WO2007082456A1 - Procédé de multiplexage de données dans un système de multiplexage par répartition orthogonale de la fréquence - Google Patents

Procédé de multiplexage de données dans un système de multiplexage par répartition orthogonale de la fréquence Download PDF

Info

Publication number
WO2007082456A1
WO2007082456A1 PCT/CN2006/003770 CN2006003770W WO2007082456A1 WO 2007082456 A1 WO2007082456 A1 WO 2007082456A1 CN 2006003770 W CN2006003770 W CN 2006003770W WO 2007082456 A1 WO2007082456 A1 WO 2007082456A1
Authority
WO
WIPO (PCT)
Prior art keywords
discrete
centralized
sub
pattern
patterns
Prior art date
Application number
PCT/CN2006/003770
Other languages
English (en)
French (fr)
Inventor
Guanghui Yu
Dongyan Bi
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2007082456A1 publication Critical patent/WO2007082456A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present invention relates to the field of digital communications, and more particularly to a data multiplexing method for an Orthogonal Frequency Division Multiplexing (OFDM) communication system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM technology is a two-dimensional multiplexing technique that combines time division multiplexing (TDM) and frequency division multiplexing (FDM), which provides a way for high-rate data transmission.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • OFDM Orthogonal Frequency Division Multiple Access
  • LTE Long-term 3GPP
  • OFDM technology For OFDM communication systems, reasonable data multiplexing in their time and frequency domains is very important for improving link performance.
  • the allocation pattern is the basic allocation unit.
  • An allocation pattern is a data unit consisting of several symbols in the time domain and several subcarriers in the frequency domain.
  • the division of each distribution pattern in the same cell or the same sector should be orthogonal to each other, and the design of the distribution pattern should be easy to avoid interference between adjacent cells to improve system capacity and coverage.
  • the size of the distribution pattern must meet certain data length requirements, taking full account of frequency diversity and time diversity, and considering the number of users sharing the total bandwidth. If the optimal scheduling of the user occupation allocation pattern is implemented by using link quality feedback, it is also necessary to consider the appropriate length of the allocation pattern in the time domain and the frequency domain. These factors are mutually constrained and need to be properly compromised. For mature WiMAX systems featuring OFDMA technology, data multiplexing is particularly flexible in the time domain and frequency domain.
  • the system divides a data frame into multiple regions to achieve multi-user diversity and frequency diversity, respectively. Moreover, the range of each area is variable, and the design is flexible, thereby greatly increasing the overhead of controlling messages and reducing the effective capacity of the system. So for an OFDM communication system In general, it is necessary to adopt a suitable data multiplexing method to adapt to various wireless links and avoid the overhead of a large number of control channels to increase its effective capacity.
  • SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide a data multiplexing method in an OFDM communication system that is simple in allocation, can adapt to various wireless links, and can avoid a large amount of control channel overhead.
  • the present invention provides a data multiplexing method for an orthogonal frequency division multiplexing communication system, in which data is multiplexed in a time domain and a frequency domain by using a distribution pattern as a basic allocation unit, wherein : forming a sub-frame or frame comprising a centralized assignment pattern and/or a discrete assignment pattern; and time-division multiplexing the centralized assignment pattern and discrete within a subframe or frame and/or between subframes or frames a step of assigning a pattern; wherein the centralized allocation pattern and the discrete allocation pattern are located in a plurality of orthogonal frequency division multiplexing symbols for transmitting user data in the subframe or frame; wherein the centralized The allocation pattern is a region composed of a plurality of subcarriers continuously distributed in the frequency domain within the plurality of orthogonal frequency division multiplexing symbols; the discrete allocation pattern is a plurality of orthogonal frequency division multiplexing symbols A plurality of regions of subcar
  • the data multiplexing method wherein the centralized distribution pattern includes a plurality of centralized sub-patterns; the discrete distribution pattern includes a plurality of discrete sub-patterns; each of the plurality of centralized sub-patterns An OFDM symbol in time, occupying a plurality of consecutive subcarriers in the frequency domain; each of the plurality of discrete sub-patterns is one symbol in time, and is occupied in the frequency domain Discontinuous subcarriers.
  • the data multiplexing method wherein the selection of the sub-carriers constituting the discrete distribution pattern or the discrete sub-pattern is based on a uniform distribution number, a pseudo-random number, or based on a basic sequence derived from the RS sequence.
  • the data multiplexing method wherein the number of subcarriers included in the centralized sub-pattern is determined according to a length of a minimum data unit and/or an overhead caused by mitigating feedback measurement data, and the determined The number of subcarriers of the centralized subpattern remains unchanged; the number of subcarriers included in the discrete subpattern is determined according to the length to be satisfied, and the number of subcarriers of the determined discrete subpattern remains unchanged.
  • the data multiplexing method further comprising the step of excluding an OFDM symbol for inserting a pilot in a subframe or a frame.
  • the data multiplexing method wherein when the centralized distribution pattern and the discrete distribution pattern are time-division multiplexed in a subframe or a frame, a location of the centralized allocation area for transmitting the centralized distribution pattern is at a transmission station The front or back of the discrete allocation area of the discrete allocation pattern; and the determined front and rear positions remain unchanged in subsequent subframe multiplexing.
