WO2007086377A1 - Rotation control device, rotation control method and rotation control program - Google Patents

Rotation control device, rotation control method and rotation control program Download PDF

Info

Publication number
WO2007086377A1
WO2007086377A1 PCT/JP2007/050996 JP2007050996W WO2007086377A1 WO 2007086377 A1 WO2007086377 A1 WO 2007086377A1 JP 2007050996 W JP2007050996 W JP 2007050996W WO 2007086377 A1 WO2007086377 A1 WO 2007086377A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
error signal
pulse
rotation control
control device
Prior art date
Application number
PCT/JP2007/050996
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Nakamura
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007086377A1 publication Critical patent/WO2007086377A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/38Visual features other than those contained in record tracks or represented by sprocket holes the visual signals being auxiliary signals
    • G11B23/40Identifying or analogous means applied to or incorporated in the record carrier and not intended for visual display simultaneously with the playing-back of the record carrier, e.g. label, leader, photograph
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/28Speed controlling, regulating, or indicating

Definitions

  • Rotation control device rotation control method, and rotation control program
  • the present application belongs to the technical field of a rotation control device, a rotation control method, and a rotation control program, and more specifically, for example, a rotation control device, a rotation control method for controlling rotation of a disk such as an optical disc, and the rotation Background technology belonging to the technical field of programs used for control
  • the surface of the optical disc irradiated with the information recording / reproducing light beam (hereinafter, this surface is referred to as an information recording surface).
  • a technique has been developed for drawing visible characters, figures, etc. on the surface opposite to the above (hereinafter referred to as the label surface) using the light beam.
  • Patent Document 1 JP 2005-317150
  • the invention according to claim 1 is a rotation control device that controls the rotation of a disk such as an optical disk, and a pulse generation unit that generates a pulse signal corresponding to the rotation state.
  • a first error signal generating means such as a speed Z phase comparison unit that generates a first error signal indicating a rotation error in the rotation based on each pulse in the generated pulse signal;
  • a second error signal such as a phase comparison unit that generates a second error signal indicating a rotation error in the rotation based on the pulse corresponding to the timing at which one rotation is completed.
  • Generation means, and control means such as a driver for controlling the rotation based on the first error signal and the second error signal generated respectively.
  • the invention generates a pulse signal corresponding to the state of the rotation by using a rotation control method for controlling the rotation of a disk such as an optical disc.
  • a pulse generation step a first error signal generation step for generating a first error signal indicating a rotation error in the rotation based on each pulse in the generated pulse signal, and one of the pulses.
  • a second error signal generating step for generating a second error signal indicating a rotation error in the rotation based on the pulse corresponding to the timing at which the rotation ends, and the first error signal and the first error signal generated respectively. 2 and a control step for controlling the rotation based on an error signal.
  • an invention according to claim 8 is the rotation control apparatus according to any one of claims 1 to 6, wherein the rotation control apparatus includes the pulse generation unit.
  • An included computer is caused to function as the first error generation means, the second error generation means, and the control means.
  • FIG. 1 is a block diagram showing a schematic configuration of a rotation control device according to a first embodiment.
  • FIG. 2 is a timing chart showing the operation of the rotation control device according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation of the rotation control device according to the first embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration of a rotation control device according to a second embodiment.
  • FIG. 5 is a timing chart showing the operation of the rotation control device according to the second embodiment. Explanation of symbols
  • FIG. 1 is a block diagram showing a schematic configuration of the rotation control device according to the first embodiment
  • FIG. 2 is a timing chart showing the operation of the rotation control device
  • FIG. 3 is the rotation control device. It is a flowchart which shows this operation
  • FIG. 1 is a block diagram showing only a portion of the drawing apparatus that functions as the rotation control apparatus according to the first embodiment.
  • the rotation control device SR includes a spindle motor 1 on which an optical disc DK is fixed, and a plurality of hall elements (not shown) built in the spindle motor 1.
  • a pulse generator 2 as a pulse generator configured to receive an output signal, an error signal generator 3, a waveform adjuster 9, and a controller And driver 10.
  • the error signal generation unit 3 includes an edge detection unit 4, a speed Z phase comparison unit 5 as a first error signal generation unit, a counter 6, a reference clock generation unit 7, and a second error signal. And a phase comparator 8 as a signal generating means.
  • the amplitude adjusting unit 9 includes a first equalizer 9A, a second equalizer 9B, a third equalizer 9C, and an adder 9D.
  • the spindle motor 1 rotates the optical disc DK at a preset number of rotations based on the drive signal Sd from the driver 10.
  • the pulse generator 2 functions as V, a so-called FG (Frequency Generator), and a frequency corresponding to the rotational speed of the optical disc based on the output signals from the plurality of Hall elements. Is output to the error signal generation unit 3 as a pulse signal S3 ⁇ 4.
  • the pulse signal Sfg is specifically a pulse signal Sfg including, for example, three pulses per optical disk DK—rotation.
  • the error signal generation unit 3 uses all the pulses included in the pulse signal S3 ⁇ 4, respectively, and a speed error signal Serd and a phase error signal (
  • the phase error signal is referred to as a first phase error signal Serl) and is output to the amplitude adjusting unit 9 by a method similar to the conventional method.
  • the error signal generation unit 3 uses only the pulse that is output every time one rotation of the optical disc DK is completed among all the pulses, and outputs another phase error signal (hereinafter referred to as the phase error signal) corresponding to the rotation state.
  • the other phase error signal is used as the second phase error signal Ser2, and is output to the amplitude adjustment unit 9.
  • the first equalizer 9A in the amplitude adjusting unit 9 adjusts only the amplitude of the speed error signal Serd to a preset value to generate the first equalizer signal Seql, and sends it to the adder 9D. Output.
  • the second equalizer 9B in the amplitude adjuster 9 adjusts only the amplitude of the first phase error signal Serl to a preset value to generate the second equalizer signal Seq2, and outputs it to the adder 9D.
  • the third equalizer 9C in the amplitude adjusting unit 9 generates the third equalizer signal S eq3 by adjusting only the amplitude of the second phase error signal Ser2 to a preset value, and supplies it to the adder 9D. Output.
  • the adjustment of the amplitude in each equalizer is performed by multiplying each of the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Ser2 by an experimentally set value in advance, for example. It is executed by doing.
  • the multiplication value for the speed error signal Serd is A
  • the multiplication value for the first phase error signal Serl is B
  • the multiplication value for the second phase error signal Ser2 is C.
  • it is preferable to set the relationship so that A>C> B (for example, A: C: B 32: 10: 1)! /.
  • the adder 9D adds the equalizer signals having the same timing to the first equalizer signal Seql, the second equalizer signal Seq2, and the third equalizer signal Seq3 to generate an addition signal Sadd. Output to driver 10.
  • the driver 10 rotates the spindle motor 1 while executing a complete feedback control so as to compensate for the rotation error (rotation speed error, rotation unevenness, etc.) indicated by the addition signal Sadd.
  • the drive signal Sd is generated for output to the spindle motor 1.
  • the error signal generating unit 3 includes the edge detecting unit 4, the speed Z phase comparing unit 5, the force counter 6, the reference clock generating unit 7, and the phase comparing unit 8.
  • the edge detection unit 4 determines the timing of only one of the rising edge and falling edge of each pulse included in the pulse signal Sfg and the difference between the timings of all the pulses included in the edge signal Seg. Detected for each edge, and outputs to edge 6 and velocity Z phase comparator 5 as edge signal Seg.
  • the reference clock generation unit 7 determines the original rotation speed that the spindle motor 1 should rotate. Then, a clock signal Sclk having a frequency corresponding to a preset rotation speed is generated and output to the speed Z phase comparison unit 5 and the phase comparison unit 8.
  • the speed Z phase comparator 5 performs the timing indicated by the clock signal Sclk and the pulse for each pulse indicated by the edge signal S eg, as in the case of the conventional rotation control using the pulse signal S3 ⁇ 4. The timing is compared, and the error is output to the amplitude adjuster 9 as the speed error signal Serd and the first phase error signal Serl.
  • the intervals of the rising edges in the edge signal Seg are denoted as rl, r2, r3, r4,.
  • the speed error signal Serd is generated so as to correspond to the amplitude of Serd, and is output to the amplitude adjusting unit 9.
  • the speed Z phase comparison unit 5 determines the interval between the rising edges in the edge signal Seg as the edge signal S. For example, P1A, P1B, P1C, P2A, P2B, P2C, etc. are detected separately and continuously for a plurality of rotations of the optical disc DK over one wavelength or more. An error between each detected interval P1A, P1B, P1C,... And the regular interval of the rising edge indicated by the clock signal Sclk corresponding to each interval is calculated for each interval.
  • the first phase error signal Serl is generated so as to correspond to the amplitude of the first phase error signal Serl at the timing corresponding to the timing at which the error is detected, and is output to the amplitude adjusting unit 9.
  • the counter 6 generates a timing signal Stmg (see the second stage from the bottom in FIG. 2) having a wavelength corresponding to the length of the optical disc DK—rotation in the edge signal Seg. Output to.
  • phase comparison unit 8 compares the timing indicated by the clock signal Sclk with the timing indicated by the timing signal Stmg, and the error is amplitude as the second phase error signal Ser2. Output to adjustment unit 9.
  • the interval of each rising edge in the timing signal Stmg is one wavelength, two wavelengths, three wavelengths, etc. (in other words, one rotation, two rotations, three rotations of the optical disc DK, ..)) Are detected separately and continuously as PP1A, PP1B, PP1C,..., And are indicated by the clock signal Sclk corresponding to each detected interval and each interval.
  • the second phase error so that the error of the regular rising edge interval corresponding to the amplitude of the second phase error signal Ser2 at the timing corresponding to the timing at which the error is detected for each interval.
  • a signal Ser2 is generated and output to the amplitude adjuster 9.
  • a spindle motor is normally obtained by outputting only the first equalizer signal Seql generated from the speed error signal Serd to the driver 10.
  • Rotation control of 1 is performed (step Sl). More specifically, normally, the output of the first phase error signal Serl and the second phase error signal Ser2 continues with the speed error signal Serd, but the second equalizer signal Seq2 and the third phase error signal Serd are continued.
  • the outputs of the second equalizer 9B and the third equalizer 9C are stopped (muted), respectively.
  • step S2 the force to stop the rotation of the optical disc DK
  • step S2 the force to stop the rotation of the optical disc DK
  • step S2 if the rotation control of the optical disc DK is continued (step S2; NO) after the determination in step S2, the rotation speed or the rotation speed becomes unstable for some reason. (Specifically, for example, whether or not the drawing accuracy on the label surface of the optical disc DK can no longer be maintained) is monitored (step S3), and when it becomes unstable (step S3; NO ), Return to the above step SI, and try to recover the instability by rotation control using only the first equalizer signal Seql generated from the speed error signal Serd
