WO2007083717A1 - Color conversion matrix creation method and color conversion method - Google Patents

Color conversion matrix creation method and color conversion method Download PDF

Info

Publication number
WO2007083717A1
WO2007083717A1 PCT/JP2007/050725 JP2007050725W WO2007083717A1 WO 2007083717 A1 WO2007083717 A1 WO 2007083717A1 JP 2007050725 W JP2007050725 W JP 2007050725W WO 2007083717 A1 WO2007083717 A1 WO 2007083717A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
gradation
color conversion
xyz
value
Prior art date
Application number
PCT/JP2007/050725
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshifumi Shimodaira
Yoshiyuki Kawagoe
Original Assignee
National University Corporation Shizuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Shizuoka University filed Critical National University Corporation Shizuoka University
Priority to JP2007554958A priority Critical patent/JPWO2007083717A1/en
Publication of WO2007083717A1 publication Critical patent/WO2007083717A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut

Definitions

  • the present invention relates to a color conversion matrix creation method and a color conversion method, and in particular, a color conversion matrix creation method when color conversion is performed by matrix calculation and a color conversion created by the color conversion matrix creation method.
  • the present invention relates to a color conversion method for color-converting an input image using a matrix. Background art
  • Non-Patent Document 1 there has been a demand for faithful color reproduction in places such as electronic commerce and telemedicine (see, for example, Non-Patent Document 1).
  • existing image systems perform color reproduction that depends on the device, the color displayed on the display appears to vary from device to device.
  • CMS color management system
  • SMM shaper ZMatri X Model
  • ICCdnternational Color or Consortium ICCdnternational Color or Consortium
  • Non-Patent Document 1 Shuichi Kagawa, Hiroaki Sugiura, "Current Status and Future of Color Management Technology", Mitsubishi Electric Technical Report, vol.76, No.ll, pp.739-742, (2002).
  • Non-Patent Document 2 MD Study Group et al. "Illustration Color Management Practice Rule Book 2005-200 6", MD Study Group, Works Corporation, pp.52-53, (2005).
  • Patent Document 3 International Color Consortium, "ICC Profile Specification Version 3.2", (1995).
  • Non-Patent Document 4 Dawn Wallner, "Building ICC profiles- the Mechanics and Engineering, (2000).
  • Non-Patent Document 5 Yuka Uchiumi et al. "Study on luminance dependence of color tone in liquid crystal display", Journal of the Institute of Image Information and Television Engineers, vol.25, No.72, pp.13-18, (2001).
  • Non-Patent Document 6 Mamoru Shimazu, Masanori Takaya, Gosuke Ohashi, Mifumi Shimohira, "High-fidelity color reproduction method for force tracking in displays", IEICE technical report, vol.103, No.649 , pp.37-40, (2004).
  • the above-described faithful color reproduction method has a problem that it takes a long time for color conversion because a color conversion matrix is created for each pixel.
  • the present invention has been made to solve the above-described problems, and is a color capable of high-precision and high-speed color conversion that enables faithful color reproduction in a display device or the like in which color tracking occurs. It is an object to provide a conversion matrix creation method and a color conversion method.
  • the color conversion matrix creation method creates a color conversion matrix for conversion to RGB signal values of the RGB color system, such as XYZ color system tristimulus values XYZ color.
  • a method for creating a color conversion matrix comprising: obtaining a RGB signal value corresponding to tristimulus values XYZ of a predetermined gradation using a predetermined color conversion matrix; and an RGB gradation value corresponding to the obtained RGB signal value Determining from the halftone reproduction characteristics of the predetermined display device, determining the tristimulus values XYZ corresponding to the determined RGB gradation values from the device profile of the display device, and determining the tristimulus of the predetermined gradations Obtaining the color difference between the tristimulus value XYZ of the predetermined tone and the tristimulus value XYZ of the reference tone after adjusting the brightness of the value XYZ to the tristimulus value XYZ of
  • the tristimulus value XYZ of the predetermined gradation and the reference gradation are obtained after matching the luminance of the tristimulus value XYZ of the predetermined gradation with the luminance of the tristimulus value XYZ of the reference gradation. Find the color difference from the tristimulus values XYZ. When the obtained color difference exceeds a predetermined threshold value, a process of creating and storing a color conversion matrix based on the tristimulus values XYZ of the predetermined gradation is executed for each primary color of RGB. For this reason, a color conversion matrix is created for each primary color for gradations where the color difference exceeds the threshold.
  • an optimum color conversion matrix corresponding to the gradation is selected from a plurality of created color conversion matrices and color conversion is performed, so that high-precision and high-speed color conversion can be performed. It becomes possible.
  • the predetermined display device can be a display device in which color tracking occurs.
  • the present invention is particularly effective when applied to a display device in which such color tracking occurs.
  • the color conversion method according to the present invention is a color conversion method for converting an XYZ color system tristimulus value XYZ into an RGB color system RGB signal value, the step of inputting the tristimulus value XYZ;
  • the step of obtaining RGB signal values corresponding to the input tristimulus values XYZ using a predetermined color conversion matrix, and halftone reproduction of the RGB gradation values corresponding to the obtained RGB signal values by a predetermined display device A step of obtaining from the characteristics, a step of selecting a color conversion matrix corresponding to the obtained RGB gradation value from the color conversion matrix created by the color conversion matrix creation method of the above configuration, and the input tristimulus value XYZ And a step of obtaining an RGB signal value corresponding to the obtained RGB signal value from the halftone reproduction characteristic.
  • the color conversion is performed by selecting the optimum color conversion matrix corresponding to the gradation from the plurality of color conversion matrices created by the color conversion matrix creating method having the above-described configuration. And high-speed color conversion becomes possible.
  • FIG. 1 is a schematic block diagram of a color conversion device.
  • FIG. 2 is a diagram showing an example of halftone reproduction characteristics.
  • FIG. 3 is a flowchart of a color conversion matrix creation process executed by a color conversion matrix creation unit.
  • FIG. 4 is a flowchart of color conversion processing executed by a color conversion unit.
  • FIG. 5 is a chromaticity diagram for explaining color tracking.
  • 10 ... color conversion device, 12 ... color conversion matrix creation unit, 14 ... storage unit, 16 ... color conversion unit.
  • FIG. 1 shows a schematic block diagram of a color conversion apparatus 10 to which the present invention is applied.
  • the color conversion apparatus 10 includes a color conversion matrix creation unit 12, a storage unit 14, and a color conversion unit 16.
  • the color conversion matrix creating unit 12 performs color change based on device profiles (colorimetric data), halftone reproduction characteristics (TRC) data, and the like stored in the storage unit 14.
  • a color conversion matrix is created by obtaining a conversion matrix coefficient.
  • the color conversion unit 16 uses the color conversion matrix created by the color conversion matrix creation unit 12 to convert the input XYZ color space image data (XYZ data) into the RGB color system. Convert to color space image data (RGB data) and output.
  • the storage unit 14 is a display device that displays an image based on the RGB data that has been color-converted by the color conversion device 10, and is a device profile of the display device that may cause color tracking, and the display device.
  • Halftone reproduction characteristic data, a color conversion creation processing program executed by the color conversion matrix creation unit 12 described later, a color conversion processing program executed by the color conversion unit 16, and the like are stored in advance.
  • the device profile is tristimulus XYZ data corresponding to all RGB gradations. It is obtained as follows. For example, change the RGB gradation value for each primary color in increments of several gradations (for example, in increments of 8 gradations) and input it to the display device, and measure the color output from the display device each time with a colorimeter. Tristimulus values XYZ for each primary color number gradation step are obtained. The tristimulus values XYZ of other gradations are obtained by linear interpolation. As a result, tristimulus values XYZ corresponding to all RGB gradations are obtained. The tristimulus values XYZ corresponding to all RGB gradations may be obtained by colorimetry.
  • FIG. 2 shows an example of halftone reproduction characteristics of a liquid crystal projector.
  • the halftone reproduction characteristic shows the correspondence between the RGB gradation value (input value) and RGB signal value (output value) of the display device.
  • Halftone reproduction characteristic data is data representing halftone reproduction characteristics as shown in the figure, that is, table data and expressions indicating the correspondence between RGB gradation values and RGB signal values, and is stored in the storage unit 14 for each primary color. Stored in advance.
  • the values of the coefficients X, Y, Z, X, Y, Z, X, Y, and Z of the color conversion matrix are
  • the tristimulus value repulsive force at the gradation value 255 which is the maximum gradation of each primary color obtained from the vice profile is also a value obtained by subtracting the tristimulus value ⁇ of the gradation value 0 which is a bias component.
  • X, ⁇ , and ⁇ correspond to the tristimulus value ⁇ ⁇ corresponding to R of gradation value 255 to R of gradation value 0.
  • the corresponding tristimulus value is the value obtained by subtracting ⁇ , and X, ⁇ , and ⁇ correspond to G with a gradation value of 255.
  • the tristimulus value ⁇ is the value obtained by subtracting the tristimulus value ⁇ ⁇ corresponding to G with a gradation value of 0, X, ⁇
  • is the tristimulus value ⁇ corresponding to ⁇ with a gradation value of 255
  • the corresponding tristimulus values XYZ are X, ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , respectively.
  • an RGB gradation value is obtained from the RGB signal value. That is, the R tone value of R is obtained using the R halftone reproduction characteristic data, the G signal value force of the G tone value is obtained using the G halftone reproduction characteristic data, Using the halftone reproduction characteristic data for B, obtain the gradation value of the signal value B of B.
  • SMM always uses the tristimulus values XYZ of the highest luminance (maximum gradation) of each primary color for matrix calculation, so the effect of color tracking is not taken into consideration and power error is not considered. In a display device in which tracking occurs, optimal color reproduction cannot be obtained.
  • a plurality of color conversion matrices are created for each primary color according to the gradation value, and at the time of color conversion, a color conversion matrix suitable for the gradation value is selected and color is selected. Convert. This enables high-speed and high-precision color reproduction even in a display device in which color tracking occurs.
  • step 100 the color conversion matrix creating unit 12 sets a reference gradation d to be described later.
  • each primary color is represented by 8-bit data, and 256 gradations from 0 to 255 are set, and 255 which is the maximum gradation is set as a reference gradation.
  • step 102 a primary color for which a color conversion matrix is to be created is set.
  • a color conversion matrix is created for each of the three primary colors R, G, and B. Therefore, for example, R is initially set.
  • step 104 an initial color conversion matrix of a color conversion matrix for converting XYZ color system image data into RGB color system image data is set.
  • the coefficients of the color conversion matrix of the above equation (1) are used as the tristimulus values X, Y, Z, corresponding to the primary colors R, G, B of the gradation value 255 as the reference gradation.
  • X, Y, Z the coefficients of the color conversion matrix of the above equation (1) are used as the tristimulus values X, Y, Z, corresponding to the primary colors R, G, B of the gradation value 255 as the reference gradation.
  • step 106 the sum of tristimulus values XYZ of gradations e of R, G, and B obtained from the device profile is added to XYZ in the above equation (1) to obtain an RGB signal value.
  • the first gradation e is 255, which is the maximum gradation. That is, X in the above equation (1) is (X
  • an RGB gradation value is obtained from the RGB signal value using the halftone reproduction characteristic data of each primary color stored in the storage unit 14. That is, R gradation value is obtained from R signal value using R halftone reproduction characteristic data, G signal value force is also obtained G gradation value using G halftone reproduction characteristic data, Use the halftone reproduction characteristics data for B to find the tone value of the signal value B of B.
  • step 110 tristimulus values XYZ corresponding to the RGB gradation values obtained in step 108 are obtained from the device profile stored in the storage unit 14.
