WO2007085359A1 - Method for controlling a motor vehicle drive train - Google Patents

Method for controlling a motor vehicle drive train Download PDF

Info

Publication number
WO2007085359A1
WO2007085359A1 PCT/EP2007/000310 EP2007000310W WO2007085359A1 WO 2007085359 A1 WO2007085359 A1 WO 2007085359A1 EP 2007000310 W EP2007000310 W EP 2007000310W WO 2007085359 A1 WO2007085359 A1 WO 2007085359A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
clutch
electric machine
internal combustion
combustion engine
Prior art date
Application number
PCT/EP2007/000310
Other languages
German (de)
French (fr)
Inventor
Stefan Wallner
Notker Amann
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Publication of WO2007085359A1 publication Critical patent/WO2007085359A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a method for controlling a motor vehicle drive train, which comprises an internal combustion engine, an electric machine and a transmission, which are coupled to each other via a summation with two input elements and an output element and a frictional clutch designed as a friction clutch by the first input element with the Crankshaft of the internal combustion engine, the second input element to the rotor of the electric machine, and the output member to the input shaft of the transmission is rotatably connected, and wherein the lock-up clutch between two elements of the summation gear is arranged, wherein a lock-up difference occurs with the clutch open between the input shaft of the transmission and the internal combustion engine is synchronized and then the lock-up clutch is closed.
  • a drive train of a motor vehicle of the type described above is known per se from DE 199 34 696 A1 and DE 101 52 471 A1.
  • the summation gear is in each case designed as a simple planetary gear with a sun gear, a planet carrier with several planetary gears and a ring gear.
  • the ring gear forms the first input element and is non-rotatably connected to the crankshaft of the internal combustion engine.
  • the sun gear forms the second input element and is non-rotatably coupled to the rotor of the electric machine.
  • the planet carrier forms the output element and is non-rotatably connected to the input shaft of the gearbox.
  • the lockup clutch is arranged in terms of drive technology between the sun gear and the planet carrier of the planetary gear.
  • the lockup clutch in contrast to the presently assumed training as Claw clutch formed so that the lock-up clutch can be closed only during synchronous operation of the engine and the input shaft of the gearbox, and thus can only be used to a limited extent.
  • a directional freewheel between the crankshaft and a housing part is arranged, whereby the crankshaft secured against reverse rotation and thus the drive torque of the electric machine is supported against the housing.
  • a further directional freewheel between the input shaft of the gearbox and a housing part is arranged, whereby the input shaft secured against reverse rotation and thus the drive torque of the electric machine is supported against the housing.
  • the lockup clutch is designed as a friction clutch, so that the lockup clutch is also used for a rotational speed difference between the input shaft of the shift transmission and the internal combustion engine for transmitting a torque in slip operation can be.
  • a further friction clutch between the input shaft of the gearbox and a housing part is arranged, whereby the input shaft can be braked after reaching a starting speed of the electric machine to start the engine.
  • the lock-up clutch is assumed as a friction clutch, in particular as a wet multi-plate clutch, but alternatively can also be designed as a dry clutch.
  • the lockup clutch can also be arranged between the ring gear and the sun gear, that is, between the crankshaft of the internal combustion engine and the rotor of the electric machine.
  • the lock-up clutch is fully closed, so that the planetary gear is blocked and rigidly rotates.
  • the rotational speeds and the directions of rotation of the internal combustion engine, the electric machine and the input shaft of the gearbox are identical.
  • the electric machine is operated in this state mainly as a generator for supplying the electrical system, but can be operated in certain operating situations, especially in acceleration phases of the motor vehicle, temporarily as a motor.
  • the torque of the engine is almost simultaneously reduced, switched off the electric machine and fully open the lock-up clutch.
  • the input shaft of the gearbox is decoupled from the engine, so that the loaded load gear designed load-free and the target gear to be engaged can be synchronized and loaded load-free.
  • the switching operation inevitably results in a speed difference between the input shaft of the gearbox and the internal combustion engine, which is positive in a downshift and negative in a upshift. This speed difference is usually compensated after the switching process, that the lock-up clutch is coordinated with the torque build-up of the engine closed controlled.
  • the present invention has the object to provide a method by which in a drive train of the type mentioned a synchronization of the speed difference faster and less wear than previously feasible. Such a method should also be usable in drive trains containing comparable components, but in other propulsion combination combination.
  • the solution of this object is based on the features of the preamble of claim 1 of a method for controlling a motor vehicle powertrain, which includes an internal combustion engine, an electric machine and a transmission, via a summation with two input elements and an output element as well as a friction clutch trained bypass clutch are coupled together by the first input member to the crankshaft of the internal combustion engine, the second input member to the rotor of the electric machine and the output member to the input shaft of the transmission is rotatably connected, and by the lock-up clutch between two elements of the summation gear is arranged, wherein a synchronized with the lock-up clutch open speed difference .DELTA.n between the input shaft of the transmission and the engine and then the lock-up clutch is closed.
  • gearbox to understand all types of gear that have a true neutral position with an output speed "zero”, so do not generate an output speed with the value "zero" by an internal gear speed summation
  • gearbox therefore includes, for example, manual transmissions, automated manual transmissions, planetary automatic transmissions and continuously variable transmissions.
  • the sun gear of the planetary gear depending on the size of the circuit-dependent speed difference .DELTA.n temporarily reverse, so contrary to the direction of rotation of the two shafts, rotate, in this case, a positive torque M_EM> 0 by generating a drag torque in generator mode and a negative torque M_EM ⁇ 0 generated by the generation of a drive torque during engine operation of the electric machine.
  • the lock-up clutch By using the electric machine to synchronize a speed difference .DELTA.n between the input shaft of the transmission and the crankshaft of the internal combustion engine, the lock-up clutch remain open during synchronization, and closed slip and wear-free upon reaching the synchronous operation of the input shaft and the internal combustion engine. As a result, unnecessary wear on the friction elements of the lockup clutch and heating of the lockup clutch and adjacent components are avoided.
  • the torque M_VM of the internal combustion engine is suitably controlled during the synchronization of the rotational speed difference ⁇ n as a function of vehicle and operation-dependent operating parameters and the speed n_VM of the internal combustion engine
  • the target speed n_VM_soll is set substantially via the torque M_EM the electric machine.
  • the internal combustion engine thus remains in its operating state at the beginning of the switching operation until the synchronization of the rotational speed difference ⁇ n has ended by means of the electric machine and the lockup clutch is closed. Thereafter, the internal combustion engine is controlled depending on the usual operating parameters and the driver's power demand.
  • the electric motor also has to support the momentary torque of the internal combustion engine (tractive torque or drag torque) and the torque applied to the input shaft of the transmission (driving resistance torque) against each other.
  • the total required torque M_EM_erf of the electric machine can therefore optionally from the torque required for the current drive torque and for the synchronization of the speed difference ⁇ n M_GE_soll at the input shaft of the transmission by retroactive calculation with the translation i_EM / GE between the electric machine and the input shaft of the transmission, or off the required for the current drive torque and for the synchronization of the speed difference ⁇ n torque M_VM_soll at the crankshaft of the internal combustion engine by recalculation with the translation i_EM / VM between the electric machine and the internal combustion engine are determined.
  • the torque M_K which can be generated by the lockup clutch, always has the correct meaning, ie speed compensating, independently of its arrangement, since in each case the faster rotating component is braked and the slower-moving component is slowed down. mer rotating component is accelerated.
  • speed compensating independently of its arrangement, since in each case the faster rotating component is braked and the slower-moving component is slowed down. mer rotating component is accelerated.
  • this wear is significantly lower than in a complete synchronization of the speed difference ⁇ n via the lock-up clutch.
  • the synchronization of the speed difference ⁇ n by the electric machine can be assisted and accelerated by partially closing the lock-up clutch during synchronization.
  • the synchronization of the rotational speed difference ⁇ n by the electric machine by means of the internal combustion engine can be assisted by increasing the torque M_VM_soll to be set and / or the predetermined target rotational speed n_VM_soll during synchronization with positive rotational speed difference ⁇ n> 0 and decreasing it with negative rotational speed difference ⁇ n ⁇ 0.
  • 1 is a functional diagram of the method for synchronizing a speed difference between an input shaft of a transmission and an internal combustion engine in a drive train
  • FIG. 2 shows a part of the functional diagram according to FIG. 1 for determining the torques of an electric machine and a lock-up clutch
  • 3 is a first application example for synchronizing a speed difference in the form of a speed diagram over time
  • FIG. 4 shows a second application example for synchronizing a speed difference in the form of a speed diagram over time
  • Fig. 5 shows the general structure of the underlying powertrain in a simplified schematic representation
  • Fig. 6 shows a preferred practical embodiment of the drive train according to FIG. 5 in a schematic representation.
  • a drive train 1 comprises an internal combustion engine 2, an electric machine 3 and a transmission 4, which are coupled to one another via a summation transmission 5 with two input elements 6, 7 and one output element 8.
  • the first input element 6 is rotatably connected to the crankshaft 9 of the internal combustion engine 2, the second input element 7 with the rotor 10 of the electric machine 3, and the output member 8 with the input shaft 11 of the transmission 4 respectively.
  • a bypass clutch 12 designed as a friction clutch is arranged between two elements of the summation gear 5, in the present case between the two input elements 6, 7.
  • the internal combustion engine 2, the electric machine 2 and the lock-up clutch 12 are connected via sensor and control lines 13 to a control unit 14, via which the components of the drive train 1 can be controlled in a coordinated manner.
  • FIG. 6 A preferred practical embodiment of the drive train 1 is shown in FIG. 6.
  • the summation gear 5 is formed as a simple planetary gear 15 with a sun gear 16, a planet carrier 17 with a plurality of planetary gears 18 and a ring gear 19.
  • the ring gear 19 forms the first input element 6 and is connected via a flywheel 20 and a torsional vibration damper 21 with the crankshaft 9 of the engine 2 in connection.
  • the sun gear 16 forms the second input element 7 and is directly rotationally coupled to the rotor 10 of the electric machine 3.
  • the planet carrier 17 forms the output element 8 and is directly connected to the input shaft 11 of the here formed as an automated transmission transmission 4 in combination.
  • An arranged between the input shaft 11 and a housing part 22 directional freewheel 23 serves to support the input shaft 11 at a start of the engine 2 by the electric machine 3.
  • the transmission 4 is executed in countershaft design and has a total of six forward gears and one reverse gear, each via one Claw clutch are selectively switchable.
  • the lock-up clutch 12 is disposed between the rotor 10 of the electric machine 3 and a connecting shaft 24 through which the engine 2 is in communication with the ring gear 19.
  • the setpoint speed n_VM_soll is set essentially via the torque M_EM generated by the electric machine 3 and thus the speed difference ⁇ n is synchronized.
  • this is determined by the controller 14.2 of the control unit 14 on the input shaft 11 of the transmission 4 required torque M_GE_soll and specified, which is to be applied by the electric machine 3, the current driving maneuver and additionally to enable the synchronization of the speed difference .DELTA.n.
  • the required torque M_EM_soll of the electric machine results from the required torque M_GE_soll at the input shaft 11 by recalculation with the translation i_EM / GE between the electric machine 3 and the input shaft eleventh
  • the required torque M_EM_soll is set by means of an associated inverter 25 on the electric machine 3, provided that this does not exceed the maximum possible torque M_EM_max of the electric machine 3.
  • a possible residual torque ⁇ M_GE_R is determined, which is to be applied by partially closing the lockup clutch 12 as a clutch torque M_K_soll.
  • Fig. 3 such a synchronization for a push downshift is shown.
  • M_EM effective torque
  • the input shaft 11 is delayed and the relevant motor vehicle with it slowed down and simultaneously relieves the internal combustion engine 2 and thus accelerates the crankshaft 9 until at time t1 synchronism between the two shafts 9, 11 and thus also at the lock-up clutch 12 is reached. Therefore, the lock-up clutch 12 can be closed slip-free and wear-free at time t1. Subsequently, the further overrun with completely closed lock-up clutch 12 via the control of the internal combustion engine. 2
  • Fig. 4 is shown in a similar form a synchronization for a pull upshift.
  • ⁇ n n_GEn_VM ⁇ 0 between the input shaft 11 of the transmission 4 and the engine 2.
  • M_EM the input shaft 11 and thus the respective motor vehicle is accelerated, and at the same time the engine 2 loaded and thus the crankshaft 9 braked.
  • the speed n_VM of the internal combustion engine 2 Due to the simultaneously increasing torque M_VM of the internal combustion engine 2, the speed n_VM of the internal combustion engine 2 nevertheless rises slightly, but at the time t1, it is overtaken by the higher rising speed n_GE of the input shaft 9 of the transmission 4, so that due to the achieved synchronism between the two shafts 9 , 11 the lock-up clutch 12 can be closed without slippage and wear. Subsequently, the further acceleration of the motor vehicle takes place when the lock-up clutch 12 is completely closed via the control of the internal combustion engine 2. Regardless of the embodiments shown in Figures 5 and 6, the invention also covers drive trains with all other possible and different drive couplings between the engine 2, the electric machine 3, the summation 5, the clutch 12 and the transmission 4, which, however, not shown separately is.
  • M VM should nominal torque of 2 n speed n_GE speed of 11 n_VM speed of 2 n_VM_act actual speed of 2 n_VM_setpoint speed of 2 t time to time t1 time

