WO2007085316A1 - Magnetventil - Google Patents

Magnetventil Download PDF

Info

Publication number
WO2007085316A1
WO2007085316A1 PCT/EP2006/069226 EP2006069226W WO2007085316A1 WO 2007085316 A1 WO2007085316 A1 WO 2007085316A1 EP 2006069226 W EP2006069226 W EP 2006069226W WO 2007085316 A1 WO2007085316 A1 WO 2007085316A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
return spring
solenoid valve
centering
centering means
Prior art date
Application number
PCT/EP2006/069226
Other languages
English (en)
French (fr)
Inventor
Harald Speer
Dietmar Kratzer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP06830292A priority Critical patent/EP1981745A1/de
Priority to US12/162,155 priority patent/US20090008587A1/en
Publication of WO2007085316A1 publication Critical patent/WO2007085316A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/363Electromagnetic valves specially adapted for anti-lock brake and traction control systems in hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves

Definitions

  • the invention relates to a solenoid valve according to the preamble of independent claim 1.
  • a conventional solenoid valve, in particular for a hydraulic unit, which is used for example in an anti-lock braking system (ABS) or a traction control system (ASR system) or an electronic stability program system (ESP system) is shown in Figure 7.
  • the conventional normally open solenoid valve 100 comprises, in addition to a magnet assembly, not shown, a valve cartridge which comprises a capsule 106, a valve insert 101, a plunger 102, a return spring 103 and an armature 107.
  • the capsule 106 and the valve core 101 of the valve cartridge are joined together by pressing and by a sealing weld 108, the valve cartridge is hydraulically sealed from the atmosphere.
  • valve core 101 receives the pressure forces occurring in the hydraulic system and forwards them via a caulking flange 109 to a caulking region, not shown, on a fluid block.
  • valve core 101 receives the so-called valve body 104, which comprises a valve seat 110, in which the plunger 102 is sealingly immersed to implement the sealing function of the solenoid valve 100.
  • the plunger 102 and the return spring 103 are guided in the valve core 101, wherein the plunger 102 is guided in a plunger guide 111 and the return spring 103 is radially guided and centered at one end on the plunger 102 and the other End axially rests on the valve body 104.
  • the solenoid valve according to the invention with the features of independent claim 1 has the advantage that centering means are provided, which are arranged in the region of a return spring on a valve core, that the return spring is centered and stabilized. This can be prevented in an advantageous manner that flow forces acting on the turns of the return spring can lead to a lateral breaking of the return spring, or the return spring can lift off a support or the turns of the return spring relative to each other in motion or in vibrations can offset. In particular, centered and stabilized by the centering a only axially fitting to a valve body spring end, without affecting the mountability and adjustability of the solenoid valve negative.
  • the centering means comprise at least one axially extending centering web, which is arranged in an inner bore of the valve core.
  • the return spring can be guided over a longer distance, for example, so that the return spring is advantageously centered and stabilized almost over the entire length.