  • step 112 the color difference between the tristimulus value XYZ of the gradation e obtained in step 110 and the tristimulus value XYZ of the reference gradation d is obtained.
  • the first reference gradation d is 255, which is the maximum gradation
  • the tristimulus value XYZ corresponding to R of gradation 255 obtained from the device profile is set as the tristimulus value XYZ for comparison.
  • the color difference from the three-stone intensity XYZ of the gradation e obtained in step 110 is set.
  • the tristimulus value XYZ of the gradation e is matched to the luminance of the reference gradation d, and then the tristimulus value XYZ of both is converted to Lab color system data.
  • the power also calculates the color difference. That is, by replacing Y of the tristimulus value XYZ of the gradation e with Y of the tristimulus value XYZ of the reference gradation, and further multiplying the X and Z of the tristimulus value XYZ of the gradation e by a predetermined factor, Adjust the brightness of the tristimulus value XYZ of key e to the brightness of the reference gradation d.
  • the CIE2000 color difference formula for example, see Non-Patent Document 7 below.
  • step 114 it is determined whether or not the obtained color difference exceeds a predetermined threshold value.
  • the threshold that is a criterion for allowing matrix conversion is, for example, a color difference (a color difference that is perceived by human eyes from two colors (for example, the following non-patent document 8) is used.
  • the specific threshold value is set to 0.2 in the present embodiment as the relationship between the number of color conversion matrices to be created and the average color difference.
  • step 110 If the color difference between the tristimulus value XYZ obtained in step 110 and the tristimulus value XYZ of the reference gradation d to be compared exceeds the threshold value, the process proceeds to step 116. If not, go to step 120.
  • step 116 the color conversion matrix is updated, and the updated color conversion matrix is stored in the storage unit 14.
  • the color conversion matrix is updated using the coefficients X,,, Z of the current color conversion matrix.
  • step 118 the reference gradation d is changed to the current gradation e.
  • the reference gradation d is changed to the current gradation e, and when the color difference is equal to or less than the threshold, the reference gradation d is not changed and is left as it is.
  • step 120 it is determined whether or not the processing in steps 106 to 118 has been completed for all the gradations of the primary color R, specifically, whether or not the gradation e has become zero. Then, when the processing of Steps 106 to 118 is completed for all gradations of the primary color R, the process proceeds to Step 124. Otherwise, the process proceeds to Step 122.
  • step 122 the gradation e is lowered by one and the process returns to step 106.
  • the R component of the tristimulus value XYZ entering XYZ in the above equation (1) is set to a value obtained by lowering the gradation by one. That is, X in the above equation (1) is (X + X + X)
  • step 120 is affirmed and the routine proceeds to step 124.
  • step 124 it is determined whether or not the processing in steps 102 to 122 has been completed for all primary colors. If it is determined that the process has been completed, the process proceeds to step 126. If the process has been completed, the process proceeds to step 102 and G and B are processed in the same manner as described above.
  • step 126 the coefficients of all the created color conversion matrices are output to the color conversion unit 16 and the routine is terminated.
  • the color conversion unit 16 stores the coefficient of the color conversion matrix of each primary color output from the color conversion matrix creation unit 12.
  • the luminance of the tristimulus value XYZ of the gradation e is matched with the luminance of the tristimulus value XYZ of the reference gradation d, and the color difference between the two is obtained.
  • the process of creating a new color conversion matrix is performed for all gradations of all primary colors.
  • as many color conversion matrices are created as the number of color differences equal to or greater than the threshold value for each primary color. That is, the number of color conversion matrices created is (number of color conversion matrices created for R) X (number of color conversion matrices created for G) X (number of color conversion matrices created for B).
  • the gradation value where the color difference is greater than or equal to the threshold value that is, the gradation value for which the color conversion matrix has been created and changed (the gradation value that changes the color conversion matrix during color conversion) is the matrix-changed gradation value. Called.
  • step 200 the tristimulus value XYZ is input, and in step 202, this is converted to S. M.
  • Y, Z, X, Y, Z values are tristimulus values XY with gradation value 255, which is the maximum gradation of each primary color
  • step 204 using the halftone reproduction characteristic data stored in the storage unit 14, an RGB gradation value is obtained from the RGB signal value.
  • the tone value of the R signal value scale is obtained using the R halftone reproduction characteristic data
  • the G signal value force is also obtained of the G tone value using the G halftone reproduction characteristic data.
  • the halftone reproduction characteristic data for B obtain the gradation value of B for the B signal value.
  • step 206 a color conversion matrix corresponding to the RGB gradation value obtained in step 204 For each primary color. For example, if the R matrix change gradation value is 240, 225, 210, etc., and the R gradation value obtained in step 204 is a value within the range of 255-241, Since this is the gradation before the matrix is changed, a color conversion matrix is selected in which the tristimulus value XYZ value of gradation value 255, which is the maximum gradation of each primary color, is a coefficient. If the R gradation value obtained in step 204 is in the range of 240 to 226, the color conversion matrix created when the matrix change gradation value is 240 is selected.
  • the color conversion matrix created when the matrix change tone value is 225 is selected.
  • the color conversion matrix is changed for each primary color with a gradation value at which the color difference is equal to or greater than the threshold value.
  • step 208 using the selected color conversion matrix, the input tristimulus values XYZ are converted into RGB signal values. That is, the coefficient X, Y of the color conversion matrix selected for R
  • Color conversion is performed using a color conversion matrix with B B B as coefficients.
  • step 210 as in step 204, using the halftone reproduction characteristic data stored again in the storage unit 14, an RGB gradation value is obtained from the RGB signal value and output.
  • the tristimulus value XYZ for each tone value is set after adjusting the brightness of the tristimulus value XYZ to the brightness of the reference tone. And the tristimulus values XYZ of the reference gradation are obtained, and if this color difference exceeds the threshold, a new color conversion matrix is created and stored.
  • color conversion is performed by selecting a color conversion matrix corresponding to the gradation value of each primary color. In other words, since the color conversion matrix having the optimum color conversion matrix is selected for each gradation, color reproduction with high speed and high accuracy is possible even in a display device in which color tracking occurs.
  • the reference gradation to be initially set is set to 255 which is the maximum gradation.
  • the present invention is not limited to this, and other gradation values such as an intermediate gradation are used. You can set 128 as the reference gradation.
  • the coefficients of the initial color conversion matrix are X, Y
  • tone value 128 For example, from tone value 128
  • the present invention is not limited to this. Try to determine the color difference while changing multiple gradations, such as one by one.
  • the present inventors verified the color reproduction accuracy and color conversion time of the color conversion matrix creation method according to the present invention described above and the color conversion method using the color conversion matrix created thereby. .
  • a liquid crystal projector was used as the display, and a spectral radiance meter was used as the measuring instrument. The measurement was performed in a dark room, a single color was projected on the screen from a liquid crystal projector, and the measurement point was approximately the center of the screen.
  • RGB primary color data input to the LCD projector is expressed as (R, G, B), (8, 0, 0), (0, 8, 0), (0, 0, 8), (16, (0, 0), (0, 16, 0), (0, 0, 16) ... (255, 0, 0), (0, 255, 0), (0, 0, 255)
  • This primary color was input to the liquid crystal projector in increments of 8 gradations, a single color was projected on the screen from the liquid crystal projector, and tristimulus values XYZ were measured using a spectral radiance meter. Tristimulus values XYZ between each measurement point were obtained by linear interpolation.
  • FIG. 5 shows the chromaticity of all the gradations of each primary color measured in this way.
  • the chromaticity of each primary color that is, the ratio of XYZ is not constant with respect to the change in luminance.
  • the chromaticity changes in the green direction as the luminance decreases for both red, green, and blue, confirming that color tracking has occurred.
  • Table 1 shows the luminance L and chromaticity u ′, v ′ of white (red + green + blue) and original white (white) displayed by adding each primary color of the liquid crystal projector. The value is shown.
  • the threshold value is set to 0.2.
  • the average color difference was 0.67, which was about a quarter of S.M.M. It was also confirmed that the accuracy was as high as the faithful color reproduction method.
  • This color difference is a second-class color difference (see Non-Patent Document 8 below), but it is an accuracy that can be recognized as almost the same when both are judged side by side.
  • the color conversion time shown in Table 4 is a relative value when the average color conversion time when each image is color-converted by the method according to the present invention is represented by 1.0.
  • the color conversion time can be reduced to about 1/50 of the faithful color reproduction method.
  • Table 5 shows the results of the number of color conversion matrices created for each primary color (number of matrix change gradation values).
  • the present invention 1 0 3 5 2 0 7 0 0 0 0
  • the number of G and B matrix change gradation values is larger and the number of R matrix change gradation values is smaller than in the present invention.
  • the proposed method has increased the number of color conversion matrices due to the influence of luminance on the criteria for determining the gradation value for changing the color conversion matrix.
  • the luminance difference is matched to the reference gradation and the color difference is compared, and the difference only in chromaticity is used as the criterion.
  • the color reproduction accuracy can be made equal to that of the proposed method, and the number of color conversion matrices can be reduced to about one-fourth.
  • color conversion matrix creation method and the color conversion method of the present invention even in a display device in which color tracking occurs, color reproduction can be performed with high accuracy and color conversion can be performed at high speed. We were able to confirm that it was possible.
  • Non-Patent Document 7 G. Sharma ⁇ W. Wu, ENDalal: "The CIEDE2000 Color- Difference r ormula: Implementation Notes, supplementary 1 est Data ⁇ and Mathematical Obs ervations, ..., Color Research and Application ⁇ vol.30, No. l (2005).
  • Non-patent Document 8 The Japan Society of Color Science: “New Color Science Handbook [2nd edition]", University of Tokyo Press (1998).
  • Non-patent literature 9 Kawagoe Yoshiyuki, Shimazu Yasunori, Ohashi Gosuke, Shimohira Mifumi: "High-fidelity color conversion method of display corresponding to color tracking", 11th Symposium on Image Sensing, pp.543-546, (2005) .
  • Non-Patent Document 10 The Institute of Image Electronics Engineers of Japan: "SHIPP High-Definition XYZ 'CIELAB' RGB Standard Image” (1997).
  • the present invention can be used as a color conversion matrix creation method and a color conversion method capable of high-accuracy and high-speed color conversion that enables faithful color reproduction in a display device or the like in which color tracking occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

An RGB signal value corresponding XYZ of a predetermined gradation is obtained by using a color conversion matrix (step 106). An RGB gradation value corresponding to the RGB signal value is obtained from the normal reproduction characteristic of a display device (step 108). XYZ corresponding to the RGB gradation value is obtained from a device profile of the display device (step 110). Luminance of XYZ of the predetermined gradation is matched with luminance of XYZ of a reference gradation and a color difference between the XYZ of the predetermined gradation and XYZ of the reference gradation is obtained (step 112). If the obtained color difference exceeds a threshold value, a color conversion matrix is created from the XYZ of the predetermined gradation and stored, and the reference gradation is modified to the predetermined gradation (steps 114-118). A process for modifying the predetermined gradation by one gradation (step 122) is executed for all the gradations and each of the RGB primary colors. This enables highly-accurate and high-speed color conversion capable of performing a faithful color reproduction in a display device where color tracking is caused.

