WO2007083562A1 - Composite cooling apparatus - Google Patents

Composite cooling apparatus Download PDF

Info

Publication number
WO2007083562A1
WO2007083562A1 PCT/JP2007/050234 JP2007050234W WO2007083562A1 WO 2007083562 A1 WO2007083562 A1 WO 2007083562A1 JP 2007050234 W JP2007050234 W JP 2007050234W WO 2007083562 A1 WO2007083562 A1 WO 2007083562A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
vacuum
cold air
vacuum cooling
cooled
Prior art date
Application number
PCT/JP2007/050234
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Wakasa
Yukihiro Isshiki
Original Assignee
Miura Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006010880A external-priority patent/JP4827009B2/en
Priority claimed from JP2006013550A external-priority patent/JP4748388B2/en
Application filed by Miura Co., Ltd. filed Critical Miura Co., Ltd.
Publication of WO2007083562A1 publication Critical patent/WO2007083562A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D7/00Devices using evaporation effects without recovery of the vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/02Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour using fluid jet, e.g. of steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/16Sensors measuring the temperature of products

Definitions

  • the present invention relates to a composite cooling apparatus capable of performing vacuum cooling and cooling air cooling.
  • a cold air cooling device called a blast chiller for cooling food with cold air and a vacuum cooling device for vacuum cooling food are known.
  • the cooling by the cold air cooling device is mainly cooling by convective heat transfer between the cold air and the food surface, there is a problem that it takes a long time, for example, 90 minutes, and the food surface and the central portion It is difficult to cool them uniformly.
  • the vacuum cooling device is capable of rapid cooling up to about 20 ° C, but after that, the cooling rate decreases rapidly, so that the cooling capacity is low due to the fact that it goes around the field.
  • cooling to the chilled region has been difficult. If it is attempted to cool down to the chilled region, it is necessary to significantly increase the cooling capacity of the vacuum cooling means, that is, the ultimate vacuum.
  • many vacuum cooling devices do not need to be cooled to the chilled region, and ordinary vacuum cooling does not require an increased cooling capacity in terms of cooling rate. Therefore, it is not economical to increase the cooling capacity of the vacuum cooling means only for cooling to the chilled region.
  • Patent Document 1 By the way, as a combined cooling device capable of vacuum cooling and cold air cooling, the one described in Patent Document 1 is known.
  • this composite cooling device an object to be cooled is first cooled by cold air cooling, and then cooled to a predetermined temperature by vacuum cooling.
  • cooling is not performed in a short time, and cooling is performed in the order of cold air cooling ⁇ vacuum cooling. Therefore, when cooling to a low temperature in the chilled region, the cooling time becomes longer and the cooling of the vacuum cooling means is reduced. There was a problem that the capacity had to be large and the equipment of the vacuum cooling means would be large.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2002-318051
  • a main problem to be solved by the present invention is to enable low-temperature cooling in a short time.
  • the incidental problem is to maintain the cooling quality of the object to be cooled.
  • the present invention has been made to solve the above-mentioned problems.
  • the invention according to claim 1 includes a vacuum cooling means for vacuum-cooling an object to be cooled in a cooling chamber, and cooling the object to be cooled with cold air.
  • a controller for controlling the vacuum cooling means and the cool air cooling means, the cooling time by the vacuum cooling means, the pressure in the cooling chamber, the same temperature, the object to be cooled , Or the pressure in the cooling chamber, the temperature of the object to be cooled, and the temperature of the object to be cooled are detected.
  • the controller includes a vacuum cooling step performed by the vacuum cooling unit.
  • the cold air cooling process by the cold air cooling means is sequentially performed, and when the detection value of the detection means reaches a set value, the vacuum cooling process power is also switched to the cold air cooling process.
  • the cooling air cooling process capable of cooling to a low temperature is performed, and a decrease in vacuum cooling capacity is detected by detecting either the pressure or temperature in the cooling chamber or the temperature of the object to be cooled, or the pressure in the cooling chamber. Since it is detected by the amount of change in either the temperature or the temperature of the object to be cooled and switched to cold air cooling, the object to be cooled can be cooled to a low temperature in a short time even if it has a relatively low vacuum cooling capacity.
  • the invention according to claim 2 includes: a vacuum cooling means for vacuum cooling the object to be cooled in a cooling chamber; a cold air cooling means for cooling the object to be cooled with cold air; the vacuum cooling means and the cold air cooling means.
  • a cooling device having a controller for controlling, wherein the vacuum cooling characteristics of the vacuum cooling means are slowed down in the latter period when the vacuum cooling speed of the previous period is high, and the cold air cooling means of the cold air cooling means is Characteristics of the cooling air cooling rate is the vacuum cooling rate of the previous term It is assumed that the controller is faster than the later slowed vacuum cooling rate, and the controller performs a cooling step by the cooling unit after performing a vacuum cooling step by the vacuum cooling unit, and also performs the vacuum cooling step. It is characterized in that the vacuum cooling process power is switched to the cold air cooling process at the timing when the latter vacuum cooling rate by the means falls below the cold air cooling speed.
  • the vacuum cooling process capable of cooling to a low temperature is performed after the vacuum cooling process capable of rapid and uniform cooling is performed at the most advanced stage. It is possible to cool the object to be cooled to a low temperature in a short time without increasing the cooling capacity.
  • the invention of claim 3 is characterized in that, in claim 2, the cooling time by the vacuum cooling means, the pressure in the cooling chamber, the same temperature, the temperature of the object to be cooled, or the pressure in the cooling chamber, the same temperature and Detecting means for detecting any amount of change in temperature of the object to be cooled, and the controller switches to the vacuum cooling process force to the cold air cooling process when the detection value of the detecting means reaches a set value. It is characterized by that.
  • the invention of claim 4 is characterized in that, in claim 1 to claim 3, the controller performs a cold air cooling step by the cold air cooling means before performing the vacuum cooling step. Yes.
  • the high-temperature object to be cooled is subjected to rough heat removal in the cold air cooling step, and then rapid cooling is performed. Since the air cooling process is performed and then the cold air cooling process capable of low temperature cooling is performed, the initial temperature is relatively high, and the object to be cooled can be cooled to a low temperature in a short time. Play.
  • the invention according to claim 5 is the first cooling according to claim 4, wherein the controller sequentially performs a first cooling process for vacuum cooling the object to be cooled and a cooling air cooling process for cooling the object to be cooled with cold air.
  • the program, the first cold air cooling process that cools the object to be cooled, the vacuum cooling process that cools the object to be cooled, and the second cold air cooling process that cools the object to be cooled are sequentially performed.
  • the second cooling program can be selected.
  • the controller selectively executes the first cooling program and the second cooling program, There is an effect that appropriate cooling according to the cooling object can be performed.
  • the invention according to claim 6 comprises: a vacuum cooling means for vacuum cooling the object to be cooled in a cooling chamber; a cold air cooling means for cooling the object to be cooled with cold air; the vacuum cooling means and the cold air cooling means.
  • the object to be cooled can be cooled to a low temperature in a short time. Can be cooled.
  • the vacuum cooling process is performed in two stages by the first vacuum cooling means and the second vacuum cooling means, the energy required for the operation of the vacuum cooling means can be reduced, and the object can be cooled by rapid cooling. Deterioration of the quality of food becomes a problem.
  • the invention of claim 7 is the invention of claim 6, wherein the cooling time by the first vacuum cooling means and the second vacuum cooling means, the pressure in the cooling chamber, the same temperature, the temperature of the object to be cooled, Or a detecting means for detecting a change amount of any of the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled, and the controller is configured to detect when the detected value of the detecting means becomes a first set value.
  • the first vacuum cooling step is switched to the second vacuum cooling step, and when the detected value reaches the second set value, the second vacuum cooling step is switched to the cold air cooling step.
  • the switching timing from the first vacuum cooling step to the second vacuum cooling step and the second vacuum cooling step force there is an effect that the switching timing to the cold air cooling process can be appropriately set.
  • the invention according to claim 8 is the invention according to claim 6 or claim 7, wherein the first vacuum cooling means is a first vacuum cooling in which the vacuum cooling rate slows down in the latter period when the vacuum cooling rate in the previous period is high.
  • the second vacuum cooling means has a second vacuum cooling characteristic in which the vacuum cooling rate slows down in the latter period when the vacuum cooling rate of the previous period is high, and the cold air cooling means has the cold air cooling characteristic.
  • the cool air cooling rate is faster than the slowed-down vacuum cooling rate in the latter period, which is slower than the first vacuum cooling rate in the first vacuum cooling unit and the second vacuum cooling unit, and the controller includes the second vacuum cooling unit.
  • the second vacuum cooling step is switched to the cold air cooling step at a timing when the vacuum cooling rate in the latter stage is lower than the cold air cooling rate.
  • the vacuum cooling process capable of rapid cooling and uniform cooling is performed as much as possible before the temperature is lowered to a low temperature. Since the cool air cooling process that can be cooled is performed, the cooling target can be cooled to a low temperature in a short time.
  • the invention according to claim 9 is the invention according to claim 6 or 7, wherein the cold air cooling means cools the air in the cooling chamber by indirect heat exchange with a heat exchanger for cooling.
  • the first vacuum cooling means is configured to perform a first vacuum cooling step by operating a decompressor connected to the cooling chamber, and the second vacuum cooling means is configured to lower the cooling chamber under a low pressure.
  • the second vacuum cooling process is performed by condensing the steam of the object to be cooled by the heat exchanger for cooling in the sealed state.
  • the invention of claim 10 is the invention according to claim 6 or claim 7, wherein the decompression line connected to the cooling chamber, the steam ejector provided in the decompression line, the heat exchanger for condensation, and A pressure reducer, and the first vacuum cooling means is configured to execute a first vacuum cooling step by the operation of the pressure reducer, and the second vacuum cooling means includes the steam ejector and the heat exchange for condensation.
  • a second vacuum cooling step is performed by operating the pressure reducer and the pressure reducer. It is configured to be characterized by that.
  • the invention according to claim 11 is the method according to claim 6 or 7, wherein the controller performs the cold air cooling step by the cold air cooling means before performing the first vacuum cooling step. It is a feature.
  • the high-temperature object to be cooled is subjected to rough heat removal in the cold air cooling step, and then rapid cooling is performed.
  • the first vacuum cooling process is possible!
  • the second vacuum cooling process which can be quickly cooled with a bowl, is carried out, followed by the cold air cooling process that allows low-temperature cooling, so the initial temperature is relatively high. If the object to be cooled can be cooled to a low temperature in a short time, there will be an effect!
  • FIG. 1 is an explanatory diagram for explaining a schematic configuration of Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart for explaining a cooling program according to the first embodiment.
  • FIG. 3 is a flowchart for explaining another cooling program of the first embodiment.
  • FIG. 4 is a flowchart for explaining another cooling program of the first embodiment.
  • FIG. 5 is a flowchart for explaining another cooling program of the first embodiment.
  • FIG. 6 is a flowchart for explaining another cooling program of the first embodiment.
  • FIG. 7 is an explanatory view illustrating a schematic configuration of Embodiment 2 of the present invention.
  • FIG. 8 is an explanatory diagram illustrating a schematic configuration of Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart illustrating a cooling program according to another embodiment of the present invention. Explanation of symbols
  • the embodiment of the present invention is applied to a composite cooling apparatus capable of cooling an object to be cooled by cold air cooling and vacuum cooling.
  • the first embodiment includes a vacuum cooling means for cooling the object to be cooled in the cooling chamber, a cold air cooling means for cooling the object to be cooled with cold air, and a controller for controlling the vacuum cooling means and the cold air cooling means.
  • a composite cooling device that detects either the cooling time by the cooling means, the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled, or the pressure, the same temperature, and the temperature in the cooling chamber;
  • the controller includes a detecting means for detecting any amount of change in the temperature of the object to be cooled, and the controller sequentially performs a cold air cooling process for cooling the object to be cooled with cold air after the vacuum cooling process based on a cooling program, When the detection value of the detection means reaches a set value, the vacuum cooling process power is also switched to the cold air cooling process.
  • the cooling by the vacuum cooling means is performed by setting the pressure around the object to be cooled below the pressure corresponding to the temperature of the object (hereinafter referred to as the product temperature).
  • the object to be cooled is cooled by evaporating the moisture in the object.
  • This cooling is uniform cooling with a small temperature difference between the surface of the object to be cooled and the central portion.
  • This vacuum cooling characteristic is that the vacuum cooling rate in the latter period when the vacuum cooling rate in the previous period is faster becomes slower than that in the previous period.
  • This vacuum cooling characteristic is a time-pressure characteristic determined by the vacuum cooling means, and the temperature of the object to be cooled (hereinafter referred to as the product temperature) draws a curve that substantially conforms to this vacuum cooling characteristic except for the initial process. It goes down exponentially.
  • the cold air cooling characteristic of the cold air cooling means is that the cold air cooling rate is the vacuum cooling rate of the previous period. It is assumed that it is faster than the slowed-down vacuum cooling rate in the later stage.
  • This cold air cooling is cooling by indirect heat exchange with the surrounding air on the surface of the object to be cooled. For this reason, the object to be cooled cannot be uniformly cooled in a short time.
  • the cold air cooling characteristic is a one-time product temperature characteristic by the cold air cooling means, and the slope of the decrease in the product temperature is a gentler characteristic curve than that of the vacuum cooling characteristic.
  • the controller performs a cold air cooling step by the cold air cooling unit after performing a vacuum cooling step by the vacuum cooling unit based on a cooling program stored in advance.
  • the cooling program of this embodiment includes a program for cooling an object to be cooled to a chilled region in a short time. In the first half of the vacuum cooling process, the product temperature at which the vacuum cooling rate is fast decreases rapidly. Since the vacuum cooling rate decreases at the later stage of the vacuum cooling step, the cold air cooling step is executed instead of the vacuum cooling step. The cold air cooling rate in the cold air cooling step is slower than the vacuum cooling rate in the previous period of the vacuum cooling step, but it can be cooled to a chilled region.
  • the switching timing from the vacuum cooling step to the cold air cooling step is preferably a timing at which the latter vacuum cooling rate is lower than the cold air cooling rate.
  • the switching from the vacuum cooling process to the cold air cooling process includes detection means for detecting any one of the cooling time by the vacuum cooling means, the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled.
  • the control is performed by the controller.
  • the detection means detects any amount of change in the pressure in the cooling chamber, the temperature in the cooling chamber, or the temperature of the object to be cooled, and when the detected value becomes a set value, the vacuum cooling process force the cold air It can comprise so that it may switch to a cooling process.
  • the first switching timing in which the "late-stage vacuum cooling rate is lower than the cold air cooling rate" described above continuously monitors the vacuum cooling rate in the vacuum cooling step, and the cold air in the cold air cooling step. Compared to the cooling rate, the former can be at a timing slower than the latter. This timing can be set with a slight width before and after the timing at which the latter vacuum cooling rate becomes equal to the cold air cooling rate. Also, this first conversion timing can be determined based on the integrated values per unit time of the vacuum cooling rate and the cold air cooling rate that are pinpointed. In addition, the first switching timing is It may be when the pressure or temperature in the rejection chamber becomes a value obtained by adding a set value to the final ultimate pressure or temperature due to the vacuum cooling characteristics. The final ultimate pressure (temperature) means a pressure (temperature) that can be finally reached although it takes an infinite time depending on the vacuum cooling characteristics.
  • the first switching timing is determined in advance through experiments from the start of cooling to the elapsed time (cooling time) from the start of cooling to the “late stage vacuum cooling rate is lower than the cold air cooling rate”, the pressure in the cooling chamber, the cooling
  • the amount of change between the indoor temperature, the temperature of the object to be cooled, or the pressure in the cooling room, the same temperature, and the temperature of the object to be cooled is obtained as a set value, and the detected value by the detecting means is It can be when the set value is reached.
  • the first switching timing is set when the time required for the vacuum cooling step and the cold air cooling step (set cooling time) and the cooling temperature to be reached (set cooling temperature) are set.
  • the cooling time, the vacuum cooling characteristic, and the cold air cooling characteristic can be set.
  • the outline of this setting is as follows. In the time (horizontal axis) -temperature (vertical axis) characteristic, the cold air cooling characteristic curve (time-temperature characteristic curve) is set so that the final point determined by the set cooling time and the set cooling temperature is the end point.
  • the first switching timing is defined as a point crossing the time-product temperature characteristic curve corresponding to the vacuum cooling characteristic.
  • the cooling chamber may be of any type, type and size as long as it forms a sealed space for accommodating the object to be cooled and can take in and out the object to be cooled.
  • This cooling chamber can be called a cooling tank, a cooling compartment, a cooling container, or the like.
  • the object to be cooled is preferably used as a food.
  • the present invention is not limited to this.
  • the vacuum cooling means includes a decompression line connected to the cooling chamber, and decompression means (decompressor) provided in the decompression line.
  • the decompressor can be a vacuum line or a water ejector.
  • the decompressor may be a combination of a steam ejector, heat exchanger for steam condensation, and a vacuum pump or water ejector.
  • the vacuum pump is preferably a water ring vacuum pump.
  • the cold air cooling means cools an object to be cooled with cold air.
  • the cold air cooling means includes a cooling heat exchanger that cools the air in the cooling chamber, a fan that circulates the air in the cooling chamber, and the object to be cooled and the cooling heat exchanger.
  • a circulation path forming member that forms a circulation path so that an air circulation flow is formed by the fan.
  • the circulation path is preferably formed in the cooling chamber by arranging the heat exchanger and the fan in the cooling chamber, but the heat exchanger and Z or the fan are arranged outside the cooling chamber.
  • a circulation path can be configured by connecting these and the cooling chamber with a ventilation duct.
  • the cooling heat exchanger is a low temperature capable of cooling an object to be cooled to a chilled region by cooling with cold air.
  • the liquid refrigerant supplied from the condensing unit of the refrigerator is evaporated and the heat exchange is performed by indirect heat exchange. Configures the evaporator power to cool the air in the cooling chamber.
  • the cooling heat exchange can be a heat exchange using a cold water supplied from a chilled water production apparatus (chiller) or a brine supplied from a blownler as a refrigerant.
  • the controller controls operations of the vacuum cooling means and the cold air cooling means according to the cooling program stored in advance.
  • the cooling program includes at least a program for performing a cold air cooling process by the cold air cooling means after performing a vacuum cooling process by the vacuum cooling means. The outline of this program is as described above. Also
  • This cooling program includes a program that performs only vacuum cooling, a program that performs only vacuum cooling, a program that performs cooling air cooling, vacuum cooling and cooling air cooling sequentially, a program that performs only cooling air cooling, A program that sequentially performs cooling and vacuum cooling can be included, and these programs can be selectively executed according to the type of the object to be cooled and the set cooling temperature.
  • the outside air is introduced into the cooling chamber without using the cooling heat exchanger, and the outside air is supplied to the object to be cooled. After hitting, it can be done by discharging.
  • the second embodiment includes a vacuum cooling unit that vacuum-cools an object to be cooled in a cooling chamber, a cold air cooling unit that cools the object to be cooled, and a controller that controls the vacuum cooling unit and the cold air cooling unit.
  • the vacuum cooling means includes a first vacuum cooling means having a first vacuum cooling characteristic and a second vacuum cooling means having a second vacuum cooling characteristic
  • the controller includes the controller The first vacuum cooling step by the first vacuum cooling means, the second vacuum cooling step by the second vacuum cooling means, and the cold air cooling step by the cold air cooling means are sequentially switched and performed.
  • the controller Switching from one vacuum cooling step to the second vacuum cooling step can be configured to switch from the second vacuum cooling step to the cold air cooling step when the detected value reaches a second set value.
  • the first vacuum cooling means has a first vacuum cooling characteristic in which the vacuum cooling rate decreases in the latter period when the vacuum cooling speed of the first period is high, and the second vacuum cooling means.
  • the vacuum cooling means has a second vacuum cooling characteristic in which the vacuum cooling rate slows down in the latter period when the vacuum cooling speed of the previous period is high, and the cold air cooling means has the cold air cooling characteristic of the first vacuum.
  • the cooling means and the second vacuum cooling means are faster than the vacuum cooling rate of the latter stage, which is later than the vacuum cooling rate of the latter stage.
  • switching from the second vacuum cooling step to the cold air cooling step is performed at a timing when the latter vacuum cooling rate by the second vacuum cooling device is lower than the cold air cooling rate by the cold air cooling device. It is not limited to this.
  • the content of the second switching timing from the second vacuum cooling step to the cold air cooling step is the same as the first switching timing, and the description thereof is omitted.
  • the cooling time by the vacuum cooling means can be the time from the start of cooling of the first cooling means or the time of the second vacuum cooling start force.
  • the switching timing from the first vacuum cooling step to the second vacuum cooling step is preferably such that the late vacuum cooling rate by the first vacuum cooling means is higher than the cold air cooling rate by the cold air cooling unit. Force to decrease timing It is not limited to this.
  • first, rapid cooling is performed by the first vacuum cooling step, and when the vacuum cooling rate is decreased, rapid cooling is performed by the second vacuum cooling step, and when the vacuum cooling rate is decreased, Move to cold air cooling process.
  • the cold air cooling process capable of cooling to a low temperature is performed. Therefore, the vacuum cooling means and the cold air cooling means The object to be cooled can be cooled to a low temperature in a short time without increasing the cooling capacity. Moreover, since the vacuum cooling process is performed in two stages by the first vacuum cooling means and the second vacuum cooling means, the vacuum cooling process is performed in a vacuum compared to the case of vacuum cooling with an excessive cooling capacity from the beginning of the vacuum cooling. In addition to reducing the energy required for the operation of the cooling means, it is possible to suppress the deterioration of the quality of foods where the quality of the object to be cooled is a problem due to rapid cooling.
  • the first vacuum cooling means and the second vacuum cooling means can be configured as follows as a first aspect suitable for a composite cooling device having a relatively small cooling capacity.
  • the cold air cooling means is configured to cool the air in the cooling chamber by indirect heat exchange with a cooling heat exchanger.
  • the first vacuum cooling means is configured to execute the first vacuum cooling by the operation of a decompressor connected to the cooling chamber.
  • the second vacuum cooling means is configured to perform the second vacuum cooling step by condensing the vapor of the object to be cooled by the cooling heat exchanger with the cooling chamber sealed under a low pressure.
  • the cooling heat exchanger is not limited as long as it can cool the object to be cooled to the chilled region, but preferably has a cooling action by evaporation of the refrigerant supplied from the refrigerator.
  • the decompressor of the first vacuum cooling means may be a vacuum pump or a water ejector.
  • the vacuum pump is preferably a water ring vacuum pump.
  • the second vacuum cooling means includes a decompressor for sealing the cooling chamber.
  • a decompressor for sealing the cooling chamber.
  • an open / close valve is provided between the cooling chamber and the pressure reducer, and the open / close valve is closed when the second vacuum cooling means is operated, whereby the cooling chamber can be sealed.
  • the operation of the first vacuum cooling means is to open the on-off valve and operate the pressure reducer, and the operation of the second cooling means is that the cooling chamber is in a low pressure state.
  • the on-off valve is closed and the cooling heat exchanger is operated, that is, the refrigerant is supplied to perform the cooling action.
  • the second vacuum cooling step steam is generated from the object to be cooled in a sealed space under reduced pressure, and the generated steam is condensed on the surface of the heat exchanger for cooling. Promotes evaporation from.
