WO2007088225A1 - Computer vision system for picking small row-cultivated fruits - Google Patents

Computer vision system for picking small row-cultivated fruits Download PDF

Info

Publication number
WO2007088225A1
WO2007088225A1 PCT/ES2007/000035 ES2007000035W WO2007088225A1 WO 2007088225 A1 WO2007088225 A1 WO 2007088225A1 ES 2007000035 W ES2007000035 W ES 2007000035W WO 2007088225 A1 WO2007088225 A1 WO 2007088225A1
Authority
WO
WIPO (PCT)
Prior art keywords
fruit
fruits
peduncle
vision system
lasers
Prior art date
Application number
PCT/ES2007/000035
Other languages
Spanish (es)
French (fr)
Inventor
José Ramón Casar Corredera
Paula Tarrio Alonso
Ana María BERNARDOS BARBOLLA
Juan Alberto Besada Portas
Javier Ignacio PORTILLO GARCÍA
José María Duran Altisent
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Publication of WO2007088225A1 publication Critical patent/WO2007088225A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D46/00Picking of fruits, vegetables, hops, or the like; Devices for shaking trees or shrubs
    • A01D46/30Robotic devices for individually picking crops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0248Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser

Definitions

  • the invention is framed in the sector of automated systems for use in agriculture, and specifically in that of robotic systems, based on artificial vision, for tasks of handling and harvesting in horticulture.
  • the interest of the agricultural production sector is known for having automated, semi-automated or robotic systems, for harvesting fruits for different types of cultivation, including tree fruits, fruits grown in soil or fruits grown high, as in hydroponic crops.
  • This invention relates to the collection of small delicate fruits grown high, such as strawberries in hydroponic greenhouse crops.
  • fruit plants grow in rows, planted on a physical support, such as plastic gutters, which are arranged lengthwise, at a variable height above the greenhouse floor.
  • the fruits grow and ripen with the peduncle hanging out from the culture support.
  • the rows can be raised or lowered to different heights, individually or in groups, to facilitate access to plants in cultivation and harvesting tasks.
  • the general technological problem to be solved is that of the conception of an autonomous vehicle, equipped with the vision and handling systems necessary to make a careful collection of delicate fruits, with minimal human assistance.
  • the system must meet at least the following three requirements:
  • the system must be able to collect all ripe fruits and not only those that are easily identifiable by being isolated. Therefore, it must be able to recognize and isolate the fruits that grow in clusters, being understood by cluster, for these purposes, the spatial concentration of several fruits. Likewise, it must be able to solve the problem of occlusions, especially those produced by the partial concealment of ripe fruits that can be collected by other immature ones.
  • the reasonably high speed should be understood to be that which is limited only by the movement capacity of the selected robotic device and not by the limitations of acquisition, operation and processing time of the fruit detection and location systems. This circumstance imposes explicit requirements on the detection and location system.
  • the vision systems proposed for harvesting applications are preferably based on the use of a camera, whose output is processed to detect by color, curvature or shape the presence of the fruit and make a first location in the plane of the 2-D image.
  • the camera's 2-D information is complements with the information of the third coordinate of rank (distance), that supplies a device of measure of distance.
  • This can be an ultrasonic emitter-receiver device or a pair of laser-type devices (emitter and receiver) operating in the infrared or visible.
  • This is the foundation, for example of the systems proposed in patents JP8112021, JP2004180554, JP5174131, JP5168334, JP5168333.
  • the determination of the distance or the calculation of the distance map is done by triangulation, estimating the delay or the phase difference between the signal emitted by the sending device and the one received at the receiver.
  • the radiation emitted by the emitter is deflected with a mechanically controlled mirror, which focuses the radiation towards the area to be explored, where it is reflected to be captured by the receiving device or electronic eye.
  • the camera and / or the distance meter can be fixed on the vehicle or mounted on the end of the robotic pickup arm.
  • the vision system consists of two cameras that operate sequentially, a fixed one that analyzes the entire scene globally and locates the fruit in the 2-D plane and another, mounted on the end of the manipulator, which guides the arm as it approaches its target.
  • the terminal element necessary for harvesting is one of the pre-cutter type, consisting of a clamp-shaped element that grabs the peduncle at the designated point and another scissor-shaped one that cuts it over the predetermined distance (as mentioned , for example, in JP2004180554). It is noted that, for this type of delicate collection, other mechanisms whose operation involves an aggression to the fruit in any of the phases (such as suction or traction) are not appropriate.
  • harvesting in a greenhouse where plants are grown in parallel rows arranged high requires installing the vision and collection elements on a vehicle controlled by the vision system itself, capable of moving longitudinally along the crop, of so that the vision system successively access the collection scenes.
  • the system could move with traction independent on rails arranged on the ground or mounted on a sliding platform, which in turn allows access to the set of rows in the greenhouse.
  • the core of the invention is based on a vision system that allows the precise guidance of a robotic arm for the apprehension, cutting and subsequent transfer and delicate deposition of each small ripe fruit in the designated position of a tray or container.
  • the problem that can be solved is that of precisely designating the exact 3-D point to which to direct the pre-cut-end terminal mechanism that will grab the peduncle of a ripe fruit and cut it over the predetermined distance.
  • the system has an optimum collection efficiency, to the extent that it is able to collect most of the fruits of the rows (and not only those that grow isolated).
  • the basic vision system (Fig. 1) is composed of: two color CCD cameras (1) preferably arranged with parallel axes pointing to the region where the fruits are (5), a matrix (2) of laser diodes low-cost spot optics (spot type) (for example, commercial laser pencils or pointers in a wavelength close to 650 nm.) mounted on an adjustable platform (3) of the pan-tilt type (i.e., azimuth orientable and elevation), which will be used to orient the matrix at the desired angle; and an additional laser diode (4), also on the platform, which projects a flat optical beam at the designated time and place.
  • spot type for example, commercial laser pencils or pointers in a wavelength close to 650 nm.
  • pan-tilt type i.e., azimuth orientable and elevation
  • This commercial diode is nothing more than a spot diode, such as those that constitute the matrix, with a lens that spreads the light horizontally to project a fan-shaped beam instead of a spot or
  • the invention as shown in Fig. 2, together with the robotic manipulator (6) equipped with a pre-cut-end terminal element (7), is installed on a vehicle (8), which has a trailer with trays attached (9) ) in which the harvested fruits will be deposited.
  • vehicle as shown in Fig. 3, slides on two rails (10) on the ground or mounted on a platform (11) arranged in the same direction as the rows of plants (5a) and (5b) of the that hang the fruits that you want to collect.
  • the vehicle moves, stepping on the rails, from one side of the greenhouse to the other, picking up the fruits of one of the rows (5a) and on its way back those of the symmetrical row (5b), or alternatively in the two rows only in its way of going.
  • auxiliary systems for feeding, traction and control of devices and the processing and control computer are housed inside the vehicle, as well as the parameter selection panel from which the parameters related to the degree of maturity required for cutting, grading sizes, etc., according to the type and variety of fruit, preferences according to the time, etc.
  • the system has four cameras arranged in two stereoscopic pairs, the left pair independently being used in the vision of the corresponding left row and the right pair in the symmetrical row on the right.
  • a single pair of cameras performs the vision of both rows, rotating 180 ° in solidarity at the required time, commanded by the control system.
  • the pair of cameras takes pictures of the scene; These are digitized and stored in real time.
  • the images are then converted from the RGB format, in which the cameras are captured, to the HSV format, which is appropriate for efficient segmentation of the scene.
  • the segmentation operation consists of identifying and isolating in the images the pixels that correspond to the characteristics of the fruit, distinguishing them from those others that correspond to the rest (bottom, leaves, stems, planting bags, etc.). In general, it is appropriate to perform a pre-segmentation based on color and hue or saturation, working on the H and S coordinates. In each pixel it is determined whether the values of the H and S coordinates correspond to those of the ripe fruit (for example, determined red in the case of the strawberry), checking if they are in the margins of specified values. The values of these margins, which can be entered and varied through the control panel, depend on the variety of the fruit and the degree of maturity specified for the collection. This first processing eliminates pixels whose color and saturation do not correspond to those of the ripe fruit.
  • a post-processing is carried out, consisting of eliminating the pixels that appear isolated (noise ), to stay only with those pixels grouped in spots or "blobs", that is, groups of pixels connected (neighbors) to each other, which correspond to the fruit or a cluster of fruits in clusters.
  • the next step is to calculate the 3-D coordinates of certain singular points of the scene, with the ultimate goal of determining whether the "blobs" correspond to an isolated fruit or a group.
  • first single points are marked on each of the 2-D "blobs" of the two segmented stereoscopic images, in order to carry out the correspondence process (process of identifying, in each of the two images, the points 2-D that correspond to the same and unique spatial point of the 3-D scene).
  • the vision system of this invention as shown in Fig.
  • the 2-D position of its centroid (13) is calculated (geometric center at 2 -D) and, drawing virtually horizontal and vertical lines that pass through the coordinates of the centroid, the four extreme points of the "blob” are also marked: upper (14), lower (15), right (16) and left (17 ), which will be used to determine the size of the "blob” and whether it corresponds to an isolated fruit (and, in this case, determine its size) or a cluster.
  • the correspondence between the 2-D centroids of all the "blobs" of the two images is then made, that is, the pairs of centroids corresponding to the same (approximate) spatial point are determined.
  • any known method can be used.
  • the centroid point of one image is matched in the other one that is at the same height (Y coordinate) and whose disparity in X (difference in its X coordinates) is compatible with the geometry of the cameras for distance of medium vision
  • the points corresponding to the "blob" end points marked above are calculated.
  • the 3-D reconstruction of a point from its stereoscopic projections is a trivial problem with a known solution, which in the real case only requires knowing the transformation matrix corresponding to the stereo system cameras, which is calculated in a previous process of calibration.
  • the calculated 3-D positions must refer to a fixed coordinate origin, which can be taken anywhere in the robotic system or the vehicle.
  • the central midpoint between the cameras has been taken as the origin of coordinates, in the plane in which they are mechanically fixed (on the vehicle). This point must be set in the calibration process and will also be the origin of coordinates to which the movement of the robotic arm and the pan-tilt platform will refer.
  • each of the "blobs” is analyzed sequentially! from left to right (or from right to left), as described below.
  • the "blob" corresponds to a single isolated fruit or several grouped. For this, the distances in 3-D between the upper point and the lower point and between the right point and the left point of the "blob” are compared, respectively with the diametric reference values of the type of fruit that is collected (previously they have entered in the control panel and they depend on the type of variety of the fruit).
  • the measures taken are used directly to estimate the size of the fruit for later classification, and it is determined whether its degree of maturity is the desired for collection; for this, the percentage of pixels for which the H and S coordinates take values between the preset ones for the ripe fruit is calculated.
  • the fruit is classified as unripe and another "blob" is analyzed.
  • the fruit is classified as ripe and the arm has to be ordered to direct its prehensile-cutter device to a point of the fruit stalk.
  • the clamp will grab the peduncle, the scissor device will cut it over and It will transfer the fruit to the designated tray where it will be placed in the appropriate receptacle, according to its size.
  • the "blob" does not correspond to a single isolated ripe fruit, it is treated as a cluster of several in cluster. In this case, the procedure to individualize the fruits one by one in succession begins, starting with the one that is closest to the vision system.
  • the laser diode array is oriented towards the grouping of fruits, using the 3-D coordinates of the "blob" centroid previously calculated as the orientation of the axis of the matrix.