  • Valve insert, Figure 4 is a schematic plan view of the second embodiment of the valve insert according to
  • Figure 5 is a schematic perspective view of a third embodiment of the
  • valve core 1 receives the so-called valve body 4, which comprises a valve seat 10, in which the plunger 2 is sealingly immersed to implement the sealing function of the solenoid valve 20.
  • the plunger 2 are guided via a plunger guide 11 and the return spring 3 via centering 12 in the valve core 1, wherein the return spring 3, in contrast to the conventional solenoid valve 100 is not only one side on the plunger 2 centered, but by the centering means 12 is centered and stabilized almost over the entire length, so that the other end of the return spring 3 is centered and stabilized, which rests on the valve body 4.
  • the centering means 12 of the valve core 1 for centering the return spring 3 comprise three axially extending centering webs, which are arranged within an inner bore of the valve core 1 and preferably have an average distance of 120 ° to each other, as can be seen from the cross-sectional view of FIG , In order to facilitate the insertion of the return spring 3, the centering webs 12 a mounting-correct insertion bevel 12.2. In addition, the centering webs are arranged in the valve core 1 that a bottom 12.3 of the centering webs 12 have a distance from the valve body 4, so that a stop of the valve body 4 during the assembly process of the solenoid valve 20 is prevented.
  • the axial centering means 12 is prevented in an advantageous manner that it comes through a flow of fluid shown schematically as an arrow chain 5 through the solenoid valve 20 to an undesirable influence of the spring behavior.
  • a lateral breaking of the return spring 3 and / or a lifting of the return spring 3 from the valve body 4 and / or a relative movement or oscillations of the turns of the return spring 3 can be prevented.
  • the three axial centering webs 12 of a first embodiment of the valve core 1 are adapted via a guide groove 12.1 to the diameter of the return spring 3, wherein the guide groove 12.1 has the shape of a circular segment.
  • the guides of the axial centering webs 12 can also be designed as straight sections.
  • the axial Zentrierstege 12 are formed from the material of the valve core 1, for example by a plurality of holes, for example, via a central bore, the return spring 3 is guided and provided by three further holes channels for fluid management.
  • Figures 5 and 6 show a third embodiment of the valve core 1 with three axial Zentrierstegen 12, which, analogous to the first embodiment shown in FIG. 2, are adapted via a guide groove 12.1 to the diameter of the return spring 3.
  • the centering webs 12 have a cross-sectional shape which corresponds to a circular ring segment.
  • the third embodiment of the valve core 1 is, for example, hergesellt as a rotating part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Die Erfindung betrifft ein Magnetventil mit einem Ventileinsatz (1) und einem über eine Stößelführung (11) im Ventileinsatz (1) beweglich geführten Stößel (2), welcher sich über eine Rückstellfeder (3) auf einem Ventilkörper (4) abstützt. Erfindungsgemäß sind Zentriermittel (12) vorhanden, welche im Bereich der Rückstellfeder (3) so am Ventileinsatz (1) angeordnet sind, dass die Rückstellfeder (3) zentriert und stabilisiert ist.