  • step S3 the rotational speed or the rotational speed is unstable. If not (Step S3; YES), output of the second equalizer signal Seq2 is started from the second equalizer 9B to further improve stability and accuracy, and the above based on the speed error signal Serd.
  • the first equalizer signal Seql is used for rotation control of the optical disc DK (step S4).
  • Step S5 the rotation speed or the rotation speed becomes unstable for some reason as in the process of step S2.
  • Step S5 the rotation control force used will also be resumed and efforts will be made to restore its instability.
  • step S5 determines whether or not the rotation of the optical disc DK is to be stopped next. If it is determined in step S5 that the rotational speed or the rotational speed is not unstable (step S5; YES), whether or not the rotation of the optical disc DK is to be stopped next is confirmed ( In step S6), when stopping (step S6; YES), the rotation control operation according to the first embodiment is terminated as it is.
  • step S6 when the rotation control of the optical disc DK is continued (step S6; NO), the third equalizer 9C should be further improved in stability and accuracy when the determination in step S6 is continued.
  • Step S8 the process is monitored whether the rotational speed or the rotational speed becomes unstable due to the cause. If the rotational speed or rotational speed becomes unstable (Step S8; NO), the process returns to Step S4 and returns to the speed error signal Serd. Resume the rotation control using the second equalizer signal Seq2 generated from the generated first equalizer signal Seql and the first phase error signal Serl and try to recover the instability.
  • step S8 determines whether or not the rotation of the optical disk DK is to be stopped next. If it is confirmed (step S9) and stopped (step S9; YES), the rotation control operation according to the first embodiment is terminated as it is.
  • step S9 if the rotation control of the optical disc DK is continued (step S9; NO) after the determination in step S9, the process returns to step S7 to maintain the current stability and rotation accuracy.
  • the rotation control using all of the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Ser2 is continued.
  • the speed error signal corresponding to each pulse in the pulse signal S3 ⁇ 4 generated according to the rotation of the optical disk DK Since the rotation of the optical disc DK is controlled using both Serd and the first phase error signal Serl and the second phase error signal Ser2 corresponding to a pulse corresponding to one rotation, the speed error signal Serd and Based on the first phase error signal Serl alone, the second phase error signal Ser2, which is highly accurate based on pulses at longer intervals than when controlling the rotation, can be used more accurately in the rotation.
  • the rotation speed or rotation speed can be controlled.
  • the rotation of the optical disk DK is repeated.
  • the rotational speed or the rotational speed of the optical disc DK can be accurately controlled in consideration of the accumulated rotational error.
  • the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Ser2 are both used for rotation control, the speed error signal Serd and two types of phase error signals Ser are used. Thus, it is possible to control the rotational speed or the rotational speed of the optical disc DK more accurately.
  • the belief adjustment unit 9 converts the amplitude of the second phase error signal Ser2 to be larger than the amplitude of the first phase error signal Serl and adds both, it is used for rotation control. It is possible to accurately control the rotation of the optical disc DK while reducing the influence of the first phase error signal Serl, which is easily affected by uneven rotation.
  • the speed error signal Serd is always used for rotation control, and the first phase error signal Serl and the second phase error signal Ser2 are set to the first phase error signal Serl. Since the rotation control is performed earlier than that of the second phase error signal Ser2, the timing for starting to use for the rotation control is maintained, so that the accuracy of the rotation control can be maintained.
  • step S8 when the rotational speed or the rotational speed becomes unstable (step S8; NO), the process returns to step SI and the first error generated from the speed error signal Serd. It is also possible to reconfigure the rotational control force using only the equalizer signal Seql and try to recover the instability.
  • FIG. 4 is a block diagram showing a schematic configuration of the rotation control device according to the second embodiment
  • FIG. 5 is a timing chart showing the operation of the rotation control device. 4 and FIG. 5, the same components as those in FIG. 1 and FIG. 2 in the first embodiment are given the same member numbers or reference numerals, and detailed description thereof is omitted.
  • the second phase error signal Ser2 is generated from the starting point.
  • the optical disk DK—of three rotations included in the pulse signal S3 ⁇ 4 Rotating the optical disc DK by generating a second phase error signal (hereinafter, the second phase error signal according to the second embodiment is referred to as a second phase error signal Sr2) starting from the timing of all pulses. Used for control.
  • the rotation control device SRR includes a spindle motor 1 having a configuration and functions similar to those of the rotation control SR according to the first embodiment, and pulse generation.
  • the error signal generation unit 20 has a unique configuration as the second embodiment.
  • the error signal generation unit 20 includes an edge detection unit 4, a speed Z phase comparison unit 5 and a reference clock having the same configuration and functions as those of the error signal generation unit 3 according to the first embodiment.
  • the switches 21 and 23 and the phase comparator group 22 are configured.
  • the phase comparator group 22 includes the same number of phase comparators as the number of pulses (three in the case of the first and second embodiments) of the pulse signal S3 ⁇ 4 corresponding to the optical disc DK—rotation. I have.
  • the switching device 21 sets the rising timing of each of the three pulses corresponding to the time required for the optical disk DK-rotation among all the pulses included in the edge signal Seg as each rising timing, and Timing signals Stl to St3 (see the 4th stage from the top to the 2nd stage from the bottom in Fig. 5) having a wavelength equal to the one rotation are generated, and each is separately sent to each phase comparator in the phase comparator group 22. Output.
  • each of the phase comparators individually compares the timing indicated by the clock signal Sclk with the timing indicated by the timing signals Stl to St3, and the errors are respectively compared with the error signals Sgl to Sg3. To switch 23.
  • the switch 23 generates a second phase error signal Sr2 having the timing error indicated by each of the error signals Sgl to Sg3 as an amplitude, and the third equalizer signal in the belief adjustment unit 9 is generated.
  • the output to 9C The output to 9C.
  • the rising edge of three pulses corresponding to the optical disc DK—rotation in the edge signal Seg is generated in the switch 21, and are individually phase comparator groups 22. Are output to each phase comparator.
  • the first phase comparator and the switch 23 (not shown) in the phase comparator group correspond to one wavelength in the timing signal Stl.
  • Wavelengths and three wavelengths (in other words, one rotation, two rotations, and three rotations) of the optical disc DK are detected separately and continuously as Sela, Selb, and Selc, respectively.
  • the error between each time and the rising edge interval corresponding to one rotation, two rotations, and three rotations of the optical disc DK in the clock signal Sclk is the timing signal Stl!
  • the second phase error signal Sr2 is generated so as to correspond to the amplitude of the second phase error signal Sr2 at the timing immediately after the passage of Selb and Selc, and is output to the amplitude adjuster 9.
  • the second phase comparator and switch 23 (not shown) in the group of phase comparators, as illustrated in the fifth and bottom stages from the top of FIG. Wavelength, two-wavelength, and three-wavelength times are separately and continuously detected as Se2a, Se2b, and Se2c, respectively, and the detected time and one rotation of the optical disc DK in the clock signal Sclk.
  • the difference between the rising edge interval corresponding to minutes, two rotations and three rotations is the amplitude of the second phase error signal Sr2 at the timing immediately after the time Se2a, Se2b and Se2c have elapsed in the timing signal St2.
  • the second phase error signal Sr2 is generated so as to correspond to and is output to the amplitude adjuster 9.
  • the third phase comparator and switch 23 (not shown) in the phase comparator group includes two wavelengths in the timing signal St3, as illustrated in the sixth and bottom stages from the top in FIG. Wavelengths and three-wavelength times are detected separately and continuously as Se3a, Se3b, and Se3c, respectively, and the detected times and two rotations of the optical disk DK in the clock signal Sclk.
  • the error between the rising edge interval corresponding to the rotation amount and the three rotation amount corresponds to the amplitude of the second phase error signal Sr2 at the timing immediately after the above-described times Se3a, Se3b, and Se3c have elapsed in the timing signal St3. Then, the second phase error signal Sr2 is generated and output to the amplitude adjusting unit 9.
  • the second phase error signal Sr2 is used for the first implementation.
  • the same operation as that described with reference to FIG. 3 is performed to execute the rotation control operation according to the second embodiment.
  • the second phase error signal Sr2 based on pulses with longer intervals compared to controlling the rotation based only on the signal Serl, the rotational speed or number of rotations can be controlled more accurately. Can do.
  • each timing force corresponding to all pulses generated during one rotation of the optical disc DK is rotated, and the second error signal Sr2 corresponding to each timing at which one or a plurality of rotations respectively ends is rotated. Since it is used for control, it is possible to accurately control the rotation speed or the number of rotations of the optical disk DK in consideration of the rotation error accumulated by the repeated rotation of the optical disk DK.
  • the belief adjustment unit 9 converts the amplitude of the second phase error signal Sr2 to be larger than the amplitude of the first phase error signal Serl, adds both of them, and uses them for controlling the rotation.
  • the belief adjustment unit 9 converts the amplitude of the second phase error signal Sr2 to be larger than the amplitude of the first phase error signal Serl, adds both of them, and uses them for controlling the rotation.
  • the speed error signal Serd is always used for rotation control, and the first phase error signal Serl and the second phase error signal Sr2 start to use the first phase error signal Serl for rotation control. Since the rotation is controlled earlier than that of the second phase error signal Sr2, the accuracy of the rotation control can be maintained.
  • the second phase error signal Sr2 can be generated using a part of the pulses (for example, half or one-third) as starting points. In this case, if the homogeneity as the second phase error signal Sr2 is taken into consideration, it is preferable to select the pulse as the starting point at a medium force equal interval corresponding to the one rotation.
  • the speed error signal Serd ⁇ speed error signal Serd + second phase error signal Ser2 (Sr2) may be used.
  • each of the above-described embodiments has the force described in the case where the present application is applied to the rotation control of the optical disc DK in a drawing apparatus that draws an image that is visible on the label surface of the optical disc DK.
  • no information can be obtained from the optical disc DK, and a signal synchronized with the rotation of the spindle motor 1 such as the pulse signal S3 ⁇ 4 cannot be obtained with high accuracy.
  • the present application can be widely applied.
  • a program corresponding to the flowchart and timing chart shown in FIG. 2, FIG. 3 or FIG. 5 is recorded on an information recording medium such as a flexible disk or a hard disk, or acquired via the Internet or the like. It is also possible to utilize the computer as the rotation control device SR or SRR according to each embodiment by reading out and executing these on a general-purpose computer.