  • the logic of on / off control of lasers causes them to generate a grid of laser light points (marks or spots) on the "blob" of fruits, as shown in Fig. 5, for a short time, during that the scene is captured by the stereoscopic camera system.
  • the next step is to accurately determine the 3-D position of each of the light points (18) of the reticle in the fruit group (19).
  • Light marks have a typical collection distance diameter of between one millimeter and one and a half millimeters.
  • the marks are isolated, using for example a segmentation algorithm similar to that described for the pre-segmentation of "blobs".
  • the coordinates H and S were compared with the desired thresholds.
  • the pixels corresponding to the mark in each projection can be detected by comparing their V values with a minimum threshold, taking advantage of the fact that the mark has a luminosity considerably higher than the rest of the scene.
  • Another option, even simpler, is to perform a subtraction operation on the V coordinate of the image illuminated by the lasers and the unlit image. The result is an image in which only the laser marks remain, directly segmented.
  • Segmented the marks, their 2-D centroids are calculated in both images by the procedure described above, the correspondence between them in the two images is performed by the procedure also described and the 3-D reconstruction of the mark on the group is performed of fruits. There is thus a map of three-dimensional points on the surface of the fruit grouping.
  • interlaced lasers of different color can be used: in this way, using, in addition to the V coordinate, the color coordinate H, you only have to make the correspondence of those brands that have the same color.
  • the following processing is performed to estimate the position of each of the fruits to be collected: first, the one closest to the vision system is taken. Next, it is determined which of the 3-D points adjacent to that in the grid correspond to the same fruit, without more than calculating the three-dimensional distances between them and discarding those whose distance is greater than a number related to the caliber of the fruit.
  • the position of the fruit in the cluster is located precisely with the order of cm.
  • the approximate 3-D position of the upper point of the fruit can be determined, averaging the x (lateral) coordinate of all the points belonging to that fruit and taking the y (height) yz (depth) coordinates of the point of the fruit. fruit that has a coordinate and (height) greater. This point will correspond approximately to the place where the fruit stalk is born. Then proceed to locate your peduncle with precision of the order of the millimeter.
  • this invention extends the method described in P200501586 / 5 for detection of isolated peduncles.
  • the pan-tilt platform on which the line laser (4) is also located is directed to project the laser line (20) approximately 1 cm. above the top of the fruit, using as reference the 3-D position of the top point of the fruit calculated as described above, so that the line intercepts a point (21) of the peduncle (22), as shown by the Fig. 6.
  • the control diode of the line diode feeds it, it projects the beam (23) and a spot (21) explicitly appears at the illuminated point of the peduncle.
  • the target peduncle is or may be close to others of other fruits (from the cluster or from non-mature non-ripe fruits) and, therefore, the illumination with the line laser generates several marks (one per peduncle).
  • the illumination is repeated at successive elevation angles, as illustrated in Fig. 7, so that a trace of marks (24) is generated for each of the peduncles present.
  • the peduncle to be cut is one for which a simple extrapolation of the trace marks passes closer to the top point of the fruit to be harvested, whose 3-D position was previously calculated.
  • the clamp is directed, which gently grabs the peduncle and separates the fruit from the cluster to isolate it from the rest of the fruits. It remains only to treat it as an isolated fruit in the manner described above for isolated fruits: its degree of maturity and its size are determined and, if it is necessary to cut it, it is cut and deposited in the corresponding receiving tray. Otherwise, it is released gently and the entire operation is repeated in another region of the "blob".
  • the operation is repeated on the "blob" from the beginning, identifying, locating, classifying and cutting, where appropriate, the other fruits of the cluster, possibly occluded in the images previously taken.
  • the process is continued until there are no fruits left in the cluster or until those that remain are not collected because they have not reached the desired maturity point.
  • the vehicle travels longitudinally on the platform the distance necessary for the cameras to capture an adjacent scene on the row in collection.
  • the lasers can alternate color (red, green, blue, etc.), or be of the same color but of different power, so that the different brightness of each spot allows discrimination by intensity.
  • the line laser can be installed in the hand of the robotic arm instead of integrated in the pan-tilt platform.
  • the aiming is controlled properly orienting the arm
  • the ignition can be carried out at the desired time (for example, you can first guide the arm towards the fruits and turn on the laser when the hand is close).
  • Fig. 1 Main elements of the vision system.
  • the two CCD cameras (1) point to the area where the fruits are (5) to capture the scene and the matrix of point lasers (2) and the line laser (4), mounted on the adjustable platform (3), are They will point to the area indicated in each case.
  • FIG. 2 Schematic view of the vehicle (8) on which the vision system (consisting of the cameras (1), the adjustable platform (3), the array of point lasers (2) and the line laser (4) will be placed )) and the robotic arm (6) equipped with a prehensile-cutter terminal (7), which will be responsible for collecting the fruits indicated by the vision system.
  • the vehicle has attached a trailer with trays (9) where the collected fruits will be deposited.
  • FIG. 3 Schematic perspective view of the movement of the vehicle (8) on the rails (10) of the platform (11) in relation to the arrangement of the fruits to be collected (5a) and (5b).
  • Fig. 4 Example image obtained after pre-segmentation and post-processing in which several "blobs" (12) of different sizes are observed. The centroid (13), upper (14), lower (15), right (16) and left (17) points of each of them are indicated, from which their size is estimated.
  • Fig. 5 Example of the grid of points (18) that projects the matrix of lasers on a cluster (19) of cluster fruits.
  • Fig. 6 Schematic perspective view of the operating foundation of the line laser.
  • the fan light (23) emitted by the line laser (4) that is intercepted by the peduncle (22) generates an isolated point (21) on it.
  • Fig. 7 Profile (a) and elevation (b) of the lighting at successive elevation angles performed by the line laser (4).
  • the trace of points (24) that this procedure produces in each peduncle is indicated.
  • Fig. 8 Diagram of the box (25) in which the laser matrix (2) and the line laser (4) are placed in one embodiment.
  • FIG. 9 Schematic of the robotic arm (6) in which the gripping (26) and cutting terminal accessories (27) are shown.
  • Fig. 10 Example of possible arrangement inside the vehicle (8).
  • the arm control unit (28) the feeders of the cameras (29), the platform controllers (30), the control PC (31) with the parameter selection panel, composed of the own Computer keyboard (32) and a conventional flip-up flat TFT display (33), and wiring (34).
  • the case of a vision system consisting of only two cameras arranged to realize the lateral vision with respect to the vehicle's line of movement and mounted on a vehicle will be taken.
  • turntable capable of rotating on itself 180 ° so that the cameras can realize the lateral vision in the opposite line.
  • the collection is first carried out in a crop line from one side of the greenhouse (beginning) to the other (end). Then, turning the cameras, on the way back (from end to beginning), the collection is done on the opposite line.
  • Lasers spot and line can be chosen from the abundant commercially available ones. A recommended option is to select them at a wavelength close to 650 nm, due to their low cost.
  • Lasers, encapsulated with their lens in a cylindrical device, are arranged in matrix form as indicated by way of illustration in Fig. 8, in which they appear arranged in a geometry of 3 rows and 7 columns (21 spot lasers ). It is noted that the laser configuration must be chosen according to the cultivation characteristics and especially according to the maximum size of the finite clusters.
  • the matrix of lasers (2) is arranged in a box (25), in which the line laser (4) can also be housed. Lasers are controlled individually with the on / off logic, which is nothing more than a logic that feeds each of the lasers or not, as indicated by the central control of the PC.
  • the box with the laser matrix is fixed on a pan-tilt platform controlled by RS232 interface from the control PC synchronously with the rest of the vision system.
  • the vehicle with the attached trailer that transports the tray system, is arranged on the rails of the platform.
  • the vehicle travels longitudinally, gathering the fruits on the platform, as indicated above.
  • the movement is carried out by the action of a servomotor that acts in a conventional manner on the vehicle's traction system and whose displacement in each step is determined by the field of vision of the chosen cameras, so that in the next position the vision of The cameras are adjacent to the previous one.
  • the movement order is given by the control PC, through the servo motor controller, at the moment when the collection of each scene is finished.
  • the control PC through the servo motor controller, at the moment when the collection of each scene is finished.
  • At the end of the collection hall there is a simple switch that is activated when it is reached by one of the wheels of the vehicle, indicating that it has reached the end of the aisle and reversing the direction of movement of the vehicle and rotating the camera platform 180 °.
  • the harvesting operation is then carried out on the twin crop line in the opposite direction until the vehicle reaches the beginning of the greenhouse.
  • the turntable In the upper part of the vehicle the turntable is arranged with the parallel cameras, and with the angle of elevation necessary to capture the collection scenes.
  • the pan-tilt platform on which the laser matrix is fixed and the line laser is arranged so that it is capable of being directed to one side or the other.
  • pan-tilt platforms usually have a limited azimuth turning capacity (for example, + -160 °), it must be arranged so that the blind angular sector, to which lasers cannot be directed, does not match with the collection areas.
  • azimuth turning capacity for example, + -160 °
  • the robotic arm or device must be arranged so that the region accessible by the end (hand with terminal elements) includes the harvesting areas on both sides of the vehicle and the area of the fruit receiving tray in the tray carrier vehicle .
  • the arm (6) as shown in Fig. 9, carries at its end the grip (26) and cut (27) accessories, which are independently controlled.
  • the prehensile device first grabs the peduncle of the fruit at the point indicated by the vision system, approximately 10-15 mm from the fruit.
  • the cutting device immediately cuts the peduncle to 10 mm. above.
  • the fruit is transported by the arm prehensile device and deposited in the tray or receiving basket.
  • Each of the cameras is connected, via an RG-58-U coaxial cable to the corresponding commercial image capture card (frame-grabber type), in charge of digitizing the images and transferring them to the PC memory through the bus PCI, commanded by the main program.
  • the corresponding commercial image capture card frame-grabber type
  • the platform responsible for orienting lasers is a commercial pan-tilt (azimuth-lift) with precision better than a tenth of a degree, turning capacity in. elevation between -45 and + 30 ° and in azimuth of + -160 °, which allows it to be oriented on both sides of vision.
  • Motion control is performed from the PC via RS232 interface, communicating the coordinates of the desired movement to the unit controller.
  • the manipulator can be a vertical articulated arm of five degrees of freedom, with repeatability of movements better than + -0.02 mm. Its movements are determined by the controller unit, to access the coordinates indicated by the PC via TCP / IP ethernet or through the serial port.
  • the arm is mounted with a base of standard ISO 9409 terminal elements, on which the two terminal elements are fixed, which can be operated electrically or pneumatically through the arm itself, by the controller that executes the orders given from the control program in the computer.
  • the terminal elements are: a clamp with parallel fingers and a commercial cutting device compatible with ISO 9409.
  • Lasers are controlled from the main program through the parallel port or a signal generating PCI card (as many as lasers), which is responsible for feeding the lasers individually at the right time.
  • a signal generating PCI card as many as lasers
  • the invention has immediate industrial application used as a collection system for small fruits grown in rows. It is especially suitable for automated harvesting in fruit greenhouses grown in regular structures, in which a vision system guides the robotic system, which performs the tasks of apprehension, cutting and depositing of the fruit in the desired place.
  • the invention makes it possible to effectively designate the precise 3-D position of the point at which to guide the terminal mechanism, which will grab the peduncle of a ripe fruit and cut it over at the predetermined distance, distinguishing it from the peduncles of other nearby fruits that are not due cut.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Harvesting Machines For Specific Crops (AREA)
  • Image Processing (AREA)