Description

Magnetventil
Stand der Technik
Die Erfindung geht aus von einem Magnetventil nach der Gattung des unabhängigen Patentanspruchs 1.
Ein herkömmliches Magnetventil, insbesondere für ein Hydraulikaggregat, welches beispielsweise in einem Antiblockiersystem (ABS) oder einem Antriebsschlupfregelsystem (ASR-System) oder einem elektronischen Stabilitätsprogrammsystem (ESP-System) eingesetzt wird, ist in Figur 7 dargestellt. Wie aus Figur 7 ersichtlich ist, umfasst das herkömmliche stromlos offene Magnetventil 100 neben einer nicht dargestellten Magnetbaugruppe eine Ventilpatrone, welche eine Kapsel 106, einen Ventileinsatz 101, einen Stößel 102, eine Rückstellfeder 103 und einen Anker 107 umfasst. Bei der Herstellung des Magnetventils 100 werden die Kapsel 106 und der Ventileinsatz 101 der Ventilpatrone durch Pressen aufeinander gefügt und durch eine Dichtschweißung 108 wird die Ventilpatrone hydraulisch gegenüber der Atmosphäre abgedichtet. Zusätzlich nimmt der Ventileinsatz 101 die im hydraulischen System auftretenden Druckkräfte auf und leitet diese über einen Verstemmflansch 109 an einen nicht dargestellten Verstemmbereich auf einem Fluidblock weiter. Zudem nimmt der Ventileinsatz 101 den so genannten Ventilkörper 104 auf, welcher einen Ventilsitz 110 umfasst, in welchen der Stößel 102 dichtend eintaucht, um die Dichtfunktion des Magnetventils 100 umzusetzen. Wie weiter aus Figur 7 ersichtlich ist, werden der Stößel 102 und die Rückstellfeder 103 im Ventileinsatz 101 geführt, wobei der Stößel 102 in einer Stößelführung 111 geführt ist und die Rückstellfeder 103 an einem Ende auf dem Stößel 102 radial geführt und zentriert ist und am anderen Ende auf dem Ventilkörper 104 axial geführt aufliegt. Der Strömungsweg des Fluids durch das Magnetventil ist schematisch durch eine Pfeilkette 105 dargestellt. Somit wirkt die Federkraft der Rückstellfeder 103 im Bereich der Strömungskräfte, welche aufgrund der Strömung auf die Windungen der Rückstellfeder 103 wirken. Dadurch kann es zu einer unerwünschten Beeinflussung des Federverhaltens durch die Strömung kommen. So kann es beispielsweise zum Abheben der Rückstellfeder 103 von ihrer Auflage am Ventilkörper 104 kommen, was mit einer entsprechenden (Kraft-) Wirkung auf den Ventilstößel 102 und einer unerwünschter Beeinflussung der Ventilfunktion verbunden sein kann.
Vorteile der Erfindung
Das erfindungsgemäße Magnetventil mit den Merkmalen des unabhängigen Patentanspruchs 1 hat demgegenüber den Vorteil, dass Zentriermittel vorhanden sind, welche im Bereich einer Rückstellfeder so an einem Ventileinsatz angeordnet sind, dass die Rückstellfeder zentriert und stabilisiert ist. Dadurch kann in vorteilhafter Weise verhindert werden, dass Strömungskräfte, welche auf die Windungen der Rückstellfeder wirken, zu einem seitlichem Ausbrechen der Rückstellfeder führen können, oder die Rückstellfeder von einer Auflage abheben können bzw. die Windungen der Rückstellfeder relativ zueinander in Bewegung bzw. in Schwingungen versetzen können. Insbesondere wird durch die Zentriermittel ein nur axial an einem Ventilkörper anliegendes Federende zentriert und stabilisiert, ohne die Montierbarkeit und Einstellbarkeit des Magnetventils negativ zu beeinflussen.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruch angegebenen Magnetventils möglich.
