WO2007082562A2 - High dynamic range codecs - Google Patents
High dynamic range codecs Download PDFInfo
- Publication number
- WO2007082562A2 WO2007082562A2 PCT/EP2006/008741 EP2006008741W WO2007082562A2 WO 2007082562 A2 WO2007082562 A2 WO 2007082562A2 EP 2006008741 W EP2006008741 W EP 2006008741W WO 2007082562 A2 WO2007082562 A2 WO 2007082562A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dynamic range
- range image
- image
- high dynamic
- values
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/184—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/187—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
- H04N19/33—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/59—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/63—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/98—Adaptive-dynamic-range coding [ADRC]
Definitions
- the invention relates to encoding image data.
- the invention has particular application for encoding images or for encoding sequences of video data.
- Dynamic range is a measure of the relative brightness of the brightest and darkest parts of an image. Until recently, most televisions, computer monitors and other display devices have been capable of reproducing dynamic ranges of only a few hundred to one. This is far less than the dynamic range that can be appreciated by the human eye. Display devices having greater dynamic ranges are becoming available. Such high dynamic range display devices can provide images that are much more natural and realistic than the images produced by conventional "low dynamic range" display devices.
- High dynamic range display devices are beneficial in a wide range of applications.
- high dynamic range display devices may be used for displaying realistic video images ranging from movies and game visuals, to visual displays in simulators such as flight simulators.
- High dynamic range display devices also have application in demanding imaging applications such as medical imaging.
- HDRV Perception-motivated HDR Video Encoding
- R. Mantiuk G. Krawczyk
- K. Myszkowski and H-P. Seidel. Perception-motivated high dynamic range video encoding.
- ACM Transactions on Graphics Proc. of SIGGRAPH 2004), 23(3):730- 38, 2004 is a lossy HDR video compression method, which, does not offer backward compatibility.
- the method encodes HDR pixels using 11 bits for luminance and twice 8 bits for chrominance.
- the resulting video stream does not contain any information on LDR frames.
- JPEG HDR is described in Greg Ward and Maryann Simmons. Subband encoding of high dynamic range imagery.
- APGV '04 Proceedings of the 1 st Symposium on Applied perception in graphics and visualization, pages 83-90, New York, NY, USA, 2004. ACM Press.
- This method involves sub-sampling a subband layer, which can lead to the loss of high frequencies.
- the method suggest three approaches: pre-correction of LDR layer, to encode within this layer high frequencies that can be lost due to sub-sampling; post- correction which tries to restore high frequencies that has been lost rather than modifying LDR image and full-sampling, which means that no sub-sampling is performed.
- This invention provides methods and apparatus for encoding high dynamic range image data and for decoding the data to provide both lower dynamic range image data and higher dynamic range image data.
- the methods and apparatus may be applied to encoding video data.
- the lower dynamic range data is encoded in a standard format such as a MPEG (Motion Pictures Experts Group) format.
- One aspect of the invention provides a method for encoding a high dynamic range image.
- the method comprises obtaining a lower dynamic range image corresponding to the high dynamic range image; identifying groups of pixels in the high dynamic range image for which corresponding pixels in the lower dynamic range image all have the same pixel value; generating a prediction function based at least in part on pixel values of the pixels in the high dynamic range image belonging to each of a plurality of the groups; applying the prediction function to the lower dynamic range image to obtain a predicted image; computing a residual image representing differences between pixel values in the predicted image and corresponding pixel values in the high dynamic range image; and, encoding and storing data representing the lower dynamic range image, the prediction function and the residual image.
- Figure 1 is a flow chart illustrating an encoding method according to an embodiment of the invention
- Figure IA is a histogram of pixel values from a high dynamic range image for which corresponding pixels in a lower dynamic range version of the image all have the same pixel value;
- Figure 2 is a flow chart illustrating a decoding method according to the invention
- Figure 3 is a flow chart illustrating an MPEG encoding method according to a specific embodiment
- Figures 4A through 4F show the relationship between luma values in corresponding HDR and LDR images for various tone mapping algorithms
- Figure 5 shows a method for filtering residual image data according to an embodiment of the invention
- Figure 6 is a plot illustrating bit rate as a function of an image quality parameter for a prototype encoding system.
- Figure 1 shows a method 10 for encoding a frame of image data according to a basic embodiment of the invention.
- Method 10 encodes both high dynamic range (HDR) data 12 and lower dynamic range (LDR) data 14 into encoded image data 38.
- HDR data 12 may be represented in a color space such the absolute CIE XYZ (2E Standard observer) color space in which the color and brightness of each pixel are specified by three floating point numbers.
- LDR data 14 may be represented in a color space such as the sRGB color space in which the color and brightness of each pixel are specified by three bytes.
- LDR data 14 is derived from HDR data 12 (or a precursor of HDR data 12) by a suitable dynamic range reduction process 16.
- Dynamic range reduction may comprise tone mapping and/or gamut mapping, for example. Any suitable tone mapping operator or gamut mapping may be used. For example, a tone mapping operator may be chosen to saturate both luminance and color, change color vales and enhance local contrast. Such changes may result in a lower compression ratio, but both LDR and HDR frames will be preserved in the resulting video stream.
- method 10 establishes a prediction function 19.
- Prediction function 19 provides as an output a predicted pixel value for a pixel in HDR data 12 based upon the pixel value for the corresponding pixel in LDR data 14. Since the goal is to be able to reproduce HDR data 12 and LDR data 14 from encoded image data 38 it is preferable to base prediction function 19 on a version of LDR data 14 that can be reconstructed from encoded image data 38.
- FIG. 1 shows that block 19 receives as an input reconstructed LDR data 26.
- Reconstructed LDR data 26 is obtained by encoding/compressing LDR data 14 in block 20 to provide encoded compressed LDR data 22 and then decoding/ decompressing encoded compressed LDR data 22 in block 24.
- Encoded compressed LDR data 22 is included in encoded image data 38.
- Line 15 illustrates a less accurate alternative in which block 18 uses LDR data 14 directly to establish prediction function 19.
- Prediction function 19 preferably exploits statistical relationships between pixel values in reconstructed LDR data 26 and corresponding pixel values in HDR data 12. In general, if one takes all pixels in reconstructed LDR image 26 for which the pixels all have the same particular pixel value, the corresponding pixels in HDR image data 12 will not all have the same pixel value. That is, in general, there is a one-to-many relationship between LDR pixel values and HDR pixel values.
- Figure IA is a histogram in which the horizontal axis ranges over all possible HDR pixel values and the vertical axis indicates how many pixels in the image represented by HDR image data 12 have that value. There may be a significant number of pixel values for which the image does not have any pixels that have that value.
- the shaded bars in Figure IA represent values of pixels in HDR image data 12 for which the corresponding pixels in reconstructed LDR image data 26 all have the same pixel value X LDR - The
- HDR pixel values that correspond to LDR pixel value X LDR range from A to B. All of the HDR pixel values for pixels that correspond to the same pixel value in reconstructed LDR image data 26 may be called a bin. It is typical, but not mandatory, that different bins do not overlap.
- a prediction function 19 for an image may be obtained from HDR image data 12 and reconstructed LDR image data 26 by collecting HDR pixel values into bins and statistically analyzing each of the bins. Collecting the HDR pixel values into bins may comprise: $ taking reconstructed LDR image data 26, and for each pixel value represented in reconstructed LDR image data 26 identifying the set of all pixels that have that pixel value;
- Prediction function 19 may be obtained by any of: $ finding the arithmetic mean of the HDR pixel values in each bin; $ finding the median of the HDR pixel values in each bin;
- Prediction function 19 needs to be defined only for the possible pixel values in the LDR data 14 (256 values in the case where pixel values are represented by an 8-bit number).
- Prediction function 19 may comprise a lookup table that is indexed by valid values for LDR pixels.
- Prediction function 19 may be implemented as a lookup table having one output value corresponding to each index value. For example, where LDR pixels have 8-bit values, the lookup table may comprise 256 different values indexed by integers in the range of 1 to 256.
- Prediction function 19 does not need to be continuous since its major role is to make the values of residual frames as small as possible.
- prediction function 19 may be partly or entirely represented by a suitably parameterized continuous curve.
- method 10 obtains a predicted HDR image by applying prediction function 19 to reconstructed LDR data 26.
- the pixel value for each pixel of reconstructed LDR data 26 is applied as an input to prediction function 19 and the pixel value is replaced with the resulting output from prediction function 19 to yield a predicted HDR image 29.
- Block 30 computes a difference between predicted HDR image 29 and the image of HDR data 12 to provide a residual image 32.
- Residual image 32 is encoded/compressed in block 34 and output as residual image data 35 to encoded image data 38.
- Block 34 may comprise filtering and quantizing residual image 32 to remove information that will not have a discernable effect (or, with more aggressive filtering and/or quantization an excessively deleterious effect) on the fidelity of a HDR image reconstructed from encoded image data 38.
- FIG. 2 shows a method 40 for decoding encoded image data 38.
- LDR data 22 may be extracted from encoded image data 38 and decoded/decompressed in block 32 to yield LDR data 43 that is output as an LDR data output 44. IfLDR data output 44 is all that is required then no further processing need be done.