Abstract

The invention relates to a method for controlling a motor vehicle drive train comprising an internal combustion engine (2), an electric motor/generator (3) and a gearbox transmission (4), which are intercoupled by means of a summarising gear (5) that has two input elements (6, 7) and one output element and by means of a lock-up clutch (12) that is configured as a friction clutch, the first input element being rotatably fixed to the crankshaft (9) of the internal combustion engine (2), the second input element being rotatably fixed to the rotor (10) of the electric motor/generator (3) and the output element being rotatably fixed to the input shaft (11) of the gearbox transmission (4). According to said method, the lock-up clutch (12) is situated between two elements of the summarising gear (5) and a speed differential (DELTAn) between the input shaft (11) of the gearbox transmission (4) and the internal combustion engine (2), which occurs when the lock-up clutch (12) is disengaged, is synchronised and the lock-up clutch (12) is subsequently engaged. The aim of the invention is to permit a rapid, low-wear synchronisation of the speed differential DELTAn. To achieve this, said speed differential DELTAn = n_GE - n_VM is synchronised with the aid of the electric motor/generator (3), whereby a positive torque M_EM > 0 that acts in the rotational direction of the crankshaft (9) of the internal combustion engine (2) and the input shaft (11) of the gearbox transmission (4) is generated by the electric motor/generator (3) if the speed differential is negative (DELTAn < 0), or a negative torque M_EM < 0 that acts against the rotational direction of the crankshaft (9) of the internal combustion engine (2) and the input shaft (11) of the gearbox transmission (4) is generated if the speed differential is positive (DELTAn > 0).