Abstract

The invention relates to a computer vision system for picking small row-cultivated fruits. The invention includes a vision system for precisely guiding a robotic device (6) used to grip, cut and deposit the fruit in the desired location. The system accurately designates the exact 3-D point to which the terminal mechanism (7) is to be directed in order to sieze the peduncle of a ripe fruit and to cut said peduncle from above at the predetermined distance, differentiating same from the peduncles of other adjacent fruits that are not to be cut. The basic vision system comrpises: two colour cameras (1); an array of low-cost spot-type optical laser diodes (2), mounted to an azimuth- and elevation-adjustable platform (3) for orienting the array at the desired angle; and an additional laser diode (4) capable of projecting a flat or fan-shaped optical beam.

Description

TítuloTitle
Sistema de visión artificial para recolectar pequeños frutos cultivados en hileras.Artificial vision system to collect small fruits grown in rows.
Sector técnicoTechnical sector
La invención se enmarca en el sector de los sistemas automatizados para uso en agricultura, y en concreto en el de sistemas robotizados, basados en visión artificial, para tareas de manipulación y recolección en horticultura.The invention is framed in the sector of automated systems for use in agriculture, and specifically in that of robotic systems, based on artificial vision, for tasks of handling and harvesting in horticulture.
Estado de la técnicaState of the art
Es conocido el interés del sector de producción agraria por disponer de sistemas robotizados, automatizados o semiautomatizados, de recolección de frutos para diferentes modalidades de cultivo, incluyendo frutos en árbol, frutos cultivados en suelo o frutos cultivados en alto, como en los cultivos hidropónicos. Esta invención se refiere a la recolección de pequeños frutos delicados cultivados en alto, como, por ejemplo, fresas en cultivos hidropónicos de invernadero. En este tipo de cultivos, las plantas de fruto crecen en hileras, plantadas sobre un soporte físico, como por ejemplo canaletas plásticas, que se disponen longitudinahnente, a una altura variable sobre el suelo del invernadero. Los frutos crecen y maduran con el pedúnculo colgando hacia fuera del soporte de cultivo. En algunas instalaciones, las hileras se pueden subir o bajar a diferentes alturas, individualmente o por grupos, para facilitar el acceso a las plantas en las tareas de cultivo y recolección.The interest of the agricultural production sector is known for having automated, semi-automated or robotic systems, for harvesting fruits for different types of cultivation, including tree fruits, fruits grown in soil or fruits grown high, as in hydroponic crops. This invention relates to the collection of small delicate fruits grown high, such as strawberries in hydroponic greenhouse crops. In these types of crops, fruit plants grow in rows, planted on a physical support, such as plastic gutters, which are arranged lengthwise, at a variable height above the greenhouse floor. The fruits grow and ripen with the peduncle hanging out from the culture support. In some facilities, the rows can be raised or lowered to different heights, individually or in groups, to facilitate access to plants in cultivation and harvesting tasks.
El problema tecnológico general a resolver es el de la concepción de un vehículo autónomo, dotado de los sistemas de visión y manipulación necesarios para efectuar una recolección cuidadosa de frutos delicados, con mínima asistencia humana. Para ser viable, el sistema ha de satisfacer al menos los siguientes tres requisitos:The general technological problem to be solved is that of the conception of an autonomous vehicle, equipped with the vision and handling systems necessary to make a careful collection of delicate fruits, with minimal human assistance. To be viable, the system must meet at least the following three requirements:
Primero, ha de ser capaz de recolectar los frutos con extrema delicadeza, para garantizar su máxima duración y calidad. En particular, debe recolectar sin aprehender el fruto, y depositarlo en el recipiente de almacenado sin someterlo a ningún proceso que implique golpeos o rozamientos.First, it must be able to collect the fruits with extreme delicacy, to ensure maximum durability and quality. In particular, you should collect without apprehending the fruit, and deposit it in the storage container without subjecting it to any process that involves knocks or friction.
Segundo, para asegurar la eficiencia y rentabilidad de la labor, el sistema debe ser capaz de recoger todos los frutos maduros y no sólo los que son fácilmente identificables por estar aislados. Por ello, debe ser capaz de reconocer y aislar los frutos que crecen en racimos, debiéndose entender por racimo, a estos efectos, la concentración espacial de varios frutos. Asimismo, debe ser capaz de resolver el problema de las oclusiones, muy especialmente las que se producen por la ocultación parcial de frutos maduros recolectables por otros no maduros.Second, to ensure the efficiency and profitability of the work, the system must be able to collect all ripe fruits and not only those that are easily identifiable by being isolated. Therefore, it must be able to recognize and isolate the fruits that grow in clusters, being understood by cluster, for these purposes, the spatial concentration of several fruits. Likewise, it must be able to solve the problem of occlusions, especially those produced by the partial concealment of ripe fruits that can be collected by other immature ones.
Tercero, por la misma razón de eficiencia ha de ser capaz de recolectar los frutos a una velocidad razonablemente alta. En este contexto, debe entenderse por velocidad razonablemente alta aquélla que está limitada sólo por la capacidad de movimiento del dispositivo robótico seleccionado y no por las limitaciones de tiempo de adquisición, operación y procesado de los sistemas de detección y localización de frutos. Esta circunstancia impone unos requerimientos explícitos sobre el sistema de detección y localización.Third, for the same reason of efficiency it must be able to collect the fruits at a reasonably high speed. In this context, the reasonably high speed should be understood to be that which is limited only by the movement capacity of the selected robotic device and not by the limitations of acquisition, operation and processing time of the fruit detection and location systems. This circumstance imposes explicit requirements on the detection and location system.
Pues bien, no existen dispositivos prácticos capaces de satisfacer estos tres requisitos simultáneamente en el grado deseado. La limitación principal se encuentra, hasta ahora, en el propio sistema de visión, entendiendo por tal el conjunto de medios y algoritmos cuya misión es la de detectar y localizar, con la precisión requerida, la posición del fruto maduro y, singularmente, de su pedúnculo en disposiciones de frutos en racimo. Las soluciones para frutas u hortalizas que crecen siempre aisladamente (pepino, berenjena, etc.) son inadecuadas para la recolección de frutos delicados que pueden crecer agrupados.Well, there are no practical devices capable of satisfying these three requirements simultaneously to the desired degree. The main limitation is, so far, in the vision system itself, understanding as such the set of means and algorithms whose mission is to detect and locate, with the required precision, the position of the ripe fruit and, singularly, of its peduncle in cluster fruit arrangements. Solutions for fruits or vegetables that always grow in isolation (cucumber, eggplant, etc.) are unsuitable for the collection of delicate fruits that can grow together.
Los sistemas de visión propuestos para aplicaciones de recolección están preferentemente basados en el uso de una cámara, cuya salida se procesa para detectar por color, curvatura o forma la presencia del fruto y efectuar una primera localización en el plano de la imagen 2-D. Para determinar la tercera coordenada (profundidad o distancia del fruto al sistema de visión), la información 2-D de la cámara se complementa con la información de la tercera coordenada de rango (distancia), que suministra un dispositivo de medida de distancia. Este puede ser un dispositivo emisor- receptor de ultrasonidos o una pareja de dispositivos (emisor y receptor) de tipo láser operando en el infrarrojo o en el visible. Este es el fundamento, por ejemplo de los sistemas propuestos en las patentes JP8112021, JP2004180554, JP5174131, JP5168334, JP5168333. En la mayoría de los casos, la determinación de la distancia o el cálculo del mapa de distancias se realiza por triangulación, estimando el retardo o la diferencia de fase entre la señal emitida por el dispositivo emisor y la recibida en el receptor. Así, en la patente JP5168334 la radiación emitida por el emisor se deflecta con un espejo controlado mecánicamente, que enfoca la radiación hacia la zona a explorar, donde se refleja para ser captada por el dispositivo receptor u ojo electrónico. Conocida la geometría de la disposición, para cada ángulo de deflexión, una simple triangulación trigonométrica permite calcular la distancia del punto de reflexión. Lamentablemente, estos sistemas tienen una resolución espacial limitada, suficiente probablemente para algunas aplicaciones pero insuficiente para discriminar con la precisión requerida la posición de un pequeño fruto en un racimo y en especial la posición 3-D del pedúnculo. Cualquier aumento de resolución posible exige un proceso de deflexión más lento y en consecuencia una velocidad de operación más reducida en la recolección.The vision systems proposed for harvesting applications are preferably based on the use of a camera, whose output is processed to detect by color, curvature or shape the presence of the fruit and make a first location in the plane of the 2-D image. To determine the third coordinate (depth or distance of the fruit to the vision system), the camera's 2-D information is complements with the information of the third coordinate of rank (distance), that supplies a device of measure of distance. This can be an ultrasonic emitter-receiver device or a pair of laser-type devices (emitter and receiver) operating in the infrared or visible. This is the foundation, for example of the systems proposed in patents JP8112021, JP2004180554, JP5174131, JP5168334, JP5168333. In most cases, the determination of the distance or the calculation of the distance map is done by triangulation, estimating the delay or the phase difference between the signal emitted by the sending device and the one received at the receiver. Thus, in the JP5168334 patent the radiation emitted by the emitter is deflected with a mechanically controlled mirror, which focuses the radiation towards the area to be explored, where it is reflected to be captured by the receiving device or electronic eye. Once the geometry of the arrangement is known, for each angle of deflection, a simple trigonometric triangulation allows the distance of the reflection point to be calculated. Unfortunately, these systems have a limited spatial resolution, probably sufficient for some applications but insufficient to discriminate with the required precision the position of a small fruit in a cluster and especially the 3-D position of the peduncle. Any possible resolution increase requires a slower deflection process and consequently a lower operating speed in the collection.
En estos sistemas, la cámara y/o el medidor de distancia pueden estar fijos sobre el vehículo o ir montados en el extremo del brazo robótico recolector.In these systems, the camera and / or the distance meter can be fixed on the vehicle or mounted on the end of the robotic pickup arm.
En otras propuestas ideadas específicamente para la recolección de frutos de tamaño medio o grande que crecen aislados (ver por ejemplo JP2001095348), el sistema de visión está constituido por dos cámaras que operan secuencialmente, una fija que analiza globalmente la escena completa y localiza el fruto en el plano 2-D y otra, montada en el extremo del manipulador, que guía al brazo a medida que éste se aproxima a su objetivo.In other proposals specifically designed for the collection of medium or large sized fruits that grow in isolation (see for example JP2001095348), the vision system consists of two cameras that operate sequentially, a fixed one that analyzes the entire scene globally and locates the fruit in the 2-D plane and another, mounted on the end of the manipulator, which guides the arm as it approaches its target.
Otra solución teóricamente posible para resolver el problema podría pensarse que fuera la largamente conocida de la visión estereoscópica, consistente en disponer dos cámaras con visión solapada y con perspectivas ligeramente dispares de la escena. La posición 3- D desconocida de un punto dado en la escena se puede determinar a partir de sus posiciones 2-D en las imágenes captadas por las cámaras (proyecciones). Estos sistemas no parecen tener por el momento uso práctico en el tipo de recolección de nuestro interés, a pesar de permitir teóricamente una localización precisa en el espacio mediante una simple triangulación. Ello es debido a la dificultad práctica de identificar en las dos imágenes puntos correspondientes (asociados), es decir, sendos puntos 2-D que realmente corresponden al mismo punto 3 -D de la escena.Another theoretically possible solution to solve the problem could be thought to be the long known stereoscopic vision, consisting of having two cameras with overlapping vision and slightly different perspectives of the scene. The unknown 3- D position of a given point in the scene can be determined from their 2-D positions in the images captured by the cameras (projections). These systems do not seem to have practical use at the moment in the type of collection of our interest, despite theoretically allowing a precise location in the space through a simple triangulation. This is due to the practical difficulty of identifying in the two images corresponding (associated) points, that is, two 2-D points that really correspond to the same 3-D point of the scene.
Se insiste en que la etapa crítica de un sistema de recolección de frutos delicados, como la fresa, es la determinación tridimensional precisa del punto al que se ha de guiar el elemento terminal de corte del brazo manipulador, de manera que éste pueda operar con la máxima limpieza sólo en el punto designado sin necesidad de tocar los frutos y a la máxima velocidad posible. Esto implica la detección precisa de un punto dado del pedúnculo de cada una de las frutas maduras en la hilera recolectada. En la solicitud de patente P200501586/5 se propone un método basado en un láser óptico de línea para la designación y localización precisa de un punto de un pedúnculo aislado, una vez localizado el fruto. En esta invención, se resuelve el problema completo combinando el uso de láseres de spot para determinar la posición del fruto en un racimo con el de un láser de línea, que se apunta en sucesivas elevaciones para identificar y posicionar el pedúnculo deseado.It is insisted that the critical stage of a delicate fruit collection system, such as strawberry, is the precise three-dimensional determination of the point at which the terminal cutting element of the manipulator arm is to be guided, so that it can operate with the maximum cleaning only at the designated point without touching the fruits and at the maximum possible speed. This implies the precise detection of a given point of the peduncle of each of the ripe fruits in the row collected. In the patent application P200501586 / 5, a method based on an optical line laser is proposed for the precise designation and location of a point of an isolated peduncle, once the fruit is located. In this invention, the entire problem is solved by combining the use of spot lasers to determine the position of the fruit in a cluster with that of a line laser, which is pointed at successive elevations to identify and position the desired peduncle.
