む、塗料組成物。  [11] A coating composition comprising cellulose nanofibers obtained by opposing collision treatment of cellulose fibers derived from nocteria cellulose or herbaceous plants.
PCT/JP2007/051810 2006-02-02 2007-02-02 Method of imparting water repellency and oil resistance with use of cellulose nanofiber WO2007088974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556933A JP5419120B2 (en) 2006-02-02 2007-02-02 Method for imparting water repellency and oil resistance using cellulose nanofibers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-025869 2006-02-02
JP2006025869 2006-02-02
JP2006251335 2006-09-15
JP2006-251335 2006-09-15

Publications (1)

Publication Number Publication Date
WO2007088974A1 true WO2007088974A1 (en) 2007-08-09

Family

ID=38327542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051810 WO2007088974A1 (en) 2006-02-02 2007-02-02 Method of imparting water repellency and oil resistance with use of cellulose nanofiber

Country Status (2)

Country Link
JP (2) JP5419120B2 (en)
WO (1) WO2007088974A1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074340A1 (en) * 2008-12-26 2010-07-01 花王株式会社 Gas-barrier material, gas-barrier molded article, and method for producing the gas-barrier molded article
WO2010074341A1 (en) * 2008-12-26 2010-07-01 花王株式会社 Cellulose fiber suspension and manufacturing method therefor, and film-like formed body and manufacturing method therefor
JP2010156068A (en) * 2008-12-26 2010-07-15 Kao Corp Gas barrier material
JP2010155427A (en) * 2009-01-05 2010-07-15 Konica Minolta Holdings Inc Polymer film having cellulose coating film
JP2010168572A (en) * 2008-12-26 2010-08-05 Kao Corp Gas-barrier material, gas-barrier molded article, and method for producing the same
JP2010167411A (en) * 2008-12-26 2010-08-05 Kao Corp Method of manufacturing film-like formed body
JP2010168573A (en) * 2008-12-26 2010-08-05 Kao Corp Suspension of cellulose fiber and method for producing the same
WO2010089948A1 (en) * 2009-02-06 2010-08-12 花王株式会社 Suspension of cellulose fibers and method for producing same
JP2010202855A (en) * 2009-02-06 2010-09-16 Kao Corp Film-like formed article and manufacturing method therefor
JP2010201414A (en) * 2009-02-06 2010-09-16 Kao Corp Method of manufacturing filmy molded article
WO2010134868A1 (en) * 2009-05-18 2010-11-25 Swetree Technologies Ab Method of producing and the use of microfibrillated paper
WO2011001706A1 (en) * 2009-06-29 2011-01-06 日本製紙株式会社 Paper for recording of information and processed paper
WO2011056130A1 (en) * 2009-11-03 2011-05-12 Stora Enso Oyj A coated substrate, a process for production of a coated substrate, a package and a dispersion coating
WO2012050277A1 (en) * 2010-10-11 2012-04-19 대한민국(관리부서: 산림청 국립산림과학원장) Porous separator using cellulose nanofibers, and method for preparing same
US8231764B2 (en) 2009-05-15 2012-07-31 Imerys Minerals, Limited Paper filler method
CN102787518A (en) * 2012-08-10 2012-11-21 南京林业大学 Method for preparing cotton cellulose nano fibril film
WO2012161299A1 (en) * 2011-05-26 2012-11-29 旭化成ケミカルズ株式会社 Pigment dispersion paste, and method for producing same
JP2014148781A (en) * 2014-05-28 2014-08-21 Hokuetsu Kishu Paper Co Ltd Method of producing porous material
EP2781652A1 (en) * 2013-03-20 2014-09-24 Ahlstrom Corporation Wet-laid nonwoven comprising nanofibrillar cellulose and a method of manufacturing such
JP2014217945A (en) * 2014-06-23 2014-11-20 北越紀州製紙株式会社 Porous material and method for producing the same
US8911591B2 (en) 2008-04-10 2014-12-16 Innventia Ab Method for providing a nanocellulose involving modifying cellulose fibers