- prediction function 37 is decoded at block 46 to yield prediction function 47 and residual image data 35 is decoded / decompressed at block 50 to yield residual image 52.
- prediction function 47 is applied to LDR data 43 to yield a predicted HDR image 49.
- the predicted HDR image 49 is combined with residual image 52 to yield HDR data output 56.
- a decoder that operates as shown in Figure 2 can be backwards- compatible with systems and devices that require LDR data output 44 while providing high quality HDR data at HDR data output 56.
- Methods 10 and 40 may be performed by:
- $ programmed data processors which may comprise one or more microprocessors, digital signal processors, some combination thereof, or the like executing software that causes the data processors to implement the methods;
- circuits for example circuits that include functional blocks that cooperate to implement the method - the circuits may comprise, for example, suitably configured field-programmable gate arrays ("FPGAs") or application-specific integrated circuits ("ASICs"); or, $ performing some parts of the methods in programmed data processors and other parts of the methods in suitable hardware circuits.
- FPGAs field-programmable gate arrays
- ASICs application-specific integrated circuits
- Figure 3 shows a method 70 according to a more specific example embodiment.
- Method 70 encodes video frames in a way that complies with the standards set by the Motion Pictures Experts Group (MPEG) standards.
- MPEG Motion Pictures Experts Group
- Method 70 receives two incoming streams of video data.
- a stream containing HDR frames 74 is received at input 72.
- a stream containing LDR frames 76 is received at input 78.
- LDR frames 76 may be derived from HDR frames 74 or some precursor of HDR frames 74 upstream from input 78.
- An encoder operating as shown in Figure 3 produces three compressed streams: a LDR stream 80, which may be fully compatible with MPEG; a residual stream 82, which contains differences between LDR frames 76 and the corresponding HDR frames 74; and an auxiliary stream, 84 which contains auxiliary data for reconstructing HDR frames 74.
- LDR stream 80 which may be fully compatible with MPEG
- residual stream 82 which contains differences between LDR frames 76 and the corresponding HDR frames 74
- auxiliary stream, 84 which contains auxiliary data for reconstructing HDR frames 74.
- the best performance can be achieved when residual stream 82 and auxiliary stream 84 do not duplicate the information encoded in LDR stream 80.
- LDR frames 76 are encoded in block 88 using a suitable encoder.
- block 88 may use an MPEG video encoder compatible with the ISO/IEC 14496-2 standard. Other video encoders may be used in the alternative.
- the resulting video stream may be encapsulated in a suitable media container format, such as Audio Video Interleave (AVI) or QuickTimeTM, so that it can be recognized and played back by existing software.
- AVI Audio Video Interleave
- QuickTimeTM QuickTime
- block 90 the MPEG encoded LDR frames are decoded.
- the decoding in block 90 may be performed by the MPEG encoder used in block 88.
- MPEG encoders typically decode frames internally for use in estimating motion vectors.
- Block 90 may comprise accessing the decoded frames generated by the MPEG encoder. In the alternative, block 90 may be performed independently from block 88.
- LDR frames that are MPEG encoded and then decoded are not exactly the same as the original LDR frames but contain compression artifacts.
- blocks 92 A and 92B the color spaces of one or both of LDR frames 76 and HDR frames 74 are transformed, if necessary, to provide LDR frames and HDR frames that are represented in mutually compatible color spaces. Which transformations, if any, are performed in blocks 92 A and 92B depends upon the color spaces of incoming LDR frames 76 and HDR frames 74. In some cases blocks 92A and 92B are not required. In other cases, only one of blocks 92A and 92B is required. [036] HDR and LDR color spaces are compatible when color channels of both the LDR and HDR color spaces represent approximately the same information. It is also desirable that the HDR and LDR color spaces be perceptually uniform.
- Perceptual uniformity facilitates the estimation of color differences according to perceivable, rather than arithmetic, differences. It is also desirable that the HDR color space preserve a broad color gamut, ideally the full visible color gamut, even though the full visible color gamut cannot be displayed on the existing displays.
- a good color space for use in representing HDR image data is a combination of the CIE 1976 Uniform Chromacity Scales (uo, Vo) with the gamma correction of the sRGB color space.
- Other color spaces could also be used.
- incoming LDR frames 76 are represented in the sRGB color space while incoming HDR frames 74 are represented in the CIE XYZ (2E standard observer) color space.
- block 92 A comprises converting LDR pixels from the sRGB color space to the li dr Uid r Vi dr space.
- G 8-b i t and B s . bit color coordinates may be converted to floating point values similarly and then X, Y, and Z may be determined from:
- Luma can be computed for each LDR pixel by using suitable corrected color values.
- luma may be given by:
- Luma is the weighted sum of the non-linear R' G' B' components after gamma correction has been applied.
- 8-bit numbers u tdr and v tdr can be obtained by multiplying each of u ' and v ' by a suitable scaling factor such as:
- each pixel of the LDR data is represented by the pixel values h dr , v ldr , u ⁇ dr .
- Block 92B may transform color values of HDR frames 74 in substantially the same manner as described above for the LDR pixel values.
- Ordinary gamma correction typically cannot be used for the range of luminance values that may be specified in an HDR frame. Therefore, some embodiments use a perceptually uniform luminance representation that has been derived from the contrast detection measurements for human observers. This space has properties similar to a space in which LDR pixel values are gamma corrected but can encode the full visible range of luminance (using 11-12 bits for example).
- HDR luminance, y is transformed into 12- bit HDR luma, l hdr , by the formula:
- Block 94 generates a prediction function for the HDR image data.
- the prediction function attempts to predict a pixel value for a pixel in the HDR image data based upon a corresponding pixel value for the corresponding pixel in the LDR image data.
- the prediction function is ideally chosen to minimize the number of pixels in the HDR image data that have values that differ significantly from the values predicted by the prediction function.
- the prediction function is preferably non-linear in the logarithmic domain.
- LDR frames 76 and HDR frames 74 contain similar information, these frames are strongly correlated. Where LDR frames 76 are obtained by applying a tone mapping algorithm to HDR frames 74, the particular nature of the correlation depends upon what tone mapping algorithm was used.
- Figures 4A through 4F show how the luma values of a LDR frame relate to the luma values of a corresponding HDR frame. Each of these Figures applies a different tone mapping function to derive an LDR image from an example HDR image. These tone mapping functions provide generally linear relationships between l tdr and l hdr at lower values. There is more variation between the tone mapping functions for higher luminance values.
- LDR luma values are plotted on the horizontal axis and HDR luma values are plotted on the vertical axis.
- the points marked X indicate the pixel values of corresponding pixels in the LDR and HDR images.
- Figures 4A to 4F correspond respectively to the tone mapping functions disclosed in:
- the prediction function may be generated as described above. Where the prediction function is defined as the arithmetic mean of the values of all HDR pixels falling into a corresponding bin, then the prediction can be written as:
- N is the number of pixels in a frame and / Wr ( ⁇ ) and I f1Jr (T) are the luma values for the z th pixel in the LDR and HDR frames respectively.
- the prediction function is preferably updated for each frame.
- Figures 4 A to 4F the prediction functions are shown as solid lines. The prediction functions will depend on the image content as well as on the tone-mapping function used.
- Figures 4A through 4F show prediction functions for typical HDR images.
- Figures 4A to 4F show that typical prediction functions tend to be slowly changing with an increasing slope over significant portions of their range. Therefore, in some embodiments, instead of encoding the values of the prediction function for every bin, the differences between prediction function values for two consecutive bins are encoded. To further reduce the number of bits, these differences can be compressed, for example, using an adaptive Huffman algorithm as indicated in block 95.
- the size of auxiliary data stream 84 is 1% or less of the total stream size in some embodiments. Therefore the storage overhead of a prediction function can be almost insignificant.
- Prediction functions or parts of prediction functions may also be represented in other ways, for example, as parameterized polynomial curves, spline curves, or other parameterized functions.
- each pixel 77(0 in the residual frame may be calculated as:
- the prediction function may be an identity function, in which case:
- a properly chosen prediction function can reduce the amount of data that encodes HDR frames significantly. Despite this saving, residual frames can still contain a significant amount of noise that does not visibly improve the quality of reconstructed HDR images.
- the compression ratio can be improved without causing a noticeable reduction in image quality by filtering the residual frames to reduce or eliminate this noise.
- Block 98 filters the residual frames.
- the signal in residual frames is often relatively close to the visibility threshold. Therefore, filtering can result in significant reduction of data without significant degradation in the quality of HDR images reconstructed from the data.
- An output of block 98 is a residual frame in which high frequencies have been attenuated in those regions where they are not visible.
- Figure 5 shows a method 110 that may be applied for filtering residual frames. Method 110 may be performed in the context of an encoding method according to the invention but also has application in other contexts where it is desired to reduce the amount of data representing an image without introducing visible artifacts into the image.
- the description that follows describes processing that is done on a luma channel.
- the same processing may be also applied to chroma channels.
- the chroma channels may be subsampled, for example to half of their original resolution to reduce processing. This reduction approximately accounts for differences in luminance and chrominance CSF.
- Method 110 receives a residue frame 112 and a HDR frame 114 that masks the residue frame.