  • This air exclusion step is preferably configured to exclude air by supplying steam or hot water to the cooling chamber and filling the cooling chamber with steam while evacuating by operating the decompressor. Further, the air exclusion step can be configured to be performed in the order of the exhaust gas ⁇ the steam supply ⁇ the exhaust gas, and this can be performed once or a plurality of times.
  • the second vacuum cooling step is performed using the cooling heat exchanger as a cold trap for condensing the vapor from the object to be cooled not only for cooling the cold air.
  • the cooling heat exchanger as a cold trap for condensing the vapor from the object to be cooled not only for cooling the cold air.
  • the first vacuum cooling means and the second vacuum cooling means can be configured as follows as a second aspect suitable for a composite cooling device having a relatively large cooling capacity. That is, the decompression line, the steam ejector provided in the decompression line, the heat exchanger for condensation, and the decompressor are provided. And said 1st vacuum cooling means is comprised so that a 1st vacuum cooling process may be performed by the action
  • the second vacuum cooling means is configured to execute the second vacuum cooling step by operating the steam ejector and the heat exchanger for condensation in addition to the operation of the decompressor. To do.
  • the cold air cooling means is configured to cool the air in the cooling chamber by indirect heat exchange with the cooling heat exchanger.
  • the first vacuum cooling step is performed by the operation of the first vacuum cooling means of the second aspect, that is, the operation of the decompressor.
  • the second vacuum cooling step is performed by the operation of the second vacuum cooling means, that is, the operation of the decompressor.
  • FIG. 1 is a schematic configuration diagram of the first embodiment
  • FIGS. 2 to 6 are flowcharts for explaining a main part of a control procedure of the first embodiment.
  • the composite cooling device 1 of the first embodiment is a cooling device capable of performing vacuum cooling and cold air cooling, and can selectively execute various cooling patterns, and can also perform an object temperature to be cooled (hereinafter, referred to as "cooled object temperature").
  • Product temperature can be cooled to a low temperature in the chilled region in a short time.
  • the combined cooling device 1 includes a cooling chamber 2, a vacuum cooling means 4 for cooling the object 3 in the cooling chamber 2 in a vacuum, a cold air cooling means 5 for cooling the object 3 to be cooled, A vacuum cooling means 4 and a controller 6 for controlling the cold air cooling means 5 are provided as main parts.
  • the controller 6 is provided with a timer 7 by software. Based on the cooling program stored in advance, the controller 6 performs the vacuum cooling process of the object 3 to be cooled by the vacuum cooling means 4, and then the detection value (measurement time) by the timer 7 becomes a set value. At this time, it is configured to perform control to switch between the vacuum cooling of the object 3 to be cooled by the vacuum cooling means 4 and the cold air cooling of the object 3 to be cooled by the cold air cooling means 5.
  • the cooling chamber 2 forms a sealed space in which the object to be cooled 3 is accommodated, and includes an opening for taking in and out the object to be cooled 3 and a door for opening and closing the object (both not shown).
  • the cooling chamber 2 is divided into an upper first region 81 and a lower second region 82 by a partition wall 8.
  • the cooling heat exchanger 9 constituting a part of the cold air cooling means 5 is arranged.
  • the object to be cooled 3 is a food contained in a container.
  • the cooling heat exchanger 9 includes a condenser (not shown) that liquefies the refrigerant of the refrigerator 10.
  • the liquid refrigerant supplied from the condensing unit 11 has a well-known evaporator that performs a cooling action by evaporating.
  • the cold air cooling means 5 cools the object 3 to be cooled with cold air.
  • the cold air cooling means 5 is a fan 13 as an air circulating means driven by the cooling heat exchanger 9 for cooling the air in the cooling chamber 2 and a motor 12 arranged outside the cooling chamber 2. Including. Then, openings (or gaps) 14 and 14 are provided between the constituent wall of the cooling chamber 2 and the partition wall 8 to form an air circulation path (not shown) in the cooling chamber 2.
  • the cooling air cooling function is configured.
  • the partition wall 8 and the component wall of the cooling chamber 2 constitute the circulation path constituting member.
  • the vacuum cooling means 4 includes a first vacuum cooling means 41 having a first vacuum cooling characteristic in which the vacuum cooling speed decreases in the latter period when the vacuum cooling speed in the previous period is high, and the vacuum cooling speed in the previous period is high. It comprises a second vacuum cooling means 42 having a second vacuum cooling characteristic in which the vacuum cooling rate slows down in the later stage.
  • the first vacuum cooling means 41 and the second vacuum cooling means 42 are specifically configured as follows. That is, the first vacuum cooling means 41 includes a decompression line 15 connected to the cooling chamber 2, a water-sealed vacuum pump 16 serving as a decompressor provided in the decompression line 15, and the previous cooling chamber. 2 and the on-off valve 17 which is located between the vacuum pump 16 and holds the cooling chamber 2 in a closed state when closed.
  • the first vacuum cooling means 41 is configured to execute the first vacuum cooling step by operating (operating) the vacuum pump 16 with the on-off valve 17 open.
  • the on-off valve 17 is a valve only for opening and closing, but can be a valve whose opening degree can be adjusted.
  • the decompression line 15 can be provided with a check valve (not shown) for preventing the flow in the direction of the cooling chamber 2 as necessary.
  • the first vacuum cooling characteristic of the first vacuum cooling means 41 having such a configuration is that the vacuum cooling rate becomes slow in the latter period when the vacuum cooling rate in the previous period is faster.
  • the second vacuum cooling means 42 has a function of condensing steam from the object to be cooled by the cooling heat exchanger 9 with the inside of the cooling chamber 2 sealed under a low pressure. It is configured to perform two vacuum cooling processes.
  • the elements constituting this second vacuum cooling means 42 are: The cooling chamber 2, the cooling heat exchanger 9, the on-off valve 17, and the first vacuum cooling means 41. Closing the inside of the cooling chamber 2 under a low pressure is realized by closing the on-off valve 17 after the first vacuum cooling step.
  • the second vacuum cooling characteristic of the second vacuum cooling means 42 having such a configuration is such that the vacuum cooling rate slows down in the latter period when the vacuum cooling rate in the previous period is faster.
  • the cold air cooling characteristic of the cold air cooling means 5 is that the cool air cooling rate is slowed down in the latter period when the cold air cooling rate is slower than the vacuum cooling speeds of the first vacuum cooling means 41 and the second vacuum cooling means 42 in the previous period. Faster than speed.
  • Example 1 in order to ensure the operation of the second vacuum cooling step, an air exclusion step is provided and executed before the first vacuum cooling step. .
  • This air exhausting step is configured to exclude air by supplying steam from the steam supply means 18 to the cooling chamber 2 and filling the cooling chamber with steam while operating the vacuum pump 16.
  • the steam supply means 18 includes a first steam supply line 19 for supplying steam into the cooling chamber 2, a steam supply source 20, and a first steam supply valve 21 that controls steam supply. Is provided.
  • the cooling chamber 2 is provided with a return pressure means 22 for returning the pressure in the cooling chamber 2 from a negative pressure to an atmospheric pressure after the vacuum cooling process.
  • the return pressure means 22 includes a return pressure line 23 connected to the cooling chamber 2, and a return pressure valve 24 and a sterilization filter 25 provided in the middle of the return pressure line 23.
  • the return pressure valve 24 can be a force open / close valve that is a valve whose opening degree is adjustable in order to adjust the return pressure speed.
  • the return pressure line 23 can be provided with a check valve (not shown) that prevents the outward flow from the inside of the cooling chamber 2.
  • the controller 6 controls operations of the first vacuum cooling means 41, the second vacuum cooling means 42, the cold air cooling means 5 and the steam supply means 18 according to the cooling program stored in advance. It is composed of
  • the product temperature sensor 26 for detecting the product temperature of the object 3 to be cooled
  • the indoor pressure sensor 27 for detecting the pressure (temperature) in the cooling chamber 2
  • the refrigeration Refrigerant pressure sensor 28 refrigerant temperature sensor 2 that detects the pressure and temperature of the refrigerant circuit of the machine 10 Has nine.
  • These sensors are connected to the controller 6 to control the condensing unit 11, the motor 12, the vacuum pump 16, the on-off valve 17, the first steam supply valve 21, the return pressure valve 24, etc. To do.
  • the cooling program includes a program (first program) for performing a cold air cooling process by the cold air cooling means 5 after performing a vacuum cooling process by the vacuum cooling means 41, 42, the cold air cooling process, the vacuum A program (second program) that sequentially performs the cooling process and the cold air cooling process, a program that performs only the vacuum cooling process (third program), a program that performs only the cold air cooling process (fourth program), and the cold air cooling And a program (fifth program) for sequentially performing the process and the vacuum cooling process.
  • These programs are configured to be executed automatically and selectively according to the type of the object to be cooled or selected by the user.
  • vacuum switching timing switching timing from the first vacuum cooling step 41 to the second vacuum cooling step 42 in the first program and the second program
  • cold air switching timing The switching timing from the vacuum cooling process to the cold air cooling process
  • the vacuum switching timing and the cold air switching timing are obtained in advance by experiments in consideration of the first vacuum cooling characteristics and the second vacuum cooling characteristics, respectively. That is, the vacuum cooling switching timing is the first set value of the elapsed time (cooling time) from the start of cooling until the late vacuum cooling rate of the first vacuum cooling step reaches the vicinity of the cold air cooling rate of the cold air cooling step. It is assumed that the measured value by the timer 7 as the detection means becomes the first set value.
  • the cold air switching timing is a second set value for the elapsed time (cooling time) from the start of cooling until the latter half of the second vacuum cooling process reaches the vicinity of the cold air cooling speed of the cold air cooling process. And when the measured value by the timer 7 becomes the second set value.
  • the first set value and the second set value have reached the pressure in the cooling chamber 2 when reaching the vicinity of the cold air cooling rate, the vicinity of the cold air cooling rate, regardless of the cooling time.
  • the temperature of the cooling chamber 2 when the temperature of the object 3 to be cooled This can be obtained from the pressure in the cooling chamber 2, the temperature in the cooling chamber 2, or the amount of change in the temperature of the object 3 to be cooled.
  • the detected value becomes the first set value by the force for detecting the indoor pressure or the indoor temperature by the indoor pressure sensor 25 and the force for detecting the product temperature by the product temperature sensor 7, Switching from one vacuum cooling process to the second vacuum cooling process, and when the detected value reaches the second set value, the second vacuum cooling process force can be switched to the cold air cooling process.
  • the user opens the door, accommodates the object 3 to be cooled in the cooling chamber 2, and closes the door to make it sealed.
  • the on-off valve 17, the first steam supply valve 21, and the return pressure valve 24 are all closed, and the motor 12, the vacuum pump 16, and the condensing unit 11 are all inactive.
  • the steam generation source 20 can be in an operating state in advance.
  • the user selects the first to fifth programs after starting operation with an operation switch (not shown).
  • This selection can be made according to the product temperature at the beginning of cooling (hereinafter referred to as the initial product temperature), the cooling temperature to be reached (set cooling temperature), and the type of the object to be cooled 3.
  • processing step S1 (hereinafter, processing step SN is simply referred to as SN) is selected from the first program to the fifth program, S2 to S6, respectively. Then, the first program to the fifth program are executed. The operation of each driving program is described below.
  • the first program is suitable for cooling foods that have an initial product temperature of about 70 ° C or less and a set cooling temperature of about 10 ° C or less, and the object to be cooled 3 contains moisture and the moisture can evaporate. ing. Now, the initial product temperature is 70 ° C and the set cooling temperature is 3 ° C.
  • This first vacuum cooling step is performed as follows.
  • the on-off valve 17 is opened, the first steam supply valve 21 is closed, the return pressure valve 24 is closed, and the vacuum pump 16 is operated.
  • the gas in the cooling chamber 2 is discharged to the outside through the decompression line 15.
  • the pressure in the cooling chamber 2 decreases in accordance with the first vacuum cooling characteristics, and the temperature of the object to be cooled 3 decreases by 70 ° C. force due to vaporization of the vapor from the object to be cooled 3 according to this pressure decrease. Go. This rate of decrease in product temperature is rapid in the initial stage, and slows down in the later stages as the temperature decreases.
  • the process proceeds to the second vacuum cooling step of S23.
  • the vacuum cooling rate at this transition point is lower than the cooling rate due to the cold air cooling characteristics of the cold air cooling means 5.
  • the product temperature at the time of this transition is approximately 20 ° C.
  • the on-off valve 17, the first steam supply valve 21 and the pressure-reducing valve 24 are closed to stop the vacuum pump 16 and to operate the condensing unit 11.
  • the temperature in the cooling heat exchanger 9 is set to about 10 ° C.
  • the temperature reduction of the cooling heat exchanger 9 by the condensing unit 11 requires a predetermined time from the start-up. It is desirable to activate the condensing unit 11 before a predetermined time.
  • this second vacuum cooling step the inside of the cooling chamber 2 is sealed at a low pressure, and the steam in the cooling chamber 2 moves to the cooling heat exchanger 9 where it is condensed.
  • the pressure in the cooling chamber 2 is maintained at a low pressure.
  • steam is continuously generated from the object to be cooled 3 and the product temperature decreases.
  • This temperature drop is made in accordance with the second vacuum cooling characteristic, and is performed rapidly in the initial stage, and the rate of decrease slows down in the later stage as the temperature decreases.
  • the process proceeds to the recovery pressure process of S24.
  • the vacuum cooling rate at the time of the transition is lower than the cooling rate due to the cold air cooling characteristics of the cold air cooling means 5.
  • the product temperature at the time of this transition is about 10 ° C.
  • the return pressure step is performed by opening the return pressure valve 24. As a result, outside air is introduced into the cooling chamber 2 through the return pressure line 23, and the inside of the cooling chamber 2 returns to atmospheric pressure. This return pressure process is detected by the indoor pressure sensor 27. When the atmospheric pressure is detected, the return pressure process is terminated, and the process proceeds to the cold air cooling process of S25.
  • the operation of the condensing unit 11 is continued and the operation of the fan 13 is stopped. However, if necessary, the operation of the condensing unit 11 can be stopped and the fan 13 can be operated.
  • the on-off valve 17, the first steam supply valve 21 and the return pressure valve 24 are closed, the vacuum pump 16 is stopped, and the condensing unit 11 and the fan 13 are operated. .
  • the cold air cooling process is terminated.
  • condensed water (drain) is generated from the surface of the object to be cooled 3 and the heat exchanger 9 for cooling, and is stored in the inner bottom of the cooling chamber 2.
  • This drain is discharged as follows.
  • the on-off valve 17 is opened and the vacuum pump 16 is operated. Then, the drain is discharged out of the cooling chamber 2 through the decompression line 15. When the drain is discharged, the drain can be discharged smoothly by opening the return pressure valve 24.
  • the user can operate the operation switch to stop the cooling operation and take out the object 3 to be cooled in the cooling chamber 2.
  • the cold air cooling process can be continued for refrigeration of the object 3 to be cooled.
  • the second program is suitable for cooling foodstuffs having an initial product temperature of about 70 ° C or higher and a set cooling temperature of 10 ° C or lower, and the object to be cooled 3 contains water and the water can evaporate. Yes. Now, the initial product temperature is 90 ° C and the set cooling temperature is 3 ° C.
  • the processing procedure shown in FIG. 4 is executed. That is, the first cold air cooling step S31 ⁇ the air evacuation step S32 ⁇ the first vacuum cooling step S33 ⁇ the second vacuum cooling step 334 ⁇ the return pressure step S35 ⁇ the second cold air cooling step S36 are sequentially executed.
  • the second program differs from the first program in that a first cold air cooling step S31 is provided before the air exhausting step S22 in Fig. 2 and the first cold air cooling step S31 to
  • the product temperature is a set value (in this example, 70 ° in the timing of switching to the vacuum cooling step (including the air exclusion step S32 ⁇ the first vacuum cooling step S33 ⁇ the second vacuum cooling step S34)). This is the point when it reached the timing of C).
  • the timing for switching from the first vacuum cooling step to the second vacuum cooling step and the timing for switching from the second vacuum cooling step to the second cold air cooling step (including the return pressure step) are respectively Since it is the same as the vacuum switching timing and the cold air switching timing, description thereof is omitted.
  • the first cold air cooling step S31 of Fig. 4 is performed in the same manner as the cold air cooling step S21 of Fig. 3. That is, cooling by the heat exchanger 9 for cooling (heat exchanger cooling) is performed, and the product temperature is lowered from 90 ° C to 70 ° C.
  • the return pressure means 22 and the on-off valve 17 are opened, and the vacuum pump 16 is operated, whereby the outside air is discharged.
  • the vacuum pump 16 is operated, whereby the outside air is discharged.
  • the object to be cooled 3 can be cooled by outside air (outside air introduction cooling). In this case, the operation of the fan 13 can be performed as necessary.
  • the object 3 to be cooled is removed by the first cold air cooling step S31.
  • the product temperature is about 70 ° C or higher, natural evaporation from the cooled object 3 where the temperature of the cooled object 3 is high is dominant, so vacuum cooling by operating the vacuum cooling means 4 is effective. Not done.
  • the cooling target 3 can be effectively cooled, and the total cooling time can be shortened.
  • the initial product temperature is about 70 ° C. or lower
  • the set cooling temperature is about 10 ° C. or higher
  • the object to be cooled 3 contains moisture, and the food that can evaporate the moisture is cooled. Is suitable.
  • the initial product temperature is 70 ° C
  • the set cooling temperature is 10 ° C.
  • the third program differs from the first program in that the cold air cooling step S25 in Fig. 2 is omitted and the end of the second vacuum cooling step 43 is the timing when the product temperature reaches 10 ° C. It is a point to be.
  • the vacuum switching timing from the first vacuum cooling step to the second vacuum cooling step is the same as the vacuum switching timing, and thus the description thereof is omitted.
  • portions of the third program different from the first program will be mainly described.
  • the air exclusion step S41, the first vacuum cooling step S42, and the second vacuum cooling means S43 are performed in the same manner as the first program in FIG.
  • the second vacuum cooling step S43 when the value detected by the product temperature sensor 26 reaches 10 ° C, the second vacuum cooling step S43 is terminated, and the return pressure step S44 is executed as in the first program. To end the cooling operation.
  • the fourth program is suitable for cooling foodstuffs that are packaged in such a way that the object to be cooled 3 does not contain moisture, and even if it contains moisture, the moisture cannot evaporate! /.
  • the cold air cooling step S5 of Fig. 2 is executed.
  • This cold air cooling step S5 is similar to the cold air cooling step S25 of FIG. 3, and closes the on-off valve 17, the first steam supply valve 21 and the return pressure valve 24 to stop the vacuum pump 16, and This is performed by operating the condensing unit 11 and the fan 13. That is, a cold air circulation flow as indicated by the dashed line in FIG. 1 is formed, and the object to be cooled 3 is cooled by this cold air circulation flow.
  • This cold air cooling step S5 ends when the value detected by the product temperature sensor 26 reaches the set cooling temperature.
  • the fifth program is suitable for cooling foodstuffs that have an initial product temperature of about 70 ° C or higher, a set cooling temperature of 10 ° C or higher, and the object to be cooled 3 contains water, and its water can evaporate. .
  • the initial product temperature is 90 ° C and the set cooling temperature is 10 ° C.
  • This fifth program differs from the second program in FIG. 4 in that the second cold air cooling step in FIG. 2 is deleted.
  • the switching from the cold air cooling step S61 to the air exclusion step S32 and the switching from the first vacuum cooling step to the second vacuum cooling step are the same as the second program in FIG. Omitted.
  • the cold air cooling step S25 or S36 that can be cooled to a low temperature after executing the vacuum cooling step S22 and S23 or S33 and S34 capable of rapid and uniform cooling. Execute. As a result, the object to be cooled can be cooled to the target low set cooling temperature in a short time.
  • the vacuum cooling process is performed in two stages by the first vacuum cooling means 41 and the second vacuum cooling means 42, cooling is performed to enhance the cooling capacity of the vacuum cooling means 4. It is possible to eliminate the need for heavy equipment.
  • the energy required for the operation of the vacuum cooling means can be reduced compared to the case of vacuum cooling with an excessive cooling capacity from the beginning of vacuum cooling, and the quality of the object to be cooled is a problem due to rapid cooling. The resulting food can suppress the quality degradation.
  • the cooling heat exchanger 9 for cooling the cold air is also used as a cold trap for condensing the vapor of the second vacuum cooling means 42, the equipment of the vacuum cooling means can be simplified. The initial cost of the combined cooling device can be reduced.
  • Example 2 Next, Embodiment 2 of the present invention will be described with reference to FIG.
  • the configuration of Example 1 is the same as that of Example 1 in that the vacuum cooling means 4 is composed of the first vacuum cooling means 41 and the second vacuum cooling means 42. The differences are mainly explained.
  • the second embodiment is different from the first embodiment in the configuration of the first vacuum cooling means 41.
  • the force used as the decompression line 15, the on-off valve 17 and the vacuum pump 16 as the constituent elements of the first vacuum cooling means 41.
  • the vacuum pump This is the point that a heat exchanger 31 for condensation is provided upstream of 16.
  • the on-off valve 17 is provided between the heat exchanger for condensation 31 and the cooling chamber 2.
  • a water supply line 32 is connected to the heat exchanger 41 for condensation.
  • the water supply to the condensing heat exchanger 31 is controlled by opening and closing the water supply valve 33 provided in the water supply line 32, and the operation of the condensing heat exchanger 31 is controlled.
  • the water supply valve 33 is controlled by the controller 6.
  • the first vacuum cooling means 41 of the second embodiment opens the on-off valve 17 and the heat exchanger for condensation.
  • the first vacuum cooling characteristic of the first vacuum cooling step is the same as that of the first vacuum cooling of the first embodiment, but the vacuum cooling capacity is the first vacuum cooling means by the cooling action of the condensation heat exchanger 31.
  • the air in the cooling chamber 2 can be efficiently removed.
  • the configuration different from the first embodiment has been described, but the other configuration is the same, and thus the description thereof is omitted.
  • the first to fifth programs are also executed in the same manner, and the description thereof is omitted.
  • Example 3 is suitable for a composite cooling device having a relatively large cooling capacity.
  • the vacuum cooling unit 4 includes the first vacuum cooling unit 41 and the second vacuum cooling unit 42.
  • the third embodiment is different from the first embodiment in the configuration of the first vacuum cooling means 41 and the second vacuum cooling means 42.
  • the first vacuum cooling means 41 is reduced-pressure exhaust cooling including the vacuum pump 16, and the second vacuum cooling means 42 is reduced-pressure hermetic cooling using the cooling heat exchanger 9.
  • both the first vacuum cooling means 41 and the second vacuum cooling means 42 are reduced-pressure exhaust cooling.
  • the configuration is as follows. That is, a heat exchanger 31 for condensation is provided upstream of the vacuum pump 16, and a steam ejector 34 is provided upstream of the heat exchanger 31 for condensation as a decompressor for the vacuum cooling means.
  • a second steam supply line 35 is connected to the steam ejector 34 and is provided in the second steam supply line 35. Then, the steam supply to the steam ejector 34 is controlled by opening and closing the second steam supply valve 33 controlled by the controller 6, and the operation of the steam ejector 34 is controlled.
  • the on-off valve 17 is provided between the steam ejector 34 and the cooling chamber 2.
  • the first vacuum cooling means 41 of the third embodiment is configured to open the on-off valve 17 and execute the first vacuum cooling step by the operation of the vacuum pump 16.
  • the first vacuum cooling characteristic of the first vacuum cooling step is the same as that of the first vacuum cooling of the first embodiment.
  • the second vacuum cooling means 42 performs the second vacuum cooling step by operating the steam ejector 34 and the heat exchanger for condensation.
  • the second vacuum cooling characteristic of the second vacuum cooling step is the same as that of the first vacuum cooling, but the vacuum cooling capacity is reduced by the cooling action of the steam ejector 34 and the heat exchanger 31 for condensation. As a result, the cooling rate becomes a rapid characteristic.
  • the second vacuum cooling step is performed using the cooling heat exchanger 9. Air-exclusion process by supplying steam before the vacuum cooling process is performed. S21, S32, S41, and S61 are omitted. In relation to this program difference, the steam supply means 18 is omitted in the third embodiment.
  • the configuration different from that of the first embodiment has been described. However, since the other configuration is the same, the description thereof is omitted.
  • the vacuum cooling process has a two-stage configuration including the first vacuum cooling process by the first vacuum cooling means 41 and the second vacuum cooling process by the second vacuum cooling means 42.
  • the composite cooling device 1 shown in FIG. 1 or FIG. 7 can be used to perform a one-stage vacuum cooling step S71 as shown in FIG. That is, the second vacuum cooling step in Example 1 and Example 2 can be omitted. Since the vacuum cooling step S71 corresponds to the first vacuum step S22 of Example 1 and Example 2, the description thereof is omitted.
  • the vacuum switching timing and the cold air switching timing are configured to be controlled by the timer 7.
  • Control can be performed based on either the detected pressure or detected temperature by the indoor pressure sensor 27 or the product temperature detected by the product temperature sensor 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