  • the data multiplexing method wherein the plurality of centralized distribution patterns or discrete distribution patterns can be assigned to the same user. In the data multiplexing method, the division of each of the distribution patterns is orthogonal to each other.
  • a centralized allocation pattern and a discrete distribution pattern are used in a sub-frame or an intra-frame and/or a sub-frame or a frame, and the two distribution patterns can be fully utilized.
  • the respective advantages are suitable for various channel environments, and the distribution mode is simple, the control is flexible, and the control signaling overhead is greatly reduced.
  • the two distribution modes can be maximized in the frequency domain due to the time division multiplexing mode adopted. Play frequency diversity and multi-user gain. If the discrete allocation pattern is designed based on the RS sequence, the interference between cells can also be effectively reduced.
  • FIG. 1 is a schematic diagram of a time division multiplexing of a centralized allocation method and a discrete allocation method in a 5 MHz bandwidth OFDM communication system according to the present invention
  • FIG. 2 is a centralized allocation in a 5 MHz bandwidth OFDM communication system according to the present invention
  • FIG. 3 is a schematic diagram of another time division multiplexing between a centralized allocation mode and a discrete allocation mode subframe in a 5 MHz bandwidth OFDM communication system according to the present invention; .
  • the data multiplexing method provided by the present invention excludes insertion guides when each frame or subframe is transmitted.
  • Frequency OFDM symbols define two basic allocation patterns within several OFDM symbols used to transmit user data.
  • a centralized allocation method or a discrete allocation method may be adopted in one subframe, and a centralized allocation method and a discrete distribution method may be adopted.
  • the centralized allocation and the discrete allocation are time-division multiplexing.
  • the discrete sub-pattern includes a plurality of sub-carriers that are discontinuous in the frequency domain, and the number of sub-carriers may be the same as or different from the number of the centralized sub-patterns.
  • the present invention provides a data multiplexing method for an orthogonal frequency division multiplexing communication system, which uses a distribution pattern as a basic allocation unit in the time domain and the frequency domain to multiplex the user: according to: forming a centralized distribution pattern and And/or the step of discretely allocating a sub-frame or frame of the pattern; and the step of time-multiplexing said centralized distribution pattern and discrete distribution pattern between sub-frames or frames and/or between sub-frames or frames;
  • the centralized allocation pattern and the discrete allocation pattern are located in a plurality of orthogonal frequency division multiplexing symbols for transmitting user data in the subframe or frame;
  • the centralized allocation pattern is in the multiple orthogonal frequency division multiplexing a plurality of regions in the frequency domain that are continuously distributed in the frequency domain;
  • the discrete allocation pattern is a plurality of subcarriers that are in frequency i or discontinuously distributed within the plurality of orthogonal frequency division multiplexing symbols
  • the symbols of the centralized distribution pattern occupying in time may be continuous or discontinuous.
  • the channel measurement feedback technology can realize multi-user diversity, especially suitable for low-speed, low-delay extended channel environment; the discrete allocation pattern is an area composed of several sub-carriers in the frequency domain that are discontinuously distributed in several frequency symbols. Similarly, the discrete allocation pattern can occupy or be discontinuous in time.
  • the discrete distribution pattern has better frequency and time diversity, especially suitable for high-speed, large-delay extended channel environment.
  • the pattern is represented by the respective sub-patterns, each of which is a symbol in time, and occupies several consecutive or discontinuous sub-carriers in the frequency domain, corresponding to the centralized distribution pattern and the discrete distribution pattern, respectively.
  • a centralized allocation pattern A number of centralized allocation subgraphs that are the same position in the frequency domain if there are thousands of temporally consecutive or discontinuous To express.
  • the discrete sub-pattern includes several sub-carriers with discontinuous frequency domains, and the number of sub-carriers may be the same as or different from the number of centralized sub-patterns, as long as the number of sub-carriers included meets a certain length requirement, but the number thereof Once determined, the number of subcarriers included in the subsequent discrete subpattern remains unchanged. Furthermore, the selection of subcarriers may be based on a uniform distribution number, a pseudorandom number, or a base sequence derived from an RS sequence. To facilitate frequency diversity, the discrete allocation pattern is represented by discrete sub-patterns that are contiguous or discontinuous in time, with the frequency domain spreading as much as possible across different locations throughout the bandwidth.
  • the centralized allocation method and the discrete allocation method are multiplexed in one subframe or between subframes in a time division manner. This maximizes the benefits of their respective multi-user gain and frequency diversity.
  • the two can be adjusted according to actual data transmission conditions, that is, a centralized allocation method can be adopted in one subframe, or a discrete allocation method can be used, and both The mode of distribution is also a discrete allocation, but the two are time-division multiplexed.
  • the centralized allocation method and the discrete allocation method use intra-subframe time division multiplexing, the OFDM symbols for inserting pilots are excluded, and the time is divided into two parts in the area of several OFDM symbols for transmitting user data.
  • centralized allocation area and discrete allocation area centralized distribution area uses centralized distribution pattern for data transmission; discrete allocation area uses discrete distribution pattern for data transmission.