Description

明 細 書  Specification
色変換マトリクス作成方法及び色変換方法  Color conversion matrix creation method and color conversion method
技術分野  Technical field
[0001] 本発明は、色変換マトリクス作成方法及び色変換方法に係り、特に、行列演算によ り色変換を行う際の色変換マトリクス作成方法及び当該色変換マトリクス作成方法に より作成した色変換マトリクスを用いて入力画像を色変換する色変換方法に関する。 背景技術  The present invention relates to a color conversion matrix creation method and a color conversion method, and in particular, a color conversion matrix creation method when color conversion is performed by matrix calculation and a color conversion created by the color conversion matrix creation method. The present invention relates to a color conversion method for color-converting an input image using a matrix. Background art
[0002] 従来から、電子商取引や遠隔医療などの場において、忠実に色を再現することが 求められている(例えば非特許文献 1参照)。しかし、既存の画像システムでは、機器 に依存した色再現を行っているため、ディスプレイに表示される色が機器によって異 なって見える。  Conventionally, there has been a demand for faithful color reproduction in places such as electronic commerce and telemedicine (see, for example, Non-Patent Document 1). However, since existing image systems perform color reproduction that depends on the device, the color displayed on the display appears to vary from device to device.
[0003] この問題に対処するため、カラーマネージメントシステム(CMS)がある(例えば非 特許文献 2参照)。 CMSにおいて、ディスプレイの色再現には ICCdnternational Col or Consortium)プロファイル(例えば非特許文献 3参照)を利用した ShaperZMatri X Model (例えば非特許文献 4参照、以下、 S. M. Mと称する。)が用いられている  [0003] To deal with this problem, there is a color management system (CMS) (for example, see Non-Patent Document 2). In CMS, a shaper ZMatri X Model (for example, see Non-Patent Document 4, hereinafter referred to as SMM) using an ICCdnternational Color or Consortium) profile (for example, Non-Patent Document 3) is used for color reproduction of a display.
[0004] S. M. Mの色再現には各原色の最高輝度の三刺激値 XYZを使用している。正確 な色再現を行うためには、各原色の輝度の変化に対し、色度が一定であることが条 件となっている。しかし、幾種類かのディスプレイ、例えば液晶を用いた一部のデイス プレイに低輝度領域で色度がずれるカラートラッキングが生じるため、正確な色再現 ができない (例えば非特許文献 5参照)。そこで、これまでに、カラートラッキングに対 応した方式 (以下、忠実色再現方式と記す)が報告されている(例えば非特許文献 6 参照)。 [0004] For the color reproduction of S. M. M, tristimulus values XYZ with the highest luminance of each primary color are used. In order to perform accurate color reproduction, the chromaticity must be constant with respect to changes in the brightness of each primary color. However, some types of displays, for example, some displays using liquid crystal, cause color tracking that shifts chromaticity in a low-brightness region, so that accurate color reproduction cannot be performed (see, for example, Non-Patent Document 5). Therefore, a method corresponding to color tracking (hereinafter referred to as a faithful color reproduction method) has been reported so far (see, for example, Non-Patent Document 6).
非特許文献 1 :香川周一,杉浦博明, "カラーマネージメント技術の現状と将来",三 菱電機技報, vol.76, No.ll, pp.739- 742, (2002).  Non-Patent Document 1: Shuichi Kagawa, Hiroaki Sugiura, "Current Status and Future of Color Management Technology", Mitsubishi Electric Technical Report, vol.76, No.ll, pp.739-742, (2002).
非特許文献 2 : MD研究会 他 "図解カラーマネージメント実践ルールブック 2005-200 6", MD研究会,(株)ワークスコーポレーション, pp.52-53, (2005). 特許文献 3 : International Color Consortium, "ICC Profile Specification Version3. 2", (1995). Non-Patent Document 2: MD Study Group et al. "Illustration Color Management Practice Rule Book 2005-200 6", MD Study Group, Works Corporation, pp.52-53, (2005). Patent Document 3: International Color Consortium, "ICC Profile Specification Version 3.2", (1995).
非特許文献 4 : Dawn Wallner, "Building ICC profiles- the Mechanics and Engineering , (2000).  Non-Patent Document 4: Dawn Wallner, "Building ICC profiles- the Mechanics and Engineering, (2000).
非特許文献 5 :内海友香 他"液晶ディスプレイにおける色調の輝度依存性に関する 検討",映像情報メディア学会誌, vol.25, No.72, pp.13- 18, (2001).  Non-Patent Document 5: Yuka Uchiumi et al. "Study on luminance dependence of color tone in liquid crystal display", Journal of the Institute of Image Information and Television Engineers, vol.25, No.72, pp.13-18, (2001).
非特許文献 6 :島津喬守,高矢昌紀,大橋剛介,下平美文, "ディスプレイにおける力 ラートラッキングに対応した高忠実色再現方式",電子情報通信学会技術研究報告, vol.103, No.649, pp.37- 40, (2004).  Non-Patent Document 6: Mamoru Shimazu, Masanori Takaya, Gosuke Ohashi, Mifumi Shimohira, "High-fidelity color reproduction method for force tracking in displays", IEICE technical report, vol.103, No.649 , pp.37-40, (2004).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記の忠実色再現方式では、画素ごとに色変換マトリクスを作成して いるため、多大な色変換時間を要する、という問題があった。 However, the above-described faithful color reproduction method has a problem that it takes a long time for color conversion because a color conversion matrix is created for each pixel.
[0006] 本発明は上記課題を解決するために成されたものであり、カラートラッキングが生じ る表示装置等において忠実な色再現が可能となる高精度で且つ高速な色変換が可 能な色変換マトリクス作成方法及び色変換方法を提供することを目的とする。 [0006] The present invention has been made to solve the above-described problems, and is a color capable of high-precision and high-speed color conversion that enables faithful color reproduction in a display device or the like in which color tracking occurs. It is an object to provide a conversion matrix creation method and a color conversion method.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するため、本発明による色変換マトリクス作成方法は、 XYZ表色系 の三刺激値 XYZカゝら RGB表色系の RGB信号値に変換するための色変換マトリクス を作成する色変換マトリクス作成方法であって、所定階調の三刺激値 XYZに対応す る RGB信号値を所定の色変換マトリクスを用いて求めるステップと、求めた RGB信号 値に対応する RGB階調値を所定の表示装置の中間調再現特性から求めるステップ と、求めた RGB階調値に対応する三刺激値 XYZを前記表示装置のデバイスプロフ アイルカゝら求めるステップと、求めた所定階調の三刺激値 XYZの輝度を基準階調の 三刺激値 XYZの輝度に合わせた上で、前記所定階調の三刺激値 XYZと前記基準 階調の三刺激値 XYZとの色差を求めるステップと、求めた色差が予め定めた閾値を 越える場合、当該所定階調の三刺激値 XYZに基づ ヽて色変換マトリクスを作成して 記憶すると共に、前記基準階調を当該所定階調に変更するステップと、前記所定階 調を 1階調又は複数階調変更するステップと、を含む処理を全階調について繰り返し 実行する処理を、 RGB各原色につ ヽて実行することを特徴とする。 [0007] In order to achieve the above object, the color conversion matrix creation method according to the present invention creates a color conversion matrix for conversion to RGB signal values of the RGB color system, such as XYZ color system tristimulus values XYZ color. A method for creating a color conversion matrix, comprising: obtaining a RGB signal value corresponding to tristimulus values XYZ of a predetermined gradation using a predetermined color conversion matrix; and an RGB gradation value corresponding to the obtained RGB signal value Determining from the halftone reproduction characteristics of the predetermined display device, determining the tristimulus values XYZ corresponding to the determined RGB gradation values from the device profile of the display device, and determining the tristimulus of the predetermined gradations Obtaining the color difference between the tristimulus value XYZ of the predetermined tone and the tristimulus value XYZ of the reference tone after adjusting the brightness of the value XYZ to the tristimulus value XYZ of the reference tone If the color difference exceeds a predetermined threshold, With the tristimulus values XYZ of the predetermined tone Te based ヽ creating and storing a color conversion matrix, a step of changing the reference gray scale to the predetermined gray level, the predetermined floor A process of repeatedly executing a process including changing a tone by one gradation or a plurality of gradations for all gradations, for each primary color of RGB.
[0008] この発明によれば、求めた所定階調の三刺激値 XYZの輝度を基準階調の三刺激 値 XYZの輝度に合わせた上で、所定階調の三刺激値 XYZと基準階調の三刺激値 XYZとの色差を求める。そして、求めた色差が予め定めた閾値を越える場合、当該 所定階調の三刺激値 XYZに基づいて色変換マトリクスを作成して記憶する処理を R GB各原色について実行する。このため、色差が閾値を越える階調について色変換 マトリクスが原色毎に作成される。  According to the present invention, the tristimulus value XYZ of the predetermined gradation and the reference gradation are obtained after matching the luminance of the tristimulus value XYZ of the predetermined gradation with the luminance of the tristimulus value XYZ of the reference gradation. Find the color difference from the tristimulus values XYZ. When the obtained color difference exceeds a predetermined threshold value, a process of creating and storing a color conversion matrix based on the tristimulus values XYZ of the predetermined gradation is executed for each primary color of RGB. For this reason, a color conversion matrix is created for each primary color for gradations where the color difference exceeds the threshold.
[0009] そして、色変換時には、作成された複数の色変換マトリクスの中から階調に応じた 最適な色変換マトリクスを選択して色変換することにより、高精度で且つ高速な色変 換が可能となる。  [0009] During color conversion, an optimum color conversion matrix corresponding to the gradation is selected from a plurality of created color conversion matrices and color conversion is performed, so that high-precision and high-speed color conversion can be performed. It becomes possible.
[0010] なお、上記方法では、前記所定の表示装置は、カラートラッキングが生じる表示装 置とすることができる。本発明は、このようなカラートラッキングが生じる表示装置に適 用することにより、特に効果が発揮される。  [0010] In the above method, the predetermined display device can be a display device in which color tracking occurs. The present invention is particularly effective when applied to a display device in which such color tracking occurs.
[0011] また、本発明による色変換方法は、 XYZ表色系の三刺激値 XYZから RGB表色系 の RGB信号値に変換する色変換方法であって、三刺激値 XYZを入力するステップ と、入力された三刺激値 XYZに対応する RGB信号値を予め定めた色変換マトリクス を用いて求めるステップと、求めた RGB信号値に対応する RGB階調値を所定の表 示装置の中間調再現特性から求めるステップと、求めた RGB階調値に対応する色 変換マトリクスを上記構成の色変換マトリクス作成方法により作成された色変換マトリ タスの中から選択するステップと、入力された三刺激値 XYZに対応する RGB信号値 を選択した色変換マトリクスにより求めるステップと、求めた RGB信号値に対応する R GB階調値を前記中間調再現特性から求めるステップと、を含むことを特徴とする。  [0011] Further, the color conversion method according to the present invention is a color conversion method for converting an XYZ color system tristimulus value XYZ into an RGB color system RGB signal value, the step of inputting the tristimulus value XYZ; The step of obtaining RGB signal values corresponding to the input tristimulus values XYZ using a predetermined color conversion matrix, and halftone reproduction of the RGB gradation values corresponding to the obtained RGB signal values by a predetermined display device A step of obtaining from the characteristics, a step of selecting a color conversion matrix corresponding to the obtained RGB gradation value from the color conversion matrix created by the color conversion matrix creation method of the above configuration, and the input tristimulus value XYZ And a step of obtaining an RGB signal value corresponding to the obtained RGB signal value from the halftone reproduction characteristic.
