WO2007087758A2 - Mimotopos de polisacáridos capsulares de neisseria meningitidis y formulaciones farmacéuticas - Google Patents

Mimotopos de polisacáridos capsulares de neisseria meningitidis y formulaciones farmacéuticas Download PDF

Info

Publication number
WO2007087758A2
WO2007087758A2 PCT/CU2007/000001 CU2007000001W WO2007087758A2 WO 2007087758 A2 WO2007087758 A2 WO 2007087758A2 CU 2007000001 W CU2007000001 W CU 2007000001W WO 2007087758 A2 WO2007087758 A2 WO 2007087758A2
Authority
WO
WIPO (PCT)
Prior art keywords
peptides
nmgacps
polysaccharide
sera
phage
Prior art date
Application number
PCT/CU2007/000001
Other languages
English (en)
French (fr)
Other versions
WO2007087758A3 (es
Inventor
Tamara MENÉNDEZ MEDINA
Yoelys Cruz Leal
Edelgis COIZEAU RODRÍGUEZ
Gerardo Enrique GUILLÉN NIETO
Nelson Francisco Santiago Vispo
Zurina CINZA ESTÉVEZ
Anabel ÁLVAREZ ACOSTA
Evelin Caballero Menendez
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Ingenieria Genetica Y Biotecnologia filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Publication of WO2007087758A2 publication Critical patent/WO2007087758A2/es
Publication of WO2007087758A3 publication Critical patent/WO2007087758A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention is related to the branch of medicine, particularly with the development of new vaccine formulations, of preventive or therapeutic application, which allow an increase in the quality of the immune response against vaccine antigens to fight diseases of diverse origin.
  • Neisser ⁇ a meningitidis is a Gram negative bacterium whose only host is the human being and constitutes the causative agent of the meningococcal disease. Usually this bacterium is part of the transient natural microbiota of the upper respiratory tract of healthy individuals known as carriers and this is the most common route for its microbiological isolation.
  • Serogroups Y and W135 are present in most of the remaining cases of the disease and infection prevalent in some regions of the United States, with a marked increase in recent years. Capsular polysaccharides have been studied and evaluated as vaccine candidates. Vaccines based on the polysaccharides of N. meningitidis strains of serogroups A, C, Y and W-135 have been developed. These vaccines have proven effective in stopping epidemics caused by meningococcal strains belonging to these serogroups (Rosenstein N. et al. 2001. Menningococcal disease. N. Engl. J. Med, 344, 1378-1388).
  • the immune response against polysaccharide antigens is characterized by being thymus-independent, of short duration, the induction of memory response with affinity maturation is not stimulated and develops late in ontogeny (GoId R and Lepow ML. 1975. Clinical / ⁇ valuation of group A and C meningococcal polysaccharide vaccines in infants. J. Clin Invest 56; 1536-47.).
  • vaccines based on the capsular polysaccharide of serogroup C of N. meningitidis the generation of a phenomenon of hyporesponse is also reported in individuals repeatedly immunized with said vaccines, as occurs for example in areas of high incidence of Ia disease (Borrow R. et al. 2001. Influence of prior meningococcal C polysaccharide vaccination on the response and generation of memory after meningococcal C conjugate vaccination in young children. J Infeci Dis 184: 377-380).
  • conjugate vaccines in which capsular polysaccharides are covalently coupled to protein antigens, allow the transformation of the immune response against thymus-dependent polysaccharides and overcoming the difficulties associated with the use as immunogens of unconjugated polysaccharides (Jennings H and Lugowski C. 1981. Immunochemistry of groups A, B and C meningococcal polysaccharide-tetanus toxoid conjugates. J Immunol 127; 1011-1018; Borrow R. et al. 2001. Influence of prior meningococcal C polysaccharide vaccination on the response and generation of memory add meningococcal C conjugate vaccination in young children.
  • Another alternative strategy for the conversion of the thymus-independent response that is induced against the polysaccharides, in thymus-dependent is the use as immunogens of mimetic peptides of said polysaccharides, that is, of peptides that being structurally similar to carbohydrates, they also have the ability to simulate the characteristics regarding antigenicity and immunogenicity of said polysaccharides.
  • the antibodies used for this purpose may be monoclonal or polyclonal and may be specific to recognize protein or polysaccharide antigens of the pathogen under study.
  • specific disease epitopes or epitopes responsible for the protection conferred by said vaccine can be identified, respectively (Yip YL and Ward RL 1999. Epitope discovery using monoclonal antibodies and phage peptide libraries Comb Chem High Throughput Screen 2: 125-138; Phalipon A. et al. 1997.
  • Peptide collections can be obtained both synthetically (Lebl M. and Krchnak V. 1997. Synthetic peptlde rid them. Meth. Enzymol. 289: 336-392) and expressed on the surface of filamentous phages (Smith GP et al. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228-257).
  • the development of the latter technology is based on the ability of the filamentous phages to expose on their surface foreign peptide sequences fused to the viral capsid proteins.
  • the peptide sequences exposed on the surface of the viral particle are easily accessible and potentially capable of specifically binding to the molecules used for the selection, and therefore can be selected based on said affinity.
  • sequence of a peptide from a library chosen by a certain property can be easily deduced from the nucleotide sequence of the phage that it exposes (Parmley SF et al. 1988. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73 : 305-318; Smith GP et al. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228-257; Cwirla SE et al. 1990. Peptides on phage: a vast librar / of peptides for identifying ligands. Proc. Nati. Acad. Sci.
  • the peptides In order to be considered as possible vaccine candidates, the peptides must first be able to bind specific antibodies against the original antigen, and inhibit the binding of said antibodies to said antigen and secondly they must induce an immune response characterized by the presence of antibodies that recognize the pathogen and protect against the infection caused by it.
  • These peptides which are reproducible and well-defined structures, can substitute for the natural antigen in the process of making vaccines, with the additional advantage that since the target of the antibodies induced by them is well defined, the possibility of inducing effects is minimized! Not desired (Monzavi-Karbassi B. et al. 2002. Peptide mimotopes as surrogate antigens of carbohydrates in vaccine discovery. Trains. Biotechnol. 20: 207-214).
  • One of these problems is that to purify the polysaccharides it is necessary to directly manipulate the bacteria.
  • Neisseria meningitidis is a microorganism classified as a class 2 pathogen and therefore it is necessary to handle it under appropriate conditions for this type of pathogen. Special operating procedures are needed to work with it and to act in emergency situations related to accidental leaks that facilitate the spread of the bacteria. Therefore, it is necessary that the personnel working in the production of these vaccines be specially trained and adequate precautionary measures are implemented, including vaccination against the pathogen in question.
  • the conjugates when obtained as a result of a chemical coupling process between proteins and polysaccharides, do not constitute chemically well-defined immunogens since the protein: polysaccharide ratio in the conjugate resulting from each assay can vary. This requires strict control of the conjugation processes to ensure homogeneity and batch-to-batch consistency of these vaccines.
  • the quality controls established by the regulatory entities for these vaccines, emphasize the characterization at the molecular level, attending to physical-chemical criteria that monitor the quality of the polysaccharides, carrier proteins and conjugates obtained. It is necessary to ensure that each batch is consistent with the specifications of the vaccine batches used in clinical trials and that establish their safety and immunogenicity.
  • Some of the methodologies used are complex and require expensive equipment that is difficult to handle, with the need for properly trained personnel to operate it.
  • Some examples of the methodologies used are fluorescence spectroscopy, the technique of circular dichroism, mass spectrometry, molecular exclusion chromatography combined with detection techniques with light scattering, high resolution ammonium exchange chromatography and nuclear magnetic resonance.
  • mimetic peptides as an alternative to the use of polysaccharides as immunogens, also presents as advantages that during the process of making vaccines the pathogen is not directly manipulated, the possible reactions and interactions of the peptides, being simpler molecules than Carbohydrates are easier to characterize and control. Also, when using peptides as immunogens, an immune response can be induced against specific epitopes, which could be masked or tolerated by using the polysaccharides themselves as immunogens.
  • peptides as vaccines allows to exploit strategies that are not possible to apply when immunized with carbohydrates, such as the presentation of antigens to the immune system by dendritic cells, anchoring to cell membranes by glycosyl phosphatidylinositol and use in vaccination strategies. with DNA.
  • NMGACPS 1-12 peptides are reported for the first time, as components of reagents for diagnosis or of a vaccine formulation of a therapeutic or preventive nature against meningococcal disease or any infection caused by a member of the genus Neisseria or by other bacteria, viruses or parasites.
  • the novel character of this invention resides in the discovery for the first time of NMGACPS peptides 1-12 as molecular mimotopes of epitopes present in the capsular polysaccharides of serogroups A and C of Neisseria meningitidis, capable of inducing the production of bactericidal antibodies against strains of the meningococcus belonging to any of these serogroups.
  • These mimotopes can be used as diagnostic reagents, and / or in vaccine formulations to treat or prevent the disease caused by members of the Neisseria genus or by other bacteria, viruses or parasites.
  • FIG. 1 Total immunoglobulin (Ig) levels detected in the serum of the volunteers.
  • the sera were diluted 1/100.
  • the A 4 9 2 nm obtained in the ELISAs are shown.
  • FIG. 1 Levels of immunoglobulins G (IgG) and M (IgM) induced after immunization with the bivalent vaccine of capsular polysaccharides of serogroups A and C of N. meningitidis, evaluated by ELISA.
  • the increases in Absorbance at 492nm ( 492Hm ) of the immune sera, extracted one month after the immunization, with respect to the preimmune sera are shown.
  • the sera were diluted 1/100.
  • the results of the bactericidal activity test against N. meningitidis are also shown.
  • the bactericidal titers of the sera (TBS) against the strains of serogroups A (TBS / A) and C (TBS / C) are reported as the maximum dilution of each serum that prevented the growth of more than 50% of the colonies, Regarding controls.
  • FIG. 3 Immunoidentification of the selected phages after the screening of the library of peptides exposed in phages. Immunoidentification was performed with the same serum used for the library research.
  • Panel A Fraction of the library of exposed peptides in phages selected with the total immunoglobulins purified from serum 22, faced in the serum immunoidentification experiment 22.
  • Panel B Fraction of the library of exposed peptides in phage selected with immunoglobulins G ( IgG) purified from serum 27 faced in the serum Immunoidentification experiment 27.
  • IgG immunoglobulins G
  • FIG. 4 Reactivity of the phage clones selected from the library when evaluated by ELISA with sera 22 (Panel A) and 27 (Panel B). In each case, only 20 of the 120 phage clones evaluated are shown. The plates were coated directly with the phages and each phage was evaluated against sera 22 and 27, diluted 1/100. The results are expressed as the quotient of the value of A 4 or 5 nm read for the phages evaluated and the value read for the control phage. From According to the selection criteria adopted (A 40 Sn (Ti phage / A 405 nm phage control> 10), 39 phages were selected to continue the work.
  • Figure 5 Reactivity of 40 of the 338 human sera examined to determine the levels of antibodies directed against the capsular polysaccharides of serogroups A and C of Neisseria meningitidis, using the standardized ELISA, recommended by the World Health Organization. The selected negative and positive sera are indicated with asterisks, due to their low and high reactivity, respectively, against each of the A or C polysaccharides.