  • the location of the centralized allocation area can be before or after the discrete allocation area. However, once the positions of the two are determined, the back and forth positions will not change when the two are multiplexed in the subframe.
  • several centralized distribution patterns or discrete distribution patterns can be distributed to the same user to meet the requirements of high-speed data transmission.
  • FIG. 1 is a specific embodiment of a centralized allocation method and a discrete allocation method for intra-subframe time division multiplexing.
  • the first OFDM symbol, symbol 0 is used to transmit the pilot.
  • the remaining six symbols, that is, symbols 1 ⁇ 6 are used to transmit user data, and the centralized allocation method and the discrete allocation method adopt the method of intra-subframe time division multiplexing.
  • the symbols 1 to 6 are divided into two parts in the time domain, and the subcarriers are allocated to the area and the subcarrier discrete allocation area.
  • each distribution pattern contains several sub-patterns, each of which occupies a sub-pattern.
  • the centralized distribution pattern includes 3 centralized sub-patterns, and the discrete distribution pattern also includes 3 discrete sub-patterns.
  • Each centralized sub-pattern contains 25 consecutive sub-carriers, and the centralized sub-patterns of the same serial number are respectively composed of symbols 1 to 3 to form a centralized distribution pattern, for example, three centralized sub-patterns of symbols 1 to 3
  • the centralized distribution pattern 0 is composed of 25 X 3 (75) subcarriers.
  • there are 12 such centralized distribution patterns 0 - 11 and Figure 1 shows the long squares with different filling methods.
  • the centralized distribution pattern 0, the centralized distribution pattern 1 and the centralized distribution pattern 11 are used.
  • Each discrete sub-pattern contains 25 frequency-distributed sub-carriers, and the sub-carrier selection is based on the basic sequence generated by the RS sequence.
  • the basic sequence is (9, 1, 3, 4, 10, 7, 0, 8, 6, 5, 11, 2).
  • 300 useful subcarriers are equally divided into 25 groups, group numbers are marked as 0 ⁇ 24, each group contains 12 consecutive subcarriers, labeled 0 ⁇ 11 , and one subcarrier is selected in each group according to the basic sequence.
  • Discrete sub-patterns which not only achieve frequency diversity, but also facilitate the avoidance of interference from neighboring cells based on the selection of RS sequences.
  • group 0 selects subcarrier 9, group 1 selects subcarrier 1, and so on, group 11 selects subcarrier 2, then repeats the basic sequence, group 12 selects subcarrier 9, and so on, group 23 selects subcarrier 2, group 24 selects subcarrier 9, such that 25 discrete subcarriers are selected to form a discrete sub-pattern 0, as indicated by a long square of the left oblique line in FIG. 1; and then cyclically shifted by 1 bit according to the basic sequence.
  • a discrete sub-pattern 1 is formed, as shown by the long square of the vertical line in Fig. 1; and so on, 12 discrete sub-patterns are formed, and the dot-shaped long square in Fig.
  • the discrete sub-pattern 1 represents the discrete sub-pattern 11.
  • symbol 4 The discrete sub-pattern 0, the discrete sub-pattern 1 of the symbol 5, the discrete sub-pattern 2 in the symbol 6 constitute the discrete distribution pattern 0, as shown by the light white ruled lines in the symbols 4 to 6 of Figure 1, this discrete Distribution pattern contains 25 X 3 ( 75 ) discrete subcarriers; Analogy, Discrete Subpattern 1 of Symbol 4, Discrete Subpattern 2 of Symbol 5, Discrete Subpattern 3 in Symbol 6 Form Discrete Assignment Pattern 1, as shown by the dark gray grid in Symbols 4-6 of Figure 1.
  • FIG. 1 shows a specific embodiment of a time-division multiplexing between sub-frames for centralized allocation and discrete allocation.
  • £ is set in a 0.5 ms subframe
  • the first OFDM symbol, that is, symbol 0 is used to transmit pilot and shared control information
  • the remaining six symbols, that is, symbols 1 to 6 are used for transmitting.
  • the sub-frame i adopts the centralized allocation mode
  • the centralized sub-pattern in the symbol 1-3 constitutes the centralized distribution pattern 0 ⁇ 11
  • the centralized sub-pattern in the symbols 4 ⁇ 6 constitutes the centralized distribution pattern 12 ⁇ 23.
  • the sub-frame (i+1) adopts the discrete allocation method, the discrete sub-patterns in the symbols 1 ⁇ 3 form the discrete distribution pattern 0 ⁇ 11, and the discrete sub-patterns in the symbols 4 ⁇ 6 form the discrete distribution pattern 12- twenty three.
  • the composition of the centralized distribution pattern and the discrete distribution pattern is similar to that of the specific embodiment 1.
  • FIG. 3 shows a specific embodiment in which the centralized allocation method and the discrete allocation method employ another time division multiplexing between subframes.
  • ⁇ _ is set in a 0.5ms subframe, and the first OFDM symbol, that is, symbol 0, is used to transmit pilot and shared control information, and the remaining six symbols, that is, symbol 16 are used for transmitting.
  • User data The sub-frame i adopts a centralized allocation method, and the centralized sub-patterns in the symbols 1 to 6 form a centralized distribution pattern 0 to 11.
  • the sub-frame (i+1) is discretely distributed, and the discrete sub-patterns in symbols 1 ⁇ 6 form a discrete distribution pattern 0 ⁇ 11.
  • the composition of the centralized distribution pattern and the discrete distribution pattern is similar to that of the specific embodiment 1.
  • the inter-subframe or intra-subframe time division multiplexing centralized distribution pattern and the discrete distribution pattern can fully utilize the advantages of the two distribution patterns to suit various channels.
  • the environment at the same time, has a simple distribution mode and flexible control, which greatly reduces the overhead of control signaling.
  • the two distribution modes can maximize the frequency diversity and multi-user gain in the frequency domain due to the time division multiplexing mode adopted. If the discrete distribution pattern is designed based on the RS sequence, the inter-cell gradation can be effectively reduced.
  • the distribution pattern contains the change of the number of centralized sub-patterns.
  • the discrete distribution pattern contains the change of the number of discrete sub-patterns.
  • the centralized sub-pattern contains the number of consecutive sub-carriers.
  • the discrete sub-pattern contains the number of discrete sub-carriers.