Description

Verfahren zur Steuerung eines Kraftfahrzeuq-Antriebsstranqs Method for controlling a motor vehicle drive train
Die Erfindung betrifft ein Verfahren zur Steuerung eines Kraftfahrzeug- Antriebsstrangs, der einen Verbrennungsmotor, eine Elektromaschine und ein Getriebe umfasst, die über ein Summierungsgetriebe mit zwei Eingangselementen und einem Ausgangselement sowie über eine als Reibungskupplung ausgebildete Überbrückungskupplung miteinander gekoppelt sind, indem das erste Eingangselement mit der Kurbelwelle des Verbrennungsmotors, das zweite Eingangselement mit dem Rotor der Elektromaschine, und das Ausgangselement mit der Eingangswelle des Getriebes drehfest verbunden ist, und bei dem die Überbrückungskupplung zwischen zwei Elementen des Summierungs- getriebes angeordnet ist, wobei eine bei geöffneter Überbrückungskupplung aufgetretene Drehzahldifferenz zwischen der Eingangswelle des Getriebes und dem Verbrennungsmotor synchronisiert wird und anschließend die Überbrückungskupplung geschlossen wird.The invention relates to a method for controlling a motor vehicle drive train, which comprises an internal combustion engine, an electric machine and a transmission, which are coupled to each other via a summation with two input elements and an output element and a frictional clutch designed as a friction clutch by the first input element with the Crankshaft of the internal combustion engine, the second input element to the rotor of the electric machine, and the output member to the input shaft of the transmission is rotatably connected, and wherein the lock-up clutch between two elements of the summation gear is arranged, wherein a lock-up difference occurs with the clutch open between the input shaft of the transmission and the internal combustion engine is synchronized and then the lock-up clutch is closed.
Ein Antriebsstrang eines Kraftfahrzeugs der vorbezeichneten Art ist aus der DE 199 34 696 A1 und der DE 101 52 471 A1 an sich bekannt. In diesem Antriebsstrang ist das Summierungsgetriebe jeweils als ein einfaches Planetengetriebe mit einem Sonnenrad, einem Planetenträger mit mehreren Planetenrädern und einem Hohlrad ausgebildet. Das Hohlrad bildet das erste Eingangselement und ist drehfest mit der Kurbelwelle des Verbrennungsmotors verbunden. Das Sonnenrad bildet das zweite Eingangselement und ist drehfest mit dem Rotor der Elektromaschine gekoppelt. Der Planetenträger bildet das Ausgangselement und ist drehfest mit der Eingangswelle des Schaltgetriebes verbunden. Die Überbrückungskupplung ist antriebstechnisch zwischen dem Sonnenrad und dem Planetenträger des Planetengetriebes angeordnet.A drive train of a motor vehicle of the type described above is known per se from DE 199 34 696 A1 and DE 101 52 471 A1. In this drive train, the summation gear is in each case designed as a simple planetary gear with a sun gear, a planet carrier with several planetary gears and a ring gear. The ring gear forms the first input element and is non-rotatably connected to the crankshaft of the internal combustion engine. The sun gear forms the second input element and is non-rotatably coupled to the rotor of the electric machine. The planet carrier forms the output element and is non-rotatably connected to the input shaft of the gearbox. The lockup clutch is arranged in terms of drive technology between the sun gear and the planet carrier of the planetary gear.
In dem Antriebsstrang gemäß der DE 199 34 696 A1 ist die Überbrückungskupplung im Gegensatz zur vorliegend vorausgesetzten Ausbildung als Klauenkupplung ausgebildet, so dass die Überbrückungskupplung nur bei Synchronlauf des Verbrennungsmotors und der Eingangswelle des Schaltgetriebes geschlossen werden kann, und somit nur eingeschränkt nutzbar ist. Um einen Antrieb des Kraftfahrzeugs allein mit der Elektromaschine zu ermöglichen, ist ein Richtungsfreilauf zwischen der Kurbelwelle und einem Gehäuseteil angeordnet, wodurch die Kurbelwelle gegen ein Rückwärtsdrehen gesichert und damit das Antriebsmoment der Elektromaschine gegen das Gehäuse abgestützt wird. Um bei stehendem Kraftfahrzeug ein Starten des Verbrennungsmotors mit der Elektromaschine zu ermöglichen, ist ein weiterer Richtungsfreilauf zwischen der Eingangswelle des Schaltgetriebes und einem Gehäuseteil angeordnet, wodurch die Eingangswelle gegen ein Rückwärtsdrehen gesichert und damit das Antriebsmoment der Elektromaschine gegen das Gehäuse abgestützt wird.In the drive train according to DE 199 34 696 A1, the lockup clutch in contrast to the presently assumed training as Claw clutch formed so that the lock-up clutch can be closed only during synchronous operation of the engine and the input shaft of the gearbox, and thus can only be used to a limited extent. In order to enable a drive of the motor vehicle alone with the electric machine, a directional freewheel between the crankshaft and a housing part is arranged, whereby the crankshaft secured against reverse rotation and thus the drive torque of the electric machine is supported against the housing. In order to enable starting of the internal combustion engine with the electric motor when the vehicle is stationary, a further directional freewheel between the input shaft of the gearbox and a housing part is arranged, whereby the input shaft secured against reverse rotation and thus the drive torque of the electric machine is supported against the housing.
In dem Antriebsstrang gemäß der DE 101 52 471 A1 ist die Überbrückungskupplung, wie es für die vorliegende Erfindung vorausgesetzt wird, als Reibungskupplung ausgebildet, so dass die Überbrückungskupplung auch bei einer Drehzahldifferenz zwischen der Eingangswelle des Schaltgetriebes und dem Verbrennungsmotor zur Übertragung eines Drehmomentes im Schlupfbetrieb genutzt werden kann. Um bei stehendem Kraftfahrzeug und in Neutral geschaltetem Getriebe einen Impulsstart des Verbrennungsmotors mittels der Elektromaschine zu ermöglichen, ist eine weitere Reibungskupplung zwischen der Eingangswelle des Schaltgetriebes und einem Gehäuseteil angeordnet, wodurch die Eingangswelle nach Erreichen einer Startdrehzahl der Elektromaschine zum Starten des Verbrennungsmotors abgebremst werden kann.In the drive train according to DE 101 52 471 A1, the lockup clutch, as assumed for the present invention, is designed as a friction clutch, so that the lockup clutch is also used for a rotational speed difference between the input shaft of the shift transmission and the internal combustion engine for transmitting a torque in slip operation can be. In order to enable a pulse start of the internal combustion engine by means of the electric machine with the motor vehicle and in neutral gear, a further friction clutch between the input shaft of the gearbox and a housing part is arranged, whereby the input shaft can be braked after reaching a starting speed of the electric machine to start the engine.
Nachfolgend wird in der Beschreibung der Erfindung ohne Einschränkung des Schutzumfangs beispielhaft von einem weitgehend identischen Aufbau des Antriebsstrangs ausgegangen, wobei die Überbrückungskupplung als Reibungskupplung vorausgesetzt wird, insbesondere als nasse Lamellenkupplung, alternativ aber auch als Trockenkupplung ausgeführt sein kann. Alternativ zu der bekannten Anordnung kann die Überbrückungskupplung auch zwischen dem Hohlrad und dem Sonnenrad, also zwischen der Kurbelwelle des Verbrennungsmotors und dem Rotor der Elektromaschine, angeordnet sein.Below, in the description of the invention without limiting the scope of an example of a largely identical structure of the drive train is assumed, the lock-up clutch is assumed as a friction clutch, in particular as a wet multi-plate clutch, but alternatively can also be designed as a dry clutch. alternative to the known arrangement, the lockup clutch can also be arranged between the ring gear and the sun gear, that is, between the crankshaft of the internal combustion engine and the rotor of the electric machine.
Im normalen Fahrbetrieb ist die Überbrückungskupplung vollständig geschlossen, so dass das Planetengetriebe blockiert ist und starr umläuft. In diesem Betriebszustand sind die Drehzahlen und die Drehrichtungen des Verbrennungsmotors, der Elektromaschine und der Eingangswelle des Schaltgetriebes identisch. Die Elektromaschine wird in diesem Zustand vorwiegend als Generator zur Versorgung des elektrischen Bordnetzes betrieben, kann jedoch in bestimmten Betriebssituationen, insbesondere in Beschleunigungsphasen des Kraftfahrzeugs, vorübergehend auch als Motor betrieben werden.During normal driving, the lock-up clutch is fully closed, so that the planetary gear is blocked and rigidly rotates. In this operating state, the rotational speeds and the directions of rotation of the internal combustion engine, the electric machine and the input shaft of the gearbox are identical. The electric machine is operated in this state mainly as a generator for supplying the electrical system, but can be operated in certain operating situations, especially in acceleration phases of the motor vehicle, temporarily as a motor.
Zum Gangwechsel innerhalb des Schaltgetriebes wird nahezu zeitgleich das Drehmoment des Verbrennungsmotors reduziert, die Elektromaschine kraftlos geschaltet und die Überbrückungskupplung vollständig geöffnet. Hierdurch wird die Eingangswelle des Schaltgetriebes von dem Verbrennungsmotor entkoppelt, so dass der eingelegte Lastgang lastfrei ausgelegt sowie der einzulegende Zielgang lastfrei synchronisiert und eingelegt werden kann. Durch den Schaltvorgang ergibt sich zwangsläufig eine Drehzahldifferenz zwischen der Eingangswelle des Schaltgetriebes und dem Verbrennungsmotor, die bei einem Rückschaltvorgang positiv und bei einem Hochschaltvorgang negativ ist. Diese Drehzahldifferenz wird nach dem Schaltvorgang üblicherweise dadurch ausgeglichen, dass die Überbrückungskupplung koordiniert mit dem Drehmomentaufbau des Verbrennungsmotors geregelt geschlossen wird. Dies erfordert jedoch eine gewisse Zeitspanne und ist nachteilig mit einem relativ hohen Verschleiß an den Reibelementen der Überbrückungskupplung sowie mit einer unerwünschten Erwärmung der Überbrückungskupplung und benachbarter Bauteile sowie gegebenenfalls auch des Getriebeöls verbunden. Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren anzugeben, mit dem bei einem Antriebsstrang der eingangs genannten Art eine Synchronisierung der Drehzahldifferenz schneller und verschleißärmer als bisher durchführbar ist. Ein solches Verfahren soll auch in Antriebssträngen nutzbar sein, die vergleichbare Komponenten, jedoch in anderer Antriebskopplungskombination enthalten.For gear change within the gearbox, the torque of the engine is almost simultaneously reduced, switched off the electric machine and fully open the lock-up clutch. As a result, the input shaft of the gearbox is decoupled from the engine, so that the loaded load gear designed load-free and the target gear to be engaged can be synchronized and loaded load-free. The switching operation inevitably results in a speed difference between the input shaft of the gearbox and the internal combustion engine, which is positive in a downshift and negative in a upshift. This speed difference is usually compensated after the switching process, that the lock-up clutch is coordinated with the torque build-up of the engine closed controlled. However, this requires a certain period of time and is disadvantageously associated with a relatively high wear on the friction elements of the lockup clutch and with an undesirable heating of the lockup clutch and adjacent components and possibly also the transmission oil. Against this background, the present invention has the object to provide a method by which in a drive train of the type mentioned a synchronization of the speed difference faster and less wear than previously feasible. Such a method should also be usable in drive trains containing comparable components, but in other propulsion combination combination.