  • Figure 6 Reactivity of the 39 phage clones selected as described in Example 6, when confronted by ELISA to the panel of positive and negative sera against the serogroup A polysaccharide.
  • the results are expressed as the ratio of the value of A 405 nm read for the evaluated phages and the value read for the control phage, represented as: no recognition, weak recognition, moderate recognition, strong recognition.
  • the results obtained for phages are shown in which the frequency and intensity of recognition of positive sera were higher than with negative sera.
  • FIG. 7 Reactivity of the 39 phage clones selected as described in Example 6, when faced with ELISA to the panel of positive and negative sera against the polysaccharide C of the meningococcus.
  • the results are expressed as the quotient of the value of A 4 or 5 ⁇ m read for the phages evaluated and the value read for the control phage, represented as: no recognition, weak recognition, moderate recognition, strong recognition.
  • the results obtained for phages are shown in which the frequency and intensity of recognition of positive sera was higher than with negative sera.
  • FIG. 8 Antibody levels (IgG) induced after immunization of Balb / c mice with the NMGACPS1-NMGACPS12 peptides exposed in filamentous phages, evaluated by ELISA. The results are expressed as the geometric mean of the antibody titres present in each immunized group. The sera of the animals, obtained after the third inoculation, were previously incubated with the wild phage M13KO7 to adsorb the antibodies directed against the proteins of the viral capsid. EXAMPLES OF REALIZATION
  • Example 1 Immunization of healthy volunteers with a capsular polysaccharide vaccine from serogroups A and C of Neisser ⁇ a meningitidis
  • Example 2 Evaluation of the immune response induced in the serum of individuals immunized with the free polysaccharide vaccine of serogroups A and C of Neisser ⁇ a meningitidis.
  • Example 1 The sera of the volunteers, collected one month after the immunization, were evaluated by the ELISA described in Example 1 (Akinwolere OA et to the. 1994. Two enzyme linked immunosorbent assays for detecting antibodies against meningococcal capsular polysaccharides A and C. J Clin Pathol. 47: 405-410), to detect specific antibody levels: total immunoglobulins (Ig), class M (IgM), class G (IgG) and subclasses of IgG induced against N. meningitidis polysaccharides A and C as result of vaccination.
  • Figure 1 shows the levels of anti-polysaccharide Igs A and C detected.
  • Immune sera were also evaluated by bactericidal activity assay against strains of serogroups A and C of N. meningitidis, as described (Maslanka SE et al. 1997. Standardization and a multilaboratory comparison of Neisseria meningitidis serogroup A and C serum bactericidal! Assays Clin. Diag. Lab. Immunol. 4: 156-167), but using as a source of exogenous complement a human serum.
  • the bactericidal antibody titer detected which is presented in Figure 2, was expressed as the reciprocal of the highest antibody dilution evaluated, capable of killing at least 50% of the bacteria. In sera 22 and 27, the highest titers of bactericidal activity were detected against the strains of N. meningitidis of serogroups A and C, respectively.
  • Example 3 Purification of immunoglobulins from sera with higher levels of bactericidal antibodies against meningococcus of serogroups A and C.
  • Sera extracted from individuals 22 and 27 were precipitated with 40% (w / v) (NH 4 ) 2 SO 4 , resuspended in PBS buffer, in a volume equal to the volume of starting serum and dialyzed twice against PBS for 12 h.
  • the IgG fraction of each serum was purified by affinity chromatography using Staphylococcus aureus Protein A as described (Langone JJ 1982. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumococci. J. Immunol. Methods 55, 277- 296).
  • Example 4 Research of the library of peptides exposed in phages with the total immunoglobulins purified from serum 22 and with the immunoglobulins G purified from serum 27.
  • a library of linear peptides of 15 amino acids expressed in the P8 region of filamentous phages was constructed and the screening of the same was carried out using the purified total immunoglobulins of serum 22 and Ia as selector molecules. fraction of immunoglobulins G (IgG) purified from serum 27.
  • the library screening was carried out in the form of cycles as described in the literature (Smith GP et al. 1993. Release them from peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228-257), except that the antibodies adsorbed directly to the solid support.
  • Example 5 Immunoidentification of the phages selected after the library screening with the polyclonal antibodies used for the selection
  • the phage adsorbed to the antibodies from serum 22 or 27, after the research of the library were used to infect XL-1 blue cells and several dilutions were poured onto agar plates with 2XYT culture medium. Nitrocellulose filters were placed on the Petri dishes with these cultures and incubated 4 hrs at 37 ° C. Then they were incubated 4 hrs at 4 ° C. The filters were then blocked with blocking solution: 5% skim milk (w / v), 0.1% NP40 (v / v) in PBS.
  • nitrocellulose membranes After washing and incubating with Specific antibodies that recognize human immunoglobulins conjugated to the enzyme alkaline phosphatase [Sigma, St. Louis, MO], were added a solution containing Nitro blue tetrazolium (NBT) at a final concentration of 0.3 mg / ml. Once the characteristic coloration appeared, the reaction was stopped by washing with water.
  • NBT Nitro blue tetrazolium
  • the polystyrene plates were coated with 10 9 particles from each of the phages to be evaluated. Once the plates were washed, they were blocked with blocking solution (5% skim milk (w / v) in PBS). Each phage was then evaluated against each of the 22 or 27 sera diluted 1/100 in blocking solution.
  • blocking solution 5% skim milk (w / v) in PBS.
  • Figure 4 shows the results of the ELISA application to 20 of the
  • Example 7 Construction of panels of positive and negative sera, according to the levels of antibodies directed against the capsular polysaccharides of serogroups A and C of Neisseria meningitidis.
  • Serum panels shown in Figure 5, were made up of 6 positive and 6 negative sera against polysaccharide C and 6 positive and 6 negative sera against polysaccharide A of N. meningitidis.
  • Example 8 Confrontation of the phages selected after the ELISA evaluation of the positive and negative sera panels.
  • the test used was similar to that described in Example 6: polystyrene plates were coated with 10 9 particles from each phage to be evaluated and incubated with human sera. The reactivity was revealed by incubating first with a conjugate of the alkaline phosphatase enzyme to specific antibodies that recognize human immunoglobulins [Sigma, St. Louis, MO], and then with a solution containing disodium p-nitrophenyl phosphate. The reading of A 4 or 5 ⁇ m was obtained - The results are shown as the ratio of the A 405 nm read for each phage between the A 4 o5 nm read for the control phage.
  • Figure 6 shows the phages whose frequency and intensity of recognition with positive sera against meningococcal polysaccharide A was higher than with negative sera.
  • Figure 7 shows the phages whose frequency and intensity of recognition with the positive sera against the polysaccharide C of the meningococcus was greater than with the negative sera.
  • Example 9 Purification and sequencing of viral DNA from the selected phages after confrontation with the panels of positive and negative sera
  • DNA-NMGACPS 1-12 The unique DNA sequences obtained, named DNA-NMGACPS 1-12, are shown in the sequence list (Seq ID 1-12). Peptides corresponding to the translation of these DNA sequences to protein sequences, named NMGACPS1-12 are shown in the sequence list (Seq ID 13-24).
  • sequences obtained were also characterized by a search for similarity in the NCBI database using the BLASTP 2.2.10 program (Altschul SF et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs. Nucleic Acids Res. 25: 3389-3402).
  • the search was subscribed to the gene and protein sequences of bacteria contained in the SwissProt databases (http://www.ebi.ac.uk/swissprot/) and NCBI (http: //www.ncbi.nlm.nih .gov /). The results of this procedure indicated that there were no percentages of similarity of the peptides against the sequences deposited in these databases greater than 30%.
  • Example 11 Immunization of mice intraperitoneally with the phages that express on their surface the NMGACPS peptides 1-12.
  • mice were inoculated directly with the phages exhibiting said peptides.
  • the phages were purified by cesium chloride gradients, following a modification of the purification procedure 1 (Lin TC et al. 1980. Isolation and characterization of the C and D proteins elbowed by gene IX and gene Vl in the filamentous bacteriophage fl and fd. J. Biol. Chem. 255: 10331- 10337), described by de la Cruz et al. (De la Cruz FV et al. 1988. Immunogenicity and epitope mapping of foreing sequences via genetically engineered filamentous phage. J. Biol. Chem. 25: 4318-4322).
  • mice H-2 d , female sex, 5-6 weeks of age
  • Three immunizations were performed with 10 11 viral particles per mouse at each immunization, intraperitoneally, separated by an interval of 15 days.
  • Two groups of mice were immunized with the capsular polysaccharides of serogroups A and C of N. meningitidis, respectively, 5 ug of each polysaccharide being administered per mouse at each dose.
  • Phages and polysaccharides administered intraperitoneally were emulsified with Freund's complete adjuvant in the first dose and with Freund's incomplete adjuvant in successive doses.
  • Example 12 Evaluation by ELISA of the immunogenicity of NMGACPS peptides 1-12.
  • Antibody levels (IgG) induced by NMGACPS peptides 1-12 exposed in filamentous phage were evaluated by ELISA.
  • the sera of the animals, obtained after the third inoculation, were incubated with the wild phage M13KO7 to adsorb the antibodies directed against the proteins of the viral capsid.
  • the phages used for immunization were used as coating antigens.
  • Figure 8 shows that the levels of specific IgG antibodies against peptides exposed in phages, after three immunizations with them increased significantly.
  • Example 13 Evaluation by bactericidal activity of the immune response induced by NMGACPS peptides 1-12.
  • the individual sera of the mice in each group inoculated with each immunogen were evaluated by a bactericidal activity assay (Maslanka SE et al. 1997. Standardization and a multilaboratory comparison of Neisseria meningitidis serogroup A and C serum bactericidal assays. Clin. Diag. Lab. Immunol. 4: 156-167) to detect the presence of antibodies capable of mediating the meningococcal lysis of serogroups A and C, by the complement system proteins.
  • the bactericidal antibody titer was expressed as the reciprocal of the highest antibody dilution evaluated, capable of killing at least 50% of the bacteria with respect to the controls.
  • bactericidal activity was detected, while the group immunized with the control phage showed no bactericidal activity.
  • Table 2 shows the percentage of responding mice in each group, as well as the geometric mean of the titles obtained for each group.
  • the individual sera of each mouse were evaluated against each strain of Neisseria meningitidis belonging to serogroups A or C.
  • the Table shows the geometric mean of the bactericidal activity titres (MGT) and the percentage of respondents of the groups of mice in , which bactericidal activity was detected.
  • MCT bactericidal activity titres
  • the serogroup to which the N. meningitidis strain against which the bactericidal activity was detected is indicated. Not detected Bactericidal activity against N. meningitidis of serogroups A or C in the serum of mice immunized with the control phage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La presente invención está relacionada con la obtención de péptidos antigénicos vacunales para la prevención o terapéutica de enfermedades bacterianas, virales, cancerosas, o de otro origen. Desarrollo de formulaciones capaces de elevar el espectro protector de vacunas ya existentes y extenderlo contra diferentes patógenos. Para lograr este objetivo se aislaron e identificaron péptidos miméticos moleculares de polisacáridos capsulares de los serogrupos A y C de Neisseria meningitidis, a partir de una colección de péptidos de 15 aminoácidos dispuestos al azar, empleando sueros humanos con altos niveles de anticuerpos dirigidos contra los polisacáridos capsulares de los serogrupos A y C del meningococo. La inmunogenicidad de los péptidos se evaluó en biomodelos animales, demostrando su valor como antígenos inductores de respuesta inmune con actividad bactericida contra N. meningitidis. Las formulaciones resultantes de esta invención son aplicables en la industria farmacéutica como formulaciones vacunales para uso humano.