- a Discrete Wavelet Transform (DWT) is applied to split each of masking frame 114 and residue frame 112 into several frequency- and orientation-selective channels.
- Other suitable transforms such as the cortex transform described in A.B. Watson.
- the cortex transform Rapid computation of simulated neural images. Computer Vision Graphics and Image Processing, 39:311-327, 1987, may be applied in place of the DWT.
- the cortex transform can be very computationally-intensive and so is practical only if sufficient computational resources are available.
- a prototype embodiment uses the CDF 9/7 discrete wavelet basis (which is used also for the lossy compression of images according to the JPEG- 2000 standard). This wavelet basis gives a good trade-off between smoothness and computational efficiency. In the prototype, only the three finest scales of the wavelet decomposition are used since filtering of lower spatial frequencies at coarser scales could lead to noticeable artifacts.
- a function such as a contrast sensitivity function (CSF) is applied to account for the lower sensitivity of the human visual system for high spatial frequencies.
- CSF contrast sensitivity function
- Applying the CSF involves weighting each band of wavelet coefficients by a constant value.
- Example weighting factors for a viewing distance of 1700 pixels are given in Table 2.
- Phase uncertainty may be modelled with the L 0 . 2 norm, which is also used in JPEG-2000 image compression.
- the L 0 . 2 norm is given by:
- L CS F is a wavelet coefficient that has been weighted by applying a CSF factor
- LCSF is the CSF-weighted wavelet coefficient after taking phase uncertainty into account.
- Block 124 predicts how threshold contrast changes in the presence of the masking signal from original HDR frame 114.
- the threshold elevation function may, for example, have the form:
- Each CSF-weighted coefficient for the residual frame, R CSF is compared to the value of the corresponding threshold elevation T e calculated from original HDR frame 114. If R CSF is smaller than the visibility threshold T e from Equation (16), the coefficient may be set to zero without introducing changes in the eventual reconstructed image that are noticeable. This may be expressed by:
- the filtered wavelet coefficients, Ry ?/ are transformed back to the image domain.
- the prefiltering method presented above can substantially reduce the size of a residual stream.
- the filtering is a reasonable trade-off between computational efficiency and accuracy of the visual model. Filtering as described herein typically increases encoding time by no more than about 80%. Filtering during encoding does not increase decoding times.
- block 100 quantizes the filtered residual frames. Although the magnitudes of the differences encoded in residual frames are usually small, they can take values in the range of 14095 to 4095 (for 12-bit HDR luma encoding). Obviously, such values cannot be encoded using 8-bit MPEG encoder. Although the MPEG standard provides an extension for encoding luma values on 12 bits, such an extension is rarely implemented, especially in hardware.
- Quantization block 100 permits the magnitude of residual values to be reduced, preferably sufficiently that those values can be encoded using a standard 8-bit MPEG encoder.
- Various quantization schemes may be used. For example, some embodiments apply a non-linear quantization, where large absolute values of residual are heavily quantized, while small values are preserved with maximum accuracy. Since very few pixels contain a residual having a large magnitude, most pixels are not affected by the strong quantization.
- a simple clamping of residual values (for example, to an 8-bit range) can produce visually better results at the cost of losing details in very bright or dark regions. Furthermore, in typical images, with suitably chosen prediction functions, only a very few pixels have residual values that exceed an 8-bit range.
- residual values are divided by a constant quantization factor.
- the factor can be chosen based upon a trade-off between errors due to clamping and errors due to quantization.
- Such quantization factors can be set separately for each bin, based on the maximum magnitude of the residual for all pixels that belong to that bin. Therefore, the residual values after quantization can be computed as:
- $ q(l) is a quantization factor that is selected separately for each bin ⁇ k .
- the quantization factor may be given by:
- q min is a minimum quantization factor which may be, for example, 1 or 2.
- the quantization factors q(l) may be stored together with the prediction function in auxiliary data stream 84. This data may be first compressed as in block 95. In most cases, most of quantization factors q(J) will have the value q min . Therefore, run-length encoding followed by Huffman encoding is an effective way to compress the data representing the quantization factors.
- the residual values are encoded.
- the residual values are 8-bit values they can be encoded using ordinary MPEG compression (e.g. MPEG-4 compression).
- MPEG-4 compression e.g. MPEG-4 compression
- ⁇ values, n , and chroma residual values r u and r v are MPEG encoded after rounding them to the nearest integer value.
- the operations applied to obtain residual values are approximately linear in cases where the prediction function is nearly linear and the effect of the adaptive quantization of Equation (18) is minimal.
- the visual information of a residual frame is in the same frequency bands as the original HDR frame, and the DCT quantization of the residual has a similar effect as for the original HDR pixel values. Therefore, a standard DCT quantization matrix can be used for encoding the residual frames.
- block 102 may give better compression results than others.
- block 102 should comprise encoding using the best quality.
- the quality settings in block 88 primarily affect the quality of LDR images reconstructed from stream 80 but may have some impact on the quality of HDR images also.
- LDR and HDR frames contain the same scenes. Therefore the optical flow should be the same for both of them.
- the same motion vectors computed for LDR frames are also used for residual frames.
- Data structure 38 may include only one set of motion vectors.
- motion vectors are computed separately for LDR and residual frames and both sets of motion vectors are stored in encoded image data 38.
- Software for performing methods according to the invention may be implemented in various ways. In a prototype embodiment, the software is implemented as a dynamic library to simplify integration with external software. A separate set of command line tools permits for encoding and decoding of video streams from and to HDR image files.
- HDR video playback involves decoding two MPEG streams, 80 and 82
- achieving an acceptable frame rate is more challenging than in the case of ordinary LDR video playback.
- Playback frame rate can be boosted by performing some parts of the decoding process using graphics hardware. For example, both color space conversion and up-sampling of color channels can be computationally expensive when executed on a CPU and yet can be performed extremely efficiently in a graphics processor (GPU) as fragment programs. Additionally, some color conversion functions can be significantly accelerated with the use of fixed point arithmetic and lookup tables.
- Figure 6 illustrates the performance of the prototype embodiment as a function of the quality setting.
- the lower points correspond to LDR stream 80 whereas the upper points correspond to the sum of LDR stream 80 and residual stream 82. It can be seen that for lower values of the qscale quality parameter (i.e. for higher quality images) the percentage of the overall data stream made up by residual stream 82 is smaller than it is for higher values of the quality parameter (corresponding to lower-quality LDR images).
- Codecs as described herein may be used to encode and decode both individual images and video sequences. Such codecs may be used to encode and decode movies to be stored on media such as DVDs, or other storage media that may become common for storing movies in future.
- Some aspects of the invention provide media players that include an output for HDR images to which a HDR display device is connected or can be connected.
- the media players include hardware, software, or a combination of hardware and software that implement decoding methods as shown in Figure 2 for example.
- Certain implementations of the invention comprise computer processors which execute software instructions which cause the processors to perform a method of the invention.
- processors in a data processing system may implement the encoding methods of Figures 1 or 3 or the decoding method of Figure 2 by executing software instructions stored in a memory accessible to the processors.
- the invention may also be provided in the form of a program product.
- the program product may comprise any medium which carries a set of computer-readable signals comprising instructions which, when executed by a data processor, cause the data processor to execute a method of the invention.
- Program products according to the invention may be in any of a wide variety of forms.
- the program product may comprise, for example, physical media such as magnetic data storage media including floppy diskettes, hard disk drives, optical data storage media including CD ROMs, DVDs, electronic data storage media including ROMs, flash RAM, or the like.
- the computer-readable signals on the program product may optionally be compressed or encrypted.
- a component e.g. a software module, processor, assembly, device, circuit, etc.