JP2015003386A (en) * 2014-07-17 2015-01-08 北越紀州製紙株式会社 Porous body and production method thereof
FR3008904A1 (en) * 2013-07-26 2015-01-30 Inst Polytechnique Grenoble PROCESS FOR FORMING A HYDROPHOBIC LAYER
US20160130757A1 (en) * 2013-06-03 2016-05-12 Oji Holdings Corporation Method for producing sheet containing fine fibers
US9371616B2 (en) 2009-01-05 2016-06-21 Konica Minolta Holdings, Inc. Laminate and production method thereof
WO2016097964A1 (en) * 2014-12-18 2016-06-23 Stora Enso Oyj Process for the production of a coated substrate comprising cellulosic fibres
US9382436B2 (en) 2011-05-05 2016-07-05 Teknologian Tutkimuskeskus Vtt Method for surface modification of a body
WO2017002777A1 (en) * 2015-06-30 2017-01-05 国立大学法人九州大学 Modified nonwoven fabric for air filtration, air filtration device configured therefrom, and method for manufacturing modified nonwoven fabric
JP2017114714A (en) * 2015-12-22 2017-06-29 日本製紙株式会社 Coating agent for cement-based hardened material
US10053817B2 (en) 2010-04-27 2018-08-21 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10214859B2 (en) 2016-04-05 2019-02-26 Fiberlean Technologies Limited Paper and paperboard products
US10253457B2 (en) 2010-11-15 2019-04-09 Fiberlean Technologies Limited Compositions
US10294371B2 (en) 2009-03-30 2019-05-21 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
JP2019163569A (en) * 2018-03-20 2019-09-26 大王製紙株式会社 Manufacturing method of cellulose nanofiber
JP2019172482A (en) * 2018-03-27 2019-10-10 愛媛県 Multilayer painting method
JP2020096554A (en) * 2018-12-18 2020-06-25 三菱製紙株式会社 Jig for cryopreservation of cells or tissues
US10781025B2 (en) 2013-03-20 2020-09-22 Ahlstrom-Munksjö Oyj Fibrous substrate containing fibers and nanofibrillar polysaccharide
US10794006B2 (en) 2016-04-22 2020-10-06 Fiberlean Technologies Limited Compositions comprising microfibrilated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom
CH716233A1 (en) * 2019-05-28 2020-11-30 Ricola Group Ag Fiber mixture for paper, cardboard or cardboard and processes for their provision.
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials
CN113906181A (en) * 2019-04-24 2022-01-07 帕帕克斯销售有限责任公司 Barrier layer for cellulosic substrates
US11384210B2 (en) 2015-10-14 2022-07-12 Fiberlean Technologies Limited 3-D formable sheet material
US11598050B2 (en) * 2016-10-31 2023-03-07 Stora Enso Oyj Process for providing coating layer comprising micro fibrillated cellulose
EP4019599A4 (en) * 2019-09-27 2023-08-23 Ehime Prefecture Water-based paint, ceramic, and painting method
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
US11969695B2 (en) 2020-04-20 2024-04-30 Hokuetsu Corporation Porous body and process for manufacturing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532545B2 (en) 2014-04-22 2020-01-14 Oji Holdings Corporation Composite and method for producing the same
KR102315015B1 (en) * 2016-06-20 2021-10-21 한국전자통신연구원 Method for fabricating nanocellulose fiber
JP6404411B2 (en) * 2016-09-29 2018-10-10 栗原紙材株式会社 Pulp mold
WO2019112010A1 (en) * 2017-12-06 2019-06-13 中越パルプ工業株式会社 Nanocomposite and method for producing nanocomposite
JP7240663B2 (en) * 2018-09-06 2023-03-16 国立大学法人東京工業大学 Waterproof film, backsheet for disposable diaper, waste disposal bag, and method for producing waterproof film
EP3854212A4 (en) 2018-09-21 2021-10-27 Marubeni Corporation Plant pathogen control agent
KR102612387B1 (en) * 2018-10-18 2023-12-12 한국전자통신연구원 Manufacturing method of cellulose crystals