Die Lösung dieser Aufgabe geht gemäß den Merkmalen des Oberbegriffs des Anspruchs 1 aus von einem Verfahren zur Steuerung eines Kraftfahrzeug-Antriebsstrangs, der einen Verbrennungsmotor, eine Elektromaschine und ein Getriebe umfasst, die über ein Summierungsgetriebe mit zwei Eingangselementen und einem Ausgangselement sowie über eine als Reibungskupplung ausgebildete Überbrückungskupplung miteinander gekoppelt sind, indem das erste Eingangselement mit der Kurbelwelle des Verbrennungsmotors, das zweite Eingangselement mit dem Rotor der Elektromaschine und das Ausgangselement mit der Eingangswelle des Schaltgetriebes drehfest verbunden ist, und indem die Überbrückungskupplung zwischen zwei Elementen des Summierungsgetriebes angeordnet ist, wobei eine bei geöffneter Überbrückungskupplung aufgetretene Drehzahldifferenz Δn zwischen der Eingangswelle des Getriebes und dem Verbrennungsmotor synchronisiert sowie anschließend die Überbrückungskupplung geschlossen wird.The solution of this object is based on the features of the preamble of claim 1 of a method for controlling a motor vehicle powertrain, which includes an internal combustion engine, an electric machine and a transmission, via a summation with two input elements and an output element as well as a friction clutch trained bypass clutch are coupled together by the first input member to the crankshaft of the internal combustion engine, the second input member to the rotor of the electric machine and the output member to the input shaft of the transmission is rotatably connected, and by the lock-up clutch between two elements of the summation gear is arranged, wherein a synchronized with the lock-up clutch open speed difference .DELTA.n between the input shaft of the transmission and the engine and then the lock-up clutch is closed.
In diesem Zusammenhang sei darauf hingewiesen, dass unter dem Begriff „Getriebe" alle Getriebearten zu verstehend sind, die eine echte Neutral- Stellung mit einer Abtriebsdrehzahl „Null" haben, also nicht etwa durch eine getriebeinterne Drehzahlsummation eine Abtriebsdrehzahl mit dem Wert „Null" erzeugen. Unter dem Begriff „Getriebe" fallen daher beispielsweise Handschaltgetriebe, automatisierte Schaltgetriebe, Planeten-Automatikgetriebe und stufenlose Getriebe. Des Weiteren ist gemäß der Erfindung verfahrensgemäß vorgesehen, dass diese Drehzahldifferenz Δn = n_GE - n_VM mittels der Elektromaschine synchronisiert wird, indem von der Elektromaschine bei positiver Drehzahldifferenz Δn > 0 ein in Drehrichtung der Kurbelwelle des Verbrennungsmotors und der Eingangswelle des Getriebes wirksames positives Drehmoment M_EM > 0 und bei negativer Drehzahldifferenz Δn < 0 ein entgegen der Drehrichtung der Kurbelwelle des Verbrennungsmotors und der Eingangswelle des Getriebes wirksames negatives Drehmoment M_EM < 0 erzeugt wird.In this context, it should be noted that the term "gear" to understand all types of gear that have a true neutral position with an output speed "zero", so do not generate an output speed with the value "zero" by an internal gear speed summation The term "gearbox" therefore includes, for example, manual transmissions, automated manual transmissions, planetary automatic transmissions and continuously variable transmissions. Furthermore, according to the invention, it is provided according to the method that this speed difference Δn = n_GE-n_VM is synchronized by means of the electric machine by a positive torque M_EM> effective in the direction of rotation of the crankshaft of the internal combustion engine and the input shaft of the transmission by the electric machine with a positive speed difference Δn> 0 0 and negative rotational speed difference .DELTA.n <0 a counter to the rotational direction of the crankshaft of the engine and the input shaft of the transmission effective negative torque M_EM <0 is generated.
Ein in Drehrichtung der Kurbelwelle des Verbrennungsmotors und der Eingangswelle des Getriebes wirksames Drehmoment M_EM der Elektromaschine wirkt, jeweils verstärkt um die wirksame Übersetzung zwischen der Elektromaschine und der jeweiligen Welle, bremsend, also drehzahlabsenkend auf die Kurbelwelle des Verbrennungsmotors sowie antreibend, also drehzahlerhöhend auf die Eingangswelle des Getriebes. Ein derartiges positives Drehmoment M_EM > 0 der Elektromaschine wirkt daher synchronisierend auf eine negative Drehzahldifferenz (Δn < 0), die typischerweise bei einer Hochschaltung auftritt.An effective in the direction of rotation of the crankshaft of the engine and the input shaft of the transmission torque M_EM the electric machine acts, each amplified by the effective gear ratio between the electric machine and the respective shaft, braking, so drehzahlabsenkend on the crankshaft of the engine and driving, so speed increasing the input shaft of the transmission. Such a positive torque M_EM> 0 of the electric machine therefore acts synchronizing to a negative speed difference (Δn <0), which typically occurs in an upshift.
Umgekehrt wirkt ein entgegen der Drehrichtung der Kurbelwelle des Verbrennungsmotors und der Eingangswelle des Getriebes wirksames Drehmoment M_EM der Elektromaschine, jeweils verstärkt um die wirksame Übersetzung zwischen der Elektromaschine und der jeweiligen Welle, antreibend, also drehzahlerhöhend auf die Kurbelwelle des Verbrennungsmotors und bremsend, also drehzahlabsenkend auf die Eingangswelle des Getriebes. Ein derartiges negatives Drehmoment M_EM < 0 der Elektromaschine wirkt daher synchronisierend auf eine positive Drehzahldifferenz (Δn > 0), die typischerweise bei einer Rückschaltung auftritt.Conversely, an effective against the direction of rotation of the crankshaft of the engine and the input shaft of the transmission torque M_EM the electric machine, each amplified by the effective translation between the electric machine and the respective shaft, driving, so speed increasing on the crankshaft of the engine and braking, so drehzahlabsenkend on the input shaft of the transmission. Such a negative torque M_EM <0 of the electric machine therefore acts synchronizing to a positive speed difference (Δn> 0), which typically occurs during a downshift.
Da das mit der Elektromaschine verbundene Eingangselement des Summierungsgetriebes, in der bevorzugten Ausführungsform das Sonnenrad des Planetengetriebes, abhängig von der Größe der schaltungsbedingten Drehzahldifferenz Δn vorübergehend auch rückwärts, also entgegen der Drehrichtung der beiden Wellen, drehen kann, wird in diesem Fall ein positives Drehmoment M_EM > 0 durch die Erzeugung eines Schleppmomentes im Generatorbetrieb und ein negatives Drehmoment M_EM < 0 durch die Erzeugung eines Triebmomentes im Motorbetrieb der Elektromaschine erzeugt.Because the input element of the summation gear connected to the electric machine, in the preferred embodiment, the sun gear of the planetary gear, depending on the size of the circuit-dependent speed difference .DELTA.n temporarily reverse, so contrary to the direction of rotation of the two shafts, rotate, in this case, a positive torque M_EM> 0 by generating a drag torque in generator mode and a negative torque M_EM <0 generated by the generation of a drive torque during engine operation of the electric machine.
Durch die Nutzung der Elektromaschine zur Synchronisierung einer Drehzahldifferenz Δn zwischen der Eingangswelle des Getriebes und der Kurbelwelle des Verbrennungsmotors kann die Überbrückungskupplung während der Synchronisierung geöffnet bleiben, und mit Erreichen des Synchronlaufs der Eingangswelle und des Verbrennungsmotors schlupf- und verschleißfrei geschlossen werden. Hierdurch werden ein unnötiger Verschleiß an den Reibelementen der Überbrückungskupplung sowie eine Erwärmung der Überbrückungskupplung und benachbarter Bauteile vermieden.By using the electric machine to synchronize a speed difference .DELTA.n between the input shaft of the transmission and the crankshaft of the internal combustion engine, the lock-up clutch remain open during synchronization, and closed slip and wear-free upon reaching the synchronous operation of the input shaft and the internal combustion engine. As a result, unnecessary wear on the friction elements of the lockup clutch and heating of the lockup clutch and adjacent components are avoided.
Vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens sind Gegenstand der Unteransprüche 2 bis 7.Advantageous embodiments and further developments of the method according to the invention are the subject of the dependent claims 2 to 7.
Da der Verbrennungsmotor aufgrund eines hohen Trägheitsmomentes und einer zeitverzögerten Beeinflussung über den Verbrennungsvorgang nur vergleichsweise schwer steuerbar ist, wird während der Synchronisierung der Drehzahldifferenz Δn das Drehmoment M_VM des Verbrennungsmotors zweckmäßig als Funktion von fahrzeug- und bedienungsabhängigen Betriebsparametern gesteuert sowie die Drehzahl n_VM des Verbrennungsmotors durch die Vorgabe einer von der Drehzahldifferenz Δn abhängigen Solldrehzahl n_VM_soll geregelt, wobei die Solldrehzahl n_VM_soll im Wesentlichen über das Drehmoment M_EM der Elektromaschine eingestellt wird. Der Verbrennungsmotor verbleibt somit solange in seinem Betriebszustand zu Beginn des Schaltvorgangs, bis die Synchronisierung der Drehzahldifferenz Δn mittels der Elektromaschine beendet und die Überbrückungskupplung geschlossen ist. Danach wird der Verbrennungsmotor in Abhängigkeit der üblichen Betriebsparameter und der Leistungsanforderung des Fahrers gesteuert.Since the internal combustion engine is only relatively difficult to control due to a high moment of inertia and a time-delayed influence on the combustion process, the torque M_VM of the internal combustion engine is suitably controlled during the synchronization of the rotational speed difference Δn as a function of vehicle and operation-dependent operating parameters and the speed n_VM of the internal combustion engine Presetting a dependent of the speed difference Δn target speed n_VM_soll regulated, the target speed n_VM_soll is set substantially via the torque M_EM the electric machine. The internal combustion engine thus remains in its operating state at the beginning of the switching operation until the synchronization of the rotational speed difference Δn has ended by means of the electric machine and the lockup clutch is closed. Thereafter, the internal combustion engine is controlled depending on the usual operating parameters and the driver's power demand.