Low temperature cooling is performed in a short time. A composite cooling apparatus is provided with a vacuum cooling means (4) for vacuum-cooling a subject (3) to be cooled in a cooling chamber (2); a cold blast cooling means (5) for cooling the subject (3) with cold blast; and a controller (6) for controlling the vacuum cooling means (4) and the cold blast cooling means (5). The composite cooling apparatus is also provided with detecting means (7, 27, 26) for detecting the cooling time of the vacuum cooling means (4), the pressure and the temperature in the cooling chamber (2), the temperature of the subject to be cooled, or the changed quantity of the pressure or the temperature in the cooling chamber (2) or that of the temperature of the subject (3). The controller (6) successively performs cold blast cooling process by the cold blast cooling means (5), after vacuum cooling process by the vacuum cooling means (4). When the values detected by the detecting means (7, 27, 26) become set values, the vacuum cooling process is switched to the cold blast cooling process.

Description

明 細 書  Specification
複合冷却装置  Combined cooling device
技術分野  Technical field
[0001] この発明は、真空冷却と冷風冷却とを可能とした複合冷却装置に関する。  [0001] The present invention relates to a composite cooling apparatus capable of performing vacuum cooling and cooling air cooling.
背景技術  Background art
[0002] 従来、食品を冷却する装置として、食品を冷風により冷却するブラストチラ一と称さ れる冷風冷却装置と、食品を真空冷却する真空冷却装置とが知られて 、る。  Conventionally, as a device for cooling food, a cold air cooling device called a blast chiller for cooling food with cold air and a vacuum cooling device for vacuum cooling food are known.
[0003] 前記冷風冷却装置による冷却は、冷風と食品表面との対流伝熱による冷却が主の ため、冷却時間が、たとえば 90分と長時間を要する課題があり、かつ食品の表面と 中心部とを均一に冷却することが困難である。  [0003] Since the cooling by the cold air cooling device is mainly cooling by convective heat transfer between the cold air and the food surface, there is a problem that it takes a long time, for example, 90 minutes, and the food surface and the central portion It is difficult to cool them uniformly.
[0004] 一方、真空冷却装置は、約 20°C程度までは、急速冷却が可能であるが、その後は 冷却速度が急速に低下するために、巿場に出回って 、る冷却能力の低 、装置では 、チルド域までの冷却は困難となっていた。仮に、チルド域まで冷却しょうとすると真 空冷却手段の冷却能力,すなわち到達真空度を大幅に高める必要がある。一般に、 真空冷却装置の使用において、チルド域まで冷却する必要がないものも多くあり、か つ、通常の真空冷却においては冷却速度の点からも増強した冷却能力を必要としな い。よって、チルド域までの冷却だけのために真空冷却手段の冷却能力を高いもの とするのは、経済的ではない。  [0004] On the other hand, the vacuum cooling device is capable of rapid cooling up to about 20 ° C, but after that, the cooling rate decreases rapidly, so that the cooling capacity is low due to the fact that it goes around the field. In the device, cooling to the chilled region has been difficult. If it is attempted to cool down to the chilled region, it is necessary to significantly increase the cooling capacity of the vacuum cooling means, that is, the ultimate vacuum. In general, many vacuum cooling devices do not need to be cooled to the chilled region, and ordinary vacuum cooling does not require an increased cooling capacity in terms of cooling rate. Therefore, it is not economical to increase the cooling capacity of the vacuum cooling means only for cooling to the chilled region.
[0005] ところで、真空冷却と冷風冷却とを可能とした複合冷却装置としては、特許文献 1に 記載のものが知られている。この複合冷却装置は、被冷却物を先ず冷風冷却により 冷却した後、真空冷却により所定温度まで冷却するものである。この従来技術は、短 時間冷却を課題とせず、冷風冷却→真空冷却の順で冷却を行っているので、チルド 域の低温まで冷却しょうとすると、冷却時間が長くなるとともに、真空冷却手段の冷却 能力を大きいものとしなければならず、真空冷却手段の装置が大掛かりなものとなる 課題があった。  [0005] By the way, as a combined cooling device capable of vacuum cooling and cold air cooling, the one described in Patent Document 1 is known. In this composite cooling device, an object to be cooled is first cooled by cold air cooling, and then cooled to a predetermined temperature by vacuum cooling. In this conventional technology, cooling is not performed in a short time, and cooling is performed in the order of cold air cooling → vacuum cooling. Therefore, when cooling to a low temperature in the chilled region, the cooling time becomes longer and the cooling of the vacuum cooling means is reduced. There was a problem that the capacity had to be large and the equipment of the vacuum cooling means would be large.
[0006] 特許文献 1 :特開 2002— 318051公報  [0006] Patent Document 1: Japanese Unexamined Patent Application Publication No. 2002-318051
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0007] この出願の発明者等は、前記の課題を解決すベぐ研究開発を重ねた結果、真空 冷却手段と冷風冷却手段のそれぞれの冷却特性を活かすことにより、チルド域まで の冷却を短時間で実現可能であることを見出した。  [0007] As a result of repeated research and development to solve the above-mentioned problems, the inventors of this application have shortened the cooling to the chilled region by utilizing the respective cooling characteristics of the vacuum cooling means and the cold air cooling means. I found that it was feasible in time.
[0008] この発明が解決しょうとする主たる課題は、短時間で低温冷却を可能とすることであ る。また、付随的課題は、真空冷却装置の簡素化,冷却装置の運転に要するコスト( ランニングコスト)低減に加えて、被冷却物の冷却品質を維持することである。  [0008] A main problem to be solved by the present invention is to enable low-temperature cooling in a short time. In addition to the simplification of the vacuum cooling device and the reduction of the cost (running cost) required for operating the cooling device, the incidental problem is to maintain the cooling quality of the object to be cooled.
課題を解決するための手段  Means for solving the problem
[0009] この発明は、前記課題を解決するためになされたもので、請求項 1に記載の発明は 、冷却室内の被冷却物を真空冷却する真空冷却手段と、前記被冷却物を冷風冷却 する冷風冷却手段と、前記真空冷却手段および前記冷風冷却手段を制御する制御 器とを備える複合冷却装置であって、前記真空冷却手段による冷却時間,前記冷却 室内の圧力,同温度,被冷却物の温度,または前記冷却室内の圧力,同温度およ び前記被冷却物の温度の 、ずれかの変化量を検出する検出手段を備え、前記制御 器は、前記真空冷却手段による真空冷却工程後に前記冷風冷却手段による冷風冷 却工程を順次行うとともに、前記検出手段の検出値が設定値となったとき、前記真空 冷却工程力も前記冷風冷却工程へ切り換えることを特徴としている。 [0009] The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 includes a vacuum cooling means for vacuum-cooling an object to be cooled in a cooling chamber, and cooling the object to be cooled with cold air. And a controller for controlling the vacuum cooling means and the cool air cooling means, the cooling time by the vacuum cooling means, the pressure in the cooling chamber, the same temperature, the object to be cooled , Or the pressure in the cooling chamber, the temperature of the object to be cooled, and the temperature of the object to be cooled are detected. The controller includes a vacuum cooling step performed by the vacuum cooling unit. The cold air cooling process by the cold air cooling means is sequentially performed, and when the detection value of the detection means reaches a set value, the vacuum cooling process power is also switched to the cold air cooling process.
[0010] 請求項 1に記載の発明によれば、急速冷却が可能な真空冷却工程を実行した後に[0010] According to the invention of claim 1, after executing the vacuum cooling step capable of rapid cooling,
、低温まで冷却可能な冷風冷却工程を行うとともに、真空冷却の能力の低下を前記 冷却室内の圧力,温度,被冷却物の温度のいずれかを検出して,または前記冷却室 内の圧力,同温度および前記被冷却物の温度のいずれかの変化量により検出して 冷風冷却に切り換えるので、比較的低 、真空冷却能力であっても短時間で被冷却 物を低温まで冷却することができる。 The cooling air cooling process capable of cooling to a low temperature is performed, and a decrease in vacuum cooling capacity is detected by detecting either the pressure or temperature in the cooling chamber or the temperature of the object to be cooled, or the pressure in the cooling chamber. Since it is detected by the amount of change in either the temperature or the temperature of the object to be cooled and switched to cold air cooling, the object to be cooled can be cooled to a low temperature in a short time even if it has a relatively low vacuum cooling capacity.
[0011] 請求項 2に記載の発明は、冷却室内の被冷却物を真空冷却する真空冷却手段と、 前記被冷却物を冷風冷却する冷風冷却手段と、前記真空冷却手段および前記冷風 冷却手段を制御する制御器とを備える複合冷却装置であって、前記真空冷却手段 の真空冷却特性を前期の真空冷却速度が速ぐ後期で真空冷却速度が鈍化するも のとし、前記冷風冷却手段の冷風冷却特性を冷風冷却速度が前期の真空冷却速度 より遅ぐ後期の鈍化した真空冷却速度よりも速いものとし、前記制御器は、前記真 空冷却手段による真空冷却工程を行った後に前記冷風冷却手段による冷風冷却ェ 程を行うとともに、前記真空冷却手段による後期の真空冷却速度が前記冷風冷却速 度より低下するタイミングで真空冷却工程力 冷風冷却工程へ切り換えることを特徴 としている。 [0011] The invention according to claim 2 includes: a vacuum cooling means for vacuum cooling the object to be cooled in a cooling chamber; a cold air cooling means for cooling the object to be cooled with cold air; the vacuum cooling means and the cold air cooling means. A cooling device having a controller for controlling, wherein the vacuum cooling characteristics of the vacuum cooling means are slowed down in the latter period when the vacuum cooling speed of the previous period is high, and the cold air cooling means of the cold air cooling means is Characteristics of the cooling air cooling rate is the vacuum cooling rate of the previous term It is assumed that the controller is faster than the later slowed vacuum cooling rate, and the controller performs a cooling step by the cooling unit after performing a vacuum cooling step by the vacuum cooling unit, and also performs the vacuum cooling step. It is characterized in that the vacuum cooling process power is switched to the cold air cooling process at the timing when the latter vacuum cooling rate by the means falls below the cold air cooling speed.
[0012] 請求項 2に記載の発明によれば、急速で均一冷却が可能な真空冷却工程を最大 限先行して実行した後に、低温まで冷却可能な冷風冷却工程を行うので、前記真空 冷却手段の冷却能力を増強することなぐ短時間で被冷却物を低温まで冷却するこ とがでさる。  [0012] According to the invention described in claim 2, the vacuum cooling process capable of cooling to a low temperature is performed after the vacuum cooling process capable of rapid and uniform cooling is performed at the most advanced stage. It is possible to cool the object to be cooled to a low temperature in a short time without increasing the cooling capacity.
[0013] 請求項 3に記載の発明は、請求項 2において、前記真空冷却手段による冷却時間 ,前記冷却室内の圧力,同温度,被冷却物の温度,または前記冷却室内の圧力,同 温度および前記被冷却物の温度のいずれかの変化量を検出する検出手段を備え、 前記制御器は、前記検出手段の検出値が設定値となったとき、前記真空冷却工程 力 前記冷風冷却工程へ切り換えることを特徴としている。  [0013] The invention of claim 3 is characterized in that, in claim 2, the cooling time by the vacuum cooling means, the pressure in the cooling chamber, the same temperature, the temperature of the object to be cooled, or the pressure in the cooling chamber, the same temperature and Detecting means for detecting any amount of change in temperature of the object to be cooled, and the controller switches to the vacuum cooling process force to the cold air cooling process when the detection value of the detecting means reaches a set value. It is characterized by that.
[0014] 請求項 3に記載の発明によれば、請求項 2による効果に加えて、真空冷却から冷風 冷却への切り換えタイミングを適切に設定することができるという効果を奏する。  [0014] According to the invention of claim 3, in addition to the effect of claim 2, there is an effect that the switching timing from the vacuum cooling to the cold air cooling can be set appropriately.
[0015] 請求項 4に記載の発明は、請求項 1〜請求項 3において、前記制御器は、前記真 空冷却工程を行う前に前記冷風冷却手段による冷風冷却工程を行うことを特徴とし ている。  [0015] The invention of claim 4 is characterized in that, in claim 1 to claim 3, the controller performs a cold air cooling step by the cold air cooling means before performing the vacuum cooling step. Yes.
[0016] 請求項 4に記載の発明によれば、請求項 1〜請求項 3による効果に加えて、高温の 被冷却物の粗熱取りを前記冷風冷却工程にて行い、その後に急速冷却が可能な真 空冷却工程を行い、ついで低温冷却が可能な冷風冷却工程を行うので、初期温度 が比較的高 、被冷却物を短時間で、低温度まで冷却することができると 、う効果を 奏する。  [0016] According to the invention of claim 4, in addition to the effects of claims 1 to 3, the high-temperature object to be cooled is subjected to rough heat removal in the cold air cooling step, and then rapid cooling is performed. Since the air cooling process is performed and then the cold air cooling process capable of low temperature cooling is performed, the initial temperature is relatively high, and the object to be cooled can be cooled to a low temperature in a short time. Play.
[0017] 請求項 5に記載の発明は、請求項 4において、前記制御器は、被冷却物を真空冷 却する真空冷却工程および被冷却物を冷風冷却する冷風冷却工程を順次行う第一 冷却プログラムと、被冷却物を冷風冷却する第一冷風冷却工程,被冷却物を真空冷 却する真空冷却工程および被冷却物を冷風冷却する第二冷風冷却工程を順次行う 第二冷却プログラムとを選択可能としたことを特徴としている。 [0017] The invention according to claim 5 is the first cooling according to claim 4, wherein the controller sequentially performs a first cooling process for vacuum cooling the object to be cooled and a cooling air cooling process for cooling the object to be cooled with cold air. The program, the first cold air cooling process that cools the object to be cooled, the vacuum cooling process that cools the object to be cooled, and the second cold air cooling process that cools the object to be cooled are sequentially performed. The second cooling program can be selected.
[0018] 請求項 5に記載の発明によれば、請求項 4による効果に加えて、前記制御器が前 記第一冷却プログラムと前記第二冷却プログラムとを選択的に実行することで、被冷 却物に応じた適切な冷却を行うことができるという効果を奏する。  [0018] According to the invention of claim 5, in addition to the effect of claim 4, the controller selectively executes the first cooling program and the second cooling program, There is an effect that appropriate cooling according to the cooling object can be performed.
[0019] 請求項 6に記載の発明は、冷却室内の被冷却物を真空冷却する真空冷却手段と、 前記被冷却物を冷風冷却する冷風冷却手段と、前記真空冷却手段および前記冷風 冷却手段を制御する制御器とを備える複合冷却装置であって、前記真空冷却手段 は、第一真空冷却特性を有する第一真空冷却手段と第二真空冷却特性を有する第 二真空冷却手段とを備え、前記制御器は、前記第一真空冷却手段による第一真空 冷却工程,前記第二真空冷却手段による第二真空冷却工程および前記冷風冷却 手段による冷風冷却工程を順次切り換えて行うことを特徴としている。  [0019] The invention according to claim 6 comprises: a vacuum cooling means for vacuum cooling the object to be cooled in a cooling chamber; a cold air cooling means for cooling the object to be cooled with cold air; the vacuum cooling means and the cold air cooling means. A controller for controlling, wherein the vacuum cooling means comprises a first vacuum cooling means having a first vacuum cooling characteristic and a second vacuum cooling means having a second vacuum cooling characteristic, The controller is characterized in that the first vacuum cooling step by the first vacuum cooling means, the second vacuum cooling step by the second vacuum cooling means, and the cold air cooling step by the cold air cooling means are sequentially switched.
[0020] 請求項 6に記載の発明によれば、急速で均一冷却が可能な真空冷却工程を実行 した後に、低温まで冷却可能な冷風冷却工程を行うので、短時間で被冷却物を低温 まで冷却することができる。また、真空冷却工程を前記第一真空冷却手段と前記第 二真空冷却手段とで、二段階により行っているので、真空冷却手段の作動に必要な エネルギーを削減できるとともに、急激な冷却で被冷却物の品質低下が問題になる 食材では、品質の低下を抑えることができる。  [0020] According to the invention of claim 6, since the cold air cooling process capable of cooling to a low temperature is performed after the vacuum cooling process capable of rapid and uniform cooling, the object to be cooled can be cooled to a low temperature in a short time. Can be cooled. In addition, since the vacuum cooling process is performed in two stages by the first vacuum cooling means and the second vacuum cooling means, the energy required for the operation of the vacuum cooling means can be reduced, and the object can be cooled by rapid cooling. Deterioration of the quality of food becomes a problem.
[0021] 請求項 7に記載の発明は、請求項 6において、前記第一真空冷却手段および前記 第二真空冷却手段による冷却時間,前記冷却室内の圧力,同温度,被冷却物の温 度,または前記冷却室内の圧力,同温度および前記被冷却物の温度のいずれかの 変化量を検出する検出手段を備え、前記制御器は、前記検出手段の検出値が第一 設定値となったとき、前記第一真空冷却工程から前記第二真空冷却工程へ切り換え 、前記検出値が第二設定値となったとき、前記第二真空冷却工程から前記冷風冷却 工程へ切り換えることを特徴として 、る。  [0021] The invention of claim 7 is the invention of claim 6, wherein the cooling time by the first vacuum cooling means and the second vacuum cooling means, the pressure in the cooling chamber, the same temperature, the temperature of the object to be cooled, Or a detecting means for detecting a change amount of any of the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled, and the controller is configured to detect when the detected value of the detecting means becomes a first set value. The first vacuum cooling step is switched to the second vacuum cooling step, and when the detected value reaches the second set value, the second vacuum cooling step is switched to the cold air cooling step.
[0022] 請求項 7に記載の発明によれば、請求項 6による効果に加えて、前記第一真空冷 却工程から前記第二真空冷却工程への切換タイミングおよび前記第二真空冷却ェ 程力 前記冷風冷却工程への切換タイミングを適切に設定することができるという効 果を奏する。 [0023] 請求項 8に記載の発明は、請求項 6または請求項 7において、前記第一真空冷却 手段は、前期の真空冷却速度が速ぐ後期で真空冷却速度が鈍化する第一真空冷 却特性を有し、前記第二真空冷却手段は、前期の真空冷却速度が速ぐ後期で真 空冷却速度が鈍化する第二真空冷却特性を有し、前記冷風冷却手段は、その冷風 冷却特性を冷風冷却速度が前記第一真空冷却手段および前記第二真空冷却手段 の前期の真空冷却速度より遅ぐ後期の鈍化した真空冷却速度より速いものとし、前 記制御器は、前記第二真空冷却手段による後期の真空冷却速度が前記冷風冷却 速度より低下するタイミングで前記第二真空冷却工程から前記冷風冷却工程へ切り 換えることを特徴としている。 [0022] According to the invention of claim 7, in addition to the effect of claim 6, the switching timing from the first vacuum cooling step to the second vacuum cooling step and the second vacuum cooling step force There is an effect that the switching timing to the cold air cooling process can be appropriately set. [0023] The invention according to claim 8 is the invention according to claim 6 or claim 7, wherein the first vacuum cooling means is a first vacuum cooling in which the vacuum cooling rate slows down in the latter period when the vacuum cooling rate in the previous period is high. The second vacuum cooling means has a second vacuum cooling characteristic in which the vacuum cooling rate slows down in the latter period when the vacuum cooling rate of the previous period is high, and the cold air cooling means has the cold air cooling characteristic. The cool air cooling rate is faster than the slowed-down vacuum cooling rate in the latter period, which is slower than the first vacuum cooling rate in the first vacuum cooling unit and the second vacuum cooling unit, and the controller includes the second vacuum cooling unit. The second vacuum cooling step is switched to the cold air cooling step at a timing when the vacuum cooling rate in the latter stage is lower than the cold air cooling rate.
[0024] 請求項 8に記載の発明によれば、請求項 6または請求項 7による効果に加えて、急 速で均一冷却が可能な真空冷却工程を最大限先行して実行した後に、低温まで冷 却可能な冷風冷却工程を行うので、短時間で被冷却物を低温まで冷却することがで きるという効果を奏する。  [0024] According to the invention of claim 8, in addition to the effect of claim 6 or claim 7, the vacuum cooling process capable of rapid cooling and uniform cooling is performed as much as possible before the temperature is lowered to a low temperature. Since the cool air cooling process that can be cooled is performed, the cooling target can be cooled to a low temperature in a short time.
[0025] 請求項 9に記載の発明は、請求項 6または請求項 7において、前記冷風冷却手段 は、前記冷却室内の空気を冷却用熱交^^との間接熱交換により冷却するように構 成され、前記第一真空冷却手段は、前記冷却室と接続される減圧器の作動により第 一真空冷却工程を実行するように構成され、前記第二真空冷却手段は、前記冷却 室を低圧下で密閉状態として前記冷却用熱交^^により被冷却物力 の蒸気を凝 縮することにより第二真空冷却工程を実行するように構成されることを特徴としている  [0025] The invention according to claim 9 is the invention according to claim 6 or 7, wherein the cold air cooling means cools the air in the cooling chamber by indirect heat exchange with a heat exchanger for cooling. The first vacuum cooling means is configured to perform a first vacuum cooling step by operating a decompressor connected to the cooling chamber, and the second vacuum cooling means is configured to lower the cooling chamber under a low pressure. The second vacuum cooling process is performed by condensing the steam of the object to be cooled by the heat exchanger for cooling in the sealed state.
[0026] 請求項 9に記載の発明によれば、請求項 6または請求項 7による効果に加えて、冷 風冷却用の前記冷却用熱交 を真空冷却時のコールドトラップとして用いている ので、前記真空冷却手段の構成を簡素化できるという効果を奏する。 [0026] According to the invention of claim 9, in addition to the effect of claim 6 or claim 7, since the cooling heat exchanger for cooling the cold air is used as a cold trap during vacuum cooling, There exists an effect that the structure of the said vacuum cooling means can be simplified.
[0027] 請求項 10に記載の発明は、請求項 6または請求項 7において、前記冷却室と接続 される減圧ラインと、この減圧ライン中に設けられる蒸気ェゼクタ,凝縮用熱交^^お よび減圧器とを備え、前記第一真空冷却手段は、前記減圧器の作動により第一真空 冷却工程を実行するように構成され、前記第二真空冷却手段は、前記蒸気ェゼクタ ,前記凝縮用熱交換器および前記減圧器の作動により第二真空冷却工程を実行す るように構成されて 、ることを特徴として 、る。 [0027] The invention of claim 10 is the invention according to claim 6 or claim 7, wherein the decompression line connected to the cooling chamber, the steam ejector provided in the decompression line, the heat exchanger for condensation, and A pressure reducer, and the first vacuum cooling means is configured to execute a first vacuum cooling step by the operation of the pressure reducer, and the second vacuum cooling means includes the steam ejector and the heat exchange for condensation. A second vacuum cooling step is performed by operating the pressure reducer and the pressure reducer. It is configured to be characterized by that.
[0028] 請求項 10に記載の発明によれば、請求項 6または請求項 7による効果に加えて、 大容量の複合冷却装置を容易に提供できると!、う効果を奏する。  [0028] According to the invention of claim 10, in addition to the effect of claim 6 or claim 7, it is possible to easily provide a large capacity composite cooling device.
[0029] さらに、請求項 11に記載の発明は、請求項 6または請求項 7において、前記制御 器は、前記第一真空冷却工程を行う前に前記冷風冷却手段による冷風冷却工程を 行うことを特徴としている。  [0029] Further, the invention according to claim 11 is the method according to claim 6 or 7, wherein the controller performs the cold air cooling step by the cold air cooling means before performing the first vacuum cooling step. It is a feature.
[0030] 請求項 11に記載の発明によれば、請求項 6〜請求項 7による効果に加えて、高温 の被冷却物の粗熱取りを前記冷風冷却工程にて行い、その後に急速冷却が可能な 第一真空冷却工程を行!ヽ、つ!ヽで急速冷却が可能な前記第二真空冷却工程を行 い、ついで低温冷却が可能な冷風冷却工程を行うので、初期温度が比較的高い被 冷却物を短時間で、低温度まで冷却することができると!/、う効果を奏する。  [0030] According to the invention of claim 11, in addition to the effects of claims 6 to 7, the high-temperature object to be cooled is subjected to rough heat removal in the cold air cooling step, and then rapid cooling is performed. The first vacuum cooling process is possible! The second vacuum cooling process, which can be quickly cooled with a bowl, is carried out, followed by the cold air cooling process that allows low-temperature cooling, so the initial temperature is relatively high. If the object to be cooled can be cooled to a low temperature in a short time, there will be an effect!
発明の効果  The invention's effect
[0031] この発明によれば、被冷却物を短時間で低温まで冷却することができると!/、う効果 を奏する。  [0031] According to the present invention, it is possible to cool the object to be cooled to a low temperature in a short time.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]この発明の実施例 1の概略構成を説明する説明図である。 FIG. 1 is an explanatory diagram for explaining a schematic configuration of Embodiment 1 of the present invention.
[図 2]同実施例 1の冷却プログラムを説明するフローチャート図である。  FIG. 2 is a flowchart for explaining a cooling program according to the first embodiment.
[図 3]同実施例 1の他の冷却プログラムを説明するフローチャート図である。  FIG. 3 is a flowchart for explaining another cooling program of the first embodiment.
[図 4]同実施例 1の他の冷却プログラムを説明するフローチャート図である。  FIG. 4 is a flowchart for explaining another cooling program of the first embodiment.
[図 5]同実施例 1の他の冷却プログラムを説明するフローチャート図である。  FIG. 5 is a flowchart for explaining another cooling program of the first embodiment.
[図 6]同実施例 1の他の冷却プログラムを説明するフローチャート図である。  FIG. 6 is a flowchart for explaining another cooling program of the first embodiment.
[図 7]この発明の実施例 2の概略構成を説明する説明図である。  FIG. 7 is an explanatory view illustrating a schematic configuration of Embodiment 2 of the present invention.
[図 8]この発明の実施例 3の概略構成を説明する説明図である。  FIG. 8 is an explanatory diagram illustrating a schematic configuration of Embodiment 3 of the present invention.
[図 9]この発明の他の実施例冷却プログラムを説明するフローチャート図である。 符号の説明  FIG. 9 is a flowchart illustrating a cooling program according to another embodiment of the present invention. Explanation of symbols
[0033] 1…複合冷却装置 [0033] 1 ... Composite cooling device
2…冷却室  2 ... Cooling room
3…被冷却物 4…真空冷却手段 3 ... Cooled object 4 ... Vacuum cooling means
5…冷風冷却手段  5 ... Cooling air cooling means
6…制御器  6 ... Control
41· ··第一真空冷却手段  41 ···· First vacuum cooling means
42· ··第二真空冷却手段  42 ··· Second vacuum cooling means
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] つぎに、この発明の実施の形態について説明する。この発明の実施の形態は、被 冷却物を冷風冷却と真空冷却とによって冷却可能な複合冷却装置に適用される。  Next, an embodiment of the present invention will be described. The embodiment of the present invention is applied to a composite cooling apparatus capable of cooling an object to be cooled by cold air cooling and vacuum cooling.
[0035] (実施の形態 1)  [Embodiment 1]
まず、この発明の実施の形態 1を具体的に説明する。この実施の形態 1は、冷却室 内の被冷却物を真空冷却する真空冷却手段と、前記被冷却物を冷風冷却する冷風 冷却手段と、前記真空冷却手段および冷風冷却手段を制御する制御器を備える複 合冷却装置であって、前記冷却手段による冷却時間,前記冷却室内の圧力,同温 度および被冷却物の温度のいずれかを検出するか,または前記冷却室内の圧力, 同温度および前記被冷却物の温度のいずれかの変化量を検出する検出手段を備え 、前記制御器は、冷却プログラムに基づき、この真空冷却工程後に被冷却物を冷風 により冷却する冷風冷却工程を順次行うとともに、前記検出手段の検出値が設定値 となったとき、前記真空冷却工程力も前記冷風冷却工程へ切り換えることを特徴とし ている。  First, the first embodiment of the present invention will be specifically described. The first embodiment includes a vacuum cooling means for cooling the object to be cooled in the cooling chamber, a cold air cooling means for cooling the object to be cooled with cold air, and a controller for controlling the vacuum cooling means and the cold air cooling means. A composite cooling device that detects either the cooling time by the cooling means, the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled, or the pressure, the same temperature, and the temperature in the cooling chamber; The controller includes a detecting means for detecting any amount of change in the temperature of the object to be cooled, and the controller sequentially performs a cold air cooling process for cooling the object to be cooled with cold air after the vacuum cooling process based on a cooling program, When the detection value of the detection means reaches a set value, the vacuum cooling process power is also switched to the cold air cooling process.
[0036] この実施の形態 1において、前記真空冷却手段による冷却は、被冷却物の周囲の 圧力を冷却物の温度 (以下、品温という。 )に相当する圧力以下とすることで、被冷却 物内の水分を蒸発させることにより被冷却物を冷却するものである。この冷却は、被 冷却物の表面と中心部との温度差が少ない、均一冷却である。この真空冷却特性は 、前期の真空冷却速度が速ぐ後期の真空冷却速度が前期のそれと比較して鈍化 するものである。この真空冷却特性は、前記真空冷却手段により決まる時間 圧力 特性であり、被冷却物の温度(以下、品温という。)は、初期工程を除いてほぼこの真 空冷却特性に沿ったカーブを描いて指数関数的に低下して行く。  [0036] In the first embodiment, the cooling by the vacuum cooling means is performed by setting the pressure around the object to be cooled below the pressure corresponding to the temperature of the object (hereinafter referred to as the product temperature). The object to be cooled is cooled by evaporating the moisture in the object. This cooling is uniform cooling with a small temperature difference between the surface of the object to be cooled and the central portion. This vacuum cooling characteristic is that the vacuum cooling rate in the latter period when the vacuum cooling rate in the previous period is faster becomes slower than that in the previous period. This vacuum cooling characteristic is a time-pressure characteristic determined by the vacuum cooling means, and the temperature of the object to be cooled (hereinafter referred to as the product temperature) draws a curve that substantially conforms to this vacuum cooling characteristic except for the initial process. It goes down exponentially.
[0037] また、前記冷風冷却手段の冷風冷却特性は、冷風冷却速度が前期の真空冷却速 度より遅ぐ後期の鈍化した真空冷却速度よりも速いものとしている。この冷風冷却は 、被冷却物の表面において周囲の空気と間接熱交換することによる冷却である。この ため、被冷却物を短時間では均一冷却はできない。また、冷風冷却特性は、前記冷 風冷却手段による時間一品温特性であり、品温の低下の傾きが前記真空冷却特性 のそれより緩かな特性曲線としている。 [0037] Further, the cold air cooling characteristic of the cold air cooling means is that the cold air cooling rate is the vacuum cooling rate of the previous period. It is assumed that it is faster than the slowed-down vacuum cooling rate in the later stage. This cold air cooling is cooling by indirect heat exchange with the surrounding air on the surface of the object to be cooled. For this reason, the object to be cooled cannot be uniformly cooled in a short time. The cold air cooling characteristic is a one-time product temperature characteristic by the cold air cooling means, and the slope of the decrease in the product temperature is a gentler characteristic curve than that of the vacuum cooling characteristic.
[0038] そして、前記制御器は、予め記憶した冷却プログラムに基づき、前記真空冷却手段 による真空冷却工程を行った後に前記冷風冷却手段による冷風冷却工程を行う。こ の実施の形態の冷却プログラムは、被冷却物をチルド域まで短時間で冷却するプロ グラムを含んでいる。前記真空冷却工程の前期は、真空冷却速度が速ぐ品温は急 速に低下する。前記真空冷却工程の後期となると真空冷却速度が低下するので、前 記真空冷却工程に代えて前記冷風冷却工程が実行される。前記冷風冷却工程にお ける冷風冷却速度は、前記真空冷却工程の前期の真空冷却速度より遅いが、チルド 域まで冷却することができる。  Then, the controller performs a cold air cooling step by the cold air cooling unit after performing a vacuum cooling step by the vacuum cooling unit based on a cooling program stored in advance. The cooling program of this embodiment includes a program for cooling an object to be cooled to a chilled region in a short time. In the first half of the vacuum cooling process, the product temperature at which the vacuum cooling rate is fast decreases rapidly. Since the vacuum cooling rate decreases at the later stage of the vacuum cooling step, the cold air cooling step is executed instead of the vacuum cooling step. The cold air cooling rate in the cold air cooling step is slower than the vacuum cooling rate in the previous period of the vacuum cooling step, but it can be cooled to a chilled region.
[0039] 前記の真空冷却工程から冷風冷却工程への切り換えタイミングは、好ましくは、後 期の真空冷却速度が冷風冷却速度より低下するタイミングとする。  The switching timing from the vacuum cooling step to the cold air cooling step is preferably a timing at which the latter vacuum cooling rate is lower than the cold air cooling rate.
[0040] この真空冷却工程から冷風冷却工程への切り換えは、前記真空冷却手段による冷 却時間,前記冷却室内の圧力,同温度,被冷却物の温度のいずれかを検出する検 出手段を備え、前記検出手段の検出値が設定値となったとき、前記制御器により行 われる。前記検出手段は、前記冷却室内の圧力,前記冷却室内の温度,被冷却物 の温度のいずれかの変化量を検出し、この検出値が設定値となったとき、前記真空 冷却工程力 前記冷風冷却工程へ切り換えるように構成することができる。  [0040] The switching from the vacuum cooling process to the cold air cooling process includes detection means for detecting any one of the cooling time by the vacuum cooling means, the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled. When the detection value of the detection means reaches a set value, the control is performed by the controller. The detection means detects any amount of change in the pressure in the cooling chamber, the temperature in the cooling chamber, or the temperature of the object to be cooled, and when the detected value becomes a set value, the vacuum cooling process force the cold air It can comprise so that it may switch to a cooling process.
[0041] そして、前記の「後期の真空冷却速度が冷風冷却速度より低下する」第一切換タイ ミングは、前記真空冷却工程における真空冷却速度を連続的に監視し、前記冷風冷 却工程における冷風冷却速度と比較して、前者が後者より遅くなるタイミングとするこ とができる。このタイミングは、後期の真空冷却速度が冷風冷却速度と等しくなるタイ ミングを挟んで前後に若干の幅を持たせて設定することができる。また、この第一切 換タイミングは、ピンポイントでなぐ真空冷却速度および冷風冷却速度の単位時間 当たりの積分値を基に決めることができる。また、前記第一切換タイミングは、前記冷 却室内の圧力または温度が、前記真空冷却特性による最終到達圧力または温度に 設定値を加えた値となったときとすることができる。前記最終到達圧力(温度)とは、真 空冷却特性によって無限の時間を要するが最終的に到達可能な圧力(温度)を意味 する。 [0041] The first switching timing in which the "late-stage vacuum cooling rate is lower than the cold air cooling rate" described above continuously monitors the vacuum cooling rate in the vacuum cooling step, and the cold air in the cold air cooling step. Compared to the cooling rate, the former can be at a timing slower than the latter. This timing can be set with a slight width before and after the timing at which the latter vacuum cooling rate becomes equal to the cold air cooling rate. Also, this first conversion timing can be determined based on the integrated values per unit time of the vacuum cooling rate and the cold air cooling rate that are pinpointed. In addition, the first switching timing is It may be when the pressure or temperature in the rejection chamber becomes a value obtained by adding a set value to the final ultimate pressure or temperature due to the vacuum cooling characteristics. The final ultimate pressure (temperature) means a pressure (temperature) that can be finally reached although it takes an infinite time depending on the vacuum cooling characteristics.
[0042] また、前記第一切換タイミングは、予め実験により、冷却開始から「後期の真空冷却 速度が冷風冷却速度より低下する」までの経過時間(冷却時間),前記冷却室内の 圧力,前記冷却室内の温度,被冷却物の温度,または前記冷却室内の圧力,同温 度および前記被冷却物の温度の 、ずれかの変化量を設定値として求めておき、前 記検出手段による検出値が前記設定値となったときとすることができる。  In addition, the first switching timing is determined in advance through experiments from the start of cooling to the elapsed time (cooling time) from the start of cooling to the “late stage vacuum cooling rate is lower than the cold air cooling rate”, the pressure in the cooling chamber, the cooling The amount of change between the indoor temperature, the temperature of the object to be cooled, or the pressure in the cooling room, the same temperature, and the temperature of the object to be cooled is obtained as a set value, and the detected value by the detecting means is It can be when the set value is reached.
[0043] さらに、前記第一切換タイミングは、前記真空冷却工程と前記冷風冷却工程に要 する時間 (設定冷却時間)と到達すべき冷却温度 (設定冷却温度)とを設定した場合 、これらの設定冷却時間,前記真空冷却特性,前記冷風冷却特性とから設定するこ とができる。この設定の概要は、つぎの通りである。時間 (横軸)—温度 (縦軸)特性に おいて、前記設定冷却時間と前記設定冷却温度によって定められる最終到達ポイン トが終点となるように冷風冷却特性曲線 (時間 温度特性曲線)を時間を遡る方向へ 引ぐそして、真空冷却特性に対応する時間-品温特性曲線と交わる点を前記第一 切換タイミングとする。こうしたタイミングの設定により、決められた時間で、決められた 温度まで、確実に冷却を行うことができる。  [0043] Furthermore, the first switching timing is set when the time required for the vacuum cooling step and the cold air cooling step (set cooling time) and the cooling temperature to be reached (set cooling temperature) are set. The cooling time, the vacuum cooling characteristic, and the cold air cooling characteristic can be set. The outline of this setting is as follows. In the time (horizontal axis) -temperature (vertical axis) characteristic, the cold air cooling characteristic curve (time-temperature characteristic curve) is set so that the final point determined by the set cooling time and the set cooling temperature is the end point. The first switching timing is defined as a point crossing the time-product temperature characteristic curve corresponding to the vacuum cooling characteristic. By setting the timing in this way, cooling can be reliably performed to a predetermined temperature in a predetermined time.
[0044] つぎに、この実施の形態 1の各構成要素について説明する。前記冷却室は、被冷 却物を収容する密閉空間を形成するとともに、被冷却物を出し入れすることができる ものであれば、その形式、種類および大きさは問わない。この冷却室は、冷却槽,冷 却区画、冷却容器などと称することができる。前記被冷却物は、好ましくは食材とする 力 これに限定されるものではない。  [0044] Next, each component of the first embodiment will be described. The cooling chamber may be of any type, type and size as long as it forms a sealed space for accommodating the object to be cooled and can take in and out the object to be cooled. This cooling chamber can be called a cooling tank, a cooling compartment, a cooling container, or the like. The object to be cooled is preferably used as a food. However, the present invention is not limited to this.
[0045] 前記真空冷却手段は、前記冷却室と接続される減圧ラインと、この減圧ライン中に 設けられる減圧手段 (減圧器)とを含んで構成される。この減圧器は、真空ラインまた は水ェゼクタとすることができる。また、この減圧器は、蒸気ェゼクタ,蒸気凝縮用の 熱交^^および真空ポンプまたは水ェゼクタを組み合わせたものとすることができる 。前記真空ポンプは、好ましくは水封式真空ポンプとする。 [0046] 前記冷風冷却手段は、被冷却物を冷風により冷却するものである。この冷風冷却 手段は、好ましくは、前記冷却室内の空気を冷却する冷却用熱交換器と、前記冷却 室内の空気を循環させるファンと、被冷却物と前記冷却用熱交換器との間に前記フ アンによって空気の循環流が形成されるように循環路を形成する循環路形成部材と から構成される。前記循環路は、好ましくは、前記熱交換器および前記ファンを前記 冷却室内に配置することで、前記冷却室内に形成するが、前記熱交換器および Zま たは前記ファンを前記冷却室外へ配置し、これらと前記冷却室とを通風ダクトにてつ なぐことで、循環路を構成することができる。 [0045] The vacuum cooling means includes a decompression line connected to the cooling chamber, and decompression means (decompressor) provided in the decompression line. The decompressor can be a vacuum line or a water ejector. The decompressor may be a combination of a steam ejector, heat exchanger for steam condensation, and a vacuum pump or water ejector. The vacuum pump is preferably a water ring vacuum pump. [0046] The cold air cooling means cools an object to be cooled with cold air. Preferably, the cold air cooling means includes a cooling heat exchanger that cools the air in the cooling chamber, a fan that circulates the air in the cooling chamber, and the object to be cooled and the cooling heat exchanger. And a circulation path forming member that forms a circulation path so that an air circulation flow is formed by the fan. The circulation path is preferably formed in the cooling chamber by arranging the heat exchanger and the fan in the cooling chamber, but the heat exchanger and Z or the fan are arranged outside the cooling chamber. A circulation path can be configured by connecting these and the cooling chamber with a ventilation duct.
[0047] 前記冷却用熱交換器は、被冷却物を冷風冷却によりチルド域まで冷却可能な低温  [0047] The cooling heat exchanger is a low temperature capable of cooling an object to be cooled to a chilled region by cooling with cold air.
(たとえば— 10°C以下)とすることができる熱交^^であればよいが、好ましくは、冷 凍機のコンデンシングユニットから供給される液ィ匕冷媒を蒸発して間接熱交換により 前記冷却室内の空気を冷却する蒸発器力 構成する。し力しながら、この冷却用熱 交 は、冷水製造装置 (チラ一)から供給される冷水、またはブラインチラーから供 給されるブラインを冷媒とする熱交^^とすることができる。  (For example, −10 ° C. or less). However, it is preferable that the liquid refrigerant supplied from the condensing unit of the refrigerator is evaporated and the heat exchange is performed by indirect heat exchange. Configures the evaporator power to cool the air in the cooling chamber. However, the cooling heat exchange can be a heat exchange using a cold water supplied from a chilled water production apparatus (chiller) or a brine supplied from a blownler as a refrigerant.
[0048] 前記制御器は、予め記憶した前記冷却プログラムにより前記真空冷却手段および 前記冷風冷却手段の作動を制御する。前記冷却プログラムには、前記真空冷却手 段による真空冷却工程を行った後に前記冷風冷却手段による冷風冷却工程を行う プログラムを少なくとも含んでいる。このプログラムの概要は前記した通りである。また [0048] The controller controls operations of the vacuum cooling means and the cold air cooling means according to the cooling program stored in advance. The cooling program includes at least a program for performing a cold air cooling process by the cold air cooling means after performing a vacuum cooling process by the vacuum cooling means. The outline of this program is as described above. Also
、この冷却プログラムには、真空冷却および冷風冷却を順次行うプログラムにカ卩えて 、真空冷却のみを行うプログラム,冷風冷却,真空冷却および冷風冷却を順次行うプ ログラム,冷風冷却のみを行うプログラム、冷風冷却および真空冷却を順次行うプロ グラムを含ませ、これらのプログラムを被冷却物の種類や前記設定冷却温度に応じ て選択的に実行するように構成することができる。 This cooling program includes a program that performs only vacuum cooling, a program that performs only vacuum cooling, a program that performs cooling air cooling, vacuum cooling and cooling air cooling sequentially, a program that performs only cooling air cooling, A program that sequentially performs cooling and vacuum cooling can be included, and these programs can be selectively executed according to the type of the object to be cooled and the set cooling temperature.
[0049] 前記の冷風冷却,真空冷却および冷風冷却を順次行うプログラムにおける最初の 冷風冷却は、前記冷却用熱交換器を用いることなぐ前記冷却室内へ外気を導入し 、この外気を被冷却物へ当てた後、排出することにより行うことができる。  [0049] In the first cold air cooling in the program for sequentially performing the cold air cooling, the vacuum cooling, and the cold air cooling, the outside air is introduced into the cooling chamber without using the cooling heat exchanger, and the outside air is supplied to the object to be cooled. After hitting, it can be done by discharging.
[0050] (実施の形態 2)  [0050] (Embodiment 2)
つぎに、この発明の実施の形態 2について説明する。 この実施の形態 2は、冷却室内の被冷却物を真空冷却する真空冷却手段と、前記 被冷却物を冷風冷却する冷風冷却手段と、前記真空冷却手段および冷風冷却手段 を制御する制御器を備える複合冷却装置であって、前記真空冷却手段は、第一真 空冷却特性を有する第一真空冷却手段と第二真空冷却特性を有する第二真空冷 却手段とを備え、前記制御器は、前記第一真空冷却手段による第一真空冷却工程, 前記第二真空冷却手段による第二真空冷却工程および前記冷風冷却手段による冷 風冷却工程を順次切り換えて行うことを特徴としている。 Next, a second embodiment of the present invention will be described. The second embodiment includes a vacuum cooling unit that vacuum-cools an object to be cooled in a cooling chamber, a cold air cooling unit that cools the object to be cooled, and a controller that controls the vacuum cooling unit and the cold air cooling unit. In the composite cooling device, the vacuum cooling means includes a first vacuum cooling means having a first vacuum cooling characteristic and a second vacuum cooling means having a second vacuum cooling characteristic, and the controller includes the controller The first vacuum cooling step by the first vacuum cooling means, the second vacuum cooling step by the second vacuum cooling means, and the cold air cooling step by the cold air cooling means are sequentially switched and performed.
[0051] この実施の形態 2においては、前記実施の形態 1と同様に、冷却時間,前記冷却室 内の圧力,同温度および被冷却物の温度のいずれかを検出するか,または前記冷 却室内の圧力,同温度および前記被冷却物の温度のいずれかの変化量を検出する 検出手段を備え、前記制御器は、前記検出手段の検出値が第一設定値となったとき 、前記第一真空冷却工程から前記第二真空冷却工程へ切り換え、前記検出値が第 二設定値となったとき、前記第二真空冷却工程から前記冷風冷却工程へ切り換える ように構成することができる。  [0051] In the second embodiment, as in the first embodiment, either the cooling time, the pressure in the cooling chamber, the same temperature, or the temperature of the object to be cooled is detected, or the cooling is performed. Detecting means for detecting any amount of change in the indoor pressure, the same temperature, and the temperature of the object to be cooled, and when the detected value of the detecting means reaches a first set value, the controller Switching from one vacuum cooling step to the second vacuum cooling step can be configured to switch from the second vacuum cooling step to the cold air cooling step when the detected value reaches a second set value.