[0012] この発明によれば、上記構成の色変換マトリクス作成方法により作成された複数の 色変換マトリクスの中から階調に応じた最適な色変換マトリクスを選択して色変換する ので、高精度で且つ高速な色変換が可能となる。  [0012] According to the present invention, the color conversion is performed by selecting the optimum color conversion matrix corresponding to the gradation from the plurality of color conversion matrices created by the color conversion matrix creating method having the above-described configuration. And high-speed color conversion becomes possible.
発明の効果  The invention's effect
[0013] 本発明によれば、カラートラッキングが生じる表示装置等において忠実な色再現が 可能となる高精度で且つ高速な色変換が可能になる、という効果がある。 [0013] According to the present invention, faithful color reproduction can be achieved in a display device or the like in which color tracking occurs. There is an effect that color conversion can be performed with high accuracy and high speed.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は、色変換装置の概略ブロック図である。  FIG. 1 is a schematic block diagram of a color conversion device.
[図 2]図 2は、中間調再現特性の一例を示す線図である。  FIG. 2 is a diagram showing an example of halftone reproduction characteristics.
[図 3]図 3は、色変換マトリクス作成部で実行される色変換マトリクス作成処理のフロー チャートである。  FIG. 3 is a flowchart of a color conversion matrix creation process executed by a color conversion matrix creation unit.
[図 4]図 4は、色変換部で実行される色変換処理のフローチャートである。  FIG. 4 is a flowchart of color conversion processing executed by a color conversion unit.
[図 5]図 5は、カラートラッキングについて説明するための色度図である。  FIG. 5 is a chromaticity diagram for explaining color tracking.
符号の説明  Explanation of symbols
[0015] 10· ··色変換装置、 12· ··色変換マトリクス作成部、 14· ··記憶部、 16…色変換部。  [0015] 10 ... color conversion device, 12 ... color conversion matrix creation unit, 14 ... storage unit, 16 ... color conversion unit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の好ましい実施の形態について図面を参照しながら詳細に説明する Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0017] 図 1には、本発明が適用された色変換装置 10の概略ブロック図を示した。図 1に示 すように、色変換装置 10は、色変換マトリクス作成部 12、記憶部 14、及び色変換部 16を含んで構成されている。 FIG. 1 shows a schematic block diagram of a color conversion apparatus 10 to which the present invention is applied. As shown in FIG. 1, the color conversion apparatus 10 includes a color conversion matrix creation unit 12, a storage unit 14, and a color conversion unit 16.
[0018] 詳細は後述するが、色変換マトリクス作成部 12は、記憶部 14に記憶されたデバイ スプロファイル (測色データ)や中間調再現特性 (TRC)データ等に基づ 、て、色変 換マトリクスの係数を求めることにより色変換マトリクスを作成する。  [0018] Although details will be described later, the color conversion matrix creating unit 12 performs color change based on device profiles (colorimetric data), halftone reproduction characteristics (TRC) data, and the like stored in the storage unit 14. A color conversion matrix is created by obtaining a conversion matrix coefficient.
[0019] 色変換部 16は、色変換マトリクス作成部 12で作成された色変換マトリクスを用いて 、入力された XYZ表色系の色空間の画像データ (XYZデータ)を、 RGB表色系の色 空間の画像データ (RGBデータ)に変換して出力する。  The color conversion unit 16 uses the color conversion matrix created by the color conversion matrix creation unit 12 to convert the input XYZ color space image data (XYZ data) into the RGB color system. Convert to color space image data (RGB data) and output.
[0020] 記憶部 14には、色変換装置 10により色変換された RGBデータに基づいて画像を 表示する表示装置であって、カラートラッキングが生じ得る表示装置のデバイスプロ ファイルや、その表示装置の中間調再現特性データ、後述する色変換マトリクス作成 部 12で実行される色変換作成処理のプログラム及び色変換部 16で実行される色変 換処理のプログラム等が予め記憶されて 、る。  [0020] The storage unit 14 is a display device that displays an image based on the RGB data that has been color-converted by the color conversion device 10, and is a device profile of the display device that may cause color tracking, and the display device. Halftone reproduction characteristic data, a color conversion creation processing program executed by the color conversion matrix creation unit 12 described later, a color conversion processing program executed by the color conversion unit 16, and the like are stored in advance.
[0021] デバイスプロファイルは、ここでは RGB全階調に対応する三刺激値 XYZのデータ であり、以下のようにして求める。例えば RGBの階調値を原色毎に数階調刻み (例え ば 8階調刻み)で変化させて表示装置に入力し、その都度表示装置から出力された 色を測色計で測色して各原色数階調刻みの三刺激値 XYZを得る。それ以外の階調 の三刺激値 XYZについては線形補間等により得る。これにより、 RGB全階調に対応 する三刺激値 XYZが得られる。なお、 RGB全階調に対応する三刺激値 XYZを測色 により求めても良い。 [0021] Here, the device profile is tristimulus XYZ data corresponding to all RGB gradations. It is obtained as follows. For example, change the RGB gradation value for each primary color in increments of several gradations (for example, in increments of 8 gradations) and input it to the display device, and measure the color output from the display device each time with a colorimeter. Tristimulus values XYZ for each primary color number gradation step are obtained. The tristimulus values XYZ of other gradations are obtained by linear interpolation. As a result, tristimulus values XYZ corresponding to all RGB gradations are obtained. The tristimulus values XYZ corresponding to all RGB gradations may be obtained by colorimetry.
[0022] 図 2は、液晶プロジェクタの中間調再現特性の一例を示す。同図に示すように、中 間調再現特性は、その表示装置の RGB階調値 (入力値)と RGB信号値 (出力値)と の対応関係を示すものであり、 RGBの各原色について予め求められる。中間調再現 特性データは、同図に示すような中間調再現特性を表すデータ、すなわち RGB階 調値と RGB信号値との対応関係を示すテーブルデータや式であり、原色毎に記憶 部 14に予め記憶される。  FIG. 2 shows an example of halftone reproduction characteristics of a liquid crystal projector. As shown in the figure, the halftone reproduction characteristic shows the correspondence between the RGB gradation value (input value) and RGB signal value (output value) of the display device. Desired. Halftone reproduction characteristic data is data representing halftone reproduction characteristics as shown in the figure, that is, table data and expressions indicating the correspondence between RGB gradation values and RGB signal values, and is stored in the storage unit 14 for each primary color. Stored in advance.
[0023] ここで、従来における S. M. Mにおける XYZ表色系の画像データから RGB表色系 の画像データへの色変換について説明する。 S. M. Mでは、次式を用いて入力の 三刺激値 XYZを 0〜 1の RGB信号値 (相対値)に変換する。  [0023] Here, conventional color conversion from XYZ color system image data to RGB color system image data in S.M.M will be described. In S. M. M, the input tristimulus values XYZ are converted to RGB signal values (relative values) between 0 and 1 using the following formula.
[数 1]  [Number 1]
Figure imgf000007_0001
Figure imgf000007_0001
[0024] ここで、色変換マトリクスの各係数 X、Y、Z、X、Y、Z、X、Y、Zの値は、デ Here, the values of the coefficients X, Y, Z, X, Y, Z, X, Y, and Z of the color conversion matrix are
R R R G G G B B B  R R R G G G B B B
バイスプロファイルより得られる各原色の最大階調である階調値 255の場合の三刺激 値 ΧΥΖ力もバイアス成分である階調値 0の三刺激値 ΧΥΖを引 、た値である。すなわ ち、 X、 Υ、 Ζは、階調値 255の Rに対応する三刺激値 ΧΥΖから階調値 0の Rに対 The tristimulus value repulsive force at the gradation value 255 which is the maximum gradation of each primary color obtained from the vice profile is also a value obtained by subtracting the tristimulus value の of the gradation value 0 which is a bias component. In other words, X, Υ, and Ζ correspond to the tristimulus value 対 応 corresponding to R of gradation value 255 to R of gradation value 0.
R R R R R R
応する三刺激値 ΧΥΖを引いた値であり、 X、 Υ、 Ζは、階調値 255の Gに対応する  The corresponding tristimulus value is the value obtained by subtracting ΧΥΖ, and X, Υ, and Ζ correspond to G with a gradation value of 255.
G G G  G G G
三刺激値 ΧΥΖから階調値 0の Gに対応する三刺激値 ΧΥΖを引いた値であり、 X、 Υ  The tristimulus value ΧΥΖ is the value obtained by subtracting the tristimulus value 対 応 corresponding to G with a gradation value of 0, X, Υ
Β Β  Β Β
、 Ζは、階調値 255の Βに対応する三刺激値 ΧΥΖから階調値 0の Βに対応する三刺 , Ζ is the tristimulus value ΧΥΖ corresponding to Β with a gradation value of 255,
Β Β
激値 ΧΥΖを引いた値である。なお、以下では、デバイスプロファイルより得られる原色 p (=R, G, B)の階調値 n ( = 0〜255)の三刺激値 XYZ、すなわち色変換マトリクス の各係数を X 、Y 、Z で表す。例えば上記のように階調値 255の原色 R, G, Bに It is a value obtained by subtracting the extreme value ΧΥΖ. In the following, the primary colors obtained from the device profile The tristimulus values XYZ of tone values n (= 0 to 255) of p (= R, G, B), that is, the coefficients of the color conversion matrix are represented by X, Y, Z. For example, to the primary colors R, G, B with gradation value 255 as above
pn pn pn  pn pn pn
対応する三刺激値 XYZは、それぞれ X 、Υ 、Ζ 、Χ 、Υ 、Ζ 、Χ 、Υ The corresponding tristimulus values XYZ are X, Υ, Ζ, Χ, Υ, Ζ, Χ, Υ, respectively.
255 R255 R255 G255 G255 G255 Β255 255 R255 R255 G255 G255 G255 Β255
、 ζ で表される。 , Ζ.
Β255 Β255  Β255 Β255
[0025] そして、図 2に示すような中間調再現特性を表す中間調再現特性データを用いて、 RGB信号値から RGB階調値を求める。すなわち、 R用の中間調再現特性データを 用いて Rの信号値力 Rの階調値を求め、 G用の中間調再現特性データを用いて G の信号値力も Gの階調値を求め、 B用の中間調再現特性データを用いて Bの信号値 力 Bの階調値を求める。  Then, using the halftone reproduction characteristic data representing the halftone reproduction characteristic as shown in FIG. 2, an RGB gradation value is obtained from the RGB signal value. That is, the R tone value of R is obtained using the R halftone reproduction characteristic data, the G signal value force of the G tone value is obtained using the G halftone reproduction characteristic data, Using the halftone reproduction characteristic data for B, obtain the gradation value of the signal value B of B.
[0026] このように、 S. M. Mでは、常に各原色の最高輝度 (最大階調)の三刺激値 XYZを マトリクス演算に使用しているため、カラートラッキングの影響が考慮されておらず、力 ラートラッキングが生じる表示装置では最適な色再現が得られない。  [0026] In this way, SMM always uses the tristimulus values XYZ of the highest luminance (maximum gradation) of each primary color for matrix calculation, so the effect of color tracking is not taken into consideration and power error is not considered. In a display device in which tracking occurs, optimal color reproduction cannot be obtained.
[0027] 本実施形態では、詳細は後述するが、各原色について階調値に応じて複数の色 変換マトリクスを作成し、色変換時には、階調値に適した色変換マトリクスを選択して 色変換する。これにより、カラートラッキングが生じる表示装置においても高速且つ高 精度な色再現が可能となる。  In this embodiment, although details will be described later, a plurality of color conversion matrices are created for each primary color according to the gradation value, and at the time of color conversion, a color conversion matrix suitable for the gradation value is selected and color is selected. Convert. This enables high-speed and high-precision color reproduction even in a display device in which color tracking occurs.
[0028] 次に、色変換マトリクス作成部 12において実行される色変換マトリクス作成処理に ついて、図 3に示すフローチャートを参照して説明する。  Next, the color conversion matrix creation processing executed in the color conversion matrix creation unit 12 will be described with reference to the flowchart shown in FIG.