Landscapes

  • Rotational Drive Of Disk (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Provided is a rotation control device for more accurately controlling rotation of an optical disk at the time of recording information on a label surface and the like of the optical disk where recording tracks and like do not exist. The rotation control device (SR) for controlling rotation of the optical disk (DK) is provided with a pulse generating section (2) directly connected with a spindle motor (1); a speed/phase comparing section (5) for generating a speed error signal (Serd) and a first phase error signal (Ser1) which indicate rotation error based on each pulse in a pulse signal (Sfg) from the pulse generating section (2); a phase comparing section (8) for generating a second phase error signal (Ser2) which indicates a rotation error based on each pulse equivalent to timing wherein one rotation of the optical disk (DK) completes; and a driver (10) for controlling rotation of the optical disk (DK) based on the generated speed error signal (Serd), the first phase error signal (Ser1) and the second error signal (Ser2).

Description

明 細 書  Specification
回転制御装置、回転制御方法及び回転制御用プログラム  Rotation control device, rotation control method, and rotation control program
技術分野  Technical field
[0001] 本願は、回転制御装置、回転制御方法及び回転制御用プログラムの技術分野に 属し、より詳細には、例えば光ディスク等の円盤の回転を制御する回転制御装置及 び回転制御方法並びに当該回転制御に用いられるプログラムの技術分野に属する 背景技術  The present application belongs to the technical field of a rotation control device, a rotation control method, and a rotation control program, and more specifically, for example, a rotation control device, a rotation control method for controlling rotation of a disk such as an optical disc, and the rotation Background technology belonging to the technical field of programs used for control
[0002] 光ビームを用いて光学的に情報が記録又は再生される光ディスクの分野において 、近年、当該光ディスクにおいて当該情報記録再生用の光ビームが照射される面( 以下、当該面を情報記録面と称する)とは反対の面 (以下、当該面をレーベル面と称 する)に、上記光ビームを用いて視認可能な文字や図形等を描画する技術が開発さ れている。  In the field of optical discs in which information is optically recorded or reproduced using a light beam, in recent years, the surface of the optical disc irradiated with the information recording / reproducing light beam (hereinafter, this surface is referred to as an information recording surface). A technique has been developed for drawing visible characters, figures, etc. on the surface opposite to the above (hereinafter referred to as the label surface) using the light beam.
[0003] この技術においては、当該レーベル面における同一の半径位置一周分に対して照 射する光ビームの強度を、当該レーベル面に描画すべき当該図形等の形に応じて 変えることで、その位置における可視光の反射率を変え、これにより上記文字や図形 等を階調変化により視認可能に描画する。これに加えて更に、当該強度変更の制御 を上記一周分に対して複数回 (複数周回分)行うことで、上記図形等としてのより高い コントラストを実現することが可能となって 、る。  [0003] In this technique, by changing the intensity of the light beam radiated to one round of the same radial position on the label surface in accordance with the shape of the figure to be drawn on the label surface, By changing the reflectance of visible light at the position, the above-mentioned characters and figures are drawn so as to be visible by changing the gradation. In addition to this, it is possible to realize higher contrast as the graphic or the like by performing the intensity change control a plurality of times (for a plurality of turns) for the one turn.
[0004] 一方、上記情報記録面に対して情報を光学的に記録する場合、従来では、元々当 該情報記録面に形成されている記録トラックに対して当該情報記録用の光ビームを 照射し、その反射光に含まれているアドレス情報やいわゆるゥォブリング情報に基づ V、て当該情報の記録位置を制御したり光ディスク自体の回転速度又は回転数を制 御する構成となっていた。  [0004] On the other hand, when information is optically recorded on the information recording surface, conventionally, a recording track originally formed on the information recording surface is irradiated with the light beam for information recording. Based on the address information contained in the reflected light and so-called wobbling information, the recording position of the information is controlled and the rotational speed or the rotational speed of the optical disc itself is controlled.
[0005] し力しながら、上記レーベル面については、言うまでも無く上記記録トラックは形成 されていないため、特に上記回転速度又は回転数の制御に当たっては、その回転対 象である光ディスク力 得られる情報を用いることなく行わざるを得な 、状況となる。 [0006] この点、従来では、当該光ディスクを回転させるいわゆるスピンドルモータ力 得ら れるパルス信号における各パルスのタイミングを基準として当該光ディスクの回転を 制御する構成とされている。そして、このような構成において、その回転制御の精度を 上げるための構成としては、例えば下記特許文献 1に例示されるものがある。 [0005] However, it goes without saying that the recording surface is not formed on the label surface, so that the optical disk force that is the rotation target can be obtained particularly when controlling the rotational speed or the rotational speed. This is a situation that must be done without using information. [0006] In this regard, conventionally, the rotation of the optical disc is controlled based on the timing of each pulse in a pulse signal obtained by a so-called spindle motor force that rotates the optical disc. In such a configuration, as a configuration for improving the accuracy of the rotation control, for example, there is one exemplified in Patent Document 1 below.
特許文献 1 :特開 2005— 317150  Patent Document 1: JP 2005-317150
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上述した特許文献 1に記載されて 、る技術では、上記スピンドルモー タカもその回転に対して高精度で同期した信号が出力されてくることが前提となって いるが、当該同期した信号の精度は、部品コスト等の観点から余り高くない場合が一 般的であり、上記特許文献 1記載の技術は、実際には現実的であるとは言い難い。  However, in the technique described in Patent Document 1 described above, it is assumed that the spindle motor car outputs a signal that is synchronized with the rotation with high accuracy. However, the accuracy of the synchronized signal is generally not so high from the viewpoint of component costs and the like, and the technique described in Patent Document 1 is difficult to say in practice.
[0008] このような事情から、記録トラック等が何ら存在しない光ディスクを回転させるスピン ドルモータの回転に対して高精度で同期した信号が得られなくとも、当該光ディスク の回転を高精度で制御しうる回転制御装置が求められて 、る。  [0008] For these reasons, even if a signal synchronized with the rotation of a spindle motor that rotates an optical disc that does not have any recording track or the like can be obtained with high accuracy, the rotation of the optical disc can be controlled with high accuracy. What is needed is a rotation control device.
[0009] そこで、本願は、上記の事情に鑑みて為されたもので、その課題の一例は、記録ト ラック等が何ら存在しない光ディスクのレーベル面等に対する情報の記録を行う際に [0009] Therefore, the present application has been made in view of the above circumstances, and an example of the problem is when recording information on a label surface of an optical disc on which no recording track exists.
、当該光ディスクを回転させるスピンドルモータの回転に対して高精度で同期した信 号が得られなくとも、より高精度に当該光ディスクの回転を制御することが可能な回転 制御装置及び回転制御方法並びに当該回転制御に用いられるプログラムを提供す ることにめる。 A rotation control device and a rotation control method capable of controlling the rotation of the optical disc with higher accuracy even if a signal synchronized with the rotation of the spindle motor for rotating the optical disc cannot be obtained with high accuracy. We will provide a program used for rotation control.
課題を解決するための手段  Means for solving the problem
[0010] 上記の課題を解決するために、請求項 1に記載の発明は、光ディスク等の円盤の 回転を制御する回転制御装置において、前記回転の状況に対応したパルス信号を 生成するパルス生成部等のパルス生成手段と、前記生成されたパルス信号における 各パルスに基づいて、前記回転における回転エラーを示す第 1エラー信号を生成す る速度 Z位相比較部等の第 1エラー信号生成手段と、前記各パルスのうち、一回の 前記回転が終了するタイミングに夫々相当する当該パルスに基づいて、前記回転に おける回転エラーを示す第 2エラー信号を生成する位相比較部等の第 2エラー信号 生成手段と、前記夫々生成された第 1エラー信号及び第 2エラー信号に基づいて、 前記回転を制御するドライバ等の制御手段と、を備える。 In order to solve the above-described problem, the invention according to claim 1 is a rotation control device that controls the rotation of a disk such as an optical disk, and a pulse generation unit that generates a pulse signal corresponding to the rotation state. A first error signal generating means such as a speed Z phase comparison unit that generates a first error signal indicating a rotation error in the rotation based on each pulse in the generated pulse signal; Of each of the pulses, a second error signal such as a phase comparison unit that generates a second error signal indicating a rotation error in the rotation based on the pulse corresponding to the timing at which one rotation is completed. Generation means, and control means such as a driver for controlling the rotation based on the first error signal and the second error signal generated respectively.
[0011] 上記の課題を解決するために、請求項 7に記載の発明は、光ディスク等の円盤の 回転を制御する回転制御方法にぉ 、て、前記回転の状況に対応したパルス信号を 生成するパルス生成工程と、前記生成されたパルス信号における各パルスに基づ ヽ て、前記回転における回転エラーを示す第 1エラー信号を生成する第 1エラー信号 生成工程と、前記各パルスのうち、一回の前記回転が終了するタイミングに夫々相当 する当該パルスに基づいて、前記回転における回転エラーを示す第 2エラー信号を 生成する第 2エラー信号生成工程と、前記夫々生成された第 1エラー信号及び第 2 エラー信号に基づいて、前記回転を制御する制御工程と、を含んで構成される。 [0011] In order to solve the above-mentioned problem, the invention according to claim 7 generates a pulse signal corresponding to the state of the rotation by using a rotation control method for controlling the rotation of a disk such as an optical disc. A pulse generation step, a first error signal generation step for generating a first error signal indicating a rotation error in the rotation based on each pulse in the generated pulse signal, and one of the pulses. A second error signal generating step for generating a second error signal indicating a rotation error in the rotation based on the pulse corresponding to the timing at which the rotation ends, and the first error signal and the first error signal generated respectively. 2 and a control step for controlling the rotation based on an error signal.
[0012] 上記の課題を解決するために、請求項 8に記載の発明は、請求項 1から 6のいずれ か一項に記載の回転制御装置であって前記パルス生成手段を備える回転制御装置 に含まれるコンピュータを、前記第 1エラー生成手段、前記第 2エラー生成手段、及 び、前記制御手段、として機能させる。 [0012] In order to solve the above problem, an invention according to claim 8 is the rotation control apparatus according to any one of claims 1 to 6, wherein the rotation control apparatus includes the pulse generation unit. An included computer is caused to function as the first error generation means, the second error generation means, and the control means.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]第 1実施形態に係る回転制御装置の概要構成を示すブロック図である。 FIG. 1 is a block diagram showing a schematic configuration of a rotation control device according to a first embodiment.
[図 2]第 1実施形態に係る回転制御装置の動作を示すタイミングチャートである。  FIG. 2 is a timing chart showing the operation of the rotation control device according to the first embodiment.
[図 3]第 1実施形態に係る回転制御装置の動作を示すフローチャートである。  FIG. 3 is a flowchart showing an operation of the rotation control device according to the first embodiment.
[図 4]第 2実施形態に係る回転制御装置の概要構成を示すブロック図である。  FIG. 4 is a block diagram showing a schematic configuration of a rotation control device according to a second embodiment.