[0052] この実施の形態 2において、好ましくは、前記第一真空冷却手段は、前期の真空冷 却速度が速ぐ後期で真空冷却速度が鈍化する第一真空冷却特性を有し、前記第 二真空冷却手段は、前期の真空冷却速度が速ぐ後期で真空冷却速度が鈍化する 第二真空冷却特性を有し、前記冷風冷却手段は、その冷風冷却特性を冷風冷却速 度が前記第一真空冷却手段および前記第二真空冷却手段の前期の真空冷却速度 より遅ぐ後期の鈍化した真空冷却速度より速いものとする。  [0052] In this second embodiment, preferably, the first vacuum cooling means has a first vacuum cooling characteristic in which the vacuum cooling rate decreases in the latter period when the vacuum cooling speed of the first period is high, and the second vacuum cooling means. The vacuum cooling means has a second vacuum cooling characteristic in which the vacuum cooling rate slows down in the latter period when the vacuum cooling speed of the previous period is high, and the cold air cooling means has the cold air cooling characteristic of the first vacuum. The cooling means and the second vacuum cooling means are faster than the vacuum cooling rate of the latter stage, which is later than the vacuum cooling rate of the latter stage.
[0053] そして、好ましくは、前記第二真空冷却手段による後期の真空冷却速度が前記冷 風冷却手段による冷風冷却速度より低下するタイミングで前記第二真空冷却工程か ら前記冷風冷却工程へ切り換えるように構成する力 これに限定されるものではない  [0053] Preferably, switching from the second vacuum cooling step to the cold air cooling step is performed at a timing when the latter vacuum cooling rate by the second vacuum cooling device is lower than the cold air cooling rate by the cold air cooling device. It is not limited to this.
[0054] この第二真空冷却工程から前記冷風冷却工程への第二切換タイミングの内容は、 前記第一切換タイミングと同様であり説明を省略する。前記真空冷却手段による冷却 時間は、前記第一冷却手段の冷却開始からの時間、または前記第二真空冷却開始 力 の時間とすることができる。 [0055] また、前記第一真空冷却工程から前記第二真空冷却工程への切換タイミングは、 好ましくは、前記第一真空冷却手段による後期の真空冷却速度が前記冷風冷却手 段による冷風冷却速度より低下するタイミングとする力 これに限定されるものではな い。 [0054] The content of the second switching timing from the second vacuum cooling step to the cold air cooling step is the same as the first switching timing, and the description thereof is omitted. The cooling time by the vacuum cooling means can be the time from the start of cooling of the first cooling means or the time of the second vacuum cooling start force. [0055] Further, the switching timing from the first vacuum cooling step to the second vacuum cooling step is preferably such that the late vacuum cooling rate by the first vacuum cooling means is higher than the cold air cooling rate by the cold air cooling unit. Force to decrease timing It is not limited to this.
[0056] この実施の形態 2においては、まず前記第一真空冷却工程により急速冷却を行い 、真空冷却速度が低下すると、前記第二真空冷却工程により急速冷却を行い、真空 冷却速度が低下すると前記冷風冷却工程へ移行する。  [0056] In the second embodiment, first, rapid cooling is performed by the first vacuum cooling step, and when the vacuum cooling rate is decreased, rapid cooling is performed by the second vacuum cooling step, and when the vacuum cooling rate is decreased, Move to cold air cooling process.
[0057] この実施の形態 2によれば、急速で均一冷却が可能な真空冷却工程を実行した後 に、低温まで冷却可能な冷風冷却工程を行うので、前記真空冷却手段および前記 冷風冷却手段の冷却能力を増強することなぐ短時間で被冷却物を低温まで冷却す ることができる。また、真空冷却工程を前記第一真空冷却手段と前記第二真空冷却 手段とで、二段階により行っているので、真空冷却開始当初から過大な冷却能力で 真空冷却するものと比較して、真空冷却手段の作動に必要なエネルギーを削減でき るとともに、急激な冷却で被冷却物の品質低下が問題になる食材では、品質の低下 を抑えることができる。  [0057] According to the second embodiment, after the vacuum cooling process capable of rapid and uniform cooling is performed, the cold air cooling process capable of cooling to a low temperature is performed. Therefore, the vacuum cooling means and the cold air cooling means The object to be cooled can be cooled to a low temperature in a short time without increasing the cooling capacity. Moreover, since the vacuum cooling process is performed in two stages by the first vacuum cooling means and the second vacuum cooling means, the vacuum cooling process is performed in a vacuum compared to the case of vacuum cooling with an excessive cooling capacity from the beginning of the vacuum cooling. In addition to reducing the energy required for the operation of the cooling means, it is possible to suppress the deterioration of the quality of foods where the quality of the object to be cooled is a problem due to rapid cooling.
[0058] 前記第一真空冷却手段および前記第二真空冷却手段は、比較的冷却能力の小さ い複合冷却装置に好適な第一態様として、つぎのように構成することができる。すな わち、前記冷風冷却手段は、前記冷却室内の空気を冷却用熱交換器との間接熱交 換により冷却するように構成する。そして、前記第一真空冷却手段は、前記冷却室と 接続される減圧器の作動により第一真空冷却を実行するように構成する。また、前記 第二真空冷却手段は、前記冷却室を低圧下で密閉状態として前記冷却用熱交換器 により被冷却物力 の蒸気を凝縮することにより第二真空冷却工程を実行するように 構成される。前記冷却用熱交換器は、チルド域まで被冷却物を冷却可能なものであ ればよいが、好ましくは、冷凍機から供給される冷媒の蒸発により冷却作用をなすも のとする。  [0058] The first vacuum cooling means and the second vacuum cooling means can be configured as follows as a first aspect suitable for a composite cooling device having a relatively small cooling capacity. In other words, the cold air cooling means is configured to cool the air in the cooling chamber by indirect heat exchange with a cooling heat exchanger. The first vacuum cooling means is configured to execute the first vacuum cooling by the operation of a decompressor connected to the cooling chamber. The second vacuum cooling means is configured to perform the second vacuum cooling step by condensing the vapor of the object to be cooled by the cooling heat exchanger with the cooling chamber sealed under a low pressure. . The cooling heat exchanger is not limited as long as it can cool the object to be cooled to the chilled region, but preferably has a cooling action by evaporation of the refrigerant supplied from the refrigerator.
[0059] 前記第一真空冷却手段の減圧器は、真空ポンプまたは水ェゼクタとすることができ る。前記真空ポンプは、好ましくは、水封式真空ポンプとする。  [0059] The decompressor of the first vacuum cooling means may be a vacuum pump or a water ejector. The vacuum pump is preferably a water ring vacuum pump.
[0060] 前記第二真空冷却手段は、前記冷却室を密閉するために前記減圧器を備える減 圧ラインにおいて、前記冷却室と前記減圧器との間に開閉弁を設け、第二真空冷却 手段の作動時に前記開閉弁を閉じることで、前記冷却室内を密閉状態とすることが できる。 [0060] The second vacuum cooling means includes a decompressor for sealing the cooling chamber. In the pressure line, an open / close valve is provided between the cooling chamber and the pressure reducer, and the open / close valve is closed when the second vacuum cooling means is operated, whereby the cooling chamber can be sealed.
[0061] 前記第一真空冷却手段の作動とは、前記開閉弁を開き、前記減圧器を運転するこ とであり、前記第二冷却手段の作動とは、前記冷却室が低圧下の状態を作った後に 前記開閉弁を閉じ、前記冷却用熱交換器を作動させる,すなわち冷媒を供給して冷 却作用を行わせることである。  [0061] The operation of the first vacuum cooling means is to open the on-off valve and operate the pressure reducer, and the operation of the second cooling means is that the cooling chamber is in a low pressure state. After the production, the on-off valve is closed and the cooling heat exchanger is operated, that is, the refrigerant is supplied to perform the cooling action.
[0062] 前記第二真空冷却工程においては、減圧下で,密閉の空間内で被冷却物から蒸 気が発生し、発生した蒸気が前記冷却用熱交換器の表面で凝縮し、被冷却物から の蒸発を促進する。この第二真空冷却工程の作用を確実なものとするためには、前 記冷却室内に蒸気の凝縮を妨げる空気が存在しないことが重要である。このため、 前記第一真空冷却工程の前に空気排除工程を設けることが望ましい。この空気排除 工程は、好ましくは、前記減圧器を作動させ排気を行いながら、前記冷却室へ蒸気 または温水を供給して前記冷却室内を蒸気で満たすことにより、空気を排除するよう に構成する。また、この空気排除工程は、前記排気→前記給蒸→前記排気の順に 行い、これを 1回乃至複数回繰り返すことに行うように構成することができる。  [0062] In the second vacuum cooling step, steam is generated from the object to be cooled in a sealed space under reduced pressure, and the generated steam is condensed on the surface of the heat exchanger for cooling. Promotes evaporation from. In order to ensure the action of this second vacuum cooling step, it is important that there is no air in the cooling chamber that prevents vapor condensation. For this reason, it is desirable to provide an air exclusion process before the first vacuum cooling process. This air exclusion step is preferably configured to exclude air by supplying steam or hot water to the cooling chamber and filling the cooling chamber with steam while evacuating by operating the decompressor. Further, the air exclusion step can be configured to be performed in the order of the exhaust gas → the steam supply → the exhaust gas, and this can be performed once or a plurality of times.
[0063] 前記第二真空冷却工程は、前記冷却用熱交換器を冷風冷却用だけでなぐ被冷 却物からの蒸気を凝縮するコールドトラップとして用いて行われることになる。これに より、前記減圧器として蒸気ェゼクタを設ける必要がなくなるとともに、場合によっては 、減圧器の上流側に設ける蒸気凝縮用の熱交換器 (凝縮用熱交換器)を省略するこ とができ、前記真空冷却手段の構成を簡素化できる。  [0063] The second vacuum cooling step is performed using the cooling heat exchanger as a cold trap for condensing the vapor from the object to be cooled not only for cooling the cold air. As a result, it is not necessary to provide a steam ejector as the decompressor, and in some cases, it is possible to omit a steam condensation heat exchanger (condensation heat exchanger) provided upstream of the decompressor. The configuration of the vacuum cooling means can be simplified.
[0064] また、前記第一真空冷却手段および前記第二真空冷却手段は、比較的冷却能力 の大きい複合冷却装置に好適な第二態様として、つぎのように構成することができる 。すなわち、前記減圧ラインと、この減圧ライン中に設けられる蒸気ェゼクタ,凝縮用 熱交換器および前記減圧器とを設けたものとする。そして、前記第一真空冷却手段 は、前記減圧器の作動により第一真空冷却工程を実行するように構成する。また、前 記第二真空冷却手段は、前記減圧器の作動に加えて、前記蒸気ェゼクタおよび前 記凝縮用熱交 を作動させることにより第二真空冷却工程を実行するように構成 する。前記冷風冷却手段は、前記冷却室内の空気を前記冷却用熱交換器との間接 熱交換により冷却するように構成する。 [0064] Further, the first vacuum cooling means and the second vacuum cooling means can be configured as follows as a second aspect suitable for a composite cooling device having a relatively large cooling capacity. That is, the decompression line, the steam ejector provided in the decompression line, the heat exchanger for condensation, and the decompressor are provided. And said 1st vacuum cooling means is comprised so that a 1st vacuum cooling process may be performed by the action | operation of the said pressure reduction device. The second vacuum cooling means is configured to execute the second vacuum cooling step by operating the steam ejector and the heat exchanger for condensation in addition to the operation of the decompressor. To do. The cold air cooling means is configured to cool the air in the cooling chamber by indirect heat exchange with the cooling heat exchanger.
[0065] この第二態様の前記第一真空冷却手段の作動、すなわち前記減圧器の作動によ り前記第一真空冷却工程が行われる。前記第二真空冷却手段の作動、すなわち前 記減圧器の作動により前記第二真空冷却工程が行われる。  [0065] The first vacuum cooling step is performed by the operation of the first vacuum cooling means of the second aspect, that is, the operation of the decompressor. The second vacuum cooling step is performed by the operation of the second vacuum cooling means, that is, the operation of the decompressor.
実施例 1  Example 1
[0066] 以下、この発明の複合冷却装置の具体的実施例 1を図面に基づいて詳細に説明 する。図 1は、同実施例 1の概略構成図であり、図 2〜図 6は、それぞれ同実施例 1の 制御手順の要部を説明するフローチャート図である。  Hereinafter, a specific example 1 of the composite cooling device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of the first embodiment, and FIGS. 2 to 6 are flowcharts for explaining a main part of a control procedure of the first embodiment.
[0067] 前記実施例 1の複合冷却装置 1は、真空冷却と冷風冷却とを行うことができる冷却 装置であり、種々の冷却パターンを選択的に実行できるとともに、被冷却物温度(以 下、品温という。)をチルド領域の低温まで短時間で冷却できる特徴を有している。  [0067] The composite cooling device 1 of the first embodiment is a cooling device capable of performing vacuum cooling and cold air cooling, and can selectively execute various cooling patterns, and can also perform an object temperature to be cooled (hereinafter, referred to as "cooled object temperature"). Product temperature) can be cooled to a low temperature in the chilled region in a short time.
[0068] 前記複合冷却装置 1は、冷却室 2と、冷却室 2内の被冷却物 3を真空冷却する真空 冷却手段 4と、前記被冷却物 3を冷風冷却する冷風冷却手段 5と、前記真空冷却手 段 4および前記冷風冷却手段 5を制御する制御器 6とを主要部として備える。そして、 前記制御器 6には、ソフトウェアによるタイマー 7を備えている。前記制御器 6は、予め 記憶した冷却プログラムに基づき、前記真空冷却手段 4による被冷却物 3の真空冷 却工程を行った後、前記タイマー 7による検出値 (計測時間)が設定値となったとき、 前記真空冷却手段 4による被冷却物 3の真空冷却と前記冷風冷却手段 5による被冷 却物 3の冷風冷却とを切り換える制御等を行うように構成されて 、る。  [0068] The combined cooling device 1 includes a cooling chamber 2, a vacuum cooling means 4 for cooling the object 3 in the cooling chamber 2 in a vacuum, a cold air cooling means 5 for cooling the object 3 to be cooled, A vacuum cooling means 4 and a controller 6 for controlling the cold air cooling means 5 are provided as main parts. The controller 6 is provided with a timer 7 by software. Based on the cooling program stored in advance, the controller 6 performs the vacuum cooling process of the object 3 to be cooled by the vacuum cooling means 4, and then the detection value (measurement time) by the timer 7 becomes a set value. At this time, it is configured to perform control to switch between the vacuum cooling of the object 3 to be cooled by the vacuum cooling means 4 and the cold air cooling of the object 3 to be cooled by the cold air cooling means 5.
[0069] つぎに、この実施例 1の各構成要素について説明する。前記冷却室 2は、被冷却物 3を収容する密閉空間を形成し、被冷却物 3を出し入れするための開口とこれを開閉 する扉(いずれも図示省略)を備えている。また、前記冷却室 2は、区画壁 8により内 部を上部の第一領域 81と下部の第二領域 82とに区画している。前記第一領域 81に は、被冷却物 3が収容され、前記第二領域 82には、前記冷風冷却手段 5の一部を構 成する冷却用熱交換器 9が配置されている。被冷却物 3は、容器に収容した食材で ある。  [0069] Next, each component of the first embodiment will be described. The cooling chamber 2 forms a sealed space in which the object to be cooled 3 is accommodated, and includes an opening for taking in and out the object to be cooled 3 and a door for opening and closing the object (both not shown). The cooling chamber 2 is divided into an upper first region 81 and a lower second region 82 by a partition wall 8. In the first area 81, the object to be cooled 3 is accommodated, and in the second area 82, the cooling heat exchanger 9 constituting a part of the cold air cooling means 5 is arranged. The object to be cooled 3 is a food contained in a container.
[0070] 前記冷却用熱交換器 9は、冷凍機 10の冷媒を液化するコンデンサ(図示省略)を 有するコンデンシングユニット 11から供給される液ィ匕冷媒を蒸発させることにより冷却 作用をなす周知の蒸発器にて構成されている。 [0070] The cooling heat exchanger 9 includes a condenser (not shown) that liquefies the refrigerant of the refrigerator 10. The liquid refrigerant supplied from the condensing unit 11 has a well-known evaporator that performs a cooling action by evaporating.
[0071] そして、前記冷風冷却手段 5は、被冷却物 3を冷風により冷却するものである。この 冷風冷却手段 5は、前記冷却室 2内の空気を冷却するための前記冷却用熱交換器 9 と、前記冷却室 2外に配置されるモータ 12によって駆動される空気循環手段としてフ アン 13とを含む。そして、前記冷却室 2の構成壁と前記区画壁 8との間に開口(また は隙間) 14, 14を設けて、前記冷却室 2内に空気の循環路 (符号省略)を形成するこ とにより、冷風冷却機能をなすように構成している。この実施例では、前記区画壁 8は 前記冷却室 2の構成壁とで前記循環路構成部材を構成する。  [0071] The cold air cooling means 5 cools the object 3 to be cooled with cold air. The cold air cooling means 5 is a fan 13 as an air circulating means driven by the cooling heat exchanger 9 for cooling the air in the cooling chamber 2 and a motor 12 arranged outside the cooling chamber 2. Including. Then, openings (or gaps) 14 and 14 are provided between the constituent wall of the cooling chamber 2 and the partition wall 8 to form an air circulation path (not shown) in the cooling chamber 2. Thus, the cooling air cooling function is configured. In this embodiment, the partition wall 8 and the component wall of the cooling chamber 2 constitute the circulation path constituting member.
[0072] 前記真空冷却手段 4は、前期の真空冷却速度が速ぐ後期で真空冷却速度が鈍 化する第一真空冷却特性を有する第一真空冷却手段 41と、前期の真空冷却速度が 速く、後期で真空冷却速度が鈍化する第二真空冷却特性を有する第二真空冷却手 段 42とから構成されている。  [0072] The vacuum cooling means 4 includes a first vacuum cooling means 41 having a first vacuum cooling characteristic in which the vacuum cooling speed decreases in the latter period when the vacuum cooling speed in the previous period is high, and the vacuum cooling speed in the previous period is high. It comprises a second vacuum cooling means 42 having a second vacuum cooling characteristic in which the vacuum cooling rate slows down in the later stage.
[0073] 前記第一真空冷却手段 41および前記第二真空冷却手段 42は、具体的には、つ ぎのように構成される。すなわち、前記第一真空冷却手段 41は、前記冷却室 2と接 続される減圧ライン 15と、この減圧ライン 15に設けられる減圧器としての水封式の真 空ポンプ 16と、前前記冷却室 2および前記真空ポンプ 16の間に位置して閉時に記 冷却室 2を密閉保持する開閉弁 17とを含んで構成される。  [0073] The first vacuum cooling means 41 and the second vacuum cooling means 42 are specifically configured as follows. That is, the first vacuum cooling means 41 includes a decompression line 15 connected to the cooling chamber 2, a water-sealed vacuum pump 16 serving as a decompressor provided in the decompression line 15, and the previous cooling chamber. 2 and the on-off valve 17 which is located between the vacuum pump 16 and holds the cooling chamber 2 in a closed state when closed.
[0074] この第一真空冷却手段 41は、前記開閉弁 17を開いた状態で前記真空ポンプ 16 を作動 (運転)させることにより第一真空冷却工程を実行するように構成される。前記 開閉弁 17は、開閉だけの弁としているが、開度が調整可能な弁とすることができる。 前記減圧ライン 15には、必要に応じて前記冷却室 2方向への流れを阻止する逆止 弁(図示省略)を設けることができる。こうした構成による第一真空冷却手段 41の第一 真空冷却特性は、前期の真空冷却速度が速ぐ後期で真空冷却速度が鈍化するも のとなつている。  The first vacuum cooling means 41 is configured to execute the first vacuum cooling step by operating (operating) the vacuum pump 16 with the on-off valve 17 open. The on-off valve 17 is a valve only for opening and closing, but can be a valve whose opening degree can be adjusted. The decompression line 15 can be provided with a check valve (not shown) for preventing the flow in the direction of the cooling chamber 2 as necessary. The first vacuum cooling characteristic of the first vacuum cooling means 41 having such a configuration is that the vacuum cooling rate becomes slow in the latter period when the vacuum cooling rate in the previous period is faster.
[0075] また、前記第二真空冷却手段 42は、前記冷却室 2内を低圧下で密閉状態として前 記冷却用熱交換器 9により被冷却物からの蒸気を凝縮する機能を有し、第二真空冷 却工程を実行するように構成される。この第二真空冷却手段 42を構成する要素は、 前記冷却室 2,前記冷却用熱交換器 9,前記開閉弁 17および前記第一真空冷却手 段 41である。前記冷却室 2内を低圧下で密閉状態とするには、前記第一真空冷却 工程後に、前記開閉弁 17を閉じることで実現される。こうした構成による第二真空冷 却手段 42の第二真空冷却特性は、前記第一真空冷却特性と同様に、前期の真空 冷却速度が速ぐ後期で真空冷却速度が鈍化するものとなっている。 [0075] Further, the second vacuum cooling means 42 has a function of condensing steam from the object to be cooled by the cooling heat exchanger 9 with the inside of the cooling chamber 2 sealed under a low pressure. It is configured to perform two vacuum cooling processes. The elements constituting this second vacuum cooling means 42 are: The cooling chamber 2, the cooling heat exchanger 9, the on-off valve 17, and the first vacuum cooling means 41. Closing the inside of the cooling chamber 2 under a low pressure is realized by closing the on-off valve 17 after the first vacuum cooling step. As with the first vacuum cooling characteristic, the second vacuum cooling characteristic of the second vacuum cooling means 42 having such a configuration is such that the vacuum cooling rate slows down in the latter period when the vacuum cooling rate in the previous period is faster.
[0076] そして、前記冷風冷却手段 5の冷風冷却特性は、冷風冷却速度が前記第一真空 冷却手段 41および前記第二真空冷却手段 42の前期の真空冷却速度より遅ぐ後期 の鈍化した真空冷却速度より速 、ものとして 、る。  [0076] The cold air cooling characteristic of the cold air cooling means 5 is that the cool air cooling rate is slowed down in the latter period when the cold air cooling rate is slower than the vacuum cooling speeds of the first vacuum cooling means 41 and the second vacuum cooling means 42 in the previous period. Faster than speed.
[0077] この実施例 1においては、前記第二真空冷却工程の作用を確実なものとするため に、前記第一真空冷却工程の前に空気排除工程を設けて実行するように構成してい る。この空気排除工程は、前記真空ポンプ 16を作動させながら、前記冷却室 2への 給蒸手段 18により蒸気を供給して前記冷却室内を蒸気で満たすことにより、空気を 排除するように構成している。具体的には、前記給蒸手段 18は、蒸気を前記冷却室 2内へ供給するための第一給蒸ライン 19と、蒸気供給源 20と、蒸気供給を制御する 第一給蒸弁 21とを設けて構成されている。  [0077] In Example 1, in order to ensure the operation of the second vacuum cooling step, an air exclusion step is provided and executed before the first vacuum cooling step. . This air exhausting step is configured to exclude air by supplying steam from the steam supply means 18 to the cooling chamber 2 and filling the cooling chamber with steam while operating the vacuum pump 16. Yes. Specifically, the steam supply means 18 includes a first steam supply line 19 for supplying steam into the cooling chamber 2, a steam supply source 20, and a first steam supply valve 21 that controls steam supply. Is provided.
[0078] また、前記冷却室 2は、真空冷却工程後に前記冷却室 2内を負圧から大気圧に復 圧する復圧手段 22を備えている。この復圧手段 22は、前記冷却室 2と接続される復 圧ライン 23と、この復圧ライン 23途中に設ける復圧弁 24および除菌フィルター 25と を含んで構成される。前記復圧弁 24は、復圧速度を調整するために開度が調整可 能な弁とする力 開閉のみの弁とすることができる。また、前記復圧ライン 23には、前 記冷却室 2内から外方向への流れを阻止する逆止弁(図示省略)を設けることができ る。  In addition, the cooling chamber 2 is provided with a return pressure means 22 for returning the pressure in the cooling chamber 2 from a negative pressure to an atmospheric pressure after the vacuum cooling process. The return pressure means 22 includes a return pressure line 23 connected to the cooling chamber 2, and a return pressure valve 24 and a sterilization filter 25 provided in the middle of the return pressure line 23. The return pressure valve 24 can be a force open / close valve that is a valve whose opening degree is adjustable in order to adjust the return pressure speed. Further, the return pressure line 23 can be provided with a check valve (not shown) that prevents the outward flow from the inside of the cooling chamber 2.