Die Elektromaschine muss während der Synchronisierung der Drehzahldifferenz Δn neben dem hierzu erforderlichen Drehmoment auch das momentane Drehmoment des Verbrennungsmotors (Triebmoment oder Schleppmoment) und das an der Eingangswelle des Getriebes anliegende Drehmoment (Fahrwiderstandsmoment) gegeneinander abstützen. Das insgesamt erforderliche Drehmoment M_EM_erf der Elektromaschine kann daher wahlweise aus dem für das aktuelle Triebmoment und für die Synchronisierung der Drehzahldifferenz Δn erforderlichen Drehmoment M_GE_soll an der Eingangswelle des Getriebes durch Rückrechnung mit der Übersetzung i_EM/GE zwischen der Elektromaschine und der Eingangswelle des Getriebes, oder aus dem für das aktuelle Triebmoment und für die Synchronisierung der Drehzahldifferenz Δn erforderlichen Drehmoment M_VM_soll an der Kurbelwelle des Verbrennungsmotors durch Rückrechnung mit der Übersetzung i_EM/VM zwischen der Elektromaschine und dem Verbrennungsmotor ermittelt werden.During the synchronization of the rotational speed difference Δn, the electric motor also has to support the momentary torque of the internal combustion engine (tractive torque or drag torque) and the torque applied to the input shaft of the transmission (driving resistance torque) against each other. The total required torque M_EM_erf of the electric machine can therefore optionally from the torque required for the current drive torque and for the synchronization of the speed difference Δn M_GE_soll at the input shaft of the transmission by retroactive calculation with the translation i_EM / GE between the electric machine and the input shaft of the transmission, or off the required for the current drive torque and for the synchronization of the speed difference Δn torque M_VM_soll at the crankshaft of the internal combustion engine by recalculation with the translation i_EM / VM between the electric machine and the internal combustion engine are determined.
Dabei kann, insbesondere bei schwächer dimensionierter Elektromaschine, das ermittelte Drehmoment M_EM_soll das maximal von der Elektromaschine erzeugbare Drehmoment M_EM_max überschreiten, was zumindest eine Verzögerung der Synchronisierung zur Folge hätte. Es ist daher zweckmäßig, dass grundsätzlich geprüft wird, ob das erforderliche Drehmoment M_EM_soll das maximale Drehmoment M_EM_max der Elektromaschine übersteigt, wobei in diesem Fall das erforderliche Restmoment ΔM_EM_R = M_EM_soll - M_EM_max durch ein teilweises Schließen der Überbrückungs- kupplung als Kupplungsmoment M_K_soll aufgebracht wird.In this case, the determined torque M_EM_soll may exceed the maximum torque M_EM_max that can be generated by the electric machine, in particular in the case of a weaker dimensioned electric machine, which would result in at least a delay of the synchronization. It is therefore expedient to check in principle whether the required torque M_EM_soll exceeds the maximum torque M_EM_max of the electric machine, in which case the required residual torque ΔM_EM_R = M_EM_soll - M_EM_max is applied by partially closing the lockup clutch as clutch torque M_K_soll.
Das durch die Überbrückungskupplung erzeugbare Drehmoment M_K wirkt unabhängig von ihrer Anordnung immer sinnrichtig, also drehzahlausgleichend, da jeweils das schneller drehende Bauteil abgebremst und das langsa- mer drehende Bauteil beschleunigt wird. Bei dieser Vorgehensweise wird zwar ein gewisser Verschleiß an den Reibelementen der Überbrückungskupplung in Kauf genommen. Dieser Verschleiß ist jedoch deutlich geringer als bei einer vollständigen Synchronisierung der Drehzahldifferenz Δn über die Überbrückungskupplung.The torque M_K, which can be generated by the lockup clutch, always has the correct meaning, ie speed compensating, independently of its arrangement, since in each case the faster rotating component is braked and the slower-moving component is slowed down. mer rotating component is accelerated. In this approach, although a certain amount of wear on the friction elements of the lock-up clutch is accepted. However, this wear is significantly lower than in a complete synchronization of the speed difference Δn via the lock-up clutch.
Unabhängig davon, ob das Drehmoment M_EM_max der Elektroma- schine ausreichend ist oder nicht, kann die Synchronisierung der Drehzahldifferenz Δn durch die Elektromaschine dadurch unterstützt und beschleunigt werden, dass die Überbrückungskupplung während der Synchronisierung teilweise geschlossen wird.Regardless of whether the torque M_EM_max of the electric machine is sufficient or not, the synchronization of the speed difference Δn by the electric machine can be assisted and accelerated by partially closing the lock-up clutch during synchronization.
Ebenso kann die Synchronisierung der Drehzahldifferenz Δn durch die Elektromaschine mittels des Verbrennungsmotors unterstützt werden, indem das einzustellende Drehmoment M_VM_soll und/oder die vorgegebene Solldrehzahl n_VM_soll während der Synchronisierung bei positiver Drehzahldifferenz Δn > 0 erhöht und bei negativer Drehzahldifferenz Δn < 0 abgesenkt werden.Likewise, the synchronization of the rotational speed difference Δn by the electric machine by means of the internal combustion engine can be assisted by increasing the torque M_VM_soll to be set and / or the predetermined target rotational speed n_VM_soll during synchronization with positive rotational speed difference Δn> 0 and decreasing it with negative rotational speed difference Δn <0.
Zur Verdeutlichung der Erfindung ist der Beschreibung eine Zeichnung mit Ausführungsbeispielen beigefügt. In dieser zeigtTo clarify the invention, the description is accompanied by a drawing with exemplary embodiments. In this shows
Fig. 1 ein Funktionsschema des Verfahrens zur Synchronisierung einer Drehzahldifferenz zwischen einer Eingangswelle eines Getriebes und einem Verbrennungsmotor in einem Antriebsstrang,1 is a functional diagram of the method for synchronizing a speed difference between an input shaft of a transmission and an internal combustion engine in a drive train,
Fig. 2 ein Teil des Funktionsschemas gemäß Fig.1 zur Ermittlung der Drehmomente einer Elektromaschine und einer Überbrückungskupplung,2 shows a part of the functional diagram according to FIG. 1 for determining the torques of an electric machine and a lock-up clutch,
Fig. 3 ein erstes Anwendungsbeispiel zur Synchronisierung einer Drehzahldifferenz in Form eines Drehzahldiagramms über der Zeit,3 is a first application example for synchronizing a speed difference in the form of a speed diagram over time,
Fig. 4 ein zweites Anwendungsbeispiel zur Synchronisierung einer Drehzahldifferenz in Form eines Drehzahldiagramms über der Zeit, Fig. 5 den allgemeinen Aufbau des zugrunde gelegten Antriebsstrangs in vereinfachter schematischer Darstellung, und4 shows a second application example for synchronizing a speed difference in the form of a speed diagram over time, Fig. 5 shows the general structure of the underlying powertrain in a simplified schematic representation, and
Fig. 6 eine bevorzugte praktische Ausführungsform des Antriebsstrangs gemäß Fig. 5 in schematischer Darstellung.Fig. 6 shows a preferred practical embodiment of the drive train according to FIG. 5 in a schematic representation.
Ein Antriebsstrang 1 gemäß Fig. 5 umfasst einen Verbrennungsmotor 2, eine Elektromaschine 3 und ein Getriebe 4, die über ein Summierungsgetrie- be 5 mit zwei Eingangselementen 6, 7 und einem Ausgangselement 8 miteinander gekoppelt sind. Das erste Eingangselement 6 ist mit der Kurbelwelle 9 des Verbrennungsmotors 2, das zweite Eingangselement 7 mit dem Rotor 10 der Elektromaschine 3, und das Ausgangselement 8 mit der Eingangswelle 11 des Getriebes 4 jeweils drehfest verbunden. Eine als Reibungskupplung ausgebildete Überbrückungskupplung 12 ist zwischen zwei Elementen des Sum- mierungsgetriebes 5, vorliegend zwischen den beiden Eingangselementen 6, 7 angeordnet. Der Verbrennungsmotor 2, die Elektromaschine 2 und die Überbrückungskupplung 12 stehen über Sensor- und Steuerleitungen 13 mit einem Steuergerät 14 in Verbindung, über das die Komponenten des Antriebsstrangs 1 koordiniert steuerbar sind.A drive train 1 according to FIG. 5 comprises an internal combustion engine 2, an electric machine 3 and a transmission 4, which are coupled to one another via a summation transmission 5 with two input elements 6, 7 and one output element 8. The first input element 6 is rotatably connected to the crankshaft 9 of the internal combustion engine 2, the second input element 7 with the rotor 10 of the electric machine 3, and the output member 8 with the input shaft 11 of the transmission 4 respectively. A bypass clutch 12 designed as a friction clutch is arranged between two elements of the summation gear 5, in the present case between the two input elements 6, 7. The internal combustion engine 2, the electric machine 2 and the lock-up clutch 12 are connected via sensor and control lines 13 to a control unit 14, via which the components of the drive train 1 can be controlled in a coordinated manner.
Eine bevorzugte praktische Ausführungsform des Antriebsstrangs 1 ist in Fig. 6 abgebildet. In diesem Antriebsstrang 1 ist das Summierungsgetriebe 5 als ein einfaches Planetengetriebe 15 mit einem Sonnenrad 16, einem Planetenträger 17 mit mehreren Planetenrädern 18 und einem Hohlrad 19 ausgebildet. Das Hohlrad 19 bildet das erste Eingangselement 6 und steht über ein Schwungrad 20 und einen Drehschwingungsdämpfer 21 mit der Kurbelwelle 9 des Verbrennungsmotors 2 in Verbindung. Das Sonnenrad 16 bildet das zweite Eingangselement 7 und ist unmittelbar mit dem Rotor 10 der Elektromaschine 3 drehgekoppelt. Der Planetenträger 17 bildet das Ausgangselement 8 und steht unmittelbar mit der Eingangswelle 11 des hier als automatisiertes Schaltgetriebe ausgebildeten Getriebes 4 in Verbindung. Ein zwischen der Eingangswelle 11 und einem Gehäuseteil 22 angeordneter Richtungsfreilauf 23 dient zur Abstützung der Eingangswelle 11 bei einem Starten des Verbrennungsmotors 2 durch die Elektromaschine 3. Das Schaltgetriebe 4 ist in Vorgelegebauweise ausgeführt und weist insgesamt sechs Vorwärtsgänge und einen Rückwärtsgang auf, die über jeweils eine Klauenschaltkupplung selektiv schaltbar sind. Die Überbrückungskupplung 12 ist zwischen dem Rotor 10 der Elektromaschine 3 und einer Verbindungswelle 24 angeordnet, durch die der Verbrennungsmotor 2 mit dem Hohlrad 19 in Verbindung steht.A preferred practical embodiment of the drive train 1 is shown in FIG. 6. In this drive train 1, the summation gear 5 is formed as a simple planetary gear 15 with a sun gear 16, a planet carrier 17 with a plurality of planetary gears 18 and a ring gear 19. The ring gear 19 forms the first input element 6 and is connected via a flywheel 20 and a torsional vibration damper 21 with the crankshaft 9 of the engine 2 in connection. The sun gear 16 forms the second input element 7 and is directly rotationally coupled to the rotor 10 of the electric machine 3. The planet carrier 17 forms the output element 8 and is directly connected to the input shaft 11 of the here formed as an automated transmission transmission 4 in combination. An arranged between the input shaft 11 and a housing part 22 directional freewheel 23 serves to support the input shaft 11 at a start of the engine 2 by the electric machine 3. The transmission 4 is executed in countershaft design and has a total of six forward gears and one reverse gear, each via one Claw clutch are selectively switchable. The lock-up clutch 12 is disposed between the rotor 10 of the electric machine 3 and a connecting shaft 24 through which the engine 2 is in communication with the ring gear 19.
Bei einem derartigen Antriebsstrang 1 tritt bei geöffneter Überbrückungskupplung 12 durch einen Schaltvorgang innerhalb des Schaltgetriebes 4 und bei einem Anfahrvorgang eine Drehzahldifferenz zwischen der Eingangswelle 11 des Schaltgetriebes 4 und dem Verbrennungsmotor 2 bzw. der Kurbelwelle 9 auf, die erfindungsgemäß mittels der Elektromaschine 3 ausgeglichen wird, bevor die Überbrückungskupplung 12 vollständig geschlossen wird.In such a drive train 1, when the lock-up clutch 12 is open, a speed difference between the input shaft 11 of the gearbox 4 and the engine 2 or the crankshaft 9, which is compensated according to the invention by means of the electric machine 3, occurs during a shift within the gearbox 4 and during a starting operation. before the lock-up clutch 12 is fully closed.