[図 5]第 2実施形態に係る回転制御装置の動作を示すタイミングチャートである。 符号の説明  FIG. 5 is a timing chart showing the operation of the rotation control device according to the second embodiment. Explanation of symbols
[0014] 1 スピンドノレモータ [0014] 1 Spinner motor
2 パルス生成部  2 Pulse generator
3、 20 エラー信号生成部  3, 20 Error signal generator
4 エッジ検出部  4 Edge detector
5 速度 Z位相比較部  5 Speed Z phase comparator
6 カウンタ  6 counter
7 基準クロック生成部 8 位相比較部 7 Reference clock generator 8 Phase comparator
9 波形調整部  9 Waveform adjustment section
9A 第 1イコライザ  9A 1st equalizer
9B 第 2イコライザ  9B 2nd equalizer
9C 第 3イコライザ  9C 3rd equalizer
9D 加算器  9D adder
10 ドライバ  10 Driver
21、 23 切替器  21, 23 selector
22 位相比較器群  22 Phase comparators
DK 光ディスク  DK optical disc
SR、 SRR 回転制御装置  SR, SRR rotation controller
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 次に、本願を実施するための最良の形態について、図面に基づいて説明する。な お、以下に説明する実施形態は、円盤としての光ディスクを回転させ、当該光デイス クの上記レーベル面に対して視認可能な図形を描画する描画装置に含まれ、当該 光ディスクの回転状態を制御する回転制御装置に対して本願を適用した場合の実施 の形態である。  Next, the best mode for carrying out the present application will be described with reference to the drawings. The embodiment described below is included in a drawing apparatus that rotates an optical disk as a disk and draws a visible figure on the label surface of the optical disk, and controls the rotation state of the optical disk. This is an embodiment in which the present application is applied to a rotation control device.
[0016] (I)第 1実施形態  [0016] (I) First embodiment
始めに、本願に係る第 1実施形態について、図 1乃至図 3を用いて説明する。  First, a first embodiment according to the present application will be described with reference to FIGS.
[0017] なお、図 1は第 1実施形態に係る回転制御装置の概要構成を示すブロック図であり 、図 2は当該回転制御装置の動作を示すタイミングチャートであり、図 3は当該回転 制御装置の動作を示すフローチャートである。このとき、図 1は、上記描画装置の内、 第 1実施形態に係る回転制御装置として機能する部分のみを抽出して示すブロック 図である。  1 is a block diagram showing a schematic configuration of the rotation control device according to the first embodiment, FIG. 2 is a timing chart showing the operation of the rotation control device, and FIG. 3 is the rotation control device. It is a flowchart which shows this operation | movement. At this time, FIG. 1 is a block diagram showing only a portion of the drawing apparatus that functions as the rotation control apparatus according to the first embodiment.
[0018] 図 1に示すように、第 1実施形態に係る回転制御装置 SRは、光ディスク DKが固定 されているスピンドルモータ 1と、当該スピンドルモータ 1に内蔵されている図示しない 複数のホール素子の出力信号が入力されるように構成されているパルス生成手段と してのパルス生成部 2と、エラー信号生成部 3と、波形調整部 9と、制御手段としての ドライバ 10と、により構成されている。 As shown in FIG. 1, the rotation control device SR according to the first embodiment includes a spindle motor 1 on which an optical disc DK is fixed, and a plurality of hall elements (not shown) built in the spindle motor 1. A pulse generator 2 as a pulse generator configured to receive an output signal, an error signal generator 3, a waveform adjuster 9, and a controller And driver 10.
[0019] また、上記エラー信号生成部 3は、エッジ検出部 4と、第 1エラー信号生成手段とし ての速度 Z位相比較部 5と、カウンタ 6と、基準クロック生成部 7と、第 2エラー信号生 成手段としての位相比較部 8と、により構成されて 、る。  The error signal generation unit 3 includes an edge detection unit 4, a speed Z phase comparison unit 5 as a first error signal generation unit, a counter 6, a reference clock generation unit 7, and a second error signal. And a phase comparator 8 as a signal generating means.
[0020] 更に、振幅調整部 9は、第 1イコライザ 9Aと、第 2イコライザ 9Bと、第 3イコライザ 9C と、加算器 9Dと、により構成されている。  [0020] Further, the amplitude adjusting unit 9 includes a first equalizer 9A, a second equalizer 9B, a third equalizer 9C, and an adder 9D.
[0021] この構成において、スピンドルモータ 1は、ドライバ 10からの駆動信号 Sdに基づき、 予め設定された回転数で光ディスク DKを回転させる。  In this configuration, the spindle motor 1 rotates the optical disc DK at a preset number of rotations based on the drive signal Sd from the driver 10.
[0022] そして、パルス生成部 2は、 V、わゆる FG (Frequency Generator)として機能するもの であり、上記複数のホール素子夫々からの上記出力信号に基づいて当該光ディスク の回転速度に相当する周波数を有するパルスを生成し、パルス信号 S¾としてエラー 信号生成部 3に出力する。ここで、当該パルス信号 Sfgは、具体的には例えば、光デ イスク DK—回転につき三つのパルスを含むパルス信号 Sfgである。  [0022] The pulse generator 2 functions as V, a so-called FG (Frequency Generator), and a frequency corresponding to the rotational speed of the optical disc based on the output signals from the plurality of Hall elements. Is output to the error signal generation unit 3 as a pulse signal S¾. Here, the pulse signal Sfg is specifically a pulse signal Sfg including, for example, three pulses per optical disk DK—rotation.
[0023] 次に、エラー信号生成部 3は、当該パルス信号 S¾に基づき、当該パルス信号 S¾ に含まれる全パルスを夫々用いて光ディスク DKの回転状態に対応する速度エラー 信号 Serd及び位相エラー信号 (以下、当該位相エラー信号を第 1位相エラー信号 Se rlとする)を従来と同様の方法により生成して振幅調整部 9に出力する。これに加えて エラー信号生成部 3は、当該全パルスのうち、光ディスク DKの一回転が終了するた びに出力されてくるパルスのみを用いて、当該回転状態に対応する他の位相エラー 信号 (以下、当該他の位相エラー信号を第 2位相エラー信号 Ser2とする)を生成して 振幅調整部 9に出力する。  Next, based on the pulse signal S¾, the error signal generation unit 3 uses all the pulses included in the pulse signal S¾, respectively, and a speed error signal Serd and a phase error signal ( Hereinafter, the phase error signal is referred to as a first phase error signal Serl) and is output to the amplitude adjusting unit 9 by a method similar to the conventional method. In addition to this, the error signal generation unit 3 uses only the pulse that is output every time one rotation of the optical disc DK is completed among all the pulses, and outputs another phase error signal (hereinafter referred to as the phase error signal) corresponding to the rotation state. The other phase error signal is used as the second phase error signal Ser2, and is output to the amplitude adjustment unit 9.
[0024] これらにより、振幅調整部 9内の第 1イコライザ 9Aは、上記速度エラー信号 Serdの 振幅のみを、予め設定された値に調整して第 1イコライザ信号 Seqlを生成し、加算器 9Dに出力する。また、振幅調整部 9内の第 2イコライザ 9Bは、上記第 1位相ヱラー信 号 Serlの振幅のみを、予め設定された値に調整して第 2イコライザ信号 Seq2を生成 し、加算器 9Dに出力する。更に、振幅調整部 9内の第 3イコライザ 9Cは、上記第 2位 相エラー信号 Ser2の振幅のみを、予め設定された値に調整して第 3イコライザ信号 S eq3を生成し、加算器 9Dに出力する。 [0025] ここで、当該各イコライザにおける振幅の調整は、例えば、速度エラー信号 Serd、 第 1位相エラー信号 Serl及び第 2位相エラー信号 Ser2夫々に対して、予め実験的に 設定された値を乗算することにより実行される。このとき、速度エラー信号 Serdに対す る乗算値を Aとし、第 1位相エラー信号 Serlに対する乗算値を Bとし、第 2位相エラー 信号 Ser2に対する乗算値を Cとしたとき、夫々の乗算値間の関係としては、例えば、 A>C >B (例えば A: C: B= 32: 10: 1)となるように設定することが好まし!/、。 [0024] Thus, the first equalizer 9A in the amplitude adjusting unit 9 adjusts only the amplitude of the speed error signal Serd to a preset value to generate the first equalizer signal Seql, and sends it to the adder 9D. Output. The second equalizer 9B in the amplitude adjuster 9 adjusts only the amplitude of the first phase error signal Serl to a preset value to generate the second equalizer signal Seq2, and outputs it to the adder 9D. To do. Further, the third equalizer 9C in the amplitude adjusting unit 9 generates the third equalizer signal S eq3 by adjusting only the amplitude of the second phase error signal Ser2 to a preset value, and supplies it to the adder 9D. Output. Here, the adjustment of the amplitude in each equalizer is performed by multiplying each of the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Ser2 by an experimentally set value in advance, for example. It is executed by doing. At this time, the multiplication value for the speed error signal Serd is A, the multiplication value for the first phase error signal Serl is B, and the multiplication value for the second phase error signal Ser2 is C. For example, it is preferable to set the relationship so that A>C> B (for example, A: C: B = 32: 10: 1)! /.
[0026] 次に、加算器 9Dは、上記第 1イコライザ信号 Seql、第 2イコライザ信号 Seq2及び第 3イコライザ信号 Seq3について、同じタイミングの当該各イコライザ信号同士を加算し 、加算信号 Saddを生成してドライバ 10に出力する。  [0026] Next, the adder 9D adds the equalizer signals having the same timing to the first equalizer signal Seql, the second equalizer signal Seq2, and the third equalizer signal Seq3 to generate an addition signal Sadd. Output to driver 10.
[0027] これにより、ドライバ 10は、当該加算信号 Saddにより示される回転エラー(回転速度 の誤差や回転ムラ等)を補償するように ヽゎゆる帰還制御を実行しつつ、スピンドル モータ 1を回転させるための上記駆動信号 Sdを生成して当該スピンドルモータ 1に出 力する。  [0027] Thereby, the driver 10 rotates the spindle motor 1 while executing a complete feedback control so as to compensate for the rotation error (rotation speed error, rotation unevenness, etc.) indicated by the addition signal Sadd. The drive signal Sd is generated for output to the spindle motor 1.
[0028] 次に、上記エラー信号生成部 3における動作に詳細について、図 1及び図 2を用い て説明する。なお、以下の説明では、光ディスク DK—回転 (換言すれば、スピンドル モーター回転)にっき、上記パルス生成部 2から三つのパルスを含む上記ノ ルス信 号 S¾が出力される回転速度力 当該光ディスク DKとしての正規の (換言すればそ の値に回転制御されるべき)回転速度であるものとする。  Next, details of the operation of the error signal generation unit 3 will be described with reference to FIGS. 1 and 2. In the following description, the rotational speed force at which the above-mentioned Nols signal S¾ including three pulses is output from the above-mentioned pulse generator 2 in response to the optical disk DK-rotation (in other words, the spindle motor rotation) It is assumed that the rotation speed is normal (in other words, the rotation speed should be controlled to that value).
[0029] 上述したように、エラー信号生成部 3は、エッジ検出部 4、速度 Z位相比較部 5、力 ゥンタ 6、基準クロック生成部 7及び位相比較部 8により構成されている力 このうち、 エッジ検出部 4は、パルス信号 Sfgに含まれている各パルスにおける立ち上がりエッジ 又は立下りエッジの!/、ずれか一方のみのタイミングを、エッジ信号 Segに含まれる全 てのパルスにおける当該 、ずれか一方のエッジ毎に検出し、エッジ信号 Segとして力 ゥンタ 6及び速度 Z位相比較部 5に出力する。  [0029] As described above, the error signal generating unit 3 includes the edge detecting unit 4, the speed Z phase comparing unit 5, the force counter 6, the reference clock generating unit 7, and the phase comparing unit 8. The edge detection unit 4 determines the timing of only one of the rising edge and falling edge of each pulse included in the pulse signal Sfg and the difference between the timings of all the pulses included in the edge signal Seg. Detected for each edge, and outputs to edge 6 and velocity Z phase comparator 5 as edge signal Seg.
[0030] ここで、以下の説明では、パルス信号 S¾に含まれている各パルスにおける立ち上 力 Sりエッジのみのタイミングを当該エッジ毎に検出したものをエッジ信号 Segとして出 力するものとする。  [0030] Here, in the following description, it is assumed that the timing of only the rising edge S and the edge of each pulse included in the pulse signal S¾ is detected as the edge signal Seg for each edge. .
[0031] 一方、基準クロック生成部 7は、スピンドルモータ 1が回転すべき本来の回転速度と して予め設定されている回転速度に相当する周波数を有するクロック信号 Sclkを生 成し、速度 Z位相比較部 5及び位相比較部 8に出力する。 On the other hand, the reference clock generation unit 7 determines the original rotation speed that the spindle motor 1 should rotate. Then, a clock signal Sclk having a frequency corresponding to a preset rotation speed is generated and output to the speed Z phase comparison unit 5 and the phase comparison unit 8.