Description

一种正交频分复用通信系统的数据复用方法 技术领域 本发明涉及数字通信领域, 特别是涉及正交频分复用 (OFDM )通信系统 的数据复用方法。 背景技术 对于未来通信来说,数据业务越来越丰富多彩, 而且支持的应用场景越来 越多, 因此其需求也随之提高, 其高用户数据率, 高频谱利用率的要求尤其突 出。
OFDM技术为结合时分多路复用 (TDM )与频分多路复用 (FDM ) 的二 维多路复用技术, 它提供了高速率数据传输的一种途径。 通过将一高速传输的 数据流转换为一组 ^氐速并行传输的数据流, 使系统对多径衰落信道频率选择性 的敏感度大大降低, 而循环前缀的引入, 又进一步增强了系统抗符号间干扰 ( ISI ) 的能力。 除此之外的带宽利用率高、 实现筒单等特点使 OFDM在无线 通信领域的应用越来越广, 比如, 基于正交频分复用多址 (OFDMA)的 WiMAX 系统, 以及 3GPP的长期演进 ( LTE )研究的下行方案等都是基于 OFDM技术。 对于 OFDM通信系统来说, 在其时域和频域进行合理的数据复用对链路 性能的提高具有非常重要的意义。 在数据复用时, 以分配图样为基本的分配单 位。 一个分配图样即为由时间域的若干符号及频率域的若干个子载波組成的数 据单元。 为了避免干扰, 相同小区或同一扇区内, 各个分配图样的划分要相互 正交, 同时分配图样的设计要易于避免邻近小区间的干扰, 以提高系统容量和 覆盖范围。 此外, 分配图样的大小既要满足一定的数据长度要求, 充分考虑频 率分集和时间分集, 又要考虑共享总带宽的用户数。 如果采用利用链路质量反 馈来实现对用户占用分配图样的优化调度 , 则也需要考虑分配图样在时域和频 域上合适的长度。 以上这些因素之间相互制约, 需要进行合适地折中。 对于成熟的以 OFDMA技术为特征的 WiMAX系统来说, 其数据复用在 时域和频域上特别灵活, 该系统将一个数据帧分为多个区域, 以分别实现多用 户分集和频率分集, 而且各个区域的范围可变, 其设计灵活, 由此确大大增加 了控制消息的开销,使系统的有效容量随之降低。 因此对于一个 OFDM通信系 统来说, 采用一种合适的数据复用方法, 使其既能适应各种无线链路, 又能避 免大量控制信道的开销, 以提高其有效容量是非常必要的。 发明内容 本发明要解决的技术问题在于提供一种分配方式简单、且既能适应各种无 线链路 , 又能避免大量控制信道开销的 OFDM通信系统中的数据复用方法。 为实现本发明的上述目的,本发明提供了一种正交频分复用通信系统的数 据复用方法,在时域和频域以分配图样为基本分配单位对数据进行复用,其中, 包括: 形成包含集中式分配图样和 /或离散式分配图样的子帧或帧的步骤; 及 在子帧或帧内和 /或在子帧或帧之间时分复用所述集中式分配图样和离散 式分配图样的步骤; 其中 ,所述集中式分配图样和离散式分配图样位于所述子帧或帧中用于发 送用户数据的多个正交频分复用符号内; 其中,所述集中式分配图样为在所述多个正交频分复用符号内的多个在频 域连续分布的子载波组成的区域; 所述离散式分配图样为在所述多个正交频分 复用符号内的多个在频域不连续分布的子载波组成的区域。 所述的数据复用方法,其中,所述集中式分配图样包括多个集中式子图样; 所述离散式分配图样包括多个离散式子图样; 所述多个集中式子图样中的每一 个在时间上为一个正交频分复用符号, 在频域上占多个连续的子载波; 所述多 个离散式子图样中的每一个在时间上为一个符号, 在频域上占多个不连续的子 载波。 所述的数据复用方法,其中,组成所述离散式分配图样或离散式子图样的 子栽波的选择基于均匀分布数、 伪随机数或基于由 RS序列衍生的基本序列。 所述的数据复用方法,其中,所述集中式子图样中包含的子载波数根据最 小数据单元的长度和 /或减轻反馈量测数据所带来的开销来确定,且所述确定了 的集中式子图样的子载波数保持不变; 所述离散式子图样中包含的子载波数根 据要满足的长度来确定, 且所迷确定了的离散式子图样的子载波数保持不变。 所述的数据复用方法,其中,进一步包括排除所迷子帧或帧中用于插入导 频的 OFDM符号的步骤。 所述的数据复用方法,其中, 当在子帧或帧内时分复用所述集中式分配图 样和离散式分配图样时, 传输所述集中式分配图样的集中式分配区域的位置在 传输所述离散式分配图样的离散式分配区域的前面或后面; 且, 所述确定了的 前后位置在后续的子帧复用中保持不变。 所述的数据复用方法,其中,所述多个集中式分配图样或离散式分配图样 可被分配给同一用户。 所述的数据复用方法, 其中, 所述各个分配图样的划分相互正交。 利用本发明的方法在数据复用过程中, 采用子帧或帧内和 /或在子帧或帧 之间时分复用集中式分配图样和离散式分配图样 , 既能充分发挥这两种分配图 样各自的优势, 以适合各种信道环境, 同时分配方式筒单, 控制灵活, 大大降 低了控制信令的开销, 同时两种分配方式由于采用的时分的复用形式, 所以能 在频域最大程度发挥频率分集和多用户增益。 如果基于 RS序列来设计离散式 分配图样, 则还能有效降低小区间的干扰。 以下结合附图和具体实施例对本发明进行详细描迷,但不作为对本发明的 限制。 