Description

MIMOTOPOS DE POLISACÁRIDOS CAPSULARES DE NEISSERIA MENINGITIDIS Y FORMULACIONES FARMACÉUTICAS
Campo de Ia Invención
La presente invención está relacionada con Ia rama de Ia medicina, particularmente con el desarrollo de nuevas formulaciones vacunales, de aplicación preventiva o terapéutica, que permitan un aumento en Ia calidad de Ia respuesta inmune contra antígenos vacunales para combatir enfermedades de origen diverso.
Estado del arte previo
Neissería meningitidis es una bacteria Gram negativa cuyo único hospedero es el ser humano y constituye el agente causal de Ia enfermedad meningocóccica. Usualmente esta bacteria se encuentra formando parte de Ia microbiota natural transitoria del tracto respiratorio superior de individuos sanos conocidos como portadores y esta es Ia vía más común para su aislamiento microbiológico.
Los niños menores de 2 años de edad son Ia población más susceptible a contraer Ia meningitis meningocóccica, Ia complicación clínica más habitual de Ia enfermedad meningocóccica. Sin embargo, los adolescentes y Ia población de adultos mayores también pueden ser afectados. Diversas estrategias se han desarrollado con el objetivo de obtener un preparado vacunal que satisfaga los requisitos necesarios para proteger a Ia población contra esta enfermedad. Para ello se han tenido en cuenta los antígenos capsulares cuya especificidad ¡nmunológica ha permitido Ia clasificación de este microorganismo en serogrupos. En Ia actualidad se han definido 5 de estos serogrupos como los responsables de Ia mayoría de los casos de enfermedad meningocóccica en el mundo. El serogrupo A es el principal responsable de las epidemias en África subsahariana. Los serogrupos B y C están asociados con Ia mayor parte de los casos que ocurren en los países desarrollados. Los serogrupos Y y W135 están presentes en Ia mayoría de los casos remanentes de Ia enfermedad y de infección prevalente en algunas regiones de los Estados Unidos, con un marcado incremento en los últimos años. Los polisacáridos capsulares han sido objeto de estudio y evaluación como candidatos vacunales. Se han desarrollado vacunas basadas en los polisacáridos de cepas de N. meningitidis de los serogrupos A, C, Y y W-135. Estas vacunas han demostrado su eficacia para detener las epidemias causadas por cepas del meningococo pertenecientes a estos serogrupos (Rosenstein N. et al. 2001. Menningococcal disease. N. Engl. J. Med, 344, 1378-1388).
La respuesta inmune contra los antígenos polisacarídicos se caracteriza por ser timo-independiente, de corta duración, no se estimula Ia inducción de respuesta de memoria con maduración de Ia afinidad y se desarrolla tarde en Ia ontogenia (GoId R y Lepow ML. 1975. Clínica/ θvaluation of group A and C meningococcal polysaccharide vaccines in infants. J. Clin Invest 56; 1536-47.). En el caso específico de las vacunas basadas en el polisacárido capsular del serogrupo C de N. meningitidis se reporta además Ia generación de un fenómeno de hiporrespuesta en los individuos inmunizados repetidamente con dichas vacunas, como ocurre por ejemplo en las zonas de alta incidencia de Ia enfermedad (Borrow R. et al. 2001. Influence of prior meningococcal C polysaccharide vaccination on the response and generation of memory after meningococcal C conjúgate vaccination in young children. J Infecí Dis 184: 377-380).
El desarrollo de vacunas conjugadas, en las cuales los polisacáridos capsulares son acoplados covalentemente a antígenos proteicos, permiten Ia transformación de Ia respuesta inmune contra los polisacáridos en timo-dependiente y Ia superación de las dificultades asociadas al empleo como inmunógenos de polisacáridos no conjugados (Jennings H and Lugowski C. 1981. Immunochemistry of groups A, B and C meningococcal polysaccharide-tetanus toxoid conjugates. J Immunol 127; 1011-1018; Borrow R. et al. 2001. Influence of prior meningococcal C polysaccharide vaccination on the response and generation of memory añer meningococcal C conjúgate vaccination in young children. J Infecí Dis 184: 377- 380). Varias vacunas conjugadas, basadas en el polisacárido capsular de Ia bacteria del serogrupo C conjugado a proteínas portadoras, se encuentra actualmente disponible en el mercadoτ las que, en estudios de campo en Inglaterra, demostraron su capacidad de inducción de anticuerpos bactericidas y protectores no solo en adultos, sino además en niños pequeños (Miller E. et al. 2002. Planning, registration and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 20; s58-s67). Contra el serogrupo A se encuentran en fase de ensayos clínicos varias vacunas conjugadas, las que han demostrado ser seguras, ¡nmunogénicas y capaces de inducir memoria inmunológica (Campagne G. et al. 2000. Safety and immunogenicity of three doses of a Neisseria meningitidis A + C diphtheria conjúgate vaccine in infants from Niger. Pediatr. Infecí. Dis. J. 19: 144-150; Borrow R. et al. 2000. Induction of immunological memory in UK infants by a meningococcal A/C conjúgate vaccine. Epidemiol. Infecí. 124: 427- 432; Choo S. et al. 2000. Immunogenicity and reactogenicity of a group C meningococcal conjúgate vaccine compared with a group A+C meningococcal polysaccharide vaccine in adolescents in a randomised observer-hlind controlled trial. Vaccine 18: 2686- 2692).
Otra estrategia alternativa para Ia conversión de Ia respuesta timo-independiente que se induce contra los polisacáridos, en timo-dependiente, es el empleo como inmunógenos de péptidos miméticos de dichos polisacáridos, o sea, de péptidos que al ser estructuralmente similares a los carbohidratos, tienen también Ia capacidad de simular las características en cuanto a antigenicidad e inmunogenicidad de dichos polisacáridos.
A partir de colecciones de péptidos, en las que los aminoácidos se disponen al azar, se pueden identificar tales estructuras miméticas, enfrentando dichas colecciones de péptidos a anticuerpos. Los anticuerpos que se emplean con este propósito pueden ser monoclonales o policlonales y pueden ser específicos para reconocer antígenos proteicos o polisacarídicos, del patógeno bajo estudio. Al realizar Ia pesquisa de las bibliotecas de péptidos con sueros de individuos afectados por alguna enfermedad o inmunizados con algún preparado vacunal eficaz, se pueden identificar epitopos específicos de enfermedades o epitopos responsables de Ia protección conferida por dicha vacuna, respectivamente (Yip Y. L. and Ward R. L. 1999. Epitope discovery using monoclonal antibodies and phage peptide libraries. Comb Chem High Throughput Screen 2: 125-138; Phalipon A. et al. 1997. Induction of anti-carbohydrate antibodies by phage library-selected peptide mimics. Eur J Immunol 27: 2620-1625; Harris S. L. et al. 1997. Exploring the basis of peptide-carbohydrate crossreactivity: evidence for discrimination by peptides between closely related anti-carbohydrate antibodies. Proc Nati Acad Sci USA 94: 2454-2459; Folgori A. et al. 1994. A general strategy to identify mimotopes of pathological antígens using only random peptlde librarles and human sera. EMBO J. 13: 2236-2243).
Las colecciones de péptidos pueden obtenerse tanto por vía sintética (Lebl M. and Krchnak V. 1997. Synthetic peptlde librarles. Meth. Enzymol. 289: 336-392) como expresadas en Ia superficie de fagos filamentosos (Smith G. P. et al. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228-257). El desarrollo de esta última tecnología se basa en Ia capacidad de los fagos filamentosos de exponer en su superficie secuencias peptídicas foráneas fusionadas a las proteínas de Ia cápsida viral. Las secuencias peptídicas expuestas en Ia superficie de Ia partícula viral son fácilmente accesibles y potencialmente capaces de unirse de manera específica a las moléculas usadas para Ia selección, y por Io tanto pueden ser seleccionados en base a dicha afinidad. La secuencia de un péptido de una biblioteca escogido por una determinada propiedad puede ser fácilmente deducida de Ia secuencia nucleotídica del fago que Io expone (Parmley S. F. et al. 1988. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305-318; Smith G. P. et al. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228-257; Cwirla S. E. et al. 1990. Peptides on phage: a vast librar/ of peptides for identifying ligands. Proc. Nati. Acad. Sci. U S A; 87: 6378-6382). Los péptidos para poder ser considerados como posibles candidatos vacunales deben ser capaces en primer lugar de unirse a anticuerpos específicos contra el antígeno original, y de inhibir Ia unión de dichos anticuerpos a dicho antígeno y en segundo lugar deben inducir una respuesta inmune caracterizada por Ia presencia de anticuerpos que reconozcan al patógeno y que protejan de Ia infección causada por el mismo. Estos péptidos, que son estructuras reproducibles y bien definidas pueden sustituir al antígeno natural en el proceso de elaboración de vacunas, con Ia ventaja adicional de que al estar bien definido el blanco de los anticuerpos inducidos por ellos se minimiza Ia posibilidad de inducción de efectos ¡ndeseados (Monzavi-Karbassi B. et al. 2002. Peptide mimotopes as surrogate antígens of carbohydrates in vaccine discovery. Trenes. Biotechnol. 20:207-214).