[0032] これらにより、速度 Z位相比較部 5は、従来におけるパルス信号 S¾を用いた回転 制御の場合と同様に、上記クロック信号 Sclkにより示されるタイミングと、エッジ信号 S egにより示されるパルス毎のタイミングとを比較し、その誤差を上記速度エラー信号 S erd及び第 1位相エラー信号 Serlとして振幅調整部 9に出力する。  Thus, the speed Z phase comparator 5 performs the timing indicated by the clock signal Sclk and the pulse for each pulse indicated by the edge signal S eg, as in the case of the conventional rotation control using the pulse signal S¾. The timing is compared, and the error is output to the amplitude adjuster 9 as the speed error signal Serd and the first phase error signal Serl.
[0033] より具体的には、図 2最上段及び上から二段目に例示するように、上記エッジ信号 Segにおける各立ち上がりエッジの間隔を夫々 rl、 r2、 r3、 r4、 ···、として連続的に検 出し、当該検出された夫々の間隔と、上記クロック信号 Sclkにより示される正規の当 該立ち上がりエッジの間隔と、の誤差が、エッジ信号 Segの一波長分遅れたタイミング における速度エラー信号 Serdの振幅に相当するように当該速度エラー信号 Serdを 生成して、上記振幅調整部 9に出力する。  More specifically, as illustrated in the uppermost stage in FIG. 2 and the second stage from the top, the intervals of the rising edges in the edge signal Seg are denoted as rl, r2, r3, r4,. A speed error signal at a timing where the error between each detected interval and the regular rising edge interval indicated by the clock signal Sclk is delayed by one wavelength of the edge signal Seg. The speed error signal Serd is generated so as to correspond to the amplitude of Serd, and is output to the amplitude adjusting unit 9.
[0034] これと並行して、速度 Z位相比較部 5は、図 2上から二段目及び三段目に例示する ように、上記エッジ信号 Segにおける各立ち上がりエッジの間隔を、当該エッジ信号 S egの一波長分以上複数波長分に渡って P1A、 P1B、 P1C、 P2A、 P2B、 P2C、 · ··、 として夫々別個に且つ連続的に検出することを光ディスク DKの複数回転について 行い、、当該検出された夫々の間隔 P1A、 P1B、 P1C、 ···、と、夫々の間隔に対応し て上記クロック信号 Sclkにより示される正規の当該立ち上がりエッジの間隔と、の誤 差が、当該各間隔毎に当該誤差が検出されるタイミングに対応したタイミングにおけ る第 1位相エラー信号 Serlの振幅に相当するように当該第 1位相エラー信号 Serlを 生成して、上記振幅調整部 9に出力する。  In parallel with this, as illustrated in the second and third stages from the top of FIG. 2, the speed Z phase comparison unit 5 determines the interval between the rising edges in the edge signal Seg as the edge signal S. For example, P1A, P1B, P1C, P2A, P2B, P2C, etc. are detected separately and continuously for a plurality of rotations of the optical disc DK over one wavelength or more. An error between each detected interval P1A, P1B, P1C,... And the regular interval of the rising edge indicated by the clock signal Sclk corresponding to each interval is calculated for each interval. The first phase error signal Serl is generated so as to correspond to the amplitude of the first phase error signal Serl at the timing corresponding to the timing at which the error is detected, and is output to the amplitude adjusting unit 9.
[0035] 他方、本願に係るカウンタ 6は、上記エッジ信号 Segにおける光ディスク DK—回転 の長さ相当する波長を有するタイミング信号 Stmg (図 2下から二段目参照)を生成し、 位相比較部 8に出力する。  On the other hand, the counter 6 according to the present application generates a timing signal Stmg (see the second stage from the bottom in FIG. 2) having a wavelength corresponding to the length of the optical disc DK—rotation in the edge signal Seg. Output to.
[0036] これにより、本願に係る位相比較部 8は、上記クロック信号 Sclkにより示されるタイミ ングと、タイミング信号 Stmgにより示されるタイミングとを比較し、その誤差を上記第 2 位相エラー信号 Ser2として振幅調整部 9に出力する。  Accordingly, the phase comparison unit 8 according to the present application compares the timing indicated by the clock signal Sclk with the timing indicated by the timing signal Stmg, and the error is amplitude as the second phase error signal Ser2. Output to adjustment unit 9.
[0037] より具体的には、図 2上から最下段及び下から二段目に例示するように、上記タイミ ング信号 Stmgにおける各立ち上がりエッジの間隔を、当該タイミング信号 Stmgの一 波長分、二波長分、三波長分、…(換言すれば、光ディスク DKの一回転分、二回転 分、三回転分、 ···)について、 PP1A、 PP1B、 PP1C、 ···、として夫々別個に且つ連 続的に検出し、当該検出された夫々の間隔と、夫々の間隔に対応して上記クロック信 号 Sclkにより示される正規の当該立ち上がりエッジの間隔と、の誤差が、当該各間隔 毎に当該誤差が検出されるタイミングに対応したタイミングにおける第 2位相エラー信 号 Ser2の振幅に相当するように当該第 2位相エラー信号 Ser2を生成して、上記振幅 調整部 9に出力する。 [0037] More specifically, as illustrated in FIG. 2 from the top to the bottom and from the bottom to the second, The interval of each rising edge in the timing signal Stmg is one wavelength, two wavelengths, three wavelengths, etc. (in other words, one rotation, two rotations, three rotations of the optical disc DK, ..)) Are detected separately and continuously as PP1A, PP1B, PP1C,..., And are indicated by the clock signal Sclk corresponding to each detected interval and each interval. The second phase error so that the error of the regular rising edge interval corresponding to the amplitude of the second phase error signal Ser2 at the timing corresponding to the timing at which the error is detected for each interval. A signal Ser2 is generated and output to the amplitude adjuster 9.
[0038] 次に、上述した構成を備える回転制御装置 SRにおける回転制御動作につき、全 体を通して図 3を用いて説明する。  Next, the rotation control operation in rotation control device SR having the above-described configuration will be described with reference to FIG. 3 throughout.
[0039] 図 3に示すように、第 1実施形態に係る回転制御動作では、通常は上記速度エラー 信号 Serdから生成された上記第 1イコライザ信号 Seqlのみをドライバ 10に出力する ことで、スピンドルモータ 1の回転制御を行う(ステップ Sl)。より具体的には、通常は 、上記第 1位相エラー信号 Serl及び第 2位相エラー信号 Ser2の出力は速度エラー 信号 Serdと共に継続しては 、るものの、上記第 2イコライザ信号 Seq2及び上記第 3ィ コライザ信号 Seq3については、夫々第 2イコライザ 9B及び第 3イコライザ 9C力もの出 力が停止 (ミュート)されている。  As shown in FIG. 3, in the rotation control operation according to the first embodiment, a spindle motor is normally obtained by outputting only the first equalizer signal Seql generated from the speed error signal Serd to the driver 10. Rotation control of 1 is performed (step Sl). More specifically, normally, the output of the first phase error signal Serl and the second phase error signal Ser2 continues with the speed error signal Serd, but the second equalizer signal Seq2 and the third phase error signal Serd are continued. For the equalizer signal Seq3, the outputs of the second equalizer 9B and the third equalizer 9C are stopped (muted), respectively.
[0040] そして、当該速度エラー信号 Serdを用いた回転制御中においては、光ディスク DK の回転を停止させる力否かを確認し (ステップ S 2)、停止させるときは (ステップ S2 ;Y ES)、そのまま第 1実施形態に係る回転制御動作を終了する。  [0040] Then, during the rotation control using the speed error signal Serd, it is confirmed whether or not the force to stop the rotation of the optical disc DK (step S2), and when stopping (step S2; Y ES), The rotation control operation according to the first embodiment is finished as it is.
[0041] 他方、ステップ S2の判定にぉ 、て、光ディスク DKの回転制御を継続するときは (ス テツプ S2 ;NO)、次に、何らかの原因によりその回転速度又は回転数が不安定にな つた力否か (より具体的には、例えば光ディスク DKのレーベル面に対する描画精度 が維持できなくなった力否か)を監視し (ステップ S3)、当該不安定になったときは (ス テツプ S3 ; NO)、上記ステップ SIに戻って速度エラー信号 Serdから生成された上記 第 1イコライザ信号 Seqlのみを用いた回転制御によりその不安定ィ匕の回復に努める  [0041] On the other hand, if the rotation control of the optical disc DK is continued (step S2; NO) after the determination in step S2, the rotation speed or the rotation speed becomes unstable for some reason. (Specifically, for example, whether or not the drawing accuracy on the label surface of the optical disc DK can no longer be maintained) is monitored (step S3), and when it becomes unstable (step S3; NO ), Return to the above step SI, and try to recover the instability by rotation control using only the first equalizer signal Seql generated from the speed error signal Serd
[0042] 一方、ステップ S3の判定において、当該回転速度又は回転数が不安定になってい ないときは (ステップ S3 ; YES)、更なる安定ィ匕及び精度の向上を図るベぐ第 2ィコラ ィザ 9Bから上記第 2イコライザ信号 Seq2の出力を開始し、速度エラー信号 Serdに基 づく上記第 1イコライザ信号 Seqlと共に光ディスク DKの回転制御に供させる (ステツ プ S4)。 [0042] On the other hand, in the determination of step S3, the rotational speed or the rotational speed is unstable. If not (Step S3; YES), output of the second equalizer signal Seq2 is started from the second equalizer 9B to further improve stability and accuracy, and the above based on the speed error signal Serd. The first equalizer signal Seql is used for rotation control of the optical disc DK (step S4).
[0043] 次に、当該速度エラー信号 Serd及び第 1位相エラー信号 Serlを共に用いた回転 制御中においては、上記ステップ S2の処理と同様に何らかの原因によりその回転速 度又は回転数が不安定になった力否かを監視し (ステップ S5)、当該不安定になつ たときは (ステップ S5 ;NO)、上記ステップ S1に戻って速度エラー信号 Serdから生成 された上記第 1イコライザ信号 Seqlのみを用いた回転制御力も再開してその不安定 化の回復に努める。  [0043] Next, during the rotation control using both the speed error signal Serd and the first phase error signal Serl, the rotation speed or the rotation speed becomes unstable for some reason as in the process of step S2. (Step S5), and when it becomes unstable (Step S5; NO), return to Step S1 and only the first equalizer signal Seql generated from the speed error signal Serd The rotation control force used will also be resumed and efforts will be made to restore its instability.
[0044] 一方、ステップ S5の判定において、当該回転速度又は回転数が不安定になってい ないときは (ステップ S5 ; YES)、次に光ディスク DKの回転を停止させるか否かを確 認し (ステップ S6)、停止させるときは (ステップ S6 ; YES)、そのまま第 1実施形態に 係る回転制御動作を終了する。  [0044] On the other hand, if it is determined in step S5 that the rotational speed or the rotational speed is not unstable (step S5; YES), whether or not the rotation of the optical disc DK is to be stopped next is confirmed ( In step S6), when stopping (step S6; YES), the rotation control operation according to the first embodiment is terminated as it is.
[0045] 他方、ステップ S6の判定にぉ 、て、光ディスク DKの回転制御を継続するときは (ステ ップ S6 ;NO)、更なる安定ィ匕及び精度の向上を図るベぐ第 3イコライザ 9Cから上記 第 3イコライザ信号 Seq3の出力を開始し、第 1位相エラー信号 Serlに基づく上記第 2 イコライザ信号 Seq2及び速度エラー信号 Serdに基づく上記第 1イコライザ信号 Serl と共に光ディスク DKの回転制御に供させる (ステップ S7)。  [0045] On the other hand, when the rotation control of the optical disc DK is continued (step S6; NO), the third equalizer 9C should be further improved in stability and accuracy when the determination in step S6 is continued. Output of the third equalizer signal Seq3 from the first equalizer signal Serl based on the second equalizer signal Seq2 based on the first phase error signal Serl and the first equalizer signal Serl based on the speed error signal Serd. Step S7).
[0046] 最後に、当該速度エラー信号 Serd、第 1位相エラー信号 Serl及び第 2位相エラー 信号 Ser2を全て用いた回転制御中にお 、ては、上記ステップ S2又は S5の処理と同 様に何らかの原因により更に回転速度又は回転数が不安定になった力否かを監視 し (ステップ S8)、当該不安定になったときは (ステップ S8 ;NO)、上記ステップ S4に 戻って速度エラー信号 Serd力 生成された上記第 1イコライザ信号 Seql及び第 1位 相エラー信号 Serlから生成された第 2イコライザ信号 Seq2を用いた回転制御から再 開してその不安定ィ匕の回復に努める。  [0046] Finally, during rotation control using all of the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Ser2, some sort of process is performed in the same manner as in the process of step S2 or S5. It is monitored whether the rotational speed or the rotational speed becomes unstable due to the cause (Step S8) .If the rotational speed or rotational speed becomes unstable (Step S8; NO), the process returns to Step S4 and returns to the speed error signal Serd. Resume the rotation control using the second equalizer signal Seq2 generated from the generated first equalizer signal Seql and the first phase error signal Serl and try to recover the instability.