[0079] 前記制御器 6は、予め記憶した前記冷却プログラムにより前記第一真空冷却手段 4 1,前記第二真空冷却手段 42,前記冷風冷却手段 5および前記給蒸手段 18の作動 を制御するように構成されて 、る。  [0079] The controller 6 controls operations of the first vacuum cooling means 41, the second vacuum cooling means 42, the cold air cooling means 5 and the steam supply means 18 according to the cooling program stored in advance. It is composed of
[0080] この冷却プログラムなどの制御を行うために、被冷却物 3の品温を検出する品温セ ンサ 26,前記冷却室 2内の圧力(温度)を検出する室内圧力センサ 27,前記冷凍機 10の冷媒回路の圧力および温度を検出する冷媒圧力センサ 28,冷媒温度センサ 2 9を備えている。これらのセンサは、前記制御器 6と接続されて、前記コンデンシング ユニット 11,前記モータ 12,前記真空ポンプ 16,前記開閉弁 17,前記第一給蒸弁 2 1,前記復圧弁 24などを制御する。 [0080] In order to control the cooling program and the like, the product temperature sensor 26 for detecting the product temperature of the object 3 to be cooled, the indoor pressure sensor 27 for detecting the pressure (temperature) in the cooling chamber 2, and the refrigeration Refrigerant pressure sensor 28, refrigerant temperature sensor 2 that detects the pressure and temperature of the refrigerant circuit of the machine 10 Has nine. These sensors are connected to the controller 6 to control the condensing unit 11, the motor 12, the vacuum pump 16, the on-off valve 17, the first steam supply valve 21, the return pressure valve 24, etc. To do.
[0081] 前記冷却プログラムには、前記真空冷却手段 41, 42による真空冷却工程を行った 後に前記冷風冷却手段 5による冷風冷却工程を行うプログラム (第一プログラム),前 記冷風冷却工程,前記真空冷却工程および前記冷風冷却工程を順次行うプロダラ ム (第二プログラム)、前記真空冷却工程のみを行うプログラム (第三プログラム),前 記冷風冷却工程のみを行うプログラム(第四プログラム)、前記冷風冷却工程および 前記真空冷却工程を順次行うプログラム (第五プログラム)を含ませて 、る。これらの プログラムは、使用者による選択,または被冷却物 3の種類に応じて自動的に選択的 に実行されるように構成して 、る。  [0081] The cooling program includes a program (first program) for performing a cold air cooling process by the cold air cooling means 5 after performing a vacuum cooling process by the vacuum cooling means 41, 42, the cold air cooling process, the vacuum A program (second program) that sequentially performs the cooling process and the cold air cooling process, a program that performs only the vacuum cooling process (third program), a program that performs only the cold air cooling process (fourth program), and the cold air cooling And a program (fifth program) for sequentially performing the process and the vacuum cooling process. These programs are configured to be executed automatically and selectively according to the type of the object to be cooled or selected by the user.
[0082] つぎに、前記第一プログラムおよび前記第二プログラムにおける前記第一真空冷 却工程 41から前記第二真空冷却工程 42への切換タイミング(以下、真空切換タイミ ングという。 )および前記第二真空冷却工程から前記冷風冷却工程への切換タイミン グ(以下、冷風切換タイミングという。)について説明する。  Next, switching timing from the first vacuum cooling step 41 to the second vacuum cooling step 42 in the first program and the second program (hereinafter referred to as vacuum switching timing) and the second program. The switching timing from the vacuum cooling process to the cold air cooling process (hereinafter referred to as cold air switching timing) will be described.
[0083] 前記真空切換タイミングおよび前記冷風切換タイミングは、それぞれ前記第一真空 冷却特性および前記第二真空冷却特性を踏まえて、予め実験により、求めておく。 すなわち、前記真空冷却切換タイミングは、冷却開始から前記第一真空冷却工程の 後期の真空冷却速度が前記冷風冷却工程の冷風冷却速度近傍に達するまでの経 過時間 (冷却時間)を第一設定値として求めておき、検出手段としての前記タイマー 7による計測値が前記第一設定値となったときとしている。また、前記冷風切換タイミ ングは、冷却開始から前記第二真空冷却工程の後期の真空冷却速度が前記冷風冷 却工程の冷風冷却速度近傍に達するまでの経過時間 (冷却時間)を第二設定値とし て求めておき、前記タイマー 7による計測値が前記第二設定値となったときとしている  [0083] The vacuum switching timing and the cold air switching timing are obtained in advance by experiments in consideration of the first vacuum cooling characteristics and the second vacuum cooling characteristics, respectively. That is, the vacuum cooling switching timing is the first set value of the elapsed time (cooling time) from the start of cooling until the late vacuum cooling rate of the first vacuum cooling step reaches the vicinity of the cold air cooling rate of the cold air cooling step. It is assumed that the measured value by the timer 7 as the detection means becomes the first set value. In addition, the cold air switching timing is a second set value for the elapsed time (cooling time) from the start of cooling until the latter half of the second vacuum cooling process reaches the vicinity of the cold air cooling speed of the cold air cooling process. And when the measured value by the timer 7 becomes the second set value.
[0084] 前記第一設定値および前記第二設定値は、前記冷却時間によらずに、前記冷風 冷却速度近傍に達したときの前記冷却室 2内の圧力,前記冷風冷却速度近傍に達 したときの前記冷却室 2内の温度,前記近傍に達したときの被冷却物 3の温度のいず れかにより,または前記冷却室 2内の圧力,前記冷却室 2内の温度,被冷却物 3の温 度の変化量により求めることができる。そして、前記室内圧力センサ 25により室内圧 力または室内温度を検出する力、前記品温センサ 7により品温を検出する力して、検 出値が前記第一設定値となったとき、前記第一真空冷却工程から前記第二真空冷 却工程へ切り換え、前記検出値が前記第二設定値となったとき、前記第二真空冷却 工程力 前記冷風冷却工程へ切り換えるように構成することができる。 [0084] The first set value and the second set value have reached the pressure in the cooling chamber 2 when reaching the vicinity of the cold air cooling rate, the vicinity of the cold air cooling rate, regardless of the cooling time. The temperature of the cooling chamber 2 when the temperature of the object 3 to be cooled This can be obtained from the pressure in the cooling chamber 2, the temperature in the cooling chamber 2, or the amount of change in the temperature of the object 3 to be cooled. When the detected value becomes the first set value by the force for detecting the indoor pressure or the indoor temperature by the indoor pressure sensor 25 and the force for detecting the product temperature by the product temperature sensor 7, Switching from one vacuum cooling process to the second vacuum cooling process, and when the detected value reaches the second set value, the second vacuum cooling process force can be switched to the cold air cooling process.
[0085] 以下に、この実施例 1の動作を図 1〜図 6に基づき以下に説明する。  The operation of the first embodiment will be described below with reference to FIGS. 1 to 6.
[0086] <準備段階 >  [0086] <Preparation stage>
使用者は、前記扉を開いて前記冷却室 2内へ被冷却物 3を収容し、前記扉を閉じ て密閉状態とする。この状態では、前記開閉弁 17,前記第一給蒸弁 21,前記復圧 弁 24は、全て閉状態で、前記モータ 12,前記真空ポンプ 16,前記コンデンシングュ ニット 11は、全て作動 (運転)停止状態である。前記蒸気発生源 20は、予め作動状 態としておくことができる。  The user opens the door, accommodates the object 3 to be cooled in the cooling chamber 2, and closes the door to make it sealed. In this state, the on-off valve 17, the first steam supply valve 21, and the return pressure valve 24 are all closed, and the motor 12, the vacuum pump 16, and the condensing unit 11 are all inactive. State. The steam generation source 20 can be in an operating state in advance.
[0087] <冷却プログラムの選択 >  [0087] <Cooling program selection>
この状態で、使用者は、運転スィッチ(図示省略)により運転を開始した後、前記第 一〜前記第五プログラムを選択する。この選択は、冷却開始当初の品温 (以下、初 期品温と 、う。 )および到達すべき冷却温度 (設定冷却温度)と被冷却物 3の種類とに 応じて行うことができる。  In this state, the user selects the first to fifth programs after starting operation with an operation switch (not shown). This selection can be made according to the product temperature at the beginning of cooling (hereinafter referred to as the initial product temperature), the cooling temperature to be reached (set cooling temperature), and the type of the object to be cooled 3.
[0088] この選択により、図 2を参照して、処理ステップ S1 (以下、処理ステップ SNは、単に SNと称する。)前記第一プログラム〜前記第五プログラムが選択されると、それぞれ S2〜S6にて第一プログラム〜前記第五プログラムが実行される。以下、各運転プロ グラムによる動作を説明する。  [0088] With this selection, referring to FIG. 2, when processing step S1 (hereinafter, processing step SN is simply referred to as SN) is selected from the first program to the fifth program, S2 to S6, respectively. Then, the first program to the fifth program are executed. The operation of each driving program is described below.
[0089] <第一プログラム:真空冷却→冷風冷却切換 >  [0089] <First program: Switching from vacuum cooling to cold air cooling>
前記第一プログラムは、初期品温が約 70°C以下で、設定冷却温度が約 10°C以下 であって、被冷却物 3が水分を含み、その水分が蒸発可能な食材の冷却に適してい る。今、初期品温を 70°C,設定冷却温度を 3°Cとする。  The first program is suitable for cooling foods that have an initial product temperature of about 70 ° C or less and a set cooling temperature of about 10 ° C or less, and the object to be cooled 3 contains moisture and the moisture can evaporate. ing. Now, the initial product temperature is 70 ° C and the set cooling temperature is 3 ° C.
[0090] (空気排除工程)  [0090] (Air exclusion process)
この第一プログラムが選択されると、図 3の処理手順が実行される。まず S 21にて空 気排除工程が行われる。この空気排除工程は、つぎのように行われる。前記蒸気発 生源 20を蒸気が供給可能な状態としておき、前記開閉弁 17および前記第一給蒸弁 21を開き、前記復圧弁 24を閉じ、前記真空ポンプ 16を作動させる。すると、前記蒸 気発生源 20から前記冷却室 2内へ蒸気が供給され、前記冷却室 2内の空気は、供 給された蒸気とともに、前記減圧ライン 15を通して室外へ排出される。最終的には、 前記冷却室 2内が蒸気で満たされることになる。この空気排除工程終了時、前記冷 却室 2内は、大気圧以下の低圧となっている。この空気排除工程は、前記真空ボン プ 16の作動による排気と前記開閉弁 21の開による給蒸とを同時に行っている力 排 気→給蒸→排気の順に行 ヽ、これを 1回乃至複数回繰り返すことに行うように構成す ることがでさる。 When this first program is selected, the processing procedure of FIG. 3 is executed. First empty at S 21 Qi exclusion process is performed. This air exclusion process is performed as follows. The steam generation source 20 is in a state where steam can be supplied, the on-off valve 17 and the first steam supply valve 21 are opened, the return pressure valve 24 is closed, and the vacuum pump 16 is operated. Then, steam is supplied from the steam generation source 20 into the cooling chamber 2, and the air in the cooling chamber 2 is discharged to the outside through the decompression line 15 together with the supplied steam. Eventually, the inside of the cooling chamber 2 is filled with steam. At the end of this air exclusion process, the inside of the cooling chamber 2 is at a low pressure below atmospheric pressure. In this air evacuation process, exhausting by the operation of the vacuum pump 16 and steaming by opening the on-off valve 21 are performed simultaneously in the order of exhaustion → steaming → exhaust. It can be configured to be performed repeatedly.
[0091] (第一真空冷却工程)  [0091] (First vacuum cooling step)
空気排除工程が終了すると、 S22へ移行して、第一真空冷却工程が行われる。こ の第一真空冷却工程は、つぎのように行われる。前記開閉弁 17を開き、前記第一給 蒸弁 21を閉じ、前記復圧弁 24を閉じて、前記真空ポンプ 16を作動させる。すると、 前記冷却室 2内の気体は、前記減圧ライン 15を通して室外へ排出される。前記冷却 室 2内の圧力は、前記第一真空冷却特性に沿って低下し、この圧力低下に従って、 被冷却物 3からの蒸気の蒸発により、被冷却物 3の温度が 70°C力 低下して行く。こ の品温低下速度は、初期において急速で、温度の低下とともに、後期において鈍化 して行く。そして、前記タイマー 7による計測時間が前記第一設定値に達すると、 S23 の第二真空冷却工程へ移行する。この移行時点における真空冷却速度は、前記冷 風冷却手段 5の冷風冷却特性による冷却速度より低くなつている。また、この移行時 点の品温は、約 20°Cである。  When the air exclusion process ends, the process proceeds to S22, and the first vacuum cooling process is performed. This first vacuum cooling step is performed as follows. The on-off valve 17 is opened, the first steam supply valve 21 is closed, the return pressure valve 24 is closed, and the vacuum pump 16 is operated. Then, the gas in the cooling chamber 2 is discharged to the outside through the decompression line 15. The pressure in the cooling chamber 2 decreases in accordance with the first vacuum cooling characteristics, and the temperature of the object to be cooled 3 decreases by 70 ° C. force due to vaporization of the vapor from the object to be cooled 3 according to this pressure decrease. Go. This rate of decrease in product temperature is rapid in the initial stage, and slows down in the later stages as the temperature decreases. When the time measured by the timer 7 reaches the first set value, the process proceeds to the second vacuum cooling step of S23. The vacuum cooling rate at this transition point is lower than the cooling rate due to the cold air cooling characteristics of the cold air cooling means 5. The product temperature at the time of this transition is approximately 20 ° C.
[0092] (第二真空冷却工程)  [0092] (Second vacuum cooling step)
前記第二真空冷却工程では、前記開閉弁 17,前記第一給蒸弁 21および前記復 圧弁 24を閉じて、前記真空ポンプ 16を停止するとともに、前記コンデンシングュニッ ト 11を作動させる。前記コンデンシングユニット 11の作動により、前記冷却用熱交換 器 9内の温度を約 10°Cとする。このコンデンシングユニット 11による前記冷却用熱 交換器 9の温度低下には起動から所定の時間を要するので、前記第一設定値の所 定時間前に前記コンデンシングユニット 11を起動させておくことが望ましい。 In the second vacuum cooling step, the on-off valve 17, the first steam supply valve 21 and the pressure-reducing valve 24 are closed to stop the vacuum pump 16 and to operate the condensing unit 11. By operating the condensing unit 11, the temperature in the cooling heat exchanger 9 is set to about 10 ° C. The temperature reduction of the cooling heat exchanger 9 by the condensing unit 11 requires a predetermined time from the start-up. It is desirable to activate the condensing unit 11 before a predetermined time.
[0093] この第二真空冷却工程においては、前記冷却室 2内は、低圧で密封され、前記冷 却室 2内の蒸気は、前記冷却用熱交換器 9へ移動して、ここで凝縮し、前記冷却室 2 内の圧力は、低圧状態を維持する。その結果、被冷却物 3から蒸気が連続的に発生 し、品温が低下して行く。この品温低下は、前記第二真空冷却特性に沿ってなされ、 初期において急速に行われ、温度の低下とともに、後期において低下速度が鈍化し て行く。前記タイマー 7による計測時間が前記第二設定値に達すると、 S24の復圧ェ 程へ移行する。この移行時点における真空冷却速度は、前記冷風冷却手段 5の冷 風冷却特性による冷却速度より低くなつている。また、この移行時点の品温は、約 10 °Cである。 [0093] In this second vacuum cooling step, the inside of the cooling chamber 2 is sealed at a low pressure, and the steam in the cooling chamber 2 moves to the cooling heat exchanger 9 where it is condensed. The pressure in the cooling chamber 2 is maintained at a low pressure. As a result, steam is continuously generated from the object to be cooled 3 and the product temperature decreases. This temperature drop is made in accordance with the second vacuum cooling characteristic, and is performed rapidly in the initial stage, and the rate of decrease slows down in the later stage as the temperature decreases. When the time measured by the timer 7 reaches the second set value, the process proceeds to the recovery pressure process of S24. The vacuum cooling rate at the time of the transition is lower than the cooling rate due to the cold air cooling characteristics of the cold air cooling means 5. The product temperature at the time of this transition is about 10 ° C.
[0094] (復圧工程) [0094] (Returning pressure process)
前記復圧工程は、前記復圧弁 24を開くことで行う。これにより、外気が前記復圧ラ イン 23を通して前記冷却室 2内へ導入され、前記冷却室 2内が大気圧に復帰する。 この復圧工程は、前記室内圧力センサ 27により検出され、大気圧を検出すると、復 圧工程を終了し、 S 25の前記冷風冷却工程へ移行する。この実施例 1においては、 前記復圧工程中は、前記コンデンシングユニット 11の作動を継続し、前記ファン 13 の作動を停止しておく。し力しながら、必要に応じて、前記コンデンシングユニット 11 の作動を停止し、前記ファン 13を作動させるように構成することができる。  The return pressure step is performed by opening the return pressure valve 24. As a result, outside air is introduced into the cooling chamber 2 through the return pressure line 23, and the inside of the cooling chamber 2 returns to atmospheric pressure. This return pressure process is detected by the indoor pressure sensor 27. When the atmospheric pressure is detected, the return pressure process is terminated, and the process proceeds to the cold air cooling process of S25. In the first embodiment, during the decompression process, the operation of the condensing unit 11 is continued and the operation of the fan 13 is stopped. However, if necessary, the operation of the condensing unit 11 can be stopped and the fan 13 can be operated.
[0095] (冷風冷却工程) [0095] (Cooling air cooling process)
前記冷風冷却工程では、前記開閉弁 17,前記第一給蒸弁 21および前記復圧弁 2 4を閉じて、前記真空ポンプ 16を停止するとともに、前記コンデンシングユニット 11お よび前記ファン 13を作動させる。これにより、前記冷却室 2内において前記ファン 13 →前記冷却用熱交換器 9→前記開口 14→前記被冷却物 3→前記開口 14→前記フ アン 13の一点破線矢視の冷風循環流が形成される。この循環流により、前記冷却室 2内の空気は、前記冷却用熱交換器 9により冷却されて温度低下し、前記被冷却物 3 を間接熱交換により冷却する。こうした冷風冷却により、品温が約 3°Cとなるまで冷却 される。品温が 3°Cまで低下したことを前記品温センサ 26により検出すると、前記冷 風冷却工程を終了する。 [0096] この冷風冷却工程においては、被冷却物 3および前記冷却用熱交換器 9の表面か ら凝縮水(ドレン)が発生し、前記冷却室 2内底部に貯留する。このドレンは、つぎのよ うにして排出される。前記開閉弁 17を開き、前記真空ポンプ 16を作動させる。すると 、前記ドレンは、前記減圧ライン 15を通して前記冷却室 2外へ排出される。このドレン 排出時、前記復圧弁 24を開くことにより、ドレンの排出をスムーズに行うことができる。 In the cold air cooling step, the on-off valve 17, the first steam supply valve 21 and the return pressure valve 24 are closed, the vacuum pump 16 is stopped, and the condensing unit 11 and the fan 13 are operated. . Thus, in the cooling chamber 2, the fan 13 → the cooling heat exchanger 9 → the opening 14 → the object to be cooled 3 → the opening 14 → the cooling air circulating flow as indicated by a one-dot broken arrow is formed. Is done. Due to this circulating flow, the air in the cooling chamber 2 is cooled by the cooling heat exchanger 9 and the temperature is lowered, and the object to be cooled 3 is cooled by indirect heat exchange. With such cold air cooling, the product is cooled to about 3 ° C. When the product temperature sensor 26 detects that the product temperature has dropped to 3 ° C, the cold air cooling process is terminated. In this cold air cooling step, condensed water (drain) is generated from the surface of the object to be cooled 3 and the heat exchanger 9 for cooling, and is stored in the inner bottom of the cooling chamber 2. This drain is discharged as follows. The on-off valve 17 is opened and the vacuum pump 16 is operated. Then, the drain is discharged out of the cooling chamber 2 through the decompression line 15. When the drain is discharged, the drain can be discharged smoothly by opening the return pressure valve 24.
[0097] (冷却運転終了)  [0097] (End of cooling operation)
この冷風冷却工程が終了すると、使用者は、前記運転スィッチを操作して、冷却運 転を停止して、前記冷却室 2内の被冷却物 3を取り出すことができる。勿論、冷風冷 却工程終了後も、被冷却物 3の冷蔵のために冷風冷却工程を続けることができる。  When this cold air cooling step is completed, the user can operate the operation switch to stop the cooling operation and take out the object 3 to be cooled in the cooling chamber 2. Of course, even after the cold air cooling process is completed, the cold air cooling process can be continued for refrigeration of the object 3 to be cooled.
[0098] <第二プログラム:冷風冷却→真空冷却→冷風冷却切換 >  [0098] <Second program: cold air cooling → vacuum cooling → cold air cooling switching>
前記第二プログラムは、初期品温が約 70°C以上で、設定冷却温度が 10°C以下で あって、被冷却物 3が水分を含み、その水分が蒸発可能な食材の冷却に適している 。今、初期品温を 90°C,設定冷却温度を 3°Cとする。  The second program is suitable for cooling foodstuffs having an initial product temperature of about 70 ° C or higher and a set cooling temperature of 10 ° C or lower, and the object to be cooled 3 contains water and the water can evaporate. Yes. Now, the initial product temperature is 90 ° C and the set cooling temperature is 3 ° C.
[0099] この第二プログラムが選択されると、図 4に示す処理手順が実行される。すなわち、 第一冷風冷却工程 S31→空気排除工程 S32→第一真空冷却工程 S33→第二真空 冷却工程 334→復圧工程 S35→第二冷風冷却工程 S36が順次実行される。  When this second program is selected, the processing procedure shown in FIG. 4 is executed. That is, the first cold air cooling step S31 → the air evacuation step S32 → the first vacuum cooling step S33 → the second vacuum cooling step 334 → the return pressure step S35 → the second cold air cooling step S36 are sequentially executed.
[0100] この第二プログラムにおいて、前記第一プログラムと異なるのは、図 2の前記空気排 除工程 S22の前に第一冷風冷却工程 S31を設けるとともに、前記第一冷風冷却ェ 程 S31から前記真空冷却工程 (前記空気排除工程 S32→前記第一真空冷却工程 S 33→前記第二真空冷却工程 S34までを含む工程。 )への切換タイミングを品温が設 定値 (この実施例では、 70°C)に達したタイミングとした点である。  [0100] The second program differs from the first program in that a first cold air cooling step S31 is provided before the air exhausting step S22 in Fig. 2 and the first cold air cooling step S31 to The product temperature is a set value (in this example, 70 ° in the timing of switching to the vacuum cooling step (including the air exclusion step S32 → the first vacuum cooling step S33 → the second vacuum cooling step S34)). This is the point when it reached the timing of C).
[0101] 以下の説明においては、図 4の空気排除工程 S32,第一真空冷却工程 S33,第二 真空冷却工程 S34,復圧工程 S35,第二冷風冷却工程 S36は、それぞれ図 3の空 気排除工程 S21,第一真空冷却工程 S22,第二真空冷却工程 S23,復圧工程 S24 ,冷風冷却工程 S25に相当するので、その説明を省略する。また、前記第一真空冷 却工程から前記第二真空冷却工程への切換タイミングおよび前記第二真空冷却ェ 程から前記第二冷風冷却工程 (復圧工程を含む)への切換タイミングは、それぞれ前 記真空切換タイミング,前記冷風切換タイミングと同様であるのでその説明を省略す る。以下、主として前記第二プログラムについて前記第一プログラムと異なる部分の みを説明する。 [0101] In the following description, the air evacuation step S32, the first vacuum cooling step S33, the second vacuum cooling step S34, the return pressure step S35, and the second cold air cooling step S36 of FIG. Since this corresponds to the exclusion step S21, the first vacuum cooling step S22, the second vacuum cooling step S23, the decompression step S24, and the cold air cooling step S25, description thereof is omitted. The timing for switching from the first vacuum cooling step to the second vacuum cooling step and the timing for switching from the second vacuum cooling step to the second cold air cooling step (including the return pressure step) are respectively Since it is the same as the vacuum switching timing and the cold air switching timing, description thereof is omitted. The In the following, only the parts of the second program that are different from the first program will be described.