Es posible Ia inmunización directa de animales de experimentación con fagos que exponen péptidos. Esto acelera el proceso de evaluación inmunológica de los posibles candidatos vacunales, ya que se evita emplear el procedimiento tradicional de síntesis de los péptidos y Ia posterior conjugación de los mismos a proteínas portadoras. Se ha demostrado que los fagos filamentosos son proteínas portadoras potentes, capaces de presentar péptidos al sistema inmune de manera efectiva (de Ia Cruz V. F. et al. 1988. Immunogenicity and epitope mapping of foreign sequences vía genetically engineered filamentous phage. J. Biol. Chem. 263: 4318-4322; Meóla A. eí al. 1995. Derivation of vaccines from mimotopes: Immunologic properties of human Hepatitis B virus suríace antigen mimotopes displayed on filamentous phage. J. Immunol. 154: 3162-3172; Galfré G. et al. 1996. Immunization with phage-displayed mimotopes. Methods Enzymol. 267: 109-115; Menéndez T. eí al. 2001. Immunisation with phage-displayed variable región 2 from meningococcal PorA outer memhrane protein induces bactericida! antibodies against Neisseria meningitidis. Immunol. Lett. 39: 143-148).
En el campo de las vacunas contra N. meningitidis se ha trabajado en Ia identificación de mimotopos de los polisacáridos capsulares de Ia bacteria. En el año 2000 se reportó el aislamiento de péptidos miméticos del polisacárido capsular del serogrupo A de N. meningitidis mediante una selección en una biblioteca de péptidos expuestos en fagos filamentosos, con un anticuerpo monoclonal específico para dicho polisacárido. Los mimotopos identificados fueron capaces de inhibir Ia unión de sueros humanos hiperinmunes al antígeno natural y de inducir altos títulos de anticuerpos anti-polisacárido A al inmunizar animales de experimentación (Grothaus M. C. et al. 2000. Selection of an immunogenic peptide mimic of the capsular polysaccharide of Neisseria meningitidis serogroup A using a peptide display libran/. Vaccine 2000; 18; 1253-1263). También se reportó Ia identificación de mimotopos del polisacárido capsular del serogrupo C de N. meningitidis, aunque empleando una tecnología diferente. Para ello sintetizaron un péptido cuya secuencia se basaba en Ia de las regiones hipervariables de las cadenas pesadas y ligeras de un anticuerpo anti-idiotipo, mimético del polisacárido C. Al inmunizar ratones con el péptido sintetizado se obtuvo una elevada respuesta de anticuerpos anti-polisacárido C, protectores contra el reto letal con el meningococo en modelos animales (Westerink M. A. eí al. Peptide mimicry of the meningococcal group C capsular polysaccharide. Proc Nati Acad Sci U S A 1995; 92: 4021). En el caso del serogrupo B de N. meningitidis también se ha informado el aislamiento de varios péptidos con Ia capacidad de unirse a anticuerpos dirigidos contra el polisacárido de este serogrupo, aunque los anticuerpos inducidos contra dichos péptidos no han mostrado actividad funcional contra el meningococo (Shin J. S. et al. 2001. Monoclonal antibodies specific for Neisseria meningitidis group B polysaccharide and their peptide mimotopes. Infecí. Immun. 69: 3335-3342; Park I. et al. 2004. Peptide mimotopes of Neisseria meningitidis serogroup B capsular polysaccharide. Yonsei Medical Journal. 45: 755-758; Moe G. R. et al. 1999. Molecular mimetics of polysaccharide epitopes as vaccine candidates for prevention of Neisseria meningitidis serogroup B disease. FEMS Immunol. Med. Microbiol. 26: 209-269; Moe G. R and Granoff D. M. 2001. Molecular mimetics of Neisseria meningitidis serogroup B polysaccharide. Int. Rev. Immunol. 20:201-20).
Las vacunas basadas en polisacáridos capsulares, tanto libres como conjugados a proteínas portadoras, han mostrado su capacidad para inducir respuesta inmune protectora contra N. meningitidis, pero existen problemas inherentes a Ia producción de las mismas. Uno de estos problemas es que para purificar los polisacáridos se necesita manipular directamente a Ia bacteria. Neisseria meningitidis es un microorganismo clasificado como un patógeno de clase 2 y por Io tanto es necesario manipularlo en condiciones apropiadas para este tipo de patógeno. Se necesitan procedimientos patrones de operación especiales para trabajar con el mismo y para actuar en situaciones de emergencia relacionadas con escapes accidentales que faciliten Ia diseminación de Ia bacteria. Es necesario por Io tanto que el personal que trabaje en Ia producción de estas vacunas esté especialmente entrenado y se implementen las medidas de precaución adecuadas, incluyendo Ia vacunación contra el patógeno en cuestión. La implementación de las buenas prácticas de producción es en estos casos especialmente importante, no solo para Ia calidad del producto que se fabrica, sino además para proteger a los trabajadores y al ambiente (World Health Organization. 1995. Biosafety Guidelines for Personnel Engaged in the Production of Vaccines and Biological Products for Medical Use. Geneva, uηpublished document WHO/CDS/BVI/95.5 - available on request from Communicable Diseases, World Health Organization, 1211 Geneva 27, Switzerland). Por otro lado, los procesos de producción y control de las vacunas conjugadas son complejos, ya que no ocurre, como en el caso de las vacunas de polisacáridos libres que al estar constituidas por una entidad química definida, si se preparan siguiendo las mismas especificaciones deben tener potencias comparables con independencia de quien sea el fabricante (World Health Organization, Geneva. Requirements for meningococcal polysaccharide vaccine. Technical report series, no. 594, 1976; no. 626, 1978; no. 658, 1981). Durante Ia elaboración de vacunas conjugadas pueden emplearse diferentes metodologías para Ia obtención de los conjugados, Io cual no influye en Ia obtención de vacunas igualmente efectivas. En el caso de N. meningitidis del serogrupo C, actualmente se encuentran disponibles en el mercado 3 vacunas conjugadas que se basan en diferentes estrategias para Ia obtención de los conjugados. Estas estrategias difieren en cuanto a Ia proteína portadora a Ia cual se acopla el polisacárido, el grado de acetilación del mismo y Ia metodología de conjugación que involucra o no el uso de un brazo espaciador entre el polisacárido y Ia proteína (Richmond P. et al. 2001. Ability of 3 different meningococcal C conjúgate vaccines to induce immunologic memory añera single dose In UK toddlers. J Infecí Dis. 183:160-163; Jodar L. et al. 2004. Scientific challenges for the quality control and production of group C meningococcal conjúgate vaccines. Vaccine. 22:1047-1053). Por otro lado, los conjugados, al obtenerse como resultado de un proceso de acoplamiento químico entre proteínas y polisacáridos, no constituyen inmunógenos bien definidos químicamente ya que Ia relación proteína: polisacárido en el conjugado resultante de cada ensayo puede variar. Esto requiere un control estricto de los procesos de conjugación para garantizar Ia homogeneidad y consistencia lote a lote de estas vacunas. Por estos motivos los controles de calidad, establecidos por las entidades regulatorias para estas vacunas, enfatizan en Ia caracterización a nivel molecular, atendiendo a criterios físico-químicos que monitoreen Ia calidad de los polisacáridos, las proteínas portadoras y los conjugados obtenidos. Se hace necesario asegurar que cada lote sea consistente con las especificaciones de los lotes de vacunas empleados en los ensayos clínicos y que establecen su seguridad e inmunogenicidad. Algunas de las metodologías que se emplean son complejas y precisan de equipamiento costoso y de difícil manipulación, con necesidad de personal entrenado adecuadamente para operarlo. Algunos ejemplos de las metodologías empleadas son Ia espectroscopia de fluorescencia, Ia técnica del dicroísmo circular, espectrometría de masas, cromatografía de exclusión molecular combinada con técnicas de detección con dispersión de luz, cromatografía de intercambio amónico de alta resolución y resonancia magnético- nuclear. Esta última es Ia metodología de elección para confirmar Ia identidad e integridad del polisacárido dentro del conjugado (World Health Organization Expert Committee on Pharmaceutical Specifications for Pharmaceutical Preparations. 1992. Validation of analytical procedures used in the examination of pharmaceutical materials, 32nd Report. WHO Technical Report Series No 823, 117- 121; World Health Organization Expert Committee on Biological Standardisation and Control. 2004. Recommendations for the production and control for group C meningococcal conjúgate vaccines. WHO Technical Report Series No. 924; Jodar L et al. 2004. Scientific challenges for the quality control and production of group C meningococcal conjúgate vaccines. Vaccine 22: 1047-1053).
El empleo de péptidos miméticos, como alternativa al empleo de polisacáridos como inmunógenos, también presenta como ventajas que durante el proceso de elaboración de las vacunas no se manipula directamente el patógeno, las posibles reacciones e interacciones de los péptidos, al ser moléculas más simples que los carbohidratos, son más fáciles de caracterizar y de controlar. También al emplear péptidos como inmunógenos se puede inducir respuesta inmune contra epítopes específicos, que pudieran estar enmascarados o ser tolerados al emplear como inmunógenos los propios polisacáridos. El empleo de péptidos como vacunas permite explotar estrategias que no son posibles de aplicar cuando se inmuniza con carbohidratos, como por ejemplo Ia presentación de los antígenos al sistema inmune mediante células dendríticas, el anclaje a membranas celulares mediante glicosilfosfatidilinositol y el empleo en estrategias de vacunación con ADN.