附图说明 图 1为本发明在 5MHz带宽的 OFDM通信系统中集中式分配方式与离散 式分配方式子帧内时分复用的示意图; 图 2为本发明在 5MHz带宽的 OFDM通信系统中集中式分配方式与离散 式分配方式子帧间一种时分复用的示意图; 图 3为本发明在 5MHz带宽的 OFDM通信系统中集中式分配方式与离散 式分配方式子帧间另外一种时分复用的示意图。 具体实施方式 本发明提供的数据复用方法在每个帧或子帧发送的时候,排除用于插入导 频的 OFDM符号, 在其他用于发送用户数据的若干个 OFDM符号内定义两种 基本的分配图样。 一个子帧中可以采用集中式分配方式, 也可以采用离散式分 配方式, 还可以既采用集中式分配方式也采用离散式分配方式, 集中式分配和 离散式分配是时分复用的关系。 其中, 离散式子图样包含多个频域不连续的子 载波, 其子载波数可与集中式子图样的数目一致, 也可不同。 本发明提供了一种正交频分复用通信系统的数据复用方法,在时域和频域 以分配图样为基本分配单位对用户 :据进行复用, 包括: 形成包含集中式分配图样和 /或离散式分配图样的子帧或帧的步骤; 及 在子帧或帧内和 /或在子帧或帧之间时分复用所述集中式分配图样和离散 式分配图样的步驟; 所述集中式分配图样和离散式分配图样位于所述子帧或帧 中用于发送用户数据的多个正交频分复用符号内; 集中式分配图样为在所述多 个正交频分复用符号内的多个在频域连续分布的子载波组成的区域; 所述离散 式分配图样为在所述多个正交频分复用符号内的多个在频 i或不连续分布的子 载波组成的区域„ 对于固定长度的子帧, 排除用于插入导频的 OEDM符号, 在其他用于发 送用户数据的若干个 OFDM符号内定义两种基本的分配图样,集中式分配图样 和离散式分配图样。 集中式分配图样, 即为若干个符号中的若干个在频域连续 分布的子载波所组成的区域。 集中式分配图样在时间上占据的符号可以连续也 可不连续。 集中式分配图样结合信道量测反馈技术, 可以实现多用户分集, 尤 其适合低速, 低延迟扩展的信道环境; 离散式分配图样, 即为若干个符号中的 若干个在频域不连续分布的子载波组成的区域。 同样, 离散式分配图样在时间 上占据的符号可以连续也可不连续。 离散式分配图样具有较好的频率和时间分 集作用, 尤其适合高速, 大延迟扩展的信道环境。 为了表示方便,每种分配图样由各自子图样来表示,每个子图样在时间上 为一个符号, 在频域上占若干个连续或不连续的子载波, 分别对应着集中式分 配图样和离散式分配图样。 集中式子图样占据若干个频域连续的子载波,包含的子载波数满足一定的 要求, 以满足最小数据单元的长度和减轻反馈量测数据所带来的开销。 在本发 明中, 每个集中式子图样中包含的子载波数保持不变。 因此一个集中式分配图 样由若千个时间上连续或不连续, 频域上为相同位置的若干个集中式分配子图 样来表示。 离散式子图样包含若干个频域不连续的子载波,其子载波数可与集中式子 图样的数目一致, 也可不同, 只要包含的子载波数满足一定的长度要求即可, 但其数目一旦确定,则之后的离散式子图样中包含的子载波数保持不变。此外, 子载波的选择可以基于均匀分布数、 伪随机数, 也可以基于由 RS序列衍生的 基本序列。 为了有利于频率分集, 离散式分配图样由若干个时间上连续或不连 续 , 频域尽量散布在整个带宽中的不同位置的离散子图样来表示。 集中式分配方式和离散式分配方式采用时分的方式在一个子帧内或子帧 间进行复用。 这样能最大程度地充分发挥各自的多用户增益和频率分集的优 势。 两者是采用子帧内复用还是子帧间复用, 可以根据实际数据传输情况进行 调整, 即一个子帧中可以采用集中式分配方式, 也可以采用离散式分配方式, 还可以既采用集中式分配方式也采用离散式分配方式, 但两者是时分复用的关 系。 集中式分配方式和离散式分配方式采用子帧内时分复用时,排除用于插入 导频的 OFDM符号, 在其他用于发送用户数据的若干个 OFDM符号的区域内 时间上分为两个部分, 即为集中式分配区域和离散式分配区域, 集中式分配区 域采用集中式分配图样进行数据传输; 离散式分配区域采用离散式分配图样进 行数据传输。 集中式分配区域的位置可以在离散式分配区域之前, 也可之后。 但两者前后位置一旦确定, 则之后两者在子帧内复用时, 前后位置不再改变。 无论集中式分配图样还是离散式分配图样,均可以将若干个集中式分配图 样或者离散式分配图样分给同一个用户, 以满足用户高速数据的传输的要求。 由上可知, 本发明方法, 各个分配图样的划分相互正交。 请参照图 1至图 3了解本发明方法的具体实施例。 以采用 OFDM技术的 3GPP的长期演进研究的下行 5MHz带宽通信系统 为例 , 10ms的帧均分为 20个 0.5ms的子帧 , 每个子帧包含 7个 OFDM符号, 对于 5MHz带宽的系统来说, 每个符号含有 512个子载波, 其中 300个为有用 子载波用来传输数据, 其他为保护带和直流子载波。 系统带宽可以变化。 图 1为集中式分配方式与离散式分配方式子帧内时分复用的具体实施例。 在一个 0.5ms的子帧 i中, 假设第一个 OFDM符号, 即符号 0, 用来发送导频 和共享控制信息, 其余 6个符号, 即符号 1 ~ 6用来发送用户数据, 集中式分 配方式和离散式分配方式采用子帧内时分复用的方式。 首先将符号 1 ~ 6在时 域分为两个部分, 子载波集中分配区域和子载波离散分配区域。 此实施例为两 个区域各占 3个符号, 符号 1 ~ 3为子载波集中分配区域, 子载波 4 ~ 6为子载 波离散分配区域。 对应于这两种区域,我们定义两种基本的分配图样,集中式分配图样和离 散式分配图样。 对于子载波集中分配区域, 集中式分配图样的设计有利于获得 多用户分集增益, 而对于子载波离散分配区域, 离散式分配图样则适合获得频 率分集增益。此外,每个分配图样包含若干个子图样,每个符号占一个子图样。 在此实施例中, 因为每个分配区域均包含 3个符号, 所以, 集中式分配图样包 含 3个集中式子图样, 离散式分配图样也包含 3个离散式子图样。 每个集中式子图样含有 25个连续的子载波,在符号 1 ~ 3分别取相同序号 的集中式子图样组成一个集中式分配图样, 如, 符号 1 ~ 3 中的 3个集中式子 图样 0组成集中式分配图样 0, 共包含 25 X 3 ( 75 )个子载波, 在此实施例中, 共包含 12个这样的集中式分配图样 0 - 11 ,图 1用不同填充方式的长方格表示 出了集中式分配图样 0, 集中式分配图样 1和集中式分配图样 11。 每个离散式子图样则含有 25个频率上离散的子载波, 子载波的选择基于 由 RS序列 †生的基本序列。 此实施例中, 此基本序列为 ( 9, 1, 3, 4, 10, 7, 0, 8, 6, 5, 11, 2 )。 首先将 300个有用子载波等分为 25组, 组号标记为 0 ~ 24, 每組 包含 12个连续的子载波, 标记为 0 ~ 11 ,根据基本序列在每组中选择一个子载 波组成一个离散式子图样, 这样既做到了频率分集, 基于 RS序列的选择又有 利于避免邻近小区的干扰。 如, 组 0中选择子载波 9 , 組 1 中选捧子载波 1, 如此类推, 组 11选择子载波 2, 之后重复此基本序列, 组 12选择子载波 9, 再如此类推, 组 23选择子载波 2, 组 24选择子载波 9, 这样选出的 25个离散 的子载波组成离散式子图样 0, 如图 1 中左斜线长方格表示; 再根据基本序列 向右循环移位 1位形成的序列, 按照此方法组成离散式子图样 1 , 如图 1中竖 线长方格表示; 如此类推, 形成 12个离散式子图样, 图 1 中点式长方格表示 离散式子图样 11。 为了进一步实现频率分集, 在选择离散式子图样组成离散式 分配图样时, 在每个符号中将选择频域尽量散布在整个带宽中的不同位置的离 散子图样, 在此实施例中, 符号 4的离散式子图样 0, 符号 5的离散式子图样 1 , 符号 6中的离散式子图样 2组成离散式分配图样 0, 如图 1符号 4 ~ 6中的 浅白色格线所示, 此离散式分配图样包含 25 X 3 ( 75 )个离散的子载波; 如此 类推, 符号 4的离散式子图样 1, 符号 5的离散式子图样 2, 符号 6中的离散 式子图样 3组成离散式分配图样 1, 如图 1符号 4~6中的深灰色格线所示; 再 如此类推, 形成 12个离散式分配图样, 图 1符号 4-6中的灰色格线所示的为 离散式分配图样 11。 图 2 为集中式分配方式和离散式分配方式采用子帧间一种时分复用的具 体实施例。 在此实施例中, £设在一个 0.5ms的子帧中, 第一个 OFDM符号, 即符号 0, 用来发送导频和共享控制信息, 其余 6个符号, 即符号 1 ~ 6用来发 送用户数据。子帧 i采用集中式分配的方式,符号 1 -3中的集中式子图样組成 集中式分配图样 0~ 11,符号 4~6中的集中式子图样组成集中式分配图样 12 ~ 23。 子帧 (i+1)采用离散式分配的方式, 符号 1 ~3 中的离散式子图样组成离散 式分配图样 0~ 11, 符号 4~6中的离散式子图样组成离散式分配图样 12-23。 集中式分配图样和离散式分配图样的组成类似于具体实施例 1。
'图 3 为集中式分配方式和离散式分配方式采用子帧间另外一种时分复用 的具体实施例。 在此实施例中, ^_设在一个 0.5ms的子帧中, 第一个 OFDM符 号, 即符号 0, 用来发送导频和共享控制信息, 其余 6个符号, 即符号 1 6用 来发送用户数据。 子帧 i采用集中式分配的方式,符号 1 ~6中的集中式子图样 组成集中式分配图样 0~11。 子帧 (i+1)釆用离散式分配的方式, 符号 1~6中的 离散式子图样组成离散式分配图样 0~11。 集中式分配图样和离散式分配图样 的组成类似于具体实施例 1。 利用本发明的方法在数据复用过程中 ,采用子帧间或子帧内时分复用集中 式分配图样和离散式分配图样, 既能充分发挥这两种分配图样各自的优势, 以 适合各种信道环境, 同时分配方式简单, 控制灵活, 大大降低了控制信令的开 销, 同时两种分配方式由于采用的时分的复用形式, 所以能在频域最大程度发 挥频率分集和多用户增益。 如果基于 RS序列来设计离散式分配图样, 则还能 有效降低小区间的干 ί光。 利用上述的方法 艮容易可以推广得到本发明数据复用的其它变形,例如, 子载波集中分配区域和子载波离散分配区域的改变, 集中式分配图样数目的改 变, 离散式分配图样数目的改变, 集中式分配图样中含有集中式子图样数目的 改变, 离散式分配图样中含有离散式子图样数目的改变, 集中式子图样含有连 续子载波数目的改变, 离散式子图样含有离散子载波数目的改变, 导频符号所 处位置的不同等等特征, 可以自由组合成多个数据复用的实施例。 熟悉本技术 领域的人员应理解, 以上仅为本发明的较佳实施例, 并非用来限定本发明的实 施范围; 凡是依本发明作等效变化与修改, 都被本发明的专利范围所涵盖。