- reference to that component should be interpreted as including as equivalents of that component any component which performs the function of the described component (i.e., that is functionally equivalent), including components which are not structurally equivalent to the disclosed structure which performs the function in the illustrated exemplary embodiments of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Studio Devices (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
Priority Applications (14)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP17155127.8A EP3197157B1 (en) | 2006-01-23 | 2006-09-07 | High dynamic range codecs |
| EP06791913.4A EP1989882B1 (en) | 2006-01-23 | 2006-09-07 | High dynamic range codecs |
| KR1020087020660A KR101356548B1 (ko) | 2006-01-23 | 2006-09-07 | 하이 다이나믹 레인지 코덱들 |
| US12/160,738 US8537893B2 (en) | 2006-01-23 | 2006-09-07 | High dynamic range codecs |
| CN2006800516409A CN101371583B (zh) | 2006-01-23 | 2006-09-07 | 编码/解码高动态范围图像的方法和设备 |
| JP2008551653A JP5249784B2 (ja) | 2006-01-23 | 2006-09-07 | 高ダイナミックレンジコーデック |
| HK09107303.8A HK1129181B (en) | 2006-01-23 | 2006-09-07 | A method for encoding/decoding a high dynamic range image, and apparatus thereof |
| US13/961,266 US8611421B1 (en) | 2006-01-23 | 2013-08-07 | High dynamic range codecs |
| US14/076,000 US8989267B2 (en) | 2006-01-23 | 2013-11-08 | High dynamic range codecs |
| US14/617,445 US9210439B2 (en) | 2006-01-23 | 2015-02-09 | High dynamic range codecs |
| US14/929,032 US9544610B2 (en) | 2006-01-23 | 2015-10-30 | High dynamic range codecs |
| US15/331,782 US9894374B2 (en) | 2006-01-23 | 2016-10-21 | High dynamic range codecs |
| US15/828,220 US10165297B2 (en) | 2006-01-23 | 2017-11-30 | High dynamic range codecs |
| US16/159,866 US10931961B2 (en) | 2006-01-23 | 2018-10-15 | High dynamic range codecs |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US76151006P | 2006-01-23 | 2006-01-23 | |
| US60/761,510 | 2006-01-23 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/160,738 A-371-Of-International US8537893B2 (en) | 2006-01-23 | 2006-09-07 | High dynamic range codecs |
| US13/961,266 Continuation US8611421B1 (en) | 2006-01-23 | 2013-08-07 | High dynamic range codecs |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2007082562A2 true WO2007082562A2 (en) | 2007-07-26 |
| WO2007082562A3 WO2007082562A3 (en) | 2007-12-21 |
Family
ID=38222685
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2006/008741 Ceased WO2007082562A2 (en) | 2006-01-23 | 2006-09-07 | High dynamic range codecs |
Country Status (7)
| Country | Link |
|---|---|
| US (8) | US8537893B2 (enExample) |
| EP (5) | EP3197157B1 (enExample) |
| JP (2) | JP5249784B2 (enExample) |
| KR (1) | KR101356548B1 (enExample) |
| CN (2) | CN101371583B (enExample) |
| ES (2) | ES2551561T3 (enExample) |
| WO (1) | WO2007082562A2 (enExample) |
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009087952A1 (en) * | 2008-01-04 | 2009-07-16 | Sharp Kabushiki Kaisha | Methods and apparatus for inter-layer image prediction parameter determination |
| JP2009544198A (ja) * | 2006-07-17 | 2009-12-10 | トムソン ライセンシング | ビデオ色向上データをエンコードする方法および装置ならびにビデオ色向上データをデコードする方法および装置 |
| EP2111047A3 (en) * | 2008-04-16 | 2010-07-28 | Intel Corporation | Tone mapping for bit-depth scalable video codec |
| WO2010093432A1 (en) * | 2009-02-11 | 2010-08-19 | Thomson Licensing | Methods and apparatus for bit depth scalable video encoding and decoding utilizing tone mapping and inverse tone mapping |
| US20110194618A1 (en) * | 2009-03-13 | 2011-08-11 | Dolby Laboratories Licensing Corporation | Compatible compression of high dynamic range, visual dynamic range, and wide color gamut video |
| WO2012004709A1 (en) * | 2010-07-06 | 2012-01-12 | Koninklijke Philips Electronics N.V. | Generation of high dynamic range images from low dynamic range images |
| US8165393B2 (en) | 2008-06-05 | 2012-04-24 | Microsoft Corp. | High dynamic range texture compression |
| WO2012061261A1 (en) * | 2010-11-03 | 2012-05-10 | Eastman Kodak Company | Method for producing high dynamic range images |
| CN102473295A (zh) * | 2009-06-29 | 2012-05-23 | 汤姆森特许公司 | 基于区的色调映射 |
| US8233536B2 (en) * | 2007-01-23 | 2012-07-31 | Sharp Laboratories Of America, Inc. | Methods and systems for multiplication-free inter-layer image prediction |
| WO2012127401A1 (en) * | 2011-03-24 | 2012-09-27 | Koninklijke Philips Electronics N.V. | Apparatuses and methods for analyzing image gradings |
| WO2013068132A1 (en) * | 2011-11-09 | 2013-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Inter-layer prediction between layers of different dynamic sample value range |
| WO2013072889A1 (en) * | 2011-11-18 | 2013-05-23 | Koninklijke Philips Electronics N.V. | Encoding high quality (medical) images using standard lower quality (web) image formats |
| US8466976B2 (en) | 2010-11-03 | 2013-06-18 | Eastman Kodak Company | Digital camera providing high dynamic range images |
| US8503524B2 (en) | 2007-01-23 | 2013-08-06 | Sharp Laboratories Of America, Inc. | Methods and systems for inter-layer image prediction |
| US8611421B1 (en) | 2006-01-23 | 2013-12-17 | Max-Plank-Gesselschaft zur Forderung der Wissenschaften E.V. | High dynamic range codecs |
| WO2014009844A1 (en) | 2012-07-13 | 2014-01-16 | Koninklijke Philips N.V. | Improved hdr image encoding and decoding methods and devices |
| US8665942B2 (en) | 2007-01-23 | 2014-03-04 | Sharp Laboratories Of America, Inc. | Methods and systems for inter-layer image prediction signaling |
| US20140105289A1 (en) * | 2011-05-16 | 2014-04-17 | Dolby Laboratories Licensing Corporation | Efficient Architecture for Layered VDR Coding |
| US8879628B2 (en) | 2011-02-21 | 2014-11-04 | Dolby Laboratories Licensing Corporation | Floating point video coding |
| KR20150098245A (ko) * | 2011-04-15 | 2015-08-27 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | 고 동적 범위 이미지들의 인코딩,디코딩,및 표현 |
| WO2015173570A1 (en) * | 2014-05-15 | 2015-11-19 | The University Of Warwick | Compressing high dynamic range images |
| RU2587986C2 (ru) * | 2010-07-06 | 2016-06-27 | Конинклейке Филипс Электроникс Н.В. | Создание изображений с расширенным динамическим диапазоном из изображений с суженным динамическим диапазоном |
| US9549194B2 (en) | 2012-01-09 | 2017-01-17 | Dolby Laboratories Licensing Corporation | Context based inverse mapping method for layered codec |
| US9654781B2 (en) | 2011-04-15 | 2017-05-16 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| JP2017535181A (ja) * | 2014-10-07 | 2017-11-24 | マッシミリアーノ・アゴスティネッリMassimiliano AGOSTINELLI | 改善されたビデオおよび画像符号化プロセス |
| WO2017165494A3 (en) * | 2016-03-23 | 2017-11-30 | Dolby Laboratories Licensing Corporation | Encoding and decoding reversible production-quality single-layer video signals |
| TWI630604B (zh) * | 2013-08-20 | 2018-07-21 | 新力股份有限公司 | Regeneration device, regeneration method, and recording medium |
| EP3399497A1 (en) | 2017-05-05 | 2018-11-07 | Koninklijke Philips N.V. | Optimizing decoded high dynamic range image saturation |
| CN110232669A (zh) * | 2019-06-19 | 2019-09-13 | 湖北工业大学 | 一种高动态范围图像的色调映射方法及系统 |
| US10511837B2 (en) | 2011-04-15 | 2019-12-17 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| US10863201B2 (en) | 2015-12-21 | 2020-12-08 | Koninklijke Philips N.V. | Optimizing high dynamic range images for particular displays |
| WO2021113549A1 (en) * | 2019-12-06 | 2021-06-10 | Dolby Laboratories Licensing Corporation | Cascade prediction |
| CN113728624A (zh) * | 2019-04-23 | 2021-11-30 | 杜比实验室特许公司 | 高动态范围图像的显示管理 |
| CN115115518A (zh) * | 2022-07-01 | 2022-09-27 | 腾讯科技(深圳)有限公司 | 高动态范围图像的生成方法、装置、设备、介质及产品 |
| EP4391546A4 (en) * | 2021-09-15 | 2024-11-13 | Huawei Technologies Co., Ltd. | VIDEO ENCODING METHOD AND APPARATUS, AND VIDEO DECODING METHOD AND APPARATUS |