Finalmente, las dificultades productivas que pudieran asociarse a Ia síntesis química de los péptidos, como son Ia necesidad de garantizar Ia eliminación de los reactivos empleados durante Ia síntesis y las dificultades asociadas a Ia posterior conjugación de los mismos a proteínas portadoras para incrementar su inmunogenicidad, podrían eliminarse si se producen y purifican, a partir de hospederos adecuados como por ejemplo Escherichia coli, proteínas de fusión formadas por una proteína portadora y el péptido en cuestión (Monzavi-Karbassi B et al. 2002. Peptide mimotopes as surrogate antigens of carhohydrates in vaccine discovery. Trends Biotechnol. 20: 207- 214; Pirofski L. A. et al. 2001. Polysaccharides, mimotopes and vaccines for fungal and encapsulated pathogens. Trends Microbiol. 9: 445-451; World Health
Organization Expert Committee on Biological Standardisation and Control. 1999.
Guidelines for the production and quality control of synthetic peptide vaccines. WHO Technical Report Series No. 889).
La alternativa que se ofrece con Ia identificación de mimotopos, en el campo de las vacunas, es importante ya que los péptidos que se seleccionan de acuerdo con esta metodología son imágenes positivas del antígeno natural y pueden ser inmunógenos sustitutos de este aun cuando sean completamente distintos del antígeno natural. Ellos constituyen, por Io tanto, una fuente alternativa de antígenos que permiten Ia disección de Ia respuesta inmune. Esta metodología abre nuevas perspectivas en el desarrollo de reactivos de nueva generación, de uso potencial en el diagnóstico o Ia prevención de varias enfermedades.
Descripción detallada de Ia invención
En el trabajo objeto de Ia presente invención se reportan por primera vez los péptidos NMGACPS 1 - 12, como componentes de reactivos para el diagnóstico o de una formulación vacunal de carácter terapéutico o preventivo contra Ia enfermedad meningocóccica o cualquier infección provocada por un miembro del género Neisseria o por otras bacterias, virus o parásitos.
El carácter novedoso de esta invención reside en el descubrimiento por primera vez de los péptidos NMGACPS 1 - 12 como mimotopos moleculares de epítopes presentes en los polisacáridos capsulares de los serogrupos A y C de Neisseria meningitidis, capaces de inducir Ia producción de anticuerpos bactericidas contra cepas del meningococo pertenecientes a alguno de estos serogrupos. Estos mimotopos pueden emplearse como reactivos para el diagnóstico, y/o en formulaciones vacunales para tratar o prevenir Ia enfermedad causada por miembros del género Neisseria o por otras bacterias, virus o parásitos.
En Ia presente invención se hace referencia a los aminoácidos empleando el código de una letra (Ej: A-Alanina, W-Triptofano, S-Serina, E-Acido Glutamico, Y- Tirosina, K-LJsina, F-Fenilalanina, l-lsoleucina, V-Valina, P-Prolina, etc.). DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Niveles de inmunoglobulinas totales (Ig) detectados en el suero de los voluntarios. Los sueros preinmunes de 33 individuos y los sueros inmunes de los 12 individuos inmunizados con Ia vacuna bivalente de polisacáridos capsulares de los serogrupos A y C de Neisseria meningitidis, se evaluaron por ELISA para detectar Ia presencia de anticuerpos dirigidos contra los polisacáridos A y C. Los sueros se diluyeron 1/100. Se muestran las A492nm obtenidas en los ELISAs.
Figura 2. Niveles de inmunoglobulinas G (IgG) y M (IgM) inducidos después de Ia inmunización con Ia vacuna bivalente de polisacáridos capsulares de los serogrupos A y C de N. meningitidis, evaluados por ELISA. Se muestran los incrementos en Ia Absorbancia a 492nm (A492Hm) de los sueros inmunes, extraídos un mes después de Ia inmunización, con respecto a los sueros preinmunes. Los sueros fueron diluidos 1/100. Se muestran también los resultados del ensayo de actividad bactericida contra N. meningitidis. Los títulos bactericidas de los sueros (TBS) contra las cepas de los serogrupos A (TBS/A) y C (TBS/C) se informan como Ia máxima dilución de cada suero que impidió el crecimiento de más del 50% de las colonias, con respecto a los controles.
Figura 3. Inmunoidentificación de los fagos seleccionados después de Ia pesquisa de Ia biblioteca de péptidos expuestos en fagos. La Inmunoidentificación se realizó con el mismo suero empleado para Ia pesquisa de Ia biblioteca. Panel A: Fracción de Ia biblioteca de péptidos expuestos en fagos seleccionados con las inmunoglobulinas totales purificadas del suero 22, enfrentados en el experimento de Inmunoidentificación al suero 22. Panel B: Fracción de Ia biblioteca de péptidos expuestos en fagos seleccionados con las inmunoglobulinas G (IgG) purificadas del suero 27 enfrentados en el experimento de Inmunoidentificación al suero 27.
Figura 4. Reactividad de los clones de fagos seleccionados de Ia biblioteca al ser evaluados por ELISA con los sueros 22 (Panel A) y 27 (Panel B). En cada caso se muestran solo 20 de los 120 clones de fagos evaluados. Las placas fueron recubiertas directamente con los fagos y cada fago fue evaluado contra los sueros 22 y 27, diluidos 1/100. Los resultados se expresan como el cociente del valor de A4o5nm leído para los fagos evaluados y el valor leído para el fago control. De acuerdo al criterio de selección adoptado (A40Sn(Ti fago /A405nm fago control > 10), 39 fagos fueron seleccionados para continuar el trabajo.
Figura 5. Reactividad de 40 de los 338 sueros humanos examinados para determinar los niveles de anticuerpos dirigidos contra los polisacáridos capsulares de los serogrupos A y C de Neisseria meningitidis, empleando el ELISA estandarizado, recomendado por Ia Organización Mundial de Ia Salud. Se señalan con asteriscos los sueros negativos y positivos seleccionados, debido a su baja y alta reactividad, respectivamente, contra cada uno de los polisacáridos A ó C. Figura 6. Reactividad de los 39 clones de fagos seleccionados según se describe en el Ejemplo 6, al ser enfrentados mediante ELISA al panel de sueros positivos y negativos contra el polisacárido del serogrupo A. Los resultados se expresan como el cociente del valor de A405nm leído para los fagos evaluados y el valor leído para el fago control, representados como: no reconocimiento, reconocimiento débil, reconocimiento moderado, reconocimiento fuerte. Se muestran los resultados obtenidos para los fagos en los que Ia frecuencia e intensidad del reconocimiento de los sueros positivos fueron mayores que con los sueros negativos.
Figura 7. Reactividad de los 39 clones de fagos seleccionados según se describe en el Ejemplo 6, al ser enfrentados mediante ELISA al panel de sueros positivos y negativos contra el polisacárido C del meningococo. Los resultados se expresan como el cociente del valor de A4o5πm leído para los fagos evaluados y el valor leído para el fago control, representados como: no reconocimiento, reconocimiento débil, reconocimiento moderado, reconocimiento fuerte. Se muestran los resultados obtenidos para los fagos en los que Ia frecuencia e intensidad del reconocimiento de los sueros positivos fue mayor que con los sueros negativos.
Figura 8. Niveles de anticuerpos (IgG) inducidos después de Ia inmunización de ratones Balb/c con los péptidos NMGACPS1-NMGACPS12 expuestos en fagos filamentosos, evaluados por ELISA. Los resultados se expresan como Ia media geométrica de los títulos de anticuerpos presentes en cada grupo inmunizado. Los sueros de los animales, obtenidos luego de Ia tercera inoculación, fueron previamente incubados con el fago salvaje M13KO7 para adsorber los anticuerpos dirigidos contra las proteínas de Ia cápsida viral. EJEMPLOS DE REALIZACIÓN
Ejemplo 1. Inmunización de voluntarios sanos con una vacuna de polisacáridos capsulares de los serogrupos A y C de Neissería meningitidis
Con el objetivo de obtener sueros humanos con altos niveles de anticuerpos dirigidos contra los polisacáridos capsulares de los serogrupos A y C de N. meningitidis, se llevó a cabo un esquema de inmunización de voluntarios sanos con una vacuna antimeningocóccica, constituida por 50ug de cada uno de los polisacáridos capsulares de los serogrupos A y C de N. meningitidis. Antes de Ia inmunización, los sueros de 33 individuos fueron evaluados mediante ELISA (Akinwolere O. A. et al. 1994. Two enzyme linked immunosorhent assays for detecting antibodies against meningococcal capsular polysacch andes A and C. J Clin Pathol. 47: 405-410), para detectar Ia presencia antes de Ia inmunización de anticuerpos dirigidos contra los polisacáridos A y C (Figura 1). El ELISA comenzó con Ia presensibilización de las placas con poli-L-lisina, luego se añadió una mezcla, a partes iguales, de los polisacáridos A y C del meningococo y finalmente los sueros. La reactividad se reveló incubando primero con anticuerpos que reconocen inmunoglobulinas humanas, conjugadas a Ia enzima peroxidasa de rábano picante y luego con una solución que contenía H2O2 y el cromógeno o- fenilen diamina (OPD). La reacción se detuvo con ácido sulfúrico 2.5 N y Ia A492Hm se leyó en un lector de placas de ELISA.
Doce individuos fueron seleccionados para ser inmunizados, por tener los menores niveles de anticuerpos específicos contra los polisacáridos A y C de N. meningitidis. La administración de Ia vacuna se realizó por vía intramuscular en el músculo deltoides. Un mes después de Ia inmunización se realizó una extracción de sangre a los individuos inmunizados y los sueros fueron almacenados a -20°C hasta su análisis.
Ejemplo 2. Evaluación de Ia respuesta inmune inducida en el suero de los individuos inmunizados con Ia vacuna de polisacáridos libres de los serogrupos A y C de Neissería meningitidis.
Los sueros de los voluntarios, colectados un mes después de Ia inmunización, fueron evaluados mediante el ELISA descrito en el Ejemplo 1 (Akinwolere O. A. et al. 1994. Two enzyme linked immunosorbent assays for detecting antibodies against meningococcal capsular polysaccharides A and C. J Clin Pathol. 47: 405- 410), para detectar los niveles de anticuerpos específicos: inmunoglobulinas totales (Ig), de clase M (IgM), de clase G (IgG) y subclases de IgG inducidos contra los polisacáridos A y C de N. meningitidis como resultado de Ia vacunación. La Figura 1 muestra los niveles de Ig anti-polisacáridos A y C detectados. Se obtuvo que, producto de Ia inmunización, más del 90% de los individuos (11/12) mostraron incrementos en los niveles de anticuerpos específicos contra los polisacáridos. La respuesta se caracterizó por presentar anticuerpos de las clases IgM e IgG, como se muestra en Ia Figura 2, siendo IgGI e lgG2 las subclases de IgG predominantes.
Los sueros inmunes también fueron evaluados mediante ensayo de actividad bactericida contra cepas de los serogrupos A y C de N. meningitidis, según se describe (Maslanka S. E. et al. 1997. Standardization and a multilaboratory comparíson ofNeisseria meningitidis serogroup A and C serum bactericida! assays. Clin. Diag. Lab. Immunol. 4: 156-167), pero empleando como fuente de complemento exógena un suero humano. El título de anticuerpos bactericidas detectado, que se presenta en Ia Figura 2, fue expresado como el recíproco de Ia mayor dilución de anticuerpos evaluada, capaz de matar al menos el 50% de las bacterias. En los sueros 22 y 27 se detectaron los mayores títulos de actividad bactericida contra las cepas de N. meningitidis de los serogrupos A y C, respectivamente.
Ejemplo 3. Purificación de las inmunoglobulinas de los sueros con mayores niveles de anticuerpos bactericidas contra el meningococo de los serogrupos A y C.
Los sueros extraídos de los individuos 22 y 27 fueron precipitados con (NH4)2SO4 al 40% (p/v), resuspendidos en buffer PBS, en un volumen igual al volumen de suero de partida y se dializaron 2 veces contra PBS durante 12 h. La fracción IgG de cada suero fue purificada mediante cromatografía de afinidad usando Proteína A de Staphylococcus aureus según se describe (Langone J. J. 1982. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumococci. J. Immunol. Methods 55, 277-296). Los sueros, después de ser precipitados con (NH4)2SO4, resuspendidos y dializados contra PBS, así como las fracciones IgG, purificadas de cada uno de ellos, fueron evaluados en ensayo de actividad bactericida. Tanto Ia fracción purificada de IgG como el suero total precipitado con (NH4)2SO4, pertenecientes al individuo 27 conservaron Ia actividad bactericida. La fracción IgG purificada del suero del voluntario 22 no conservó Ia actividad bactericida, mientras que el suero total, después de precipitado con (NH4^SO4, si conservó Ia actividad bactericida.
Ejemplo 4. Pesquisa de Ia biblioteca de péptidos expuestos en fagos con las Inmunoglobulinas totales purificadas del suero 22 y con las lnmunoglobulinas G purificadas del suero 27.
Para Ia definición de los péptidos descritos en Ia presente invención se construyó una biblioteca de péptidos lineales de 15 aminoácidos expresados en Ia región P8 de fagos filamentosos y se realizó el pesquisaje de Ia misma usando como moléculas selectoras las inmunoglobulinas totales purificadas del suero 22 y Ia fracción de inmunoglobulinas G (IgG) purificadas del suero 27. La pesquisa de Ia biblioteca se llevó a cabo en forma de ciclos según se describe en Ia literatura (Smith G. P. et al. 1993. Librarles of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228-257), excepto que los anticuerpos se adsorbieron directamente al soporte sólido.
Ejemplo 5. Inmunoidentificación de los fagos seleccionados después de Ia pesquisa de Ia biblioteca con los anticuerpos policlonales empleados para Ia selección
Los fagos adsorbidos a los anticuerpos provenientes del suero 22 ó 27, luego de Ia pesquisa de Ia biblioteca fueron empleados para infectar células XL-1 blue y varias diluciones se vertieron sobre placas de agar con medio de cultivo 2XYT. Se colocaron filtros de nitrocelulosa sobre las placas Petri con estos cultivos y se incubaron 4 hrs a 37°C. Luego se incubaron 4 hrs a 4°C. A continuación los filtros fueron bloqueados con solución de bloqueo: leche descremada al 5% (p/v), NP40 al 0.1% (v/v) en PBS. Los sueros 22 y 27 diluidos 1 :50 en solución de bloqueo, después de adsorbidos con el fago salvaje M13KO7 y con un extracto de células XL-1 blue, se incubaron con las membranas de nitrocelulosa durante 12 hrs a 4°C. A las membranas de nitrocelulosa, después de lavarlas e incubarlas con anticuerpos específicos que reconocen inmunoglobulinas humanas conjugadas a Ia enzima fosfatasa alcalina [Sigma, St. Louis, MO], se les añadió una solución que contenía Nitro blue tetrazolium (NBT) a una concentración final de 0.3 mg/ml. Una vez aparecida Ia coloración característica, Ia reacción se detuvo lavando con agua. Las placas de fagos correspondientes a los puntos sobre Ia membrana de nitrocelulosa que dieron positivos después de este experimento de Inmunoidentificación, tanto con el suero 22 (Figura 3A) como con el 27 (Figura 3B), fueron aisladas y los clones de fagos individuales fueron purificados. Se purificaron 120 clones de fagos individuales, 80 provenientes de los experimentos realizados con el suero 22 y 40 provenientes de los experimentos realizados con el suero 27.
Ejemplo 6. Evaluación mediante ELISA de los fagos seleccionados después de Ia Inmunoidentificación
Se recubrieron las placas de poliestireno con 109 partículas de cada uno de los fagos a evaluar. Una vez lavadas las placas, estas se bloquearon con solución de bloqueo (leche descremada 5% (p/v) en PBS). A continuación, cada fago se evaluó contra cada uno de los sueros 22 o 27 diluidos 1/100 en solución de bloqueo.
Después de lavadas las placas e incubadas con anticuerpos específicos que reconocen inmunoglobulinas humanas conjugadas a Ia enzima fosfatasa alcalina [Sigma, St. Louis, MO], se les añadió una solución que contenía p-nitrofenil fosfato disódico Los resultados se leyeron en un lector de placas de ELISA como A405nm.
En Ia Figura 4 se muestran los resultados de Ia aplicación del ELISA a 20 de los
120 fagos evaluados, contra cada uno de los sueros 22 y 27. Los resultados se muestran como el cociente de Ia A405nm leída para cada fago entre Ia A4o5nm leída para el fago control. Los 39 fagos en los cuales este cociente resultó > 10 fueron seleccionados como positivos y con ellos se continuó el trabajo.
Ejemplo 7. Construcción de paneles de sueros positivos y negativos, atendiendo a los niveles de anticuerpos dirigidos contra los polisacáridos capsulares de los serogrupos A y C de Neisseria meningitidis.
Para evaluar Ia reactividad de los fagos seleccionados según se describe en el Ejemplo 6, se conformaron paneles de sueros humanos atendiendo a los niveles de anticuerpos dirigidos contra los polisacáridos capsulares de los serogrupos A ó C de N. meningitidis. Para ello, un total de 338 sueros fueron evaluados mediante un ensayo de ELISA estandarizado recomendado por Ia organización Mundial de Ia Salud (World Health Organization. 1999. Standardization and validation of serological assays for the evaluation of immune responses to Neisseria meningitidis serogroup A/C vaccines. Vaccine Development Team of the Department of Vaccine and Biologicals. Ginebra, www.who.int/gpv- documents/Geneva, March 1999), para Ia determinación de los niveles de anticuerpos dirigidos contra los polisacáridos capsulares de los serogrupos A y C de N. meningitidis. Los sueros preinmunes de los 33 voluntarios que dieron su consentimiento para ser inmunizados con Ia vacuna bivalente antimeningocóccica, según se refirió en el Ejemplo 1 , y los sueros inmunes de los 12 individuos vacunados se re-evaluaron empleando este ensayo estandarizado. Además fueron evaluados sueros provenientes de niños y adultos que participaron en diversos ensayos clínicos llevados a cabo en el Departamento de Ensayos Clínicos de Ia División Vacunas del CIGB. Los resultados obtenidos con cada suero, al evaluarlo contra cada polisacárido, A ó C, informados en términos de concentración de anticuerpos en sangre (ug/ml), referidos a un suero patrón internacional recomendado por Ia Organización Mundial de Ia Salud (World Health Organization. 1999. Standardization and validation of serological assays for the evaluation of immune responses to Neisseria meningitidis serogroup AJC vaccines. Vaccine Development Team of the Department of Vaccine and Biologicals. Ginebra, www.who.int/gpv-documents/Geneva, March 1999), fueron organizados de forma descendente. Los 6 sueros con los niveles mas altos de anticuerpos dirigidos contra cada polisacárido, A ó C, fueron seleccionados como los sueros positivos para formar parte del panel de sueros. De igual forma los 6 sueros con los niveles mas bajos de anticuerpos dirigidos contra cada polisacárido, A ó C, fueron seleccionados como los sueros negativos para formar parte del panel de sueros. Los paneles de sueros, mostrados en Ia Figura 5, quedaron conformados por 6 sueros positivos y 6 negativos contra el polisacárido C y por 6 sueros positivos y 6 negativos contra el polisacárido A de N. meningitidis. Ejemplo 8. Enfrentamiento de los fagos seleccionados después de Ia evaluación por ELISA a los paneles de sueros positivos y negativos.
Los 39 clones dθ fagos seleccionados según se describió en el Ejemplo 6, fueron enfrentados mediante ELISA a los paneles de sueros positivos y negativos para los polisacáridos capsulares de los serogrupos A ó C de N. meningitidis, obtenidos según se describió en el Ejemplo 7.
El ensayo empleado fue similar al descrito en el Ejemplo 6: se recubrieron las placas de poliestireno con 109 partículas de cada uno de los fagos a evaluar y se incubaron con los sueros humanos. La reactividad fue revelada incubando primero con un conjugado de Ia enzima fosfatasa alcalina a anticuerpos específicos que reconocen inmunoglobulinas humanas [Sigma, St. Louis, MO], y luego con una solución que contenía p-nitrofenil fosfato disódico. Se obtuvo Ia lectura de Ia A4o5πm- Los resultados se muestran como el cociente de Ia A405nm leída para cada fago entre Ia A4o5nm leída para el fago control. En Ia Figura 6 se muestran los fagos cuya frecuencia e intensidad de reconocimiento con los sueros positivos contra el polisacárido A del meningococo fue mayor que con los sueros negativos. En Ia Figura 7 se muestran los fagos cuya frecuencia e intensidad de reconocimiento con los sueros positivos contra el polisacárido C del meningococo fue mayor que con los sueros negativos.
Ejemplo 9. Purificación y secuenciación del ADN viral de los fagos seleccionados después del enfrentamiento a los paneles de sueros positivos y negativos
La purificación del ADN de los fagos se llevó a cabo según se describe (Sambrook J. et al. 1989. Molecular Cloning, a Laboratory Manual, 2nd edn, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, New York, USA). La secuenciación del ADN viral se realizó empleando el secuenciador automático ALFexpressIl (Termo Sequenase™ Cy™ 5 Dye Terminador Kit, Amersham Biosciences) y los oligonucleotidos M13/pUC Sequencing primer (-47) #1224, New England Biolabs fina, USA y M13/pUC Reverse sequencing primer (-48) #1233, New England Biolabs Inc., USA. Las secuencias únicas de ADN obtenidas, nombradas ADN-NMGACPS 1 - 12, se muestran en Ia lista de secuencias (Seq ID 1 - 12). Los péptidos correspondientes a Ia traducción de estas secuencias de ADN a secuencias de proteínas, nombrados NMGACPS1 - 12 se muestran en Ia lista de secuencias (Seq ID 13 - 24).
Ejemplo 10. Caracterización de las secuencias de ADN de los fagos
Para el análisis de las secuencias expuestas en los fagos seleccionados se realizó un alineamiento de las mismas con otras secuencias de estructuras miméticas de los polisacáridos A y C de N. meningitidis reportadas en artículos científicos (Grothaus M. C. et al. 2000. Selection of an immunogenic peptide mimic of the capsular polysaccharide of Neisseria meningitidis serogroup A using a peptide display library. Vaccine 2000; 18; 1253-1263; Westerink M. A. et al. Peptide mimicry of the meningococcal group C capsular polysaccharide. Proc Nati Acad Sci U S A 1995; 92: 4021), no encontrándose en ningún caso porcientos de similitud mayores del 30 %. Para realizar el alineamiento se empleó el programa Clustal W (Thompson J. D. et al. 1994. CLUSTAL W: improving the sensitivity of progressive múltiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-80).
La secuencias obtenidas también se caracterizaron mediante una búsqueda de similitud en Ia base de datos del NCBI empleando el programa BLASTP 2.2.10 (Altschul S. F. et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein datábase search programs. Nucleic Acids Res. 25:3389-3402). La búsqueda se subscribió a las secuencias de genes y proteínas de bacterias contenidas en las bases de datos SwissProt (http://www.ebi.ac.uk/swissprot/) y NCBI (http://www.ncbi.nlm.nih.gov/). Los resultados de este procedimiento indicaron que no existían porcientos de similitud de los péptidos contra las secuencias depositadas en estas bases de datos mayores del 30%.
Ejemplo 11. Inmunización de ratones por vía intraperitoneal con los fagos que expresan en su superficie los péptidos NMGACPS 1 - 12.
Para evaluar Ia inmunogenicidad de los péptidos NMGACPS 1-12 se diseñó un esquema de inmunización en ratones, en el que se inocularon los animales directamente con los fagos que exponen dichos péptidos. Para llevar a cabo Ia inmunización, los fagos fueron purificados mediante gradientes de cloruro de cesio, siguiendo una modificación del procedimiento de purificación 1 (Lin T. C. et al. 1980. Isolation and characterízation of the C and D proteins codeó by gene IX and gene Vl in the filamentous bacteriophage fl and fd. J. Biol. Chem. 255: 10331- 10337), descrito por de Ia Cruz y colaboradores (de Ia Cruz F. V. et al. 1988. Immunogenicity and epitope mapping of foreing sequences vía genetically engineered filamentous phage. J. Biol. Chem. 25: 4318-4322).
Con cada fago se inmunizó un grupo de 7 ratones Balb/c (H-2d, sexo femenino, 5-6 semanas de edad). Se realizaron 3 inmunizaciones con 1011 partículas virales por ratón en cada inmunización, por vía intraperitoneal, separadas por un intervalo de 15 días. Dos grupos de ratones se inmunizaron con los polisacáridos capsulares de los serogrupos A y C de N. meningitidis, respectivamente, administrándose 5 ug de cada polisacárido por ratón en cada dosis. Los fagos y los polisacáridos administrados por vía intraperitoneal fueron emulsificados con adyuvante completo de Freund en Ia primera dosis y con adyuvante incompleto de Freund en las dosis sucesivas.
Ejemplo 12. Evaluación mediante ELISA de Ia inmunogenicidad de los péptidos NMGACPS 1 - 12.
Los niveles de anticuerpos (IgG) inducidos por los péptidos NMGACPS 1 - 12 expuestos en fagos filamentosos fueron evaluados mediante ELISA. Los sueros de los animales, obtenidos luego de Ia tercera inoculación, fueron incubados con el fago salvaje M13KO7 para adsorber los anticuerpos dirigidos contra las proteínas de Ia cápsida viral. Se emplearon como antígenos de recubrimiento los propios fagos empleados para Ia inmunización. La Figura 8 muestra que los niveles de anticuerpos IgG específicos contra los péptidos expuestos en los fagos, después de tres inmunizaciones con los mismos incrementaron significativamente. Para el análisis estadístico de los resultados se utilizó el método no paramétrico de análisis de varianza de clasificación simple por rangos de Kruskal-Wallis, debido a que las varianzas entre los grupos no eran homogéneas según Ia Prueba de Bartlett. Para hacer las comparaciones múltiples no paramétricas se realizó Ia prueba Dunns.
Ejemplo 13. Evaluación mediante ensayo de actividad bactericida de Ia respuesta inmune inducida por los péptidos NMGACPS 1 - 12. Los sueros individuales de los ratones de cada grupo inoculados con cada inmunógeno, fueron evaluadas mediante ensayo de actividad bactericida (Maslanka S. E. et al. 1997. Standardization and a multilaboratory comparíson of Neisseria meningitidis serogroup A and C serum bactericidal assays. Clin. Diag. Lab. Immunol. 4: 156-167) para detectar Ia presencia de anticuerpos capaces de mediar Ia lisis del meningococo de los serogrupos A y C, por las proteínas del sistema del complemento. El título de anticuerpos bactericidas fue expresado como el recíproco de Ia mayor dilución de anticuerpos evaluada, capaz de matar al menos el 50% de las bacterias con respecto a los controles. Al evaluar Ia actividad bactericida contra una cepa del serogrupo C se obtuvo que en los sueros de los ratones inmunizados con los fagos NMGACPS11 y NMGACPS12, así como en el grupo inmunizado con polisacárido C, se detectó actividad bactericida, mientras que el grupo inmunizado con el fago control no mostró actividad bactericida. La Tabla 2 muestra el porciento de ratones respondedores en cada grupo, así como Ia media geométrica de los títulos obtenidos para cada grupo.
Al evaluar Ia actividad bactericida contra una cepa del serogrupo A se obtuvo que en los sueros de los ratones inmunizados con los fagos NMGACPS1 , NMGACPS2, NMGACPS3, NMGACPS4, NMGACPS8 y NMGACPS10, así como en el grupo inmunizado con polisacárido A se detectó actividad bactericida, mientras que el grupo inmunizado con el fago control no mostró actividad bactericida. La Tabla 2 muestra el porciento de ratones respondedores en cada grupo, así como Ia media geométrica de los títulos obtenidos para cada grupo.
Tabla 2. Resultados de Ia evaluación de Ia actividad bactericida en los sueros de los ratones inmunizados con los fagos que exponen los péptidos NMGACPS1-12.
Se evaluaron los sueros individuales de cada ratón contra cada cepa de Neisseria meningitidis perteneciente a los serogrupos A ó C. La Tabla muestra Ia media geométrica de los de los títulos de actividad bactericida (MGT) y el porciento de respondedores de los grupos de ratones en, los que se detectó actividad bactericida. Se indica en cada caso el serogrupo al que pertenece Ia cepa de N. meningitidis contra Ia que se detectó Ia actividad bactericida. No se detectó actividad bactericida contra N. meningitidis de los serogrupos A o C en el suero de los ratones inmunizados con el fago control.
Inmunógeno Respondedores MGT Cepa
Fago NMGACPS 1 62.5 % 1:17.6 A
Fago NMGACPS 2 62.5 % 1:20.8 A
Fago NMGACPS 3 50% 1:24 A
Fago NMGACPS 4 25% 1:7.3 A
Fago NMGACPS 8 37.5 % 1:6.2 A
Fago NMGACPS 10 75% 1:32.8 A
Polisacárido A 87.5 % 1:70.8 A
Fago NMGACPS 11 71.4% 1:9.6 C
Fago NMGACPS 12 100% 1:25.6 C
Polisacárido C 85.7 % 1:20 C