Claims

权 利 要 求 书
1. 一种正交频分复用通信系统的数据复用方法, 在时域和频域以分配图样 为基本分配单位对数据进行复用, 其特征在于, 包括:
形成包含集中式分配图样和 /或离散式分配图样的子帧或帧的步 驟; 及
在子帧或帧内和 /或在子帧或帧之间时分复用所述集中式分配图样 和离散式分配图样的步驟;
其中,所述集中式分配图样和离散式分配图样位于所述子帧或帧中 用于发送用户数据的多个正交频分复用符号内;
其中,所述集中式分配图样为在所述多个正交频分复用符号内的多 个在频 i或连续分布的子载波組成的区域; 所述离散式分配图样为在所述 多个正交频分复用符号内的多个在频: t或不连续分布的子载波组成的区 域。
2. 根据权利要求 1所述的数据复用方法, 其特征在于, 所述集中式分配图 样包括多个集中式子图样;所述离散式分配图样包括多个离散式子图样; 所述多个集中式子图样中的每一个在时间上为一个正交频分复用符号, 在频域上占多个连续的子载波; 所述多个离散式子图样中的每一个在时 间上为一个正交频分复用符号, 在频域上占多个不连续的子载波。
3. 根据权利要求 1或 2所述的数据复用方法, 其特征在于, 组成所述离散 式分配图样或离散式子图样的子载波的选择基于均匀分布数、 伪随机数 或基于由 RS序列衍生的基本序列。
4. 才艮据权利要求 2所述的数据复用方法, 其特征在于, 所述集中式子图样 中包含的子载波数根据最 '〗、数据单元的长度和 /或减轻反馈量测数据所 带来的开销来确定,且所述确定了的集中式子图样的子载波数保持不变; 所述离散式子图样中包含的子载波数根据要满足的长度来确定 , 且所述 确定了的离散式子图样的子载波数保持不变。
5. 根据权利要求 1所述的数据复用方法, 其特征在于, 进一步包括排除所 述子帧或帧中用于插入导频的 OFDM符号的步骤。
6. 根据权利要求 1、 2、 4或 5中任一权利要求所述的数据复用方法, 其特 征在于, 当在子帧或帧内时分复用所迷集中式分配图样和离散式分配图 样时, 传输所述集中式分配图样的集中式分配区域的位置在传输所述离 散式分配图样的离散式分配区域的前面或后面; 且, 所述确定了的前后 位置在后续的子帧复用中保持不变。
7. 根据权利要求 1所述的数据复用方法, 其特征在于, 所述多个集中式分 配图样或离散式分配图样可被分配给同一用户。
8. 根据权利要求 1所述的数据复用方法, 其特征在于, 所述各个分配图样 的划分相互正交。
PCT/CN2006/003770 2006-01-20 2006-12-30 Procédé de multiplexage de données dans un système de multiplexage par répartition orthogonale de la fréquence WO2007082456A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100112445A CN101005341B (zh) 2006-01-20 2006-01-20 一种正交频分复用通信系统的数据复用方法
CN200610011244.5 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007082456A1 true WO2007082456A1 (fr) 2007-07-26