Hierzu ist gemäß dem Funktionsschema von Fig. 1 vorgesehen, dass das Drehmoment M_VM beziehungsweise M_VM_soll des Verbrennungsmotors 2 im Wesentlichen als Funktion von fahrzeug- und bedienungsabhängigen Betriebsparametern, wie der Fahrgeschwindigkeit v, dem eingelegten Gang G, und der Fahrpedalstellung x_Fp, von einem Sollwertgeber 14.1 gesteuert beziehungsweise vorgegeben wird, wogegen die Drehzahl n_VM des Verbrennungsmotors 2 durch die Vorgabe einer von der Drehzahldifferenz Δn = n_GE - n_VM zwischen der Eingangswelle 11 des Schaltgetriebes 4 und der Kurbelwelle 9 des Verbrennungsmotors 2 abhängigen Solldrehzahl n_VM_soll über einen Regler 14.2 geregelt wird. Dabei wird die Solldrehzahl n_VM_soll im Wesentlichen über das von der Elektromaschine 3 erzeugte Drehmoment M_EM eingestellt und damit die Drehzahldifferenz Δn synchronisiert. Wie in Hg. 2 näher dargestellt ist, wird hierzu von dem Regler 14.2 des Steuergerätes 14 ein an der Eingangswelle 11 des Getriebes 4 erforderliches Drehmoment M_GE_soll ermittelt und vorgegeben, das durch die Elektroma- schine 3 aufgebracht werden soll, um das aktuelle Fahrmanöver und zusätzlich die Synchronisierung der Drehzahldifferenz Δn zu ermöglichen. Das erforderliche Drehmoment M_EM_soll der Elektromaschine ergibt sich aus dem erforderlichen Drehmoment M_GE_soll an der Eingangswelle 11 durch Rückrechnung mit der Übersetzung i_EM/GE zwischen der Elektromaschine 3 und der Eingangswelle 11.For this purpose, it is provided according to the functional diagram of FIG. 1 that the torque M_VM or M_VM_soll of the internal combustion engine 2 essentially as a function of vehicle and operation-dependent operating parameters, such as the vehicle speed v, the engaged gear G, and the accelerator pedal position x_Fp, from a setpoint generator 14.1 is controlled or predetermined, whereas the speed n_VM of the engine 2 by regulating a dependent of the speed difference .DELTA.n = n_GE - n_VM between the input shaft 11 of the gearbox 4 and the crankshaft 9 of the engine 2 target speed n_VM_soll is controlled by a controller 14.2. In this case, the setpoint speed n_VM_soll is set essentially via the torque M_EM generated by the electric machine 3 and thus the speed difference Δn is synchronized. As shown in more detail in Hg. 2, this is determined by the controller 14.2 of the control unit 14 on the input shaft 11 of the transmission 4 required torque M_GE_soll and specified, which is to be applied by the electric machine 3, the current driving maneuver and additionally to enable the synchronization of the speed difference .DELTA.n. The required torque M_EM_soll of the electric machine results from the required torque M_GE_soll at the input shaft 11 by recalculation with the translation i_EM / GE between the electric machine 3 and the input shaft eleventh
Bei der bevorzugten Ausbildung des Antriebsstrangs 1 gemäß Fig. 6 gilt demnach M_EM_soll = M_GE_soll / (1 - io), mit der Standübersetzung i0. Mit einer typischen Standübersetzung von i0 = -3 bedeutet dies, dass M_EM_soll ein Viertel von M_GE_soll beträgt.In the preferred embodiment of the drive train 1 according to FIG. 6, M_EM_soll = M_GE_soll / (1-io), with stand translation i 0 , therefore applies. With a typical stand translation of i 0 = -3, this means that M_EM_soll is a quarter of M_GE_soll.
Das erforderliche Drehmoment M_EM_soll wird mittels eines zugeordneten Wechselrichters 25 an der Elektromaschine 3 eingestellt, sofern dieses nicht das maximal mögliche Drehmoment M_EM_max der Elektromaschine 3 übersteigt. Durch Rückrechnung des tatsächlichen Drehmomentes M_EM_ist auf die Eingangswelle 11 und Differenzbildung mit dem vorgegebenen Sollmoment M_GE_soll wird ein mögliches Restmoment ΔM_GE_R ermittelt, das durch ein teilweises Schließen der Überbrückungskupplung 12 als Kupplungsmoment M_K_soll aufgebracht werden soll.The required torque M_EM_soll is set by means of an associated inverter 25 on the electric machine 3, provided that this does not exceed the maximum possible torque M_EM_max of the electric machine 3. By recalculating the actual torque M_EM_act to the input shaft 11 and forming the difference with the predefined setpoint torque M_GE_soll, a possible residual torque ΔM_GE_R is determined, which is to be applied by partially closing the lockup clutch 12 as a clutch torque M_K_soll.
In Fig. 3 ist eine derartige Synchronisierung für eine Schubrückschaltung dargestellt. Zum Zeitpunkt tθ ist der Zielgang eingelegt, wodurch eine positive Drehzahldifferenz Δn = n_GE - n_VM > 0 zwischen der Eingangswelle 11 des Getriebes 4 und dem Verbrennungsmotor 2 vorliegt. Durch die nachfolgende Erzeugung eines entgegen der Drehrichtung der Eingangswelle 11 und der Kurbelwelle 9 des Verbrennungsmotors 2 wirksamen Drehmomentes M_EM wird die Eingangswelle 11 verzögert und das betreffende Kraftfahrzeug damit abgebremst und gleichzeitig der Verbrennungsmotor 2 entlastet und damit die Kurbelwelle 9 beschleunigt, bis im Zeitpunkt t1 Synchronlauf zwischen den beiden Wellen 9, 11 und damit auch an der Überbrückungskupplung 12 erreicht ist. Daher kann die Überbrückungskupplung 12 im Zeitpunkt t1 schlupf- und verschleißfrei geschlossen werden. Nachfolgend erfolgt der weitere Schubbetrieb bei vollständig geschlossener Überbrückungskupplung 12 über die Steuerung des Verbrennungsmotors 2.In Fig. 3 such a synchronization for a push downshift is shown. At time tθ the target gear is engaged, whereby a positive speed difference Δn = n_GE - n_VM> 0 between the input shaft 11 of the transmission 4 and the internal combustion engine 2 is present. By the subsequent generation of a counter to the direction of rotation of the input shaft 11 and the crankshaft 9 of the engine 2 effective torque M_EM the input shaft 11 is delayed and the relevant motor vehicle with it slowed down and simultaneously relieves the internal combustion engine 2 and thus accelerates the crankshaft 9 until at time t1 synchronism between the two shafts 9, 11 and thus also at the lock-up clutch 12 is reached. Therefore, the lock-up clutch 12 can be closed slip-free and wear-free at time t1. Subsequently, the further overrun with completely closed lock-up clutch 12 via the control of the internal combustion engine. 2
In Fig. 4 ist in ähnlicher Form eine Synchronisierung für eine Zughochschaltung dargestellt. Zum Zeitpunkt tθ ist der Zielgang eingelegt, wodurch eine negative Drehzahldifferenz Δn = n_GE - n_VM < 0 zwischen der Eingangswelle 11 des Getriebes 4 und dem Verbrennungsmotor 2 verursacht wurde. Durch die nachfolgende Erzeugung eines in Drehrichtung der Eingangswelle 11 und der Kurbelwelle 9 des Verbrennungsmotors 2 wirksamen Drehmomentes M_EM wird die Eingangswelle 11 und damit auch das betreffende Kraftfahrzeug beschleunigt, und gleichzeitig der Verbrennungsmotor 2 belastet und damit die Kurbelwelle 9 gebremst.In Fig. 4 is shown in a similar form a synchronization for a pull upshift. At time tθ, the target gear is engaged, causing a negative speed difference Δn = n_GEn_VM <0 between the input shaft 11 of the transmission 4 and the engine 2. By the subsequent generation of an effective in the direction of rotation of the input shaft 11 and the crankshaft 9 of the engine 2 torque M_EM the input shaft 11 and thus the respective motor vehicle is accelerated, and at the same time the engine 2 loaded and thus the crankshaft 9 braked.
Aufgrund des gleichzeitig ansteigenden Drehmomentes M_VM des Verbrennungsmotors 2 steigt die Drehzahl n_VM des Verbrennungsmotors 2 dennoch leicht an, wird aber im Zeitpunkt t1 von der stärker ansteigenden Drehzahl n_GE der Eingangswelle 9 des Getriebes 4 eingeholt, so dass aufgrund des erreichten Synchronlaufs zwischen den beiden Wellen 9, 11 die Überbrückungskupplung 12 schlupf- und verschleißfrei geschlossen werden kann. Nachfolgend erfolgt die weitere Beschleunigung des Kraftfahrzeugs bei vollständig geschlossener Überbrückungskupplung 12 über die Steuerung des Verbrennungsmotors 2. Unabhängig von den in den Figuren 5 und 6 gezeigten Ausführungsbeispielen erfasst die Erfindung auch Antriebsstränge mit allen anderen möglichen und unterschiedlichen Antriebskoppelungen zwischen dem Verbrennungsmotor 2, der Elektromaschine 3, dem Summierungsgetriebe 5, der Kupplung 12 und dem Getriebe 4, welches hier jedoch nicht gesondert dargestellt ist. Due to the simultaneously increasing torque M_VM of the internal combustion engine 2, the speed n_VM of the internal combustion engine 2 nevertheless rises slightly, but at the time t1, it is overtaken by the higher rising speed n_GE of the input shaft 9 of the transmission 4, so that due to the achieved synchronism between the two shafts 9 , 11 the lock-up clutch 12 can be closed without slippage and wear. Subsequently, the further acceleration of the motor vehicle takes place when the lock-up clutch 12 is completely closed via the control of the internal combustion engine 2. Regardless of the embodiments shown in Figures 5 and 6, the invention also covers drive trains with all other possible and different drive couplings between the engine 2, the electric machine 3, the summation 5, the clutch 12 and the transmission 4, which, however, not shown separately is.
BezuαszeichenBezuαszeichen
1 Antriebsstrang1 powertrain
2 Verbrennungsmotor2 internal combustion engine
3 Elektromaschine3 electric machine
4 Getriebe, Schaltgetriebe, automatisiertes Schaltgetriebe4 gearbox, manual transmission, automated manual transmission
5 Summierungsgethebe5 summation terms
6 (erstes) Eingangselement6 (first) input element
7 (zweites) Eingangselement7 (second) input element
8 Ausgangselement8 output element
9 Kurbelwelle9 crankshaft
10 Rotor10 rotor
11 Eingangswelle11 input shaft
12 Überbrückungskupplung12 lockup clutch
13 Sensor- und Steuerleitung13 sensor and control line
14 Steuergerät14 control unit
14.1 Sollwertgeber14.1 Setpoint generator
14.2 Regler14.2 Controller
15 Planetengetriebe15 planetary gear
16 Sonnenrad16 sun wheel
17 Planetenträger17 planet carriers
18 Planetenrad18 planetary gear
19 Hohlrad19 ring gear
20 Schwungrad20 flywheel
21 Drehschwingungsdämpfer21 torsional vibration damper
22 Gehäuseteil22 housing part
23 Richtungsfreilauf23 directional freewheel
24 Verbindungswelle24 connecting shaft
25 Wechselrichter G Gang i Übersetzung io Standübersetzung des Planetengetriebes i_EM/GE Übersetzung zwischen 3 und 11 i_EM/VM Übersetzung zwischen 3 und 225 inverters G Gear i Gear ratio io Gear ratio of the planetary gear i_EM / GE Gear ratio between 3 and 11 i_EM / VM Gear ratio between 3 and 2
M DrehmomentM torque
M_EM Drehmoment von 3M_EM torque of 3
M_EM_ist Istmoment von 3M_EM_is actual moment of 3
M_EM_max Maximalmoment von 3M_EM_max maximum torque of 3
M_EM_soll Sollmoment von 3M_EM_soll nominal torque of 3
M_GE Drehmoment von 11M_GE torque of 11
M_GE_soll Sollmoment von 11M_GE_setpoint nominal torque of 11
M_K Drehmoment von 12M_K torque of 12
M_K_soll Sollmoment von 12M_K_soll Target torque of 12
M_VM Drehmoment von 2M_VM torque of 2
M VM soll Sollmoment von 2 n Drehzahl n_GE Drehzahl von 11 n_VM Drehzahl von 2 n_VM_ist Istdrehzahl von 2 n_VM_soll Solldrehzahl von 2 t Zeit to Zeitpunkt t1 ZeitpunktM VM should nominal torque of 2 n speed n_GE speed of 11 n_VM speed of 2 n_VM_act actual speed of 2 n_VM_setpoint speed of 2 t time to time t1 time
V Fahrgeschwindigkeit x_Fp FahrpedalstellungV Driving speed x_Fp accelerator pedal position
ΔM_EM_R Restmoment von 3ΔM_EM_R residual torque of 3
ΔM_GE_R Restmoment von 11ΔM_GE_R residual torque of 11
Δn Drehzahldifferenz zwischen 11 und 2 Δn speed difference between 11 and 2