KR102291672B1 (en) * 2019-11-21 2021-08-24 한국생산기술연구원 Cellulose nano fiber surface ceramic modifing method for and ceramic coating solution manufactring method using thereof
KR102465874B1 (en) * 2020-11-30 2022-11-14 한국생산기술연구원 Ceramic coating composition containing cellulose nanofibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100801A (en) * 1979-12-26 1981-08-13 Itt Microfibrous cellulose and its manufacture
JPH05112652A (en) * 1991-10-22 1993-05-07 Dainippon Ink & Chem Inc Production of water-dispersed nitrocellulosic resin
JPH0925302A (en) * 1995-07-12 1997-01-28 Bio Polymer Res:Kk Production of meceration material of bacterial cellulose
JP2004249573A (en) * 2003-02-20 2004-09-09 Canon Inc Coating liquid and recording medium using it
JP2005515880A (en) * 2002-01-31 2005-06-02 コズロウ・テクノロジーズ・コーポレイション Microporous filter medium, filtration system containing the same, method for production and use thereof
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155349A (en) * 2001-11-19 2003-05-27 Seibutsu Kankyo System Kogaku Kenkyusho:Kk Nano meter unit ultramicro fiber from natural organic fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100801A (en) * 1979-12-26 1981-08-13 Itt Microfibrous cellulose and its manufacture
JPH05112652A (en) * 1991-10-22 1993-05-07 Dainippon Ink & Chem Inc Production of water-dispersed nitrocellulosic resin
JPH0925302A (en) * 1995-07-12 1997-01-28 Bio Polymer Res:Kk Production of meceration material of bacterial cellulose
JP2005515880A (en) * 2002-01-31 2005-06-02 コズロウ・テクノロジーズ・コーポレイション Microporous filter medium, filtration system containing the same, method for production and use thereof
JP2004249573A (en) * 2003-02-20 2004-09-09 Canon Inc Coating liquid and recording medium using it
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911591B2 (en) 2008-04-10 2014-12-16 Innventia Ab Method for providing a nanocellulose involving modifying cellulose fibers
WO2010074341A1 (en) * 2008-12-26 2010-07-01 花王株式会社 Cellulose fiber suspension and manufacturing method therefor, and film-like formed body and manufacturing method therefor
JP2010156068A (en) * 2008-12-26 2010-07-15 Kao Corp Gas barrier material
WO2010074340A1 (en) * 2008-12-26 2010-07-01 花王株式会社 Gas-barrier material, gas-barrier molded article, and method for producing the gas-barrier molded article
JP2010168572A (en) * 2008-12-26 2010-08-05 Kao Corp Gas-barrier material, gas-barrier molded article, and method for producing the same
JP2010167411A (en) * 2008-12-26 2010-08-05 Kao Corp Method of manufacturing film-like formed body
JP2010168573A (en) * 2008-12-26 2010-08-05 Kao Corp Suspension of cellulose fiber and method for producing the same
JP2010155427A (en) * 2009-01-05 2010-07-15 Konica Minolta Holdings Inc Polymer film having cellulose coating film
US9371616B2 (en) 2009-01-05 2016-06-21 Konica Minolta Holdings, Inc. Laminate and production method thereof
JP2010202855A (en) * 2009-02-06 2010-09-16 Kao Corp Film-like formed article and manufacturing method therefor
JP2010202856A (en) * 2009-02-06 2010-09-16 Kao Corp Suspension of cellulose fiber and method for producing the same
JP2010201414A (en) * 2009-02-06 2010-09-16 Kao Corp Method of manufacturing filmy molded article
WO2010089948A1 (en) * 2009-02-06 2010-08-12 花王株式会社 Suspension of cellulose fibers and method for producing same
US10294371B2 (en) 2009-03-30 2019-05-21 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10975242B2 (en) 2009-03-30 2021-04-13 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10982387B2 (en) 2009-03-30 2021-04-20 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US9127405B2 (en) 2009-05-15 2015-09-08 Imerys Minerals, Limited Paper filler composition