Families Citing this family (103)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2893806A1 (fr) * | 2005-11-21 | 2007-05-25 | Thomson Licensing Sas | Systeme de transmission d'images de dynamique elevee, unites et procedes de codage et de decodage pour ce systeme |
| US8014445B2 (en) * | 2006-02-24 | 2011-09-06 | Sharp Laboratories Of America, Inc. | Methods and systems for high dynamic range video coding |
| CN101449586B (zh) * | 2006-05-25 | 2012-08-29 | 汤姆逊许可证公司 | 用于加权编码的方法和系统 |
| US9299317B2 (en) | 2008-01-07 | 2016-03-29 | Dolby Laboratories Licensing Corporation | Local multiscale tone-mapping operator |
| EP2144444B1 (en) * | 2008-07-10 | 2012-06-27 | The University Of Warwick | HDR video data compression devices and methods |
| EP2415271A1 (en) * | 2009-04-03 | 2012-02-08 | I-CES (Innovative Compression Engineering Solutions) | Method for processing a digital file notably of the image, video and/or audio type |
| CN101859430B (zh) * | 2009-04-09 | 2014-01-01 | 恩斯迈电子(深圳)有限公司 | 产生高动态范围图像的方法及装置 |
| EP2360926A1 (en) | 2010-01-19 | 2011-08-24 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Image encoder and image decoder |
| US8606009B2 (en) | 2010-02-04 | 2013-12-10 | Microsoft Corporation | High dynamic range image generation and rendering |
| US9100661B2 (en) * | 2010-04-05 | 2015-08-04 | Samsung Electronics Co., Ltd. | Method and apparatus for encoding video by using dynamic-range transformation, and method and apparatus for decoding video by using dynamic-range transformation |
| KR101664123B1 (ko) * | 2010-06-14 | 2016-10-11 | 삼성전자주식회사 | 필터링에 기반하여 고스트가 없는 hdri를 생성하는 장치 및 방법 |
| TWI559779B (zh) * | 2010-08-25 | 2016-11-21 | 杜比實驗室特許公司 | 擴展影像動態範圍 |
| US9024951B2 (en) * | 2011-02-16 | 2015-05-05 | Apple Inc. | Devices and methods for obtaining high-local-contrast image data |
| EP2498499B1 (en) | 2011-03-08 | 2018-04-18 | Dolby Laboratories Licensing Corporation | Interpolation of color gamut for display on target display |
| WO2012142285A2 (en) * | 2011-04-12 | 2012-10-18 | Dolby Laboratories Licensing Corporation | Quality assessment for images that have extended dynamic ranges or wide color gamuts |
| PL2782348T3 (pl) * | 2011-04-14 | 2018-04-30 | Dolby Laboratories Licensing Corp | Zmienna objaśniająca regresji wielorakiej kanału wielu barw |
| EP2697972B1 (en) | 2011-04-14 | 2015-01-14 | Dolby Laboratories Licensing Corporation | Image prediction based on primary color grading model |
| CN103493490B (zh) * | 2011-04-25 | 2016-12-28 | 杜比实验室特许公司 | 非线性视觉动态范围残留量化器 |
| US9292940B2 (en) * | 2011-04-28 | 2016-03-22 | Koninklijke Philips N.V. | Method and apparatus for generating an image coding signal |
| RU2616158C2 (ru) * | 2011-04-28 | 2017-04-12 | Конинклейке Филипс Н.В. | Устройства и способы для кодирования и декодирования hdr-изображений |
| CN106357955B (zh) | 2011-05-27 | 2019-05-28 | 杜比实验室特许公司 | 包括变化的元数据等级的用于控制颜色管理的可缩放系统 |
| US8891863B2 (en) * | 2011-06-13 | 2014-11-18 | Dolby Laboratories Licensing Corporation | High dynamic range, backwards-compatible, digital cinema |
| US9451292B2 (en) * | 2011-09-15 | 2016-09-20 | Dolby Laboratories Licensing Corporation | Method and system for backward compatible, extended dynamic range encoding of video |
| US11640656B2 (en) | 2011-09-27 | 2023-05-02 | Koninklijke Philips N.V. | Apparatus and method for dynamic range transforming of images |
| EP3197164B1 (en) * | 2011-10-17 | 2020-12-09 | Kabushiki Kaisha Toshiba | Decoding apparatus and decoding method |
| WO2013067113A1 (en) * | 2011-11-01 | 2013-05-10 | Dolby Laboratories Licensing Corporation | Adaptive false contouring prevention in layered coding of images with extended dynamic range |
| TWI575933B (zh) * | 2011-11-04 | 2017-03-21 | 杜比實驗室特許公司 | 階層式視覺動態範圍編碼中之層分解技術 |
| KR20130068823A (ko) * | 2011-12-16 | 2013-06-26 | 삼성전자주식회사 | 영상 신호 처리를 위한 방법 및 장치 |
| EP2613532A1 (en) | 2012-01-06 | 2013-07-10 | Thomson Licensing | Method of and device for encoding an HDR video together with an LDR video, method of and device for reconstructing one of an HDR video and an LDR video coded together and non-transitory storage medium |
| US9420302B2 (en) | 2012-01-24 | 2016-08-16 | Dolby Laboratories Licensing Corporation | Weighted multi-band cross color channel predictor |
| US9973779B2 (en) | 2012-03-12 | 2018-05-15 | Dolby Laboratories Licensing Corporation | 3D visual dynamic range coding |
| US9129445B2 (en) | 2012-03-14 | 2015-09-08 | Dolby Laboratories Licensing Corporation | Efficient tone-mapping of high-bit-depth video to low-bit-depth display |
| RU2643663C2 (ru) * | 2012-03-26 | 2018-02-02 | Конинклейке Филипс Н.В. | Устройства и способы для кодирования и декодирования изображений с hdr на основании областей яркости |
| GB2518061B (en) * | 2012-07-27 | 2019-11-27 | Hewlett Packard Development Co | Techniques for video compression |
| BR112014008513B1 (pt) * | 2012-08-08 | 2021-08-17 | Dolby Laboratories Licensing Corporation | Método para codificar uma imagem hdr, dispositivo de circuito integrado e meio de armazenamento legível por processador não transitório |
| KR101367777B1 (ko) * | 2012-08-22 | 2014-03-06 | 주식회사 핀그램 | 적응 이미지 압축시스템 및 그 방법 |
| US9230509B2 (en) * | 2012-10-08 | 2016-01-05 | Koninklijke Philips N.V. | Luminance changing image processing with color constraints |
| JP6278972B2 (ja) * | 2012-11-16 | 2018-02-14 | トムソン ライセンシングThomson Licensing | 高ダイナミックレンジ画像の処理のための方法、装置及びプロセッサ可読媒体 |
| EP2962277A1 (en) * | 2013-02-27 | 2016-01-06 | Thomson Licensing | Method and device for selecting an image dynamic range conversion operator |
| ES2666899T3 (es) * | 2013-03-26 | 2018-05-08 | Dolby Laboratories Licensing Corporation | Codificación de contenido de vídeo perceptualmente-cuantizado en codificación VDR multicapa |
| WO2014198574A1 (en) * | 2013-06-10 | 2014-12-18 | Thomson Licensing | Encoding and decoding methods for adapting the average luminance of high dynamic range pictures and corresponding encoder and decoder |
| CN105324997B (zh) * | 2013-06-17 | 2018-06-29 | 杜比实验室特许公司 | 用于增强动态范围信号的分层编码的自适应整形 |
| JP5639228B2 (ja) * | 2013-06-18 | 2014-12-10 | トムソン ライセンシングThomson Licensing | 重み付け符号化する方法及びシステム |
| CN103391435A (zh) * | 2013-07-02 | 2013-11-13 | 广东工业大学 | 一种兼容ldr的hdr图像编码方法及其解码方法 |
| JP6174926B2 (ja) * | 2013-07-11 | 2017-08-02 | キヤノン株式会社 | 画像復号装置及びその制御方法 |
| JP6368365B2 (ja) * | 2013-07-18 | 2018-08-01 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Hdrイメージの符号化のためのコードマッピング関数を作成するための方法及び装置、並びに、かかる符号化イメージの使用のための方法及び装置 |
| TWI632810B (zh) * | 2013-07-19 | 2018-08-11 | 新力股份有限公司 | Data generating device, data generating method, data reproducing device, and data reproducing method |
| TWI630820B (zh) * | 2013-07-19 | 2018-07-21 | 新力股份有限公司 | File generation device, file generation method, file reproduction device, and file reproduction method |
| TWI630821B (zh) * | 2013-07-19 | 2018-07-21 | 新力股份有限公司 | File generation device, file generation method, file reproduction device, and file reproduction method |
| US9438827B2 (en) | 2013-08-27 | 2016-09-06 | Semiconductor Components Industries, Llc | Imaging systems and methods for generating binned high-dynamic-range images |
| US9712834B2 (en) * | 2013-10-01 | 2017-07-18 | Dolby Laboratories Licensing Corporation | Hardware efficient sparse FIR filtering in video codec |
| EP3069513B1 (en) * | 2013-11-12 | 2019-03-13 | Dolby Laboratories Licensing Corporation | Pre-dithering in high dynamic range video coding |
| DE112015000950T5 (de) | 2014-02-25 | 2016-12-08 | Apple Inc. | Abwärtskompatible Einrichtung und abwärtskompatibles Verfahren zum Bereitstellen von Video mit sowohl Standard- als auch hohem Dynamikbereich |
| US10182241B2 (en) | 2014-03-04 | 2019-01-15 | Microsoft Technology Licensing, Llc | Encoding strategies for adaptive switching of color spaces, color sampling rates and/or bit depths |
| MY189001A (en) * | 2014-03-04 | 2022-01-17 | Microsoft Technology Licensing Llc | Adaptive switching of color spaces, color sampling rates and/or bit depths |
| BR122022001585B1 (pt) | 2014-03-27 | 2023-05-16 | Microsoft Technology Licensing, Llc | Método para ajustar quantização/escalada, memória legível por computador e dispositivo de computação |
| CN108182672A (zh) * | 2014-05-28 | 2018-06-19 | 皇家飞利浦有限公司 | 用于对hdr图像进行编码的方法和装置以及用于使用这样的编码图像的方法和装置 |
| GB201410635D0 (en) | 2014-06-13 | 2014-07-30 | Univ Bangor | Improvements in and relating to the display of images |
| EP2958075A1 (en) * | 2014-06-20 | 2015-12-23 | Thomson Licensing | Method and apparatus for dynamic range expansion of LDR video sequence |
| US10334270B2 (en) | 2014-06-25 | 2019-06-25 | Interdigital Vc Holdings, Inc. | Method and device for processing images |
| KR20160003502A (ko) | 2014-07-01 | 2016-01-11 | 삼성전자주식회사 | 병렬화 방법 및 전자 장치 |
| MX368411B (es) * | 2014-08-08 | 2019-10-02 | Koninklijke Philips Nv | Metodos y aparatos para codificacion de imagenes de alto rango dinamico (hdr). |
| WO2016040255A1 (en) * | 2014-09-09 | 2016-03-17 | Dolby Laboratories Licensing Corporation | Self-adaptive prediction method for multi-layer codec |
| CN110364189B (zh) * | 2014-09-10 | 2021-03-23 | 松下电器(美国)知识产权公司 | 再现装置以及再现方法 |
| US9936199B2 (en) | 2014-09-26 | 2018-04-03 | Dolby Laboratories Licensing Corporation | Encoding and decoding perceptually-quantized video content |
| CN105960802B (zh) | 2014-10-08 | 2018-02-06 | 微软技术许可有限责任公司 | 切换色彩空间时对编码和解码的调整 |
| JP2016100039A (ja) * | 2014-11-17 | 2016-05-30 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 記録媒体、再生方法、および再生装置 |
| MX383827B (es) * | 2014-12-03 | 2025-03-14 | Panasonic Ip Man Co Ltd | Metodo de generacion de datos, metodo de reproduccion de datos, dispositivo de generacion de datos y dispositivo de reproduccion de datos. |
| US10609327B2 (en) | 2014-12-29 | 2020-03-31 | Sony Corporation | Transmission device, transmission method, reception device, and reception method |
| WO2016123001A1 (en) | 2015-01-27 | 2016-08-04 | Dolby International Ab | Predictive image encoding and decoding with pixel group based quantization |
| EP3051818A1 (en) | 2015-01-30 | 2016-08-03 | Thomson Licensing | Method and device for decoding a color picture |
| CN111654697B (zh) | 2015-01-30 | 2022-07-19 | 交互数字Vc控股公司 | 对彩色画面进行编码和解码的方法和装置 |
| EP3251336B1 (en) | 2015-01-30 | 2023-08-09 | InterDigital Madison Patent Holdings, SAS | Method and device for matching colors between color pictures of different dynamic range |
| US10410398B2 (en) * | 2015-02-20 | 2019-09-10 | Qualcomm Incorporated | Systems and methods for reducing memory bandwidth using low quality tiles |
| KR102291585B1 (ko) * | 2015-03-03 | 2021-08-20 | 세종대학교산학협력단 | 단일 화질 값 기반의 hdr 이미지 부호화 장치의 전처리 방법 및 장치, 단일 화질 값 기반의 hdr 이미지 부호화 방법 |
| BR112017018552B1 (pt) | 2015-03-20 | 2019-10-22 | Dolby Laboratories Licensing Corp | aproximação para remodelagem de sinal |
| US20160286226A1 (en) * | 2015-03-24 | 2016-09-29 | Nokia Technologies Oy | Apparatus, a method and a computer program for video coding and decoding |
| US20160286241A1 (en) * | 2015-03-24 | 2016-09-29 | Nokia Technologies Oy | Apparatus, a method and a computer program for video coding and decoding |
| EP3096519A1 (en) | 2015-05-18 | 2016-11-23 | Thomson Licensing | A method for encoding/decoding a picture block |
| WO2016183681A1 (en) | 2015-05-19 | 2016-11-24 | Irystec Software Inc. | System and method for color retargeting |
| US10349127B2 (en) * | 2015-06-01 | 2019-07-09 | Disney Enterprises, Inc. | Methods for creating and distributing art-directable continuous dynamic range video |
| EP3107300A1 (en) * | 2015-06-15 | 2016-12-21 | Thomson Licensing | Method and device for encoding both a high-dynamic range frame and an imposed low-dynamic range frame |
| EP3113496A1 (en) | 2015-06-30 | 2017-01-04 | Thomson Licensing | Method and device for encoding both a hdr picture and a sdr picture obtained from said hdr picture using color mapping functions |
| KR102309676B1 (ko) | 2015-07-24 | 2021-10-07 | 삼성전자주식회사 | 사용자 적응 이미지 보상기 |
| TWI764870B (zh) * | 2015-07-28 | 2022-05-21 | 法商內數位麥德遜專利控股有限公司 | 視訊訊號處理裝置及方法 |
| US10184835B2 (en) * | 2015-09-23 | 2019-01-22 | Agilent Technologies, Inc. | High dynamic range infrared imaging spectroscopy |
| KR20170098163A (ko) * | 2016-02-19 | 2017-08-29 | 세종대학교산학협력단 | 이미지 부호화 및 복호화 방법, 이를 이용하는 이미지 부호화기 및 이미지 복호화기 |
| WO2017142360A1 (ko) * | 2016-02-19 | 2017-08-24 | 세종대학교산학협력단 | 이미지 부호화 및 복호화 방법, 이를 이용하는 이미지 부호화기 및 이미지 |
| GB201611253D0 (en) * | 2016-06-29 | 2016-08-10 | Dolby Laboratories Licensing Corp | Efficient Histogram-based luma look matching |
| US10575028B2 (en) * | 2016-09-09 | 2020-02-25 | Dolby Laboratories Licensing Corporation | Coding of high dynamic range video using segment-based reshaping |
| CN106506983B (zh) * | 2016-12-12 | 2019-07-19 | 天津大学 | 一种适用于ldr视频的hdr视频生成方法 |
| JP6852411B2 (ja) * | 2017-01-19 | 2021-03-31 | ソニー株式会社 | 映像信号処理装置、映像信号処理方法およびプログラム |
| EP3386198A1 (en) | 2017-04-07 | 2018-10-10 | Thomson Licensing | Method and device for predictive picture encoding and decoding |
| EP3416363A1 (en) * | 2017-06-13 | 2018-12-19 | Koninklijke Philips N.V. | Gamut mapping for hdr (de)coding |
| CN107944422B (zh) * | 2017-12-08 | 2020-05-12 | 业成科技(成都)有限公司 | 三维摄像装置、三维摄像方法及人脸识别方法 |
| US10778979B2 (en) * | 2018-01-11 | 2020-09-15 | Qualcomm Incorporated | Signaling mechanisms for equal ranges and other DRA parameters for video coding |
| JP6584538B2 (ja) * | 2018-01-16 | 2019-10-02 | トムソン ライセンシングThomson Licensing | 高ダイナミックレンジ画像の処理 |
| CN108717690B (zh) * | 2018-05-21 | 2022-03-04 | 电子科技大学 | 一种高动态范围图片的合成方法 |
| TWI812874B (zh) * | 2019-10-01 | 2023-08-21 | 美商杜拜研究特許公司 | 張量乘積之b平滑曲線預測子 |
| CN110933416B (zh) * | 2019-11-12 | 2021-07-20 | 宁波大学 | 高动态范围视频自适应预处理方法 |
| JP7598254B2 (ja) * | 2021-02-04 | 2024-12-11 | キヤノン株式会社 | 符号化装置、撮像装置、符号化方法、及びプログラム |
| US11995743B2 (en) | 2021-09-21 | 2024-05-28 | Samsung Electronics Co., Ltd. | Skin tone protection using a dual-core geometric skin tone model built in device-independent space |
| US20240169708A1 (en) * | 2022-11-10 | 2024-05-23 | Qualcomm Incorporated | Processing video data using delta quantization |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE69420874T2 (de) * | 1993-02-12 | 2000-05-04 | Eastman Kodak Co., Rochester | Verfahren zur geräteübergreifenden Farbbildkalibrierung und -verbesserung |
| EP0611230B1 (en) * | 1993-02-12 | 1998-09-30 | Eastman Kodak Company | Method and associated apparatus for transforming input color values in an input color space to output color values in an output color space |
| US6335983B1 (en) * | 1998-09-28 | 2002-01-01 | Eastman Kodak Company | Representing an extended color gamut digital image in a limited color gamut color space |
| JP4362895B2 (ja) | 1999-06-21 | 2009-11-11 | ソニー株式会社 | データ処理装置およびデータ処理方法、並びに記録媒体 |
| US6301393B1 (en) * | 2000-01-21 | 2001-10-09 | Eastman Kodak Company | Using a residual image formed from a clipped limited color gamut digital image to represent an extended color gamut digital image |
| US6748106B1 (en) * | 2000-03-28 | 2004-06-08 | Eastman Kodak Company | Method for representing an extended color gamut digital image on a hard-copy output medium |
| JP4012669B2 (ja) * | 2000-07-21 | 2007-11-21 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 画像処理方法および装置、記録媒体並びに画像撮影装置 |
| US8374237B2 (en) * | 2001-03-02 | 2013-02-12 | Dolby Laboratories Licensing Corporation | High precision encoding and decoding of video images |
| JP3948229B2 (ja) * | 2001-08-01 | 2007-07-25 | ソニー株式会社 | 画像撮像装置及び方法 |
| US7046852B2 (en) * | 2001-09-13 | 2006-05-16 | Sharp Laboratories Of America, Inc. | Fast image decompression via look up table |
| US7305144B2 (en) * | 2002-01-15 | 2007-12-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | System and method for compressing the dynamic range of an image |