El elemento terminal necesario para la recolección es uno del tipo prensil-cortador, constituido por un elemento en forma de pinza que agarra el pedúnculo en el punto designado y otro en forma de tijera que lo corta por encima a la distancia prefijada (como el mencionado, por ejemplo, en JP2004180554). Se hace notar que, para este tipo de recolección delicada, no son apropiados otros mecanismos cuya operación implique una agresión al fruto en cualquiera de las fases (como succión o tracción).The terminal element necessary for harvesting is one of the pre-cutter type, consisting of a clamp-shaped element that grabs the peduncle at the designated point and another scissor-shaped one that cuts it over the predetermined distance (as mentioned , for example, in JP2004180554). It is noted that, for this type of delicate collection, other mechanisms whose operation involves an aggression to the fruit in any of the phases (such as suction or traction) are not appropriate.
Finalmente, la recolección en un invernadero en el que las plantas se cultivan en hileras paralelas dispuestas en alto requiere instalar los elementos de visión y recolección sobre un vehículo controlado por el propio sistema de visión, capaz de desplazarse longitudinalmente a lo largo del cultivo, de modo que el sistema de visión acceda sucesivamente a las escenas de recolección. El sistema podría desplazarse con tracción independiente sobre raíles dispuestos sobre el suelo o ir montado en una plataforma deslizante, que a su vez permita el acceso al conjunto de hileras del invernadero.Finally, harvesting in a greenhouse where plants are grown in parallel rows arranged high requires installing the vision and collection elements on a vehicle controlled by the vision system itself, capable of moving longitudinally along the crop, of so that the vision system successively access the collection scenes. The system could move with traction independent on rails arranged on the ground or mounted on a sliding platform, which in turn allows access to the set of rows in the greenhouse.
Descripción detalladaDetailed description
El núcleo de la invención se basa en un sistema de visión que permite el guiado preciso de un brazo robótico para la aprehensión, corte y posterior traslado y depósito delicado de cada pequeño fruto maduro en la posición designada de una bandeja o recipiente. El problema que permite resolver es el de designar con precisión el punto 3 -D exacto al que dirigir el mecanismo terminal prensil-cortador que asirá el pedúnculo de una fruta madura y lo cortará por encima a la distancia prefijada. Las dos dificultades prácticas que resuelve esta invención son: primero, la de la detección y localización del fruto que se ha de recolectar, cuando éste se presenta en una agrupación espacial con otros frutos (racimo), y, por tanto, es difícilmente distinguible por métodos tradicionales basados sólo en color o forma; y, segundo, la de la determinación de un punto exacto de su pedúnculo, distinguiéndolo de los pedúnculos de otras frutas próximas que no se deben cortar. El sistema de control y procesado puede operar sobre un PC comercial y permite gestionar el brazo robótico aprovechando su máxima capacidad de movimiento. Tres ventajas con respecto a cualquier otra solución ideada hasta la fecha para este tipo de recolección precisa son:The core of the invention is based on a vision system that allows the precise guidance of a robotic arm for the apprehension, cutting and subsequent transfer and delicate deposition of each small ripe fruit in the designated position of a tray or container. The problem that can be solved is that of precisely designating the exact 3-D point to which to direct the pre-cut-end terminal mechanism that will grab the peduncle of a ripe fruit and cut it over the predetermined distance. The two practical difficulties that this invention solves are: first, that of the detection and location of the fruit to be collected, when it is presented in a spatial grouping with other fruits (cluster), and, therefore, is hardly distinguishable by traditional methods based only on color or shape; and, second, that of determining an exact point of your peduncle, distinguishing it from the peduncles of other nearby fruits that should not be cut. The control and processing system can operate on a commercial PC and allows you to manage the robotic arm taking advantage of its maximum movement capacity. Three advantages over any other solution devised to date for this type of accurate collection are:
1) Es capaz de designar con precisión del orden de 1 mm. la posición del punto de corte del pedúnculo de un fruto recolectable, incluso y especialmente en el caso de frutos que maduran en agrupaciones (por ejemplo, fresas), distinguiéndolo de los pedúnculos de otros frutos, maduros o no, en el mismo racimo. Por tanto, el sistema presenta una eficiencia de recolección óptima, en la medida en que es capaz de recolectar la mayoría de los frutos de las hileras (y no sólo los que crecen aislados).1) It is able to designate with precision of the order of 1 mm. the position of the cut-off point of the peduncle of a collectible fruit, even and especially in the case of fruits that ripen in clusters (for example, strawberries), distinguishing it from the peduncles of other fruits, ripe or not, in the same cluster. Therefore, the system has an optimum collection efficiency, to the extent that it is able to collect most of the fruits of the rows (and not only those that grow isolated).
2) Por otro lado, esta precisión permite utilizar un dispositivo de corte de tipo tijera; el fruto, por tanto, se puede asir y cortar por el pedúnculo, y transportarlo sin rozarlo a su punto de destino en la bandeja recolectora, lo que asegura una calidad única del fruto recolectado porque no es tocado o sometido a ninguna agresión en el proceso. 3) Finalmente, la velocidad de operación del sistema de visión y procesado es tal que el brazo robótico no tiene ningún tiempo de espera muerto, lo que supone la máxima velocidad de recolección (lo que no es posible con otros sistemas de visión).2) On the other hand, this precision allows the use of a scissor cutting device; the fruit, therefore, can be grabbed and cut by the peduncle, and transported without rubbing it to its destination in the collection tray, which ensures a unique quality of the fruit collected because it is not touched or subjected to any aggression in the process . 3) Finally, the operating speed of the vision and processing system is such that the robotic arm has no dead timeout, which means the maximum collection speed (which is not possible with other vision systems).
El sistema de visión básico (Fig. 1) está compuesto por: dos cámaras CCD (1) en color dispuestas preferiblemente con los ejes paralelos apuntando a la región en la que están los frutos (5), una matriz (2) de diodos láser ópticos puntuales (tipo spot) de bajo coste (por ejemplo, lápices o punteros láser comerciales en una longitud de onda próxima a 650 nm.) montada sobre una plataforma orientable (3) del tipo pan-tilt (esto es, orientable en acimut y elevación), que se utilizará para orientar la matriz al ángulo deseado; y un diodo láser adicional (4), también sobre la plataforma, que proyecta un haz óptico plano en el instante y lugar designado. Este diodo comercial no es más que un diodo de spot, como los que constituyen la matriz, con una lente que esparce horizontalmente la luz para proyectar un haz en forma de abanico en vez de un punto o spot.The basic vision system (Fig. 1) is composed of: two color CCD cameras (1) preferably arranged with parallel axes pointing to the region where the fruits are (5), a matrix (2) of laser diodes low-cost spot optics (spot type) (for example, commercial laser pencils or pointers in a wavelength close to 650 nm.) mounted on an adjustable platform (3) of the pan-tilt type (i.e., azimuth orientable and elevation), which will be used to orient the matrix at the desired angle; and an additional laser diode (4), also on the platform, which projects a flat optical beam at the designated time and place. This commercial diode is nothing more than a spot diode, such as those that constitute the matrix, with a lens that spreads the light horizontally to project a fan-shaped beam instead of a spot or spot.
La invención, como se muestra en la Fig. 2, junto con el manipulador robótico (6) dotado de un elemento terminal prensil-cortador (7), va instalada sobre un vehículo (8), que lleva adosado un remolque con bandejas (9) en las que se depositarán los frutos recolectados. El vehículo, como se muestra en la Fig. 3, se desliza sobre sendos rieles (10) en el suelo o montados en una plataforma (11) dispuesta en la misma dirección que las hileras de plantas (5a) y (5b) de las que penden los frutos que se desea recolectar.The invention, as shown in Fig. 2, together with the robotic manipulator (6) equipped with a pre-cut-end terminal element (7), is installed on a vehicle (8), which has a trailer with trays attached (9) ) in which the harvested fruits will be deposited. The vehicle, as shown in Fig. 3, slides on two rails (10) on the ground or mounted on a platform (11) arranged in the same direction as the rows of plants (5a) and (5b) of the that hang the fruits that you want to collect.
Con la plataforma fija en una determinada posición centrada entre dos hileras, el vehículo se va desplazando, a pasos sobre los rieles, de un lado al otro del invernadero, recogiendo en su camino de ida las frutas de una de las hileras (5a) y en su camino de vuelta las de la hilera simétrica (5b), o bien alternadamente en las dos hileras sólo en su camino de ida.With the platform fixed in a certain position centered between two rows, the vehicle moves, stepping on the rails, from one side of the greenhouse to the other, picking up the fruits of one of the rows (5a) and on its way back those of the symmetrical row (5b), or alternatively in the two rows only in its way of going.
Los sistemas auxiliares de alimentación, tracción y control de dispositivos y el ordenador de procesado y control se alojan en el interior del vehículo, así como el panel de selección de parámetros desde el que se prefijan los parámetros relacionados con el grado de madurez requerido para el corte, los calibres de clasificación, etc., de acuerdo con el tipo y variedad de fruto, las preferencias según la época, etc.The auxiliary systems for feeding, traction and control of devices and the processing and control computer are housed inside the vehicle, as well as the parameter selection panel from which the parameters related to the degree of maturity required for cutting, grading sizes, etc., according to the type and variety of fruit, preferences according to the time, etc.
En un modo de realización, el sistema lleva cuatro cámaras dispuestas en dos parejas estereoscópicas, utilizándose independientemente la pareja izquierda en la visión de la correspondiente hilera izquierda y la pareja de la derecha en la hilera simétrica de la derecha. En otro modo de realización, una única pareja de cámaras realiza la visión de ambas hileras, girando 180° solidariamente en el momento que se requiera, comandadas por el sistema de control.In one embodiment, the system has four cameras arranged in two stereoscopic pairs, the left pair independently being used in the vision of the corresponding left row and the right pair in the symmetrical row on the right. In another embodiment, a single pair of cameras performs the vision of both rows, rotating 180 ° in solidarity at the required time, commanded by the control system.
Las operaciones que se realizan en cada posición de recolección (vehículo estático) son las que se describen a continuación:The operations that are carried out in each collection position (static vehicle) are those described below:
En primer lugar, el par de cámaras toma sendas imágenes de la escena; éstas se digitalizan y se almacenan en tiempo real. A continuación, se convierten las imágenes desde el formato RGB, en el que capturan las cámaras, al formato HSV, que es apropiado para realizar una segmentación eficiente de la escena.First, the pair of cameras takes pictures of the scene; These are digitized and stored in real time. The images are then converted from the RGB format, in which the cameras are captured, to the HSV format, which is appropriate for efficient segmentation of the scene.
La operación de segmentación consiste en identificar y aislar en las imágenes los píxeles que corresponden a las características del fruto, distinguiéndolos de aquellos otros que corresponden al resto (fondo, hojas, tallos, bolsas de plantación, etc). En general, es apropiado realizar una pre-segmentación basándose en el color y la tonalidad o saturación, trabajando sobre las coordenadas H y S. En cada píxel se determina si los valores de las coordenadas H y S corresponden a los que tiene el fruto maduro (por ejemplo, determinado rojo en el caso de la fresa), comprobando si se encuentran en los márgenes de valores especificados. Los valores de estos márgenes, que se pueden introducir y variar a través del panel de control, dependen de la variedad de la fruta y del grado de madurez especificado para la recolección. Este primer procesado elimina los píxeles cuyo color y saturación no se corresponden con los del fruto maduro.The segmentation operation consists of identifying and isolating in the images the pixels that correspond to the characteristics of the fruit, distinguishing them from those others that correspond to the rest (bottom, leaves, stems, planting bags, etc.). In general, it is appropriate to perform a pre-segmentation based on color and hue or saturation, working on the H and S coordinates. In each pixel it is determined whether the values of the H and S coordinates correspond to those of the ripe fruit (for example, determined red in the case of the strawberry), checking if they are in the margins of specified values. The values of these margins, which can be entered and varied through the control panel, depend on the variety of the fruit and the degree of maturity specified for the collection. This first processing eliminates pixels whose color and saturation do not correspond to those of the ripe fruit.
Una vez realizada esta pre-segmentación, cuyo resultado es una clasificación binaria de los píxeles de la escena en píxeles del color de la fruta y píxeles de otro color, se realiza un post-procesado, consistente en eliminar los píxeles que aparecen aislados (ruido), para quedarse sólo con aquellos píxeles agrupados en manchas o "blobs", es decir, grupos de píxeles conectados (vecinos) entre sí, que corresponden al fruto o a una agrupación de frutos en racimo.Once this pre-segmentation is carried out, the result of which is a binary classification of the pixels of the scene in pixels of the color of the fruit and pixels of another color, a post-processing is carried out, consisting of eliminating the pixels that appear isolated (noise ), to stay only with those pixels grouped in spots or "blobs", that is, groups of pixels connected (neighbors) to each other, which correspond to the fruit or a cluster of fruits in clusters.
El siguiente paso es calcular las coordenadas 3-D de determinados puntos singulares de la escena, con el objetivo último de determinar si los "blobs" corresponden a un fruto aislado o a un grupo. Para ello, primero se marcan puntos singulares en cada uno de los "blobs" 2-D de las dos imágenes estereoscópicas segmentadas, con el objeto de realizar el proceso de correspondencia (proceso de identificar, en cada una de las dos imágenes, los puntos 2-D que se corresponden con un mismo y único punto espacial de la escena 3-D). En el sistema de visión de esta invención, según muestra la Fig. 4, para cada "blob" (12) de cada una de las dos imágenes, se calcula la posición 2-D de su centroide (13) (centro geométrico en 2-D) y, trazando virtualmente sendas líneas horizontal y vertical que pasan por las coordenadas del centroide, se marcan también los cuatro puntos extremos del "blob": superior (14), inferior (15), derecho (16) e izquierdo (17), que servirán para determinar el tamaño del "blob" y si éste corresponde a una fruta aislada (y, en este caso, determinar su calibre) o a un racimo.The next step is to calculate the 3-D coordinates of certain singular points of the scene, with the ultimate goal of determining whether the "blobs" correspond to an isolated fruit or a group. To do this, first single points are marked on each of the 2-D "blobs" of the two segmented stereoscopic images, in order to carry out the correspondence process (process of identifying, in each of the two images, the points 2-D that correspond to the same and unique spatial point of the 3-D scene). In the vision system of this invention, as shown in Fig. 4, for each "blob" (12) of each of the two images, the 2-D position of its centroid (13) is calculated (geometric center at 2 -D) and, drawing virtually horizontal and vertical lines that pass through the coordinates of the centroid, the four extreme points of the "blob" are also marked: upper (14), lower (15), right (16) and left (17 ), which will be used to determine the size of the "blob" and whether it corresponds to an isolated fruit (and, in this case, determine its size) or a cluster.
A continuación se realiza la correspondencia entre los centroides 2-D de todos los "blobs" de las dos imágenes, es decir, se determinan las parejas de centroides correspondientes al mismo punto espacial (aproximado). Para realizar la correspondencia de los centroides se puede utilizar cualquier método conocido. En nuestra invención, al punto centroide de una imagen se hace corresponder en la otra aquél que está a la misma altura (coordenada Y) y cuya disparidad en X (diferencia de sus coordenadas X) es compatible con la geometría de las cámaras para la distancia de visión media. Establecida la correspondencia entre los centroides, y por tanto entre los "blobs", se calculan las coordenadas reales en el espacio 3-D del centro aparente del "blob" (centroide). También se calculan, en el espacio 3-D, los puntos correspondientes a los puntos extremos del "blob" antes marcados (superior, inferior, etc.). La reconstrucción 3-D de un punto a partir de sus proyecciones estereoscópicas es un problema trivial de solución conocida, que en el caso real requiere únicamente conocer la matriz de transformación correspondiente a las cámaras del sistema estéreo, que se calcula en un proceso previo de calibración. Obviamente, las posiciones 3 -D calculadas se han de referir a un origen de coordenadas fijo, que se puede tomar en cualquier punto del sistema robótico o del vehículo. En un prototipo de esta invención se ha tomado como origen de coordenadas el punto medio central entre las cámaras, en el plano en el que se fijan mecánicamente (sobre el vehículo). Este punto se habrá de fijar en el proceso de calibración y será asimismo el origen de coordenadas al que se referirá el movimiento del brazo robótico y de la plataforma pan-tilt.The correspondence between the 2-D centroids of all the "blobs" of the two images is then made, that is, the pairs of centroids corresponding to the same (approximate) spatial point are determined. To perform correspondence of the centroids, any known method can be used. In our invention, the centroid point of one image is matched in the other one that is at the same height (Y coordinate) and whose disparity in X (difference in its X coordinates) is compatible with the geometry of the cameras for distance of medium vision Once the correspondence between the centroids is established, and therefore between the "blobs", the actual coordinates in the 3-D space of the apparent center of the "blob" (centroid) are calculated. Also, in the 3-D space, the points corresponding to the "blob" end points marked above (upper, lower, etc.) are calculated. The 3-D reconstruction of a point from its stereoscopic projections is a trivial problem with a known solution, which in the real case only requires knowing the transformation matrix corresponding to the stereo system cameras, which is calculated in a previous process of calibration. Obviously, the calculated 3-D positions must refer to a fixed coordinate origin, which can be taken anywhere in the robotic system or the vehicle. In a prototype of this invention the central midpoint between the cameras has been taken as the origin of coordinates, in the plane in which they are mechanically fixed (on the vehicle). This point must be set in the calibration process and will also be the origin of coordinates to which the movement of the robotic arm and the pan-tilt platform will refer.
Una vez determinadas las posiciones 3 -D de los puntos característicos de cada "blob" de la escena (centroide y extremos), se analiza cada uno de los "blobs" de forma secuencia! de izquierda a derecha (o de derecha a izquierda), del modo que se describe a continuación.Once the 3-D positions of the characteristic points of each "blob" of the scene (centroid and extremes) are determined, each of the "blobs" is analyzed sequentially! from left to right (or from right to left), as described below.
Primeramente se determina si el "blob" corresponde a una sola fruta aislada o a varias agrupadas. Para ello se comparan las distancias en 3-D entre el punto superior y el punto inferior y entre el punto derecho y el punto izquierdo del "blob", respectivamente con los valores de referencia diametrales del tipo de fruto que se recolecta (que previamente se han introducido en el panel de control y que dependen del tipo de variedad del fruto).First, it is determined whether the "blob" corresponds to a single isolated fruit or several grouped. For this, the distances in 3-D between the upper point and the lower point and between the right point and the left point of the "blob" are compared, respectively with the diametric reference values of the type of fruit that is collected (previously they have entered in the control panel and they depend on the type of variety of the fruit).
Si la comparación es consistente con la hipótesis de que el "blob" corresponde a un único fruto aislado, las medidas tomadas se utilizan directamente para estimar el calibre de la fruta para su posterior clasificación, y se procede a determinar si su grado de madurez es el deseado para su recolección; para ello se calcula el porcentaje de píxeles para los que las coordenadas H y S toman valores entre los prefijados para la fruta madura.If the comparison is consistent with the hypothesis that the "blob" corresponds to a single isolated fruit, the measures taken are used directly to estimate the size of the fruit for later classification, and it is determined whether its degree of maturity is the desired for collection; for this, the percentage of pixels for which the H and S coordinates take values between the preset ones for the ripe fruit is calculated.
Si el porcentaje es inferior al especificado (seleccionable en el panel de control), la fruta se clasifica como no madura y se pasa a analizar otro "blob".If the percentage is lower than the one specified (selectable in the control panel), the fruit is classified as unripe and another "blob" is analyzed.
Si el porcentaje es superior al especificado, la fruta se clasifica como madura y se ha de ordenar al brazo dirigir su dispositivo prensil-cortador a un punto del pedúnculo de la fruta. La pinza agarrará el pedúnculo, el dispositivo en tijera lo cortará por encima y trasladará el fruto a la bandeja designada donde la depositará en el receptáculo que corresponda, de acuerdo con su calibre.If the percentage is higher than the specified one, the fruit is classified as ripe and the arm has to be ordered to direct its prehensile-cutter device to a point of the fruit stalk. The clamp will grab the peduncle, the scissor device will cut it over and It will transfer the fruit to the designated tray where it will be placed in the appropriate receptacle, according to its size.
Para ello, en general, es imprescindible detectar antes con precisión la posición del pedúnculo. Esto es cierto incluso cuando el fruto maduro está aislado porque puede haber en las proximidades pedúnculos de otros frutos (no maduros y, por tanto, no detectados) que no se han de cortar. La detección precisa de pedúnculo se describe más abajo.For this, in general, it is essential to detect the position of the peduncle with precision. This is true even when the ripe fruit is isolated because there may be peduncles in the vicinity of other fruits (immature and therefore not detected) that are not to be cut. Precise peduncle detection is described below.
Si se determinara que el "blob" no corresponde a una única fruta madura aislada, pasa a tratarse como una agrupación de varias en racimo. En tal caso, se inicia el procedimiento para individualizar en el racimo las frutas una a una sucesivamente, empezando por aquélla que está más próxima al sistema de visión.If it is determined that the "blob" does not correspond to a single isolated ripe fruit, it is treated as a cluster of several in cluster. In this case, the procedure to individualize the fruits one by one in succession begins, starting with the one that is closest to the vision system.
Para ello, comandando la plataforma pan-tilt, se orienta la matriz de diodos láser hacia la agrupación de frutos, usando como referencia de orientación del eje de la matriz las coordenadas 3 -D del centroide del "blob" calculado previamente. La lógica de control de encendido/apagado de los láseres hace que éstos generen una retícula de puntos de luz láser (marcas o spots) sobre el "blob" de frutos, como muestra la Fig. 5, durante un breve espacio de tiempo, durante el que la escena es captada por el sistema estereoscópico de cámaras. El siguiente paso es el de determinar con precisión la posición 3-D de cada uno de los puntos de luz (18) de la retícula en el grupo de frutos (19). Las marcas de luz tienen un diámetro a la distancia de recolección típica de entre un milímetro y milímetro y medio. En cada una de las dos imágenes bidimensionales tomadas por las cámaras, se aislan las marcas, usando por ejemplo un algoritmo de segmentación similar al descrito para la pre-segmentación de "blobs". En aquel caso se comparaban las coordenadas H y S con los umbrales deseados. En este caso, los píxeles que corresponden a la marca en cada proyección se pueden detectar comparando sus valores de V con un umbral mínimo, aprovechando que la marca tiene una luminosidad considerablemente más alta que el resto de la escena. Otra opción, aún más simple, es realizar una operación de sustracción en la coordenada V de la imagen iluminada por los láseres y la imagen sin iluminar. El resultado es una imagen en la que sólo quedan las marcas de los láseres, directamente segmentadas. Segmentadas las marcas, se calculan sus centroides 2-D en ambas imágenes por el procedimiento descrito más arriba, se realiza la correspondencia entre ellos en las dos imágenes por el procedimiento también descrito y se realiza la reconstrucción 3 -D de la marca sobre el grupo de frutos. Se tiene así un mapa de puntos tridimensionales sobre la superficie de la agrupación de frutos.To do this, commanding the pan-tilt platform, the laser diode array is oriented towards the grouping of fruits, using the 3-D coordinates of the "blob" centroid previously calculated as the orientation of the axis of the matrix. The logic of on / off control of lasers causes them to generate a grid of laser light points (marks or spots) on the "blob" of fruits, as shown in Fig. 5, for a short time, during that the scene is captured by the stereoscopic camera system. The next step is to accurately determine the 3-D position of each of the light points (18) of the reticle in the fruit group (19). Light marks have a typical collection distance diameter of between one millimeter and one and a half millimeters. In each of the two two-dimensional images taken by the cameras, the marks are isolated, using for example a segmentation algorithm similar to that described for the pre-segmentation of "blobs". In that case, the coordinates H and S were compared with the desired thresholds. In this case, the pixels corresponding to the mark in each projection can be detected by comparing their V values with a minimum threshold, taking advantage of the fact that the mark has a luminosity considerably higher than the rest of the scene. Another option, even simpler, is to perform a subtraction operation on the V coordinate of the image illuminated by the lasers and the unlit image. The result is an image in which only the laser marks remain, directly segmented. Segmented the marks, their 2-D centroids are calculated in both images by the procedure described above, the correspondence between them in the two images is performed by the procedure also described and the 3-D reconstruction of the mark on the group is performed of fruits. There is thus a map of three-dimensional points on the surface of the fruit grouping.
Cuantas más marcas láser haya en una agrupación, mejor será la representación 3 -D de la misma. Sin embargo, a mayor número de marcas, más difícil será el proceso de correspondencia entre las dos imágenes. Para facilitar el proceso de correspondencia entre las dos imágenes sin renunciar a una buena representación 3 -D de la agrupación, se pueden utilizar láseres de diferente color (longitud de onda) intercalados: de este modo, utilizando, además de la coordenada V, la coordenada de color H, sólo habrá que realizar la correspondencia de aquellas marcas que tengan el mismo color.The more laser marks in a group, the better the 3-D representation of it will be. However, the greater the number of brands, the more difficult the correspondence process between the two images will be. To facilitate the process of correspondence between the two images without sacrificing a good 3-D representation of the grouping, interlaced lasers of different color (wavelength) can be used: in this way, using, in addition to the V coordinate, the color coordinate H, you only have to make the correspondence of those brands that have the same color.
Sobre el mapa de puntos tridimensionales obtenido se realiza el siguiente procesado para estimar la posición de cada uno de los frutos a recolectar: primero, se toma aquel más próximo al sistema de visión. A continuación se determina cuáles de los puntos 3 -D adyacentes a aquel en la retícula corresponden al mismo fruto, sin más que calcular las distancias tridimensionales entre ellos y descartando aquéllos cuya distancia sea superior a un número relacionado con el calibre del fruto.On the map of three-dimensional points obtained, the following processing is performed to estimate the position of each of the fruits to be collected: first, the one closest to the vision system is taken. Next, it is determined which of the 3-D points adjacent to that in the grid correspond to the same fruit, without more than calculating the three-dimensional distances between them and discarding those whose distance is greater than a number related to the caliber of the fruit.