US10100464B2 (en) 2009-05-15 2018-10-16 Fiberlean Technologies Limited Paper filler composition
US8231764B2 (en) 2009-05-15 2012-07-31 Imerys Minerals, Limited Paper filler method
US11162219B2 (en) 2009-05-15 2021-11-02 Fiberlean Technologies Limited Paper filler composition
US11970817B2 (en) 2009-05-15 2024-04-30 Fiberlean Technologies Limited Paper filler composition
US11377791B2 (en) 2009-05-15 2022-07-05 Fiberlean Technologies Limited Paper filler composition
US11732411B2 (en) 2009-05-15 2023-08-22 Fiberlean Technologies Limited Paper filler composition
WO2010134868A1 (en) * 2009-05-18 2010-11-25 Swetree Technologies Ab Method of producing and the use of microfibrillated paper
WO2011001706A1 (en) * 2009-06-29 2011-01-06 日本製紙株式会社 Paper for recording of information and processed paper
WO2011056130A1 (en) * 2009-11-03 2011-05-12 Stora Enso Oyj A coated substrate, a process for production of a coated substrate, a package and a dispersion coating
JP2013510222A (en) * 2009-11-03 2013-03-21 ストラ エンソ オーワイジェイ Coated substrate, method for producing coated substrate, package, and dispersion coating
US10100467B2 (en) 2010-04-27 2018-10-16 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10053817B2 (en) 2010-04-27 2018-08-21 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials
US10633796B2 (en) 2010-04-27 2020-04-28 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
WO2012050277A1 (en) * 2010-10-11 2012-04-19 대한민국(관리부서: 산림청 국립산림과학원장) Porous separator using cellulose nanofibers, and method for preparing same
JP2013542069A (en) * 2010-10-11 2013-11-21 ザ・リパブリック・オブ・コリア・(フォレストリー・アドミニストレイション・フォレストリー・リサーチ・インスティテュート) Porous separation membrane using cellulose nanofiber and method for producing the same
US11136721B2 (en) 2010-11-15 2021-10-05 Fiberlean Technologies Limited Compositions
US10253457B2 (en) 2010-11-15 2019-04-09 Fiberlean Technologies Limited Compositions
US11655594B2 (en) 2010-11-15 2023-05-23 Fiberlean Technologies Limited Compositions
US9382436B2 (en) 2011-05-05 2016-07-05 Teknologian Tutkimuskeskus Vtt Method for surface modification of a body
JP6131185B2 (en) * 2011-05-26 2017-05-17 旭化成株式会社 Pigment dispersion paste and method for producing the same
JPWO2012161299A1 (en) * 2011-05-26 2014-07-31 旭化成ケミカルズ株式会社 Pigment dispersion paste and method for producing the same
WO2012161299A1 (en) * 2011-05-26 2012-11-29 旭化成ケミカルズ株式会社 Pigment dispersion paste, and method for producing same
CN102787518A (en) * 2012-08-10 2012-11-21 南京林业大学 Method for preparing cotton cellulose nano fibril film
EP2781652A1 (en) * 2013-03-20 2014-09-24 Ahlstrom Corporation Wet-laid nonwoven comprising nanofibrillar cellulose and a method of manufacturing such
FR3003580A1 (en) * 2013-03-20 2014-09-26 Ahlstroem Oy WET-NON-WOVEN COMPRISING CELLULOSE NANOFIBRILLES
US10781025B2 (en) 2013-03-20 2020-09-22 Ahlstrom-Munksjö Oyj Fibrous substrate containing fibers and nanofibrillar polysaccharide
US10697118B2 (en) * 2013-06-03 2020-06-30 Oji Holdings Corporation Method for producing sheet containing fine fibers
US11542659B2 (en) 2013-06-03 2023-01-03 Oji Holdings Corporation Method for producing sheet containing fine fibers
US20160130757A1 (en) * 2013-06-03 2016-05-12 Oji Holdings Corporation Method for producing sheet containing fine fibers
WO2015011364A3 (en) * 2013-07-26 2015-03-26 Institut Polytechnique De Grenoble Method for forming a hydrophobic layer
FR3008904A1 (en) * 2013-07-26 2015-01-30 Inst Polytechnique Grenoble PROCESS FOR FORMING A HYDROPHOBIC LAYER