Besonders vorteilhaft ist, dass die Zentriermittel mindestens einen axial verlaufenden Zentriersteg umfassen, welcher in einer Innenbohrung des Ventileinsatzes angeordnet ist. Durch den mindestens einen Zentriersteg kann die Rückstellfeder beispielsweise über eine längere Strecke geführt werden, so dass die Rückstellfeder in vorteilhafter Weise nahezu über die gesamte Länge zentriert und stabilisiert wird.
In Ausgestaltung des erfindungsgemäßen Magnetventils weist der mindestens eine axiale Zentriersteg eine an den Durchmesser der Rückstellfeder angepasste Führungsnut auf, deren Querschnittsform vorzugsweise einem Kreisabschnitt entspricht. Alternativ kann die Führung des Zentrierstegs auch als Sekante, d.h. als gerader Abschnitt ausgeführt sein. Durch die an die Rückstellfeder angepasste Form der Führungsnut kann die Führung der Rückstellfeder in vorteilhafter Weise weiter verbessert werden.
Die Zentriermittel können beispielsweise aus dem Material des Ventileinsatzes ausgeformt werden, d.h. einstückig mit dem Ventileinsatz ausgeführt werden. Der Ventileinsatz mit den Zentriermitteln ist beispielsweise als Drehteil oder als Kaltschlagteil herstellbar. In weiterer Ausgestaltung des erfindungsgemäßen Magnetventils weisen die Zentriermittel des Ventileinsatzes zur Zentrierung der Rückstellfeder drei axial verlaufende Zentrierstege auf, welche vorzugsweise einen mittleren Abstand von 120° zu einander aufweisen. Die ermöglicht in vorteilhafter Weise eine genauere Zentrierung der Rückstellfeder bei der Montage. Zusätzlich können die Zentriermittel eine montagerechte Einführschräge aufweisen, wodurch die Montage erleichtert wird. Die Zentriermittel sind beispielsweise so angeordnet, dass eine Unterseite der Zentriermittel immer einen Abstand zum Ventilkörper aufweist, um während eines Montageprozesses keinen Anschlag für den Ventilkörper zu bilden.
Zeichnung
Vorteilhafte, nachfolgend beschriebene Ausführungsformen der Erfindung sowie das zu deren besserem Verständnis oben erläuterte, herkömmliche Ausführungsbeispiel sind in den Zeichnungen dargestellt. Es zeigen:
Figur 1 eine schematische Schnittdarstellung eines erfindungsgemäßen Magnetventils, Figur 2 eine schematische Querschnittdarstellung entlang einer Linie A-A aus Figur 1 zur
Darstellung einer ersten Ausführungsform eines Ventileinsatzes, Figur 3 eine schematische perspektivische Darstellung einer zweiten Ausführungsform des
Ventileinsatzes, Figur 4 eine schematische Draufsicht auf die zweite Ausführungsform des Ventileinsatzes gemäß
Fig. 3, Figur 5 eine schematische perspektivische Darstellung einer dritten Ausführungsform des
Ventileinsatzes, Figur 6 eine schematische Draufsicht auf die dritte Ausführungsform des Ventileinsatzes gemäß
Fig. 5, und Figur 7 eine schematische Schnittdarstellung eines herkömmlichen Magnetventils.
Beschreibung
Wie aus Figur 1 ersichtlich ist, umfasst ein erfindungsgemäßes Magnetventil 20 neben einer nicht dargestellten Magnetbaugruppe eine Ventilpatrone, welche analog zum herkömmlichen Magnetventil 100 gemäß Figur 7 eine Kapsel 6, einen Ventileinsatz 1 , einen Stößel 2, eine Rückstellfeder 3 und einen Anker 7 umfasst. Bei der Herstellung des Magnetventils 20 werden die Kapsel 6 und der Ventileinsatz 1 der Ventilpatrone durch Pressen aufeinander gefügt und durch eine Dichtschweißung 8 wird die Ventilpatrone hydraulisch gegenüber der Atmosphäre abgedichtet. Zusätzlich nimmt der Ventileinsatz 1 die im hydraulischen System auftretenden Druckkräfte auf und leitet diese über einen Verstemmflansch 9 an einen nicht dargestellten Verstemmbereich auf einem Fluidblock weiter. Zudem nimmt der Ventileinsatz 1 den so genannten Ventilkörper 4 auf, welcher