Claims

Patentansprüche claims
1. Verfahren zur Steuerung eines Kraftfahrzeug-Antriebsstrangs, der einen Verbrennungsmotor (2), eine Elektromaschine (3) und ein Getriebe (4) umfasst, die über ein Summierungsgetriebe (5) mit zwei Eingangselementen (6, 7) und einem Ausgangselement (8) sowie über eine als Reibungskupplung ausgebildete Überbrückungskupplung (12) miteinander gekoppelt sind, in dem das erste Eingangselement mit der Kurbelwelle (9) des Verbrennungsmotors (2), das zweite Eingangselement mit dem Rotor (10) der Elektromaschine (3) und das Ausgangselement (8) mit der Eingangswelle (11 ) des Getriebes (4) drehfest verbunden ist, und in dem die Überbrückungskupplung (12) zwischen zwei Elementen des Summierungsgetriebes (5) angeordnet ist, wobei eine bei geöffneter Überbrückungskupplung (12) aufgetretene Drehzahldifferenz (Δn) zwischen der Eingangswelle (11) des Getriebes (4) und dem Verbrennungsmotor (2) synchronisiert sowie anschließend die Überbrückungskupplung (12) geschlossen wird, dadurch gekennzeichnet, das diese Drehzahldifferenz Δn = n_GE - n_VM mittels der Elektromaschine (3) synchronisiert wird, indem von der Elektromaschine (3) bei negativer Drehzahldifferenz (Δn < 0) ein in Drehrichtung der Kurbelwelle (9) des Verbrennungsmotors (2) und der Eingangswelle (11 ) des Getriebes (4) wirksames positives Drehmoment M_EM > 0 beziehungsweise bei positiver Drehzahldifferenz (Δn > 0) ein entgegen der Drehrichtung der Kurbelwelle (9) des Verbrennungsmotors (2) und der Eingangswelle (11) des Getriebes (4) wirksames negatives Drehmoment M_EM < 0 erzeugt wird.1. A method for controlling a motor vehicle drive train, comprising an internal combustion engine (2), an electric machine (3) and a transmission (4) via a summation gear (5) with two input elements (6, 7) and an output element (8 ) and via a lockup clutch (12) designed as a friction clutch, in which the first input element with the crankshaft (9) of the internal combustion engine (2), the second input element with the rotor (10) of the electric machine (3) and the output element ( 8) with the input shaft (11) of the transmission (4) is rotatably connected, and in which the lock-up clutch (12) is arranged between two elements of the summation (5), wherein a gap opened when the lock-up clutch (12) occurred speed difference (Δn) between the input shaft (11) of the transmission (4) and the internal combustion engine (2) synchronized and then the lock-up clutch (12) is closed, thereby geken nzeichnet that this speed difference Δn = n_GE - n_VM is synchronized by means of the electric machine (3) by the electric machine (3) at a negative speed difference (Δn <0) in the direction of rotation of the crankshaft (9) of the internal combustion engine (2) and the input shaft (11) of the transmission (4) effective positive torque M_EM> 0 or positive rotational speed difference (Δn> 0) against the direction of rotation of the crankshaft (9) of the internal combustion engine (2) and the input shaft (11) of the transmission (4) effective negative Torque M_EM <0 is generated.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Drehmoment (M_VM) des Verbrennungsmotors (2) im Wesentlichen als Funktion von fahrzeug- und bedienungsabhängigen Betriebsparametern gesteuert wird, und dass die Drehzahl (n_VM) des Verbrennungsmotors (2) durch die Vorgabe einer von der Drehzahldifferenz (Δn) abhängigen Solldreh- zahl (n_VM_soll) geregelt wird, wobei die Solldrehzahl (n_VM_soll) im Wesentlichen über das Drehmoment (M_EM) der Elektromaschine (3) eingestellt wird.2. The method according to claim 1, characterized in that the torque (M_VM) of the internal combustion engine (2) is controlled substantially as a function of vehicle and operation-dependent operating parameters, and that the speed (n_VM) of the internal combustion engine (2) by specifying a rotational speed dependent on the speed difference (Δn) number (n_VM_soll) is controlled, wherein the target speed (n_VM_soll) is set substantially via the torque (M_EM) of the electric machine (3).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erforderliche Drehmoment (M_EM_soll) der Elektromaschine (3) aus dem für das aktuelle Triebmoment und für die Synchronisierung der Drehzahldifferenz (Δn) erforderlichen Drehmoment (M_GE_soll) an der Eingangswelle (11) des Getriebes (4) durch Rückrechnung mit der Übersetzung (i_EM/GE) zwischen der Elektromaschine (3) und der Eingangswelle (11 ) des Getriebes (4) ermittelt wird.3. The method according to claim 1 or 2, characterized in that the required torque (M_EM_soll) of the electric machine (3) from the torque required for the current drive torque and for the synchronization of the rotational speed difference (Δn) (M_GE_soll) on the input shaft (11) of the transmission (4) by recalculation with the ratio (i_EM / GE) between the electric machine (3) and the input shaft (11) of the transmission (4) is determined.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erforderliche Drehmoment (M_EM_soll) der Elektromaschine (3) aus dem für das aktuelle Triebmoment und für die Synchronisierung der Drehzahldifferenz (Δn) erforderlichen Drehmoment (M_VM_soll) an der Kurbelwelle (9) des Verbrennungsmotors (2) durch Rückrechnung mit der Übersetzung (i_EM/VM) zwischen der Elektromaschine (3) und dem Verbrennungsmotor (2) ermittelt wird.4. The method according to claim 1 or 2, characterized in that the required torque (M_EM_soll) of the electric machine (3) from the torque required for the current drive torque and for the synchronization of the speed difference (Δn) (M_VM_soll) on the crankshaft (9) of the internal combustion engine (2) by recalculation with the translation (i_EM / VM) between the electric machine (3) and the internal combustion engine (2) is determined.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass geprüft wird, ob das erforderliche Drehmoment (M_EM_soll) das maximale Drehmoment (M_EM_max) der Elektromaschine (3) übersteigt, und dass bei positivem Ergebnis das erforderliche Restmoment (ΔM_EM_R = M_EM_soll - M_EM_max) durch ein teilweises Schließen der Überbrückungs- kupplung (12) als Kupplungsmoment (M_K_soll) erzeugt wird.5. The method of claim 3 or 4, characterized in that it is checked whether the required torque (M_EM_soll) exceeds the maximum torque (M_EM_max) of the electric machine (3), and that, if the result is positive, the required residual torque (ΔM_EM_R = M_EM_soll - M_EM_max ) is generated by a partial closing of the lock-up clutch (12) as a clutch torque (M_K_soll).
6. Verfahren nach zumindest einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Synchronisierung der Drehzahldifferenz (Δn) mit der Elektromaschine (3) mittels der Überbrückungskupplung (12) unterstützt wird, indem die Überbrückungskupplung (12) während der Synchronisierung teilweise geschlossen wird. 6. The method according to at least one of claims 1 to 5, characterized in that the synchronization of the speed difference (Δn) with the electric machine (3) by means of the lock-up clutch (12) is supported by the lock-up clutch (12) is partially closed during synchronization ,
7. Verfahren nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Synchronisierung der Drehzahldifferenz (Δn) mit der Elektromaschine (3) mittels des Verbrennungsmotors (2) unterstützt wird, indem das einzustellende Drehmoment (M_VM_soll) und/oder die vorgegebene Solldrehzahl (n_VM_soll) während der Synchronisierung bei positiver Drehzahldifferenz (Δn > 0) erhöht und bei negativer Drehzahldifferenz (Δn < 0) abgesenkt werden. 7. The method according to at least one of claims 1 to 6, characterized in that the synchronization of the speed difference (Δn) with the electric machine (3) by means of the internal combustion engine (2) is supported by the torque to be set (M_VM_soll) and / or the predetermined Setpoint speed (n_VM_soll) during synchronization increased with positive speed difference (Δn> 0) and lowered with negative speed difference (Δn <0).
PCT/EP2007/000310 2006-01-26 2007-01-16 Method for controlling a motor vehicle drive train WO2007085359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006003724A DE102006003724A1 (en) 2006-01-26 2006-01-26 Method for controlling a vehicle drive string comprises synchronizing the revolution difference using an electric machine whilst producing a torque acting positively in the rotary direction of the camshaft of the engine
DE102006003724.3 2006-01-26