[0102] 図 4の前記第一冷風冷却工程 S31は、図 3の冷風冷却工程 S21と同様に行われる 。すなわち、前記冷却用熱交換器 9による冷却 (熱交換器冷却)が行われ、品温は、 90°Cから 70°Cまで低下される。  [0102] The first cold air cooling step S31 of Fig. 4 is performed in the same manner as the cold air cooling step S21 of Fig. 3. That is, cooling by the heat exchanger 9 for cooling (heat exchanger cooling) is performed, and the product temperature is lowered from 90 ° C to 70 ° C.
[0103] この第一冷風冷却工程 S31は、前記コンデンシングユニット 11を作動させることなく 、前記復圧手段 22および前記開閉弁 17を開き、前記真空ポンプ 16を作動させるこ とにより、外気を前記冷却室 2へ導入しつつ、前記減圧ライン 15を通して排出するこ とにより、外気により前記被冷却物 3を冷却 (外気導入冷却)するように構成することが できる。この場合、前記ファン 13の作動は、必要に応じて行うことができる。  [0103] In the first cold air cooling step S31, without operating the condensing unit 11, the return pressure means 22 and the on-off valve 17 are opened, and the vacuum pump 16 is operated, whereby the outside air is discharged. By being discharged through the pressure reducing line 15 while being introduced into the cooling chamber 2, the object to be cooled 3 can be cooled by outside air (outside air introduction cooling). In this case, the operation of the fan 13 can be performed as necessary.
[0104] この第一冷風冷却工程 S31が終了すると、前記空気排除工程 32へ移行し、前記 第一プログラムと同様にして、被冷却物 3温度が 3°Cとなるまで冷却が行われ、冷却 運転を終了する。  [0104] When the first cold air cooling step S31 is completed, the process proceeds to the air exclusion step 32, and cooling is performed until the temperature of the object 3 to be cooled reaches 3 ° C in the same manner as in the first program. End driving.
[0105] このように、この第二プログラムでは、前記第一冷風冷却工程 S31により、被冷却物 3の粗熱取りが行われる。品温が約 70°C以上では、被冷却物 3の温度が高ぐ被冷 却物 3からの自然蒸発が支配的であるので、前記真空冷却手段 4を作動させることに よる真空冷却が効果的に行われない。この第二プログラムでは、真空冷却でなぐ冷 風冷却により粗熱取りを行っているので、効果的な被冷却物 3の冷却を行うことがで き、全冷却時間を短縮することができる。  As described above, in the second program, the object 3 to be cooled is removed by the first cold air cooling step S31. When the product temperature is about 70 ° C or higher, natural evaporation from the cooled object 3 where the temperature of the cooled object 3 is high is dominant, so vacuum cooling by operating the vacuum cooling means 4 is effective. Not done. In this second program, since the rough heat removal is performed by cooling with cold air, the cooling target 3 can be effectively cooled, and the total cooling time can be shortened.
[0106] <第三プログラム:真空冷却 >  [0106] <Third program: vacuum cooling>
前記第三プログラムは、初期品温が約 70°C以下で、前記設定冷却温度が約 10°C 以上であって、被冷却物 3が水分を含み、その水分が蒸発可能な食材の冷却に適し ている。今、初期品温を 70°Cとし、前記設定冷却温度を 10°Cとする。  In the third program, the initial product temperature is about 70 ° C. or lower, the set cooling temperature is about 10 ° C. or higher, and the object to be cooled 3 contains moisture, and the food that can evaporate the moisture is cooled. Is suitable. Now, the initial product temperature is 70 ° C, and the set cooling temperature is 10 ° C.
[0107] この第三プログラムが選択されると、図 5に示すように、空気排除工程 S41→第一 真空冷却工程 S42→第二真空冷却工程 343→復圧工程 S44が順次実行される。  When this third program is selected, as shown in FIG. 5, the air exclusion step S41 → the first vacuum cooling step S42 → the second vacuum cooling step 343 → the decompression step S44 is sequentially executed.
[0108] この第三プログラムにおいて、前記第一プログラムと異なるのは、図 2の冷風冷却ェ 程 S25を省略し、前記第二真空冷却工程 43の終了を品温が 10°Cとなったタイミング としている点である。 [0109] 以下の説明においては、図 5の空気排除工程 S41,第一真空冷却工程 S42,第二 真空冷却工程 S43,復圧工程 S44は、それぞれ図 3の空気排除工程 S21,第一真 空冷却工程 S22,第二真空冷却工程 S23,復圧工程 S24に相当するので、その説 明を省略する。また、前記第一真空冷却工程から前記第二真空冷却工程への真空 切換タイミングは、前記真空切換タイミングと同様であるので、その説明を省略する。 以下、前記第三プログラムにおいて前記第一プログラムと異なる部分を主として説明 する。 [0108] The third program differs from the first program in that the cold air cooling step S25 in Fig. 2 is omitted and the end of the second vacuum cooling step 43 is the timing when the product temperature reaches 10 ° C. It is a point to be. [0109] In the following description, the air exclusion step S41, the first vacuum cooling step S42, the second vacuum cooling step S43, and the decompression step S44 of FIG. Since this corresponds to the cooling step S22, the second vacuum cooling step S23, and the decompression step S24, description thereof is omitted. Moreover, the vacuum switching timing from the first vacuum cooling step to the second vacuum cooling step is the same as the vacuum switching timing, and thus the description thereof is omitted. Hereinafter, portions of the third program different from the first program will be mainly described.
[0110] 図 5において、空気排除工程 S41,第一真空冷却工程 S42および第二真空冷却 手段 S43は、図 3の前記第一プログラムと同様に行われる。前記第二真空冷却工程 S43において、前記品温センサ 26による検出値が 10°Cとなると、前記第二真空冷却 工程 S43を終了し、前記第一プログラムと同様に前記復圧工程 S44を実行して、冷 却運転を終了する。  In FIG. 5, the air exclusion step S41, the first vacuum cooling step S42, and the second vacuum cooling means S43 are performed in the same manner as the first program in FIG. In the second vacuum cooling step S43, when the value detected by the product temperature sensor 26 reaches 10 ° C, the second vacuum cooling step S43 is terminated, and the return pressure step S44 is executed as in the first program. To end the cooling operation.
[0111] <第四プログラム:冷風冷却 >  [0111] <Fourth program: Cool air cooling>
前記第四プログラムは、被冷却物 3が水分を含まない食材や、水分を含んでいても その水分が蒸発できな!/、ように包装されて 、る食材の冷却に適して 、る。  The fourth program is suitable for cooling foodstuffs that are packaged in such a way that the object to be cooled 3 does not contain moisture, and even if it contains moisture, the moisture cannot evaporate! /.
[0112] この第四プログラムが選択されると、図 2の冷風冷却工程 S5が実行される。この冷 風冷却工程 S5は、図 3の冷風冷却工程 S25と同様に、前記開閉弁 17,前記第一給 蒸弁 21および前記復圧弁 24を閉じて、前記真空ポンプ 16を停止するとともに、前記 コンデンシングユニット 11および前記ファン 13を作動させて行われる。すなわち、図 1の一点破線矢視の冷風循環流が形成され、この冷風循環流により、被冷却物 3を 冷却する。この冷風冷却工程 S5は、前記品温センサ 26による検出値が設定冷却温 度となることで終了する。  [0112] When this fourth program is selected, the cold air cooling step S5 of Fig. 2 is executed. This cold air cooling step S5 is similar to the cold air cooling step S25 of FIG. 3, and closes the on-off valve 17, the first steam supply valve 21 and the return pressure valve 24 to stop the vacuum pump 16, and This is performed by operating the condensing unit 11 and the fan 13. That is, a cold air circulation flow as indicated by the dashed line in FIG. 1 is formed, and the object to be cooled 3 is cooled by this cold air circulation flow. This cold air cooling step S5 ends when the value detected by the product temperature sensor 26 reaches the set cooling temperature.
[0113] <第五プログラム:冷風冷却→真空冷却 >  [0113] <Fifth program: cold air cooling-> vacuum cooling>
前記第五プログラムは、初期品温が約 70°C以上,設定冷却温度が 10°C以上であ つて、被冷却物 3が水分を含み、その水分が蒸発可能な食材の冷却に適している。 今、初期品温を 90°C,設定冷却温度を 10°Cとする。  The fifth program is suitable for cooling foodstuffs that have an initial product temperature of about 70 ° C or higher, a set cooling temperature of 10 ° C or higher, and the object to be cooled 3 contains water, and its water can evaporate. . Now, the initial product temperature is 90 ° C and the set cooling temperature is 10 ° C.
[0114] この第五プログラムが選択されると、図 6に示す処理手順が実行される。すなわち、 冷風冷却工程 S61→空気排除工程 S62→第一真空冷却工程 S63→第二真空冷却 工程 364→復圧工程 S65が順次実行される。 When this fifth program is selected, the processing procedure shown in FIG. 6 is executed. That is, cold air cooling process S61 → air exclusion process S62 → first vacuum cooling process S63 → second vacuum cooling Step 364 → return pressure step S65 is sequentially executed.
[0115] この第五プログラムにおいて、図 4の前記第二プログラムと異なるのは、図 2の前記 第二冷風冷却工程を削除した点である。  This fifth program differs from the second program in FIG. 4 in that the second cold air cooling step in FIG. 2 is deleted.
[0116] 以下の説明においては、図 6の冷風冷却工程 S61,空気排除工程 S62,第一真空 冷却工程 S63,第二真空冷却工程 S64,復圧工程 S65は、それぞれ図 4の第一冷 風冷却工程 S31,空気排除工程 S32,第一真空冷却工程 S33,第二真空冷却工程 S34,復圧工程 S35に相当するので、その説明を省略する。また、前記冷風冷却ェ 程 S61から前記空気排除工程 S32への切り換えおよび前記第一真空冷却工程から 前記第二真空冷却工程へ切り換えは、図 4の第二プログラムと同様であるので、その 説明を省略する。  [0116] In the following description, the cold air cooling step S61, the air exhausting step S62, the first vacuum cooling step S63, the second vacuum cooling step S64, and the decompression step S65 of FIG. Since it corresponds to the cooling step S31, the air exclusion step S32, the first vacuum cooling step S33, the second vacuum cooling step S34, and the decompression step S35, the description thereof is omitted. The switching from the cold air cooling step S61 to the air exclusion step S32 and the switching from the first vacuum cooling step to the second vacuum cooling step are the same as the second program in FIG. Omitted.
[0117] 以上のように構成される実施例 1によれば、つぎの効果を奏する。前記第一プログ ラムまたは前記第二プログラムにお 、ては、急速で均一冷却が可能な真空冷却工程 S22および S23または S33および S34を実行した後に、低温まで冷却可能な冷風冷 却工程 S25または S36を実行する。その結果、被冷却物を短時間で目標とする低温 の設定冷却温度まで冷却することができる。  [0117] According to the first embodiment configured as described above, the following effects can be obtained. In the first program or the second program, the cold air cooling step S25 or S36 that can be cooled to a low temperature after executing the vacuum cooling step S22 and S23 or S33 and S34 capable of rapid and uniform cooling. Execute. As a result, the object to be cooled can be cooled to the target low set cooling temperature in a short time.
[0118] また、前記真空冷却工程を前記第一真空冷却手段 41と前記第二真空冷却手段 4 2とで、二段階により行っているので、前記真空冷却手段 4の冷却能力を増強すべく 冷却設備を大掛力りなものせずに済むことができる。また、真空冷却開始当初から過 大な冷却能力で真空冷却するものと比較して、真空冷却手段の作動に必要なエネ ルギーを削減できるとともに、急激な冷却で被冷却物の品質低下が問題になる食材 では、品質の低下を抑えることができる。  [0118] In addition, since the vacuum cooling process is performed in two stages by the first vacuum cooling means 41 and the second vacuum cooling means 42, cooling is performed to enhance the cooling capacity of the vacuum cooling means 4. It is possible to eliminate the need for heavy equipment. In addition, the energy required for the operation of the vacuum cooling means can be reduced compared to the case of vacuum cooling with an excessive cooling capacity from the beginning of vacuum cooling, and the quality of the object to be cooled is a problem due to rapid cooling. The resulting food can suppress the quality degradation.
[0119] また、冷風冷却用の前記冷却用熱交換器 9を前記第二真空冷却手段 42の蒸気凝 縮用のコールドトラップと兼用しているので、真空冷却手段の設備を簡素化でき、複 合冷却装置のイニシャルコストを低減することができる。  [0119] Further, since the cooling heat exchanger 9 for cooling the cold air is also used as a cold trap for condensing the vapor of the second vacuum cooling means 42, the equipment of the vacuum cooling means can be simplified. The initial cost of the combined cooling device can be reduced.
[0120] さらに、前記第一〜第五プログラムを選択することにより、被冷却物 3の性状,初期 品温および設定冷却温度に応じた冷却を実現することができ、 1台の冷却装置で種 々の冷却を短時間で、高品質にて実現することができる。 [0120] Furthermore, by selecting the first to fifth programs, it is possible to achieve cooling in accordance with the properties, initial product temperature, and set cooling temperature of the object 3 to be cooled. Various cooling can be realized in high quality in a short time.
実施例 2 [0121] つぎに、この発明の実施例 2を図 7に基づき説明する。この実施例 2において、前記 真空冷却手段 4を前記第一真空冷却手段 41と前記第二真空冷却手段 42とから構 成するなどの点で前記実施例 1と構成を同じくしており、以下に異なる部分を主として 説明する。 Example 2 Next, Embodiment 2 of the present invention will be described with reference to FIG. In Example 2, the configuration of Example 1 is the same as that of Example 1 in that the vacuum cooling means 4 is composed of the first vacuum cooling means 41 and the second vacuum cooling means 42. The differences are mainly explained.
[0122] この実施例 2において、前記実施例 1と異なるのは、前記第一真空冷却手段 41の 構成である。前記実施例 1では、前記第一真空冷却手段 41の構成要素を前記減圧 ライン 15,前記開閉弁 17および真空ポンプ 16とした力 この実施例 2では、これらの 構成要素に加えて、前記真空ポンプ 16の上流側に凝縮用熱交換器 31を設けた点 である。前記開閉弁 17は、前記凝縮用熱交換器 31と前記冷却室 2との間に設けて いる。前記凝縮用熱交換器 41へは給水ライン 32が接続される。そして、前記給水ラ イン 32に設けた給水弁 33の開閉により前記凝縮用熱交換器 31への通水が制御さ れ、この凝縮用熱交換器 31の作動が制御される。前記給水弁 33は、前記制御器 6 により制御される。  [0122] The second embodiment is different from the first embodiment in the configuration of the first vacuum cooling means 41. In the first embodiment, the force used as the decompression line 15, the on-off valve 17 and the vacuum pump 16 as the constituent elements of the first vacuum cooling means 41. In the second embodiment, in addition to these constituent elements, the vacuum pump This is the point that a heat exchanger 31 for condensation is provided upstream of 16. The on-off valve 17 is provided between the heat exchanger for condensation 31 and the cooling chamber 2. A water supply line 32 is connected to the heat exchanger 41 for condensation. The water supply to the condensing heat exchanger 31 is controlled by opening and closing the water supply valve 33 provided in the water supply line 32, and the operation of the condensing heat exchanger 31 is controlled. The water supply valve 33 is controlled by the controller 6.
[0123] この実施例 2の第一真空冷却手段 41は、前記開閉弁 17を開き、前記凝縮用熱交 [0123] The first vacuum cooling means 41 of the second embodiment opens the on-off valve 17 and the heat exchanger for condensation.
31および前記真空ポンプ 16を作動させて、前記第一真空冷却工程を実行する 。この第一真空冷却工程の第一真空冷却特性は、前記実施例 1の第一真空冷却と 同様であるが、前記凝縮用熱交換器 31の冷却作用により真空冷却能力が前記第一 真空冷却手段 41よりも増強されるとともに、前記冷却室 2の空気排除が効率よく行え る。  31 and the vacuum pump 16 are operated to execute the first vacuum cooling step. The first vacuum cooling characteristic of the first vacuum cooling step is the same as that of the first vacuum cooling of the first embodiment, but the vacuum cooling capacity is the first vacuum cooling means by the cooling action of the condensation heat exchanger 31. In addition, the air in the cooling chamber 2 can be efficiently removed.
[0124] 以上、この実施例 2において、前記実施例 1と異なる構成を説明したが、その他は 同様であるので、その説明を省略する。また、この実施例 2においては、前記第一〜 第五プログラムも同様に実行されるので、その説明を省略する。  As described above, in the second embodiment, the configuration different from the first embodiment has been described, but the other configuration is the same, and thus the description thereof is omitted. In the second embodiment, the first to fifth programs are also executed in the same manner, and the description thereof is omitted.
実施例 3  Example 3
[0125] つぎに、この発明の実施例 3を図 8に基づき説明する。この実施例 3は、比較的冷 却能力の大きい複合冷却装置に好適である。この実施例 3において、前記真空冷却 手段 4を前記第一真空冷却手段 41と前記第二真空冷却手段 42とから構成するなど の点で、前記実施例 1および実施例 2と構成を同じくしており、以下に異なる部分を 主として説明する。 [0126] この実施例 3において、前記実施例 1と異なるのは、前記第一真空冷却手段 41と 第二真空冷却手段 42の構成である。前記実施例 1では、前記第一真空冷却手段 41 を前記真空ポンプ 16を含む減圧排気冷却とし、前記第二真空冷却手段 42を前記冷 却用熱交翻 9を用いた減圧密閉冷却としたが、この実施例 2では、前記第一真空 冷却手段 41および前記第二真空冷却手段 42の両方を減圧排気冷却とした点であ る。 Next, Embodiment 3 of the present invention will be described with reference to FIG. Example 3 is suitable for a composite cooling device having a relatively large cooling capacity. In Example 3, the same configuration as that of Example 1 and Example 2 is used in that the vacuum cooling unit 4 includes the first vacuum cooling unit 41 and the second vacuum cooling unit 42. The following mainly describes the differences. The third embodiment is different from the first embodiment in the configuration of the first vacuum cooling means 41 and the second vacuum cooling means 42. In the first embodiment, the first vacuum cooling means 41 is reduced-pressure exhaust cooling including the vacuum pump 16, and the second vacuum cooling means 42 is reduced-pressure hermetic cooling using the cooling heat exchanger 9. In the second embodiment, both the first vacuum cooling means 41 and the second vacuum cooling means 42 are reduced-pressure exhaust cooling.
[0127] 具体的には、つぎのように構成している。すなわち、前記真空ポンプ 16の上流側に 凝縮用熱交 31を設け、真空冷却手段の減圧器として、蒸気ェゼクタ 34を凝縮 用熱交翻31の上流側に設けている。そして、この蒸気ェゼクタ 34へは第二給蒸ラ イン 35が接続され、前記第二給蒸ライン 35に設けられる。そして、前記制御器 6によ り制御される第二給蒸弁弁 33の開閉により前記蒸気ェゼクタ 34への給蒸が制御さ れ、この蒸気ェゼクタ 34作動が制御される。前記開閉弁 17は、前記蒸気ェゼクタ 34 と前記冷却室 2との間に設けている。  [0127] Specifically, the configuration is as follows. That is, a heat exchanger 31 for condensation is provided upstream of the vacuum pump 16, and a steam ejector 34 is provided upstream of the heat exchanger 31 for condensation as a decompressor for the vacuum cooling means. A second steam supply line 35 is connected to the steam ejector 34 and is provided in the second steam supply line 35. Then, the steam supply to the steam ejector 34 is controlled by opening and closing the second steam supply valve 33 controlled by the controller 6, and the operation of the steam ejector 34 is controlled. The on-off valve 17 is provided between the steam ejector 34 and the cooling chamber 2.
[0128] この実施例 3の第一真空冷却手段 41は、前記開閉弁 17を開き、前記真空ポンプ 1 6の作動により第一真空冷却工程を実行するように構成される。この第一真空冷却ェ 程の第一真空冷却特性は、前記実施例 1の第一真空冷却と同様である  The first vacuum cooling means 41 of the third embodiment is configured to open the on-off valve 17 and execute the first vacuum cooling step by the operation of the vacuum pump 16. The first vacuum cooling characteristic of the first vacuum cooling step is the same as that of the first vacuum cooling of the first embodiment.
[0129] また、前記第二真空冷却手段 42は、前記真空ポンプ 16の作動に加えて、前記蒸 気ェゼクタ 34および前記凝縮用熱交 を作動させることにより第二真空冷却ェ 程を実行するように構成する。この第二真空冷却工程の第二真空冷却特性は、前記 第一真空冷却と同様であるが、前記蒸気ェゼクタ 34および前記凝縮用熱交換器 31 の冷却作用により真空冷却能力が前記真空冷却手段 41よりも増強されるので、その 分冷却速度が速 ヽ特性となる。  [0129] Further, in addition to the operation of the vacuum pump 16, the second vacuum cooling means 42 performs the second vacuum cooling step by operating the steam ejector 34 and the heat exchanger for condensation. Configure. The second vacuum cooling characteristic of the second vacuum cooling step is the same as that of the first vacuum cooling, but the vacuum cooling capacity is reduced by the cooling action of the steam ejector 34 and the heat exchanger 31 for condensation. As a result, the cooling rate becomes a rapid characteristic.
[0130] また、前記第一〜第五プログラムに関して、この実施例 3においては、前記実施例 1および前記実施例 2と異なり、前記第二真空冷却工程を、前記冷却用熱交換器 9を 用いた減圧密閉冷却 (この減圧密閉冷却は、冷却を効果的に行うには空気排除が 重要である。 )により行わないので、真空冷却工程を実行する前の蒸気を供給するこ とによる空気排除工程 S21, S32, S41, S61を省略している。このプログラムの相違 に関連して、この実施例 3では、前記給蒸手段 18を省略している。 [0131] 以上、この実施例 3において、前記実施例 1と異なる構成を説明したが、その他は 同様であるので、その説明を省略する。 [0130] Also, regarding the first to fifth programs, in the third embodiment, unlike the first and second embodiments, the second vacuum cooling step is performed using the cooling heat exchanger 9. Air-exclusion process by supplying steam before the vacuum cooling process is performed. S21, S32, S41, and S61 are omitted. In relation to this program difference, the steam supply means 18 is omitted in the third embodiment. In the third embodiment, the configuration different from that of the first embodiment has been described. However, since the other configuration is the same, the description thereof is omitted.
[0132] この発明は、前記実施例に限定されるものではない。前記実施例 1〜3では、真空 冷却工程を第一真空冷却手段 41による第一真空冷却工程と、前記第二真空冷却 手段 42による第二真空冷却工程とからなる二段階の構成としているが、図 1または図 7に示される複合冷却装置 1を用いて、図 9に示すように一段階の真空冷却工程 S71 を行うように構成することができる。すなわち、前記実施例 1および実施例 2において 前記第二真空冷却工程を省略したものとすることができる。前記真空冷却工程 S71 は、前記実施例 1および実施例 2第一真空工程 S22に相当するので、その説明を省 略する。  [0132] The present invention is not limited to the above embodiments. In Examples 1 to 3, the vacuum cooling process has a two-stage configuration including the first vacuum cooling process by the first vacuum cooling means 41 and the second vacuum cooling process by the second vacuum cooling means 42. The composite cooling device 1 shown in FIG. 1 or FIG. 7 can be used to perform a one-stage vacuum cooling step S71 as shown in FIG. That is, the second vacuum cooling step in Example 1 and Example 2 can be omitted. Since the vacuum cooling step S71 corresponds to the first vacuum step S22 of Example 1 and Example 2, the description thereof is omitted.
[0133] また、前記実施例 1〜3においては、前記真空切換タイミングおよび前記冷風切換 タイミングを前記タイマー 7により制御するように構成して 、るが、より的確な切換を実 現するために、前記室内圧力センサ 27による検出圧力または検出温度,前記品温 センサ 26により検出される品温のいずれかに基づいて制御するように構成することが できる。さらに、前記真空冷却速度の鈍化を検出するには、前記検出温度,前記検 出圧力,品温の 、ずれかの変化量を検出するように構成することが望ま 、。  [0133] In the first to third embodiments, the vacuum switching timing and the cold air switching timing are configured to be controlled by the timer 7. However, in order to realize more accurate switching, Control can be performed based on either the detected pressure or detected temperature by the indoor pressure sensor 27 or the product temperature detected by the product temperature sensor 26. Further, in order to detect the slowdown of the vacuum cooling rate, it is desirable to detect the amount of change in the detected temperature, the detected pressure, and the product temperature.

Claims

請求の範囲 The scope of the claims
[1] 冷却室内の被冷却物を真空冷却する真空冷却手段と、前記被冷却物を冷風冷却 する冷風冷却手段と、前記真空冷却手段および前記冷風冷却手段を制御する制御 器とを備える複合冷却装置であって、  [1] Composite cooling comprising: a vacuum cooling means for vacuum-cooling an object to be cooled in a cooling chamber; a cold air cooling means for cooling the object to be cooled with cold air; and a controller for controlling the vacuum cooling means and the cold air cooling means. A device,
前記真空冷却手段による冷却時間,前記冷却室内の圧力,同温度,被冷却物の 温度,または前記冷却室内の圧力,同温度および前記被冷却物の温度のいずれか の変化量を検出する検出手段を備え、  Detection means for detecting a cooling time by the vacuum cooling means, a pressure in the cooling chamber, the same temperature, a temperature of the object to be cooled, or a change amount of any of the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled. With
前記制御器は、前記真空冷却手段による真空冷却工程後に前記冷風冷却手段に よる冷風冷却工程を順次行うとともに、前記検出手段の検出値が設定値となったとき 、前記真空冷却工程力 前記冷風冷却工程へ切り換えることを特徴とする複合冷却 装置。  The controller sequentially performs the cold air cooling process by the cold air cooling means after the vacuum cooling process by the vacuum cooling means, and when the detection value of the detection means reaches a set value, the vacuum cooling process force A combined cooling device characterized by switching to a process.
[2] 冷却室内の被冷却物を真空冷却する真空冷却手段と、前記被冷却物を冷風冷却 する冷風冷却手段と、前記真空冷却手段および前記冷風冷却手段を制御する制御 器とを備える複合冷却装置であって、  [2] Composite cooling comprising a vacuum cooling means for cooling the object to be cooled in the cooling chamber, a cold air cooling means for cooling the object to be cooled, and a controller for controlling the vacuum cooling means and the cold air cooling means. A device,
前記真空冷却手段の真空冷却特性を前期の真空冷却速度が速ぐ後期で真空冷 却速度が鈍化するものとし、  The vacuum cooling characteristic of the vacuum cooling means is assumed to slow down in the latter period when the vacuum cooling speed of the previous period is faster,
前記冷風冷却手段の冷風冷却特性を冷風冷却速度が前期の真空冷却速度より遅 ぐ後期の鈍化した真空冷却速度よりも速いものとし、  The cold air cooling characteristic of the cold air cooling means is assumed to be faster than the slowed-down vacuum cooling rate in the later period when the cooling air cooling rate is slower than the vacuum cooling rate in the previous period
前記制御器は、前記真空冷却手段による真空冷却工程を行った後に前記冷風冷 却手段による冷風冷却工程を行うとともに、前記真空冷却手段による後期の真空冷 却速度が前記冷風冷却速度より低下するタイミングで前記真空冷却工程から前記冷 風冷却工程へ切り換えることを特徴とする複合冷却装置。  The controller performs a cold air cooling process by the cold air cooling means after performing a vacuum cooling process by the vacuum cooling means, and a timing at which a late vacuum cooling speed by the vacuum cooling means is lower than the cold air cooling speed. And switching from the vacuum cooling step to the cold air cooling step.
[3] 前記真空冷却手段による冷却時間,前記冷却室内の圧力,同温度,被冷却物の 温度,または前記冷却室内の圧力,同温度および前記被冷却物の温度のいずれか の変化量を検出する検出手段を備え、 [3] The amount of change in the cooling time by the vacuum cooling means, the pressure in the cooling chamber, the same temperature, the temperature of the object to be cooled, or the pressure in the cooling chamber, the same temperature, and the temperature of the object to be cooled is detected. Detecting means for
前記制御器は、前記検出手段の検出値が設定値となったとき、前記真空冷却工程 力 前記冷風冷却工程へ切り換えることを特徴とする請求項 2に記載の複合冷却装 置。 3. The composite cooling device according to claim 2, wherein when the detection value of the detection means reaches a set value, the controller switches the vacuum cooling process force to the cold air cooling process.
[4] 前記制御器は、前記真空冷却工程を行う前に前記冷風冷却手段による冷風冷却 工程を行うことを特徴とする請求項 1〜請求項 3のいずれか 1項に記載の複合冷却装 置。 [4] The combined cooling device according to any one of claims 1 to 3, wherein the controller performs a cold air cooling step by the cold air cooling means before performing the vacuum cooling step. .
[5] 前記制御器は、被冷却物を真空冷却する真空冷却工程および被冷却物を冷風冷 却する冷風冷却工程を順次行う第一冷却プログラムと、  [5] The controller includes a first cooling program for sequentially performing a vacuum cooling process for cooling the object to be cooled in vacuum and a cold air cooling process for cooling the object to be cooled with cold air;
被冷却物を冷風冷却する第一冷風冷却工程,被冷却物を真空冷却する真空冷却ェ 程および被冷却物を冷風冷却する第二冷風冷却工程を順次行う第二冷却プロダラ ムとを選択可能としたことを特徴とする請求項 4に記載の複合冷却装置。  The first cooling air cooling process that cools the object to be cooled, the vacuum cooling process that cools the object to be cooled and the second cooling air cooling process that sequentially cools the object to be cooled can be selected. The composite cooling device according to claim 4, wherein
[6] 冷却室内の被冷却物を真空冷却する真空冷却手段と、前記被冷却物を冷風冷却 する冷風冷却手段と、前記真空冷却手段および前記冷風冷却手段を制御する制御 器とを備える複合冷却装置であって、 [6] Composite cooling comprising vacuum cooling means for vacuum cooling the object to be cooled in the cooling chamber, cold air cooling means for cooling the object to be cooled, and a controller for controlling the vacuum cooling means and the cold air cooling means. A device,
前記真空冷却手段は、第一真空冷却特性を有する第一真空冷却手段と第二真空 冷却特性を有する第二真空冷却手段とを備え、  The vacuum cooling means comprises a first vacuum cooling means having a first vacuum cooling characteristic and a second vacuum cooling means having a second vacuum cooling characteristic,
前記制御器は、前記第一真空冷却手段による第一真空冷却工程,前記第二真空 冷却手段による第二真空冷却工程および前記冷風冷却手段による冷風冷却工程を 順次切り換えて行うことを特徴とする複合冷却装置。  The controller is configured to sequentially switch between a first vacuum cooling step by the first vacuum cooling unit, a second vacuum cooling step by the second vacuum cooling unit, and a cold air cooling step by the cold air cooling unit. Cooling system.
[7] 前記第一真空冷却手段および前記第二真空冷却手段による冷却時間,前記冷却 室内の圧力,同温度,被冷却物の温度,または前記冷却室内の圧力,同温度およ び前記被冷却物の温度のいずれかの変化量を検出する検出手段を備え、 [7] Cooling time by the first vacuum cooling means and the second vacuum cooling means, the pressure in the cooling chamber, the same temperature, the temperature of the object to be cooled, or the pressure in the cooling chamber, the same temperature, and the cooled object A detecting means for detecting any amount of change in the temperature of the object,
前記制御器は、前記検出手段の検出値が第一設定値となったとき、前記第一真空 冷却工程から前記第二真空冷却工程へ切り換え、前記検出値が第二設定値となつ たとき、前記第二真空冷却工程から前記冷風冷却工程へ切り換えることを特徴とする 請求項 6に記載の複合冷却装置。  The controller switches from the first vacuum cooling step to the second vacuum cooling step when the detection value of the detection means reaches the first set value, and when the detection value reaches the second set value, 7. The composite cooling device according to claim 6, wherein the second vacuum cooling step is switched to the cold air cooling step.
[8] 前記第一真空冷却手段は、前期の真空冷却速度が速ぐ後期で真空冷却速度が 鈍化する第一真空冷却特性を有し、 [8] The first vacuum cooling means has a first vacuum cooling characteristic in which the vacuum cooling rate decreases in the latter period when the vacuum cooling rate of the previous period is fast,
前記第二真空冷却手段は、前期の真空冷却速度が速ぐ後期で真空冷却速度が 鈍化する第二真空冷却特性を有し、  The second vacuum cooling means has a second vacuum cooling characteristic in which the vacuum cooling rate slows down in the latter period when the vacuum cooling rate of the previous period is fast,
前記冷風冷却手段は、その冷風冷却特性を冷風冷却速度が前記第一真空冷却 手段および前記第二真空冷却手段の前期の真空冷却速度より遅ぐ後期の鈍化し た真空冷却速度より速 、ものとし、 The cold air cooling means has the cold air cooling characteristics of the first vacuum cooling. Faster than the slowed-down vacuum cooling rate in the later period, which is slower than the vacuum cooling rate in the previous period of the means and the second vacuum cooling means,
前記制御器は、前記第二真空冷却手段による後期の真空冷却速度が前記冷風冷 却速度より低下するタイミングで前記第二真空冷却工程から前記冷風冷却工程へ切 り換えることを特徴とする請求項 6または請求項 7に記載の複合冷却装置。  The controller switches from the second vacuum cooling step to the cold air cooling step at a timing when a late vacuum cooling rate by the second vacuum cooling means falls below the cold air cooling rate. The composite cooling device according to claim 6 or claim 7.
[9] 前記冷風冷却手段は、前記冷却室内の空気を冷却用熱交換器との間接熱交換に より冷却するように構成され、 [9] The cold air cooling means is configured to cool the air in the cooling chamber by indirect heat exchange with a cooling heat exchanger,
前記第一真空冷却手段は、前記冷却室と接続される減圧器の作動により第一真空 冷却工程を実行するように構成され、  The first vacuum cooling means is configured to perform a first vacuum cooling step by operation of a decompressor connected to the cooling chamber,
前記第二真空冷却手段は、前記冷却室を低圧下で密閉状態として前記冷却用熱 交^^により被冷却物力 の蒸気を凝縮することにより第二真空冷却工程を実行す るように構成されることを特徴とする請求項 6または請求項 7に記載の複合冷却装置  The second vacuum cooling means is configured to perform the second vacuum cooling step by condensing the vapor of the object to be cooled by the heat exchanger for cooling with the cooling chamber sealed under a low pressure. The combined cooling device according to claim 6 or 7, wherein
[10] 前記冷却室と接続される減圧ラインと、この減圧ライン中に設けられる蒸気ェゼクタ ,凝縮用熱交 および減圧器とを備え、 [10] A decompression line connected to the cooling chamber, a steam ejector provided in the decompression line, a heat exchanger for condensation, and a decompressor,
前記第一真空冷却手段は、前記減圧器の作動により第一真空冷却工程を実行す るように構成され、  The first vacuum cooling means is configured to perform a first vacuum cooling step by operating the decompressor,
前記第二真空冷却手段は、前記蒸気ェゼクタ,前記凝縮用熱交換器および前記 減圧器の作動により第二真空冷却工程を実行するように構成されていることを特徴と する請求項 6または請求項 7に記載の複合冷却装置。  The said 2nd vacuum cooling means is comprised so that a 2nd vacuum cooling process may be performed by the action | operation of the said steam ejector, the said heat exchanger for condensation, and the said pressure reduction device, The claim 6 or Claim characterized by the above-mentioned. 7. The composite cooling device according to 7.
[11] 前記制御器は、前記第一真空冷却工程を行う前に前記冷風冷却手段による冷風 冷却工程を行うことを特徴とする請求項 6または請求項 7に記載の複合冷却装置。 11. The combined cooling device according to claim 6, wherein the controller performs a cold air cooling step by the cold air cooling means before performing the first vacuum cooling step.
PCT/JP2007/050234 2006-01-19 2007-01-11 Composite cooling apparatus WO2007083562A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006010880A JP4827009B2 (en) 2006-01-19 2006-01-19 Combined cooling device
JP2006-010880 2006-01-19
JP2006-013550 2006-01-23
JP2006013550A JP4748388B2 (en) 2006-01-23 2006-01-23 Combined cooling device

Publications (1)

Publication Number Publication Date
WO2007083562A1 true WO2007083562A1 (en) 2007-07-26

Family

ID=38287515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050234 WO2007083562A1 (en) 2006-01-19 2007-01-11 Composite cooling apparatus

Country Status (3)

Country Link
KR (1) KR20080085835A (en)
TW (1) TW200730780A (en)
WO (1) WO2007083562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295907A1 (en) 2009-09-10 2011-03-16 Patrick Duss Vacuum assembly for cooling foods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147165B (en) * 2011-04-08 2012-10-24 魏仕英 Water injection-pressure flash vacuum cold water machine
JP6601275B2 (en) * 2016-03-08 2019-11-06 三浦工業株式会社 Vacuum cooling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198681A (en) * 1990-11-29 1992-07-20 Kanaden:Kk Cooling device
JPH0835754A (en) * 1994-07-26 1996-02-06 Waaku:Kk Device and method for cooling food
JP2002318051A (en) * 2001-04-17 2002-10-31 Nippon Benetsukusu:Kk Cooling equipment
JP2003004353A (en) * 2001-06-21 2003-01-08 Miura Co Ltd Method and equipment for cooling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198681A (en) * 1990-11-29 1992-07-20 Kanaden:Kk Cooling device
JPH0835754A (en) * 1994-07-26 1996-02-06 Waaku:Kk Device and method for cooling food
JP2002318051A (en) * 2001-04-17 2002-10-31 Nippon Benetsukusu:Kk Cooling equipment
JP2003004353A (en) * 2001-06-21 2003-01-08 Miura Co Ltd Method and equipment for cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295907A1 (en) 2009-09-10 2011-03-16 Patrick Duss Vacuum assembly for cooling foods

Also Published As

Publication number Publication date
KR20080085835A (en) 2008-09-24
TW200730780A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5115609B2 (en) Cooling system
CN106066115B (en) Method for controlling refrigerator
JP4827009B2 (en) Combined cooling device
JP5251557B2 (en) Cooling device and cooling method
CN105715510B (en) Cryogenic pump, the control method of cryogenic pump and refrigeration machine
JP2010270928A (en) Vacuum drying device and vacuum drying method
WO2007083562A1 (en) Composite cooling apparatus
JP2011064412A (en) Refrigerator
JP2010133569A (en) Composite cooling device
KR100630832B1 (en) Device for custodying the kim-chi and vegetable of kim-chi refrigerator and contorlling method thereof
JP2004028563A (en) Operation control method for cooling system provided with two evaporators
JP4655311B2 (en) Combined cooling device
WO2007094141A1 (en) Cooling device
JP4492226B2 (en) Vending machine cooling and heating device
JP2008170016A (en) Cooling device
JP6895919B2 (en) Environment forming device and environment forming method
JP4737718B2 (en) Combined cooling device
JP2008101891A (en) Cooling device
JP4748388B2 (en) Combined cooling device
KR20190095804A (en) Refrigerator and Control method of the same
JP4930896B2 (en) Composite cooling method and composite cooling apparatus
JP2011153788A (en) Refrigerator
JP4923964B2 (en) Cooling system
JP5082371B2 (en) Combined cooling device
JP2008157489A (en) Cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087014265

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780002707.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP