WO2007083501A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2007083501A1
WO2007083501A1 PCT/JP2006/326032 JP2006326032W WO2007083501A1 WO 2007083501 A1 WO2007083501 A1 WO 2007083501A1 JP 2006326032 W JP2006326032 W JP 2006326032W WO 2007083501 A1 WO2007083501 A1 WO 2007083501A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
wind direction
air conditioner
direction plate
flow fan
Prior art date
Application number
PCT/JP2006/326032
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Ohtsuka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006011832A external-priority patent/JP4014618B2/en
Priority claimed from JP2006011822A external-priority patent/JP4014617B2/en
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP06843414A priority Critical patent/EP1975522B1/en
Priority to CN2006800513913A priority patent/CN101360954B/en
Publication of WO2007083501A1 publication Critical patent/WO2007083501A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates

Definitions

  • the present invention relates to an air conditioner that harmonizes air taken from a room and sends the air into the room.
  • Patent Documents 1 and 2 Conventional air conditioners are disclosed in Patent Documents 1 and 2.
  • the air conditioner of Patent Document 1 improves the thickness distribution of the blades of the air supply fan and reduces the pressure loss of the blower fan. As a result, energy conservation of the air conditioner is achieved.
  • the air conditioner of Patent Document 2 has a movable panel that closes the suction port provided on the front surface of the casing of the indoor unit. When the air conditioner is driven, the movable panel is moved, and the air is taken in by opening the suction port widely. As a result, the pressure loss at the time of suction is reduced, and energy saving of the air conditioner is achieved.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-028089
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-111082
  • An object of the present invention is to provide an air conditioner that can further save energy.
  • the present invention provides a suction port for taking indoor air into a housing of an indoor unit, an air outlet provided at a lower portion of the housing, and a space between the air inlet and the air outlet.
  • an air conditioner including a cross flow fan disposed between the indoor heat exchanger and the air outlet in the path, the air flow path guides the air forward and downward and flows toward the downstream. It has a front guide that enlarges the road area, and the sum of the length of the upper and lower walls of the air flow path downstream of the cross flow fan is 3.5 times the diameter of the cross flow fan. It is characterized by the above.
  • the air in the suction loca chamber is taken into the housing by the drive of the cross flow fan and flows through the air blowing path.
  • the air is harmonized by heat exchange with indoor heat exchange with a large pressure loss arranged in a plurality of rows in the vertical direction and in a plurality of rows in the depth direction by meandering the refrigerant pipe.
  • the conditioned air circulates through the front guide part along the upper and lower walls of the air flow path on the exhaust side of the cross-flow fan through the front guide, and is sent out from the outlet. At this time, the airflow along the upper and lower walls of the ventilation path is gradually decelerated, and the kinetic energy is converted to static pressure and recovered as static pressure.
  • the present invention provides the air conditioner configured as described above, further comprising a first wind direction plate that can change a wind direction of the air outlet up and down, and a front end of the upper wall from the front upper side during operation of the air conditioner. 1 It is characterized by arrange
  • a second wind direction plate is provided below the first wind direction plate, and a front end of the first wind direction plate is disposed forward of a front end of the second wind direction plate.
  • the present invention further includes first and second wind direction plates that are variable above and below the air outlet, and the upper wall is bent at a bent portion from an end of the upper surface of the front guide portion. And the rear end of the first wind direction plate is disposed in front of the bent portion, and the rear end of the second wind direction plate below the first wind direction plate is the front end.
  • the bent part It is characterized by being arranged at the rear.
  • the airflow flowing along the upper wall of the blowing path is bent by the second wind direction plate and flows forward and upward along the inclined surface.
  • the kinetic energy of the lower airflow bent by the second wind direction plate is recovered by being converted to static pressure by the flow path formed between the second wind direction plate and the first wind direction plate.
  • the kinetic energy of the upper air stream bent by the second wind direction plate is recovered by being converted into static pressure by the flow path formed between the first wind direction plate and the inclined surface.
  • the present invention is characterized in that an angle formed by the inclined surface and the first wind direction plate and an angle formed by the first and second wind direction plates are set to 10 ° to 15 °. Yes. According to this configuration, the airflow smoothly flows along the wall surface without being separated from the wall surface formed by the inclined surfaces of the first and second wind direction plates and the air flow path.
  • a third wind direction plate is provided below the second wind direction plate, and an angle formed by the second and third wind direction plates is set to 10 ° to 15 °. It is a feature. According to this configuration, the air flow smoothly flows along the wall surface without peeling off the wall force that is also the second and third wind direction plate force.
  • an angle formed between the wind direction plate disposed at the lowermost position and the tangent at the end of the lower wall of the front guide portion is set to 10 ° to 15 °. It features. According to this configuration, the airflow smoothly flows along the wall surface without peeling off the wall surface force, which is the lowest wind direction plate force.
  • the present invention is characterized in that the length of the upper wall is 1.5 times or more the diameter of the cross-flow fan.
  • the present invention is a suction port for taking indoor air into the housing of the indoor unit, a blowout port provided in the lower portion of the housing, a ventilation path that communicates between the suction port and the blowout port,
  • An indoor heat exchanger in which refrigerant tubes are arranged in a plurality of rows and in a plurality of rows and bent along the inner surface of the housing and disposed opposite to the suction port in the air supply path, and the indoors in the air supply path
  • An air conditioner including a cross-flow fan disposed between a heat exchanger ⁇ and the air outlet, and first and second air direction plates that change the air direction of the air outlet up and down
  • the path is a flow path surface as it guides air forward and downward from the cross flow fan and goes downstream.
  • the wall has an inclined surface that is bent at the terminal force bending portion of the front guide portion and is inclined forward and upward, and the rear end of the first wind direction plate is disposed in front of the bent portion, and the first wind direction plate Further, the rear end of the second wind direction plate below is arranged behind the bent portion.
  • the air in the suction loca chamber is taken into the housing by the driving of the cross flow fan and flows through the air blowing path.
  • the air is harmonized by heat exchange with indoor heat exchange with a large pressure loss arranged in a plurality of rows in the vertical direction and in a plurality of rows in the front and rear by meandering the refrigerant pipe.
  • the conditioned air circulates in the front guide section while expanding the flow path area along the upper and lower walls of the air flow path of the cross flow fan.
  • the airflow flowing along the upper wall of the ventilation path is bent by the second wind direction changing plate and flows forward and upward along the inclined surface.
  • the lower airflow bent by the second wind direction change plate is gradually decelerated by the flow path formed between the second wind direction change plate and the first wind direction change plate, and the kinetic energy is converted to static pressure and Recovered as pressure.
  • the upper airflow bent by the second wind direction change plate is gradually decelerated by the flow path formed between the first wind direction change plate and the inclined surface, and the kinetic energy is converted to static pressure and recovered as static pressure. Is done.
  • the present invention is characterized in that an angle formed by the inclined surface and the first wind direction plate and an angle formed by the first and second wind direction plates are 10 ° to 15 °. Yes.
  • the present invention includes a third wind direction plate provided below the second wind direction plate, and an angle formed by the second and third wind direction plates is set to 10 ° to 15 °. It is a feature.
  • an angle formed between the wind direction plate disposed at the lowermost position and the tangent at the end of the lower wall of the front guide portion is set to 10 ° to 15 °. It features.
  • the present invention provides a front end of the upper wall, a front end of the first wind direction plate, a front end of the second wind direction plate, and a front end of the lower wall when the air conditioner is operated. They are arranged in the order of the front edge. According to this configuration, the kinetic energy of the airflow flowing through the blower path is sequentially recovered in the downward force with the slow flow rate.
  • the present invention is a suction port for taking indoor air into the housing of the indoor unit, a blower outlet provided in the lower part of the housing, a blower path that communicates between the suction port and the blower outlet, An indoor heat exchanger disposed opposite to the suction port in the air passage, and a cross flow fan disposed between the indoor heat exchanger ⁇ in the air passage and the outlet. It is characterized in that the length of the upper wall of the air flow path on the downstream side of the cross flow fan is 1.5 times or more the diameter of the cross flow fan.
  • the air inside the suction loca is also taken into the housing by the driving of the cross flow fan, and flows through the ventilation path.
  • the air is harmonized by heat exchange with the indoor heat exchange, and the conditioned air flows from the exhaust side of the cross flow fan along the upper and lower walls of the air flow path and is sent out from the outlet.
  • the airflow along the upper and lower walls of the air flow path is gradually decelerated, and the kinetic energy is converted to static pressure and recovered as static pressure.
  • the present invention provides a suction port for taking indoor air into the housing of the indoor unit, a blowout port provided in a lower portion of the housing, a blower path communicating between the suction port and the blowout port, An indoor heat exchanger disposed opposite to the suction port in the air passage, and a cross flow fan disposed between the indoor heat exchanger ⁇ in the air passage and the outlet. It is characterized in that the sum of the length of the upper wall and the lower wall of the air flow path on the downstream side of the cross flow fan is at least 3.5 times the diameter of the cross flow fan.
  • the air inside the suction loci chamber is taken into the housing by the driving of the cross flow fan and flows through the air blowing path.
  • the air is harmonized by heat exchange with the indoor heat exchange, and the conditioned air flows from the exhaust side of the cross flow fan along the upper and lower walls of the air flow path and is sent out from the outlet.
  • the airflow along the upper and lower walls of the air flow path is gradually decelerated, and the kinetic energy is converted to static pressure and recovered as static pressure.
  • the air conditioner since the sum of the length of the upper wall and the length of the lower wall of the air flow path on the downstream side of the cross flow fan is 3.5 times or more the diameter of the cross flow fan, the air conditioner During operation, air flows smoothly along the upper and lower walls of the air flow path over a long distance. As a result, there is less air flow disturbance near the outlet, and the pressure loss associated with it is reduced. The kinetic energy is reduced by decelerating until the air along the long upper and lower walls is sufficiently slow. Converted to pressure. Therefore, the kinetic energy of the airflow can be sufficiently recovered to reduce the static pressure rise by the cross flow fan, and the energy saving of the air conditioner can be achieved.
  • the indoor heat exchangers ⁇ are arranged in multiple rows and multiple stages, even when using an indoor heat exchanger with large pressure loss, the kinetic energy of the airflow is sufficiently recovered to save energy in the air conditioner. Can be planned. Since the front guide portion is provided in which the flow area is increased as the air is guided to the lower front side and goes downstream, the airflow can be gradually decelerated to sufficiently recover the motion energy.
  • the front end of the upper wall, the front end of the first wind direction plate, and the front end of the lower wall are arranged in this order from the front upper side during operation of the air conditioner.
  • the rugged force can be recovered in order to efficiently recover the kinetic energy of the airflow.
  • the second wind direction plate is provided below the first wind direction plate, and the front end of the first wind direction plate is disposed in front of the front end of the second wind direction plate. It is possible to recover the kinetic energy of the airflow efficiently by recovering the power of density kinetic energy in order.
  • the rear end of the first wind direction plate is disposed in front of the bent portion between the upper surface of the front guide portion and the inclined surface, and the second wind direction below the first wind direction plate. Since the rear end of the plate is disposed behind the bent portion, the airflow can be bent along the inclined surface by the second wind direction plate. In addition, the kinetic energy of the air flow can be efficiently recovered by recovering in order from the low-density kinetic energy having a low downward flow velocity.
  • the angle formed between the inclined surface and the first wind direction plate and the angle formed between the first and second wind direction plates are set to 10 ° to 15 °.
  • the flow path between the first and second wind direction plates is continuously expanded, and the air flow smoothly flows along the wall surface without peeling off the wall force.
  • the kinetic energy of the airflow can be smoothly converted to static pressure, and the kinetic energy can be recovered efficiently.
  • the angle formed by the second wind direction plate and the third wind direction plate below the second wind direction plate is 10 ° to 15 °, the flow between the second and third wind direction plates is The channel is continuously expanded, and the airflow smoothly flows along the wall without peeling off the wall. This allows the kinetic energy to be efficiently recovered by converting the kinetic energy of the airflow into static pressure smoothly. wear.
  • the angle formed between the wind direction plate disposed at the lowermost position and the tangent at the end of the lower wall is set to 10 ° to 15 °, the lowermost wind direction plate and the lower wall of the air flow path The channel between the two is continuously expanded, and the airflow smoothly flows along the wall without peeling off the wall force. As a result, the kinetic energy of the airflow can be smoothly converted to static pressure, and the kinetic energy can be efficiently recovered.
  • the length of the upper wall of the air flow path on the downstream side of the cross flow fan is 1.5 times or more the diameter of the cross flow fan. It smoothly circulates a long distance along the upper wall of the ventilation path. As a result, there is less air flow disturbance in the vicinity of the air outlet, and the associated pressure loss is reduced. The kinetic energy is converted into static pressure by decelerating until the air along the long upper and lower walls becomes sufficiently slow, with a force tl. Accordingly, the kinetic energy of the airflow can be sufficiently recovered to reduce the static pressure rise by the cross flow fan, and the energy saving of the air conditioner can be achieved.
  • the kinetic energy can be recovered to increase the reach distance of the airflow with a reduced flow velocity.
  • the air sent out from the outlet also reaches the ceiling of the room and sequentially travels through the wall facing the air conditioner, the floor, and the wall on the air conditioner side. Therefore, the conditioned air stream reaches every corner of the room, and the air stream greatly stirs the entire room. Therefore, it is possible to obtain a comfortable space with almost no direct wind by equalizing the temperature distribution of the entire living area except for a part above the room.
  • the indoor heat exchanger is composed of a plurality of rows and stages, even when an indoor heat exchanger with a large pressure loss is used, the kinetic energy of the airflow is sufficiently recovered to save energy of the air conditioner. Can be planned. Since the front guide portion is provided in which the flow area is increased as the air is guided to the lower front side and goes downstream, the airflow can be gradually decelerated to sufficiently recover the motion energy.
  • the rear end of the first wind direction plate is disposed in front of the bent portion between the upper surface of the front guide portion and the inclined surface, and the rear end of the second wind direction plate below the first wind direction plate. Is disposed behind the bent portion, the airflow can be bent along the inclined surface by the second wind direction plate. In addition, the kinetic energy of the airflow is recovered by recovering in order from the lower flow velocity! Lugie can be collected efficiently.
  • the front end of the upper wall, the front end of the first wind direction plate, the front end of the second wind direction plate, and the front end of the lower wall are arranged in this order from the front upper side during operation of the air conditioner, the lower flow velocity
  • the kinetic energy of the airflow can be efficiently recovered by recovering in order of slow kinetic energy power.
  • FIG. 1 is a side cross-sectional view showing a state during operation of an indoor unit of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view showing details of a ventilation path of the indoor unit of the air conditioner according to the first embodiment of the present invention.
  • FIG. 3 is a side cross-sectional view showing details of a bent portion of a ventilation path of the indoor unit of the air conditioner according to the first embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view showing a state when the operation of the indoor unit of the air conditioner according to the first embodiment of the present invention is stopped.
  • FIG. 5 is a side sectional view showing details of the vicinity of the air outlet of the indoor unit of the air conditioner according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the air volume of the cross flow fan of the indoor unit of the air conditioner according to the first embodiment of the present invention and the input of the fan drive motor.
  • FIG. 7 is a side sectional view showing a comparative example of the indoor unit of the air conditioner of the first embodiment of the present invention.
  • FIG. 8 is a static pressure of the comparative example of the indoor unit of the air conditioner of the first embodiment of the present invention. Figure explaining the transition of
  • FIG. 9 is a graph showing changes in static pressure of a comparative example of the indoor unit of the air conditioner according to the first embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the transition of the static pressure of the air conditioner indoor unit according to the first embodiment of the present invention.
  • FIG. 11 is the transition of the static pressure of the air conditioner indoor unit of the first embodiment of the present invention.
  • FIG. 12 is a diagram showing the relationship between the length of the upper wall, the length of the lower wall, and the power consumption of the cross flow fan of the indoor unit of the air conditioner according to the first embodiment of the present invention.
  • FIG. 13 shows the length of the upper wall of the air flow path of the indoor unit of the air conditioner according to the first embodiment of the present invention. Diagram showing the relationship between wall length and crossflow fan airflow reach
  • FIG. 14 is a side cross-sectional view showing a state when the operation of the indoor unit of the air conditioner of the second embodiment of the present invention is stopped.
  • FIG. 15 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the second embodiment of the present invention.
  • FIG. 16 is a side cross-sectional view showing a state when the operation of the indoor unit of the air conditioner according to the third embodiment of the present invention is stopped.
  • FIG. 17 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the third embodiment of the present invention.
  • FIG. 18 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the fourth embodiment of the present invention.
  • FIG. 19 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the fifth embodiment of the present invention.
  • FIG. 1 is a side sectional view showing the indoor unit of the air conditioner of the first embodiment.
  • the indoor unit 1 of the air conditioner has a main body held by a cabinet 2, and a front panel 3 is detachably attached to the cabinet 2.
  • the cabinet of indoor unit 1 is composed of cabinet 2 and front panel 3.
  • the cabinet 2 is provided with a claw portion (not shown) on the rear side surface, and is supported by engaging the claw portion with a mounting plate (not shown) attached to the side wall W1 of the room.
  • An air outlet 5 is provided in the gap between the lower end of the front panel 3 and the lower end of the cabinet 2.
  • the air outlet 5 is formed in a substantially rectangular shape extending in the width direction of the indoor unit 1 and is provided facing the front lower side.
  • a lattice-shaped suction port 4 is provided on the upper surface of the front panel 3.
  • a blower path 6 that connects the suction port 4 and the blowout port 5 is formed inside the casing of the indoor unit 1.
  • a cross flow fan 7 for sending air is disposed in the air blowing path 6.
  • the air blowing path 6 is surrounded by the upper wall 6b and the lower wall 6c on the downstream side of the cross flow fan 7. Further, the air blowing path 6 has a front guide portion 6a for guiding the air sent out by the cross flow fan 7 forward and downward.
  • the front guide portion 6a is formed such that the flow path area increases as it goes downstream.
  • FIG. 2 is a side sectional view showing details of the air flow path 6 on the downstream side of the cross flow fan 7.
  • the upper wall 6b of the air flow path 6 has a stabilizer portion 6b7 along the peripheral surface of the cross flow fan 7.
  • the stabilizer portion 6b7 is formed extending in the exhaust direction of the cross flow fan 7, and is continuous with the upper surface 6b3 of the front guide portion 6a at the lower end.
  • the upper surface 6b3 of the front guide portion 6a is inclined forward and downward. End of upper surface 6b3 of front guide 6a An inclined surface 6b5 that is bent upward through the bent portion 6b4 and inclined forward and upward is formed.
  • the bend 6b4 is a gentle and smooth curved surface.
  • the lower wall 6c of the air flow path 6 has a rear guider part 6c5 along the peripheral surface of the cross flow fan 7.
  • the rear guider portion 6c5 is formed to extend in the exhaust direction of the cross flow fan 7, and the lower wall 6c is formed in a spiral curved surface including the lower end force of the rear guider portion 6c5 and the lower surface 6c3 of the front guide portion 6a.
  • the angle ⁇ formed by the upper surface 6b3 and the lower surface 6c3 of the front guide portion 6a is formed to be about 20 °.
  • the angle ⁇ between the slope 6b5 and the horizontal plane is about 20 °.
  • An angle ⁇ formed by the upper surface 6b3 of the front guide portion 6a and the horizontal plane is 5 °. Therefore, the angle ( ⁇ + y) formed by the upper surface 6 b3 of the front guide portion 6a and the inclined surface 6b5 is 25 °. It is desirable to form the squares j8 and ⁇ at about 15 ° to 20 °, 30 ° or less, and about 0 ° to 10 °, respectively.
  • the angle (j8 + ⁇ ) is 17 ° or less, the air along the wall surface of the flow path can be circulated with a small pressure loss to the sliding force without peeling off the wall surface force.
  • the angle (+ ⁇ ) is larger than 17 ° in order to divide the flow path into a plurality of parts by the horizontal louvers 111, 112, 113 as described later.
  • the middle horizontal louver 112 is disposed opposite to the bent portion 6b4 to suppress separation of the airflow.
  • At least one flat surface 6f may be provided in the bent portion 6b4, and the end portions of the flat surface 6f may be connected by a smooth curved surface 6e.
  • an angle 05 formed by the upper surface 6b3 of the front guide portion 6a and the plane 6f and an angle 06 formed by the plane 6f and the inclined surface 6b5 are formed to be 17 ° or less. If there are multiple planes 6f, the angles formed by the planes are all less than 17 °. Thereby, the air along the wall surface of the flow path can be smoothly circulated with a small pressure loss without peeling off the wall surface force. Therefore, energy saving can be improved.
  • the lengths of the upper wall 6b and the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 are formed to be 1.9D and 2.1D, where the diameter of the cross flow fan 7 is D, respectively.
  • the ends 6b 1 and 6c 1 of the stabilizer part 6b7 and the rear guider part 6c5 are provided in the vicinity of the diameter direction perpendicular to the exhaust direction of the cross flow fan 7, and V is the starting point of the upper wall 6b and the lower wall 6c.
  • the front gear that minimizes the distance to the crossflow fan 7 is used.
  • the part 6b2 and the rear gap 6c2 may be the starting points of the upper wall 6b and the lower wall 6c.
  • the front end of the inclined surface 6b5 abuts on the lower end of the front panel 3 to form the end 6b6 of the upper wall 6b.
  • the front end of the lower surface of the cabinet 2 is formed with a small radius of curvature where the end 6c4 of the lower surface 6c3 of the front guide portion 6a becomes an inflection point.
  • the end 6c4 is the end point of the lower wall 6c (hereinafter, 6c 4 may be referred to as the end of the lower wall 6c.) 0
  • 98 indicates the tangent at the end 6b4 of the lower surface 6c3 of the front guide portion 6a.
  • the front guide portion 6a is provided with a vertical louver 12 capable of changing the blowing angle in the left-right direction.
  • the blower outlet 5 is provided with a plurality of lateral louvers 111, 112, 113 that can change the blowout angle in the vertical direction to the upper front, the horizontal direction, the lower front, and the right lower direction.
  • An air filter 8 is provided at a position opposite to the front panel 3 to collect and remove dust contained in the air sucked from the suction port 4! /.
  • An air filter cleaning device (not shown) is provided in a space formed between the front panel 3 and the air filter 8. The dust accumulated in the air filter 8 is removed by the air filter cleaning device.
  • the indoor heat exchanger 9 has meandering refrigerant pipes (not shown) arranged in a plurality of rows in the vertical direction and in a plurality of rows in the front and rear directions, and is bent in multiple stages along the front panel 3.
  • the indoor heat exchanger 9 is connected to a compressor (not shown) arranged outdoors, and the refrigeration cycle is operated by driving the compressor. During the cooling operation, the indoor heat exchanger 9 is cooled to a temperature lower than the ambient temperature by the operation of the refrigeration cycle. Further, during the heating operation, the indoor heat exchanger 9 is heated to a temperature higher than the ambient temperature.
  • an electric dust collector (not shown) and a temperature sensor 61 for detecting the temperature of the sucked air are provided.
  • a control unit (not shown) for controlling the driving of the air conditioner is provided on the side of the indoor unit 1. Drain pans 10 and 13 that collect condensation that has fallen from the indoor heat exchanger 9 during cooling or dehumidification are provided at the bottom before and after indoor heat exchange.
  • the lateral louvers 111 and 112 are disposed at positions that shield the upper and lower portions of the blowing path 6 as shown in FIG.
  • the lateral louver 113 is arranged inside the air blowing path 6.
  • the blower outlet 5 is obstruct
  • the horizontal louvers 111 and 112 are arranged along the front surface of the front panel 3.
  • the horizontal louver 112 is disposed so as to connect the lower end of the horizontal louver 111 and the bottom surface of the cabinet 2. As a result, the aesthetics of the indoor unit 1 are not impaired.
  • Condensation preventing means is provided on the side of the upper wall 6b that does not face the air passage 6.
  • the upper wall 6b may be formed of a heat insulating material, and a heat insulating material may be provided on the upper surface of the upper wall. Further, other dew condensation prevention means other than the heat insulating material may be used. Even if condensation occurs on the side of the upper wall 6b that does not face the air supply path 6, the condensed water is guided to the drain pan 10. Therefore, it is possible to obtain a highly reliable air conditioner without problems caused by condensed water.
  • the horizontal louvers 111, 112, and 113 are arranged with the air outlet 5 opened, as shown in FIG.
  • the vertical louver 12 is directed in a predetermined direction.
  • the cross flow fan 7 is driven, refrigerant from the outdoor unit (not shown) flows into the indoor heat exchanger 9, and the refrigeration cycle is operated.
  • air is sucked into the indoor unit 1 from the suction port 4, and dust contained in the air is removed by the air filter 8.
  • the air taken into the indoor unit 1 is cooled by exchanging heat with the indoor heat exchanger 9.
  • the conditioned air cooled by the indoor heat exchanger 9 is regulated in the left-right direction and the up-down direction by the vertical louver 12 and the horizontal louvers 111, 112, 113, as shown by an arrow E along the inclined surface 6b5.
  • the indoor unit 1 is in a state of blowing forward and upward, which sends conditioned air upward and upward.
  • the conditioned air sent from the outlet 5 along the inclined surface 6b5 forward and upward into the room reaches the ceiling surface S (see FIG. 2) of the room. Thereafter, the coanda effect causes the indoor unit 1 to be sucked from the ceiling surface S through the side wall facing the indoor unit 1, the floor, and the side wall W1 on the indoor unit 1 side.
  • the user is not always exposed to the cold wind or the warm wind directly.
  • the user's discomfort can be prevented and the comfort can be improved.
  • health safety can be improved without locally lowering the user's body temperature during cooling.
  • the air flow greatly stirs the entire room, the temperature distribution in the room is uniform around the set temperature. That is, except for the upper part of the room, the entire living area of the user Therefore, it is possible to obtain a comfortable space where the temperature variation is small and the direct wind hardly hits the user.
  • FIG. 5 is a side sectional view showing details of the vicinity of the air outlet 5 at this time.
  • the uppermost horizontal louver 111 faces the inclined surface 6b5, and the rear end thereof is disposed in front of the bent portion 6b4.
  • the middle horizontal louver 112 faces the bent portion 6b4, and the rear end thereof is disposed behind the bent portion 6b4. From the upper front, the end 6b6 of the upper wall 6b, the front end of the uppermost horizontal louver 111, the front end of the middle horizontal louver 112, the front end of the lowermost horizontal louver 113, and the end 6c4 of the lower wall 6c. Be placed.
  • the horizontal louver 111 is arranged so that the angle 01 between the inclined surface 6b5 and the uppermost horizontal louver 111 is 13 °.
  • the horizontal louver 112 is arranged so that an angle ⁇ 2 formed by the uppermost horizontal louver 111 and the middle horizontal louver 112 is 10 °.
  • the horizontal louver 113 is arranged so that the angle ⁇ 3 formed by the middle horizontal louver 112 and the lowermost horizontal louver 113 is 10 °.
  • the angle 04 between the lowermost horizontal louver 113 and the tangent line 98 is 12 °.
  • the horizontal louvers 111, 112, and 113 are arranged so that the angles 0 1 to 0 4 are equal to or less than 17 °, the airflow in the flow path divided by the horizontal louvers 111, 112, and 113 Separation of wall force is minimized. Therefore, it is possible to improve the energy saving property by smoothly flowing the airflow.
  • FIG. 6 shows the relationship between the airflow of the crossflow fan 7 and the input (power consumption) required by the fan drive motor (not shown) that drives the crossflow fan 7 when the airflow is sent out. Yes.
  • the vertical axis is the fan drive motor input (unit: W), and the horizontal axis is the airflow (unit: mVmin) of the cross flow fan 7.
  • K1 represents the present embodiment, and shows a case where horizontal lateral Lunos 111, 112, and 113 are arranged as shown in FIG.
  • K2 shows a fourth embodiment shown in FIG. 18 whose details will be described later, and the lateral louver 113 is omitted from this embodiment.
  • K3 shows a fifth embodiment of FIG. 19 whose details will be described later, and the arrangement and shape of the horizontal louvers 111, 112 are changed by omitting the horizontal louver 113 from this embodiment.
  • K4 represents a comparative example of FIG.
  • the lateral louver 113 is omitted, and the lengths of the upper wall 6b and the lower wall 6c are set to 1D and 2. ID, respectively.
  • This is a conventional air conditioner
  • the lengths of the upper wall 6b and the lower wall 6c that are usually formed are as follows.
  • the horizontal louvers 111 and 112 are arranged so as to divide the flow path substantially equally, and smoothly guide the air flow forward and upward.
  • K1 to K3 can be driven with less input (power consumption) than the comparative example (K4).
  • K1 was about 2dB lower than ⁇ 4
  • K2 and ⁇ 3 were equivalent to K1 and the noise level was higher than K1.
  • FIGS. 8 to 11 are diagrams for explaining the difference in power consumption of the crossflow fan 7 between the present embodiment (K1) and the comparative example ( ⁇ 4).
  • FIG. 8 is a side sectional view of the indoor unit 1 schematically showing the state of ⁇ 4.
  • Fig. 9 is a diagram schematically showing the transition of the static pressure of the airflow flowing through the interior of the indoor unit 1 at this time. The vertical axis shows the static pressure of the airflow, and the horizontal axis shows the direction of the airflow. It shows.
  • the cross flow fan 7 has a total static pressure drop due to the pressure loss ( ⁇ Pa +
  • the product ( ⁇ PO X Q) of this static pressure rise ⁇ PO and the flow rate Q of flow ( ⁇ PO X Q) is the work of the cross flow fan 7. If the increase in static pressure by the cross flow fan 7 is smaller than the total decrease in static pressure ( ⁇ ⁇ A Pa + A Pb + A Pc + A Pdl), the cross flow fan 7 Cannot be distributed. Therefore, sufficient air conditioning cannot be performed.
  • FIG. 10 is a side sectional view of the indoor unit 1 schematically showing the state of K1.
  • Fig. 11 is a diagram schematically showing the transition of the static pressure of the airflow flowing through the interior of the indoor unit 1 at this time, as in Fig. 9.
  • the vertical axis shows the static pressure of the airflow, and the horizontal axis Indicates the direction of air flow.
  • the pressure loss ⁇ Pd2 of the airflow sent from the outlet 5 is the pressure loss of the comparative example of FIG.
  • the flow path area is gradually enlarged by the front guide portion 6a of the blower path 6, and then the flow path area is gradually enlarged by the inclined surface 6b5 and the lateral louver 113. For this reason, the airflow flows along the inclined surface 6b5 smoothly after passing through the front guide portion 6a while gradually expanding the basin area.
  • the cross flow fan 7 is the sum of the static pressure drop due to the pressure loss (A Pa +
  • a Pb + A Pc + A Pd2) must be increased at once by subtracting the static pressure increase ⁇ ⁇ 2. For this reason, the static pressure increase ⁇ ⁇ 1 by the cross flow fan 7 becomes A Pa + A Pb + A Pc + ⁇ d2— ⁇ 2.
  • the required static pressure increase ⁇ ⁇ 1 is only ⁇ ⁇ 2 + A Pdl— A Pd2 compared to the static pressure increase ⁇ PO required for the cross flow fan 7 in the comparative example (see FIGS. 8 and 9) Get smaller.
  • the work force A Pdl—A Pd2) X Q of the cross flow fan 7 is reduced, and thus the fan drive motor input (power consumption) can be reduced by this amount to save energy.
  • the pressure loss A Pd2 in the vicinity of the outlet 5 can be reduced, and the upper wall 6b and the lower wall can be reduced.
  • the air along 6c is decelerated, the kinetic energy is converted to static pressure, and the crossflow fan 7 is assisted by the static pressure rise ⁇ P2.
  • the kinetic energy previously taken away by the surrounding air can be fully recovered and converted to static pressure, which can be used for work for blowing air. Therefore, the increase in static pressure due to the cross flow fan 7 can be reduced, and energy saving of the air conditioner can be achieved.
  • the flow velocity (kinetic energy) of the airflow is converted to static pressure (potential energy) in order to gradually and smoothly reduce the wind speed from the lower side of the airflow and convert it to static pressure.
  • the loss at the time is small. For this reason, the conversion efficiency for converting the flow velocity into static pressure is extremely improved, and it is possible to convert a large amount of kinetic energy into static pressure.
  • FIG. 12 is a contour diagram showing the results of examining the input (power consumption, unit: W) of the fan drive motor of the cross flow fan 7 while varying the lengths of the upper wall 6b and the lower wall 6c.
  • the vertical axis indicates the length of the upper wall 6 b and is dimensionless by dividing by the diameter D of the cross flow fan 7.
  • the horizontal axis shows the length of the lower wall 6c, which is made dimensionless by dividing by the diameter D of the crossflow fan 7.
  • the airflow of the crossflow fan 7 is 16m 3 / min—constant.
  • Kl and ⁇ 4 are the same conditions as in Figure 6 above.
  • the power consumption of the cross flow fan 7 can be reduced by increasing the length of the upper wall 6b and the length of the lower wall 6c.
  • the power consumption value changes abruptly in the vicinity of the line L1 where the sum of the length of the upper wall 6b and the length of the lower wall 6c is 3.5D. Therefore, if the sum of the length of the upper wall 6b and the length of the lower wall 6c is 3.5D or more, power consumption can be significantly reduced.
  • the kinetic energy of the airflow continues to be converted to static pressure until the velocity of the airflow becomes sufficiently low, and the kinetic energy of the airflow can be sufficiently converted to static pressure and recovered.
  • FIG. 13 is a contour diagram showing the results of examining the reach distance (unit: m) of the airflow along the ceiling surface while varying the lengths of the upper wall 6b and the lower wall 6c.
  • the reach is the distance to the position where the average wind speed over 30 seconds is 0.05 mZs.
  • the vertical axis shows the length of the upper wall 6b. However, it is made dimensionless by dividing by the diameter D of the crossflow fan 7.
  • the horizontal axis shows the length of the lower wall 6c, which is made dimensionless by dividing by the diameter D of the crossflow fan 7.
  • the airflow of the cross flow fan 7 is 16m 3 / min—constant.
  • Kl and ⁇ 4 are the same conditions as in Figure 6 above.
  • the length of the upper wall 6b and the lower wall 6c is less than 0.5D and less than 1.5D, respectively, the length is extremely short and the cross flow fan 7 is not formed, so measurement is omitted. . Also, since the measurement points in the figure are finite, the contour diagram is completed using interpolation and prediction of each measurement value.
  • the reach distance varies greatly depending on the length of the upper wall 6b, which is less dependent on the length of the lower wall 6c.
  • it is effective to prevent the kinetic energy from dissipating in the upward direction of the air current, which is greatly affected by the length of the upper wall 6b.
  • the reach distance rapidly changes in the vicinity of the line L2 where the length of the upper wall 6b is 1.5D. That is, the airflow blown out from the outlet 5 immediately induces the movement of the surrounding air due to viscosity, and the kinetic energy of the airflow is gradually taken away by the surrounding air.
  • the length of the upper wall 6b is set to 1.5D or more, the upper wall 6b has a sufficient length, so that the air movement in the upward direction of the airflow is drastically reduced. As a result, the kinetic energy is not lost and the airflow reaches far. In other words, even in the airflow after sufficient kinetic energy has been recovered, a large reachable distance can be secured by making the length of the upper wall 6b 1.5D or more.
  • the air flow path 6 is divided into a plurality of flow paths in the vertical direction, and the flow paths are made longer in order as the lower flow paths are relatively short and go upward.
  • the aerodynamic kinetic energy having the non-uniform energy density unique to the cross flow fan 7 can be efficiently recovered. Therefore, in the present embodiment, the air passage 1 is divided into four vertically by the horizontal louvers 111, 112, 113 during the operation of the air conditioner 1.
  • the air flow path is divided into two flow paths.
  • each divided flow path can be sequentially lengthened as it goes upward.
  • angles ⁇ 1 to ⁇ 4 representing the enlargement ratio of the channel area of each channel be in the range of 10 ° to 15 °.
  • angles 0 1 to 04 are larger than 15 °, the airflow flowing through each flow path is separated from the wall surface or rapidly decelerated, and loss occurs when the kinetic energy is converted to static pressure. The possibility increases. If the angles 0 1 to 0 4 are smaller than 10 °, the path is unnecessarily extended, and the amount of kinetic energy due to the friction between the airflow and the wall increases accordingly.
  • the magnitude of the kinetic energy of the airflow is proportional to the square of the flow velocity.
  • the wind speed of the airflow that flows through the upper part of the airflow path 6 is several times the wind speed of the airflow that flows through the lower part of the airflow path 6 (near the lower wall 6c).
  • the kinetic energy of the airflow that flows through the upper part of the ventilation path 6 is several tens of times the kinetic energy of the airflow that flows through the lower part of the ventilation path 6 (near the lower wall 6c)
  • the amount of kinetic energy to be recovered is very large in the upper part of the ventilation path 6, a sufficiently long flow path is required.
  • the angle oc (see FIG. 2) representing the enlargement ratio of the flow path area of the front guide portion 6a of the air blowing path 6 is preferably about 20 ° as described above.
  • the angle ⁇ is larger than that, the airflow passing through the front guide 6a is separated from the wall surface or decelerated abruptly, resulting in energy loss.
  • the channel is divided by the horizontal louver and the channel area is expanded in the range of 10 ° to 15 °, it can only be divided into two. As a result, it is extremely difficult to effectively recover kinetic energy from an air current that is several tens of times wide as described above.
  • the middle horizontal louver 112 faces the bent portion 6b4, the rear end thereof is arranged behind the bent portion 6b4, and is arranged substantially parallel to the upper surface 6b3 of the front guide portion 6a.
  • the flow path of the airflow flowing through the front guide portion 6a is divided into two vertically.
  • the lower flow path of the horizontal louver 112 can be further divided into two by the horizontal louver 113 so that 0 3 and 04 are in the range of 10 ° to 15 °.
  • the upper wall 6b is bent upward at the bent portion 6b4 facing the lateral louver 112.
  • the gradually expanding flow path formed by the horizontal louver 112 and the inclined surface 6b5 is formed by the uppermost horizontal louver 111.
  • the horizontal louver 111 is positioned above the horizontal louver 112 by 0 °, 0 2 from 10 ° to 15 °. It can be divided into two in the range of. Note that it is not very efficient to bend the lower surface 6c3 of the front guide portion 6a downward and expand it in the same way because the wind speed is slow.
  • the horizontal louvers 111, 112, and 113 are configured to be rotatable around a rotation axis (not shown), the wind direction can be changed in other arrangements.
  • the sum of the length of the upper wall 6b and the length of the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 is 3.5 times the diameter D of the cross flow fan 7 or more. Therefore, during the operation of the air conditioner, air smoothly flows over a long distance along the upper wall 6b and the lower wall 6c of the air blowing path 6. As a result, the air flow disturbance near the outlet 5 is reduced and the pressure loss A Pd2 is reduced accordingly.
  • the kinetic energy can be recovered to increase the reach distance of the airflow with a reduced flow velocity.
  • the air sent out from the outlet 5 reaches the ceiling of the room and sequentially travels through the wall surface facing the air conditioner, the floor surface, and the wall surface on the air conditioner side. Therefore, the conditioned air stream reaches every corner of the room, and the air stream greatly stirs the entire room. Therefore, it is possible to obtain a comfortable space with almost no direct wind by equalizing the temperature distribution of the entire living area except a part of the upper part of the room.
  • the cross flow fan 7 generally causes surging when the pressure loss in the flow path increases. Rub. As a result, the desired air volume cannot be obtained or the noise may increase significantly.
  • the indoor heat exchanger 9 is bent and configured with a plurality of stages and a plurality of rows of refrigerant tubes as in the present embodiment, a very high pressure loss occurs. For this reason, it is necessary to take a countermeasure against surging by increasing the number of revolutions of the cross flow fan 7 considerably. As a result, the noise of the cross flow fan 7 increases and the energy saving performance deteriorates.
  • FIG. 14 is a side sectional view showing the indoor unit of the air conditioner of the second embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 13 are denoted by the same reference numerals.
  • the front panel 3 is pivotally supported by the rotating shaft 22 at the lower end. Further, the front panel 3 can be bent by a rotating shaft 23 arranged on the front surface. Other parts are the same as in the first embodiment.
  • the front panel 3 is arranged so that the upper end is in contact with the upper part of the casing, as shown in FIG. Further, the outlet 5 is shielded by the horizontal louvers 111 and 112 as in the first embodiment.
  • the front panel 3 When the air conditioner is driven, as shown in FIG. 15, the front panel 3 is rotated by the rotating shafts 22 and 23, and the front panel 3 between the rotating shafts 22 and 23 is inclined surface 6b5 of the air flow path 6 Is formed.
  • the length of the upper wall 6b of the air flow path 6 on the downstream side of the cross flow fan 7 is formed to be 1.5D or more, where D is the diameter of the cross flow fan 7.
  • the sum of the length of the upper wall 6b and the length of the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 is formed to be 3.5D or more. Therefore, the same effect as the first embodiment can be obtained.
  • FIG. 16 is a side sectional view showing the indoor unit of the air conditioner of the third embodiment.
  • the same reference numerals are used for the same parts as those in the first embodiment shown in FIGS. Is attached.
  • the lower portion of the front panel 3 is opened, and a movable panel 21 that closes the opening is pivotally supported at the lower end by a rotating shaft 22.
  • Other parts are the same as in the first embodiment.
  • the movable panel 21 is arranged so as to block the lower part of the front panel 3 as shown in FIG. Further, the outlet 5 is shielded by the horizontal louvers 111 and 112 as in the first embodiment.
  • the movable panel 21 When the air conditioner is driven, as shown in FIG. 17, the movable panel 21 is rotated by the rotation shaft 22, and the inclined surface 6 b 5 of the blowing path 6 is formed by the movable panel 21.
  • the length of the upper wall 6b of the blower passage 6 on the downstream side of the cross flow fan 7 is formed to be 1.5D or more, where D is the diameter of the single fan 7 of the cross fan.
  • the sum of the length of the upper wall 6b and the length of the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 is formed to be 3.5D or more. Therefore, the same effect as that of the first embodiment can be obtained.
  • FIG. 18 is a side sectional view showing the indoor unit of the air conditioner of the fourth embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 13 are given the same reference numerals.
  • the lateral louver 113 of the first embodiment is omitted as described above.
  • Other parts including the lengths of the upper wall 6b and the lower wall 6c of the air blowing path 6 are the same as those in the first embodiment.
  • the lowermost horizontal louver 113 is omitted as compared with the air conditioner of the first embodiment, so that the efficiency of the recovery of the kinetic energy of the airflow flowing under the air flow path 6 is eliminated. Slightly decreases.
  • the power consumption can be made smaller than in Comparative Example K4 in FIG. 7, and energy saving can be achieved compared to the conventional example.
  • FIG. 19 is a side sectional view showing the indoor unit of the air conditioner of the fifth embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 13 are given the same reference numerals.
  • the lateral louver 113 of the first embodiment is omitted, and the length and arrangement of the lateral louvers 111, 112 are changed.
  • Other parts including the lengths of the upper wall 6b and the lower wall 6c of the air blowing path 6 are the same as those in the first embodiment.
  • the horizontal louvers 111, 112 arranged above and below are opposed to the bent portion 6b4, and the rear ends thereof are arranged behind the bent portion 6b4.
  • the front ends of the horizontal louvers 111, 112 are arranged at substantially the same position in front of the bent portion 6b4 and in the front-rear direction. Further, the lateral louvers 111 and 112 form a flow path in which the front guide portion 6a of the air blowing path 6 is divided at substantially equal intervals.
  • the efficiency of recovering the kinetic energy of the airflow flowing in the air supply path 6 is lower than that of the air conditioner of the first and second embodiments.
  • the power consumption can be made smaller than in the comparative example K4 in FIG. 7, and energy saving can be achieved compared to the conventional example.
  • the present invention can be used for an air conditioner that takes in indoor air and harmonizes it.

Abstract

An air conditioner comprises an air intake port (4) for introducing the air in a room into the casing of an indoor machine (1), an air discharge port (5) formed at the lower part of the casing, an air flow path (6) for communicating the air intake port (4) with the air discharge port (5), an indoor heat exchanger (9) having refrigerant tubes arranged in a plurality of stages and rows parallel with each other and disposed curvedly along the inner surface of the casing so as to face the air intake port (4), and a cross flow fan (7) disposed between the indoor heat exchanger (9) in the air flow path (6) and the air discharge port (5). The air flow path (6) includes a forward guide part (6a) which guides the air to the forward lower side and is gradually increased in its flow passage area toward the downstream side. The sum of the lengths of the upper wall (6b) and the lower wall (6c) of the air flow path (6) closer to the downstream side than the cross flow fan (7) is set to 3.5 times the diameter of the cross flow fan (7) or more.

Description

明 細 書  Specification
空気調和機  Air conditioner
技術分野  Technical field
[0001] 本発明は、室内から取り込んだ空気を調和して室内に送出する空気調和機に関す る。  TECHNICAL FIELD [0001] The present invention relates to an air conditioner that harmonizes air taken from a room and sends the air into the room.
背景技術  Background art
[0002] 従来の空気調和機は特許文献 1、 2に開示される。特許文献 1の空気調和機は送 風ファンの羽根の肉厚分布を改良して送風ファンの圧力損失が低減される。これによ り、空気調和機の省エネルギー化が図られている。また特許文献 2の空気調和機は 室内機の筐体前面に設けられた吸込口を塞ぐ可動パネルを有して 、る。空気調和機 の駆動時には可動パネルを移動し、吸込口を広く開放して室内の空気が取り込まれ る。これにより、吸込時の圧力損失を低減し、空気調和機の省エネルギー化が図られ ている。  Conventional air conditioners are disclosed in Patent Documents 1 and 2. The air conditioner of Patent Document 1 improves the thickness distribution of the blades of the air supply fan and reduces the pressure loss of the blower fan. As a result, energy conservation of the air conditioner is achieved. The air conditioner of Patent Document 2 has a movable panel that closes the suction port provided on the front surface of the casing of the indoor unit. When the air conditioner is driven, the movable panel is moved, and the air is taken in by opening the suction port widely. As a result, the pressure loss at the time of suction is reduced, and energy saving of the air conditioner is achieved.
特許文献 1 :特開 2003— 028089号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-028089
特許文献 2:特開 2000— 111082号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-111082
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 近年、地球環境の保全が叫ばれ、所謂白物家電のより一層の省エネルギー化が強 く望まれている。し力しながら、上記の従来の空気調和機によると、吹出口から調和 空気が勢いよく室内の空気中に送出される。この時、それまで存在した通路の壁面 が急になくなって空気の粘性により周囲の空気に運動エネルギーを奪われて大気圧 と同じ静圧になる。この現象が吹出口力も気流が送出されると直ちに一気に行われる ため、吹出口近傍での気流が大きく攪乱してそれに伴う圧力損失が生じる。従って、 空気調和機の省エネルギー化を充分図ることができない問題があった。  [0003] In recent years, the preservation of the global environment has been screamed, and further energy saving of so-called white goods is strongly desired. However, according to the above-described conventional air conditioner, the conditioned air is vigorously sent from the air outlet into the indoor air. At this time, the wall surface of the existing passage suddenly disappears and the kinetic energy is deprived by the surrounding air due to the viscosity of the air, resulting in the same static pressure as the atmospheric pressure. This phenomenon occurs as soon as the air flow is sent out, and the air flow near the air outlet is greatly disturbed, resulting in a pressure loss. Therefore, there has been a problem that energy saving of the air conditioner cannot be sufficiently achieved.
[0004] 本発明は、より省エネルギー化を図ることのできる空気調和機を提供することを目 的とする。  [0004] An object of the present invention is to provide an air conditioner that can further save energy.
課題を解決するための手段 [0005] 上記目的を達成するために本発明は、室内の空気を室内機の筐体内に取り入れる 吸込口と、筐体下部に設けられる吹出口と、前記吸込口と前記吹出口との間を連通 させる送風経路と、冷媒管を複数段かつ複数列に並設するとともに前記筐体内面に 沿って屈曲して前記送風経路内で前記吸込口に対向配置される室内熱交換器と、 前記送風経路内の前記室内熱交換器と前記吹出口との間に配されるクロスフローフ アンとを備えた空気調和機において、前記送風経路は前方下方に空気を案内して下 流へ行くほど流路面積が拡大される前方案内部を有し、前記クロスフローファンよりも 下流側の前記送風経路の上壁の長さと下壁の長さの和を前記クロスフローファンの 直径の 3. 5倍以上にしたことを特徴としている。 Means for solving the problem In order to achieve the above object, the present invention provides a suction port for taking indoor air into a housing of an indoor unit, an air outlet provided at a lower portion of the housing, and a space between the air inlet and the air outlet. A ventilation path to be communicated; an indoor heat exchanger in which refrigerant tubes are arranged in a plurality of stages and in a plurality of rows, bent along the inner surface of the housing, and disposed opposite to the suction port in the ventilation path; In an air conditioner including a cross flow fan disposed between the indoor heat exchanger and the air outlet in the path, the air flow path guides the air forward and downward and flows toward the downstream. It has a front guide that enlarges the road area, and the sum of the length of the upper and lower walls of the air flow path downstream of the cross flow fan is 3.5 times the diameter of the cross flow fan. It is characterized by the above.
[0006] この構成によると、クロスフローファンの駆動により吸込ロカ 室内の空気が筐体内 に取り込まれて送風経路を流通する。該空気は冷媒管を蛇行して上下方向に複数 段且つ奥行方向に複数列に並設した圧力損失の大きい室内熱交翻と熱交換して 調和される。調和空気はクロスフローファンの排気側力 送風経路の上壁及び下壁 に沿って流路面積を拡大しながら前方案内部を介して流通し、吹出口力 送出され る。この時、送風経路の上壁及び下壁に沿う気流は徐々に減速し、運動エネルギー が静圧に変換されて静圧として回収される。  [0006] According to this configuration, the air in the suction loca chamber is taken into the housing by the drive of the cross flow fan and flows through the air blowing path. The air is harmonized by heat exchange with indoor heat exchange with a large pressure loss arranged in a plurality of rows in the vertical direction and in a plurality of rows in the depth direction by meandering the refrigerant pipe. The conditioned air circulates through the front guide part along the upper and lower walls of the air flow path on the exhaust side of the cross-flow fan through the front guide, and is sent out from the outlet. At this time, the airflow along the upper and lower walls of the ventilation path is gradually decelerated, and the kinetic energy is converted to static pressure and recovered as static pressure.
[0007] また本発明は、上記構成の空気調和機において、前記吹出口の風向を上下に可 変する第 1風向板を備え、空気調和機の運転時に前方上方から前記上壁の前端、 第 1風向板の前端、前記下壁の前端の順に配置したことを特徴としている。この構成 によると、送風経路を流通する気流の運動エネルギーが流速の遅 、下方から順次回 収される。  [0007] Further, the present invention provides the air conditioner configured as described above, further comprising a first wind direction plate that can change a wind direction of the air outlet up and down, and a front end of the upper wall from the front upper side during operation of the air conditioner. 1 It is characterized by arrange | positioning in order of the front end of the wind direction board, and the front end of the said lower wall. According to this configuration, the kinetic energy of the airflow flowing through the air blowing path is collected sequentially from the lower side of the flow velocity.
[0008] また本発明は、上記構成の空気調和機において、第 1風向板の下方に第 2風向板 を設け、第 1風向板の前端を第 2風向板の前端よりも前方に配置したことを特徴として いる。  [0008] Further, according to the present invention, in the air conditioner configured as described above, a second wind direction plate is provided below the first wind direction plate, and a front end of the first wind direction plate is disposed forward of a front end of the second wind direction plate. It features.
[0009] また本発明は、上記構成の空気調和機において、前記吹出口の上下に可変する 第 1、第 2風向板を備え、前記上壁は前記前方案内部上面の終端から屈曲部で屈曲 して前方上方に傾斜した傾斜面を有し、第 1風向板の後端が前記屈曲部よりも前方 に配置されるとともに、第 1風向板よりも下方の第 2風向板の後端が前記屈曲部よりも 後方に配置されることを特徴として 、る。 [0009] In the air conditioner having the above-described configuration, the present invention further includes first and second wind direction plates that are variable above and below the air outlet, and the upper wall is bent at a bent portion from an end of the upper surface of the front guide portion. And the rear end of the first wind direction plate is disposed in front of the bent portion, and the rear end of the second wind direction plate below the first wind direction plate is the front end. Than the bent part It is characterized by being arranged at the rear.
[0010] この構成によると、送風経路の上壁に沿って流通する気流は第 2風向板により曲げ られて傾斜面に沿って前方上方へ流通する。第 2風向板によって曲げられた下部の 気流の運動エネルギーは第 2風向板と第 1風向板との間に形成された流路によって 静圧に変換して回収される。第 2風向板によって曲げられた上部の気流の運動エネ ルギ一は第 1風向板と傾斜面との間に形成された流路によって静圧に変換して回収 される。  [0010] According to this configuration, the airflow flowing along the upper wall of the blowing path is bent by the second wind direction plate and flows forward and upward along the inclined surface. The kinetic energy of the lower airflow bent by the second wind direction plate is recovered by being converted to static pressure by the flow path formed between the second wind direction plate and the first wind direction plate. The kinetic energy of the upper air stream bent by the second wind direction plate is recovered by being converted into static pressure by the flow path formed between the first wind direction plate and the inclined surface.
[0011] また本発明は、上記構成の空気調和機において、前記傾斜面と第 1風向板のなす 角及び第 1、第 2風向板のなす角を 10°〜15°にしたことを特徴としている。この構成 によると、気流が第 1、第 2風向板や送風経路の傾斜面から成る壁面から剥離するこ となく滑らかに壁面に沿って流通する。  [0011] In the air conditioner having the above-described configuration, the present invention is characterized in that an angle formed by the inclined surface and the first wind direction plate and an angle formed by the first and second wind direction plates are set to 10 ° to 15 °. Yes. According to this configuration, the airflow smoothly flows along the wall surface without being separated from the wall surface formed by the inclined surfaces of the first and second wind direction plates and the air flow path.
[0012] また本発明は、上記構成の空気調和機において、第 2風向板の下方に第 3風向板 を設け、第 2、第 3風向板のなす角を 10°〜15°にしたことを特徴としている。この構 成によると、気流が第 2、第 3風向板力も成る壁面力も剥離することなく滑らかに壁面 に沿って流通する。  [0012] Further, according to the present invention, in the air conditioner configured as described above, a third wind direction plate is provided below the second wind direction plate, and an angle formed by the second and third wind direction plates is set to 10 ° to 15 °. It is a feature. According to this configuration, the air flow smoothly flows along the wall surface without peeling off the wall force that is also the second and third wind direction plate force.
[0013] また本発明は、上記構成の空気調和機において、最も下方に配される風向板と前 記前方案内部の下壁の終端の接線とのなす角を 10°〜15°にしたことを特徴として いる。この構成によると、気流が最下段の風向板力 成る壁面力 剥離することなく滑 らかに壁面に沿って流通する。  [0013] Further, according to the present invention, in the air conditioner having the above-described configuration, an angle formed between the wind direction plate disposed at the lowermost position and the tangent at the end of the lower wall of the front guide portion is set to 10 ° to 15 °. It features. According to this configuration, the airflow smoothly flows along the wall surface without peeling off the wall surface force, which is the lowest wind direction plate force.
[0014] また本発明は、上記構成の空気調和機において、前記上壁の長さを前記クロスフ ローファンの直径の 1. 5倍以上にしたことを特徴として 、る。  [0014] In the air conditioner configured as described above, the present invention is characterized in that the length of the upper wall is 1.5 times or more the diameter of the cross-flow fan.
[0015] また本発明は、室内の空気を室内機の筐体内に取り入れる吸込口と、筐体下部に 設けられる吹出口と、前記吸込口と前記吹出口との間を連通させる送風経路と、冷媒 管を複数段かつ複数列に並設するとともに前記筐体内面に沿って屈曲して前記送 風経路内で前記吸込口に対向配置される室内熱交換器と、前記送風経路内の前記 室内熱交^^と前記吹出口との間に配されるクロスフローファンと、前記吹出口の風 向を上下に可変する第 1、第 2風向板とを備えた空気調和機において、前記送風経 路は前記クロスフローファンから前方下方に空気を案内して下流へ行くほど流路面 積が拡大される前方案内部を有し、前記クロスフローファンよりも下流側の前記送風 経路の上壁の長さを前記クロスフローファンの直径の 1. 5倍以上にするとともに、前 記上壁は前記前方案内部の終端力 屈曲部で屈曲して前方上方に傾斜した傾斜面 を有し、第 1風向板の後端が前記屈曲部よりも前方に配置されるとともに、第 1風向板 よりも下方の第 2風向板の後端が前記屈曲部よりも後方に配置されることを特徴して いる。 [0015] Further, the present invention is a suction port for taking indoor air into the housing of the indoor unit, a blowout port provided in the lower portion of the housing, a ventilation path that communicates between the suction port and the blowout port, An indoor heat exchanger in which refrigerant tubes are arranged in a plurality of rows and in a plurality of rows and bent along the inner surface of the housing and disposed opposite to the suction port in the air supply path, and the indoors in the air supply path In an air conditioner including a cross-flow fan disposed between a heat exchanger ^^ and the air outlet, and first and second air direction plates that change the air direction of the air outlet up and down, The path is a flow path surface as it guides air forward and downward from the cross flow fan and goes downstream. A front guide portion having an enlarged product, and the length of the upper wall of the air flow path on the downstream side of the cross flow fan is 1.5 times or more the diameter of the cross flow fan. The wall has an inclined surface that is bent at the terminal force bending portion of the front guide portion and is inclined forward and upward, and the rear end of the first wind direction plate is disposed in front of the bent portion, and the first wind direction plate Further, the rear end of the second wind direction plate below is arranged behind the bent portion.
[0016] この構成によると、クロスフローファンの駆動により吸込ロカ 室内の空気が筐体内 に取り込まれて送風経路を流通する。該空気は冷媒管を蛇行して上下方向に複数 段且つ前後に複数列に並設した圧力損失の大きい室内熱交翻と熱交換して調和 される。調和空気はクロスフローファンの排気側力 送風経路の上壁及び下壁に沿 つて流路面積を拡大しながら前方案内部を流通する。送風経路の上壁に沿って流 通する気流は第 2風向変更板により曲げられて傾斜面に沿って前方上方へ流通する 。第 2風向変更板によって曲げられた下部の気流は第 2風向変更板と第 1風向変更 板との間に形成された流路によって徐々に減速し、運動エネルギーが静圧に変換さ れて静圧として回収される。第 2風向変更板によって曲げられた上部の気流は第 1風 向変更板と傾斜面との間に形成された流路によって徐々に減速し、運動エネルギー が静圧に変換されて静圧として回収される。  [0016] According to this configuration, the air in the suction loca chamber is taken into the housing by the driving of the cross flow fan and flows through the air blowing path. The air is harmonized by heat exchange with indoor heat exchange with a large pressure loss arranged in a plurality of rows in the vertical direction and in a plurality of rows in the front and rear by meandering the refrigerant pipe. The conditioned air circulates in the front guide section while expanding the flow path area along the upper and lower walls of the air flow path of the cross flow fan. The airflow flowing along the upper wall of the ventilation path is bent by the second wind direction changing plate and flows forward and upward along the inclined surface. The lower airflow bent by the second wind direction change plate is gradually decelerated by the flow path formed between the second wind direction change plate and the first wind direction change plate, and the kinetic energy is converted to static pressure and Recovered as pressure. The upper airflow bent by the second wind direction change plate is gradually decelerated by the flow path formed between the first wind direction change plate and the inclined surface, and the kinetic energy is converted to static pressure and recovered as static pressure. Is done.
[0017] また本発明は、上記構成の空気調和機において、前記傾斜面と第 1風向板のなす 角及び第 1、第 2風向板のなす角を 10°〜15°にしたことを特徴としている。  [0017] Further, in the air conditioner having the above-described configuration, the present invention is characterized in that an angle formed by the inclined surface and the first wind direction plate and an angle formed by the first and second wind direction plates are 10 ° to 15 °. Yes.
[0018] また本発明は、上記構成の空気調和機において、第 2風向板の下方に第 3風向板 を設け、第 2、第 3風向板のなす角を 10°〜15°にしたことを特徴としている。  [0018] Further, in the air conditioner having the above-described configuration, the present invention includes a third wind direction plate provided below the second wind direction plate, and an angle formed by the second and third wind direction plates is set to 10 ° to 15 °. It is a feature.
[0019] また本発明は、上記構成の空気調和機において、最も下方に配される風向板と前 記前方案内部の下壁の終端の接線とのなす角を 10°〜15°にしたことを特徴として いる。  [0019] Further, according to the present invention, in the air conditioner having the above-described configuration, an angle formed between the wind direction plate disposed at the lowermost position and the tangent at the end of the lower wall of the front guide portion is set to 10 ° to 15 °. It features.
[0020] また本発明は、上記構成の空気調和機において、空気調和機の運転時に前方上 方から前記上壁の前端、第 1風向板の前端、第 2風向板の前端、前記下壁の前端の 順に配置したことを特徴としている。この構成によると、送風経路を流通する気流の運 動エネルギーが流速の遅い下方力 順次回収される。 [0021] また本発明は、室内の空気を室内機の筐体内に取り入れる吸込口と、筐体下部に 設けられる吹出口と、前記吸込口と前記吹出口との間を連通させる送風経路と、前記 送風経路内で前記吸込口に対向配置される室内熱交換器と、前記送風経路内の前 記室内熱交^^と前記吹出口との間に配されるクロスフローファンとを備え、前記クロ スフローファンよりも下流側の前記送風経路の上壁の長さを前記クロスフローファンの 直径の 1. 5倍以上にしたことを特徴としている。 [0020] In the air conditioner having the above-described configuration, the present invention provides a front end of the upper wall, a front end of the first wind direction plate, a front end of the second wind direction plate, and a front end of the lower wall when the air conditioner is operated. They are arranged in the order of the front edge. According to this configuration, the kinetic energy of the airflow flowing through the blower path is sequentially recovered in the downward force with the slow flow rate. [0021] Further, the present invention is a suction port for taking indoor air into the housing of the indoor unit, a blower outlet provided in the lower part of the housing, a blower path that communicates between the suction port and the blower outlet, An indoor heat exchanger disposed opposite to the suction port in the air passage, and a cross flow fan disposed between the indoor heat exchanger ^^ in the air passage and the outlet. It is characterized in that the length of the upper wall of the air flow path on the downstream side of the cross flow fan is 1.5 times or more the diameter of the cross flow fan.
[0022] この構成によると、クロスフローファンの駆動により吸込ロカも室内の空気が筐体内 に取り込まれて送風経路を流通する。該空気は室内熱交^^と熱交換して調和され 、調和空気がクロスフローファンの排気側から送風経路の上壁及び下壁に沿って流 通して吹出口力 送出される。この時、送風経路の上壁及び下壁に沿う気流は徐々 に減速し、運動エネルギーが静圧に変換されて静圧として回収される。  [0022] According to this configuration, the air inside the suction loca is also taken into the housing by the driving of the cross flow fan, and flows through the ventilation path. The air is harmonized by heat exchange with the indoor heat exchange, and the conditioned air flows from the exhaust side of the cross flow fan along the upper and lower walls of the air flow path and is sent out from the outlet. At this time, the airflow along the upper and lower walls of the air flow path is gradually decelerated, and the kinetic energy is converted to static pressure and recovered as static pressure.
[0023] また本発明は、室内の空気を室内機の筐体内に取り入れる吸込口と、筐体下部に 設けられる吹出口と、前記吸込口と前記吹出口との間を連通させる送風経路と、前記 送風経路内で前記吸込口に対向配置される室内熱交換器と、前記送風経路内の前 記室内熱交^^と前記吹出口との間に配されるクロスフローファンとを備え、前記クロ スフローファンよりも下流側の前記送風経路の上壁の長さと下壁の長さの和を前記ク ロスフローファンの直径の 3. 5倍以上にしたことを特徴としている。  [0023] Further, the present invention provides a suction port for taking indoor air into the housing of the indoor unit, a blowout port provided in a lower portion of the housing, a blower path communicating between the suction port and the blowout port, An indoor heat exchanger disposed opposite to the suction port in the air passage, and a cross flow fan disposed between the indoor heat exchanger ^^ in the air passage and the outlet. It is characterized in that the sum of the length of the upper wall and the lower wall of the air flow path on the downstream side of the cross flow fan is at least 3.5 times the diameter of the cross flow fan.
[0024] この構成によると、クロスフローファンの駆動により吸込ロカ 室内の空気が筐体内 に取り込まれて送風経路を流通する。該空気は室内熱交^^と熱交換して調和され 、調和空気がクロスフローファンの排気側から送風経路の上壁及び下壁に沿って流 通して吹出口力 送出される。この時、送風経路の上壁及び下壁に沿う気流は徐々 に減速し、運動エネルギーが静圧に変換されて静圧として回収される。 [0024] According to this configuration, the air inside the suction loci chamber is taken into the housing by the driving of the cross flow fan and flows through the air blowing path. The air is harmonized by heat exchange with the indoor heat exchange, and the conditioned air flows from the exhaust side of the cross flow fan along the upper and lower walls of the air flow path and is sent out from the outlet. At this time, the airflow along the upper and lower walls of the air flow path is gradually decelerated, and the kinetic energy is converted to static pressure and recovered as static pressure.
発明の効果  The invention's effect
[0025] 本発明によると、クロスフローファンよりも下流側の送風経路の上壁の長さと下壁の 長さの和をクロスフローファンの直径の 3. 5倍以上にしたので、空気調和機の運転時 に空気が送風経路の上壁及び下壁に沿って長 、距離を滑らかに流通する。これによ り、吹出口近傍での気流の攪乱が少なぐそれに伴う圧力損失が小さくなる。力 tlえて、 長い上壁及び下壁に沿う空気が充分低速になるまで減速して運動エネルギーが静 圧に変換される。従って、気流の運動エネルギーを充分回収してクロスフローファン による静圧上昇を小さくすることができ、空気調和機の省エネルギー化を図ることが できる。 [0025] According to the present invention, since the sum of the length of the upper wall and the length of the lower wall of the air flow path on the downstream side of the cross flow fan is 3.5 times or more the diameter of the cross flow fan, the air conditioner During operation, air flows smoothly along the upper and lower walls of the air flow path over a long distance. As a result, there is less air flow disturbance near the outlet, and the pressure loss associated with it is reduced. The kinetic energy is reduced by decelerating until the air along the long upper and lower walls is sufficiently slow. Converted to pressure. Therefore, the kinetic energy of the airflow can be sufficiently recovered to reduce the static pressure rise by the cross flow fan, and the energy saving of the air conditioner can be achieved.
[0026] また、室内熱交^^が複数列且つ複数段力 成るため圧力損失の大きい室内熱 交換器を用いた場合でも気流の運動エネルギーを充分回収して空気調和機の省ェ ネルギー化を図ることができる。カロえて、前方下方に空気を案内して下流へ行くほど 流路面積が拡大される前方案内部を設けたので、気流を徐々に減速させて運動ェ ネルギーを充分回収することができる。  [0026] In addition, because the indoor heat exchangers ^ are arranged in multiple rows and multiple stages, even when using an indoor heat exchanger with large pressure loss, the kinetic energy of the airflow is sufficiently recovered to save energy in the air conditioner. Can be planned. Since the front guide portion is provided in which the flow area is increased as the air is guided to the lower front side and goes downstream, the airflow can be gradually decelerated to sufficiently recover the motion energy.
[0027] また本発明によると、空気調和機の運転時に前方上方から上壁の前端、第 1風向 板の前端、下壁の前端の順に配置したので、下方の流速の遅い低密度の運動エネ ルギ一力も順に回収して気流の運動エネルギーを効率よく回収することができる。  [0027] Further, according to the present invention, since the front end of the upper wall, the front end of the first wind direction plate, and the front end of the lower wall are arranged in this order from the front upper side during operation of the air conditioner, the low-density motion energy having a low lower flow velocity is arranged. The rugged force can be recovered in order to efficiently recover the kinetic energy of the airflow.
[0028] また本発明によると、第 1風向板の下方に第 2風向板を設け、第 1風向板の前端を 第 2風向板の前端よりも前方に配置したので、下方の流速の遅い低密度の運動エネ ルギ一力も順に回収して気流の運動エネルギーを効率よく回収することができる。  [0028] Further, according to the present invention, the second wind direction plate is provided below the first wind direction plate, and the front end of the first wind direction plate is disposed in front of the front end of the second wind direction plate. It is possible to recover the kinetic energy of the airflow efficiently by recovering the power of density kinetic energy in order.
[0029] また本発明によると、第 1風向板の後端が前方案内部上面と傾斜面との間の屈曲 部よりも前方に配置されるとともに、第 1風向板よりも下方の第 2風向板の後端が該屈 曲部よりも後方に配置されるので、第 2風向板により気流を曲げて傾斜面に沿わせる ことができる。また、下方の流速の遅い低密度の運動エネルギーから順に回収して気 流の運動エネルギーを効率よく回収することができる。  [0029] According to the present invention, the rear end of the first wind direction plate is disposed in front of the bent portion between the upper surface of the front guide portion and the inclined surface, and the second wind direction below the first wind direction plate. Since the rear end of the plate is disposed behind the bent portion, the airflow can be bent along the inclined surface by the second wind direction plate. In addition, the kinetic energy of the air flow can be efficiently recovered by recovering in order from the low-density kinetic energy having a low downward flow velocity.
[0030] また本発明によると、傾斜面と第 1風向板のなす角及び第 1、第 2風向板のなす角 を 10°〜15°にしたので、傾斜面と第 1風向板との間の流路及び第 1、第 2風向板間 の流路は連続的に流路が拡大され、気流が壁面力も剥離することなく滑らかに壁面 に沿って流通する。これにより、気流の運動エネルギーを滑らかに静圧に変換し、運 動エネルギーを効率よく回収することができる。  [0030] According to the present invention, the angle formed between the inclined surface and the first wind direction plate and the angle formed between the first and second wind direction plates are set to 10 ° to 15 °. The flow path between the first and second wind direction plates is continuously expanded, and the air flow smoothly flows along the wall surface without peeling off the wall force. As a result, the kinetic energy of the airflow can be smoothly converted to static pressure, and the kinetic energy can be recovered efficiently.
[0031] また本発明によると、第 2風向板と第 2風向板よりも下方の第 3風向板とのなす角を 10°〜15°にしたので、第 2、第 3風向板間の流路は連続的に流路が拡大され、気流 が壁面力 剥離することなく滑らかに壁面に沿って流通する。これにより、気流の運 動エネルギーを滑らかに静圧に変換し、運動エネルギーを効率よく回収することがで きる。 [0031] Further, according to the present invention, since the angle formed by the second wind direction plate and the third wind direction plate below the second wind direction plate is 10 ° to 15 °, the flow between the second and third wind direction plates is The channel is continuously expanded, and the airflow smoothly flows along the wall without peeling off the wall. This allows the kinetic energy to be efficiently recovered by converting the kinetic energy of the airflow into static pressure smoothly. wear.
[0032] また本発明によると、最も下方に配される風向板と前記下壁の終端の接線とのなす 角を 10°〜15°にしたので、最下段の風向板と送風経路の下壁との間の流路は連続 的に流路が拡大され、気流が壁面力 剥離することなく滑らかに壁面に沿って流通 する。これにより、気流の運動エネルギーを滑らかに静圧に変換し、運動エネルギー を効率よく回収することができる。  [0032] Further, according to the present invention, since the angle formed between the wind direction plate disposed at the lowermost position and the tangent at the end of the lower wall is set to 10 ° to 15 °, the lowermost wind direction plate and the lower wall of the air flow path The channel between the two is continuously expanded, and the airflow smoothly flows along the wall without peeling off the wall force. As a result, the kinetic energy of the airflow can be smoothly converted to static pressure, and the kinetic energy can be efficiently recovered.
[0033] また本発明によると、クロスフローファンよりも下流側の送風経路の上壁の長さをクロ スフローファンの直径の 1. 5倍以上にしたので、空気調和機の運転時に空気が送風 経路の上壁に沿って長い距離を滑らかに流通する。これにより、吹出口近傍での気 流の攪乱が少なぐそれに伴う圧力損失が小さくなる。力 tlえて、長い上壁及び下壁に 沿う空気が充分低速になるまで減速して運動エネルギーが静圧に変換される。従つ て、気流の運動エネルギーを充分回収してクロスフローファンによる静圧上昇を小さ くすることができ、空気調和機の省エネルギー化を図ることができる。  [0033] Further, according to the present invention, the length of the upper wall of the air flow path on the downstream side of the cross flow fan is 1.5 times or more the diameter of the cross flow fan. It smoothly circulates a long distance along the upper wall of the ventilation path. As a result, there is less air flow disturbance in the vicinity of the air outlet, and the associated pressure loss is reduced. The kinetic energy is converted into static pressure by decelerating until the air along the long upper and lower walls becomes sufficiently slow, with a force tl. Accordingly, the kinetic energy of the airflow can be sufficiently recovered to reduce the static pressure rise by the cross flow fan, and the energy saving of the air conditioner can be achieved.
[0034] また、運動エネルギーを回収して流速の低下した気流の到達距離を長くすることが できる。これにより、吹出口力も送出された空気が部屋の天井に到達し、空気調和機 に対向する壁面、床面及び空気調和機側の壁面を順次伝う。従って、部屋の隅々に まで調和空気の気流が行き届いて気流が部屋全体を大きく攪拌する。従って、室内 の上方の一部を除く居住領域全体の温度分布を均一化して直接風もほとんどない快 適空間を得ることができる。  [0034] Further, the kinetic energy can be recovered to increase the reach distance of the airflow with a reduced flow velocity. As a result, the air sent out from the outlet also reaches the ceiling of the room and sequentially travels through the wall facing the air conditioner, the floor, and the wall on the air conditioner side. Therefore, the conditioned air stream reaches every corner of the room, and the air stream greatly stirs the entire room. Therefore, it is possible to obtain a comfortable space with almost no direct wind by equalizing the temperature distribution of the entire living area except for a part above the room.
[0035] また、室内熱交換器が複数列且つ複数段から成るため、圧力損失の大きい室内熱 交換器を用いた場合でも気流の運動エネルギーを充分回収して空気調和機の省ェ ネルギー化を図ることができる。カロえて、前方下方に空気を案内して下流へ行くほど 流路面積が拡大される前方案内部を設けたので、気流を徐々に減速させて運動ェ ネルギーを充分回収することができる。  [0035] In addition, since the indoor heat exchanger is composed of a plurality of rows and stages, even when an indoor heat exchanger with a large pressure loss is used, the kinetic energy of the airflow is sufficiently recovered to save energy of the air conditioner. Can be planned. Since the front guide portion is provided in which the flow area is increased as the air is guided to the lower front side and goes downstream, the airflow can be gradually decelerated to sufficiently recover the motion energy.
[0036] 更に、第 1風向板の後端が前方案内部上面と傾斜面との間の屈曲部よりも前方に 配置されるとともに、第 1風向板よりも下方の第 2風向板の後端が該屈曲部よりも後方 に配置されるので、第 2風向板により気流を曲げて傾斜面に沿わせることができる。ま た、下方の流速の遅!、低密度の運動エネルギーから順に回収して気流の運動エネ ルギーを効率よく回収することができる。 [0036] Further, the rear end of the first wind direction plate is disposed in front of the bent portion between the upper surface of the front guide portion and the inclined surface, and the rear end of the second wind direction plate below the first wind direction plate. Is disposed behind the bent portion, the airflow can be bent along the inclined surface by the second wind direction plate. In addition, the kinetic energy of the airflow is recovered by recovering in order from the lower flow velocity! Lugie can be collected efficiently.
[0037] また本発明によると、空気調和機の運転時に前方上方から上壁の前端、第 1風向 板の前端、第 2風向板の前端、下壁の前端の順に配置したので、下方の流速の遅い 低密度の運動エネルギー力 順に回収して気流の運動エネルギーを効率よく回収 することができる。  [0037] According to the present invention, since the front end of the upper wall, the front end of the first wind direction plate, the front end of the second wind direction plate, and the front end of the lower wall are arranged in this order from the front upper side during operation of the air conditioner, the lower flow velocity The kinetic energy of the airflow can be efficiently recovered by recovering in order of slow kinetic energy power.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]本発明の第 1実施形態の空気調和機の室内機の運転時の状態を示す側面断 面図  FIG. 1 is a side cross-sectional view showing a state during operation of an indoor unit of an air conditioner according to a first embodiment of the present invention.
[図 2]本発明の第 1実施形態の空気調和機の室内機の送風経路の詳細を示す側面 断面図  FIG. 2 is a side cross-sectional view showing details of a ventilation path of the indoor unit of the air conditioner according to the first embodiment of the present invention.
[図 3]本発明の第 1実施形態の空気調和機の室内機の送風経路の屈曲部の詳細を 示す側面断面図  FIG. 3 is a side cross-sectional view showing details of a bent portion of a ventilation path of the indoor unit of the air conditioner according to the first embodiment of the present invention.
[図 4]本発明の第 1実施形態の空気調和機の室内機の運転停止時の状態を示す側 面断面図  FIG. 4 is a side cross-sectional view showing a state when the operation of the indoor unit of the air conditioner according to the first embodiment of the present invention is stopped.
[図 5]本発明の第 1実施形態の空気調和機の室内機の吹出口近傍の詳細を示す側 面断面図  FIG. 5 is a side sectional view showing details of the vicinity of the air outlet of the indoor unit of the air conditioner according to the first embodiment of the present invention.
[図 6]本発明の第 1実施形態の空気調和機の室内機のクロスフローファンの風量とフ アン駆動モータの入力の関係を示す図  FIG. 6 is a diagram showing the relationship between the air volume of the cross flow fan of the indoor unit of the air conditioner according to the first embodiment of the present invention and the input of the fan drive motor.
[図 7]本発明の第 1実施形態の空気調和機の室内機の比較例を示す側面断面図 [図 8]本発明の第 1実施形態の空気調和機の室内機の比較例の静圧の推移を説明 する図  FIG. 7 is a side sectional view showing a comparative example of the indoor unit of the air conditioner of the first embodiment of the present invention. FIG. 8 is a static pressure of the comparative example of the indoor unit of the air conditioner of the first embodiment of the present invention. Figure explaining the transition of
[図 9]本発明の第 1実施形態の空気調和機の室内機の比較例の静圧の推移を示す 図  FIG. 9 is a graph showing changes in static pressure of a comparative example of the indoor unit of the air conditioner according to the first embodiment of the present invention.
[図 10]本発明の第 1実施形態の空気調和機の室内機の静圧の推移を説明する図 [図 11]本発明の第 1実施形態の空気調和機の室内機の静圧の推移を示す図  FIG. 10 is a diagram for explaining the transition of the static pressure of the air conditioner indoor unit according to the first embodiment of the present invention. FIG. 11 is the transition of the static pressure of the air conditioner indoor unit of the first embodiment of the present invention. Figure showing
[図 12]本発明の第 1実施形態の空気調和機の室内機の送風経路の上壁の長さ、下 壁の長さ、クロスフローファンの消費電力の関係を示す図  FIG. 12 is a diagram showing the relationship between the length of the upper wall, the length of the lower wall, and the power consumption of the cross flow fan of the indoor unit of the air conditioner according to the first embodiment of the present invention.
[図 13]本発明の第 1実施形態の空気調和機の室内機の送風経路の上壁の長さ、下 壁の長さ、クロスフローファンの気流の到達距離の関係を示す図 FIG. 13 shows the length of the upper wall of the air flow path of the indoor unit of the air conditioner according to the first embodiment of the present invention. Diagram showing the relationship between wall length and crossflow fan airflow reach
[図 14]本発明の第 2実施形態の空気調和機の室内機の運転停止時の状態を示す側 面断面図  FIG. 14 is a side cross-sectional view showing a state when the operation of the indoor unit of the air conditioner of the second embodiment of the present invention is stopped.
[図 15]本発明の第 2実施形態の空気調和機の室内機の運転時の状態を示す側面断 面図  FIG. 15 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the second embodiment of the present invention.
[図 16]本発明の第 3実施形態の空気調和機の室内機の運転停止時の状態を示す側 面断面図  FIG. 16 is a side cross-sectional view showing a state when the operation of the indoor unit of the air conditioner according to the third embodiment of the present invention is stopped.
[図 17]本発明の第 3実施形態の空気調和機の室内機の運転時の状態を示す側面断 面図  FIG. 17 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the third embodiment of the present invention.
[図 18]本発明の第 4実施形態の空気調和機の室内機の運転時の状態を示す側面断 面図  FIG. 18 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the fourth embodiment of the present invention.
[図 19]本発明の第 5実施形態の空気調和機の室内機の運転時の状態を示す側面断 面図  FIG. 19 is a side sectional view showing a state during operation of the indoor unit of the air conditioner according to the fifth embodiment of the present invention.
符号の説明 Explanation of symbols
1 室内機  1 Indoor unit
2 キャビネット  2 Cabinet
3 フロントパネル  3 Front panel
4 吸込口  4 Suction port
5 吹出口  5 Air outlet
6 送風経路  6 Air flow path
6a 前方案内部  6a Front guide
6b 上壁  6b upper wall
6b 5 傾斜面  6b 5 inclined surface
6c 下壁  6c lower wall
7 クロスフローファン  7 Cross flow fan
8 エアフイノレタ  8 Airfinoleta
9 室内熱交換器  9 Indoor heat exchanger
10、 13 ドレンパン 111、 112、 113 横ルーノ 10, 13 Drain pan 111, 112, 113 Horizontal Luno
12 縦ルーバ  12 Vertical louver
21 可動パネル  21 Movable panel
22、 23 回動軸  22, 23 Rotating shaft
61 温度センサ  61 Temperature sensor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] <第 1実施形態 > [0040] <First embodiment>
以下に本発明の実施形態を図面を参照して説明する。図 1は第 1実施形態の空気 調和機の室内機を示す側面断面図である。空気調和機の室内機 1は、キャビネット 2 により本体部が保持されており、キャビネット 2にはフロントパネル 3が着脱自在に取り 付けられている。キャビネット 2及びフロントパネル 3より室内機 1の筐体が構成される  Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing the indoor unit of the air conditioner of the first embodiment. The indoor unit 1 of the air conditioner has a main body held by a cabinet 2, and a front panel 3 is detachably attached to the cabinet 2. The cabinet of indoor unit 1 is composed of cabinet 2 and front panel 3.
[0041] キャビネット 2は後方側面に爪部(不図示)が設けられ、部屋の側壁 W1に取り付け られた取付板 (不図示)に該爪部を係合することにより支持される。フロントパネル 3の 下端部とキャビネット 2の下端部との間隙には、吹出口 5が設けられている。吹出口 5 は室内機 1の幅方向に延びる略矩形に形成され、前方下方に臨んで設けられている 。フロントパネル 3の上面には格子状の吸込口 4が設けられる。 [0041] The cabinet 2 is provided with a claw portion (not shown) on the rear side surface, and is supported by engaging the claw portion with a mounting plate (not shown) attached to the side wall W1 of the room. An air outlet 5 is provided in the gap between the lower end of the front panel 3 and the lower end of the cabinet 2. The air outlet 5 is formed in a substantially rectangular shape extending in the width direction of the indoor unit 1 and is provided facing the front lower side. A lattice-shaped suction port 4 is provided on the upper surface of the front panel 3.
[0042] 室内機 1の筐体内部には、吸込口 4と吹出口 5とを連結する送風経路 6が形成され ている。送風経路 6内には空気を送出するクロスフローファン 7が配されている。送風 経路 6はクロスフローファン 7の下流側で上壁 6bと下壁 6cにより囲まれている。また、 送風経路 6はクロスフローファン 7により送出される空気を前方下方に案内する前方 案内部 6aを有している。前方案内部 6aは下流に行くほど流路面積が拡大されるよう に形成されている。  [0042] Inside the casing of the indoor unit 1, a blower path 6 that connects the suction port 4 and the blowout port 5 is formed. A cross flow fan 7 for sending air is disposed in the air blowing path 6. The air blowing path 6 is surrounded by the upper wall 6b and the lower wall 6c on the downstream side of the cross flow fan 7. Further, the air blowing path 6 has a front guide portion 6a for guiding the air sent out by the cross flow fan 7 forward and downward. The front guide portion 6a is formed such that the flow path area increases as it goes downstream.
[0043] 図 2はクロスフローファン 7の下流側の送風経路 6の詳細を示す側面断面図である。  FIG. 2 is a side sectional view showing details of the air flow path 6 on the downstream side of the cross flow fan 7.
送風経路 6の上壁 6bはクロスフローファン 7の周面に沿うスタビライザー部 6b7を有し て 、る。スタビライザー部 6b7はクロスフローファン 7の排気方向に延びて形成され、 下端で前方案内部 6aの上面 6b3に連続する。  The upper wall 6b of the air flow path 6 has a stabilizer portion 6b7 along the peripheral surface of the cross flow fan 7. The stabilizer portion 6b7 is formed extending in the exhaust direction of the cross flow fan 7, and is continuous with the upper surface 6b3 of the front guide portion 6a at the lower end.
[0044] 前方案内部 6aの上面 6b3は前方下方に傾斜する。前方案内部 6aの上面 6b3の終 端カゝら屈曲部 6b4を介して上方へ屈曲して前方上方に傾斜した傾斜面 6b5が形成さ れる。屈曲部 6b4は緩やかで滑らかな曲面から成る。 [0044] The upper surface 6b3 of the front guide portion 6a is inclined forward and downward. End of upper surface 6b3 of front guide 6a An inclined surface 6b5 that is bent upward through the bent portion 6b4 and inclined forward and upward is formed. The bend 6b4 is a gentle and smooth curved surface.
[0045] 送風経路 6の下壁 6cはクロスフローファン 7の周面に沿うリアガイダ一部 6c5を有し ている。リアガイダー部 6c5はクロスフローファン 7の排気方向に延びて形成され、下 壁 6cはリアガイダー部 6c5の下端力も前方案内部 6aの下面 6c3を含む螺旋状の曲 面に形成される。 The lower wall 6c of the air flow path 6 has a rear guider part 6c5 along the peripheral surface of the cross flow fan 7. The rear guider portion 6c5 is formed to extend in the exhaust direction of the cross flow fan 7, and the lower wall 6c is formed in a spiral curved surface including the lower end force of the rear guider portion 6c5 and the lower surface 6c3 of the front guide portion 6a.