| US6879731B2 (en) | 2003-04-29 | 2005-04-12 | Microsoft Corporation | System and process for generating high dynamic range video |
| EP1642464B1 (en) * | 2003-06-27 | 2008-10-15 | Nxp B.V. | Method of encoding for handheld apparatuses |
| US20050117799A1 (en) * | 2003-12-01 | 2005-06-02 | Chiou-Shann Fuh | Method and apparatus for transforming a high dynamic range image into a low dynamic range image |
| JP2005284534A (ja) * | 2004-03-29 | 2005-10-13 | Inventec Appliances Corp | 高ダイナミックレンジ画像を低ダイナミックレンジ画像に変換する方法及び関連装置 |
| CN101901480B (zh) * | 2004-04-15 | 2013-03-06 | 杜比实验室特许公司 | 用于处理图像数据的设备和方法 |
| US8218625B2 (en) | 2004-04-23 | 2012-07-10 | Dolby Laboratories Licensing Corporation | Encoding, decoding and representing high dynamic range images |
| US20050259730A1 (en) * | 2004-05-18 | 2005-11-24 | Sharp Laboratories Of America, Inc. | Video coding with residual color conversion using reversible YCoCg |
| US20050259729A1 (en) * | 2004-05-21 | 2005-11-24 | Shijun Sun | Video coding with quality scalability |
| US7483486B2 (en) * | 2004-07-02 | 2009-01-27 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and apparatus for encoding high dynamic range video |
| US8050512B2 (en) * | 2004-11-16 | 2011-11-01 | Sharp Laboratories Of America, Inc. | High dynamic range images from low dynamic range images |
| US7433514B2 (en) * | 2005-07-13 | 2008-10-07 | Canon Kabushiki Kaisha | Tone mapping of high dynamic range images |
| US20070076971A1 (en) * | 2005-09-30 | 2007-04-05 | Nokia Corporation | Compression of images for computer graphics |
| US7932914B1 (en) * | 2005-10-20 | 2011-04-26 | Nvidia Corporation | Storing high dynamic range data in a low dynamic range format |
| JP5249784B2 (ja) | 2006-01-23 | 2013-07-31 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | 高ダイナミックレンジコーデック |
| US20130107956A1 (en) * | 2010-07-06 | 2013-05-02 | Koninklijke Philips Electronics N.V. | Generation of high dynamic range images from low dynamic range images |
-
2006
- 2006-09-07 JP JP2008551653A patent/JP5249784B2/ja active Active
- 2006-09-07 EP EP17155127.8A patent/EP3197157B1/en active Active
- 2006-09-07 EP EP15179312.2A patent/EP2988499B1/en active Active
- 2006-09-07 WO PCT/EP2006/008741 patent/WO2007082562A2/en not_active Ceased
- 2006-09-07 CN CN2006800516409A patent/CN101371583B/zh active Active
- 2006-09-07 EP EP10186006.2A patent/EP2320653B1/en active Active
- 2006-09-07 US US12/160,738 patent/US8537893B2/en active Active
- 2006-09-07 EP EP10185996.5A patent/EP2290983B1/en active Active
- 2006-09-07 KR KR1020087020660A patent/KR101356548B1/ko active Active
- 2006-09-07 CN CN200910173271A patent/CN101742306A/zh active Pending
- 2006-09-07 ES ES10185996.5T patent/ES2551561T3/es active Active
- 2006-09-07 ES ES10186006.2T patent/ES2551562T3/es active Active
- 2006-09-07 EP EP06791913.4A patent/EP1989882B1/en active Active
-
2013
- 2013-03-15 JP JP2013052804A patent/JP5558603B2/ja active Active
- 2013-08-07 US US13/961,266 patent/US8611421B1/en active Active
- 2013-11-08 US US14/076,000 patent/US8989267B2/en active Active
-
2015
- 2015-02-09 US US14/617,445 patent/US9210439B2/en active Active
- 2015-10-30 US US14/929,032 patent/US9544610B2/en active Active
-
2016
- 2016-10-21 US US15/331,782 patent/US9894374B2/en active Active
-
2017
- 2017-11-30 US US15/828,220 patent/US10165297B2/en active Active
-
2018
- 2018-10-15 US US16/159,866 patent/US10931961B2/en active Active
Cited By (85)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9210439B2 (en) | 2006-01-23 | 2015-12-08 | Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. | High dynamic range codecs |
| US8989267B2 (en) | 2006-01-23 | 2015-03-24 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | High dynamic range codecs |
| US10931961B2 (en) | 2006-01-23 | 2021-02-23 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | High dynamic range codecs |
| US10165297B2 (en) | 2006-01-23 | 2018-12-25 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | High dynamic range codecs |
| US9894374B2 (en) | 2006-01-23 | 2018-02-13 | Max-Planck-Gesellschaft Zur Forderund Der Wissenschaften E.V. | High dynamic range codecs |
| US9544610B2 (en) | 2006-01-23 | 2017-01-10 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | High dynamic range codecs |
| US8611421B1 (en) | 2006-01-23 | 2013-12-17 | Max-Plank-Gesselschaft zur Forderung der Wissenschaften E.V. | High dynamic range codecs |
| JP2009544198A (ja) * | 2006-07-17 | 2009-12-10 | トムソン ライセンシング | ビデオ色向上データをエンコードする方法および装置ならびにビデオ色向上データをデコードする方法および装置 |
| US8761249B2 (en) | 2006-07-17 | 2014-06-24 | Thomson Licensing | Method and apparatus for encoding video color enhancement data, and method and apparatus for decoding video color enhancement data |
| US20150208081A1 (en) * | 2007-01-23 | 2015-07-23 | Sharp Laboratories Of America, Inc. | Methods and Systems for Inter-Layer Image Prediction Signaling |
| US9497387B2 (en) * | 2007-01-23 | 2016-11-15 | Sharp Laboratories Of America, Inc. | Methods and systems for inter-layer image prediction signaling |
| US8233536B2 (en) * | 2007-01-23 | 2012-07-31 | Sharp Laboratories Of America, Inc. | Methods and systems for multiplication-free inter-layer image prediction |
| US8503524B2 (en) | 2007-01-23 | 2013-08-06 | Sharp Laboratories Of America, Inc. | Methods and systems for inter-layer image prediction |
| US8665942B2 (en) | 2007-01-23 | 2014-03-04 | Sharp Laboratories Of America, Inc. | Methods and systems for inter-layer image prediction signaling |
| WO2009087952A1 (en) * | 2008-01-04 | 2009-07-16 | Sharp Kabushiki Kaisha | Methods and apparatus for inter-layer image prediction parameter determination |
| US8175158B2 (en) | 2008-01-04 | 2012-05-08 | Sharp Laboratories Of America, Inc. | Methods and systems for inter-layer image prediction parameter determination |
| CN103313057B (zh) * | 2008-04-16 | 2016-08-31 | 英特尔公司 | 用于比特深度可分级的视频编解码器的色调映射 |
| EP2698998A1 (en) * | 2008-04-16 | 2014-02-19 | Intel Corporation | Tone mapping for bit-depth scalable video codec |
| CN101577828B (zh) * | 2008-04-16 | 2013-06-26 | 英特尔公司 | 用于比特深度可分级的视频编解码器的色调映射 |
| EP2111047A3 (en) * | 2008-04-16 | 2010-07-28 | Intel Corporation | Tone mapping for bit-depth scalable video codec |
| US9338475B2 (en) | 2008-04-16 | 2016-05-10 | Intel Corporation | Tone mapping for bit-depth scalable video codec |
| RU2430484C2 (ru) * | 2008-04-16 | 2011-09-27 | Интел Корпорейшн | Отображение тона для масштабируемого по битовой глубине видеокодека |
| US8498476B2 (en) | 2008-06-05 | 2013-07-30 | Microsoft Corp. | High dynamic range texture compression |
| US8165393B2 (en) | 2008-06-05 | 2012-04-24 | Microsoft Corp. | High dynamic range texture compression |
| WO2010093432A1 (en) * | 2009-02-11 | 2010-08-19 | Thomson Licensing | Methods and apparatus for bit depth scalable video encoding and decoding utilizing tone mapping and inverse tone mapping |
| CN102388611A (zh) * | 2009-02-11 | 2012-03-21 | 汤姆森特许公司 | 使用色调映射和反色调映射的比特深度可分级视频编码和解码的方法和装置 |
| US8867616B2 (en) | 2009-02-11 | 2014-10-21 | Thomson Licensing | Methods and apparatus for bit depth scalable video encoding and decoding utilizing tone mapping and inverse tone mapping |
| CN102388611B (zh) * | 2009-02-11 | 2015-08-19 | 汤姆森特许公司 | 使用色调映射和反色调映射的比特深度可分级视频编码和解码的方法和装置 |
| US20110194618A1 (en) * | 2009-03-13 | 2011-08-11 | Dolby Laboratories Licensing Corporation | Compatible compression of high dynamic range, visual dynamic range, and wide color gamut video |
| US8982963B2 (en) | 2009-03-13 | 2015-03-17 | Dolby Laboratories Licensing Corporation | Compatible compression of high dynamic range, visual dynamic range, and wide color gamut video |
| US9087382B2 (en) | 2009-06-29 | 2015-07-21 | Thomson Licensing | Zone-based tone mapping |
| CN102473295A (zh) * | 2009-06-29 | 2012-05-23 | 汤姆森特许公司 | 基于区的色调映射 |
| RU2587986C2 (ru) * | 2010-07-06 | 2016-06-27 | Конинклейке Филипс Электроникс Н.В. | Создание изображений с расширенным динамическим диапазоном из изображений с суженным динамическим диапазоном |
| WO2012004709A1 (en) * | 2010-07-06 | 2012-01-12 | Koninklijke Philips Electronics N.V. | Generation of high dynamic range images from low dynamic range images |
| WO2012061261A1 (en) * | 2010-11-03 | 2012-05-10 | Eastman Kodak Company | Method for producing high dynamic range images |
| US8466976B2 (en) | 2010-11-03 | 2013-06-18 | Eastman Kodak Company | Digital camera providing high dynamic range images |
| US8462221B2 (en) | 2010-11-03 | 2013-06-11 | Eastman Kodak Company | Method for producing high dynamic range images |
| US8879628B2 (en) | 2011-02-21 | 2014-11-04 | Dolby Laboratories Licensing Corporation | Floating point video coding |
| US11710465B2 (en) | 2011-03-24 | 2023-07-25 | Koninklijke Philips N.V. | Apparatus and methods for analyzing image gradings |
| US11049473B2 (en) | 2011-03-24 | 2021-06-29 | Koninklijke Philips N.V. | Apparatuses and methods for analyzing image gradings |
| JP2014518024A (ja) * | 2011-03-24 | 2014-07-24 | コーニンクレッカ フィリップス エヌ ヴェ | イメージ・グレーディングを分析するための装置及び方法 |
| WO2012127401A1 (en) * | 2011-03-24 | 2012-09-27 | Koninklijke Philips Electronics N.V. | Apparatuses and methods for analyzing image gradings |
| US9819938B2 (en) | 2011-04-15 | 2017-11-14 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| US10264259B2 (en) | 2011-04-15 | 2019-04-16 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| KR101684334B1 (ko) | 2011-04-15 | 2016-12-08 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | 고 동적 범위 이미지들의 인코딩,디코딩,및 표현 |
| US10511837B2 (en) | 2011-04-15 | 2019-12-17 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| KR20150098245A (ko) * | 2011-04-15 | 2015-08-27 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | 고 동적 범위 이미지들의 인코딩,디코딩,및 표현 |
| US10027961B2 (en) | 2011-04-15 | 2018-07-17 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| US9654781B2 (en) | 2011-04-15 | 2017-05-16 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| US10992936B2 (en) | 2011-04-15 | 2021-04-27 | Dolby Laboratories Licensing Corporation | Encoding, decoding, and representing high dynamic range images |
| US20140105289A1 (en) * | 2011-05-16 | 2014-04-17 | Dolby Laboratories Licensing Corporation | Efficient Architecture for Layered VDR Coding |
| US10298923B2 (en) * | 2011-05-16 | 2019-05-21 | Dolby Laboratories Licensing Corporation | Efficient architecture for layered VDR coding |
| US9712816B2 (en) | 2011-11-09 | 2017-07-18 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Inter-layer prediction between layers of different dynamic sample value range |
| WO2013068132A1 (en) * | 2011-11-09 | 2013-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Inter-layer prediction between layers of different dynamic sample value range |
| WO2013072889A1 (en) * | 2011-11-18 | 2013-05-23 | Koninklijke Philips Electronics N.V. | Encoding high quality (medical) images using standard lower quality (web) image formats |
| US9342654B2 (en) | 2011-11-18 | 2016-05-17 | Koninklijke Philips N.V. | Encoding high quality (medical) images using standard lower quality (web) image formats |
| US9549194B2 (en) | 2012-01-09 | 2017-01-17 | Dolby Laboratories Licensing Corporation | Context based inverse mapping method for layered codec |
| WO2014009844A1 (en) | 2012-07-13 | 2014-01-16 | Koninklijke Philips N.V. | Improved hdr image encoding and decoding methods and devices |
| US10027965B2 (en) | 2012-07-13 | 2018-07-17 | Koninklijke Philips N.V. | HDR image encoding and decoding methods and devices |
| RU2652465C2 (ru) * | 2012-07-13 | 2018-04-26 | Конинклейке Филипс Н.В. | Усовершенствованные способы и устройства для кодирования и декодирования hdr изображений |
| US9516351B2 (en) | 2012-07-13 | 2016-12-06 | Koninklijke Philips N.V. | HDR image encoding and decoding methods and devices |
| TWI630604B (zh) * | 2013-08-20 | 2018-07-21 | 新力股份有限公司 | Regeneration device, regeneration method, and recording medium |
| GB2540321B (en) * | 2014-05-15 | 2020-10-21 | Univ Warwick | Compressing high dynamic range images |
| WO2015173570A1 (en) * | 2014-05-15 | 2015-11-19 | The University Of Warwick | Compressing high dynamic range images |
| GB2540321A (en) * | 2014-05-15 | 2017-01-11 | Univ Warwick | Compressing high dynamic range images |
| JP2017535181A (ja) * | 2014-10-07 | 2017-11-24 | マッシミリアーノ・アゴスティネッリMassimiliano AGOSTINELLI | 改善されたビデオおよび画像符号化プロセス |
| US10863201B2 (en) | 2015-12-21 | 2020-12-08 | Koninklijke Philips N.V. | Optimizing high dynamic range images for particular displays |
| US10701375B2 (en) | 2016-03-23 | 2020-06-30 | Dolby Laboratories Licensing Corporation | Encoding and decoding reversible production-quality single-layer video signals |
| WO2017165494A3 (en) * | 2016-03-23 | 2017-11-30 | Dolby Laboratories Licensing Corporation | Encoding and decoding reversible production-quality single-layer video signals |
| CN108885783A (zh) * | 2016-03-23 | 2018-11-23 | 杜比实验室特许公司 | 编码和解码可逆制作质量单层视频信号 |
| US11521537B2 (en) | 2017-05-05 | 2022-12-06 | Koninklijke Philips N.V. | Optimized decoded high dynamic range image saturation |
| EP3399497A1 (en) | 2017-05-05 | 2018-11-07 | Koninklijke Philips N.V. | Optimizing decoded high dynamic range image saturation |
| US10964248B2 (en) | 2017-05-05 | 2021-03-30 | Koninklijke Philips N.V. | Optimized decoded high dynamic range image saturation |
| WO2018202744A1 (en) | 2017-05-05 | 2018-11-08 | Koninklijke Philips N.V. | Optimizing decoded high dynamic range image saturation |
| CN113728624B (zh) * | 2019-04-23 | 2023-11-14 | 杜比实验室特许公司 | 高动态范围图像的显示管理 |
| CN113728624A (zh) * | 2019-04-23 | 2021-11-30 | 杜比实验室特许公司 | 高动态范围图像的显示管理 |
| US11803948B2 (en) | 2019-04-23 | 2023-10-31 | Dolby Laboratories Licensing Corporation | Display management for high dynamic range images |
| CN110232669A (zh) * | 2019-06-19 | 2019-09-13 | 湖北工业大学 | 一种高动态范围图像的色调映射方法及系统 |
| CN114830640A (zh) * | 2019-12-06 | 2022-07-29 | 杜比实验室特许公司 | 级联预测 |
| WO2021113549A1 (en) * | 2019-12-06 | 2021-06-10 | Dolby Laboratories Licensing Corporation | Cascade prediction |
| US11838531B2 (en) | 2019-12-06 | 2023-12-05 | Dolby Laboratories Licensing Corporation | Cascade prediction |
| CN114830640B (zh) * | 2019-12-06 | 2025-02-25 | 杜比实验室特许公司 | 级联预测 |
| EP4391546A4 (en) * | 2021-09-15 | 2024-11-13 | Huawei Technologies Co., Ltd. | VIDEO ENCODING METHOD AND APPARATUS, AND VIDEO DECODING METHOD AND APPARATUS |
| CN115115518A (zh) * | 2022-07-01 | 2022-09-27 | 腾讯科技(深圳)有限公司 | 高动态范围图像的生成方法、装置、设备、介质及产品 |
| CN115115518B (zh) * | 2022-07-01 | 2024-04-09 | 腾讯科技(深圳)有限公司 | 高动态范围图像的生成方法、装置、设备、介质及产品 |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10931961B2 (en) | High dynamic range codecs | |
| JP7541055B2 (ja) | 高ダイナミックレンジおよび広色域シーケンスを符号化するシステム | |
| EP3203442B1 (en) | Block-based content-adaptive reshaping for high dynamic range images | |
| EP3011741B1 (en) | Adaptive reshaping for layered coding of enhanced dynamic range signals | |
| US20170085880A1 (en) | System for reshaping and coding high dynamic range and wide color gamut sequences | |
| EP3069513B1 (en) | Pre-dithering in high dynamic range video coding | |
| US20180035089A1 (en) | High dynamic range color conversion correction | |
| HK1129181B (en) | A method for encoding/decoding a high dynamic range image, and apparatus thereof | |
| Efremov et al. | Design and evaluation of backward compatible high dynamic range video compression |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 1431/MUMNP/2008 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680051640.9 Country of ref document: CN Ref document number: 2008551653 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087020660 Country of ref document: KR Ref document number: 2006791913 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12160738 Country of ref document: US |