JP2014148781A (en) * 2014-05-28 2014-08-21 Hokuetsu Kishu Paper Co Ltd Method of producing porous material
JP2014217945A (en) * 2014-06-23 2014-11-20 北越紀州製紙株式会社 Porous material and method for producing the same
JP2015003386A (en) * 2014-07-17 2015-01-08 北越紀州製紙株式会社 Porous body and production method thereof
CN107208378A (en) * 2014-12-18 2017-09-26 斯道拉恩索公司 The method of the substrate including cellulose fibre coated for producing
US10138599B2 (en) 2014-12-18 2018-11-27 Stora Enso Oyj Process for the production of a coated substance comprising cellulosic fibres
CN107208378B (en) * 2014-12-18 2021-02-02 斯道拉恩索公司 Method for producing a coated substrate comprising cellulose fibers
WO2016097964A1 (en) * 2014-12-18 2016-06-23 Stora Enso Oyj Process for the production of a coated substrate comprising cellulosic fibres
JP2017014643A (en) * 2015-06-30 2017-01-19 国立大学法人九州大学 Air filtering modified nonwoven fabric, air filtering device consisting of the same, and modified nonwoven fabric manufacturing method
WO2017002777A1 (en) * 2015-06-30 2017-01-05 国立大学法人九州大学 Modified nonwoven fabric for air filtration, air filtration device configured therefrom, and method for manufacturing modified nonwoven fabric
US11384210B2 (en) 2015-10-14 2022-07-12 Fiberlean Technologies Limited 3-D formable sheet material
US11932740B2 (en) 2015-10-14 2024-03-19 Fiberlean Technologies Limited 3D-formable sheet material
JP2017114714A (en) * 2015-12-22 2017-06-29 日本製紙株式会社 Coating agent for cement-based hardened material
US10214859B2 (en) 2016-04-05 2019-02-26 Fiberlean Technologies Limited Paper and paperboard products
US11274399B2 (en) 2016-04-05 2022-03-15 Fiberlean Technologies Limited Paper and paperboard products
US11732421B2 (en) 2016-04-05 2023-08-22 Fiberlean Technologies Limited Method of making paper or board products
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
US10801162B2 (en) 2016-04-05 2020-10-13 Fiberlean Technologies Limited Paper and paperboard products
US10794006B2 (en) 2016-04-22 2020-10-06 Fiberlean Technologies Limited Compositions comprising microfibrilated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom
US11572659B2 (en) 2016-04-22 2023-02-07 Fiberlean Technologies Limited Compositions comprising microfibrillated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom
US11598050B2 (en) * 2016-10-31 2023-03-07 Stora Enso Oyj Process for providing coating layer comprising micro fibrillated cellulose
JP7079633B2 (en) 2018-03-20 2022-06-02 大王製紙株式会社 Manufacturing method of cellulose nanofibers
JP2019163569A (en) * 2018-03-20 2019-09-26 大王製紙株式会社 Manufacturing method of cellulose nanofiber
WO2019181838A1 (en) * 2018-03-20 2019-09-26 大王製紙株式会社 Cellulose nanofiber manufacturing method
CN111819328A (en) * 2018-03-20 2020-10-23 大王制纸株式会社 Method for producing cellulose nanofibers
US11905657B2 (en) 2018-03-20 2024-02-20 Daio Paper Corporation Method for producing cellulose nanofibers
JP7034450B2 (en) 2018-03-27 2022-03-14 愛媛県 Multi-layer painting method
JP2019172482A (en) * 2018-03-27 2019-10-10 愛媛県 Multilayer painting method
JP7082039B2 (en) 2018-12-18 2022-06-07 三菱製紙株式会社 Jig for cryopreservation of cells or tissues
JP2020096554A (en) * 2018-12-18 2020-06-25 三菱製紙株式会社 Jig for cryopreservation of cells or tissues
CN113906181A (en) * 2019-04-24 2022-01-07 帕帕克斯销售有限责任公司 Barrier layer for cellulosic substrates
WO2020239510A1 (en) * 2019-05-28 2020-12-03 Ricola Group Ag Pulp for paper, board or card and the provision and use thereof
CH716233A1 (en) * 2019-05-28 2020-11-30 Ricola Group Ag Fiber mixture for paper, cardboard or cardboard and processes for their provision.