[0029] まずステップ 100では、色変換マトリクス作成部 12は、後述する基準階調 dを設定 する。本実施形態では、一例として各原色を 8ビットデータで表し、各々 0〜255の 25 6階調として、最大階調である 255を基準階調として設定する。  First, in step 100, the color conversion matrix creating unit 12 sets a reference gradation d to be described later. In the present embodiment, as an example, each primary color is represented by 8-bit data, and 256 gradations from 0 to 255 are set, and 255 which is the maximum gradation is set as a reference gradation.
[0030] ステップ 102では、色変換マトリクス作成対象の原色を設定する。本実施形態では 、 R, G, Bの 3原色各々について色変換マトリクスを作成するので、最初は例えば R に設定する。  In step 102, a primary color for which a color conversion matrix is to be created is set. In the present embodiment, a color conversion matrix is created for each of the three primary colors R, G, and B. Therefore, for example, R is initially set.
[0031] ステップ 104では、 XYZ表色系の画像データを RGB表色系の画像データに変換 するための色変換マトリクスの初期色変換マトリクスを設定する。  In step 104, an initial color conversion matrix of a color conversion matrix for converting XYZ color system image data into RGB color system image data is set.
[0032] ここでは、一例として上記(1)式の色変換マトリクスの各係数を、基準階調である階 調値 255の原色 R, G, Bに対応する三刺激値 X 、 Y 、 Z 、 X 、 Y 、 Z  [0032] Here, as an example, the coefficients of the color conversion matrix of the above equation (1) are used as the tristimulus values X, Y, Z, corresponding to the primary colors R, G, B of the gradation value 255 as the reference gradation. X, Y, Z
R255 R255 255 G255 G255 G255 、X 、Y 、Z に設定する。これらの値は記憶部 14に記憶されたデバイスプロフR255 R255 255 G255 G255 G255 , X, Y, Z These values are stored in the device profile stored in the storage unit 14.
B255 B255 B255 B255 B255 B255
アイルより得られる。  Obtained from Aisle.
[0033] ステップ 106では、上記(1)式の XYZに、デバイスプロファイルより得られる R, G, B各々の階調 eの三刺激値 XYZの和を入れ、 RGB信号値を求める。本実施形態で は、最初の階調 eは最大階調である 255とする。すなわち、上記(1)式の Xには (X  In step 106, the sum of tristimulus values XYZ of gradations e of R, G, and B obtained from the device profile is added to XYZ in the above equation (1) to obtain an RGB signal value. In the present embodiment, the first gradation e is 255, which is the maximum gradation. That is, X in the above equation (1) is (X
R255 R255
+X +X )を入力し、 Yには (Y +Y +Y )を入力し、 Zには(Z +Z+ X + X), enter (Y + Y + Y) for Y, and (Z + Z for Z)
G255 B255 R255 G255 B255 255 G255G255 B255 R255 G255 B255 255 G255
+Z )を入力して RGB信号値を求める。 + Z)) to obtain the RGB signal value.
B255  B255
[0034] ステップ 108では、記憶部 14に記憶された各原色の中間調再現特性データを用い て RGB信号値から RGB階調値を求める。すなわち、 R用の中間調再現特性データ を用いて Rの信号値から Rの階調値を求め、 G用の中間調再現特性データを用いて Gの信号値力も Gの階調値を求め、 B用の中間調再現特性データを用いて Bの信号 値力 Bの階調値を求める。  In step 108, an RGB gradation value is obtained from the RGB signal value using the halftone reproduction characteristic data of each primary color stored in the storage unit 14. That is, R gradation value is obtained from R signal value using R halftone reproduction characteristic data, G signal value force is also obtained G gradation value using G halftone reproduction characteristic data, Use the halftone reproduction characteristics data for B to find the tone value of the signal value B of B.
[0035] ステップ 110では、ステップ 108で求めた RGB階調値に対応する三刺激値 XYZを 記憶部 14に記憶されたデバイスプロファイルより得る。  In step 110, tristimulus values XYZ corresponding to the RGB gradation values obtained in step 108 are obtained from the device profile stored in the storage unit 14.
[0036] ステップ 112では、ステップ 110で求めた階調 eの三刺激値 XYZと、基準階調 dの 三刺激値 XYZとの色差を求める。前述したように最初の基準階調 dは最大階調であ る 255であるので、デバイスプロファイルより得られる階調 255の Rに対応する三刺激 値 XYZを比較対象の三刺激値 XYZとし、これとステップ 110で求めた階調 eの三刺 激値 XYZとの色差を求める。なお、色差を求める際には、階調 eの三刺激値 XYZの 輝度を基準階調 dの輝度に合わせた上で、両者の三刺激値 XYZを Lab表色系のデ ータに変換して力も色差を求める。すなわち、階調 eの三刺激値 XYZの Yを基準階 調の三刺激値 XYZの Yに置き換え、さらに階調 eの三刺激値 XYZの X、 Zに所定係 数を乗算することにより、階調 eの三刺激値 XYZの輝度を基準階調 dの輝度に合わ せる。ここで、所定係数は基準階調の三刺激値 XYZの Yを階調 eの三刺激値 XYZの Yで除算した値である。具体的には、階調 eの三刺激値を Xe、 Ye、 Zeとし、基準階調 dの三刺激値を Xd、 Yd、 Zdとした場合、 Xe, =Xe X (Yd/Ye)、 Ye=Yd、 Ze' =Z e X (YdZYe)として、三刺激値 Xe'YeZe'と三刺激値 XdYdZdとの色差を求める。 なお、色差は、例えば CIE2000色差式 (例えば下記非特許文献 7参照)により求め る。 [0036] In step 112, the color difference between the tristimulus value XYZ of the gradation e obtained in step 110 and the tristimulus value XYZ of the reference gradation d is obtained. As described above, since the first reference gradation d is 255, which is the maximum gradation, the tristimulus value XYZ corresponding to R of gradation 255 obtained from the device profile is set as the tristimulus value XYZ for comparison. And the color difference from the three-stone intensity XYZ of the gradation e obtained in step 110. When obtaining the color difference, the tristimulus value XYZ of the gradation e is matched to the luminance of the reference gradation d, and then the tristimulus value XYZ of both is converted to Lab color system data. The power also calculates the color difference. That is, by replacing Y of the tristimulus value XYZ of the gradation e with Y of the tristimulus value XYZ of the reference gradation, and further multiplying the X and Z of the tristimulus value XYZ of the gradation e by a predetermined factor, Adjust the brightness of the tristimulus value XYZ of key e to the brightness of the reference gradation d. Here, the predetermined coefficient is a value obtained by dividing Y of the reference stimulus tristimulus value XYZ by Y of the tone e tristimulus value XYZ. Specifically, if the tristimulus values of gradation e are Xe, Ye, Ze and the tristimulus values of reference gradation d are Xd, Yd, Zd, then Xe, = Xe X (Yd / Ye), Ye The color difference between the tristimulus value Xe'YeZe 'and the tristimulus value XdYdZd is obtained as = Yd, Ze' = ZeX (YdZYe). Note that the color difference is obtained by, for example, the CIE2000 color difference formula (for example, see Non-Patent Document 7 below). The
[0037] ステップ 114では、求めた色差が予め定めた閾値を越えている力否かを判断する。  In step 114, it is determined whether or not the obtained color difference exceeds a predetermined threshold value.
忠実な色再現であるか否かの判断は人間が行うため、マトリクス変換を許容する判定 基準である閾値には、例えば 2つの色から人間の目で知覚される色の違いである色 差 (例えば下記非特許文献 8参照)を用いる。具体的な閾値の値としては、後述する ように、作成される色変換マトリクスの数と平均色差との関係力 本実施形態では 0. 2に設定される。  Since humans determine whether or not the color reproduction is faithful, the threshold that is a criterion for allowing matrix conversion is, for example, a color difference (a color difference that is perceived by human eyes from two colors ( For example, the following non-patent document 8) is used. As will be described later, the specific threshold value is set to 0.2 in the present embodiment as the relationship between the number of color conversion matrices to be created and the average color difference.
[0038] そして、ステップ 110で求めた三刺激値 XYZと、比較対象である基準階調 dの三刺 激値 XYZとの色差が閾値を越えて 、る場合にはステップ 116へ移行し、そうでな ヽ 場合にはステップ 120へ移行する。  [0038] If the color difference between the tristimulus value XYZ obtained in step 110 and the tristimulus value XYZ of the reference gradation d to be compared exceeds the threshold value, the process proceeds to step 116. If not, go to step 120.
[0039] ステップ 116では、色変換マトリクスを更新し、更新した色変換マトリクスを記憶部 1 4に記憶する。色変換マトリクスの更新は、現在の色変換マトリクスの係数 X , Υ , Z  In step 116, the color conversion matrix is updated, and the updated color conversion matrix is stored in the storage unit 14. The color conversion matrix is updated using the coefficients X,,, Z of the current color conversion matrix.
R R R  R R R
を、ステップ 110で求めた階調 eの三刺激値 XeYeZeに更新することによって行う。  Is updated to the tristimulus value XeYeZe of the gradation e determined in step 110.
[0040] そして、ステップ 118では、基準階調 dを現在の階調 eに変更する。このように、色差 が閾値を越えた場合に基準階調 dを現在の階調 eに変更し、色差が閾値以下である 場合には、基準階調 dは変更せずそのままとする。 [0040] In step 118, the reference gradation d is changed to the current gradation e. As described above, when the color difference exceeds the threshold, the reference gradation d is changed to the current gradation e, and when the color difference is equal to or less than the threshold, the reference gradation d is not changed and is left as it is.
[0041] ステップ 120では、原色 Rの全階調についてステップ 106〜118の処理が終了した か否か、具体的には階調 eが 0になったか否かを判断する。そして、原色 Rの全階調 についてステップ 106〜118の処理が終了した場合には、ステップ 124へ移行し、そ うでない場合には、ステップ 122へ移行する。 In step 120, it is determined whether or not the processing in steps 106 to 118 has been completed for all the gradations of the primary color R, specifically, whether or not the gradation e has become zero. Then, when the processing of Steps 106 to 118 is completed for all gradations of the primary color R, the process proceeds to Step 124. Otherwise, the process proceeds to Step 122.
[0042] ステップ 122では、階調 eを一つ下げてステップ 106へ戻る。 2回目のステップ 106 では、上記(1)式の XYZに入る三刺激値 XYZの R成分を、階調を一つ下げた値に する。すなわち、上記(1)式の Xには (X +X +X )In step 122, the gradation e is lowered by one and the process returns to step 106. In the second step 106, the R component of the tristimulus value XYZ entering XYZ in the above equation (1) is set to a value obtained by lowering the gradation by one. That is, X in the above equation (1) is (X + X + X)
254 G254 B254を入力し、 Yには(Y + Enter 254 G254 B254, and Y is (Y +
254 254
Y +Y )を入力し、 Zには (Z +Z +Z )を入力する。以下同様に処理すY + Y) and (Z + Z + Z) for Z. And so on
G254 B254 254 G254 B254 G254 B254 254 G254 B254
る。  The
[0043] これを階調 eが 0になるまで実行すると、ステップ 120が肯定判断され、ステップ 124 へ移行する。  When this is executed until the gradation e becomes 0, step 120 is affirmed and the routine proceeds to step 124.
[0044] ステップ 124では、全原色についてステップ 102〜122の処理が終了したか否かを 判断し、終了した場合にはステップ 126へ移行し、終了した場合には、ステップ 102 へ移行して G、 Bについても上記と同様の処理を行う。 [0044] In step 124, it is determined whether or not the processing in steps 102 to 122 has been completed for all primary colors. If it is determined that the process has been completed, the process proceeds to step 126. If the process has been completed, the process proceeds to step 102 and G and B are processed in the same manner as described above.
[0045] RGB全てについてステップ 102〜122の処理が終了した場合には、ステップ 126 において、作成した全ての色変換マトリクスの係数を色変換部 16へ出力して本ルー チンを終了する。色変換部 16では、色変換マトリクス作成部 12から出力された各原 色の色変換マトリクスの係数を記憶しておく。  When the processing of steps 102 to 122 has been completed for all RGB, in step 126, the coefficients of all the created color conversion matrices are output to the color conversion unit 16 and the routine is terminated. The color conversion unit 16 stores the coefficient of the color conversion matrix of each primary color output from the color conversion matrix creation unit 12.