einen Ventilsitz 10 umfasst, in welchen der Stößel 2 dichtend eintaucht, um die Dichtfunktion des Magnetventils 20 umzusetzen. Wie weiter aus Figur 1 ersichtlich ist, werden der Stößel 2 über eine Stößelführung 11 und die Rückstellfeder 3 über Zentriermittel 12 im Ventileinsatz 1 geführt, wobei die Rückstellfeder 3 im Gegensatz zum herkömmlichen Magnetventil 100 nicht nur einseitig auf dem Stößel 2 zentriert ist, sondern durch die Zentriermittel 12 nahezu über die gesamte Länge zentriert und stabilisiert wird, so dass auch das andere Ende der Rückstellfeder 3 zentriert und stabilisiert ist, welches auf dem Ventilkörper 4 aufliegt. Im dargestellten Ausführungsbeispiel umfassen die Zentriermittel 12 des Ventileinsatzes 1 zur Zentrierung der Rückstellfeder 3 drei axial verlaufende Zentrierstege, welche innerhalb einer Innenbohrung des Ventileinsatzes 1 angeordnet sind und vorzugsweise einen mittleren Abstand von 120° zu einander aufweisen, wie aus der Querschnittdarstellung gemäß Figur 2 ersichtlich ist. Um das Einführen der Rückstellfeder 3 zu erleichtern weisen die Zentrierstege 12 eine montagerechte Einführschräge 12.2 auf. Zudem sind die Zentrierstege so im Ventileinsatz 1 angeordnet, dass eine Unterseite 12.3 der Zentrierstege 12 einen Abstand zum Ventilkörper 4 aufweisen, so dass ein Anschlag des Ventilkörpers 4 während des Montageprozesses des Magnetventils 20 verhindert wird.
Durch die axialen Zentriermittel 12 wird in vorteilhafter Weise verhindert, dass es durch eine schematisch als Pfeilkette 5 dargestellte Strömung eines Fluids durch das Magnetventil 20 zu einer unerwünschten Beeinflussung des Federverhaltens kommt. So kann beispielsweise ein seitliches Ausbrechen der Rückstellfeder 3 und/oder ein Abheben der Rückstellfeder 3 vom Ventilkörper 4 und/oder eine Relativbewegung bzw. Schwingungen der Windungen der Rückstellfeder 3 verhindert werden.
Nachfolgend werden unter Bezugnahme auf die Figuren 2 bis 6 verschiedene Ausführungsformen des Ventileinsatzes 1 beschrieben. Wie aus Fig. 2 ersichtlich ist, sind die drei axialen Zentrierstege 12 einer ersten Ausführungsform des Ventileinsatzes 1 über eine Führungsnut 12.1 an den Durchmesser der Rückstellfeder 3 angepasst, wobei die Führungsnut 12.1 die Form eines Kreisabschnitts aufweist. Alternativ können die Führungen der axialen Zentrierstege 12 auch als gerade Abschnitte ausgeführt werden. Wie weiter aus Figur 2 ersichtlich ist, sind die axialen Zentrierstege 12 aus dem Material des Ventileinsatz 1 ausgeformt, beispielsweise durch mehrere Bohrungen, wobei beispielsweise über eine mittlere Bohrung die Rückstellfeder 3 geführt ist und durch drei weitere Bohrungen Kanäle zur Fluidführung zur Verfügung gestellt werden. Figur 3 und 4 zeigen eine zweite Ausfuhrungsform des Ventileinsatzes 1 mit drei schmalen axialen Zentrierstegen 12, welche durch ihre Abmessungen an den Durchmesser der Rückstellfeder 3 angepasst sind. Die zweite Ausführungsform des Ventileinsatzes 1 wird beispielsweise als Kaltschlagteil hergestellt, welches bei Bedarf spangebend nachbearbeitet wird..
Figur 5 und 6 zeigen eine dritte Ausführungsform des Ventileinsatzes 1 mit drei axialen Zentrierstegen 12, welche, analog zur ersten Ausführungsform gemäß Fig. 2, über eine Führungsnut 12.1 an den Durchmesser der Rückstellfeder 3 angepasst sind. Die Zentrierstege 12 weisen eine Querschnittsform auf, die einem Kreisringsegment entspricht. Die dritte Ausführungsform des Ventileinsatzes 1 wird beispielsweise als Drehteil hergesellt.

Claims

01.12.06ROBERT BOSCH GMBH, 70442 StuttgartAnsprüche
1. Magnetventil mit einem Ventileinsatz (1) und einem über eine Stößelführung (11) im Ventileinsatz (1) beweglich geführten Stößel (2), welcher sich über eine Rückstellfeder (3) auf einem Ventilkörper (4) abstützt, gekennzeichnet durch Zentriermittel (12), welche im Bereich der Rückstellfeder (3) so am Ventileinsatz (1) angeordnet sind, dass die Rückstellfeder (3) zentriert und stabilisiert ist.
2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, dass die Zentriermittel (12) mindestens einen axial verlaufenden Zentriersteg umfassen, welcher in einer Innenbohrung des Ventileinsatz (1) angeordnet ist.
3. Magnetventil nach Anspruch 2, dadurch gekennzeichnet, dass der mindestens eine axiale Zentriersteg (12) eine an den Durchmesser der Rückstellfeder (3) angepasste Führungsnut (12.1) aufweist, deren Form vorzugsweise einem Kreisabschnitt entspricht.
4. Magnetventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Zentriermittel (12) aus dem Material des Ventileinsatz (1) ausgeformt sind.
5. Magnetventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Ventileinsatz (1) mit den Zentriermitteln (12) als Drehteil herstellbar ist.
6. Magnetventil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Ventileinsatz (1) mit den Zentriermitteln (12) als Kaltschlagteil herstellbar ist.
7. Magnetventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Zentriermittel (12) des Ventileinsatzes (1) zur Zentrierung der Rückstellfeder (3) drei axial verlaufende Zentrierstege umfassen, welche vorzugsweise einen mittleren Abstand von 120° zu einander aufweisen. Magnetventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Zentriermittel (12) eine montagerechte Einführschräge (12.2) aufweisen, wobei jeweils eine Unterseite (12.3) der Zentriermittel (12) einen Abstand zum Ventilkörper (4) aufweist.
PCT/EP2006/069226 2006-01-27 2006-12-01 Magnetventil WO2007085316A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06830292A EP1981745A1 (de) 2006-01-27 2006-12-01 Magnetventil
US12/162,155 US20090008587A1 (en) 2006-01-27 2006-12-01 Solenoid Valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006003857A DE102006003857A1 (de) 2006-01-27 2006-01-27 Magnetventil
DE102006003857.6 2006-01-27

Publications (1)

Publication Number Publication Date
WO2007085316A1 true WO2007085316A1 (de) 2007-08-02

Family

ID=37709489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/069226 WO2007085316A1 (de) 2006-01-27 2006-12-01 Magnetventil

Country Status (5)

Country Link
US (1) US20090008587A1 (de)
EP (1) EP1981745A1 (de)
CN (1) CN101336186A (de)
DE (1) DE102006003857A1 (de)
WO (1) WO2007085316A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017852A1 (de) * 2008-04-09 2009-10-15 Wabco Gmbh Schaltmagnetventil
DE102010024585A1 (de) * 2009-06-26 2010-12-30 Magna Powertrain Ag & Co Kg Magnetventil
DE102010000771A1 (de) * 2010-01-11 2011-07-14 Robert Bosch GmbH, 70469 Magnetventil mit einer Kernhülse und Verfahren zu deren Verschweißung
CN102003566A (zh) * 2010-11-11 2011-04-06 温伟光 新型电控化油器电磁阀和其他控制气流电磁阀的改进结构
DE102016220335A1 (de) * 2016-10-18 2018-04-19 Robert Bosch Gmbh Magnetventil zur Steuerung des Bremsdrucks einer Radbremse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201418A1 (en) * 2002-04-24 2003-10-30 Hyundai Mobis, Co., Ltd. Anti-lock brake equipment solenoid valve
DE10253769A1 (de) * 2002-11-19 2004-06-03 Robert Bosch Gmbh Elektromagnetisch betätigtes Ventil, insbesondere für hydraulische Bremsanlagen von Kraftfahrzeugen
DE102004030425A1 (de) * 2004-06-24 2006-01-19 Robert Bosch Gmbh Ventilvorrichtung
DE102004030423A1 (de) * 2004-06-24 2006-01-19 Robert Bosch Gmbh Ventilvorrichtung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538645A (en) * 1983-08-16 1985-09-03 Ambac Industries, Inc. Control valve assembly
DE4020188C2 (de) * 1989-06-26 2001-02-22 Denso Corp Elektromagnetisches Kraftstoff-Einspritzventil
DE4332368A1 (de) * 1993-09-23 1995-03-30 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil, insbesondere für schlupfgeregelte hydraulische Bremsanlagen in Kraftfahrzeugen
US5791747A (en) * 1994-02-18 1998-08-11 Kelsey-Hayes Company Hydraulic valve control unit for vehicular anti-lock brake and traction control systems
US6026847A (en) * 1995-10-11 2000-02-22 Reinicke; Robert H. Magnetostrictively actuated valve
US6065734A (en) * 1997-10-03 2000-05-23 Kelsey-Hayes Company Control valve for a hydraulic control unit of vehicular brake systems
US6659421B1 (en) * 1998-03-03 2003-12-09 Continental Teves Ag & Co. Ohg Electromagnetic valve
US6453930B1 (en) * 2000-09-09 2002-09-24 Kelsey-Hayes Company Control valves for a hydraulic control unit and method of assembly
US6846049B2 (en) * 2000-12-27 2005-01-25 Continental Teves Ag & Co. Ohg Valve mechanism, especially for anti-skid automotive brake systems
KR100466952B1 (ko) * 2002-04-24 2005-01-24 현대모비스 주식회사 안티로크 브레이크 액압 제어용 밸브
KR100721383B1 (ko) * 2003-01-13 2007-05-23 주식회사 만도 트랙션콘트롤용 밸브

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201418A1 (en) * 2002-04-24 2003-10-30 Hyundai Mobis, Co., Ltd. Anti-lock brake equipment solenoid valve
DE10253769A1 (de) * 2002-11-19 2004-06-03 Robert Bosch Gmbh Elektromagnetisch betätigtes Ventil, insbesondere für hydraulische Bremsanlagen von Kraftfahrzeugen
DE102004030425A1 (de) * 2004-06-24 2006-01-19 Robert Bosch Gmbh Ventilvorrichtung
DE102004030423A1 (de) * 2004-06-24 2006-01-19 Robert Bosch Gmbh Ventilvorrichtung

Also Published As

Publication number Publication date
CN101336186A (zh) 2008-12-31
US20090008587A1 (en) 2009-01-08
EP1981745A1 (de) 2008-10-22
DE102006003857A1 (de) 2007-08-02

Similar Documents

Publication Publication Date Title
DE102004012526B4 (de) Steuerventil zum Steuern der Fluidströmung in einer Hydrauliksteuereinheit
EP2091797B1 (de) Magnetventil
EP1816047A2 (de) Magnetventil
DE19531010B4 (de) Magnetventil, insbesondere für eine schlupfgeregelte, hydraulische Bremsanlage für Kraftfahrzeuge
EP0951412A1 (de) Magnetventil
EP1810902A2 (de) Magnetventil
DE102007053134A1 (de) Ventilpatrone für ein Magnetventil und zugehöriges Magnetventil
EP1928714A1 (de) Magnetventil
DE102006054185A1 (de) Magnetventil
DE10321413B4 (de) Elektromagnetisch betätigbares Ventil
EP2170665B1 (de) Magnetventil
EP2219912B1 (de) Ventilpatrone für ein magnetventil und zugehöriges magnetventil
WO2007085316A1 (de) Magnetventil
EP3559437B1 (de) Ventil zum zumessen eines fluids
EP1817216B1 (de) Elektromagnetisch betätigbares ventil, insbesondere in einer bremsanlage eines kraftfahrzeuges
DE102013226615A1 (de) Druckregelventil mit Ausgleichsraum
DE102015218263A1 (de) Magnetventil
EP1981746B1 (de) Hydraulikaggregat
DE102005044673A1 (de) Magnetventil
DE102010060264A1 (de) Elektromagnetisches Stellglied
EP2278152B1 (de) Kraftstoffeinspritzventil
DE102006002664A1 (de) Magnetventil
EP1813490B1 (de) Magnetventil
EP1810903B1 (de) Magnetventil
DE19815778A1 (de) Absperrventil mit Druckbegrenzungsfunktion, insbesondere für schlupfgeregelte hydraulische Bremsanlagen von Kraftfahrzeugen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006830292

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12162155

Country of ref document: US

Ref document number: 200680051856.5

Country of ref document: CN