[0046] 前方案内部 6aの上面 6b3と下面 6c3の成す角 αは約 20° に形成されている。傾 斜面 6b5と水平面との成す角 βは約 20° に形成されている。前方案内部 6aの上面 6b3と水平面との成す角 γは 5° に形成されている。従って、前方案内部 6aの上面 6 b3と傾斜面 6b5とのなす角 ( β + y )は 25°に形成されている。角ひ、 j8、 γはそれ ぞれ 15°〜20° 程度、 30° 以下、 0°〜10° 程度に形成するのが望ましい。  [0046] The angle α formed by the upper surface 6b3 and the lower surface 6c3 of the front guide portion 6a is formed to be about 20 °. The angle β between the slope 6b5 and the horizontal plane is about 20 °. An angle γ formed by the upper surface 6b3 of the front guide portion 6a and the horizontal plane is 5 °. Therefore, the angle (β + y) formed by the upper surface 6 b3 of the front guide portion 6a and the inclined surface 6b5 is 25 °. It is desirable to form the squares j8 and γ at about 15 ° to 20 °, 30 ° or less, and about 0 ° to 10 °, respectively.
[0047] 角( j8 + γ )は 17°以下であると流路の壁面に沿う空気が壁面力 剥離せずに滑ら 力に小さい圧力損失で流通させることができる。し力しながら、後述するように横ルー バ 111、 112、 113によって流路を複数に分割するために角( + γ )が 17°よりも大 きくなつている。このため、中段の横ルーバ 112を屈曲部 6b4に対向配置して、気流 の剥離が抑えられている。  [0047] When the angle (j8 + γ) is 17 ° or less, the air along the wall surface of the flow path can be circulated with a small pressure loss to the sliding force without peeling off the wall surface force. However, the angle (+ γ) is larger than 17 ° in order to divide the flow path into a plurality of parts by the horizontal louvers 111, 112, 113 as described later. For this reason, the middle horizontal louver 112 is disposed opposite to the bent portion 6b4 to suppress separation of the airflow.
[0048] 尚、図 3に示すように、屈曲部 6b4に少なくとも 1つの平面 6fを設け、平面 6fの端部 を滑らかな曲面 6eでそれぞれ繋いでもよい。この場合に、前方案内部 6aの上面 6b3 と平面 6fとの成す角 0 5及び平面 6fと傾斜面 6b5との成す角 0 6は 17° 以下に形成 される。平面 6fが複数ある場合には各平面同士の成す角も全て 17° 以下に形成さ れる。これにより、流路の壁面に沿う空気が壁面力も剥離せずに滑らかに小さい圧力 損失で流通させることができる。従って、省エネルギー性を向上することができる。  [0048] As shown in FIG. 3, at least one flat surface 6f may be provided in the bent portion 6b4, and the end portions of the flat surface 6f may be connected by a smooth curved surface 6e. In this case, an angle 05 formed by the upper surface 6b3 of the front guide portion 6a and the plane 6f and an angle 06 formed by the plane 6f and the inclined surface 6b5 are formed to be 17 ° or less. If there are multiple planes 6f, the angles formed by the planes are all less than 17 °. Thereby, the air along the wall surface of the flow path can be smoothly circulated with a small pressure loss without peeling off the wall surface force. Therefore, energy saving can be improved.
[0049] また、クロスフローファン 7の下流側の送風経路 6の上壁 6b及び下壁 6cの長さはそ れぞれクロスフローファン 7の直径を Dとして 1. 9D及び 2. 1Dに形成されている。ス タビラィザ一部 6b7及びリアガイダ一部 6c5の先端 6b 1、 6c 1はクロスフローファン 7 の排気方向に垂直な直径方向近傍に設けられ、上壁 6b及び下壁 6cの始点となって V、る。スタビライザー部 6b7及びリアガイダ一部 6c5がクロスフローファン 7の吸気側ま で延びて形成される場合は、クロスフローファン 7との距離が最小となるフロントギヤッ プ 6b2及びリアギャップ 6c2部分を上壁 6b及び下壁 6cの始点としてもよい。 [0049] The lengths of the upper wall 6b and the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 are formed to be 1.9D and 2.1D, where the diameter of the cross flow fan 7 is D, respectively. Has been. The ends 6b 1 and 6c 1 of the stabilizer part 6b7 and the rear guider part 6c5 are provided in the vicinity of the diameter direction perpendicular to the exhaust direction of the cross flow fan 7, and V is the starting point of the upper wall 6b and the lower wall 6c. . When the stabilizer 6b7 and the rear guider part 6c5 are formed to extend to the intake side of the crossflow fan 7, the front gear that minimizes the distance to the crossflow fan 7 is used. The part 6b2 and the rear gap 6c2 may be the starting points of the upper wall 6b and the lower wall 6c.
[0050] 傾斜面 6b5の前端はフロントパネル 3の下端に当接し、上壁 6bの終端 6b6を形成 する。キャビネット 2の下面前端は前方案内部 6aの下面 6c3の終端 6c4が変曲点とな る小さい曲率半径で形成される。該終端 6c4が下壁 6cの終点となっている(以下、 6c 4を下壁 6cの終端という場合がある。 )0尚、 98は前方案内部 6aの下面 6c3の終端 6 b4における接線を示して 、る。 [0050] The front end of the inclined surface 6b5 abuts on the lower end of the front panel 3 to form the end 6b6 of the upper wall 6b. The front end of the lower surface of the cabinet 2 is formed with a small radius of curvature where the end 6c4 of the lower surface 6c3 of the front guide portion 6a becomes an inflection point. The end 6c4 is the end point of the lower wall 6c (hereinafter, 6c 4 may be referred to as the end of the lower wall 6c.) 0 Note that 98 indicates the tangent at the end 6b4 of the lower surface 6c3 of the front guide portion 6a. And
[0051] 図 1において、前方案内部 6aには左右方向の吹出角度を変更可能な縦ルーバ 12 が設けられている。吹出口 5には上下方向の吹出角度を前方上方、水平方向、前方 下方及び真下方向に変更可能な複数の横ルーバ 111、 112、 113が設けられている 。フロントパネル 3に対向する位置には、吸込口 4から吸い込まれた空気に含まれる 塵埃を捕集 ·除去するエアフィルタ 8が設けられて!/、る。フロントパネル 3とエアフィル タ 8との間に形成される空間には、エアフィルタ清掃装置 (不図示)が設けられている 。エアフィルタ清掃装置によりエアフィルタ 8に蓄積した塵埃が除去される。  In FIG. 1, the front guide portion 6a is provided with a vertical louver 12 capable of changing the blowing angle in the left-right direction. The blower outlet 5 is provided with a plurality of lateral louvers 111, 112, 113 that can change the blowout angle in the vertical direction to the upper front, the horizontal direction, the lower front, and the right lower direction. An air filter 8 is provided at a position opposite to the front panel 3 to collect and remove dust contained in the air sucked from the suction port 4! /. An air filter cleaning device (not shown) is provided in a space formed between the front panel 3 and the air filter 8. The dust accumulated in the air filter 8 is removed by the air filter cleaning device.
[0052] 送風経路 6中のクロスフローファン 7とエアフィルタ 8との間には、室内熱交^^ 9が 配置されている。室内熱交 9は上下方向に複数段且つ前後に複数列に並設さ れる蛇行した冷媒管(不図示)を有し、フロントパネル 3に沿うように多段に屈曲されて いる。室内熱交 9は屋外に配される圧縮機 (不図示)に接続されており、圧縮機 の駆動により冷凍サイクルが運転される。冷凍サイクルの運転によって冷房運転時に は室内熱交換器 9が周囲温度よりも低温に冷却される。また、暖房運転時には、室内 熱交換器 9が周囲温度よりも高温に加熱される。  [0052] Between the crossflow fan 7 and the air filter 8 in the air passage 6, an indoor heat exchanger 9 is disposed. The indoor heat exchanger 9 has meandering refrigerant pipes (not shown) arranged in a plurality of rows in the vertical direction and in a plurality of rows in the front and rear directions, and is bent in multiple stages along the front panel 3. The indoor heat exchanger 9 is connected to a compressor (not shown) arranged outdoors, and the refrigeration cycle is operated by driving the compressor. During the cooling operation, the indoor heat exchanger 9 is cooled to a temperature lower than the ambient temperature by the operation of the refrigeration cycle. Further, during the heating operation, the indoor heat exchanger 9 is heated to a temperature higher than the ambient temperature.
[0053] 室内熱交^^ 9とエアフィルタ 8との間には電気集塵装置 (不図示)及び吸い込ま れた空気の温度を検知する温度センサ 61が設けられる。室内機 1の側部には空気 調和機の駆動を制御する制御部 (不図示)が設けられている。室内熱交 の前 後の下部には冷房または除湿時に室内熱交換器 9から落下した結露を補集するドレ ンパン 10、 13が設けられている。  [0053] Between the indoor heat exchanger 9 and the air filter 8, an electric dust collector (not shown) and a temperature sensor 61 for detecting the temperature of the sucked air are provided. A control unit (not shown) for controlling the driving of the air conditioner is provided on the side of the indoor unit 1. Drain pans 10 and 13 that collect condensation that has fallen from the indoor heat exchanger 9 during cooling or dehumidification are provided at the bottom before and after indoor heat exchange.
[0054] 上記構成の空気調和機において、空気調和機の運転停止状態では図 4に示すよう に、横ルーバ 111、 112は送風経路 6の上部及び下部を遮蔽する位置に配置される 。横ルーバ 113は送風経路 6内部に配される。これにより、吹出口 5が閉塞される。こ の時、横ルーバ 111、 112はフロントパネル 3の前面に沿って配される。また、横ルー バ 112は横ルーバ 111の下端とキャビネット 2の底面とを繋ぐように配置される。これ により、室内機 1の美観を損ねないようになつている。 In the air conditioner having the above-described configuration, when the air conditioner is stopped, the lateral louvers 111 and 112 are disposed at positions that shield the upper and lower portions of the blowing path 6 as shown in FIG. The lateral louver 113 is arranged inside the air blowing path 6. Thereby, the blower outlet 5 is obstruct | occluded. This At this time, the horizontal louvers 111 and 112 are arranged along the front surface of the front panel 3. Further, the horizontal louver 112 is disposed so as to connect the lower end of the horizontal louver 111 and the bottom surface of the cabinet 2. As a result, the aesthetics of the indoor unit 1 are not impaired.
[0055] 上壁 6bの送風経路 6に面しない側には結露防止手段が施されている。結露防止手 段として上壁 6bを断熱材により形成してもよぐ上壁の上面に断熱材を設けてもよい 。また、断熱材以外の他の結露防止手段であってもよい。また、万が一上壁 6bの送 風経路 6に面しない側に結露が生じた場合でも、その結露水はドレンパン 10に導か れるようになっている。このため、結露水による問題もなく信頼性の高い空気調和機 を得ることができる。 [0055] Condensation preventing means is provided on the side of the upper wall 6b that does not face the air passage 6. As a means for preventing condensation, the upper wall 6b may be formed of a heat insulating material, and a heat insulating material may be provided on the upper surface of the upper wall. Further, other dew condensation prevention means other than the heat insulating material may be used. Even if condensation occurs on the side of the upper wall 6b that does not face the air supply path 6, the condensed water is guided to the drain pan 10. Therefore, it is possible to obtain a highly reliable air conditioner without problems caused by condensed water.
[0056] 空気調和機を運転開始して例えば冷房運転を行うと、図 1に示すように、横ルーバ 111、 112、 113は吹出口 5を開放して配置される。縦ルーバ 12は所定の方向に向 けられる。クロスフローファン 7が駆動され、室外機 (不図示)からの冷媒が室内熱交 9へ流れて冷凍サイクルが運転される。これにより、室内機 1内には吸込口 4から 空気が吸い込まれ、エアフィルタ 8によって空気中に含まれる塵埃が除去される。ま た、室内機 1内に取り込まれた空気は室内熱交 9と熱交換して冷却される。  [0056] When the air conditioner is started and a cooling operation is performed, for example, the horizontal louvers 111, 112, and 113 are arranged with the air outlet 5 opened, as shown in FIG. The vertical louver 12 is directed in a predetermined direction. The cross flow fan 7 is driven, refrigerant from the outdoor unit (not shown) flows into the indoor heat exchanger 9, and the refrigeration cycle is operated. As a result, air is sucked into the indoor unit 1 from the suction port 4, and dust contained in the air is removed by the air filter 8. In addition, the air taken into the indoor unit 1 is cooled by exchanging heat with the indoor heat exchanger 9.
[0057] 室内熱交換器 9で冷却された調和空気は、縦ルーバ 12及び横ルーバ 111、 112、 113によって左右方向及び上下方向に向きを規制され、傾斜面 6b5に沿って矢印 E に示すように前方上方に向けて室内に送出される。これにより、室内機 1は前方上方 に調和空気を送出する前方上方吹出しの状態になる。  [0057] The conditioned air cooled by the indoor heat exchanger 9 is regulated in the left-right direction and the up-down direction by the vertical louver 12 and the horizontal louvers 111, 112, 113, as shown by an arrow E along the inclined surface 6b5. Are sent out indoors toward the upper front. As a result, the indoor unit 1 is in a state of blowing forward and upward, which sends conditioned air upward and upward.
[0058] 吹出口 5から傾斜面 6b5に沿って前方上方に向けて室内に送出された調和空気は 、部屋の天井面 S (図 2参照)に到達する。その後、コアンダ効果により天井面 Sから 室内機 1に対向する側壁、床面、室内機 1側の側壁 W1を順次伝って室内機 1に吸 い込まれる。  The conditioned air sent from the outlet 5 along the inclined surface 6b5 forward and upward into the room reaches the ceiling surface S (see FIG. 2) of the room. Thereafter, the coanda effect causes the indoor unit 1 to be sucked from the ceiling surface S through the side wall facing the indoor unit 1, the floor, and the side wall W1 on the indoor unit 1 side.
[0059] このようにすることで、使用者に常に冷たい風や暖かい風が直接当たることがなぐ 使用者の不快感を防止して快適性を向上することができる。更に、冷房時に局所的 に使用者の体温を低下させることがなく健康上の安全性を向上することができる。ま た、気流が部屋全体を大きく攪拌するので、室内の温度分布が設定温度付近で均 一になる。即ち、部屋の上方の一部を除いて、使用者の居住領域全体が設定温度 に略一致して温度ばらつきが小さく直接風もほとんど使用者に当たることのない快適 空間を得ることができる。 [0059] By doing so, the user is not always exposed to the cold wind or the warm wind directly. The user's discomfort can be prevented and the comfort can be improved. Furthermore, health safety can be improved without locally lowering the user's body temperature during cooling. Also, since the air flow greatly stirs the entire room, the temperature distribution in the room is uniform around the set temperature. That is, except for the upper part of the room, the entire living area of the user Therefore, it is possible to obtain a comfortable space where the temperature variation is small and the direct wind hardly hits the user.
[0060] 図 5はこの時の吹出口 5近傍の詳細を示す側面断面図である。最上段の横ルーバ 111は傾斜面 6b5に対向し、後端が屈曲部 6b4よりも前方に配置される。中段の横 ルーバ 112は屈曲部 6b4に対向し、後端が屈曲部 6b4よりも後方に配置される。そし て、前方上方から、上壁 6bの終端 6b6、最上段の横ルーバ 111の前端、中段の横ル ーバ 112の前端、最下段の横ルーバ 113の前端、下壁 6cの終端 6c4の順に配置さ れる。  FIG. 5 is a side sectional view showing details of the vicinity of the air outlet 5 at this time. The uppermost horizontal louver 111 faces the inclined surface 6b5, and the rear end thereof is disposed in front of the bent portion 6b4. The middle horizontal louver 112 faces the bent portion 6b4, and the rear end thereof is disposed behind the bent portion 6b4. From the upper front, the end 6b6 of the upper wall 6b, the front end of the uppermost horizontal louver 111, the front end of the middle horizontal louver 112, the front end of the lowermost horizontal louver 113, and the end 6c4 of the lower wall 6c. Be placed.
[0061] また、傾斜面 6b5と最上段の横ルーバ 111との成す角 0 1は 13° になるように横ル ーバ 111が配置される。最上段の横ルーバ 111と中段の横ルーバ 112との成す角 Θ 2は 10° になるように横ルーバ 112が配置される。中段の横ルーバ 112と最下段の 横ルーバ 113との成す角 Θ 3は 10° になるように横ルーバ 113が配置される。また、 最下段の横ルーバ 113と接線 98との成す角 0 4は 12° になっている。  [0061] Further, the horizontal louver 111 is arranged so that the angle 01 between the inclined surface 6b5 and the uppermost horizontal louver 111 is 13 °. The horizontal louver 112 is arranged so that an angle Θ 2 formed by the uppermost horizontal louver 111 and the middle horizontal louver 112 is 10 °. The horizontal louver 113 is arranged so that the angle Θ 3 formed by the middle horizontal louver 112 and the lowermost horizontal louver 113 is 10 °. In addition, the angle 04 between the lowermost horizontal louver 113 and the tangent line 98 is 12 °.
[0062] 角 0 1〜 0 4が 17° 以下になるように横ルーバ 111、 112、 113が配置されるので 、各横ルーバ 111、 112、 113で区分けされる流路の気流は各流路壁面力もの剥離 が最小限に抑制される。従って、滑らかに気流が流通して省エネルギー性を向上す ることがでさる。  [0062] Since the horizontal louvers 111, 112, and 113 are arranged so that the angles 0 1 to 0 4 are equal to or less than 17 °, the airflow in the flow path divided by the horizontal louvers 111, 112, and 113 Separation of wall force is minimized. Therefore, it is possible to improve the energy saving property by smoothly flowing the airflow.
[0063] 図 6はクロスフローファン 7の風量と、その風量を送出する際のクロスフローファン 7 を駆動するファン駆動モータ (不図示)が必要とする入力(消費電力)との関係を示し ている。縦軸はファン駆動モータの入力(単位: W)であり、横軸はクロスフローファン 7の風量(単位: mVmin)である。  FIG. 6 shows the relationship between the airflow of the crossflow fan 7 and the input (power consumption) required by the fan drive motor (not shown) that drives the crossflow fan 7 when the airflow is sent out. Yes. The vertical axis is the fan drive motor input (unit: W), and the horizontal axis is the airflow (unit: mVmin) of the cross flow fan 7.
[0064] 図中、 K1は本実施形態を示し、図 5〖こ示すよう〖こ横ルーノ 111、 112、 113を配置 した場合を示している。 K2は詳細を後述する図 18の第 4実施形態を示し、本実施形 態に対して横ルーバ 113を省 、て 、る。 K3は詳細を後述する図 19の第 5実施形態 を示し、本実施形態に対して横ルーバ 113を省いて横ルーバ 111、 112の配置及び 形状を変更している。  [0064] In the drawing, K1 represents the present embodiment, and shows a case where horizontal lateral Lunos 111, 112, and 113 are arranged as shown in FIG. K2 shows a fourth embodiment shown in FIG. 18 whose details will be described later, and the lateral louver 113 is omitted from this embodiment. K3 shows a fifth embodiment of FIG. 19 whose details will be described later, and the arrangement and shape of the horizontal louvers 111, 112 are changed by omitting the horizontal louver 113 from this embodiment.
[0065] また、 K4は図 7の比較例を示している。比較例では、横ルーバ 113を省いて上壁 6 b及び下壁 6cの長さをそれぞれ 1D、 2. IDにしている。これは、従来の空気調和機 に通常形成される上壁 6b及び下壁 6cの長さになっている。尚、横ルーバ 111、 112 は流路を略等分するように配置され、気流を滑らかに前方上方に導くようになつてい る。 [0065] K4 represents a comparative example of FIG. In the comparative example, the lateral louver 113 is omitted, and the lengths of the upper wall 6b and the lower wall 6c are set to 1D and 2. ID, respectively. This is a conventional air conditioner The lengths of the upper wall 6b and the lower wall 6c that are usually formed are as follows. The horizontal louvers 111 and 112 are arranged so as to divide the flow path substantially equally, and smoothly guide the air flow forward and upward.
[0066] K1と K2の比較により、横ルーバ 113を図 5に示すように配置したことによる効果が 把握できる。 K2と K3の比較により、横ルーバ 111、 112の形状及び配置による効果 が把握できる。 K1と K4の比較により、上壁 6b及び下壁 6cの長さによる効果が把握 できる。  [0066] By comparing K1 and K2, the effect of arranging the horizontal louver 113 as shown in FIG. 5 can be grasped. By comparing K2 and K3, the effect of the shape and arrangement of the horizontal louvers 111 and 112 can be grasped. By comparing K1 and K4, the effect of the length of the upper wall 6b and the lower wall 6c can be grasped.
[0067] 同図によると、 K1〜K3の場合は比較例 (K4)に比して少ない入力(消費電力)で 駆動することができる。尚、同一風量時の騒音を Κ1〜Κ4の場合について比較すると 、 K1は Κ4に対して約 2dB低騒音となり、 K2、 Κ3は K1と同等で誤差レベルで K1よ りも騒音が大きくなつた。  [0067] According to the figure, K1 to K3 can be driven with less input (power consumption) than the comparative example (K4). When the noise at the same air volume was compared between Κ1 and Κ4, K1 was about 2dB lower than Κ4, and K2 and Κ3 were equivalent to K1 and the noise level was higher than K1.
[0068] 図 8〜図 11は本実施形態 (K1)と、比較例(Κ4)とのクロスフローファン 7の消費電 力の違いを説明する図である。図 8は Κ4の状態を模式的に示す室内機 1の側面断 面図である。図 9はこの時の室内機 1の内部を流通する気流の静圧の状況の推移を 模式的に示した図であり、縦軸は気流の静圧を示し、横軸は気流の送風方向を示し ている。  FIGS. 8 to 11 are diagrams for explaining the difference in power consumption of the crossflow fan 7 between the present embodiment (K1) and the comparative example (Κ4). FIG. 8 is a side sectional view of the indoor unit 1 schematically showing the state of Κ4. Fig. 9 is a diagram schematically showing the transition of the static pressure of the airflow flowing through the interior of the indoor unit 1 at this time. The vertical axis shows the static pressure of the airflow, and the horizontal axis shows the direction of the airflow. It shows.
[0069] クロスフローファン 7を駆動すると、静圧が大気圧と等しい外部の空気が室内機 1の 筐体内に吸い込まれて気流が発生する。該気流は吸込口 4、室内熱交換器 9、送風 経路 6を流通し、室内熱交 9を流通する際に空気は調和されて調和空気となる。 この時、吸込口 4、室内熱交換器 9、送風経路 6のそれぞれの空気抵抗によって圧力 損失 A Pa、 A Pb、 A Pcが生じる。これにより、送風経路 6を流通する間に気流の静 圧は減少して、大気圧 A Pa— A Pb— A Pcとなる。尚、エアフィルタ 8やその他の 部分の圧力損失につ!、ては省略して説明する。  When the cross flow fan 7 is driven, external air whose static pressure is equal to the atmospheric pressure is sucked into the housing of the indoor unit 1 to generate an air flow. The airflow flows through the suction port 4, the indoor heat exchanger 9, and the blower path 6, and the air is harmonized into conditioned air when flowing through the indoor heat exchanger 9. At this time, pressure losses A Pa, A Pb, and A Pc are generated by the air resistances of the suction port 4, the indoor heat exchanger 9, and the air blowing path 6, respectively. As a result, the static pressure of the airflow decreases while flowing through the air blowing path 6, and becomes atmospheric pressure A Pa—A Pb—A Pc. Note that the pressure loss in the air filter 8 and other parts will be omitted.