[0047] 一方、ステップ S8の判定において、当該回転速度又は回転数が不安定になってい ないときは (ステップ S8 ; YES)、次に光ディスク DKの回転を停止させるか否かを確 認し (ステップ S9)、停止させるときは (ステップ S9 ; YES)、そのまま第 1実施形態に 係る回転制御動作を終了する。 [0047] On the other hand, if it is determined in step S8 that the rotation speed or rotation speed is not unstable (step S8; YES), whether or not the rotation of the optical disk DK is to be stopped next is confirmed. If it is confirmed (step S9) and stopped (step S9; YES), the rotation control operation according to the first embodiment is terminated as it is.
[0048] 他方、ステップ S9の判定にぉ 、て、光ディスク DKの回転制御を継続するときは (ス テツプ S9 ;NO)、現状の安定度及び回転精度を維持すべく上記ステップ S 7に戻り、 速度エラー信号 Serd、第 1位相エラー信号 Serl及び第 2位相エラー信号 Ser2を全て 用いた回転制御を継続する。  [0048] On the other hand, if the rotation control of the optical disc DK is continued (step S9; NO) after the determination in step S9, the process returns to step S7 to maintain the current stability and rotation accuracy. The rotation control using all of the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Ser2 is continued.
[0049] 以上説明したように、第 1実施形態に係る回転制御装置 SRの動作によれば、光デ イスク DKの回転に応じて生成されるパルス信号 S¾における各パルスに対応する速 度エラー信号 Serd及び第 1位相エラー信号 Serlと、一回の回転に夫々相当するパ ルスに対応する第 2位相エラー信号 Ser2と、を共に用いて光ディスク DKの回転を制 御するので、速度エラー信号 Serd及び第 1位相エラー信号 Serlのみに基づ 、て当 該回転を制御する場合に比してより長い間隔のパルスに基づく精度の高い第 2位相 エラー信号 Ser2を用いることで、より正確に当該回転における回転速度又は回転数 を制御することができる。  [0049] As described above, according to the operation of the rotation control device SR according to the first embodiment, the speed error signal corresponding to each pulse in the pulse signal S¾ generated according to the rotation of the optical disk DK. Since the rotation of the optical disc DK is controlled using both Serd and the first phase error signal Serl and the second phase error signal Ser2 corresponding to a pulse corresponding to one rotation, the speed error signal Serd and Based on the first phase error signal Serl alone, the second phase error signal Ser2, which is highly accurate based on pulses at longer intervals than when controlling the rotation, can be used more accurately in the rotation. The rotation speed or rotation speed can be controlled.
[0050] また、一つのパルスに相当するタイミング力 起算して一又は複数回転が終了する タイミングに夫々相当する第 2位相エラー信号 Ser2が回転制御に用いられるので、光 ディスク DKの回転が繰り返されることにより累積される回転エラーをも考慮して正確 に光ディスク DKの回転速度又は回転数を制御することができる。  [0050] In addition, since the second phase error signal Ser2 corresponding to the timing at which one or a plurality of rotations are completed by calculating the timing force corresponding to one pulse is used for rotation control, the rotation of the optical disk DK is repeated. Thus, the rotational speed or the rotational speed of the optical disc DK can be accurately controlled in consideration of the accumulated rotational error.
[0051] 更に、速度エラー信号 Serd及び第 1位相エラー信号 Serlと、第 2位相エラー信号 S er2と、を共に回転制御に用いるので、速度エラー信号 Serd及び二種類の位相エラ 一信号 Serを用 、てより正確に光ディスク DKの回転速度又は回転数を制御すること ができる。  [0051] Furthermore, since the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Ser2 are both used for rotation control, the speed error signal Serd and two types of phase error signals Ser are used. Thus, it is possible to control the rotational speed or the rotational speed of the optical disc DK more accurately.
[0052] 更にまた、信服調整部 9により、第 2位相エラー信号 Ser2の振幅を第 1位相エラー 信号 Serlの振幅よりも大きくなるように変換して双方を加算し、回転の制御に用いる ので、回転ムラの影響を受け易い第 1位相エラー信号 Serlの影響を低減しつつ正確 に光ディスク DKの回転を制御することができる。  [0052] Furthermore, since the belief adjustment unit 9 converts the amplitude of the second phase error signal Ser2 to be larger than the amplitude of the first phase error signal Serl and adds both, it is used for rotation control. It is possible to accurately control the rotation of the optical disc DK while reducing the influence of the first phase error signal Serl, which is easily affected by uneven rotation.
[0053] また、速度エラー信号 Serdが常時回転の制御に用いられると共に、第 1位相エラー 信号 Serl及び第 2位相エラー信号 Ser2については当該第 1位相エラー信号 Serlを 回転の制御に用い始めるタイミングを第 2位相エラー信号 Ser2のそれよりも早めて当 該回転の制御を行うので、回転制御の正確性を維持することができる。 [0053] In addition, the speed error signal Serd is always used for rotation control, and the first phase error signal Serl and the second phase error signal Ser2 are set to the first phase error signal Serl. Since the rotation control is performed earlier than that of the second phase error signal Ser2, the timing for starting to use for the rotation control is maintained, so that the accuracy of the rotation control can be maintained.
[0054] なお、図 3に示すステップ S8の判定において、回転速度又は回転数が不安定にな つたとき (ステップ S8 ; NO)、上記ステップ SIに戻って速度エラー信号 Serdから生成 された上記第 1イコライザ信号 Seqlのみを用いた回転制御力も再開してその不安定 化の回復に努めるように構成することもできる。  Note that, in the determination in step S8 shown in FIG. 3, when the rotational speed or the rotational speed becomes unstable (step S8; NO), the process returns to step SI and the first error generated from the speed error signal Serd. It is also possible to reconfigure the rotational control force using only the equalizer signal Seql and try to recover the instability.
[0055] (II)第 2実施形態  [0055] (II) Second Embodiment
次に、本願に係る他の実施形態である第 2実施形態について、図 4及び図 5を用い て説明する。  Next, a second embodiment, which is another embodiment according to the present application, will be described with reference to FIGS.
[0056] なお、図 4は第 2実施形態に係る回転制御装置の概要構成を示すブロック図であり 、図 5は当該回転制御装置の動作を示すタイミングチャートである。また、図 4及び図 5において、上記第 1実施形態における図 1及び図 2と同様の構成部材については、 同一の部材番号又は符号を付して細部の説明は省略する。  FIG. 4 is a block diagram showing a schematic configuration of the rotation control device according to the second embodiment, and FIG. 5 is a timing chart showing the operation of the rotation control device. 4 and FIG. 5, the same components as those in FIG. 1 and FIG. 2 in the first embodiment are given the same member numbers or reference numerals, and detailed description thereof is omitted.
[0057] 上述した第 1実施形態においては、その図 2において例示したように、ノ ルス信号 S fgに含まれる全パルスのうち、光ディスク DK—回転分内の三つのパルスのいずれか 一つのタイミングを起算点として第 2位相エラー信号 Ser2を生成する場合について説 明したが、以下に説明する第 2実施形態では、パルス信号 S¾に含まれる全パルスの うち、光ディスク DK—回転分内の三つのパルス全てのタイミングを夫々に起算点とし て、第 2位相エラー信号 (以下、第 2実施形態に係る第 2位相エラー信号を、第 2位相 エラー信号 Sr2とする)を生成して光ディスク DKの回転制御に用いる。  In the first embodiment described above, as illustrated in FIG. 2, the timing of any one of the three pulses in the optical disc DK—rotation amount among all the pulses included in the Norse signal S fg. The second phase error signal Ser2 is generated from the starting point. However, in the second embodiment described below, the optical disk DK—of three rotations included in the pulse signal S¾, Rotating the optical disc DK by generating a second phase error signal (hereinafter, the second phase error signal according to the second embodiment is referred to as a second phase error signal Sr2) starting from the timing of all pulses. Used for control.
[0058] 図 4に示すように、第 2実施形態に係る回転制御装置 SRRは、第 1実施形態に係る 回転制御 SRを構成するものと同様の構成及び機能を備えるスピンドルモータ 1、パ ルス生成部 2、波形調整部 9及びドライバ 10に加えて、第 2実施形態としての独自の 構成を備えるエラー信号生成部 20により構成されて 、る。  As shown in FIG. 4, the rotation control device SRR according to the second embodiment includes a spindle motor 1 having a configuration and functions similar to those of the rotation control SR according to the first embodiment, and pulse generation. In addition to the unit 2, the waveform adjustment unit 9 and the driver 10, the error signal generation unit 20 has a unique configuration as the second embodiment.
[0059] そして、当該エラー信号生成部 20は、第 1実施形態に係るエラー信号生成部 3を 構成するものと同様の構成及び機能を備えるエッジ検出部 4、速度 Z位相比較部 5 及び基準クロック生成部 7に加えて、切替器 21及び 23と、位相比較器群 22と、により 構成されている。 [0060] そして更に、位相比較器群 22は、光ディスク DK—回転の相当する上記パルス信 号 S¾のノ ルス数 (第 1及び第 2実施形態の場合において三つ)と同数の位相比較器 を備えている。 [0059] Then, the error signal generation unit 20 includes an edge detection unit 4, a speed Z phase comparison unit 5 and a reference clock having the same configuration and functions as those of the error signal generation unit 3 according to the first embodiment. In addition to the generation unit 7, the switches 21 and 23 and the phase comparator group 22 are configured. [0060] Furthermore, the phase comparator group 22 includes the same number of phase comparators as the number of pulses (three in the case of the first and second embodiments) of the pulse signal S¾ corresponding to the optical disc DK—rotation. I have.
[0061] この構成において、切替器 21は、エッジ信号 Segに含まれる全パルスのうち、光デ イスク DK—回転に必要な時間に相当する三つのパルス夫々の立ち上がりタイミング を夫々の立ち上がりタイミングとし且つ当該一回転と等しい波長を有するタイミング信 号 Stl乃至 St3 (図 5上から四段目乃至下から二段目参照)を生成し、夫々別個に位 相比較器群 22内の各位相比較器に出力する。  [0061] In this configuration, the switching device 21 sets the rising timing of each of the three pulses corresponding to the time required for the optical disk DK-rotation among all the pulses included in the edge signal Seg as each rising timing, and Timing signals Stl to St3 (see the 4th stage from the top to the 2nd stage from the bottom in Fig. 5) having a wavelength equal to the one rotation are generated, and each is separately sent to each phase comparator in the phase comparator group 22. Output.
[0062] これにより、当該各位相比較器は、上記クロック信号 Sclkにより示されるタイミングと 、各タイミング信号 Stl乃至 St3により示されるタイミングとを夫々別個に比較し、その 誤差を夫々誤差信号 Sgl乃至 Sg3として切替器 23に出力する。  [0062] Thereby, each of the phase comparators individually compares the timing indicated by the clock signal Sclk with the timing indicated by the timing signals Stl to St3, and the errors are respectively compared with the error signals Sgl to Sg3. To switch 23.
[0063] そして、切替器 23は、各誤差信号 Sgl乃至 Sg3夫々により示されて ヽるタイミング誤 差を振幅とする第 2位相エラー信号 Sr2を生成し、上記信服調整部 9内の第 3ィコライ ザ 9Cに出力する。  [0063] Then, the switch 23 generates a second phase error signal Sr2 having the timing error indicated by each of the error signals Sgl to Sg3 as an amplitude, and the third equalizer signal in the belief adjustment unit 9 is generated. The output to 9C.
[0064] より具体的には、先ず上から図 5二段目並びに四段目乃至六段目に例示するよう に、上記エッジ信号 Segにおいて光ディスク DK—回転に相当する三つのパルスの立 ち上がりタイミングを夫々の立ち上がりタイミングとし且つ光ディスク DK—回転の長さ を夫々の一波長の長さとする上記三つのタイミング信号 Stl乃至 St3が切替器 21に おいて生成され、夫々別個に位相比較器群 22内の各位相比較器に出力される。  More specifically, as illustrated in FIG. 5 from the top to the second stage and from the fourth stage to the sixth stage from the top, the rising edge of three pulses corresponding to the optical disc DK—rotation in the edge signal Seg. The above three timing signals Stl to St3 having the timing as the respective rising timings and the optical disc DK—the length of rotation as the length of each wavelength are generated in the switch 21, and are individually phase comparator groups 22. Are output to each phase comparator.
[0065] そして、図 5上力 四段目及び最下段に例示するように、当該位相比較器群内の 図示しない第 1位相比較器及び切替器 23は、タイミング信号 Stlにおける一波長分、 二波長分及び三波長分 (換言すれば、光ディスク DKの一回転分、二回転分及び三 回転分)の時間を夫々 Sela、 Selb及び Selcとして夫々別個に且つ連続的に検出し 、当該検出された夫々の時間と、上記クロック信号 Sclkにおける光ディスク DKの一 回転分、二回転分及び三回転分に相当する立ち上がりエッジの間隔と、の誤差が、 タイミング信号 Stlにお!/、て上記時間 Sela、 Selb及び Selcが夫々経過した直後のタ イミングにおける第 2位相エラー信号 Sr2の振幅に相当するように当該第 2位相エラ 一信号 Sr2を生成して、上記振幅調整部 9に出力する。 [0066] これと並行して、当該位相比較器群内の図示しない第 2位相比較器及び切替器 23 は、図 5上から五段目及び最下段に例示するように、タイミング信号 St2における一波 長分、二波長分及び三波長分の時間を夫々 Se2a、 Se2b及び Se2cとして夫々別個に 且つ連続的に検出し、当該検出された夫々の時間と、上記クロック信号 Sclkにおける 光ディスク DKの一回転分、二回転分及び三回転分に相当する立ち上がりエッジの 間隔と、の誤差が、タイミング信号 St2において上記時間 Se2a、 Se2b及び Se2cが夫 々経過した直後のタイミングにおける第 2位相エラー信号 Sr2の振幅に相当するよう に当該第 2位相エラー信号 Sr2を生成して、上記振幅調整部 9に出力する。 [0065] As illustrated in the fourth and bottom stages of the upper force in FIG. 5, the first phase comparator and the switch 23 (not shown) in the phase comparator group correspond to one wavelength in the timing signal Stl. Wavelengths and three wavelengths (in other words, one rotation, two rotations, and three rotations) of the optical disc DK are detected separately and continuously as Sela, Selb, and Selc, respectively. The error between each time and the rising edge interval corresponding to one rotation, two rotations, and three rotations of the optical disc DK in the clock signal Sclk is the timing signal Stl! The second phase error signal Sr2 is generated so as to correspond to the amplitude of the second phase error signal Sr2 at the timing immediately after the passage of Selb and Selc, and is output to the amplitude adjuster 9. In parallel with this, the second phase comparator and switch 23 (not shown) in the group of phase comparators, as illustrated in the fifth and bottom stages from the top of FIG. Wavelength, two-wavelength, and three-wavelength times are separately and continuously detected as Se2a, Se2b, and Se2c, respectively, and the detected time and one rotation of the optical disc DK in the clock signal Sclk. The difference between the rising edge interval corresponding to minutes, two rotations and three rotations is the amplitude of the second phase error signal Sr2 at the timing immediately after the time Se2a, Se2b and Se2c have elapsed in the timing signal St2. The second phase error signal Sr2 is generated so as to correspond to and is output to the amplitude adjuster 9.
[0067] 更に、当該位相比較器群内の図示しない第 3位相比較器及び切替器 23は、図 5 上から六段目及び最下段に例示するように、タイミング信号 St3における一波長分、 二波長分及び三波長分の時間を夫々 Se3a、 Se3b及び Se3cとして夫々別個に且つ 連続的に検出し、当該検出された夫々の時間と、上記クロック信号 Sclkにおける光デ イスク DKの一回転分、二回転分及び三回転分に相当する立ち上がりエッジの間隔と 、の誤差が、タイミング信号 St3において上記時間 Se3a、 Se3b及び Se3cが夫々経過 した直後のタイミングにおける第 2位相エラー信号 Sr2の振幅に相当するように当該 第 2位相エラー信号 Sr2を生成して、上記振幅調整部 9に出力する。  [0067] Further, the third phase comparator and switch 23 (not shown) in the phase comparator group includes two wavelengths in the timing signal St3, as illustrated in the sixth and bottom stages from the top in FIG. Wavelengths and three-wavelength times are detected separately and continuously as Se3a, Se3b, and Se3c, respectively, and the detected times and two rotations of the optical disk DK in the clock signal Sclk. The error between the rising edge interval corresponding to the rotation amount and the three rotation amount corresponds to the amplitude of the second phase error signal Sr2 at the timing immediately after the above-described times Se3a, Se3b, and Se3c have elapsed in the timing signal St3. Then, the second phase error signal Sr2 is generated and output to the amplitude adjusting unit 9.
[0068] その後は、第 1実施形態に係る回転制御装置 SRのものと同様の速度エラー信号 S erd及び第 1位相エラー信号 Serlに加えて上記第 2位相エラー信号 Sr2を用いて、第 1実施形態において図 3を用いて説明した場合と同様の動作を行って第 2実施形態 に係る回転制御動作を実行する。  [0068] Thereafter, in addition to the speed error signal Serd and the first phase error signal Serl similar to those of the rotation control device SR according to the first embodiment, the second phase error signal Sr2 is used for the first implementation. In the embodiment, the same operation as that described with reference to FIG. 3 is performed to execute the rotation control operation according to the second embodiment.
[0069] 以上説明したように、第 2実施形態に係る回転制御装置 SRRの動作によれば、光 ディスク DKの回転に応じて生成されるパルス信号 Sfgにおける各パルスに対応する 速度エラー信号 Serd及び第 1位相エラー信号 Serlと、一回の回転に夫々相当する パルスに対応する第 2位相エラー信号 Sr2と、を共に用いて光ディスク DKの回転を 制御するので、速度エラー信号 Serd及び第 1位相エラー信号 Serlのみに基づいて 当該回転を制御する場合に比してより長い間隔のパルスに基づく第 2位相エラー信 号 Sr2を用いることで、より正確に当該回転における回転速度又は回転数を制御する ことができる。 [0070] また、光ディスク DKの一回転中に生成される全てのパルスに相当する各タイミング 力 夫々起算して一又は複数の回転が夫々終了する各タイミングに夫々相当する第 2エラー信号 Sr2が回転制御に用いられるので、光ディスク DKの回転が繰り返される ことにより累積される回転エラーをも考慮して正確に光ディスク DKの回転速度又は 回転数を制御することができる。 As described above, according to the operation of the rotation control device SRR according to the second embodiment, the speed error signal Serd corresponding to each pulse in the pulse signal Sfg generated according to the rotation of the optical disc DK and Since the rotation of the optical disc DK is controlled using both the first phase error signal Serl and the second phase error signal Sr2 corresponding to a pulse corresponding to one rotation, the speed error signal Serd and the first phase error are controlled. Using the second phase error signal Sr2 based on pulses with longer intervals compared to controlling the rotation based only on the signal Serl, the rotational speed or number of rotations can be controlled more accurately. Can do. [0070] Further, each timing force corresponding to all pulses generated during one rotation of the optical disc DK is rotated, and the second error signal Sr2 corresponding to each timing at which one or a plurality of rotations respectively ends is rotated. Since it is used for control, it is possible to accurately control the rotation speed or the number of rotations of the optical disk DK in consideration of the rotation error accumulated by the repeated rotation of the optical disk DK.
[0071] 更に、速度エラー信号 Serd及び第 1位相エラー信号 Serlと、第 2位相エラー信号 S r2と、を共に回転制御に用いるので、速度エラー信号 Serd及び二種類の位相エラー 信号を用いてより正確に光ディスク DKの回転速度又は回転数を制御することができ る。  [0071] Furthermore, since both the speed error signal Serd, the first phase error signal Serl, and the second phase error signal Sr2 are used for rotation control, the speed error signal Serd and two types of phase error signals are used. It is possible to accurately control the rotation speed or rotation speed of the optical disc DK.
[0072] 更にまた、信服調整部 9により、第 2位相エラー信号 Sr2の振幅を第 1位相エラー信 号 Serlの振幅よりも大きくなるように変換して双方を加算し、回転の制御に用いるの で、回転ムラの影響を受け易い第 1位相エラー信号 Serlの影響を低減しつつ正確に 光ディスク DKの回転を制御することができる。  [0072] Furthermore, the belief adjustment unit 9 converts the amplitude of the second phase error signal Sr2 to be larger than the amplitude of the first phase error signal Serl, adds both of them, and uses them for controlling the rotation. Thus, it is possible to accurately control the rotation of the optical disc DK while reducing the influence of the first phase error signal Serl which is easily affected by the rotation unevenness.
[0073] また、速度エラー信号 Serdが常時回転の制御に用いられると共に、第 1位相エラー 信号 Serl及び第 2位相エラー信号 Sr2については当該第 1位相エラー信号 Serlを回 転の制御に用い始めるタイミングを第 2位相エラー信号 Sr2のそれよりも早めて当該 回転の制御を行うので、回転制御の正確性を維持することができる。  [0073] In addition, the speed error signal Serd is always used for rotation control, and the first phase error signal Serl and the second phase error signal Sr2 start to use the first phase error signal Serl for rotation control. Since the rotation is controlled earlier than that of the second phase error signal Sr2, the accuracy of the rotation control can be maintained.
[0074] なお、上述した第 2実施形態にお!、ては、パルス信号 Sfgのパルスのうち、光デイス ク DK—回転に相当する三つのパルスを全て起算点として用いた力 当該一回転に 相当するパルス数が多数に上る場合は、その一部(例えば半数や三分の一の数)の パルス夫々を起算点として上記第 2位相エラー信号 Sr2を生成するように構成するこ ともできる。この場合、当該第 2位相エラー信号 Sr2としての均質性を考慮するならば 、当該起算点とするパルスを当該一回転に相当するパルスの中力 等間隔に選ぶの が好ましい。  [0074] In the second embodiment described above, out of the pulses of the pulse signal Sfg, the force using all three pulses corresponding to the optical disk DK-rotation as the starting point When the number of corresponding pulses is large, the second phase error signal Sr2 can be generated using a part of the pulses (for example, half or one-third) as starting points. In this case, if the homogeneity as the second phase error signal Sr2 is taken into consideration, it is preferable to select the pulse as the starting point at a medium force equal interval corresponding to the one rotation.
[0075] また、上述した各実施形態では、各エラー信号の活用順序としては、図 3に示す如 ぐ  [0075] Further, in each of the above-described embodiments, the order of utilizing each error signal is as shown in FIG.
速度エラー信号 Serd→速度エラー信号 Serd+第 1位相エラー信号 Serl→速度ェ ラー信号 Serd+第 1位相エラー信号 Serl +第 2位相エラー信号 Ser2 (Sr2) と言う態様を用いたが、これ以外に、上記第 1位相エラー信号 Serlを用いずに、速 度エラー信号 Serdと第 2位相エラー信号 Ser2 (Sr2)のみを、 Speed error signal Serd → Speed error signal Serd + 1st phase error signal Serl → Speed error signal Serd + 1st phase error signal Serl + 2nd phase error signal Ser2 (Sr2) In addition to this, only the speed error signal Serd and the second phase error signal Ser2 (Sr2) are used without using the first phase error signal Serl.
速度エラー信号 Serd→速度エラー信号 Serd+第 2位相エラー信号 Ser2 (Sr2) と言う態様で活用してもよい。  The speed error signal Serd → speed error signal Serd + second phase error signal Ser2 (Sr2) may be used.
[0076] 更に、上述した各実施形態は、光ディスク DKのレーベル面に対して視認可能な画 像を描画する描画装置における当該光ディスク DKの回転制御に対して本願を適用 した場合について説明した力 これ以外に、光ディスク DKから何ら情報を得られず 且つ上記パルス信号 S¾の如きスピンドルモータ 1の回転に対して高精度で同期した 信号が得られな 、場合でも高精度で円盤の回転を制御しなければならな 、場合に、 本願を広く適用することが可能である。 [0076] Furthermore, each of the above-described embodiments has the force described in the case where the present application is applied to the rotation control of the optical disc DK in a drawing apparatus that draws an image that is visible on the label surface of the optical disc DK. In addition to this, no information can be obtained from the optical disc DK, and a signal synchronized with the rotation of the spindle motor 1 such as the pulse signal S¾ cannot be obtained with high accuracy. In some cases, the present application can be widely applied.
[0077] 更にまた、図 2及び図 3又は図 5に示すフローチャート及びタイミングチャートに対 応するプログラムを、フレキシブルディスク又はハードディスク等の情報記録媒体に記 録しておき、又はインターネット等を介して取得して記録しておき、これらを汎用のコ ンピュータで読み出して実行することにより、当該コンピュータを各実施形態に係る回 転制御装置 SR又は SRRとして活用することも可能である。 [0077] Furthermore, a program corresponding to the flowchart and timing chart shown in FIG. 2, FIG. 3 or FIG. 5 is recorded on an information recording medium such as a flexible disk or a hard disk, or acquired via the Internet or the like. It is also possible to utilize the computer as the rotation control device SR or SRR according to each embodiment by reading out and executing these on a general-purpose computer.

Claims

請求の範囲 The scope of the claims
[1] 円盤の回転を制御する回転制御装置において、  [1] In the rotation control device that controls the rotation of the disk,
前記回転の状況に対応したパルス信号を生成するパルス生成手段と、 前記生成されたパルス信号における各パルスに基づいて、前記回転における回転 エラーを示す第 1エラー信号を生成する第 1エラー信号生成手段と、  Pulse generation means for generating a pulse signal corresponding to the rotation state, and first error signal generation means for generating a first error signal indicating a rotation error in the rotation based on each pulse in the generated pulse signal When,
前記各パルスのうち、一回の前記回転が終了するタイミングに夫々相当する当該パ ルスに基づいて、前記回転における回転エラーを示す第 2エラー信号を生成する第 2エラー信号生成手段と、  A second error signal generating means for generating a second error signal indicating a rotation error in the rotation based on the pulse corresponding to the timing at which one rotation of the pulses ends, among the pulses;
前記夫々生成された第 1エラー信号及び第 2エラー信号に基づいて、前記回転を 制御する制御手段と、  Control means for controlling the rotation based on the first error signal and the second error signal respectively generated;
を備えることを特徴とする回転制御装置。  A rotation control device comprising:
[2] 請求項 1に記載の回転制御装置において、 [2] In the rotation control device according to claim 1,
前記第 2エラー信号生成手段は、予め設定された一つの前記パルスに相当するタ イミング力 起算して一又は複数回の前記回転が終了するタイミングに夫々相当する 前記第 2エラー信号を生成して前記制御手段に出力することを特徴とする回転制御 装置。  The second error signal generation means generates the second error signal corresponding to the timing at which one or a plurality of rotations are completed by calculating a timing force corresponding to one preset pulse. A rotation control device that outputs to the control means.
[3] 請求項 1に記載の回転制御装置において、  [3] In the rotation control device according to claim 1,
前記第 2エラー信号生成手段は、一回の前記回転中に生成される複数の前記パル スに相当する各タイミング力 夫々起算して一又は複数回の前記回転が夫々終了す る各タイミングに夫々相当する前記第 2エラー信号を夫々生成して前記制御手段に 出力することを特徴とする回転制御装置。  The second error signal generating means calculates each timing force corresponding to the plurality of pulses generated during one rotation, and each timing at which one or a plurality of rotations end. A rotation control device that generates the corresponding second error signal and outputs the second error signal to the control means.
[4] 請求項 1から 3のいずれか一項に記載の回転制御装置において、  [4] In the rotation control device according to any one of claims 1 to 3,
前記第 1エラー信号生成手段は、前記各パルスに基づいて前記回転における速度 エラーを示す速度エラー信号と、当該各パルスに基づいて前記回転における位相ェ ラーを示す第 1位相エラー信号と、を夫々生成して前記制御手段に共に出力すると 共に、  The first error signal generating means includes a speed error signal indicating a speed error in the rotation based on each pulse, and a first phase error signal indicating a phase error in the rotation based on each pulse. Generated and output to the control means together,
前記第 2エラー信号生成手段は、一回の前記回転が終了するタイミングに夫々相 当する前記各パルスに基づいて前記回転における位相エラー又は速度エラーの少 なくともいずれか一方を示す前記第 2エラー信号を生成して前記制御手段に出力す ることを特徴とする回転制御装置。 The second error signal generating means reduces a phase error or speed error in the rotation based on the pulses corresponding to the timing at which one rotation is completed. A rotation control device that generates the second error signal indicating at least one of them and outputs the second error signal to the control means.
[5] 請求項 4に記載の回転制御装置において、 [5] In the rotation control device according to claim 4,
前記制御手段は、前記第 2位相エラー信号の振幅が前記第 1位相エラー信号の振 幅よりも大きくなるようにして当該第 2位相エラー信号を当該第 1位相エラー信号に加 算して前記回転の制御に用 、ることを特徴とする回転制御装置。  The control means adds the second phase error signal to the first phase error signal so that the amplitude of the second phase error signal is larger than the amplitude of the first phase error signal, and rotates the rotation. Rotation control device, characterized in that it is used to control
[6] 請求項 4又は 5に記載の回転制御装置において、 [6] In the rotation control device according to claim 4 or 5,
前記制御手段は、前記速度エラー信号を常時前記回転の制御に用いると共に、 前記第 1位相エラー信号及び前記第 2位相エラー信号を、各々間欠的且つ当該第 1位相エラー信号を前記回転の制御に用い始めるタイミングを当該第 2位相エラー信 号を前記回転の制御に用い始めるタイミングよりも早めて、前記回転の制御に用いる ことを特徴とする回転制御装置。  The control means always uses the speed error signal for controlling the rotation, and intermittently uses the first phase error signal and the second phase error signal, respectively, and controls the rotation of the first phase error signal. A rotation control device characterized in that the start timing is used for the rotation control earlier than the start timing for using the second phase error signal for the rotation control.
[7] 円盤の回転を制御する回転制御方法において、 [7] In the rotation control method for controlling the rotation of the disk,
前記回転の状況に対応したパルス信号を生成するパルス生成工程と、 前記生成されたパルス信号における各パルスに基づいて、前記回転における回転 エラーを示す第 1エラー信号を生成する第 1エラー信号生成工程と、  A pulse generation step for generating a pulse signal corresponding to the rotation state, and a first error signal generation step for generating a first error signal indicating a rotation error in the rotation based on each pulse in the generated pulse signal When,
前記各パルスのうち、一回の前記回転が終了するタイミングに夫々相当する当該パ ルスに基づいて、前記回転における回転エラーを示す第 2エラー信号を生成する第 2エラー信号生成工程と、  A second error signal generating step of generating a second error signal indicating a rotation error in the rotation based on the pulse corresponding to the timing at which one rotation of the pulses ends among the pulses;
前記夫々生成された第 1エラー信号及び第 2エラー信号に基づいて、前記回転を 制御する制御工程と、  A control step of controlling the rotation based on the first error signal and the second error signal generated respectively;
を含むことを特徴とする回転制御方法。  The rotation control method characterized by including.
[8] 請求項 1から 6のいずれか一項に記載の回転制御装置であって前記パルス生成手 段を備える回転制御装置に含まれるコンピュータを、 [8] A computer included in the rotation control device according to any one of claims 1 to 6, wherein the rotation control device includes the pulse generation unit.
前記第 1エラー生成手段、  The first error generating means;
前記第 2エラー生成手段、及び、  The second error generating means; and
前記制御手段、  The control means;
として機能させることを特徴とする回転制御用プログラム。  Rotation control program characterized by functioning as
PCT/JP2007/050996 2006-01-24 2007-01-23 Rotation control device, rotation control method and rotation control program WO2007086377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006015706A JP2009093683A (en) 2006-01-24 2006-01-24 Rotation control device, rotation control method and rotation control program
JP2006-015706 2006-01-24

Publications (1)

Publication Number Publication Date
WO2007086377A1 true WO2007086377A1 (en) 2007-08-02

Family

ID=38309167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050996 WO2007086377A1 (en) 2006-01-24 2007-01-23 Rotation control device, rotation control method and rotation control program

Country Status (2)

Country Link
JP (1) JP2009093683A (en)
WO (1) WO2007086377A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387189A (en) * 1986-09-29 1988-04-18 Matsushita Electric Ind Co Ltd Driving circuit for brushless motor
JPH01202192A (en) * 1987-04-20 1989-08-15 Matsushita Electric Ind Co Ltd Controller for brushless motor
JPH02206386A (en) * 1989-02-06 1990-08-16 Hitachi Ltd Spindle motor control circuit
JP2502669B2 (en) * 1987-04-20 1996-05-29 松下電器産業株式会社 Brushless motor controller
JP2903965B2 (en) * 1993-10-15 1999-06-14 松下電器産業株式会社 Disk motor control device for optical disk recording / reproducing device
WO2005034125A1 (en) * 2003-09-12 2005-04-14 Hewlett-Packard Development Company, L.P. Optical disk modified for speed and orientation tracking
JP2005317150A (en) * 2004-04-30 2005-11-10 Nec Electronics Corp Optical disk playback device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387189A (en) * 1986-09-29 1988-04-18 Matsushita Electric Ind Co Ltd Driving circuit for brushless motor
JPH01202192A (en) * 1987-04-20 1989-08-15 Matsushita Electric Ind Co Ltd Controller for brushless motor
JP2502669B2 (en) * 1987-04-20 1996-05-29 松下電器産業株式会社 Brushless motor controller
JPH02206386A (en) * 1989-02-06 1990-08-16 Hitachi Ltd Spindle motor control circuit
JP2903965B2 (en) * 1993-10-15 1999-06-14 松下電器産業株式会社 Disk motor control device for optical disk recording / reproducing device
WO2005034125A1 (en) * 2003-09-12 2005-04-14 Hewlett-Packard Development Company, L.P. Optical disk modified for speed and orientation tracking
JP2005317150A (en) * 2004-04-30 2005-11-10 Nec Electronics Corp Optical disk playback device

Also Published As

Publication number Publication date
JP2009093683A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US6825622B1 (en) Production line spindle control circuit employing a sinusoidal driver with back EMF control
JP2001243734A (en) Method and device for deciding systematic error value in trigger pattern generation for disk
JPH11235073A (en) Rotation speed control for spindle motor with optical disk drive
US20070256088A1 (en) Image information detecting apparatus
JPH10308057A (en) Method and device for setting revolving speed of optical disk
WO2007086377A1 (en) Rotation control device, rotation control method and rotation control program
JP2713495B2 (en) Truck jumping control device
JP3836256B2 (en) Optical disk device
JP2004152429A (en) Method and device for code-recording in optical disk
JP2000155955A (en) Focus jump control method and optical disk apparatus
WO2006023120A1 (en) Track transitioning for disc labeling
JPH02289970A (en) Spindle servo device
JP2009017687A (en) Disc-rotating device
JP2003272248A (en) Optical disk master disk exposing apparatus and method for detecting deflection amount of asynchronous rotation
US20100080092A1 (en) Optical disc apparatus
CN100495557C (en) Disk crack detection method and disk drive control method for disk crack detection
JP2003123376A (en) Optical disk device and spindle motor control method therefor
US20070036051A1 (en) Disc drive apparatus
JPH04332959A (en) Synchronously controlling method for optical disk drive
JP2007179702A (en) Focusing controller of optical disk
JPH05282671A (en) Optical information recording method and its device
JP2000020967A (en) Optical disk apparatus
JP2010113767A (en) Optical disk device
JP2000090447A (en) Information reproduction device
JP2000155956A (en) Tracking servo circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07713688

Country of ref document: EP

Kind code of ref document: A1