Determinados los puntos 3 -D de la retícula que pertenecen al mismo fruto, se tiene localizada, con precisión del orden del cm., la posición del fruto en el racimo. En concreto, se puede determinar la posición 3 -D aproximada del punto superior del fruto, promediando la coordenada x (lateral) de todos los puntos que pertenecen a ese fruto y tomando las coordenadas y (altura) y z (profundidad) del punto de la fruta que tenga una coordenada y (altura) mayor. Este punto se corresponderá aproximadamente con el lugar donde nace el pedúnculo del fruto. Se procede entonces a localizar su pedúnculo con precisión del orden del milímetro.Determined the 3-D points of the grid that belong to the same fruit, the position of the fruit in the cluster is located precisely with the order of cm. Specifically, the approximate 3-D position of the upper point of the fruit can be determined, averaging the x (lateral) coordinate of all the points belonging to that fruit and taking the y (height) yz (depth) coordinates of the point of the fruit. fruit that has a coordinate and (height) greater. This point will correspond approximately to the place where the fruit stalk is born. Then proceed to locate your peduncle with precision of the order of the millimeter.
Para detectar con precisión el pedúnculo, esta invención extiende el método descrito en P200501586/5 para detección de pedúnculos aislados. Para ello, de nuevo controlando la plataforma de pan-tilt sobre la que se ubica también el láser de línea (4), se dirige éste para que proyecte la línea láser (20) aproximadamente a 1 cm. por encima de la parte superior de la fruta, usando como referencia la posición 3 -D del punto superior del fruto calculada como se describe más arriba, de forma que la línea intercepte un punto (21) del pedúnculo (22), como muestra la Fig. 6. Una vez orientado según el eje deseado, la lógica de control del diodo de línea lo alimenta, éste proyecta el haz (23) y aparece explícitamente un spot (21) aislado en el punto iluminado del pedúnculo. Si el pedúnculo estuviera aislado (no hubiera pedúnculos próximos) se adquiriría la escena con las cámaras, este spot único se segmentaría, se correspondería en las dos imágenes y se reconstruiría su posición 3-D, teniendo así las coordenadas casi exactas del punto del pedúnculo al que se ha de dirigir el mecanismo prensil-cortador. En la práctica, el pedúnculo objetivo está o puede estar próximo a otros de otras frutas (del racimo o de otras no maduras no detectadas) y, por tanto, la iluminación con el láser de línea genera varias marcas (una por pedúnculo). Para determinar cuál es el pedúnculo objetivo se repite la iluminación en sucesivos ángulos de elevación, como se ilustra en la Fig. 7, de forma que se genera una traza de marcas (24) por cada uno de los pedúnculos presentes. El pedúnculo que se ha de cortar es aquél para el que una extrapolación simple de la traza de marcas pase más cerca del punto superior del fruto a recolectar, cuya posición 3-D se había calculado previamente.To accurately detect the peduncle, this invention extends the method described in P200501586 / 5 for detection of isolated peduncles. To do this, again controlling The pan-tilt platform on which the line laser (4) is also located, is directed to project the laser line (20) approximately 1 cm. above the top of the fruit, using as reference the 3-D position of the top point of the fruit calculated as described above, so that the line intercepts a point (21) of the peduncle (22), as shown by the Fig. 6. Once oriented along the desired axis, the control diode of the line diode feeds it, it projects the beam (23) and a spot (21) explicitly appears at the illuminated point of the peduncle. If the peduncle were isolated (there were no nearby peduncles) the scene would be acquired with the cameras, this unique spot would be segmented, it would correspond in the two images and its 3-D position would be reconstructed, thus having the almost exact coordinates of the point of the peduncle to which the press-cutter mechanism should be directed. In practice, the target peduncle is or may be close to others of other fruits (from the cluster or from non-mature non-ripe fruits) and, therefore, the illumination with the line laser generates several marks (one per peduncle). To determine the target peduncle, the illumination is repeated at successive elevation angles, as illustrated in Fig. 7, so that a trace of marks (24) is generated for each of the peduncles present. The peduncle to be cut is one for which a simple extrapolation of the trace marks passes closer to the top point of the fruit to be harvested, whose 3-D position was previously calculated.
Al punto deseado del pedúnculo, precisamente determinado por el procedimiento anterior, se dirige la pinza, que agarra el pedúnculo suavemente y separa fraccionalmente el fruto del racimo para aislarlo del resto de frutos. No queda sino tratarlo como un fruto aislado del modo descrito más arriba para frutos aislados: se determina su grado de madurez y su calibre y, en caso de que proceda cortarlo, se corta y se deposita en la correspondiente bandeja receptora. Caso contrario, se suelta suavemente y se repite la operación completa en otra región del "blob".At the desired point of the peduncle, precisely determined by the previous procedure, the clamp is directed, which gently grabs the peduncle and separates the fruit from the cluster to isolate it from the rest of the fruits. It remains only to treat it as an isolated fruit in the manner described above for isolated fruits: its degree of maturity and its size are determined and, if it is necessary to cut it, it is cut and deposited in the corresponding receiving tray. Otherwise, it is released gently and the entire operation is repeated in another region of the "blob".
Después de cada corte de fruto, se repite la operación sobre el "blob" desde el principio, identificando, localizando, clasificando y cortando, en su caso, las otras frutas del racimo, posiblemente ocluidas en las imágenes tomadas previamente. El proceso se continúa hasta que no queden frutos en el racimo o hasta que las que queden no se hayan de recolectar porque no han alcanzado el punto de madurez deseado. Una vez recolectados todos los frutos en todos los "blobs" de la escena, el vehículo se desplaza longitudinalmente sobre la plataforma la distancia necesaria para que las cámaras capten una escena adyacente sobre la hilera en recolección.After each cut of fruit, the operation is repeated on the "blob" from the beginning, identifying, locating, classifying and cutting, where appropriate, the other fruits of the cluster, possibly occluded in the images previously taken. The process is continued until there are no fruits left in the cluster or until those that remain are not collected because they have not reached the desired maturity point. Once all the fruits have been collected in all the "blobs" of the scene, the vehicle travels longitudinally on the platform the distance necessary for the cameras to capture an adjacent scene on the row in collection.
El modo de realizar el patrón de iluminación de los láseres de la matriz admite diversas variantes, todas ellas viables. A modo de ejemplo, esta parte de la invención se puede realizar:The way to realize the pattern of illumination of the lasers of the matrix admits diverse variants, all of them viable. By way of example, this part of the invention can be realized:
-utilizando un único lápiz láser que, instalado sobre la plataforma orientable, se deflecta mecánicamente de forma sucesiva, y se ilumina de forma sincronizada con el sistema de visión-captación. En cada posición se ilumina la marca correspondiente y la pareja de cámaras toma las proyecciones de la escena, permitiendo una correspondencia unívoca de los puntos de cada imagen.-Using a single laser pen that, installed on the adjustable platform, is mechanically deflected successively, and illuminates synchronously with the vision-capture system. In each position the corresponding mark is illuminated and the camera couple takes the projections of the scene, allowing a unique correspondence of the points of each image.
A pesar de la simplificación en la correspondencia de los spots, este modo de operación no es el recomendado, porque ralentiza innecesariamente el proceso de reticulación al requerir una deflexión mecánica, suponiendo a cambio una ligera ventaja económica.Despite the simplification in the correspondence of the spots, this mode of operation is not recommended, because it unnecessarily slows down the cross-linking process by requiring a mechanical deflection, assuming a slight economic advantage instead.
-utilizando una matriz de láseres que se iluminan secuencialmente a la misma velocidad que la de captación de las cámaras que toman las sucesivas imágenes de los spots proyectados sobre el racimo. La correspondencia entre los puntos de las dos proyecciones es también directa porque en cada par de imágenes solamente aparece una marca cada vez.-Using a matrix of lasers that illuminate sequentially at the same speed as that of capturing the cameras that take the successive images of the spots projected on the cluster. The correspondence between the points of the two projections is also direct because in each pair of images only one mark appears at a time.
-utilizando, como se ha descrito, una matriz de láseres con la misma disposición, pero iluminando todos ellos simultáneamente y realizando una correspondencia multipunto. En este caso, si se desea facilitar los algoritmos de correspondencia e identificar rápidamente cada par, los láseres pueden alternar de color (rojo, verde, azul, etc.), o bien ser del mismo color pero de diferente potencia, para que el diferente brillo de cada spot permita discriminarlos por intensidad.-using, as described, an array of lasers with the same arrangement, but illuminating all of them simultaneously and making a multipoint correspondence. In this case, if you want to facilitate the correspondence algorithms and quickly identify each pair, the lasers can alternate color (red, green, blue, etc.), or be of the same color but of different power, so that the different brightness of each spot allows discrimination by intensity.
Finalmente, el láser de línea puede ir instalado en la mano del brazo robótico en lugar de integrado en la plataforma pan-tilt. En ese caso el apuntamiento se controla orientando adecuadamente el brazo. El encendido puede realizarse en el momento que se desee (por ejemplo, se puede guiar primero el brazo hacia los frutos y encender el láser cuando la mano esté próxima).Finally, the line laser can be installed in the hand of the robotic arm instead of integrated in the pan-tilt platform. In that case the aiming is controlled properly orienting the arm The ignition can be carried out at the desired time (for example, you can first guide the arm towards the fruits and turn on the laser when the hand is close).
Breve descripción de los dibujosBrief description of the drawings
Fig.l Elementos principales del sistema de visión. Las dos cámaras CCD (1) apuntan a la zona donde están los frutos (5) para captar la escena y la matriz de láseres puntuales (2) y el láser de línea (4), montados sobre la plataforma orientable (3), se apuntarán hacia la zona indicada en cada caso.Fig. 1 Main elements of the vision system. The two CCD cameras (1) point to the area where the fruits are (5) to capture the scene and the matrix of point lasers (2) and the line laser (4), mounted on the adjustable platform (3), are They will point to the area indicated in each case.
Fig.2 Vista esquemática del vehículo (8) sobre el que se colocará el sistema de visión (compuesto por las cámaras (1), la plataforma orientable (3), la matriz de láseres puntuales (2) y el láser de línea (4)) y el brazo robótico (6) dotado de un terminal prensil-cortador (7), que se encargará de recolectar los frutos que indique el sistema de visión. El vehículo lleva adosado un remolque con bandejas (9) donde se depositarán los frutos recolectados.Fig. 2 Schematic view of the vehicle (8) on which the vision system (consisting of the cameras (1), the adjustable platform (3), the array of point lasers (2) and the line laser (4) will be placed )) and the robotic arm (6) equipped with a prehensile-cutter terminal (7), which will be responsible for collecting the fruits indicated by the vision system. The vehicle has attached a trailer with trays (9) where the collected fruits will be deposited.
Fig.3 Vista esquemática en perspectiva del movimiento del vehículo (8) sobre los raíles (10) de la plataforma (11) en relación a la disposición de los frutos a recolectar (5a) y (5b).Fig. 3 Schematic perspective view of the movement of the vehicle (8) on the rails (10) of the platform (11) in relation to the arrangement of the fruits to be collected (5a) and (5b).
Fig.4 Ejemplo de imagen obtenida tras la pre-segmentación y post-procesado en la que se observan varios "blobs" (12) de distinto tamaño. Se indican los puntos centroide (13), superior (14), inferior (15), derecho (16) e izquierdo (17) de cada uno de ellos, a partir de los cuales se estima su tamaño.Fig. 4 Example image obtained after pre-segmentation and post-processing in which several "blobs" (12) of different sizes are observed. The centroid (13), upper (14), lower (15), right (16) and left (17) points of each of them are indicated, from which their size is estimated.
Fig.5 Ejemplo de la retícula de puntos (18) que proyecta la matriz de láseres sobre una agrupación (19) de frutos en racimo.Fig. 5 Example of the grid of points (18) that projects the matrix of lasers on a cluster (19) of cluster fruits.
Fig.6 Vista esquemática en perspectiva del fundamento de operación del láser de línea. La luz en abanico (23) emitida por el láser de línea (4) que es interceptada por el pedúnculo (22) genera un punto aislado (21) sobre éste. Fig.7 Perfil (a) y alzado (b) de la iluminación en sucesivos ángulos de elevación que realiza el láser de línea (4). Se indica la traza de puntos (24) que produce en cada pedúnculo este procedimiento.Fig. 6 Schematic perspective view of the operating foundation of the line laser. The fan light (23) emitted by the line laser (4) that is intercepted by the peduncle (22) generates an isolated point (21) on it. Fig. 7 Profile (a) and elevation (b) of the lighting at successive elevation angles performed by the line laser (4). The trace of points (24) that this procedure produces in each peduncle is indicated.
Fig.8 Esquema de la caja (25) en la que se coloca la matriz de láseres (2) y el láser de línea (4) en un modo de realización.Fig. 8 Diagram of the box (25) in which the laser matrix (2) and the line laser (4) are placed in one embodiment.
Fig.9 Esquema del brazo robótico (6) en el que se muestran los accesorios terminales de agarre (26) y corte (27).Fig. 9 Schematic of the robotic arm (6) in which the gripping (26) and cutting terminal accessories (27) are shown.
Fig.10 Ejemplo de disposición posible en el interior del vehículo (8). En él se sitúan la unidad controladora del brazo (28), los alimentadores de las cámaras (29), las controladoras de las plataformas (30), el PC de control (31) con el panel de selección de parámetros, compuesto por el propio teclado (32) del ordenador y una pantalla TFT plana abatible convencional (33), y el cableado (34).Fig. 10 Example of possible arrangement inside the vehicle (8). In it are located the arm control unit (28), the feeders of the cameras (29), the platform controllers (30), the control PC (31) with the parameter selection panel, composed of the own Computer keyboard (32) and a conventional flip-up flat TFT display (33), and wiring (34).
Fig.ll Esquema de interconexiones e intercambio de señales entre los distintos bloques del sistema.Fig.ll Scheme of interconnections and exchange of signals between the different blocks of the system.
Exposición de un modo de realizaciónExhibition of an embodiment
Todos los elementos necesarios para realizar esta invención están disponibles, comercialmente listos para ser integrados; los algoritmos necesarios para realizar las operaciones de visión pueden codificarse siguiendo las instrucciones detalladas en la sección anterior. Los algoritmos para controlar los movimientos del brazo robótico están disponibles en la literatura abierta como métodos de cinemática inversa para controlar robots de varios grados de libertad y es común además que los suministre el propio fabricante.All the necessary elements to realize this invention are available, commercially ready to be integrated; The algorithms needed to perform the vision operations can be encoded following the instructions detailed in the previous section. The algorithms to control the movements of the robotic arm are available in the open literature as reverse kinematics methods to control robots of various degrees of freedom and it is also common to be supplied by the manufacturer himself.
Como ejemplo de modo de realización concreta de la invención se tomará el caso de sistema de visión compuesto sólo por dos cámaras dispuestas para realizar la visión lateral con respecto a la línea de movimiento del vehículo y montadas sobre una plataforma giratoria con capacidad de girar sobre sí misma 180° para que las cámaras puedan realizar la visión lateral en la línea opuesta. En esta realización, la recolección se realiza primero en una línea de cultivo desde un lado del invernadero (principio) al otro (final). Luego, girando las cámaras, en el camino de vuelta (de final a principio), se realiza la recolección en la línea opuesta.As an example of a specific embodiment of the invention, the case of a vision system consisting of only two cameras arranged to realize the lateral vision with respect to the vehicle's line of movement and mounted on a vehicle will be taken. turntable capable of rotating on itself 180 ° so that the cameras can realize the lateral vision in the opposite line. In this embodiment, the collection is first carried out in a crop line from one side of the greenhouse (beginning) to the other (end). Then, turning the cameras, on the way back (from end to beginning), the collection is done on the opposite line.
Los láseres (los puntuales y el de línea) se pueden elegir entre los abundantes disponibles comercialmente. Una opción recomendable es seleccionarlos en una longitud de onda próxima a 650 nm, por su bajo coste. Los láseres, encapsulados con su lente en un dispositivo cilindrico, se disponen en forma de matriz como se indica a modo de ilustración en la Fig. 8, en la que aparecen dispuestos en una geometría de 3 filas y 7 columnas (21 láseres de spot). Se hace notar que la configuración de láseres debe elegirse en función de las características de cultivo y en especial en función del tamaño máximo de los racimos de finitos. La matriz de láseres (2) se dispone en una caja (25), en la que se puede alojar también el láser de línea (4). Los láseres se controlan individualmente con la lógica de encendido/apagado, que no es más que una lógica que alimenta o no a cada uno de los láseres, según indique el control central del PC.Lasers (spot and line) can be chosen from the abundant commercially available ones. A recommended option is to select them at a wavelength close to 650 nm, due to their low cost. Lasers, encapsulated with their lens in a cylindrical device, are arranged in matrix form as indicated by way of illustration in Fig. 8, in which they appear arranged in a geometry of 3 rows and 7 columns (21 spot lasers ). It is noted that the laser configuration must be chosen according to the cultivation characteristics and especially according to the maximum size of the finite clusters. The matrix of lasers (2) is arranged in a box (25), in which the line laser (4) can also be housed. Lasers are controlled individually with the on / off logic, which is nothing more than a logic that feeds each of the lasers or not, as indicated by the central control of the PC.
La caja con la matriz de láseres va fijada sobre una plataforma pan-tilt controlada mediante interfaz RS232 desde el PC de control sincronizadamente con el resto del sistema de visión.The box with the laser matrix is fixed on a pan-tilt platform controlled by RS232 interface from the control PC synchronously with the rest of the vision system.
El vehículo, con el remolque adosado que transporta el sistema de bandejas, se dispone sobre los rieles de la plataforma. El vehículo se desplaza longitudinalmente, recolectando los frutos sobre la plataforma, del modo indicado más arriba.The vehicle, with the attached trailer that transports the tray system, is arranged on the rails of the platform. The vehicle travels longitudinally, gathering the fruits on the platform, as indicated above.
El movimiento se realiza por la acción de un servomotor que actúa de forma convencional sobre el sistema de tracción del vehículo y cuyo desplazamiento en cada paso se determina por el campo de visión de las cámaras elegidas, de manera que en la posición siguiente la visión de las cámaras sea adyacente a la anterior. La orden de movimiento la da el PC de control, a través de la controladora del servomotor, en el momento en que se termina la recolección de cada escena. Al final del pasillo de recolección, se dispone un simple interruptor que se activa al ser alcanzado por una de las ruedas del vehículo, indicando que ha alcanzado el final del pasillo e inviniendo el sentido del movimiento del vehículo y girando 180° la plataforma de las cámaras. La operación de recolección se realiza entonces en la línea de cultivo gemela en la dirección contraria hasta que el vehículo alcanza el principio del invernadero.The movement is carried out by the action of a servomotor that acts in a conventional manner on the vehicle's traction system and whose displacement in each step is determined by the field of vision of the chosen cameras, so that in the next position the vision of The cameras are adjacent to the previous one. The movement order is given by the control PC, through the servo motor controller, at the moment when the collection of each scene is finished. At the end of the collection hall, there is a simple switch that is activated when it is reached by one of the wheels of the vehicle, indicating that it has reached the end of the aisle and reversing the direction of movement of the vehicle and rotating the camera platform 180 °. The harvesting operation is then carried out on the twin crop line in the opposite direction until the vehicle reaches the beginning of the greenhouse.
Es evidente que la filosofía de movimiento entre las hileras puede ejecutarse de varias formas dependiendo de la geometría del invernadero.It is clear that the philosophy of movement between the rows can be executed in several ways depending on the geometry of the greenhouse.
En la parte superior del vehículo se dispone la plataforma giratoria con las cámaras paralelas, y con el ángulo de elevación necesario para que capten las escenas de recolección. La plataforma pan-tilt sobre la que va fijada la matriz de láseres y el láser de línea se dispone de forma que sea capaz de ser dirigida a un lado o al otro.In the upper part of the vehicle the turntable is arranged with the parallel cameras, and with the angle of elevation necessary to capture the collection scenes. The pan-tilt platform on which the laser matrix is fixed and the line laser is arranged so that it is capable of being directed to one side or the other.
Puesto que las plataformas pan-tilt comerciales suelen tener una capacidad de giro acimutal limitada (por ejemplo, de +-160°), se ha de disponer de manera que el sector angular ciego, al que no se pueden dirigir los láseres, no coincida con las zonas de recolección.Since commercial pan-tilt platforms usually have a limited azimuth turning capacity (for example, + -160 °), it must be arranged so that the blind angular sector, to which lasers cannot be directed, does not match with the collection areas.
De la misma manera, el brazo o dispositivo robótico debe disponerse de manera que la región accesible por el extremo (mano con elementos terminales) incluya las zonas de recolección a ambos lados del vehículo y la zona de la bandeja receptora de frutos en el vehículo portabandejas.In the same way, the robotic arm or device must be arranged so that the region accessible by the end (hand with terminal elements) includes the harvesting areas on both sides of the vehicle and the area of the fruit receiving tray in the tray carrier vehicle .
El brazo (6), como muestra la Fig. 9, lleva en su extremo los accesorios de agarre (26) y corte (27), que se controlan independientemente. El dispositivo prensil agarra primero el pedúnculo de la fruta en el punto indicado por el sistema de visión, a 10-15 mm de la fruta aproximadamente. El dispositivo de corte corta inmediatamente el pedúnculo a 10 mm. por encima. La fruta es transportada por el dispositivo prensil del brazo y depositada en la bandeja o cesta receptora.The arm (6), as shown in Fig. 9, carries at its end the grip (26) and cut (27) accessories, which are independently controlled. The prehensile device first grabs the peduncle of the fruit at the point indicated by the vision system, approximately 10-15 mm from the fruit. The cutting device immediately cuts the peduncle to 10 mm. above. The fruit is transported by the arm prehensile device and deposited in the tray or receiving basket.
En el interior del vehículo se disponen del modo que mejor convenga a su geometría (ver una posible disposición en Fig. 10): la unidad controladora del brazo (28), los alimentadores de las cámaras (29), las controladoras de las plataformas (30), el PC de control (31) con el panel de selección de parámetros, que en esta realización se elige que sea el propio teclado (32) del ordenador y una pantalla TFT plana abatible convencional (33), y el cableado (34).Inside the vehicle they are arranged in the way that best suits their geometry (see a possible arrangement in Fig. 10): the arm control unit (28), the camera feeders (29), the platform controllers ( 30), the PC of control (31) with the parameter selection panel, which in this embodiment is chosen to be the computer's own keyboard (32) and a conventional flip-up flat TFT screen (33), and the wiring (34).
Las interconexiones e intercambio de señales entre los bloques de la realización se realizan como se indica a continuación (ver Fig. 11):The interconnections and exchange of signals between the blocks of the embodiment are carried out as indicated below (see Fig. 11):
Cada una de las cámaras se conecta, a través de un cable coaxial RG-58-U a la correspondiente tarjeta capturadora de imágenes comercial (tipo frame-grabber), encargada de digitalizar las imágenes y transferirlas a la memoria del PC a través del bus PCI, comandada por el programa principal.Each of the cameras is connected, via an RG-58-U coaxial cable to the corresponding commercial image capture card (frame-grabber type), in charge of digitizing the images and transferring them to the PC memory through the bus PCI, commanded by the main program.
La plataforma encargada de orientar los láseres es una pan-tilt (azimut-elevación) comercial con precisión mejor que una décima de grado, capacidad de giro en. elevación de entre -45 y +30° y en azimut de +-160°, lo que permite orientarla a ambos lados de visión. El control de movimiento se realiza desde el PC a través de interfaz RS232, comunicando las coordenadas del movimiento deseado a la controladora de la unidad.The platform responsible for orienting lasers is a commercial pan-tilt (azimuth-lift) with precision better than a tenth of a degree, turning capacity in. elevation between -45 and + 30 ° and in azimuth of + -160 °, which allows it to be oriented on both sides of vision. Motion control is performed from the PC via RS232 interface, communicating the coordinates of the desired movement to the unit controller.
El manipulador puede ser un brazo articulado vertical de cinco grados de libertad, con repetibilidad de movimientos mejor que +-0.02 mm. Sus movimientos se determinan por la unidad controladora, para acceder a las coordenadas indicadas por el PC a través de ethernet TCP/IP o a través del puerto serie. El brazo se monta con una base de elementos terminales standard ISO 9409, sobre la que se fijan los dos elementos terminales, que se pueden actuar eléctricamente o neumáticamente a través del propio brazo, por la controladora que ejecuta las órdenes dadas desde el programa de control en el PC. Los elementos terminales son: una pinza con dedos paralelos y un dispositivo de corte comerciales compatibles con ISO 9409.The manipulator can be a vertical articulated arm of five degrees of freedom, with repeatability of movements better than + -0.02 mm. Its movements are determined by the controller unit, to access the coordinates indicated by the PC via TCP / IP ethernet or through the serial port. The arm is mounted with a base of standard ISO 9409 terminal elements, on which the two terminal elements are fixed, which can be operated electrically or pneumatically through the arm itself, by the controller that executes the orders given from the control program in the computer. The terminal elements are: a clamp with parallel fingers and a commercial cutting device compatible with ISO 9409.
Los láseres se controlan desde el programa principal a través del puerto paralelo o de una tarjeta PCI generadora de señales (tantas como láseres), que se encarga de alimentar individualmente a los láseres en el momento preciso. Aplicación industrialLasers are controlled from the main program through the parallel port or a signal generating PCI card (as many as lasers), which is responsible for feeding the lasers individually at the right time. Industrial application
La invención tiene aplicación industrial inmediata usada como sistema de recolección de frutos pequeños cultivados en hileras. Es especialmente adecuado para la recolección automatizada en invernaderos de frutos cultivados en estructuras regulares, en los que un sistema de visión guía al sistema robótico, que realiza las tareas de aprehensión, corte y depósito del fruto en el lugar deseado. La invención permite designar eficazmente la posición 3 -D precisa del punto al que guiar el mecanismo terminal, que asirá el pedúnculo de una fruta madura y lo cortará por encima a la distancia prefijada, distinguiéndolo de los pedúnculos de otras frutas próximas que no se deben cortar. The invention has immediate industrial application used as a collection system for small fruits grown in rows. It is especially suitable for automated harvesting in fruit greenhouses grown in regular structures, in which a vision system guides the robotic system, which performs the tasks of apprehension, cutting and depositing of the fruit in the desired place. The invention makes it possible to effectively designate the precise 3-D position of the point at which to guide the terminal mechanism, which will grab the peduncle of a ripe fruit and cut it over at the predetermined distance, distinguishing it from the peduncles of other nearby fruits that are not due cut.

Claims

REIVINDICACIONES
1) Sistema de visión artificial estereoscópica para guiado preciso de manipulador robótico para detectar, localizar y recolectar pequeños frutos, que pueden crecer agrupados en racimos, con capacidad para aislar y determinar la posición de cada fruto, y de un punto de su pedúnculo hacia el que se guiará el manipulador robótico, caracterizado por: • diferenciar y localizar los frutos individuales en los racimos o grupos a partir de la reconstrucción tridimensional de los spots o marcas proyectadas en el racimo por un conjunto de láseres ópticos puntuales dispuestos en matriz, y • detectar con precisión los pedúnculos a partir de las marcas generadas sobre ellos por los haces en abanico proyectados por un láser óptico de línea orientado en sucesivos ángulos de elevación.1) Stereoscopic artificial vision system for precise guidance of robotic manipulator to detect, locate and collect small fruits, which can grow clustered in clusters, with the ability to isolate and determine the position of each fruit, and a point of its peduncle towards the that the robotic manipulator will be guided, characterized by: • differentiating and locating the individual fruits in the clusters or groups from the three-dimensional reconstruction of the spots or marks projected in the cluster by a set of specific optical lasers arranged in matrix, and • accurately detect the peduncles from the marks generated on them by the fan beams projected by an optical line laser oriented at successive elevation angles.
2) Sistema según reivindicación 1, caracterizado porque las proyecciones láser se consiguen deflectando un puntero láser, según el patrón prefijado, para generar la matriz de spots.2) System according to claim 1, characterized in that the laser projections are achieved by deflecting a laser pointer, according to the predetermined pattern, to generate the spot matrix.
3) Sistema según reivindicación 1, caracterizado porque los spots se generan con láseres de diferente longitud de onda o con láseres de diferente potencia.3) System according to claim 1, characterized in that the spots are generated with lasers of different wavelengths or with lasers of different power.
4) Sistema según reivindicaciones 1, 2 ó 3, para utilizarse en la recolección de fresas u otras pequeñas frutas delicadas cultivadas en hileras en alto, como en los cultivos hidropónicos en invernaderos, dotado de un dispositivo robótico con pinzas de agarre y corte, instalado sobre un vehículo deslizante, con contenedor adosado con bandejas para depositar la fruta, que realiza, en cada pasillo, la recolección en los dos sentidos de movimiento longitudinal, usando o bien dos pares de cámaras o bien sólo un par con capacidad de girar 180° acimutalmente. 4) System according to claims 1, 2 or 3, for use in the collection of strawberries or other delicate delicate fruits grown in high rows, such as in hydroponic crops in greenhouses, equipped with a robotic device with grip and cut pliers, installed on a sliding vehicle, with container attached with trays to deposit the fruit, which performs, in each aisle, the collection in both directions of longitudinal movement, using either two pairs of cameras or only one pair with the ability to rotate 180 ° azimuthal
PCT/ES2007/000035 2006-01-31 2007-01-25 Computer vision system for picking small row-cultivated fruits WO2007088225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200600207A ES2253135B2 (en) 2006-01-31 2006-01-31 ARTIFICIAL VISION SYSTEM TO COLLECT SMALL FRUITS CULTIVATED IN ROWS.
ESP200600207 2006-01-31

Publications (1)

Publication Number Publication Date
WO2007088225A1 true WO2007088225A1 (en) 2007-08-09

Family

ID=36441096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000035 WO2007088225A1 (en) 2006-01-31 2007-01-25 Computer vision system for picking small row-cultivated fruits

Country Status (2)

Country Link
ES (1) ES2253135B2 (en)
WO (1) WO2007088225A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810305B2 (en) 2009-02-26 2010-10-12 Macidull John C Automated fruit harvesting apparatus
CN102657037A (en) * 2012-04-13 2012-09-12 浙江工业大学 Pruning robot system for grape vines
WO2013068521A1 (en) * 2011-11-10 2013-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device and method for mechanically thinning out blossom
JP2014183841A (en) * 2013-02-19 2014-10-02 Muroran Institute Of Technology Automatic plant harvester, automatic plant harvesting program and method
US9462749B1 (en) 2015-04-24 2016-10-11 Harvest Moon Automation Inc. Selectively harvesting fruits
US9468152B1 (en) 2015-06-09 2016-10-18 Harvest Moon Automation Inc. Plant pruning and husbandry
EP2969416A4 (en) * 2013-03-15 2016-11-02 Univ Maryland Automated fruit and vegetable calyx or stem removal machine
US9928584B2 (en) 2016-07-11 2018-03-27 Harvest Moon Automation Inc. Inspecting plants for contamination
US9965845B2 (en) 2016-07-11 2018-05-08 Harvest Moon Automation Inc. Methods and systems for inspecting plants for contamination
CN109168631A (en) * 2018-09-20 2019-01-11 李振兴 It is a kind of can be with the automatic apple picking machine of automatic identification ripe apples degree
CN112243698A (en) * 2020-10-22 2021-01-22 安徽农业大学 Automatic walnut picking and collecting method based on multi-sensor fusion technology
CN113093792A (en) * 2021-03-25 2021-07-09 上海工程技术大学 Underground space detection system based on unmanned aerial vehicle
GB2607326A (en) * 2021-06-03 2022-12-07 The Univ Of Lincoln Apparatus and systems for selective crop harvesting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2540676B2 (en) * 2015-02-25 2016-02-08 Universidad De Granada Procedure and guidance system for automatic collection of horticultural products based on 3D digital modeling
US11216946B2 (en) 2020-03-12 2022-01-04 Agriconnect Method and system for the management of an agricultural plot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519193A (en) * 1982-08-11 1985-05-28 Kubota, Ltd. Fruit harvesting apparatus with television camera and monitor
US4532757A (en) * 1983-09-30 1985-08-06 Martin Marietta Corporation Robotic fruit harvester
US4718223A (en) * 1985-10-17 1988-01-12 Kubota, Ltd. Fruit harvesting apparatus
US20050126144A1 (en) * 2003-12-12 2005-06-16 Vision Robotics Corporation Robot mechanical picker system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519193A (en) * 1982-08-11 1985-05-28 Kubota, Ltd. Fruit harvesting apparatus with television camera and monitor
US4532757A (en) * 1983-09-30 1985-08-06 Martin Marietta Corporation Robotic fruit harvester
US4718223A (en) * 1985-10-17 1988-01-12 Kubota, Ltd. Fruit harvesting apparatus
US20050126144A1 (en) * 2003-12-12 2005-06-16 Vision Robotics Corporation Robot mechanical picker system and method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810305B2 (en) 2009-02-26 2010-10-12 Macidull John C Automated fruit harvesting apparatus
WO2013068521A1 (en) * 2011-11-10 2013-05-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device and method for mechanically thinning out blossom
CN102657037A (en) * 2012-04-13 2012-09-12 浙江工业大学 Pruning robot system for grape vines
JP2014183841A (en) * 2013-02-19 2014-10-02 Muroran Institute Of Technology Automatic plant harvester, automatic plant harvesting program and method
EP2969416A4 (en) * 2013-03-15 2016-11-02 Univ Maryland Automated fruit and vegetable calyx or stem removal machine
US9462749B1 (en) 2015-04-24 2016-10-11 Harvest Moon Automation Inc. Selectively harvesting fruits
US9468152B1 (en) 2015-06-09 2016-10-18 Harvest Moon Automation Inc. Plant pruning and husbandry
US9965845B2 (en) 2016-07-11 2018-05-08 Harvest Moon Automation Inc. Methods and systems for inspecting plants for contamination
US9928584B2 (en) 2016-07-11 2018-03-27 Harvest Moon Automation Inc. Inspecting plants for contamination
US10198806B2 (en) 2016-07-11 2019-02-05 Harvest Moon Automation Inc. Methods and systems for inspecting plants for contamination
CN109168631A (en) * 2018-09-20 2019-01-11 李振兴 It is a kind of can be with the automatic apple picking machine of automatic identification ripe apples degree
CN112243698A (en) * 2020-10-22 2021-01-22 安徽农业大学 Automatic walnut picking and collecting method based on multi-sensor fusion technology
US11406061B2 (en) 2020-10-22 2022-08-09 Anhui Agricultural University Automated walnut picking and collecting method based on multi-sensor fusion technology
CN113093792A (en) * 2021-03-25 2021-07-09 上海工程技术大学 Underground space detection system based on unmanned aerial vehicle
GB2607326A (en) * 2021-06-03 2022-12-07 The Univ Of Lincoln Apparatus and systems for selective crop harvesting
GB2607326B (en) * 2021-06-03 2023-07-19 The Univ Of Lincoln Apparatus and systems for selective crop harvesting

Also Published As

Publication number Publication date
ES2253135B2 (en) 2006-12-16
ES2253135A1 (en) 2006-05-16

Similar Documents

Publication Publication Date Title
ES2253135B2 (en) ARTIFICIAL VISION SYSTEM TO COLLECT SMALL FRUITS CULTIVATED IN ROWS.
Zhao et al. A review of key techniques of vision-based control for harvesting robot
EP2685811B1 (en) System and method for three dimensional teat modeling for use with a milking system
Li et al. Review on fruit harvesting method for potential use of automatic fruit harvesting systems
JP4936362B2 (en) Harvesting robot
CN106659118A (en) Autonomous robot localization
CN113301797A (en) Mushroom autonomous harvesting system and method
JP5023259B2 (en) Automatic asparagus cutting availability judgment device
CN108550141A (en) A kind of movement wagon box automatic identification and localization method based on deep vision information
ES2947222T3 (en) Automated fruit picking and sorting procedure and mechanical equipment implementing the procedure
US8363905B2 (en) Automated image analysis of an organic polarized object
Tejada et al. Proof-of-concept robot platform for exploring automated harvesting of sugar snap peas
CN108811766A (en) A kind of man-machine interactive fruits and vegetables of greenhouse harvesting robot system and its collecting method
JP2019152924A (en) Self-position identification system, vehicle, and processing device
Kondo et al. A machine vision system for tomato cluster harvesting robot
JP7152351B2 (en) Harvesting method and fruit and vegetable harvesting device
KR102479284B1 (en) Vegetation index acquisition unit and apparatus for monitoring plant comprising the same
Paturkar et al. Overview of image-based 3D vision systems for agricultural applications
Tarrío et al. A harvesting robot for small fruit in bunches based on 3-D stereoscopic vision
CN111466295B (en) Position determining device
ES2296452B2 (en) DETECTOR OF PEDUNCULES AND VEGETABLE SIZES BASED ON THE OPTICAL DESIGNATION WITH LINE LASER.
US20210342597A1 (en) Apparatus and method for identifying organisms
ES2795500A1 (en) AUTONOMOUS DEVICE FOR AUTOMATIC VINE PRUNING (Machine-translation by Google Translate, not legally binding)
Wang et al. Design of crop yield estimation system for apple orchards using computer vision
Scarfe Development of an autonomous kiwifruit harvester: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Industrial Automation at Massey University, Manawatu, New Zealand.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07704747

Country of ref document: EP

Kind code of ref document: A1