[0070] 更に、吹出口 5から送出された気流は吹出口 5を出たところで気流の攪乱に伴う圧 力損失 A Pdlが生じる。即ち、吹出口 5から送出された気流はそれまで存在した送風 経路 6の上下左右の壁面が急になくなって周囲の空気の中に噴出される。その際に 、空気の粘性により周囲の空気に運動エネルギーを与えて周囲の空気をゆっくりと動 かす。従って、吹出口 5から送出された気流は、周囲の空気に運動エネルギーを奪 われ、やがて大気圧と同一の静圧になる。この現象が、吹出口 5から気流が送出され ると直ちに一気に行われるため、吹出口 5近傍での気流が大きく攪乱してそれに伴う 圧力損失が生じる。 [0070] Further, when the air flow sent out from the outlet 5 exits the outlet 5, a pressure loss A Pdl is generated due to the disturbance of the air current. In other words, the air flow sent out from the outlet 5 is ejected into the surrounding air suddenly disappearing from the upper, lower, left and right wall surfaces of the air passage 6 that has existed until then. At that time, the surrounding air is moved slowly by giving kinetic energy to the surrounding air due to the viscosity of the air. Therefore, the airflow sent from the outlet 5 takes kinetic energy to the surrounding air. Over time, the static pressure will be the same as the atmospheric pressure. This phenomenon occurs immediately when the airflow is sent out from the outlet 5, so that the airflow in the vicinity of the outlet 5 is greatly disturbed, resulting in a pressure loss.
[0071] このため、クロスフローファン 7は上記圧力損失による静圧低下分の合計(Δ Pa +  For this reason, the cross flow fan 7 has a total static pressure drop due to the pressure loss (Δ Pa +
A Pb+ A Pc+ A Pdl)を一気に上昇させる必要がある。従って、クロスフローファン 7 による静圧上昇 Δ P0は静圧低下分の合計( Δ Pa+ Δ Pb + Δ Pc + Δ Pdl)と等価で なければならない。  (A Pb + A Pc + A Pdl) needs to be increased at once. Therefore, the static pressure increase ΔP0 by the cross flow fan 7 must be equivalent to the total static pressure decrease (ΔPa + ΔPb + ΔPc + ΔPdl).
[0072] この静圧上昇 Δ POと、流通させる風量 Qとの積( Δ PO X Q)がクロスフローファン 7 の仕事になる。クロスフローファン 7による静圧上昇が静圧低下分の合計よりも小さ ヽ 場合(Δ ΡΟく A Pa+ A Pb+ A Pc+ A Pdl)には、クロスフローファン 7は所望の風 量を室内熱交 9に流通させることができない。従って、充分な空気調和を行うこと ができない。  The product (ΔPO X Q) of this static pressure rise ΔPO and the flow rate Q of flow (ΔPO X Q) is the work of the cross flow fan 7. If the increase in static pressure by the cross flow fan 7 is smaller than the total decrease in static pressure (Δ ΡΟ A Pa + A Pb + A Pc + A Pdl), the cross flow fan 7 Cannot be distributed. Therefore, sufficient air conditioning cannot be performed.
[0073] これに対して、本実施形態 (K1)の場合を図 10、図 11に示す。図 10は K1の状態 を模式的に示す室内機 1の側面断面図である。図 11は図 9と同様に、この時の室内 機 1の内部を流通する気流の静圧の状況の推移を模式的に示した図であり、縦軸は 気流の静圧を示し、横軸は気流の送風方向を示している。  In contrast, the case of the present embodiment (K1) is shown in FIGS. FIG. 10 is a side sectional view of the indoor unit 1 schematically showing the state of K1. Fig. 11 is a diagram schematically showing the transition of the static pressure of the airflow flowing through the interior of the indoor unit 1 at this time, as in Fig. 9. The vertical axis shows the static pressure of the airflow, and the horizontal axis Indicates the direction of air flow.
[0074] クロスフローファン 7を駆動すると、上記と同様に、静圧が大気圧と等しい外部の空 気が室内機 1の筐体内に吸い込まれて気流が発生する。この時、吸込口 4、室内熱 交換器 9、送風経路 6のそれぞれの空気抵抗によって圧力損失 Δ Ρ&、 Δ Ρ Δ Ρο が生じる。これにより、送風経路 6を流通する間に気流の静圧は減少して、大気圧— Δ Pa— Δ Pb— Δ Pcとなる。  When the cross flow fan 7 is driven, external air whose static pressure is equal to the atmospheric pressure is sucked into the housing of the indoor unit 1 and airflow is generated as described above. At this time, pressure losses Δ Ρ & and Δ Ρ Δ Ρο are generated by the air resistances of the suction port 4, the indoor heat exchanger 9, and the air blowing path 6. As a result, the static pressure of the airflow decreases while flowing through the air blowing path 6, and becomes atmospheric pressure—ΔPa—ΔPb—ΔPc.
[0075] 一方、吹出口 5から送出された気流の圧力損失 Δ Pd2は図 9の比較例の圧力損失  On the other hand, the pressure loss ΔPd2 of the airflow sent from the outlet 5 is the pressure loss of the comparative example of FIG.
Δ Pdlよりも小さくなる。即ち、前方案内部 6aを流通した気流は屈曲部 6b4を介して 傾斜面 6b5に滑らかに沿う。このため、比較例のように周囲の空気に運動エネルギー を急激に奪われず、周囲の空気に奪われる運動エネルギーの量も少ない。  It becomes smaller than ΔPdl. That is, the airflow flowing through the front guide portion 6a smoothly follows the inclined surface 6b5 via the bent portion 6b4. For this reason, unlike the comparative example, the kinetic energy is not rapidly taken away by the surrounding air, and the amount of kinetic energy taken by the surrounding air is small.
[0076] また、前方案内部 6aを流通した気流全体がコアンダ効果により傾斜面 6b5に沿うの で、送風経路 6の下壁 6cに沿う流れもこれに影響される。このため、一気に拡散する ことなぐ気流の下側から徐々に周囲の空気に拡散されて大気圧と同一の静圧にな る。従って、吹出口 5近傍での気流の攪乱が小さぐそれに伴う圧力損失 A Pd2が小 さくなる。 [0076] In addition, since the entire airflow flowing through the front guide portion 6a is along the inclined surface 6b5 due to the Coanda effect, the flow along the lower wall 6c of the blower path 6 is also affected by this. For this reason, it is gradually diffused into the surrounding air from the lower side of the air flow that does not diffuse at a stretch, and the static pressure is the same as the atmospheric pressure. The Therefore, the air flow disturbance near the outlet 5 is small, and the pressure loss A Pd2 associated therewith is small.
[0077] 更に、送風経路 6の前方案内部 6aにより徐々に流路面積を拡大し、その後傾斜面 6b5及び横ルーバ 113によって徐々に流路面積を拡大している。このため、気流は 前方案内部 6a通過後も傾斜面 6b5に滑らかに沿いながら、徐々に流域面積を拡大 しながら流通する。  [0077] Further, the flow path area is gradually enlarged by the front guide portion 6a of the blower path 6, and then the flow path area is gradually enlarged by the inclined surface 6b5 and the lateral louver 113. For this reason, the airflow flows along the inclined surface 6b5 smoothly after passing through the front guide portion 6a while gradually expanding the basin area.
[0078] この時、横ルーバ 111、 112、 113を前述の図 5に示すように配置しているため、吹 出口 5から送出された気流の最も下側の横ルーバ 113下方を流通する気流の流路 が徐々に拡大される。次に、吹出口 5から送出された気流の横ルーバ 112、 113間を 流通する気流の流路が徐々に拡大される。次に、吹出口 5から送出された気流の横 ルーバ 111、 112間を流通する気流の流路が徐々に拡大される。最後に、吹出口 5 から送出された気流の最も上側を流通する横ルーバ 111上方の気流の流路が徐々 に拡大される。従って、気流は下側力 順次徐々に滑らかに流速が低下する。  [0078] At this time, since the horizontal louvers 111, 112, 113 are arranged as shown in FIG. 5 described above, the flow of the airflow flowing below the lowermost horizontal louver 113 of the airflow sent from the outlet 5 is reduced. The flow path is gradually enlarged. Next, the flow path of the airflow flowing between the horizontal louvers 112 and 113 of the airflow sent out from the outlet 5 is gradually expanded. Next, the flow path of the airflow flowing between the horizontal louvers 111 and 112 of the airflow sent from the blowout port 5 is gradually expanded. Finally, the flow path of the airflow above the horizontal louver 111 that circulates on the uppermost side of the airflow sent from the outlet 5 is gradually expanded. Therefore, the air flow gradually decreases smoothly and gradually with the lower force.
[0079] 気流の流速が滑らかに低下すると、流体力学の分野で知られるベルヌィの式により 気流の静圧が上昇する。即ち、気流の流速 (運動エネルギー)が静圧 (位置エネルギ 一)に変換される。従って、吹出口 5から送出された気流の運動エネルギーが周囲の 空気に奪われたり気流を攪乱したりする前にその一部を静圧に変換して静圧上昇 Δ P2が得られる。  [0079] When the flow velocity of the airflow decreases smoothly, the static pressure of the airflow increases according to Bernoulli's equation known in the field of hydrodynamics. That is, the flow velocity (kinetic energy) of the airflow is converted to static pressure (positional energy 1). Accordingly, before the kinetic energy of the air flow sent out from the outlet 5 is taken away by the surrounding air or the air flow is disturbed, a part of it is converted to static pressure to obtain a static pressure increase ΔP2.
[0080] これにより、クロスフローファン 7は上記圧力損失による静圧低下分の合計(A Pa+  [0080] Thereby, the cross flow fan 7 is the sum of the static pressure drop due to the pressure loss (A Pa +
A Pb+ A Pc+ A Pd2)から静圧上昇 Δ Ρ2を減じた分を一気に上昇させる必要があ る。このため、クロスフローファン 7による静圧上昇 Δ Ρ1は A Pa+ A Pb+ A Pc+ Δ Ρ d2— Δ Ρ2となる。  A Pb + A Pc + A Pd2) must be increased at once by subtracting the static pressure increase Δ Ρ2. For this reason, the static pressure increase Δ Ρ1 by the cross flow fan 7 becomes A Pa + A Pb + A Pc + ΔΡd2—ΔΡ2.
[0081] 従って、比較例(図 8、図 9参照)の場合のクロスフローファン 7に必要な静圧上昇 Δ POに比べて、必要な静圧上昇 Δ Ρ1は Δ Ρ2+ A Pdl— A Pd2だけ小さくなる。これ により、クロスフローファン 7の仕事力 A Pdl— A Pd2) X Qだけ小さくなるた め、この分だけファン駆動モータの入力(消費電力)を低減して省エネルギー化を図 ることがでさる。  Therefore, the required static pressure increase Δ Ρ1 is only Δ Ρ2 + A Pdl— A Pd2 compared to the static pressure increase Δ PO required for the cross flow fan 7 in the comparative example (see FIGS. 8 and 9) Get smaller. As a result, the work force A Pdl—A Pd2) X Q of the cross flow fan 7 is reduced, and thus the fan drive motor input (power consumption) can be reduced by this amount to save energy.
[0082] 即ち、吹出口 5近傍での圧力損失 A Pd2を小さくできるとともに、上壁 6b及び下壁 6cに沿う空気を減速して運動エネルギーを静圧に変換してその静圧上昇 Δ P2によ りクロスフローファン 7をアシストする。言い換えれば、従来は周囲の空気に奪われて いた運動エネルギーを充分回収して静圧に変換し、送風のための仕事に用いること ができる。従って、クロスフローファン 7による静圧上昇を小さくすることができ、空気 調和機の省エネルギー化を図ることができる。 That is, the pressure loss A Pd2 in the vicinity of the outlet 5 can be reduced, and the upper wall 6b and the lower wall can be reduced. The air along 6c is decelerated, the kinetic energy is converted to static pressure, and the crossflow fan 7 is assisted by the static pressure rise ΔP2. In other words, the kinetic energy previously taken away by the surrounding air can be fully recovered and converted to static pressure, which can be used for work for blowing air. Therefore, the increase in static pressure due to the cross flow fan 7 can be reduced, and energy saving of the air conditioner can be achieved.
[0083] 尚、前述したように、気流の下側から順次徐々に滑らかに風速を低下して静圧に変 換するため、気流の流速 (運動エネルギー)を静圧 (位置エネルギー)に変換する際 の損失が小さい。このため、流速を静圧に変換する変換効率が極めてよくなり、多く の運動エネルギーを静圧に変換することが可能となる。 [0083] As described above, the flow velocity (kinetic energy) of the airflow is converted to static pressure (potential energy) in order to gradually and smoothly reduce the wind speed from the lower side of the airflow and convert it to static pressure. The loss at the time is small. For this reason, the conversion efficiency for converting the flow velocity into static pressure is extremely improved, and it is possible to convert a large amount of kinetic energy into static pressure.
[0084] 図 12は上壁 6b及び下壁 6cの長さを可変してクロスフローファン 7のファン駆動モー タの入力(消費電力、単位: W)を調べた結果を示すコンター図である。縦軸は上壁 6 bの長さを示し、クロスフローファン 7の直径 Dで除して無次元化している。横軸は下 壁 6cの長さを示し、クロスフローファン 7の直径 Dで除して無次元化している。クロスフ ローファン 7の風量は 16m3/min—定にしている。図中、 Kl、 Κ4は前述の図 6と同じ 条件である。 FIG. 12 is a contour diagram showing the results of examining the input (power consumption, unit: W) of the fan drive motor of the cross flow fan 7 while varying the lengths of the upper wall 6b and the lower wall 6c. The vertical axis indicates the length of the upper wall 6 b and is dimensionless by dividing by the diameter D of the cross flow fan 7. The horizontal axis shows the length of the lower wall 6c, which is made dimensionless by dividing by the diameter D of the crossflow fan 7. The airflow of the crossflow fan 7 is 16m 3 / min—constant. In the figure, Kl and Κ4 are the same conditions as in Figure 6 above.
[0085] 尚、上壁 6b及び下壁 6cの長さがそれぞれ 0. 5D未満、 1. 5D未満の場合は長さが 極端に短ぐクロスフローファン 7として成立しないため、計測を省いている。また、同 図の計測点は有限であるため、各計測値の補間 ·予測を用いてコンター図を完成さ せている。  [0085] Note that when the length of the upper wall 6b and the lower wall 6c is less than 0.5D and less than 1.5D, respectively, the measurement is omitted because the length is not an extremely short cross flow fan 7. . In addition, since the measurement points in the figure are finite, the contour diagram is completed using interpolation and prediction of each measurement value.
[0086] 同図から明らかなように、上壁 6bの長さや下壁 6cの長さを長くするとクロスフローフ アン 7の消費電力を小さくすることができる。また、上壁 6bの長さと下壁 6cの長さの和 が 3. 5Dとなる線 L1近傍で急激に消費電力の値が変化する。従って、上壁 6bの長さ と下壁 6cの長さの和を 3. 5D以上にすると、消費電力を著しく減少させることができる 。これにより、気流の速度が充分低速になるまで気流の運動エネルギーが静圧に変 換され続け、気流の運動エネルギーを充分静圧に変換して回収することができる。  [0086] As is clear from the figure, the power consumption of the cross flow fan 7 can be reduced by increasing the length of the upper wall 6b and the length of the lower wall 6c. In addition, the power consumption value changes abruptly in the vicinity of the line L1 where the sum of the length of the upper wall 6b and the length of the lower wall 6c is 3.5D. Therefore, if the sum of the length of the upper wall 6b and the length of the lower wall 6c is 3.5D or more, power consumption can be significantly reduced. As a result, the kinetic energy of the airflow continues to be converted to static pressure until the velocity of the airflow becomes sufficiently low, and the kinetic energy of the airflow can be sufficiently converted to static pressure and recovered.
[0087] 図 13は上壁 6b及び下壁 6cの長さを可変して天井面に沿った気流の到達距離 (単 位: m)を調べた結果を示すコンター図である。到達距離は 30秒間の平均風速が 0. 05mZsとなる位置までの距離としている。図 12と同様に、縦軸は上壁 6bの長さを示 し、クロスフローファン 7の直径 Dで除して無次元化している。横軸は下壁 6cの長さを 示し、クロスフローファン 7の直径 Dで除して無次元化している。クロスフローファン 7 の風量は 16m3/min—定にしている。図中、 Kl、 Κ4は前述の図 6と同じ条件である FIG. 13 is a contour diagram showing the results of examining the reach distance (unit: m) of the airflow along the ceiling surface while varying the lengths of the upper wall 6b and the lower wall 6c. The reach is the distance to the position where the average wind speed over 30 seconds is 0.05 mZs. As in Fig. 12, the vertical axis shows the length of the upper wall 6b. However, it is made dimensionless by dividing by the diameter D of the crossflow fan 7. The horizontal axis shows the length of the lower wall 6c, which is made dimensionless by dividing by the diameter D of the crossflow fan 7. The airflow of the cross flow fan 7 is 16m 3 / min—constant. In the figure, Kl and Κ4 are the same conditions as in Figure 6 above.
[0088] また、上壁 6b及び下壁 6cの長さがそれぞれ 0. 5D未満、 1. 5D未満の場合は長さ が極端に短ぐクロスフローファン 7として成立しないため、計測を省いている。また、 同図の計測点は有限であるため、各計測値の補間 ·予測を用いてコンター図を完成 させている。 [0088] In addition, when the length of the upper wall 6b and the lower wall 6c is less than 0.5D and less than 1.5D, respectively, the length is extremely short and the cross flow fan 7 is not formed, so measurement is omitted. . Also, since the measurement points in the figure are finite, the contour diagram is completed using interpolation and prediction of each measurement value.
[0089] 同図から明らかなように、到達距離は下壁 6cの長さに対して依存度が小さぐ上壁 6bの長さにより大きく変化する。即ち、到達距離を延長させるには、気流の上方向へ の運動エネルギーの散逸を防止することが効果的であり、上壁 6bの長さに大きく影 響を受ける。  [0089] As is apparent from the figure, the reach distance varies greatly depending on the length of the upper wall 6b, which is less dependent on the length of the lower wall 6c. In other words, in order to extend the reach distance, it is effective to prevent the kinetic energy from dissipating in the upward direction of the air current, which is greatly affected by the length of the upper wall 6b.
[0090] また、上壁 6bの長さが 1. 5Dとなる線 L2近傍で急激に到達距離が変化する。即ち 、吹出口 5から吹出された気流はその直後から粘性により周囲の空気の運動を誘起 して気流の運動エネルギーは周囲の空気に徐々に奪われる。し力し、上壁 6bの長さ を 1. 5D以上にすると上壁 6bが充分な長さを有するため、気流の上方向の空気の運 動が急激に低減される。これにより、その分の運動エネルギーが損なわれず、遠くま で気流は到達する。つまり、充分に運動エネルギーを回収された後の気流において も、上壁 6bの長さを 1. 5D以上にすると到達距離大きく確保することができる。  [0090] In addition, the reach distance rapidly changes in the vicinity of the line L2 where the length of the upper wall 6b is 1.5D. That is, the airflow blown out from the outlet 5 immediately induces the movement of the surrounding air due to viscosity, and the kinetic energy of the airflow is gradually taken away by the surrounding air. However, if the length of the upper wall 6b is set to 1.5D or more, the upper wall 6b has a sufficient length, so that the air movement in the upward direction of the airflow is drastically reduced. As a result, the kinetic energy is not lost and the airflow reaches far. In other words, even in the airflow after sufficient kinetic energy has been recovered, a large reachable distance can be secured by making the length of the upper wall 6b 1.5D or more.
[0091] クロスフローファン 7から吹出される気流が送風経路 6内を流通すると、吹出口 5近 傍で下部(下壁 6c近傍)が上部(上壁 6b近傍)よりも低速になる。即ち、吹出口 5近傍 では送風経路 6の上部を流通する気流は比較的高密度の運動エネルギーを持ち、 送風経路 6の下部を流通する気流は比較的低密度の運動エネルギーを持つ。この 現象は、通常のクロスフローファンに共通の特性である。  [0091] When the airflow blown out from the cross flow fan 7 flows through the air flow path 6, the lower part (near the lower wall 6c) becomes slower than the upper part (near the upper wall 6b) near the outlet 5. That is, in the vicinity of the air outlet 5, the airflow flowing through the upper part of the blower path 6 has a relatively high density of kinetic energy, and the airflow flowing through the lower part of the blower path 6 has a relatively low density of kinetic energy. This phenomenon is a common characteristic of ordinary crossflow fans.
[0092] 不均一なエネルギー密度を持つ気流から同時に運動エネルギーを回収すると、比 較的高密度の運動エネルギーをもつ流速の速い気流からの運動エネルギー回収ば 力りが進む。これにより、比較的低密度の運動エネルギーをもつ流速の遅い気流から 充分な運動エネルギーを回収することが困難となる。 [0093] 即ち、気流の流路を徐々に拡大して気流の風速を低下させて静圧に変換して!/、る ため、不均一な風速分布を持つ流れの流路を拡大すると、風速の速い気流が先に 通路を通過して大きく減速される。これにより、風速の遅い気流は減速されにくくなる 。その結果、気流全体からの運動エネルギー回収効率が低下する。このため、比較 的高密度の運動エネルギーをもつ流速の速 、気流と、比較的低密度の運動エネル ギーをもつ流速の遅い気流とを分けて別々に運動エネルギーを回収するとよい。こ れにより、気流全体力 効率よく運動エネルギー回収することができる。 [0092] When kinetic energy is simultaneously recovered from an airflow having a non-uniform energy density, the force is increased if the kinetic energy is recovered from an airflow having a relatively high density and a high flow velocity. This makes it difficult to recover sufficient kinetic energy from a low-velocity airflow with a relatively low density of kinetic energy. [0093] That is, gradually increase the flow path of the airflow to reduce the wind speed of the airflow and convert it to static pressure! Therefore, if the flow path with a non-uniform wind speed distribution is expanded, the air stream with a high wind speed passes through the passage first and is greatly decelerated. This makes it difficult for the slow airflow to be decelerated. As a result, the kinetic energy recovery efficiency from the entire airflow is reduced. For this reason, it is better to collect the kinetic energy separately by dividing the flow velocity and airflow with relatively high kinetic energy and the low velocity airflow with relatively low density kinetic energy. This makes it possible to efficiently recover the kinetic energy of the entire airflow.
[0094] また、比較的低密度の運動エネルギーをもつ流速の遅い気流は流通するに従って 壁面抵抗その他で徐々に運動エネルギーを失い、益々エネルギー密度が低くなつ ていく。このため、なるべく早い段階で運動エネルギーを回収する必要がある。比較 的低密度の運動エネルギーをもつ流速の遅 、気流は持って 、る運動エネルギーが 少ないため、比較的短い距離で運動エネルギーを充分回収できる。これに対して、 比較的高密度の運動エネルギーをもつ流速の速 、気流は持って 、る運動エネルギ 一も多いため、充分な運動エネルギーを回収するには比較的長い距離を必要とする  [0094] Further, as the air flow having a relatively low density of kinetic energy and having a low flow velocity flows, the kinetic energy is gradually lost due to wall resistance and the like, and the energy density gradually decreases. For this reason, it is necessary to collect kinetic energy as early as possible. Since the kinetic energy is relatively low, the kinetic energy is relatively low, and the kinetic energy can be sufficiently recovered at a relatively short distance. On the other hand, since the velocity of the flow velocity with relatively high density kinetic energy and the air current has much kinetic energy, a relatively long distance is required to recover sufficient kinetic energy.
[0095] このため、送風経路 6を上下方向に複数の流路に分割して下部の流路は比較的短 くてよぐ上部に行くほど流路を順次長くするとよい。これにより、クロスフローファン 7 特有の不均一なエネルギー密度を持つ気流力 運動エネルギーを効率よく回収す ることができる。従って、本実施形態では、空気調和機 1の動作時に横ルーバ 111、 112、 113により送風経路 6を上下に 4つに分割している。 For this reason, it is preferable that the air flow path 6 is divided into a plurality of flow paths in the vertical direction, and the flow paths are made longer in order as the lower flow paths are relatively short and go upward. As a result, the aerodynamic kinetic energy having the non-uniform energy density unique to the cross flow fan 7 can be efficiently recovered. Therefore, in the present embodiment, the air passage 1 is divided into four vertically by the horizontal louvers 111, 112, 113 during the operation of the air conditioner 1.