Claims

REIVINDICACIONES.
1. Péptidos denominados NMGACPS 1 - 12, caracterizados por ser antígenos capaces de generar en el organismo receptor una respuesta protectora contra infecciones causadas por bacterias del género Neisseria y tener las secuencias de aminoácidos identificadas en el listado de secuencias como Seq ID 13 - 24.
2. Péptidos denominados NMGACPS 1 - 12 de acuerdo con Ia reivindicación 1 , caracterizados por estar codificados por los fragmentos de ADN nombrados ADN- NMGACPS 1 - 12 identificados en el listado de secuencias como Seq ID 1 - 12.
3. Fragmentos de ADN nombrados ADN-NMGACPS 1 - 12, caracterizados por tener las secuencias de bases identificadas en el listado de secuencias como Seq ID 1 - 12 y codificar para los péptidos NMGACPS 1 - 12, caracterizados por tener las secuencias de aminoácidos identificados en el listado de secuencias como Seq ID 13 - 24.
4. Péptidos denominados NMGACPS 1 - 12 o fragmentos de estos, caracterizados por ser el componente activo de una formulación farmacéutica capaz de generar en el organismo receptor una respuesta dirigida contra infecciones causadas por bacterias del género Neisseria de acuerdo con Ia reivindicación 1.
5. Formulación farmacéutica de acuerdo con las reivindicación 4, caracterizada porque contiene antígenos proteicos, polisacarídicos, lipidíeos o ácidos nucleicos.
6. Formulación farmacéutica de acuerdo con las reivindicación 4 y 5 caracterizada porque uno de los componentes de Ia formulación es un polisacárido capsular de Neisseria meningitidis.
7. Formulación farmacéutica de acuerdo con las reivindicaciones 4, 5 y 6, caracterizada porque contiene un conjugado proteína-polisacárido.
8. Formulación farmacéutica de acuerdo con las reivindicaciones de Ia 4 a Ia 7 caracterizada porque es una formulación para ser administrada por vía parenteral, mucosal u oral.
9. Formulación farmacéutica de acuerdo con las reivindicaciones de Ia 4 a Ia 8 caracterizada porque contiene estructuras miméticas o mimotopos de al menos uno de los péptidos NMGACPS 1 - 12 correspondientes con las Seq ID 13 - 24.
10. Microorganismos genéticamente modificados caracterizados porque contienen los fragmentos de ADN nombrados ADN-NMGACPS 1 - 12, caracterizados por tener las secuencias de bases identificadas en el listado de secuencias como Seq ID 1 - 12, o segmentos de estos, solos o formando parte de otra secuencia génica.
11. Formulación farmacéutica de acuerdo con Ia reivindicación 10 caracterizada porque contenga los microorganismos genéticamente modificados vivos, atenuados o preparados de estos.
12. Péptidos denominados NMGACPS 1- 12 de acuerdo con Ia reivindicación 1 , o fragmentos de estos, caracterizados por ser un componente para el diagnostico de Ia enfermedad meningocóccica en humanos.
PCT/CU2007/000001 2006-01-31 2007-01-29 Mimotopos de polisacáridos capsulares de neisseria meningitidis y formulaciones farmacéuticas WO2007087758A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU2006-0020 2006-01-31
CU20060020 2006-01-31

Publications (2)

Publication Number Publication Date
WO2007087758A2 true WO2007087758A2 (es) 2007-08-09
WO2007087758A3 WO2007087758A3 (es) 2007-11-15

Family

ID=38327738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2007/000001 WO2007087758A2 (es) 2006-01-31 2007-01-29 Mimotopos de polisacáridos capsulares de neisseria meningitidis y formulaciones farmacéuticas

Country Status (2)

Country Link
AR (1) AR059233A1 (es)
WO (1) WO2007087758A2 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026886A2 (en) * 1993-05-11 1994-11-24 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Process for the preparation of immunogens or diagnostic reagents, and immunogens or diagnostic reagents thereby obtainable
WO2000063385A2 (en) * 1999-04-21 2000-10-26 Powderject Vaccines, Inc. Nucleic acid immunization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026886A2 (en) * 1993-05-11 1994-11-24 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Process for the preparation of immunogens or diagnostic reagents, and immunogens or diagnostic reagents thereby obtainable
WO2000063385A2 (en) * 1999-04-21 2000-10-26 Powderject Vaccines, Inc. Nucleic acid immunization

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BENHAR I: "Biotechnological applications of phage and cell display" BIOTECHNOLOGY ADVANCES, ELSEVIER PUBLISHING, BARKING, GB, vol. 19, no. 1, 1 February 2001 (2001-02-01), pages 1-33, XP004231501 ISSN: 0734-9750 *
CHARALAMBOUS BAMBOS M ET AL: "Peptide mimics elicit antibody responses against the outer-membrane lipooligosaccharide of group B Neisseria meningitidis" FEMS MICROBIOLOGY LETTERS, AMSTERDAM, NL, vol. 191, no. 1, 1 October 2000 (2000-10-01), pages 45-50, XP002212284 ISSN: 0378-1097 *
GRANOFF D M ET AL: "A novel mimetic antigen eliciting protective antibody to Neisseria meningitidis" JOURNAL OF IMMUNOLOGY, THE WILLIAMS AND WILKINS CO. BALTIMORE, US, vol. 167, no. 11, 1 December 2001 (2001-12-01), pages 6487-6496, XP002348794 ISSN: 0022-1767 *
GROTHAUS M C ET AL: "Selection of an immunogenic peptide mimic of the capsular polysaccharide of Neisseria meningitidis serogroup A using a peptide display library." VACCINE 18 JAN 2000, vol. 18, no. 13, 18 January 2000 (2000-01-18), pages 1253-1263, XP002449345 ISSN: 0264-410X cited in the application *
KIEBER-EMMONS T: "PEPTIDE MIMOTOPES OF CARBOHYDRATE ANTIGENS" IMMUNOLOGIC RESEARCH, KARGER, BASEL, CH, vol. 17, no. 1-2, January 1998 (1998-01), pages 95-108, XP000892784 ISSN: 0257-277X *
MONZAVI-KARBASSI B ET AL: "Peptide mimotopes as surrogate antigens of carbohydrates in vaccine discovery" TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 20, no. 5, 1 May 2002 (2002-05-01), pages 207-214, XP004347071 ISSN: 0167-7799 cited in the application *
PARTIDOS C D: "PEPTIDE MIMOTOPES AS CANDIDATE VACINES" CURRENT OPINION IN MOLECULAR THERAPEUTICS, CURRENT DRUGS, LONDON,, GB, vol. 2, no. 1, February 2000 (2000-02), pages 74-79, XP001097969 ISSN: 1464-8431 *
PRINZ D M ET AL: "Two different methods result in the selection of peptides that induce a protective antibody response to Neisseria meningitidis serogroup C" JOURNAL OF IMMUNOLOGICAL METHODS, ELSEVIER SCIENCE PUBLISHERS B.V.,AMSTERDAM, NL, vol. 285, no. 1, 1 February 2004 (2004-02-01), pages 1-14, XP004489661 ISSN: 0022-1759 *
WESTERINK M A J ET AL: "PEPTIDE MIMICRY OF THE MENINGOCOCCAL GROUP C CAPSULAR POLYSACCHARIDE" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, DC, US, vol. 92, April 1995 (1995-04), pages 4021-4025, XP002039374 ISSN: 0027-8424 *

Also Published As

Publication number Publication date
WO2007087758A3 (es) 2007-11-15
AR059233A1 (es) 2008-03-19

Similar Documents

Publication Publication Date Title
Seib et al. Developing vaccines in the era of genomics: a decade of reverse vaccinology
CN104244973B (zh) 针对口蹄疫(fmd)的基于合成肽的紧急疫苗
JP2010500399A (ja) 尿路病原性大腸菌由来の免疫原
JP2012000112A (ja) 型分類不能なHaemophilusinfluenzae由来のポリペプチド
JP2012152228A (ja) 髄膜炎/敗血症に関連する大腸菌由来のタンパク質および核酸
Houimel et al. Peptide mimotopes of rabies virus glycoprotein with immunogenic activity
AU2021201233B2 (en) Vaccines for neisseria gonorrhoeae
Rossi et al. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice
CN104507496B (zh) 包含与crm197载体蛋白偶联的hiv gp41肽的免疫原性化合物
KR20180099912A (ko) 나이세리아 메닌지티디스 조성물 및 그의 방법
US20220118072A1 (en) Neisseria meningitidis compositions and methods thereof
Partridge et al. The role of anti-NHba antibody in bactericidal activity elicited by the meningococcal serogroup B vaccine, MenB-4C
Shea The long road to an effective vaccine for meningococcus group B (MenB)
Mahmoud et al. Developing an effective glycan‐based vaccine for streptococcus pyogenes
Koeberling et al. Improved immunogenicity of a H44/76 group B outer membrane vesicle vaccine with over-expressed genome-derived Neisserial antigen 1870
Batzloff et al. Advances in potential M-protein peptide-based vaccines for preventing rheumatic fever and rheumatic heart disease
WO2007087758A2 (es) Mimotopos de polisacáridos capsulares de neisseria meningitidis y formulaciones farmacéuticas
Vermont et al. Meningococcal serogroup B infections: a search for a broadly protective vaccine
Harrison Practical Use of Meningococcal Vaccines—Whom and When to Vaccinate
MX2008008582A (es) Peptidos mimeticos de carbohidratos y su empleo en formulaciones farmaceuticas.
Altindis Antibacterial vaccine research in 21st century: from inoculation to genomics approaches
CN107261129A (zh) 用作疫苗的多糖与去毒大肠杆菌(e. coli)不耐热肠毒素(lt)的偶联
Bidmos et al. Reverse vaccinology
Taha et al. New recombinant vaccines for the prevention of meningococcal B disease
Vaidya Developing a Virus-Like Particle (VLP)-Based Vaccine for Neisseria gonorrhoeae

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07702318

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07702318

Country of ref document: EP

Kind code of ref document: A2