EP4019599A4 (en) * 2019-09-27 2023-08-23 Ehime Prefecture Water-based paint, ceramic, and painting method
US11969695B2 (en) 2020-04-20 2024-04-30 Hokuetsu Corporation Porous body and process for manufacturing same

Also Published As

Publication number Publication date
JP2014050835A (en) 2014-03-20
JP5690387B2 (en) 2015-03-25
JPWO2007088974A1 (en) 2009-06-25
JP5419120B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5690387B2 (en) Method for imparting water repellency and oil resistance using cellulose nanofibers
Dufresne Nanocellulose processing properties and potential applications
El-Wakil et al. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging
Lavoine et al. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review
EP2928787B1 (en) Method for producing a coated packaging material and packaging material with at least one barrier layer for hydrophobic compositions
Zakaria et al. Mechanical and antibacterial properties of paper coated with chitosan
JP6978843B2 (en) Manufacturing method of cellulose nanofiber film and cellulose nanofiber film
Wang et al. Liquid‐Like SiO2‐g‐PDMS Coatings on Wood Surfaces with Underwater Durability, Antifouling, Antismudge, and Self‐Healing Properties
CN110139960A (en) The method of film of the manufacture comprising microfibrillated cellulose
Shahid et al. Biomaterial based fabrication of superhydrophobic textiles–A review
Oyekanmi et al. Extracted supercritical CO2 cinnamon oil functional properties enhancement in cellulose nanofibre reinforced Euchema cottoni biopolymer films
WO2016082025A1 (en) Water, grease and heat resistant bio-based products and method of making same
CN104863007B (en) Chitin crystal bar-based nano-silver composite antibacterial paper, and preparation method and application thereof
EP3390458B1 (en) Bimodal cellulose composition
Zhong et al. Green and superhydrophobic coatings based on tailor-modified lignocellulose nanofibrils for self-cleaning surfaces
Camargos et al. Protective coatings based on cellulose nanofibrils, cellulose nanocrystals, and lignin nanoparticles for the conservation of cellulosic artifacts
Adibi et al. High barrier sustainable paper coating based on engineered polysaccharides and natural rubber
Wan et al. Bioinspired paper-based nanocomposites enabled by biowax–mineral hybrids and proteins
Bu et al. Highly Hydrophobic Gelatin Nanocomposite Film Assisted by Nano-ZnO/(3-Aminopropyl) Triethoxysilane/Stearic Acid Coating for Liquid Food Packaging
Wu et al. A superhydrophobic moso bamboo cellulose nano-fibril film modified by dopamine hydrochloride
Basak et al. Oil-and water-resistant paper coatings: A review
Liu et al. Improvement of Hydrophobicity and Gas Permeability of the Polyvinyl Alcohol Film Utilizing Monoglyceride Coating and Diatomaceous Earth Filling and Its Application to Fresh-Cut Mango
Princi Handbook of polymers in paper conservation
Bridarolli Multiscale approach in the assessment of nanocellulose-based materials as consolidants for painting canvases
Wang Wood-Based and Wood-Templated Materials with Special Wettability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707959

Country of ref document: EP

Kind code of ref document: A1