Publications (1)

Publication Number Publication Date
WO2007085359A1 true WO2007085359A1 (en) 2007-08-02

Family

ID=38268135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/000310 WO2007085359A1 (en) 2006-01-26 2007-01-16 Method for controlling a motor vehicle drive train

Country Status (2)

Country Link
DE (1) DE102006003724A1 (en)
WO (1) WO2007085359A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047476B4 (en) * 2008-09-17 2020-02-06 Bayerische Motoren Werke Aktiengesellschaft Control device for compensating alternating torques of an internal combustion engine
SE536329C2 (en) * 2010-12-29 2013-08-20 Scania Cv Ab Drive system for a vehicle
SE1250704A1 (en) * 2012-06-27 2013-12-28 Scania Cv Ab Drive system and procedure for operating a vehicle
SE536627C2 (en) 2012-06-27 2014-04-08 Scania Cv Ab Procedure for accelerating a hybrid vehicle
SE538472C2 (en) * 2012-06-27 2016-07-12 Scania Cv Ab Control of locking means in planetary gear by means of an electric machine
JP5757318B2 (en) * 2013-11-06 2015-07-29 三菱マテリアル株式会社 Protective film forming sputtering target and laminated wiring film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8914904U1 (en) * 1989-12-19 1990-02-15 General Electric Co., Schenectady, N.Y., Us
EP0940287A2 (en) * 1998-03-06 1999-09-08 Toyota Jidosha Kabushiki Kaisha Drive control system for hybrid vehicles
WO2001007278A1 (en) * 1999-07-23 2001-02-01 Zf Friedrichshafen Ag Electrodynamic drive train
US20010020789A1 (en) * 2000-03-07 2001-09-13 Jatco Transtechnology Ltd. Parallel hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor generator for propulsion
US20030029653A1 (en) * 2001-08-07 2003-02-13 Jatco Ltd Parallel hybrid vehicle
DE10152471A1 (en) 2001-10-24 2003-05-08 Zahnradfabrik Friedrichshafen Internal combustion engine starting method for vehicles, involves accelerating electric motor and, controlling brake to halt rotation of input shaft of manual transmission against stationary housing component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532136A1 (en) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag Drive system, in particular for a motor vehicle, and method for operating the same
DE19963400B4 (en) * 1999-12-28 2010-06-10 Robert Bosch Gmbh Method for controlling a switching process in a drive unit for a motor vehicle and drive unit
DE10290843B4 (en) * 2001-03-07 2019-02-28 Schaeffler Technologies AG & Co. KG Method for controlling and / or regulating an automated transmission of a vehicle with which a coupling operation is carried out at a gear change
DE10140424A1 (en) * 2001-08-17 2003-02-27 Zahnradfabrik Friedrichshafen Automatically switchable vehicle transmission
EP1319546B1 (en) * 2001-12-12 2004-09-29 Siemens Aktiengesellschaft Drive train for vehicle with internal combustion engine, starter-generator and manual shift transmission
DE10225249B4 (en) * 2002-06-07 2017-07-06 Zf Friedrichshafen Ag Method for controlling a starting process of a drive train
DE10335775B4 (en) * 2003-08-05 2005-07-21 Adam Opel Ag Drive system for a car and method for controlling a gear change

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8914904U1 (en) * 1989-12-19 1990-02-15 General Electric Co., Schenectady, N.Y., Us
EP0940287A2 (en) * 1998-03-06 1999-09-08 Toyota Jidosha Kabushiki Kaisha Drive control system for hybrid vehicles
WO2001007278A1 (en) * 1999-07-23 2001-02-01 Zf Friedrichshafen Ag Electrodynamic drive train
DE19934696A1 (en) 1999-07-23 2001-05-17 Zahnradfabrik Friedrichshafen Electrodynamic drive system
US20010020789A1 (en) * 2000-03-07 2001-09-13 Jatco Transtechnology Ltd. Parallel hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor generator for propulsion
US20030029653A1 (en) * 2001-08-07 2003-02-13 Jatco Ltd Parallel hybrid vehicle
DE10152471A1 (en) 2001-10-24 2003-05-08 Zahnradfabrik Friedrichshafen Internal combustion engine starting method for vehicles, involves accelerating electric motor and, controlling brake to halt rotation of input shaft of manual transmission against stationary housing component

Also Published As

Publication number Publication date
DE102006003724A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
EP1976740B1 (en) Method for controlling a motor vehicle drive train
EP2404080B1 (en) Auxiliary-range transmission device
DE19631281C2 (en) Method for controlling the stopping process of a motor vehicle equipped with an automatic transmission with continuously variable translation
EP2920014B1 (en) Method for operating a drive unit for a hybrid vehicle
EP2708400B1 (en) Method for controlling a hybrid power train
WO2007085361A1 (en) Method for controlling a motor vehicle drive train
EP2619482B1 (en) Method for controlling shifts in a vehicle transmission
DE102006054405B4 (en) Electrodynamic starting element and method for controlling an electrodynamic starting element
EP3668737B1 (en) Hybrid drive transmission unit and method for operating a vehicle with a hybrid drive
EP2836403B1 (en) Starter and retarder element, and method for operating a starter and retarder element
WO2000020243A1 (en) Transmission comprising at least two shafts and an electric motor or an automated clutch
EP1714817A1 (en) Hybrid drive system with double clutch
DE102007038771A1 (en) Method for starting the internal combustion engine during a load circuit in parallel hybrid vehicles
DE102005016117A1 (en) Controlling hybrid vehicle gearbox shift process involves using electric motor as additional drive for engine shaft to reduce engine revolution rate, whereby motor is activated to generate electricity, or to increase engine revolution rate
DE102006019239A1 (en) Gear change control method for automatic gearbox unit, involves aligning target gear unilaterally with large speed gradient at beginning and with small speed gradients to coupling at end of synchronization
DE102014016932A1 (en) Method for switching a group transmission of a motor vehicle
DE102015219340A1 (en) Method and device for operating a drive device, drive device
WO2007085359A1 (en) Method for controlling a motor vehicle drive train
DE102015221498A1 (en) Drive arrangement for a hybrid vehicle and drive train with such a drive arrangement
EP1977131B1 (en) Method for controlling a motor vehicle drive train
WO2001074619A2 (en) Control of a gearbox with starting clutch and load switching clutch
EP2381140B1 (en) Method for controlling the shifting of an automated transmission
WO2007147732A1 (en) Method for controlling a motor vehicle drive train
DE102010028935A1 (en) Method for operating drive train of motor vehicle i.e. hybrid vehicle, involves connecting friction clutch between electric machine and gearbox, and synchronizing transmission shaft of gearbox under utilization of rotor of electric machine
WO2007085358A1 (en) Method for controlling a motor vehicle drive train

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 07702776

Country of ref document: EP

Kind code of ref document: A1