[0096] 即ち、傾斜部 6b5と最上段の横ルーバ 111とにより形成された最上段の流路と、最 上段の横ルーバ 111と中段の横ルーバ 112とにより形成された 2段目の流路と、中段 の横ルーバ 112と最下段の横ルーバ 113とにより形成された 3段目の流路と、最下段 の横ルーバ 113と下壁 6cとにより形成された最下段の流路との 4つの流路に送風経 路が分割される。  That is, the uppermost flow path formed by the inclined portion 6b5 and the uppermost horizontal louver 111, and the second flow path formed by the uppermost horizontal louver 111 and the middle horizontal louver 112. And a third-stage flow path formed by the middle horizontal louver 112 and the lowermost horizontal louver 113, and a lowermost flow path formed by the lowermost horizontal louver 113 and the lower wall 6c. The air flow path is divided into two flow paths.
[0097] そして、前述したように、前方上方から、上壁 6bの終端 6b6、横ルーバ 111の前端 、横ルーバ 112の前端、横ルーバ 113の前端、下壁 6cの終端 6c4の順に配置される 。これにより、分割された各流路を上方に行くほど順次長くすることができる。 [0098] 尚、各流路の流路面積の拡大率を表わす角 θ 1〜 Θ 4 (図 5参照)を 10°〜15° の 範囲にするとより望ましい。即ち、角 0 1〜 0 4を 15° よりも大きくすると、各流路を流 通する気流が壁面から剥離するかまたは急激に減速し、運動エネルギーを静圧に変 換する際にロスが生ずる可能性が高くなる。角 0 1〜 0 4を 10° よりも小さくすると、 いたずらに経路が延長され、その分、気流と壁面との摩擦による運動エネルギーの口 スが大きくなる。 Then, as described above, the front end 6b6 of the upper wall 6b, the front end of the horizontal louver 111, the front end of the horizontal louver 112, the front end of the horizontal louver 113, and the end 6c4 of the lower wall 6c are arranged in this order from the front upper side. . Thereby, each divided flow path can be sequentially lengthened as it goes upward. [0098] It should be noted that it is more desirable that the angles θ 1 to Θ 4 (see FIG. 5) representing the enlargement ratio of the channel area of each channel be in the range of 10 ° to 15 °. In other words, if the angles 0 1 to 04 are larger than 15 °, the airflow flowing through each flow path is separated from the wall surface or rapidly decelerated, and loss occurs when the kinetic energy is converted to static pressure. The possibility increases. If the angles 0 1 to 0 4 are smaller than 10 °, the path is unnecessarily extended, and the amount of kinetic energy due to the friction between the airflow and the wall increases accordingly.
[0099] また、気流の運動エネルギーの大きさは流速の 2乗に比例する。クロスフローファン 7を用いた場合、送風経路 6の上部(上壁 6b近傍)を流通する気流の風速は送風経 路 6の下部(下壁 6c近傍)を流通する気流の風速の数倍になる。このため、送風経路 6の上部(上壁 6b近傍)を流通する気流の持つ運動エネルギーは送風経路 6の下部 (下壁 6c近傍)を流通する気流の持つ運動エネルギーの数十倍にもなる場合がある 。送風経路 6の上部では回収すべき運動エネルギーの量が非常に大きいため、充分 長い流路を必要とする。  [0099] The magnitude of the kinetic energy of the airflow is proportional to the square of the flow velocity. When the cross flow fan 7 is used, the wind speed of the airflow that flows through the upper part of the airflow path 6 (near the upper wall 6b) is several times the wind speed of the airflow that flows through the lower part of the airflow path 6 (near the lower wall 6c). . For this reason, the kinetic energy of the airflow that flows through the upper part of the ventilation path 6 (near the upper wall 6b) is several tens of times the kinetic energy of the airflow that flows through the lower part of the ventilation path 6 (near the lower wall 6c) There is. Since the amount of kinetic energy to be recovered is very large in the upper part of the ventilation path 6, a sufficiently long flow path is required.
[0100] 一方、送風経路 6の前方案内部 6aの流路面積の拡大率を表わす角 oc (図 2参照) は前述したように 20° 程度が望ましい。角 αがそれ以上になると前方案内部 6aを流 通する気流が壁面から剥離するかまたは急激に減速し、エネルギーロスが生ずる。こ の時、横ルーバにより分割してそれぞれ 10°〜15° の範囲で流路面積が拡大される 流路を形成すると、 2分割程度しかできない。その結果、上記の通り数十倍もの開き のあるエネルギー状態の気流から効果的に運動エネルギーを回収するのは極めて 難しい。  On the other hand, the angle oc (see FIG. 2) representing the enlargement ratio of the flow path area of the front guide portion 6a of the air blowing path 6 is preferably about 20 ° as described above. When the angle α is larger than that, the airflow passing through the front guide 6a is separated from the wall surface or decelerated abruptly, resulting in energy loss. At this time, if the channel is divided by the horizontal louver and the channel area is expanded in the range of 10 ° to 15 °, it can only be divided into two. As a result, it is extremely difficult to effectively recover kinetic energy from an air current that is several tens of times wide as described above.
[0101] このため、中段の横ルーバ 112は屈曲部 6b4に対向して後端が屈曲部 6b4よりも 後方に配置され、前方案内部 6aの上面 6b3に略平行に配置される。これにより、前 方案内部 6aを流通する気流の流路を上下に 2分割する。そして、横ルーバ 112の下 方の流路を横ルーバ 113により 0 3、 0 4が10°〜15° の範囲で更に 2分割すること ができる。  [0101] For this reason, the middle horizontal louver 112 faces the bent portion 6b4, the rear end thereof is arranged behind the bent portion 6b4, and is arranged substantially parallel to the upper surface 6b3 of the front guide portion 6a. As a result, the flow path of the airflow flowing through the front guide portion 6a is divided into two vertically. Then, the lower flow path of the horizontal louver 112 can be further divided into two by the horizontal louver 113 so that 0 3 and 04 are in the range of 10 ° to 15 °.
[0102] 更に、横ルーバ 112に対向する屈曲部 6b4で上壁 6bが上方に屈曲する。これによ り、横ルーバ 112の上方を流通する気流の流路が拡大される。そして、横ルーバ 112 と傾斜面 6b5により形成された徐々に拡大する流路が最上段の横ルーバ 111により 分割される。最上段の横ルーバ 111は傾斜面 6b5に対向して後端が屈曲部 6b4より も前方に配置されるため、横ルーバ 112の上方を横ルーバ 111により 0 1、 0 2が 10 °〜15° の範囲で 2分割することができる。尚、前方案内部 6aの下面 6c3を下方に 屈曲してこれと同じように拡大させるのは、風速が遅 、のであまり効率的ではな 、。 [0102] Furthermore, the upper wall 6b is bent upward at the bent portion 6b4 facing the lateral louver 112. As a result, the flow path of the airflow flowing above the lateral louver 112 is expanded. The gradually expanding flow path formed by the horizontal louver 112 and the inclined surface 6b5 is formed by the uppermost horizontal louver 111. Divided. Since the uppermost horizontal louver 111 faces the inclined surface 6b5 and the rear end is arranged in front of the bent portion 6b4, the horizontal louver 111 is positioned above the horizontal louver 112 by 0 °, 0 2 from 10 ° to 15 °. It can be divided into two in the range of. Note that it is not very efficient to bend the lower surface 6c3 of the front guide portion 6a downward and expand it in the same way because the wind speed is slow.
[0103] 尚、最下段の横ルーバ 113の後端と前方案内部 6aの下面 6c3とが、気流に垂直な 方向で下壁 6cの終端 6c4に近 、位置で重なるように配置するとより望ま 、。これに より、横ルーバ 113の下方の流路を流通する気流力もより効率よく運動エネルギーを 回収することができる。 [0103] It should be noted that it is more desirable that the rear end of the lowermost horizontal louver 113 and the lower surface 6c3 of the front guide portion 6a are arranged so as to be close to the terminal end 6c4 of the lower wall 6c in the direction perpendicular to the airflow, . As a result, the kinetic energy can be recovered more efficiently by the aerodynamic force flowing through the flow path below the lateral louver 113.
[0104] 尚、横ルーバ 111、 112、 113は回動軸(不図示)の回りに回動自在に構成されて いるため、他の配置にして風向を変更することができる。  [0104] Since the horizontal louvers 111, 112, and 113 are configured to be rotatable around a rotation axis (not shown), the wind direction can be changed in other arrangements.
[0105] 本実施形態によると、クロスフローファン 7よりも下流側の送風経路 6の上壁 6bの長 さと下壁 6cの長さの和をクロスフローファン 7の直径 Dの 3. 5倍以上にしたので、空 気調和機の運転時に空気が送風経路 6の上壁 6b及び下壁 6cに沿って長い距離を 滑らかに流通する。これにより、吹出口 5近傍での気流の攪乱が少なぐそれに伴う 圧力損失 A Pd2が小さくなる。  [0105] According to the present embodiment, the sum of the length of the upper wall 6b and the length of the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 is 3.5 times the diameter D of the cross flow fan 7 or more. Therefore, during the operation of the air conditioner, air smoothly flows over a long distance along the upper wall 6b and the lower wall 6c of the air blowing path 6. As a result, the air flow disturbance near the outlet 5 is reduced and the pressure loss A Pd2 is reduced accordingly.
[0106] 力!]えて、上壁 6b及び下壁 6cに沿う空気が充分低速になるまで減速して運動エネル ギ一が静圧に変換され、その静圧上昇 Δ P2によりクロスフローファン 7をアシストする 。言い換えれば、従来は周囲の空気に奪われていた運動エネルギーを充分回収し て静圧に変換され、送風のための仕事に用いることができる。従って、クロスフローフ アン 7による静圧上昇を小さくすることができ、空気調和機の省エネルギー化を図るこ とがでさる。  [0106] Power! Then, the air along the upper wall 6b and the lower wall 6c is decelerated until the speed becomes sufficiently low, and the kinetic energy is converted into static pressure, and the cross flow fan 7 is assisted by the static pressure increase ΔP2. In other words, the kinetic energy that was previously taken away by the surrounding air is fully recovered and converted to static pressure, which can be used for work for blowing air. Therefore, the increase in static pressure due to the crossflow fan 7 can be reduced, and energy saving of the air conditioner can be achieved.
[0107] また、運動エネルギーを回収して流速の低下した気流の到達距離を長くすることが できる。これにより、吹出口 5から送出された空気が部屋の天井に到達し、空気調和 機に対向する壁面、床面及び空気調和機側の壁面を順次伝う。従って、部屋の隅々 にまで調和空気の気流が行き届いて気流が部屋全体を大きく攪拌する。従って、室 内の上方の一部を除く居住領域全体の温度分布を均一化して直接風もほとんどない 快適空間を得ることができる。  [0107] Further, the kinetic energy can be recovered to increase the reach distance of the airflow with a reduced flow velocity. As a result, the air sent out from the outlet 5 reaches the ceiling of the room and sequentially travels through the wall surface facing the air conditioner, the floor surface, and the wall surface on the air conditioner side. Therefore, the conditioned air stream reaches every corner of the room, and the air stream greatly stirs the entire room. Therefore, it is possible to obtain a comfortable space with almost no direct wind by equalizing the temperature distribution of the entire living area except a part of the upper part of the room.
[0108] 尚、クロスフローファン 7は一般に流路の圧力損失が高くなるとサージングを引き起 こす。これにより、所望の風量が得られなくなる場合や騒音が大幅に増大する場合が 生じる。本実施形態のように室内熱交換器 9が複数段かつ複数列の冷媒管を有して 屈曲して構成されている場合には、非常に高い圧力損失が発生する。このため、クロ スフローファン 7の回転数を相当大きくしてサージング対策する必要がある。これによ り、クロスフローファン 7の騒音が大きくなり、省エネルギー性が悪くなる。 [0108] Note that the cross flow fan 7 generally causes surging when the pressure loss in the flow path increases. Rub. As a result, the desired air volume cannot be obtained or the noise may increase significantly. When the indoor heat exchanger 9 is bent and configured with a plurality of stages and a plurality of rows of refrigerant tubes as in the present embodiment, a very high pressure loss occurs. For this reason, it is necessary to take a countermeasure against surging by increasing the number of revolutions of the cross flow fan 7 considerably. As a result, the noise of the cross flow fan 7 increases and the energy saving performance deteriorates.
[0109] このため、気流の運動エネルギーを静圧に変換して、その静圧上昇によりクロスフ口 一ファン 7をアシストすることにより、クロスフローファン 7がサージングを起こしにくく騒 音も比較的小さくすることができる。特に、奥行方向に冷媒管が 4列以上並設される 場合は圧力損失が非常に大きくなるため、本実施形態によってより大きな効果を奏 することができる。  [0109] Therefore, by converting the kinetic energy of the airflow into static pressure and assisting the cross fan 7 with the increase in static pressure, the cross flow fan 7 is less prone to surging and the noise is relatively small. be able to. In particular, when four or more rows of refrigerant pipes are juxtaposed in the depth direction, the pressure loss becomes very large, and this embodiment can provide a greater effect.
[0110] <第 2実施形態 >  [0110] <Second Embodiment>
次に、図 14は第 2実施形態の空気調和機の室内機を示す側面断面図である。説 明の便宜上、前述の図 1〜図 13に示す第 1実施形態と同様の部分には同一の符号 を付している。本実施形態はフロントパネル 3が回動軸 22により下端で枢支される。 また、フロントパネル 3は前面に配された回動軸 23で折曲可能になっている。その他 の部分は第 1実施形態と同様である。  Next, FIG. 14 is a side sectional view showing the indoor unit of the air conditioner of the second embodiment. For convenience of explanation, the same parts as those in the first embodiment shown in FIGS. 1 to 13 are denoted by the same reference numerals. In the present embodiment, the front panel 3 is pivotally supported by the rotating shaft 22 at the lower end. Further, the front panel 3 can be bent by a rotating shaft 23 arranged on the front surface. Other parts are the same as in the first embodiment.
[0111] 空気調和機の停止時には図 14に示すようにフロントパネル 3は上端が筐体上部に 接するように配される。また、第 1実施形態と同様に横ルーバ 111、 112により吹出口 5が遮蔽される。  [0111] When the air conditioner is stopped, the front panel 3 is arranged so that the upper end is in contact with the upper part of the casing, as shown in FIG. Further, the outlet 5 is shielded by the horizontal louvers 111 and 112 as in the first embodiment.
[0112] 空気調和機の駆動時には図 15に示すように、フロントパネル 3が回動軸 22、 23で 回動し、回動軸 22、 23間のフロントパネル 3により送風経路 6の傾斜面 6b5が形成さ れる。これにより、クロスフローファン 7の直径を Dとしてクロスフローファン 7よりも下流 側の送風経路 6の上壁 6bの長さが 1. 5D以上に形成される。また、クロスフローファ ン 7よりも下流側の送風経路 6の上壁 6bの長さと下壁 6cの長さの和が 3. 5D以上に 形成される。従って、第 1実施形態と同様の効果を得ることができる。  When the air conditioner is driven, as shown in FIG. 15, the front panel 3 is rotated by the rotating shafts 22 and 23, and the front panel 3 between the rotating shafts 22 and 23 is inclined surface 6b5 of the air flow path 6 Is formed. Thus, the length of the upper wall 6b of the air flow path 6 on the downstream side of the cross flow fan 7 is formed to be 1.5D or more, where D is the diameter of the cross flow fan 7. Further, the sum of the length of the upper wall 6b and the length of the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 is formed to be 3.5D or more. Therefore, the same effect as the first embodiment can be obtained.
[0113] <第 3実施形態 >  [0113] <Third Embodiment>
次に、図 16は第 3実施形態の空気調和機の室内機を示す側面断面図である。説 明の便宜上、前述の図 1〜図 13に示す第 1実施形態と同様の部分には同一の符号 を付している。本実施形態はフロントパネル 3の下部が開口し、該開口を塞ぐ可動パ ネル 21が回動軸 22により下端で枢支される。その他の部分は第 1実施形態と同様で ある。 Next, FIG. 16 is a side sectional view showing the indoor unit of the air conditioner of the third embodiment. For convenience of explanation, the same reference numerals are used for the same parts as those in the first embodiment shown in FIGS. Is attached. In the present embodiment, the lower portion of the front panel 3 is opened, and a movable panel 21 that closes the opening is pivotally supported at the lower end by a rotating shaft 22. Other parts are the same as in the first embodiment.
[0114] 空気調和機の停止時には図 16に示すように可動パネル 21はフロントパネル 3の下 部を塞ぐように配される。また、第 1実施形態と同様に横ルーバ 111、 112により吹出 口 5が遮蔽される。  [0114] When the air conditioner is stopped, the movable panel 21 is arranged so as to block the lower part of the front panel 3 as shown in FIG. Further, the outlet 5 is shielded by the horizontal louvers 111 and 112 as in the first embodiment.
[0115] 空気調和機の駆動時には図 17に示すように、可動パネル 21が回動軸 22で回動し 、可動パネル 21により送風経路 6の傾斜面 6b5が形成される。これにより、クロスフ口 一ファン 7の直径を Dとしてクロスフローファン 7よりも下流側の送風経路 6の上壁 6b の長さが 1. 5D以上に形成される。また、クロスフローファン 7よりも下流側の送風経 路 6の上壁 6bの長さと下壁 6cの長さの和が 3. 5D以上に形成される。従って、第 1実 施形態と同様の効果を得ることができる。  When the air conditioner is driven, as shown in FIG. 17, the movable panel 21 is rotated by the rotation shaft 22, and the inclined surface 6 b 5 of the blowing path 6 is formed by the movable panel 21. As a result, the length of the upper wall 6b of the blower passage 6 on the downstream side of the cross flow fan 7 is formed to be 1.5D or more, where D is the diameter of the single fan 7 of the cross fan. Further, the sum of the length of the upper wall 6b and the length of the lower wall 6c of the air flow path 6 on the downstream side of the cross flow fan 7 is formed to be 3.5D or more. Therefore, the same effect as that of the first embodiment can be obtained.
[0116] <第 4実施形態 >  [0116] <Fourth embodiment>
次に、図 18は第 4実施形態の空気調和機の室内機を示す側面断面図である。前 述の図 1〜図 13に示す第 1実施形態と同様の部分には同一の符号を付している。本 実施形態は、前述のように第 1実施形態の横ルーバ 113を省いている。送風経路 6 の上壁 6b及び下壁 6cの長さを含むその他の部分は第 1実施形態と同様である。  Next, FIG. 18 is a side sectional view showing the indoor unit of the air conditioner of the fourth embodiment. The same parts as those in the first embodiment shown in FIGS. 1 to 13 are given the same reference numerals. In the present embodiment, the lateral louver 113 of the first embodiment is omitted as described above. Other parts including the lengths of the upper wall 6b and the lower wall 6c of the air blowing path 6 are the same as those in the first embodiment.
[0117] 本実施形態の空気調和機によると、第 1実施形態の空気調和機に比べて最下段の 横ルーバ 113が省かれるため送風経路 6の下方を流通する気流の運動エネルギー の回収の効率がやや低下する。しかしながら、前述の図 6の K2に示すように、図 7の 比較例 K4よりも消費電力を小さくすることができ、従来よりも省エネルギー化を図るこ とがでさる。  [0117] According to the air conditioner of the present embodiment, the lowermost horizontal louver 113 is omitted as compared with the air conditioner of the first embodiment, so that the efficiency of the recovery of the kinetic energy of the airflow flowing under the air flow path 6 is eliminated. Slightly decreases. However, as indicated by K2 in FIG. 6 described above, the power consumption can be made smaller than in Comparative Example K4 in FIG. 7, and energy saving can be achieved compared to the conventional example.
[0118] <第 5実施形態 >  [0118] <Fifth Embodiment>
次に、図 19は第 5実施形態の空気調和機の室内機を示す側面断面図である。前 述の図 1〜図 13に示す第 1実施形態と同様の部分には同一の符号を付している。本 実施形態は、前述のように第 1実施形態の横ルーバ 113を省くとともに、横ルーバ 11 1、 112の長さ及び配置を変更している。送風経路 6の上壁 6b及び下壁 6cの長さを 含むその他の部分は第 1の実施形態と同様である。 [0119] 上下に配される横ルーバ 111、 112は屈曲部 6b4に対向し、後端が屈曲部 6b4より も後方に配置される。横ルーバ 111、 112の前端は屈曲部 6b4よりも前方で前後方 向で略同じ位置に配される。また、横ルーバ 111、 112により送風経路 6の前方案内 部 6aを略等間隔に分割した流路が形成される。 Next, FIG. 19 is a side sectional view showing the indoor unit of the air conditioner of the fifth embodiment. The same parts as those in the first embodiment shown in FIGS. 1 to 13 are given the same reference numerals. In the present embodiment, as described above, the lateral louver 113 of the first embodiment is omitted, and the length and arrangement of the lateral louvers 111, 112 are changed. Other parts including the lengths of the upper wall 6b and the lower wall 6c of the air blowing path 6 are the same as those in the first embodiment. [0119] The horizontal louvers 111, 112 arranged above and below are opposed to the bent portion 6b4, and the rear ends thereof are arranged behind the bent portion 6b4. The front ends of the horizontal louvers 111, 112 are arranged at substantially the same position in front of the bent portion 6b4 and in the front-rear direction. Further, the lateral louvers 111 and 112 form a flow path in which the front guide portion 6a of the air blowing path 6 is divided at substantially equal intervals.
[0120] 本実施形態の空気調和機によると、第 1、第 2実施形態の空気調和機に比べて送 風経路 6内を流通する気流の運動エネルギーの回収の効率が低下する。し力しなが ら、前述の図 6の K3に示すように、図 7の比較例 K4よりも消費電力を小さくすること ができ、従来よりも省エネルギー化を図ることができる。  [0120] According to the air conditioner of the present embodiment, the efficiency of recovering the kinetic energy of the airflow flowing in the air supply path 6 is lower than that of the air conditioner of the first and second embodiments. However, as indicated by K3 in FIG. 6 described above, the power consumption can be made smaller than in the comparative example K4 in FIG. 7, and energy saving can be achieved compared to the conventional example.
[0121] 本発明に係る空気調和機を第 1〜第 5実施形態により説明したが、本発明は上記 実施形態に限定される訳ではなぐ本発明の趣旨を逸脱しない範囲で適宜の変更を 加えて実施することができる。  [0121] Although the air conditioner according to the present invention has been described with reference to the first to fifth embodiments, the present invention is not limited to the above-described embodiments, and appropriate modifications are made without departing from the spirit of the present invention. Can be implemented.
産業上の利用可能性  Industrial applicability
[0122] 本発明によると、室内の空気を取り入れて調和する空気調和機に利用することがで きる。 [0122] According to the present invention, it can be used for an air conditioner that takes in indoor air and harmonizes it.