[0046] このように、本実施形態では、階調 eの三刺激値 XYZの輝度を基準階調 dの三刺激 値 XYZの輝度に合わせた上で両者の色差を求め、求めた色差が閾値以上の場合 には色変換マトリクスを新たに作成する処理を全原色の全階調について行う。これに より、各原色について色差が閾値以上となった数だけ色変換マトリクスが作成される。 すなわち、作成される色変換マトリクスの数は、(Rについて作成した色変換マトリクス の数) X (Gについて作成した色変換マトリクスの数) X (Bについて作成した色変換 マトリクスの数)となる。なお、以下では、色差が閾値以上となった階調値、すなわち 色変換マトリクスの作成変更を行った階調値 (色変換時に色変換マトリクスを変更す る階調値)をマトリクス変更階調値と称する。  As described above, in the present embodiment, the luminance of the tristimulus value XYZ of the gradation e is matched with the luminance of the tristimulus value XYZ of the reference gradation d, and the color difference between the two is obtained. In the above case, the process of creating a new color conversion matrix is performed for all gradations of all primary colors. As a result, as many color conversion matrices are created as the number of color differences equal to or greater than the threshold value for each primary color. That is, the number of color conversion matrices created is (number of color conversion matrices created for R) X (number of color conversion matrices created for G) X (number of color conversion matrices created for B). In the following, the gradation value where the color difference is greater than or equal to the threshold value, that is, the gradation value for which the color conversion matrix has been created and changed (the gradation value that changes the color conversion matrix during color conversion) is the matrix-changed gradation value. Called.
[0047] 次に、色変換部 16において実行される色変換処理について、図 4に示すフローチ ヤートを参照して説明する。  Next, color conversion processing executed in the color conversion unit 16 will be described with reference to the flowchart shown in FIG.
[0048] まず、ステップ 200では、三刺激値 XYZを入力し、ステップ 202では、これを S. M.  [0048] First, in step 200, the tristimulus value XYZ is input, and in step 202, this is converted to S. M.
Mにより色変換して RGB信号値を得る。すなわち、上記(1)式により三刺激値 XYZ から RGB信号値に変換する。なお、ここでの色変換マトリクスの各係数 X、 Y、 Z、 X  Perform color conversion with M to obtain RGB signal values. In other words, the tristimulus value XYZ is converted to the RGB signal value by the above equation (1). Note that each coefficient X, Y, Z, X of the color conversion matrix here
R R R  R R R
、 Y、 Z、 X、 Y、 Zの値は、各原色の最大階調である階調値 255の三刺激値 XY , Y, Z, X, Y, Z values are tristimulus values XY with gradation value 255, which is the maximum gradation of each primary color
G G G B B B G G G B B B
zの値である。  The value of z.
[0049] ステップ 204では、記憶部 14に記憶された中間調再現特性データを用いて、 RGB 信号値から RGB階調値を求める。すなわち、 R用の中間調再現特性データを用いて Rの信号値力 尺の階調値を求め、 G用の中間調再現特性データを用 、て Gの信号 値力も Gの階調値を求め、 B用の中間調再現特性データを用いて Bの信号値力も B の階調値を求める。  [0049] In step 204, using the halftone reproduction characteristic data stored in the storage unit 14, an RGB gradation value is obtained from the RGB signal value. In other words, the tone value of the R signal value scale is obtained using the R halftone reproduction characteristic data, and the G signal value force is also obtained of the G tone value using the G halftone reproduction characteristic data. Using the halftone reproduction characteristic data for B, obtain the gradation value of B for the B signal value.
[0050] ステップ 206では、ステップ 204で求めた RGB階調値に対応した色変換マトリクス を各原色について選択する。例えば Rのマトリクス変更階調値が 240、 225、 210· · · であったような場合において、ステップ 204で求めた Rの階調値が 255〜241の範囲 内の値であった場合は、マトリクス変更が行われる前の階調であるため、各原色の最 大階調である階調値 255の三刺激値 XYZの値が係数である色変換マトリクスが選択 される。また、ステップ 204で求めた Rの階調値が 240〜226の範囲内であった場合 は、マトリクス変更階調値が 240の時に作成した色変換マトリクスを選択する。また、ス テツプ 204で求めた Rの階調値が 225〜211の範囲内であった場合は、マトリクス変 更階調値が 225の時に作成した色変換マトリクスを選択する。以下同様であり、他の 原色 G、 Bについても同様である。これにより、原色毎に、前述した色差が閾値以上と なる階調値で色変換マトリクスが変更される。 [0050] In step 206, a color conversion matrix corresponding to the RGB gradation value obtained in step 204 For each primary color. For example, if the R matrix change gradation value is 240, 225, 210, etc., and the R gradation value obtained in step 204 is a value within the range of 255-241, Since this is the gradation before the matrix is changed, a color conversion matrix is selected in which the tristimulus value XYZ value of gradation value 255, which is the maximum gradation of each primary color, is a coefficient. If the R gradation value obtained in step 204 is in the range of 240 to 226, the color conversion matrix created when the matrix change gradation value is 240 is selected. If the R tone value obtained in step 204 is within the range of 225 to 211, the color conversion matrix created when the matrix change tone value is 225 is selected. The same applies to the following, and the same applies to the other primary colors G and B. As a result, the color conversion matrix is changed for each primary color with a gradation value at which the color difference is equal to or greater than the threshold value.
[0051] ステップ 208では、選択した色変換マトリクスを用いて、入力した三刺激値 XYZを R GB信号値に変換する。すなわち、 Rについて選択した色変換マトリクスの係数 X、 Y [0051] In step 208, using the selected color conversion matrix, the input tristimulus values XYZ are converted into RGB signal values. That is, the coefficient X, Y of the color conversion matrix selected for R
R  R
、 Zと、 Gについて選択した色変換マトリクスの係数 X、 Y、 Zと、 Bについて選択し Select the color conversion matrix coefficients X, Y, Z, and B selected for, Z, and G.
R R G G G R R G G G
た色変換マトリクスの係数 X、 Y、 Z  Color conversion matrix coefficients X, Y, Z
B B Bと、を係数とする色変換マトリクスを用いて色変 換する。  Color conversion is performed using a color conversion matrix with B B B as coefficients.
[0052] ステップ 210では、ステップ 204と同様に、再度記憶部 14に記憶された中間調再現 特性データを用いて、 RGB信号値から RGB階調値を求めて出力する。  In step 210, as in step 204, using the halftone reproduction characteristic data stored again in the storage unit 14, an RGB gradation value is obtained from the RGB signal value and output.
[0053] このように、本実施形態では、原色毎に、各階調値につ!ヽて三刺激値 XYZの輝度 を基準階調の輝度に合わせた上で、各階調値における三刺激値 XYZと基準階調の 三刺激値 XYZとの色差を求め、この色差が閾値を越えている場合には色変換マトリ タスを新たに作成して記憶する。そして、色変換時には、各原色の階調値に応じた色 変換マトリクスを選択して色変換を行う。すなわち、各階調において最適な色変換マ トリタスが選択された色変換されるので、カラートラッキングが生じる表示装置におい ても高速且つ高精度な色再現が可能となる。  As described above, in this embodiment, for each primary color, the tristimulus value XYZ for each tone value is set after adjusting the brightness of the tristimulus value XYZ to the brightness of the reference tone. And the tristimulus values XYZ of the reference gradation are obtained, and if this color difference exceeds the threshold, a new color conversion matrix is created and stored. During color conversion, color conversion is performed by selecting a color conversion matrix corresponding to the gradation value of each primary color. In other words, since the color conversion matrix having the optimum color conversion matrix is selected for each gradation, color reproduction with high speed and high accuracy is possible even in a display device in which color tracking occurs.
[0054] なお、本実施形態では、最初に設定する基準階調を最大階調である 255とした場 合について説明したが、これに限らず、他の階調値、例えば中間階調である 128を 基準階調として設定してもよ ヽ。この場合、初期色変換マトリクスの係数は、 X 、 Y  In the present embodiment, the case where the reference gradation to be initially set is set to 255 which is the maximum gradation has been described. However, the present invention is not limited to this, and other gradation values such as an intermediate gradation are used. You can set 128 as the reference gradation. In this case, the coefficients of the initial color conversion matrix are X, Y
R128 R1 R128 R1
、Ζ 、Χ 、Υ 、Ζ 、Χ 、Υ 、Ζ とする。そして、例えば階調値 128から, Ζ, Χ, Υ, Ζ, Χ, Υ, Ζ. And for example, from tone value 128
28 R128 G128 G128 G128 B128 B128 B128 階調値を一つずつ上げながら図 3に示す処理、すなわち色差を閾値と比較して閾値 を越えて ヽれば色変換マトリクスを更新する処理を実行し、これを階調値 255まで行 つた後、階調値 127から階調値を一つずつ下げながら同様の処理を行えばよい。 28 R128 G128 G128 G128 B128 B128 B128 The process shown in Fig. 3 while increasing the gradation value one by one, that is, the process of updating the color conversion matrix if the color difference is compared with the threshold value and exceeds the threshold value, is performed up to the gradation value of 255. Thereafter, the same processing may be performed while decreasing the gradation value from the gradation value 127 one by one.
[0055] また、本実施形態では、階調を 1階調ずつ変更しながら各階調について色差を判 定する場合について説明したが、これに限らず、階調を 2階調ずつ、 3階調ずつ等、 複数階調ずつ変更しながら色差を判定するようにしてもょ ヽ。  Further, in the present embodiment, the case where the color difference is determined for each gradation while changing the gradation one gradation at a time has been described. However, the present invention is not limited to this. Try to determine the color difference while changing multiple gradations, such as one by one.
[0056] (実施例)  [0056] (Example)
以下、本実施形態の実施例について説明する。なお、本発明は下記実施例により 限定されるものではない。  Hereinafter, examples of the present embodiment will be described. The present invention is not limited to the following examples.
[0057] 本発明者らは、前述した本発明に係る色変換マトリクスの作成方法及びこれにより 作成された色変換マトリクスを用いた色変換方法の色再現精度と色変換時間につ 、 て検証した。この 2つを検証するために、ディスプレイは液晶プロジェクタを使用し、 測定器は、分光放射輝度計を使用した。測定は暗室で行い、スクリーンに液晶プロ ジェクタから単色を全画面投射し、測定点はスクリーンのほぼ中心とした。  The present inventors verified the color reproduction accuracy and color conversion time of the color conversion matrix creation method according to the present invention described above and the color conversion method using the color conversion matrix created thereby. . In order to verify the two, a liquid crystal projector was used as the display, and a spectral radiance meter was used as the measuring instrument. The measurement was performed in a dark room, a single color was projected on the screen from a liquid crystal projector, and the measurement point was approximately the center of the screen.
[0058] 液晶プロジェクタは、動作を安定させるために電源を入れてから 3時間経過させた。  [0058] In order to stabilize the operation of the liquid crystal projector, 3 hours had elapsed since the power was turned on.
その後、プロファイル測定を開始した。液晶プロジェクタに入力する RGBの各原色の データを (R, G, B)と表すと、(8, 0, 0)、 (0, 8, 0)、 (0, 0, 8)、 (16, 0, 0)、 (0, 16 , 0)、 (0, 0, 16) · · · (255, 0, 0)、 (0, 255, 0)、 (0, 0, 255)の jl匿【こ、各原色【こつ いて 8階調刻みで液晶プロジェクタに入力し、スクリーンに液晶プロジェクタから単色 を全画面投射させ、分光放射輝度計を用いて三刺激値 XYZを測定した。各測定点 間の三刺激値 XYZについては線形補間を行うことにより得た。  Thereafter, profile measurement was started. If the RGB primary color data input to the LCD projector is expressed as (R, G, B), (8, 0, 0), (0, 8, 0), (0, 0, 8), (16, (0, 0), (0, 16, 0), (0, 0, 16) ... (255, 0, 0), (0, 255, 0), (0, 0, 255) This primary color was input to the liquid crystal projector in increments of 8 gradations, a single color was projected on the screen from the liquid crystal projector, and tristimulus values XYZ were measured using a spectral radiance meter. Tristimulus values XYZ between each measurement point were obtained by linear interpolation.
[0059] このようにして測定した各原色の全階調の色度を図 5に示す。同図に示すように、 各原色の色度、すなわち XYZの比が輝度の変化に対して一定となっていない。同図 では、 red, green, blue共に輝度が低下するに従って green方向に色度が変化して おり、カラートラッキングが生じていることが確認できる。  [0059] FIG. 5 shows the chromaticity of all the gradations of each primary color measured in this way. As shown in the figure, the chromaticity of each primary color, that is, the ratio of XYZ is not constant with respect to the change in luminance. In the figure, the chromaticity changes in the green direction as the luminance decreases for both red, green, and blue, confirming that color tracking has occurred.
[0060] 下記表 1には、液晶プロジェクタの各原色を加えることにより表示させた白 (red+gr een+blue)と本来の白(white)との輝度 L及び色度 u'、 v'の値を示した。  [0060] Table 1 below shows the luminance L and chromaticity u ′, v ′ of white (red + green + blue) and original white (white) displayed by adding each primary color of the liquid crystal projector. The value is shown.
[表 1] L ( c d /m 2 ) u ' V, [table 1] L (cd / m 2 ) u 'V,
red+green+blue 3 6 5 . 6 0 . 1 8 0 0 . 4 9 4 whi te 3 6 4 . 9 0 . 1 8 0 0 . 4 9 5  red + green + blue 3 6 5 .6 0. 1 8 0 0. 4 9 4 whi te 3 6 4 .9 0 .1 8 0 0 .4 9 5
[0061] 上記表 1から明らかなように、 (red+green+blue) (white)との各値はほぼ一致 しており、液晶プロジェクタの加法混色が成立して ヽることが確認できる。 [0061] As apparent from Table 1 above, the values of (red + green + blue) (white) are almost the same, and it can be confirmed that additive color mixing of the liquid crystal projector is established.
[0062] 次に、マトリクス変換が許容される閾値、すなわちマトリクス変更階調値を決定する 際の色差の閾値(図 3のステップ 114の閾値)を決定するために、任意の 2000色に 対してシミュレーションを行い、色変換精度と色変換マトリクス数を比較した。結果を 下記表 2に示す。  [0062] Next, in order to determine a threshold at which matrix conversion is allowed, that is, a color difference threshold for determining the matrix change gradation value (step 114 in FIG. 3), for any 2000 colors, A simulation was performed to compare the color conversion accuracy and the number of color conversion matrices. The results are shown in Table 2 below.
[表 2]  [Table 2]
Figure imgf000014_0001
Figure imgf000014_0001
[0063] 上記表 2から明らかなように、閾値を決定する色差を 0. 6から小さくすると、色変換 結果の平均色差は減少し、色変換マトリクス数は増加する。しかし、 0. 2から 0. 1に すると、色変換結果の平均色差はさほど変化せず、色変換マトリクス数が大幅に増加 する。従って、閾値は色差 0. 2とした。 As apparent from Table 2 above, when the color difference for determining the threshold value is decreased from 0.6, the average color difference of the color conversion results decreases and the number of color conversion matrices increases. However, when 0.2 is changed to 0.1, the average color difference of the color conversion results does not change much and the number of color conversion matrices increases significantly. Therefore, the threshold value is set to 0.2.
[0064] 閾値 0. 2を使用した結果、 R10個、 G35個、 B20個となり、色変換マトリクス数は 70 00個作成した。色変換マトリクス数は、原色ごとに階調値の決定を行うため、(Rの階 調値数) X (Gの階調値数) X (Bの階調値数)となる。  [0064] As a result of using a threshold value of 0.2, R10, G35, and B20 were created, and 700,000 color conversion matrices were created. The number of color conversion matrices is (R gradation value number) X (G gradation value number) X (B gradation value number) because gradation values are determined for each primary color.
[0065] 次に、 S. M. M、忠実色再現方式(下記非特許文献 6記載の方式)、本発明の 3つ の方式について SHIPP (下記非特許文献 10参照)標準画像のカラーチャート 293 色を色変換し、その中から色変換後に色域内となった色 (本発明 199色、 S. M. M2 11色、忠実色再現方式 186色)をそれぞれスクリーンに全画面投射し、三刺激値 XY Zを分光放射輝度計で測定した。測定した三刺激値 XYZと入力の三刺激値 XYZの 色差を CIE2000色差式で求め、精度の比較を行った。結果を下記表 3に示す。 [表 3] [0065] Next, SMM, faithful color reproduction method (the method described in Non-Patent Document 6 below), and the three methods of the present invention SHIPP (see Non-Patent Document 10 below) Color Chart of Standard Image 293 Colors After conversion, the colors that fall within the color gamut after conversion (199 colors of the present invention, 11 colors of SM M2 and 186 colors of faithful color reproduction) are each projected onto the screen, and the tristimulus values XY Z are spectrally emitted. Measured with a luminance meter. The color difference between the measured tristimulus value XYZ and the input tristimulus value XYZ was calculated using the CIE2000 color difference formula, and the accuracy was compared. The results are shown in Table 3 below. [Table 3]
Figure imgf000015_0001
Figure imgf000015_0001
[0066] 上記表 3から明らかなように、本発明に係る色変換方法によれば、平均色差が 0. 6 7となり、 S. M. Mの約 4分の 1となった。また、忠実色再現方式と同等な高精度であ ることが確認できた。この色差は、 2級色差 (下記非特許文献 8参照)ではあるが、両 者を並べて判定した場合にほぼ同一と認めることができる精度である。 As apparent from Table 3 above, according to the color conversion method of the present invention, the average color difference was 0.67, which was about a quarter of S.M.M. It was also confirmed that the accuracy was as high as the faithful color reproduction method. This color difference is a second-class color difference (see Non-Patent Document 8 below), but it is an accuracy that can be recognized as almost the same when both are judged side by side.
[0067] 次に、上記 3つの方式について色変換時間を測定した。色変換に用いた画像は、 3110^の ¥2標準画像(3072 4096) 4枚でぁる。結果を下記表 4に示す。なお、 表 4に示す色変換時間は、本発明による方法で各画像を色変換した時の平均色変 換時間を 1. 0で表したときの相対値である。  [0067] Next, the color conversion time was measured for the above three methods. The images used for the color conversion are 4 3110 ^ standard images (3072 4096). The results are shown in Table 4 below. The color conversion time shown in Table 4 is a relative value when the average color conversion time when each image is color-converted by the method according to the present invention is represented by 1.0.
[表 4]  [Table 4]
Figure imgf000015_0002
Figure imgf000015_0002
[0068] 表 4から明らかなように、本発明の場合、色変換時間を忠実色再現方式の約 50分 の 1に抑えることが可能となった。 [0068] As is apparent from Table 4, in the present invention, the color conversion time can be reduced to about 1/50 of the faithful color reproduction method.
[0069] 以上のように、本発明のように色変換マトリクスをあら力じめ作成することで、表 3に 示すように忠実色再現方式と同等の色再現精度が得られた。また、下記非特許文献[0069] As described above, as shown in Table 3, color reproduction accuracy equivalent to that of the faithful color reproduction method was obtained by creating a color conversion matrix as in the present invention. In addition, the following non-patent literature
9による方式 (以下、既提案方式という)も忠実色再現方式と同等の色再現精度が得 られることが実証されて!、る。 It has been demonstrated that the method based on 9 (hereinafter referred to as the proposed method) can achieve the same color reproduction accuracy as the faithful color reproduction method! RU
[0070] 本方式と既提案方式を用いて同じデバイスプロファイル力ゝら色変換マトリクスを作成 した。各原色について作成された色変換マトリクスの数 (マトリクス変更階調値の数) の結果を表 5に示す。 [0070] Using this method and the previously proposed method, the same device profile force color conversion matrix was created. Table 5 shows the results of the number of color conversion matrices created for each primary color (number of matrix change gradation values).
[表 5] Rのマトリクス Gのマトリクス Bのマトリクス 色変換マトリクス [Table 5] R matrix G matrix B matrix Color conversion matrix
変更階調値 変更階調値 変更階調値 数合計  Changed gradation value Changed gradation value Changed gradation value Total number
の数 の数 の数  Number of numbers number of
本発明 1 0 3 5 2 0 7 0 0 0  The present invention 1 0 3 5 2 0 7 0 0 0
既提案方式 9 8 9 4 1 3 2 8 4 1  Previously proposed method 9 8 9 4 1 3 2 8 4 1
[0071] 上記表 5から明らかなように、既提案方式では、本発明より Gと Bのマトリクス変更階 調値の数が多く、 Rのマトリクス変更階調値の数が少なくなつている。既提案方式は、 色変換マトリクスを変更する階調値の判定基準に輝度が影響して、色変換マトリクス 数の増大をもたらしていた。本発明では、色変換マトリクスの作成において、輝度を 基準階調に合わせた上で色差を比較し、色度のみの差を判定基準としている。これ により、既提案方式と比較して色再現精度を同等とすることができると共に、色変換マ トリタスの数を約 4分の 1に減少させることができた。 As is clear from Table 5 above, in the proposed method, the number of G and B matrix change gradation values is larger and the number of R matrix change gradation values is smaller than in the present invention. The proposed method has increased the number of color conversion matrices due to the influence of luminance on the criteria for determining the gradation value for changing the color conversion matrix. In the present invention, in creating the color conversion matrix, the luminance difference is matched to the reference gradation and the color difference is compared, and the difference only in chromaticity is used as the criterion. As a result, the color reproduction accuracy can be made equal to that of the proposed method, and the number of color conversion matrices can be reduced to about one-fourth.
[0072] このように、本発明に係る色変換マトリクス作成方法及び色変換方法によれば、カラ 一トラッキングが生じる表示装置においても、高精度に色再現することができると共に 高速に色変換することが可能であることを確認することができた。  Thus, according to the color conversion matrix creation method and the color conversion method of the present invention, even in a display device in which color tracking occurs, color reproduction can be performed with high accuracy and color conversion can be performed at high speed. We were able to confirm that it was possible.
[0073] (非特許文献 7) G.Sharmaゝ W.Wu、 E.N.Dalal : "The CIEDE2000 Color- Difference r ormula : Implementation Notes、 supplementary 1 est Data^ and Mathematical Obs ervations、,,、 Color Research and Application ^ vol.30、 No. l (2005) .  [0073] (Non-Patent Document 7) G. Sharma ゝ W. Wu, ENDalal: "The CIEDE2000 Color- Difference r ormula: Implementation Notes, supplementary 1 est Data ^ and Mathematical Obs ervations, ..., Color Research and Application ^ vol.30, No. l (2005).
(非特許文献 8) 日本色彩学会: "新編 色彩科学ハンドブック [第 2版]"、東京大学 出版会(1998) .  (Non-patent Document 8) The Japan Society of Color Science: "New Color Science Handbook [2nd edition]", University of Tokyo Press (1998).
(非特許文献 9) 河越義之,島津喬守,大橋剛介,下平美文: "カラートラッキング に対応したディスプレイの高忠実色変換方式",第 11回画像センシングシンポジウム , pp.543- 546, (2005).  (Non-patent literature 9) Kawagoe Yoshiyuki, Shimazu Yasunori, Ohashi Gosuke, Shimohira Mifumi: "High-fidelity color conversion method of display corresponding to color tracking", 11th Symposium on Image Sensing, pp.543-546, (2005) .
(非特許文献 10) 画像電子学会:" SHIPP高精細 XYZ' CIELAB ' RGB標準画像" ( 1997) .  (Non-Patent Document 10) The Institute of Image Electronics Engineers of Japan: "SHIPP High-Definition XYZ 'CIELAB' RGB Standard Image" (1997).
産業上の利用可能性  Industrial applicability
[0074] 本発明は、カラートラッキングが生じる表示装置等において忠実な色再現が可能と なる高精度で且つ高速な色変換が可能な色変換マトリクス作成方法及び色変換方 法として利用可能である。 The present invention can be used as a color conversion matrix creation method and a color conversion method capable of high-accuracy and high-speed color conversion that enables faithful color reproduction in a display device or the like in which color tracking occurs.

Claims

請求の範囲 The scope of the claims
[1] XYZ表色系の三刺激値 XYZから RGB表色系の RGB信号値に変換するための色 変換マトリクスを作成する色変換マトリクス作成方法であって、  [1] A color conversion matrix creating method for creating a color conversion matrix for converting from XYZ tristimulus values XYZ to RGB color system RGB signal values,
所定階調の三刺激値 XYZに対応する RGB信号値を所定の色変換マトリクスを用 いて求めるステップと、  Obtaining RGB signal values corresponding to tristimulus values XYZ of a predetermined gradation using a predetermined color conversion matrix;
求めた RGB信号値に対応する RGB階調値を所定の表示装置の中間調再現特性 から求めるステップと、  Obtaining an RGB gradation value corresponding to the obtained RGB signal value from halftone reproduction characteristics of a predetermined display device;
求めた RGB階調値に対応する三刺激値 XYZを前記表示装置のデバイスプロファ ィルから求めるステップと、  Obtaining tristimulus values XYZ corresponding to the obtained RGB gradation values from the device profile of the display device;
求めた所定階調の三刺激値 XYZの輝度を基準階調の三刺激値 XYZの輝度に合 わせた上で、前記所定階調の三刺激値 XYZと前記基準階調の三刺激値 XYZとの 色差を求めるステップと、  The tristimulus value XYZ of the predetermined gradation is matched with the tristimulus value XYZ of the reference gradation, and the tristimulus value XYZ of the predetermined gradation and the tristimulus value XYZ of the reference gradation are determined. Obtaining the color difference of
求めた色差が予め定めた閾値を越える場合、当該所定階調の三刺激値 XYZに基 づいて色変換マトリクスを作成して記憶すると共に、前記基準階調を当該所定階調 に変更するステップと、  When the obtained color difference exceeds a predetermined threshold, a color conversion matrix is created and stored based on the tristimulus values XYZ of the predetermined gradation, and the reference gradation is changed to the predetermined gradation; ,
前記所定階調を 1階調又は複数階調変更するステップと、  Changing the predetermined gradation to one gradation or a plurality of gradations;
を含む処理を全階調につ!ヽて繰り返し実行する処理を、 RGB各原色にっ ヽて実行 する  Execute the process that includes all the gradations and repeat it for each RGB primary color.
ことを特徴とする色変換マトリクス作成方法。  A color conversion matrix creation method characterized by the above.
[2] 前記所定の表示装置は、カラートラッキングが生じる表示装置であることを特徴とす る請求項 1記載の色変換マトリクス作成方法。 2. The color conversion matrix creating method according to claim 1, wherein the predetermined display device is a display device in which color tracking occurs.
[3] XYZ表色系の三刺激値 XYZから RGB表色系の RGB信号値に変換する色変換方 法であって、 [3] XYZ color system tristimulus values A color conversion method that converts XYZ to RGB color system RGB signal values,
三刺激値 XYZを入力するステップと、  Inputting the tristimulus values XYZ;
入力された三刺激値 XYZに対応する RGB信号値を予め定めた色変換マトリクスを 用いて求めるステップと、  Obtaining RGB signal values corresponding to the input tristimulus values XYZ using a predetermined color conversion matrix;
求めた RGB信号値に対応する RGB階調値を所定の表示装置の中間調再現特性 から求めるステップと、 求めた RGB階調値に対応する色変換マトリクスを前記請求項 1又は請求項 2記載 の色変換マトリクス作成方法により作成された色変換マトリクスの中から選択するステ ップと、 Obtaining an RGB gradation value corresponding to the obtained RGB signal value from halftone reproduction characteristics of a predetermined display device; A step of selecting a color conversion matrix corresponding to the obtained RGB gradation value from the color conversion matrices created by the color conversion matrix creating method according to claim 1 or claim 2;
入力された三刺激値 XYZに対応する RGB信号値を選択した色変換マトリクスによ り求めるステップと、  Obtaining an RGB signal value corresponding to the input tristimulus values XYZ from the selected color conversion matrix;
求めた RGB信号値に対応する RGB階調値を前記中間調再現特性カゝら求めるステ ップと、  A step of obtaining an RGB gradation value corresponding to the obtained RGB signal value from the halftone reproduction characteristics,
を含むことを特徴とする色変換方法。  A color conversion method comprising:
PCT/JP2007/050725 2006-01-18 2007-01-18 Color conversion matrix creation method and color conversion method WO2007083717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007554958A JPWO2007083717A1 (en) 2006-01-18 2007-01-18 Color conversion matrix creation method and color conversion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-009871 2006-01-18
JP2006009871 2006-01-18

Publications (1)

Publication Number Publication Date
WO2007083717A1 true WO2007083717A1 (en) 2007-07-26

Family

ID=38287669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050725 WO2007083717A1 (en) 2006-01-18 2007-01-18 Color conversion matrix creation method and color conversion method

Country Status (2)

Country Link
JP (1) JPWO2007083717A1 (en)
WO (1) WO2007083717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476722A (en) * 2009-12-29 2011-07-06 Intel Corp Colour Gamut Space Conversion
US9025222B1 (en) 2014-06-24 2015-05-05 Xerox Corporation Scanner calibration using inverse matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAGOE Y. ET AL.: "Color-Tracking ni Taio Shita Display no Ko Chujitsu Iro Henkan Hoshiki (High Fidelity Color Conversion Method to Solve the Color Tracking Problem)", DAI 11 KAI SYMPOSIUM ON SENSING VIA IMAGE INFORMATION KOEN RONBUNSHU, 2005, pages 543 - 546, XP003015442 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476722A (en) * 2009-12-29 2011-07-06 Intel Corp Colour Gamut Space Conversion
GB2476722B (en) * 2009-12-29 2013-08-28 Intel Corp Techniques for adapting a colour gamut
US8654141B2 (en) 2009-12-29 2014-02-18 Intel Corporation Techniques for adapting a color gamut
US9025222B1 (en) 2014-06-24 2015-05-05 Xerox Corporation Scanner calibration using inverse matrix

Also Published As

Publication number Publication date
JPWO2007083717A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4938669B2 (en) Color processing method and apparatus
EP2011326A2 (en) Maintenance of accurate color performance of displays
KR101657165B1 (en) Print controling terminal unit and method for color revising
JP2012004931A (en) Print preview apparatus and program
US8681401B2 (en) Method for optimizing display profiles
CN110738957B (en) Display system and color characteristic measurement method
JPH11355798A (en) Correction data generation method of image display device
WO2007083717A1 (en) Color conversion matrix creation method and color conversion method
JP4090756B2 (en) Image display device and color conversion method
JP5322326B2 (en) Color correction table calculation circuit, color correction device, display device, color correction method, and program
JP4633806B2 (en) Color correction techniques for color profiles
JP2007274600A (en) Color conversion matrix forming method and color conversion apparatus
JP5648496B2 (en) Document reader
EP1701554B1 (en) Color display system with accurate conversion between the RGB and XYZ colorimetric systems
TWI717005B (en) Display system and method for measuring color characteristic
JP3292519B2 (en) Image processing device
JP5748236B2 (en) Color correction information generation method and color correction apparatus
JP2013207411A (en) Color adjustment device, color adjustment system, and program
JP2002247396A (en) Method and device for correcting color of printer
KR20090008023A (en) Scanner color correction device and control method thereof
JP2002149143A (en) Color calibration method and device
JP4793705B2 (en) Color conversion device
JP2011197428A (en) Gradation correction device, display, and gradation correction method
WO2012074014A1 (en) Image color estimation method, image color estimation device, and image color estimation program
EP2615821A1 (en) Output profile for colour reproduction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007554958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707029

Country of ref document: EP

Kind code of ref document: A1