Family

ID=38287254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003770 WO2007082456A1 (fr) 2006-01-20 2006-12-30 Procédé de multiplexage de données dans un système de multiplexage par répartition orthogonale de la fréquence

Country Status (2)

Country Link
CN (1) CN101005341B (zh)
WO (1) WO2007082456A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742668B (zh) 2008-11-06 2012-01-25 中兴通讯股份有限公司 一种资源单元映射方法
CN101998259A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 多播控制信道占用资源的配置方法、装置和系统
CN102325377B (zh) * 2011-05-24 2014-08-06 电信科学技术研究院 一种资源调度指示方法及装置
CN108400849B (zh) * 2017-02-04 2022-04-29 中兴通讯股份有限公司 信息发送方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604509A (zh) * 2004-10-29 2005-04-06 清华大学 多媒体信息传输中时频矩阵二维信道动态分配方法
WO2005081437A1 (en) * 2004-02-17 2005-09-01 Huawei Technologies Co., Ltd. Multiplexing scheme in a communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297089C (zh) * 2003-03-14 2007-01-24 北京泰美世纪科技有限公司 基于ofdm的广播系统中频率跳变的连续导频的数据传输方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081437A1 (en) * 2004-02-17 2005-09-01 Huawei Technologies Co., Ltd. Multiplexing scheme in a communication system
CN1604509A (zh) * 2004-10-29 2005-04-06 清华大学 多媒体信息传输中时频矩阵二维信道动态分配方法

Also Published As

Publication number Publication date
CN101005341A (zh) 2007-07-25
CN101005341B (zh) 2011-07-13

Similar Documents

Publication Publication Date Title
EP1985041B1 (en) Apparatus and method for allocating resources and performing communication in a wireless communication system
JP4926288B2 (ja) 基地局装置およびリソース・ブロック割当方法
EP2721891B1 (en) Method and apparatus for allocating resource of common control channel with dedicated reference signal
JP5074007B2 (ja) ユーザ端末装置及び基地局装置
JP5259409B2 (ja) 基地局装置および制御チャネル配置方法
KR101288369B1 (ko) 송신장치 및 통신방법
WO2006135187A2 (en) A method of allocating wireless resources in a multi-carrier system
WO2004004269A1 (en) Dual-mode shared ofdm methods/transmitters, receivers and systems
EP2232757A1 (en) Ofdma frame structures for uplinks in mimo networks
AU2007314471A1 (en) Method and apparatus for multiplexing code division multiple access and single carrier frequency division multiple access transmissions
US8218420B2 (en) Non-cyclic evolving-type user resource structure for OFDMA based system with null guard tones
KR20130050111A (ko) 다중 안테나를 위한 제어 채널 검색 방법 및 장치
US9509473B2 (en) Method and device for sending and receiving a reference signal
WO2008000116A1 (fr) Procédé de multiplexage de données pour un système de communication d'accès multiple par répartition orthogonale de la fréquence
US20110292906A1 (en) Method, apparatus, and system for coordinated multi-point transmission
KR20070081454A (ko) 주파수 다이버시티를 위한 전송 자원 할당과 시그널링 방법및 장치
WO2007082456A1 (fr) Procédé de multiplexage de données dans un système de multiplexage par répartition orthogonale de la fréquence
KR20130051092A (ko) 무선 통신 시스템의 자원 할당 방법 및 장치
WO2010111037A1 (en) A non-cyclic evolving-type user resource structure for ofdma based system with null guard tones
KR20080011007A (ko) 직교주파수다중접속 방식의 이동통신 시스템에서 파일럿 배치 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06840800

Country of ref document: EP

Kind code of ref document: A1