Claims

請求の範囲 The scope of the claims
[1] 室内の空気を室内機の筐体内に取り入れる吸込口と、筐体下部に設けられる吹出 口と、前記吸込口と前記吹出口との間を連通させる送風経路と、冷媒管を複数段か つ複数列に並設するとともに前記筐体内面に沿って屈曲して前記送風経路内で前 記吸込口に対向配置される室内熱交換器と、前記送風経路内の前記室内熱交換器 と前記吹出口との間に配されるクロスフローファンとを備えた空気調和機において、 前記送風経路は前方下方に空気を案内して下流へ行くほど流路面積が拡大される 前方案内部を有し、前記クロスフローファンよりも下流側の前記送風経路の上壁の長 さと下壁の長さの和を前記クロスフローファンの直径の 3. 5倍以上にしたことを特徴と する空気調和機。  [1] A suction port for taking indoor air into the housing of the indoor unit, a blow-off port provided at a lower portion of the housing, a ventilation path for communicating between the suction port and the blow-out port, and a plurality of refrigerant pipes An indoor heat exchanger that is arranged in parallel in a plurality of rows and is bent along the inner surface of the housing and disposed opposite to the suction port in the air blowing path; and the indoor heat exchanger in the air blowing path; In the air conditioner provided with a cross flow fan disposed between the air outlet and the air flow path, the air flow path has a front guide portion in which the flow path area is expanded toward the downstream by guiding the air forward and downward. An air conditioner characterized in that the sum of the length of the upper wall and the length of the lower wall of the air flow path downstream of the cross flow fan is 3.5 times or more the diameter of the cross flow fan. .
[2] 前記吹出口の風向を上下に可変する第 1風向板を備え、空気調和機の運転時に 前方上方から前記上壁の前端、第 1風向板の前端、前記下壁の前端の順に配置し たことを特徴とする請求項 1に記載の空気調和機。  [2] Provided with a first wind direction plate that varies the wind direction of the air outlet up and down, and is arranged from the front upper side to the front end of the upper wall, the front end of the first wind direction plate, and the front end of the lower wall during operation of the air conditioner The air conditioner according to claim 1, wherein the air conditioner is provided.
[3] 第 1風向板の下方に第 2風向板を設け、第 1風向板の前端を第 2風向板の前端より も前方に配置したことを特徴とする請求項 2に記載の空気調和機。  [3] The air conditioner according to claim 2, wherein a second wind direction plate is provided below the first wind direction plate, and a front end of the first wind direction plate is disposed in front of a front end of the second wind direction plate. .
[4] 前記上壁は前方下方に傾斜した前記前方案内部上面の終端力 屈曲部で屈曲し て前方上方に傾斜した傾斜面を有し、第 1風向板の後端が前記屈曲部よりも前方に 配置されるとともに、第 2風向板の後端が前記屈曲部よりも後方に配置されることを特 徴とする請求項 3に記載の空気調和機。  [4] The upper wall has a terminal force on the upper surface of the front guide portion that is inclined forward and downward, and has an inclined surface that is bent at the bent portion and inclined forward and upward, and the rear end of the first wind direction plate is more than the bent portion. 4. The air conditioner according to claim 3, wherein the air conditioner is disposed forward and a rear end of the second wind direction plate is disposed rearward of the bent portion.
[5] 前記吹出口の上下に可変する第 1、第 2風向板を備え、前記上壁は前記前方案内 部上面の終端力 屈曲部で屈曲して前方上方に傾斜した傾斜面を有し、第 1風向板 の後端が前記屈曲部よりも前方に配置されるとともに、第 1風向板よりも下方の第 2風 向板の後端が前記屈曲部よりも後方に配置されることを特徴とする請求項 1に記載の 空気調和機。  [5] Provided with first and second wind direction plates that are variable up and down the blower outlet, the upper wall has an inclined surface that is bent at a terminal force bending portion of the upper surface of the front guide portion and inclined forward and upward, The rear end of the first wind direction plate is arranged in front of the bent portion, and the rear end of the second wind direction plate below the first wind direction plate is arranged in rear of the bent portion. The air conditioner according to claim 1.
[6] 前記傾斜面と第 1風向板のなす角及び第 1、第 2風向板のなす角を 10°〜15°にし たことを特徴とする請求項 4または請求項 5に記載の空気調和機。  [6] The air conditioner according to claim 4 or 5, wherein an angle formed by the inclined surface and the first wind direction plate and an angle formed by the first and second wind direction plates are 10 ° to 15 °. Machine.
[7] 第 2風向板の下方に第 3風向板を設け、第 2、第 3風向板のなす角を 10°〜15°に したことを特徴とする請求項 6に記載の空気調和機。 7. The air conditioner according to claim 6, wherein a third wind direction plate is provided below the second wind direction plate, and an angle formed by the second and third wind direction plates is 10 ° to 15 °.
[8] 最も下方に配される風向板と前記下壁の終端の接線とのなす角を 10°〜15°にし たことを特徴とする請求項 6に記載の空気調和機。 [8] The air conditioner according to [6], wherein an angle formed by a wind direction plate disposed at a lowermost position and a tangent at the end of the lower wall is set to 10 ° to 15 °.
[9] 前記上壁の長さを前記クロスフローファンの直径の 1. 5倍以上にしたことを特徴と する請求項 1に記載の空気調和機。  [9] The air conditioner according to [1], wherein a length of the upper wall is 1.5 times or more a diameter of the cross flow fan.
[10] 室内の空気を室内機の筐体内に取り入れる吸込口と、筐体下部に設けられる吹出 口と、前記吸込口と前記吹出口との間を連通させる送風経路と、冷媒管を複数段か つ複数列に並設するとともに前記筐体内面に沿って屈曲して前記送風経路内で前 記吸込口に対向配置される室内熱交換器と、前記送風経路内の前記室内熱交換器 と前記吹出口との間に配されるクロスフローファンと、前記吹出口の風向を上下に可 変する第 1、第 2風向板とを備えた空気調和機において、前記送風経路は前記クロス フローファン力 前方下方に空気を案内して下流へ行くほど流路面積が拡大される 前方案内部を有し、前記クロスフローファンよりも下流側の前記送風経路の上壁の長 さを前記クロスフローファンの直径の 1. 5倍以上にするとともに、前記上壁は前記前 方案内部の終端力 屈曲部で屈曲して前方上方に傾斜した傾斜面を有し、第 1風向 板の後端が前記屈曲部よりも前方に配置されるとともに、第 1風向板よりも下方の第 2 風向板の後端が前記屈曲部よりも後方に配置されることを特徴とする空気調和機。  [10] A suction port for taking indoor air into the housing of the indoor unit, a blow-off port provided at a lower portion of the housing, a ventilation path communicating between the suction port and the blow-out port, and a plurality of refrigerant pipes An indoor heat exchanger that is arranged in parallel in a plurality of rows and is bent along the inner surface of the housing and disposed opposite to the suction port in the air blowing path; and the indoor heat exchanger in the air blowing path; In the air conditioner including a cross flow fan disposed between the air outlet and first and second air direction plates that change the air direction of the air outlet vertically, the air flow path is the cross flow fan. Force The air flow area is increased as the air is guided forward and downward, and the flow path area is enlarged. The cross flow fan has a front guide portion, and the length of the upper wall of the air flow path downstream of the cross flow fan 1.5 times the diameter of the upper wall and the upper wall End force of the front guide portion has an inclined surface that is bent at the bent portion and inclined forward and upward, the rear end of the first wind direction plate is disposed in front of the bent portion, and more than the first wind direction plate. An air conditioner characterized in that the rear end of the lower second wind direction plate is arranged behind the bent portion.
[11] 前記傾斜面と第 1風向板のなす角及び第 1、第 2風向板のなす角を 10°〜15°にし たことを特徴とする請求項 10に記載の空気調和機。 11. The air conditioner according to claim 10, wherein an angle formed by the inclined surface and the first wind direction plate and an angle formed by the first and second wind direction plates are 10 ° to 15 °.
[12] 第 2風向板の下方に第 3風向板を設け、第 2、第 3風向板のなす角を 10°〜15°に したことを特徴とする請求項 11に記載の空気調和機。 12. The air conditioner according to claim 11, wherein a third wind direction plate is provided below the second wind direction plate, and an angle formed by the second and third wind direction plates is 10 ° to 15 °.
[13] 最も下方に配される風向板と前記前方案内部の下壁の終端の接線とのなす角を 1[13] The angle formed by the wind direction plate arranged at the lowermost position and the tangent at the end of the lower wall of the front guide portion is 1
0°〜15°にしたことを特徴とする請求項 11に記載の空気調和機。 12. The air conditioner according to claim 11, wherein the air conditioner is set to 0 ° to 15 °.
[14] 空気調和機の運転時に前方上方から前記上壁の前端、第 1風向板の前端、第 2風 向板の前端、前記下壁の前端の順に配置したことを特徴とする請求項 10に記載の 空気調和機。 14. The air conditioner is arranged in the order of the front end of the upper wall, the front end of the first wind direction plate, the front end of the second wind direction plate, and the front end of the lower wall from the front upper side during operation of the air conditioner. The air conditioner described in 1.
[15] 室内の空気を室内機の筐体内に取り入れる吸込口と、筐体下部に設けられる吹出 口と、前記吸込口と前記吹出口との間を連通させる送風経路と、前記送風経路内で 前記吸込口に対向配置される室内熱交換器と、前記送風経路内の前記室内熱交換 器と前記吹出口との間に配されるクロスフローファンとを備え、前記クロスフローファン よりも下流側の前記送風経路の上壁の長さを前記クロスフローファンの直径の 1. 5倍 以上にしたことを特徴とする空気調和機。 [15] A suction port for taking indoor air into the housing of the indoor unit, a blow-off port provided at a lower portion of the housing, a blower path that communicates between the suction port and the blower outlet, An indoor heat exchanger disposed opposite to the suction port, and the indoor heat exchange in the air blowing path And a cross flow fan disposed between the air outlet and the outlet, and the length of the upper wall of the air flow path on the downstream side of the cross flow fan is 1.5 times the diameter of the cross flow fan or more An air conditioner characterized by that.
室内の空気を室内機の筐体内に取り入れる吸込口と、筐体下部に設けられる吹出 口と、前記吸込口と前記吹出口との間を連通させる送風経路と、前記送風経路内で 前記吸込口に対向配置される室内熱交換器と、前記送風経路内の前記室内熱交換 器と前記吹出口との間に配されるクロスフローファンとを備え、前記クロスフローファン よりも下流側の前記送風経路の上壁の長さと下壁の長さの和を前記クロスフローファ ンの直径の 3. 5倍以上にしたことを特徴とする空気調和機。  A suction port for taking indoor air into the housing of the indoor unit, a blow-off port provided at a lower portion of the housing, a blower path communicating between the suction port and the blower outlet, and the suction port in the blower path And a cross flow fan disposed between the indoor heat exchanger in the air passage and the outlet, and the air blower on the downstream side of the cross flow fan. An air conditioner characterized in that the sum of the length of the upper wall and the length of the lower wall of the path is at least 3.5 times the diameter of the cross flow fan.
PCT/JP2006/326032 2006-01-20 2006-12-27 Air conditioner WO2007083501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06843414A EP1975522B1 (en) 2006-01-20 2006-12-27 Air conditioner
CN2006800513913A CN101360954B (en) 2006-01-20 2006-12-27 Air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-011822 2006-01-20
JP2006011832A JP4014618B2 (en) 2006-01-20 2006-01-20 Air conditioner
JP2006011822A JP4014617B2 (en) 2006-01-20 2006-01-20 Air conditioner
JP2006-011832 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007083501A1 true WO2007083501A1 (en) 2007-07-26

Family

ID=38287457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326032 WO2007083501A1 (en) 2006-01-20 2006-12-27 Air conditioner

Country Status (3)

Country Link
EP (1) EP1975522B1 (en)
KR (1) KR100971855B1 (en)
WO (1) WO2007083501A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895398B2 (en) * 2017-03-01 2021-01-19 Ice Qube, Inc. Recessed-mounted air conditioning unit
WO2023005329A1 (en) * 2021-07-28 2023-02-02 青岛海尔空调器有限总公司 Wall-mounted air conditioner indoor unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788164B (en) * 2009-04-02 2012-08-22 宁波奥克斯空调有限公司 Hanging air-conditioner indoor machine
CN105757792B (en) * 2014-12-18 2019-02-19 奥克斯空调股份有限公司 Air conditioner indoor unit
CN104595975B (en) * 2015-01-05 2017-10-10 美的集团武汉制冷设备有限公司 Air conditioner with axial flow blower

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116918U (en) * 1984-12-29 1986-07-23
JP2004069127A (en) * 2002-08-05 2004-03-04 Sharp Corp Air conditioner
JP2004101128A (en) * 2002-09-12 2004-04-02 Sharp Corp Air conditioner
JP2005164068A (en) * 2003-11-28 2005-06-23 Sharp Corp Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251540A (en) * 1963-12-17 1966-05-17 Lau Blower Co Air moving device
JP3497073B2 (en) * 1998-01-19 2004-02-16 三菱電機株式会社 Once-through blower
JP2000111082A (en) * 1998-09-30 2000-04-18 Fujitsu General Ltd Air conditioner
JP4218253B2 (en) * 2001-05-10 2009-02-04 パナソニック株式会社 Cross-flow fan for air conditioner
WO2005052463A1 (en) * 2003-11-28 2005-06-09 Sharp Kabushiki Kaisha Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116918U (en) * 1984-12-29 1986-07-23
JP2004069127A (en) * 2002-08-05 2004-03-04 Sharp Corp Air conditioner
JP2004101128A (en) * 2002-09-12 2004-04-02 Sharp Corp Air conditioner
JP2005164068A (en) * 2003-11-28 2005-06-23 Sharp Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895398B2 (en) * 2017-03-01 2021-01-19 Ice Qube, Inc. Recessed-mounted air conditioning unit
WO2023005329A1 (en) * 2021-07-28 2023-02-02 青岛海尔空调器有限总公司 Wall-mounted air conditioner indoor unit

Also Published As

Publication number Publication date
EP1975522B1 (en) 2013-02-27
EP1975522A1 (en) 2008-10-01
KR20080077699A (en) 2008-08-25
EP1975522A4 (en) 2011-11-02
KR100971855B1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP4014618B2 (en) Air conditioner
JP4907176B2 (en) Air conditioner
JP4014617B2 (en) Air conditioner
JP4678327B2 (en) Air conditioner
CN110762614B (en) Indoor machine of floor air conditioner
JP4620106B2 (en) Air conditioner
CN108397820B (en) Wall-mounted air conditioner indoor unit
CN204853609U (en) Lampblack absorber
JP4708199B2 (en) Air conditioner
WO2007083501A1 (en) Air conditioner
JP4796814B2 (en) Heat exchanger and air conditioner indoor unit
JP2005164061A (en) Air conditioner
WO2005052463A1 (en) Air conditioner
JP4004458B2 (en) Air conditioner
JP2009121731A (en) Air conditioner
CN101191685B (en) Air-conditioning condensator outlet connecting pipe structure
JP5486576B2 (en) Air conditioner
CN216308160U (en) Wall-mounted air conditioner indoor unit
CN216744630U (en) Wall-mounted air conditioner indoor unit
JP6081955B2 (en) Air conditioner
CN115164280A (en) Vertical air conditioner indoor unit
JP4922817B2 (en) Air conditioner
JP5588533B2 (en) Air conditioner
WO2019123743A1 (en) Indoor unit for air conditioner
CN112197342A (en) Wall-mounted air conditioner indoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006843414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680051391.3

Country of ref document: CN

Ref document number: 1020087017514

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE