WO2007080773A1 - Ad hoc network system and its node device - Google Patents

Ad hoc network system and its node device Download PDF

Info

Publication number
WO2007080773A1
WO2007080773A1 PCT/JP2006/325749 JP2006325749W WO2007080773A1 WO 2007080773 A1 WO2007080773 A1 WO 2007080773A1 JP 2006325749 W JP2006325749 W JP 2006325749W WO 2007080773 A1 WO2007080773 A1 WO 2007080773A1
Authority
WO
WIPO (PCT)
Prior art keywords
node device
node
route
tunnel
communication destination
Prior art date
Application number
PCT/JP2006/325749
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Ishibashi
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2007513527A priority Critical patent/JP4335945B2/en
Publication of WO2007080773A1 publication Critical patent/WO2007080773A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to an ad hoc “network” system and a node device constituting an ad hoc “network” system.
  • a network can be constructed without depending on the existing communication infrastructure.
  • Non-Patent Document 1 DSR
  • Non-Patent Document 2 AODV
  • DSR Non-Patent Document 1
  • AODV Non-Patent Document 2
  • Non-Patent Document 3 is a document showing a proactive routing protocol. According to this protocol, routing information is always exchanged. Thus, an environment is provided in which communication can be started based on the path information held when a communication request occurs.
  • Non-Patent Document l DSR (Dynamic Source Routing) —draft— ietf—manet—dsr
  • Non-Patent Document 2 AODV (Ad Hoc On-demand-distance Vector Routing): RFC3561
  • Non-Patent Document 3 OLSR (Optimized Link State Routing): RFC3626
  • Non-Patent Document 4 J 031 ⁇ (J 1115 61: 116 & (1—0 & 6 & Switch Routing): "Routing and Multicast in Multihop, Mobile Wireless Networks," Proc. IEEE
  • Non-Patent Document 5 HSR (Hierarchical State Routing): "A Wireless Hierarchical Routing Protocol with Group Mobility,” Proc. IEEE WCNC '9 9, September, 1999
  • Non-Patent Document 6 ZRP (Zone Routing Protocol; fhe Performance of Query Control Schemes for the Zone Routing Protocol, "ACM / IEEE Transactions on Networking, August, 2001
  • Non-Patent Document 7 LANMAR (Landmark Ad Hoc Routing Protocol): "Landmark Routing for Large Scale Wireless Ad Hoc Networks with Group Mobility,” Proc. ACM / IEEE MOBHOC 2000, August, 2000
  • the path is established only when communication is performed, so the memory resources required in each node device are It depends on the number of simultaneous communications. Therefore, the impact on the memory resources of each node device is small compared to the pro-active routing protocol.
  • each relay node device configuring an ad hoc 'network system Provides an ad hoc network system and its node device that effectively reduce the route information of the relay node device located in the corresponding route when holding a plurality of routes in the same direction.
  • each relay node device itself that constitutes the ad hoc 'network depends on its own memory' resource. The purpose is to provide an ad hoc 'network' system and its node devices that effectively reduce the routing information held in the network.
  • the present invention provides an ad hoc network in which a plurality of node devices autonomously form a network based on an on-demand routing 'protocol.
  • a relay node device that relays a message to the communication destination node device requests a route search to the predetermined communication destination node device in the relay node device located between itself and the predetermined communication destination node device. It is characterized in that a virtual tunnel for making a response operation to the node unnecessary is set between itself and the predetermined communication destination node device.
  • the present invention when there are a plurality of node device power route search requests for the same communication destination node device and the route for which the route search request has been made is continuously used, Since a virtual tunnel is autonomously formed between a relay node device that relays a message to one communication destination node device and the same communication destination node device, it relays other node devices located within the virtual tunnel There is no need for processing, and in these other node devices, it is possible to reduce the route information and the processing for maintaining and managing the route, so that an efficient system construction can be achieved.
  • FIG. 1 is a diagram showing a configuration of an ad hoc network system according to Embodiment 1 of the present invention in which a plurality of nodes autonomously configure a network.
  • FIG. 2 is a diagram for explaining a route search procedure when performing communication between nodes in an ad hoc “network” system.
  • FIG. 3 is a chart showing an example of a route table in the node 101-X in the ad hoc “network” system.
  • FIG. 4 is a diagram showing an example of a transfer sequence in a state where a virtual tunnel is established
  • FIG. 5 is a chart showing an example of a route table in node 101-X after a virtual tunnel is established between node 101-X and node 101-Y.
  • FIG. 6 Diagram showing an example of a route table in a relay node between node 101-X and node 101-Y after a virtual tunnel is established between node 101-X and node 101-Y. It is.
  • FIG. 7 is a chart showing an example of a route table in the node 101-Y after the virtual tunnel is established between the node 101-X and the node 101-Y.
  • FIG. 8 is a diagram showing a transfer sequence in maintenance / management of a route table after a virtual tunnel is established.
  • FIG. 9 is a diagram showing a transfer sequence when a new node is added after the virtual tunnel is established.
  • FIG. 10 is a diagram for explaining the features of the ad hoc “network” system according to the second embodiment of the present invention, and for any 3 on the network constituting the ad hoc network system shown in FIG. It is the figure which extracted the node.
  • FIG. 11 is a diagram showing a virtual tunnel establishment request to an adjacent node and a transfer sequence when establishing a virtual tunnel between adjacent nodes between the nodes in the positional relationship as shown in FIG.
  • FIG. 1 is a diagram showing a configuration of an ad hoc network system according to a first embodiment of the present invention in which a plurality of node devices (hereinafter simply referred to as “nodes”) autonomously configure a network.
  • the ad hoc “network” system 100 shown in FIG. 1 is connected to nodes 101 constituting the system, or a node group 110 composed of a plurality of nodes 101 and a wireless link 102 having a force of 1 or more.
  • the function is exerted by performing predetermined communication based on the above-described ad-hoc routing protocol such as on-demand type DSR or A ODV between the wireless links 102.
  • the node group 110 includes a plurality of intermediate nodes (relay nodes).
  • the communication power between the node 101-B and the node 101-X includes a plurality of nodes ( This means that it is performed via a relay node.
  • Fig. 2 is a diagram for explaining the route search procedure for communication between nodes in an ad hoc 'network' system.
  • the portion indicated by the broken line in the figure indicates the presence of a plurality of relay nodes similar to the node group 110 shown in FIG. 1, for example, node 101-F, node 101-Y, and node 101 — X and node 101— ⁇ is connected through multiple relay nodes.
  • the node that receives the Route Request determines whether the destination node included in the Route Request is not its own node and based on the combination of the sequence number included in the Route Request and other information. If it is determined that the corresponding Route Request is unprocessed as a result of “Route Request Duplication Check”), the received Route Request is flooded again in the network (sequence SQ102). This Then, route information (Reverse Path: “reverse route information” t, hereinafter) returned to the transmission source of the corresponding Route Request is registered in its own route table (sequence SQ 103).
  • the node specified as the destination node included in the route search request message is when the route to the destination of the received Route Request is optimal with respect to the reception of the Route Request.
  • Sends a route search reply message (Route Reply) to node 101—A which is the source of Route Request (sequence S Q104).
  • the Route Reply notified from the destination node is transferred along the route information (Reverse Path) returning from the destination node registered in each node to the source node by flooding the Route Request.
  • the node that receives the Route Reply registers the route information (Forwarding Path: “forwarding route information” t, hereinafter) for the route reply source node in its own route table and has already been registered in the route table.
  • the received route reply is forwarded according to the reverse route information (sequence SQ105).
  • a route search procedure toward the destination node 101-Y is performed, and the nodes 101-B and A path between each node with node 101-C and node 101-Y is determined.
  • the transfer route information for node 101-B is registered in its own route table at each node on the route between node 101-B and node 101-Y.
  • the reverse route information that goes in the reverse direction with the node 101-Y as the transmission source is registered in its own route table.
  • the transfer route information toward the node 101-C and the reverse route information returning to the node 101-C are stored in its own route table.
  • FIG. 3 is a chart showing an example of a route table in the node 101-X in the ad hoc “network” system.
  • This routing table holds the source node identifier 21, destination node identifier 22, next hop (forwarding destination) node identifier 23, status flag 24, lifetime 25, and other 26 elements, and the same transmission.
  • N destined for the destination node (N is a predetermined natural number)
  • Route information and M reverse route information (M is a predetermined natural number) reversely registered with the same destination node as the source node.
  • N pieces of transfer route information toward the node 101-Y and the node 101—M reverse route information with Y as the sender is registered in its route table.
  • FIG. 4 is a diagram showing an example of a transfer sequence in a state where a virtual tunnel is established.
  • node 101-E communicates with node 101-Y when communicating with node 101-Y of nodes 101-A, B, and C! /. This assumes a starting case.
  • the node 101-E prior to communication with the node 101-Y, floods a route search request message (Route Request) (sequence SQ201).
  • the route request flooded by the node 101-E is received by the node 101-X via a plurality of relay nodes in the ad hoc network.
  • the node 101-X performs a route search toward the node 101Y in order to transmit a tunnel establishment request message (Tunnel Request) described later to the node 101-Y (sequence SQ202).
  • the node 101—X encapsulates the tunnel establishment request message (Tunnel Request) toward the node 101—Y.
  • the virtual tunnel Tunnel Request includes reverse path information (nodes 101-A, 101-B and 1101-C) for the request destination of the virtual tunnel.
  • Each node on the route between the node 101-X and the node 101-Y that receives the virtual tunnel Tunnel Request is stored in the route table of each node.
  • the virtual tunnel Tunnel Request is transferred according to the route information (sequence SQ204).
  • Node 101—Y reports a tunnel establishment response message (Tunnel Reply) to node 101—X according to the information included in the received virtual tunnel Tunnel Request (sequence SQ205).
  • the Tunnel Request includes nodes 101-A, 101-B and 101-C as nodes to be accommodated in the virtual tunnel, and the route information of the nodes 101-A, 101-B and 101-C is virtualized. Update for tunnels.
  • the node 101-X receives the virtual tunnel Tunnel Reply, whereby a virtual tunnel is established between the node 101-X and the node 101-Y.
  • the node 101—X forwards R oute Reply that is a response to the Route Request from the node 101—E (sequence SQ206).
  • the route information for the nodes 101-A, 101-B and 101-C included in the tunnel establishment request message (Tunnel Request) is Since the message is transferred on the virtual tunnel between the node 101-X and the node 101-Y, the message is not transferred based on the corresponding route information. Therefore, the corresponding route information in the relay nodes such as the nodes 101-A, 101-B and 101-C is deleted from the route table after a predetermined time has elapsed. This situation is shown in the charts in Figs.
  • FIG. 5 is a diagram showing an example of a route table in the node 101-X after the virtual tunnel is established between the node 101-X and the node 101-Y
  • FIG. 7 is a diagram showing an example of a route table in a relay node between the node 101-X and the node 101-Y after the virtual tunnel is established between the node X and the node 101-Y
  • FIG. 10 is a chart showing an example of a route table in the node 101-Y after the virtual tunnel is established between the 101-X and the node 101-Y.
  • a node located on the path between the node 101-X and the node 101-Y has a tunnel establishment request message (Tunnel Request) or sniffs a tunnel establishment response message (Tunnel Reply), It is also possible to delete the transfer route information and the reverse route information for the nodes 101—A, 101—B and 101—C included in the tunnel establishment request message (Tunnel Request) from the route table of the own node.
  • Tunnel Request tunnel establishment request message
  • Tunnel Reply sniffs a tunnel establishment response message
  • Fig. 8 is a diagram showing the transfer sequence for maintaining and managing the route table after the virtual tunnel is established.
  • a route search procedure is performed at regular intervals between nodes where a route has been established in order to maintain and manage (transfer route information Z reverse route information) in the established route.
  • the node 101-A floods a route search request message (Route Request) for maintaining and managing the route table held by itself (sequence SQ301).
  • the node 101—X which has established a virtual tunnel in its own route table, searches for a route instead of the node 101—Y in response to a Route Request addressed to the node 101—Y that is the end of the virtual tunnel.
  • Reply reply message (Route Reply) with proxy (sequence S Q302) o
  • This proxy response processing is also performed for nodes 101- B, 101-C and 1 01-E, as shown in Figure 8 .
  • the node 101—X receives a periodic route search request message (Route Request) for the maintenance of the routes from the nodes 101—A, 101—B, 101—C and 101—E 'management.
  • the node 101-Y which is the end of the virtual tunnel, periodically floods the route request for maintaining and managing the route (sequence SQ303) and is the request destination of the virtual tunnel.
  • the node 101—Y is periodically notified of a tunnel establishment request message (Tunnel Request) for maintenance (management) of the route (reverse route information) (sequence SQ304).
  • FIG. 9 shows the transfer sequence when a new node is added after the virtual tunnel is established.
  • the node 101-F floods a route search request message (Route Request) for the node 101-Y to newly communicate with the node 101-Y (sequence SQ401).
  • Route Request route search request message
  • node 101-X receives the tunnel establishment response message (Tunnel Reply) from node 101-Y (sequence SQ404), and when new node 101-F is added, A virtual tunnel between 101-X and node 101-Y is maintained.
  • each of the node devices located at both ends of the virtual tunnel responds in response to a route search request message (Route Request) for the virtual tunnel.
  • a route search request message (Route Request) for the virtual tunnel.
  • the above example shows a case where a proxy response is made on behalf of node 101—Y to the node 101—X power source node that has received the route search request message (Route Request) for node 101—Y.
  • the node 101—Y force that received the route search request message (Route Request) for the node 101—X will respond as a proxy instead of the node 101—X to the source node.
  • the force tunnel 101-X shown for the virtual tunnel formed between the node 101-X and the node 101-Y is limited to one virtual tunnel. Virtual tunnels can also be formed with other arbitrary node devices.
  • a relay node constituting an ad hoc 'network' system has a route search request from a plurality of nodes to the same destination, and continues to route.
  • a virtual tunnel between the relay node and the destination node By forming a channel autonomously, multiple routes are aggregated into a virtual tunnel! / Reduce the route information held by the relay node located between the corresponding relay node and the corresponding destination node Is possible.
  • the node that is the end point of the autonomously formed virtual tunnel responds with a route search response message as a proxy to the route search request message for route maintenance and management.
  • the route information is maintained between the end nodes of the virtual tunnel and the node information that communicates via the virtual tunnel.
  • the node that newly communicates via the virtual tunnel can return to the other end node of the virtual tunnel and respond to the route search response message instead. Therefore, in the relay node on the route between the endpoint nodes of the virtual tunnel, the message of the route search request message and route search response message for maintaining the route 'management The amount is the possible reduction, it is possible to reduce the overhead needed to maintain and manage routing information.
  • the relay node that processes the route search request message explained the method of reducing the route to the destination.
  • each node constituting the ad hoc network system is used. This paper describes a technique that requires the establishment of a virtual tunnel between adjacent nodes as the route information in the own node increases, and helps reduce the route information in the own node.
  • FIG. 10 is a diagram for explaining the features of the ad hoc 'network' system according to the second embodiment of the present invention, on the network constituting the ad hoc 'network' system 100 shown in FIG. It is the figure which extracted arbitrary 3 nodes 101-L, 101-M, 101-N.
  • node 101-M and node 101-N are located as adjacent nodes of node 101-L, and these node 101-M and node 101-L are connected via radio link 102.
  • Connected. 103 through 101-M, nodes 101-L, 101-N Shows the route to go.
  • FIG. 11 is a diagram showing a virtual tunnel establishment request to an adjacent node and a transfer sequence when establishing a virtual tunnel between adjacent nodes between nodes having the positional relationship as shown in FIG.
  • a path is established between a node 101-M and a node 101-N adjacent to the node 101-L, respectively. From this state, for example, when node 101-L detects the possibility of overflow in its route table due to an increase in transfer route information or reverse route information, it establishes a virtual tunnel.
  • the request is determined (sequence SQ501), and a tunnel establishment request message (Tunnel Solicitation) is transmitted to adjacent nodes 101-M and 101-N (sequence SQ502).
  • the node 1 01—M, 101—N receiving this tunnel establishment request message sends the tunnel establishment request message to the nodes 101—N, 101—M after an arbitrary random time has passed. Send to. If a tunnel establishment request message has already been received, transmission of the tunnel establishment request message (Tunnel Request) is cancelled.
  • a tunnel establishment request message (Tunnel) from the node 101-M.
  • Tunnel Request 101 is sent first (sequence SQ503), so that the node 101—N receiving this tunnel establishment request message (Tunnel Request) is the node that is the source of the tunnel establishment request message (Tunnel Request) Respond with a tunnel establishment response message (Tunnel Reply) addressed to 101-N (that is, between both node devices) (sequence SQ504).
  • Tunnel Request the node that is the source of the tunnel establishment request message
  • Tunnel Reply a tunnel establishment response message addressed to 101-N (that is, between both node devices)
  • each node constituting the ad hoc 'network' system autonomously uses a virtual tunnel with respect to an adjacent node according to increasing route information. Of the route information held in the local node by requesting Reduction is possible.
  • the present invention is useful for an ad hoc 'network' system in which a plurality of node devices autonomously form a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

In an ad hoc network system, route information in a relay node device is reduced. In the ad hoc network system in which a plurality of node devices autonomously form a network, when a route search request is made from a plurality of node devices to a communication destination node device and the route where the route search request has been made is continuously used, a relay node device relaying a message to the communication destination node device sets a virtual tunnel between the relay node device and the communication destination node device so as to eliminate the need of the response operation to the route search request toward the communication destination node device in the relay node device position between the relay node device and the communication destination device. Moreover, among the node devices positioned at the both ends of the virtual tunnel, one of the node devices responds to the route search request toward the node device of the other end instead of the relay node device positioned in the virtual tunnel.

Description

明 細 書  Specification
アドホック 'ネットワーク 'システムおよびそのノード装置  Ad hoc 'network' system and its node equipment
技術分野  Technical field
[0001] 本発明は、アドホック 'ネットワーク 'システムおよびアドホック 'ネットワーク.システム を構成するノード装置に関するものである。  The present invention relates to an ad hoc “network” system and a node device constituting an ad hoc “network” system.
背景技術  Background art
[0002] 近年における無線通信技術の進展ならびに電子機器の小型化および高度化に伴 い、従来のインフラストラクチャ型の通信形態に対して、既存のネットワーク 'インフラ を利用することなく通信機器間での通信を可能とするアドホック ·ネットワーク ·システ ムへの関心が高まっている。このアドホック 'ネットワーク 'システムは、従来の固定的 なインフラストラクチャ型のネットワーク (例えば、アクセスポイントを介して通信を行うよ うに構成されたネットワーク 'システム)とは異なり、以下に示すような特徴を有している  [0002] With the recent progress of wireless communication technology and the miniaturization and advancement of electronic devices, compared to the conventional infrastructure type communication mode, communication between communication devices without using the existing network 'infrastructure'. There is a growing interest in ad hoc networks and systems that enable communication. This ad-hoc 'network' system differs from traditional fixed infrastructure networks (for example, a network 'system configured to communicate via access points) and has the following characteristics: is doing
[0003] (1)物やデバイス間の通信である。 [0003] (1) Communication between objects and devices.
(2)膨大な数の物やデバイスによる自律的なネットワークの構築が可能である。  (2) It is possible to construct an autonomous network with a huge number of objects and devices.
(3)既存の通信インフラに依存しな 、ネットワークの構築が可能である。  (3) A network can be constructed without depending on the existing communication infrastructure.
(4)手軽な、および一時的に利用するネットワークの構築が可能である。  (4) A simple and temporary network can be constructed.
(5)トポロジーの変化に対応するための自律性が要求される。  (5) Autonomy to respond to topology changes is required.
[0004] 現在、上記の特徴を満たすため、アドホック 'ネットワーク 'システムに適用するため の種々のルーティング 'プロトコル(アドホック 'ルーティング 'プロトコル)が提案されて いる(例えば、非特許文献 1〜3参照)。  [0004] At present, various routing 'protocols (ad hoc' routing 'protocols) for application to ad hoc' network 'systems have been proposed in order to satisfy the above characteristics (for example, see Non-Patent Documents 1 to 3). .
[0005] ここで、非特許文献 1 (DSR)および非特許文献 2 (AODV)は、オン ·デマンド (On demand)型のルーティング.プロトコルを示した文献である。これらのプロトコルに よれば、通信の要求が生じた際に送信元力 送信先までの経路が設定され、所定の 通信を行うための環境が提供される。  [0005] Here, Non-Patent Document 1 (DSR) and Non-Patent Document 2 (AODV) are documents showing an on-demand type routing protocol. According to these protocols, when a communication request occurs, a route to the transmission source power transmission destination is set, and an environment for performing predetermined communication is provided.
[0006] また、非特許文献 3 (OLSR)は、プロ ·アクティブ(Proactive)型のルーティング ·プ ロトコルを示した文献である。このプロトコルによれば、経路情報を常時交換すること により、通信の要求が生じた際に保持する経路情報に基づいて通信の開始を可能と する環境が提供される。 [0006] Non-Patent Document 3 (OLSR) is a document showing a proactive routing protocol. According to this protocol, routing information is always exchanged. Thus, an environment is provided in which communication can be started based on the path information held when a communication request occurs.
[0007] なお、これらの DSR, AODV, OLSRの各ルーティング 'プロトコルは、ネットワーク を単一のアドホック 'ルーティング 'プロトコルにより形成することから、フラット 'ルーテ イング(Flat Routing)プロトコルとして分類されているが、これらのフラット 'ルーティ ング ·プロトコルとは異なり、大規模ネットワークへの対応を目指し、各ノード装置をク ラスタ (あるいは、ゾーン)でまとめることにより、階層的に経路探索 ·制御を行う階層型 ルーティング ·プロトコルと呼ばれて 、る種々のルーティング ·プロトコルも提案されて いる(例えば、非特許文献 4 7参照)。  [0007] Note that these DSR, AODV, and OLSR routing 'protocols' are classified as flat 'Flat Routing' protocols because the network is formed by a single ad hoc 'routing' protocol. Unlike these flat routing protocols, hierarchical routing that searches and controls hierarchically by grouping each node device in a cluster (or zone) with the aim of supporting large-scale networks. · Various routing protocols called protocols have also been proposed (for example, see Non-Patent Document 47).
[0008] 非特許文献 l : DSR (Dynamic Source Routing)—draft— ietf—manet—dsr  [0008] Non-Patent Document l: DSR (Dynamic Source Routing) —draft— ietf—manet—dsr
10. txt)  10.txt)
非特許文献 2 : AODV (Ad Hoc On - demand - distance Vector Routing): RFC3561  Non-Patent Document 2: AODV (Ad Hoc On-demand-distance Vector Routing): RFC3561
非特許文献 3 : OLSR (Optimized Link State Routing): RFC3626 非特許文献4:じ031^(じ1115 61:116&(1—0& 6 & Switch Routing): "Routing and Multicast in Multihop, Mobile Wireless Networks, "Proc. IEEE Non-Patent Document 3: OLSR (Optimized Link State Routing): RFC3626 Non-Patent Document 4: J 031 ^ (J 1115 61: 116 & (1—0 & 6 & Switch Routing): "Routing and Multicast in Multihop, Mobile Wireless Networks," Proc. IEEE
ICUPC '97, October, 1997 ICUPC '97, October, 1997
非特許文献 5 : HSR (Hierarchical State Routing): "A Wireless Hierarchi cal Routing Protocol with Group Mobility, "Proc. IEEE WCNC '9 9, September, 1999  Non-Patent Document 5: HSR (Hierarchical State Routing): "A Wireless Hierarchical Routing Protocol with Group Mobility," Proc. IEEE WCNC '9 9, September, 1999
非特許文献 6 : ZRP (Zone Routing Protocol; fhe Performance of Quer y Control Schemes for the Zone Routing Protocol, "ACM/IEEE T ransactions on Networking, August, 2001  Non-Patent Document 6: ZRP (Zone Routing Protocol; fhe Performance of Query Control Schemes for the Zone Routing Protocol, "ACM / IEEE Transactions on Networking, August, 2001
非特許文献 7 :LANMAR (Landmark Ad Hoc Routing Protocol): "Landm ark Routing for Large Scale Wireless Ad Hoc Networks with Gro up Mobility, "Proc. ACM/IEEE MOBHOC 2000, August, 2000 発明の開示  Non-Patent Document 7: LANMAR (Landmark Ad Hoc Routing Protocol): "Landmark Routing for Large Scale Wireless Ad Hoc Networks with Group Mobility," Proc. ACM / IEEE MOBHOC 2000, August, 2000
発明が解決しょうとする課題 [0009] ところが、上記 OLSR等に代表される従来のプロ'アクティブ型のルーティング 'プロ トコルでは、各ノード装置の持つトポロジ情報がネットワーク内のノード装置数に依存 して増大するため、センサ'ネットワークのように数多くのノード装置より構成されるマ ルチホップ ·ネットワークにお 、ては、各ノード装置で管理するテーブル ·サイズが増 大し、莫大なメモリ'リソースを必要とするといつた問題点があった。 Problems to be solved by the invention [0009] However, in the conventional pro 'active type routing' protocol represented by the above-mentioned OLSR, the topology information of each node device increases depending on the number of node devices in the network. In such a multi-hop network composed of a large number of node devices, the size of the table managed by each node device increases, requiring a huge amount of memory resources. It was.
[0010] 一方、上記 AODVや DSR等に代表される従来のオン.デマンド型のルーティング. プロトコルでは、通信を行うときにのみ経路が確立されるので、各ノード装置で必要と なるメモリ'リソースは同時に行う通信の数に依存することになる。したがって、各ノー ド装置のメモリ ·リソースに与える影響は、プロ ·アクティブ型のルーティング ·プロトコ ルに比べて小さい。  [0010] On the other hand, in the conventional on-demand type routing protocol represented by AODV, DSR, etc., the path is established only when communication is performed, so the memory resources required in each node device are It depends on the number of simultaneous communications. Therefore, the impact on the memory resources of each node device is small compared to the pro-active routing protocol.
[0011] しかしながら、今後のアドホック 'ネットワーク 'システムにおいては、あるセンサ'ノー ド装置から特定ノード装置への情報通知を想定した場合に、特定ノード装置近辺の ノード装置への通信の集中や、様々なセンサ'ノード装置間での通信の存在によるメ モリ'リソースに大きな制約を持つノード装置を介した通信の発生など、を考慮する必 要があり、たとえオン'デマンド型のルーティング 'プロトコルであっても、各ノード装置 で確保されるメモリ ·リソースを超えた経路探索が行われると 、つた問題点の存在が 顕在化している。  [0011] However, in a future ad hoc 'network' system, when information notification from a certain sensor 'node device to a specific node device is assumed, the concentration of communication to a node device in the vicinity of the specific node device and various It is necessary to consider the occurrence of communication via node devices that have significant constraints on the resources 'memory due to the presence of communication between different sensor devices, even if it is an on-demand routing' protocol. However, if a route search that exceeds the memory resources secured in each node device is performed, the existence of these problems becomes obvious.
[0012] また、複数のノード装置をクラスタ化し、階層的に経路探索'制御を行う従来の階層 型ルーティング.プロトコルにおいては、複数のノード装置の集合体であるクラスタを 維持する際に、当該ノード装置間においてメッセージの交換が頻繁に行われるため、 これらのメッセージ交換に伴うオーバヘッドが増大するとともに、クラスタの代表ノード 装置となるノード装置 (クラスタヘッド)に対して処理が集中するといつた問題点があつ た。  [0012] Further, in the conventional hierarchical routing protocol in which a plurality of node devices are clustered and route search is controlled in a hierarchical manner, when maintaining a cluster that is an aggregate of a plurality of node devices, Since messages are frequently exchanged between devices, the overhead associated with these message exchanges increases, and when the processing is concentrated on the node device (cluster head) that is the representative node device of the cluster, there is a problem that occurs. It was hot.
[0013] 本発明は、上記に鑑みてなされたものであって、複数のノード装置が自律的にネッ トワークを構成するアドホック 'ネットワーク 'システムにおいて、アドホック 'ネットワーク •システムを構成する各中継ノード装置が、同一方向に向けた複数の経路を保持す る際に、該当経路中に位置する中継ノード装置の経路情報を効果的に削減するアド ホック ·ネットワーク ·システムおよびそのノード装置を提供することを目的とする。 [0014] また、複数のノード装置が自律的にネットワークを構成するアドホック 'ネットワーク' システムにおいて、アドホック 'ネットワークを構成する各中継ノード装置自身が、 自身 の持つメモリ'リソースに応じて、自ノード装置において保持する経路情報を効果的に 削減するアドホック 'ネットワーク 'システムおよびそのノード装置を提供することを目 的とする。 [0013] The present invention has been made in view of the above, and in an ad hoc 'network' system in which a plurality of node devices autonomously configure a network, each relay node device configuring an ad hoc 'network system Provides an ad hoc network system and its node device that effectively reduce the route information of the relay node device located in the corresponding route when holding a plurality of routes in the same direction. Objective. [0014] Also, in an ad hoc 'network' system in which a plurality of node devices autonomously form a network, each relay node device itself that constitutes the ad hoc 'network depends on its own memory' resource. The purpose is to provide an ad hoc 'network' system and its node devices that effectively reduce the routing information held in the network.
課題を解決するための手段  Means for solving the problem
[0015] 上述した課題を解決し、 目的を達成するために、本発明は、オン ·デマンド型のル 一ティング 'プロトコルに基づいて複数のノード装置が自律的にネットワークを形成す るアドホック ·ネットワーク ·システムにお 、て、所定の通信先ノード装置に対して複数 のノード装置力 の経路探索要求があり、かつ、該探索要求のあった経路が継続し て使用されるときに、前記所定の通信先ノード装置へのメッセージを中継する中継ノ ード装置は、自身と該所定の通信先ノード装置との間に位置する中継ノード装置に おける該所定の通信先ノード装置に向けた経路探索要求への応答動作を不要とす るための仮想トンネルを自身と該所定の通信先ノード装置との間に設定することを特 徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides an ad hoc network in which a plurality of node devices autonomously form a network based on an on-demand routing 'protocol. · In the system, when there is a route search request for a plurality of node device powers to a predetermined communication destination node device, and the route for which the search request has been used is continuously used, A relay node device that relays a message to the communication destination node device requests a route search to the predetermined communication destination node device in the relay node device located between itself and the predetermined communication destination node device. It is characterized in that a virtual tunnel for making a response operation to the node unnecessary is set between itself and the predetermined communication destination node device.
発明の効果  The invention's effect
[0016] この発明によれば、同一の通信先ノード装置に対して複数のノード装置力 の経路 探索要求があり、かつ、経路探索要求のあった経路が継続して使用されるときに、同 一の通信先ノード装置へのメッセージを中継する中継ノード装置と同一の通信先ノー ド装置との間に仮想トンネルが自律的に形成されるので、仮想トンネル内に位置する 他のノード装置の中継処理が不要となり、これらの他のノード装置において、経路情 報の削減と経路の維持 ·管理のための処理の削減とが可能となり、効率的なシステム 構築が図れるという効果が得られる。  According to the present invention, when there are a plurality of node device power route search requests for the same communication destination node device and the route for which the route search request has been made is continuously used, Since a virtual tunnel is autonomously formed between a relay node device that relays a message to one communication destination node device and the same communication destination node device, it relays other node devices located within the virtual tunnel There is no need for processing, and in these other node devices, it is possible to reduce the route information and the processing for maintaining and managing the route, so that an efficient system construction can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]複数のノードが自律的にネットワークを構成する本発明の実施の形態 1にかか るアドホック ·ネットワーク ·システムの構成を示す図である。  FIG. 1 is a diagram showing a configuration of an ad hoc network system according to Embodiment 1 of the present invention in which a plurality of nodes autonomously configure a network.
[図 2]アドホック 'ネットワーク 'システム内のノード間の通信を行う際の経路探索手順 を説明するための図である。 [図 3]アドホック 'ネットワーク 'システム内のノード 101—Xにおける経路テーブルの一 例を示す図表である。 FIG. 2 is a diagram for explaining a route search procedure when performing communication between nodes in an ad hoc “network” system. FIG. 3 is a chart showing an example of a route table in the node 101-X in the ad hoc “network” system.
[図 4]仮想トンネルが確立された状態における転送シーケンスの一例を示す図である  FIG. 4 is a diagram showing an example of a transfer sequence in a state where a virtual tunnel is established
[図 5]ノード 101— Xとノード 101— Yとの間に仮想トンネルが確立された後のノード 1 01—Xにおける経路テーブルの一例を示す図表である。 FIG. 5 is a chart showing an example of a route table in node 101-X after a virtual tunnel is established between node 101-X and node 101-Y.
[図 6]ノード 101— Xとノード 101— Yとの間に仮想トンネルが確立された後のノード 1 01—Xとノード 101—Yとの間の中継ノードにおける経路テーブルの一例を示す図 表である。  [Fig. 6] Diagram showing an example of a route table in a relay node between node 101-X and node 101-Y after a virtual tunnel is established between node 101-X and node 101-Y. It is.
[図 7]ノード 101— Xとノード 101— Yとの間に仮想トンネルが確立された後のノード 1 01—Yにおける経路テーブルの一例を示す図表である。  FIG. 7 is a chart showing an example of a route table in the node 101-Y after the virtual tunnel is established between the node 101-X and the node 101-Y.
[図 8]仮想トンネル確立後の経路テーブルの維持 ·管理における転送シーケンスを示 す図である。  FIG. 8 is a diagram showing a transfer sequence in maintenance / management of a route table after a virtual tunnel is established.
[図 9]仮想トンネル確立後に新規ノードが追加された場合の転送シーケンスを示す図 である。  FIG. 9 is a diagram showing a transfer sequence when a new node is added after the virtual tunnel is established.
[図 10]本発明の実施の形態 2にかかるアドホック 'ネットワーク 'システムの特徴を説明 するための図であり、図 1に示したアドホック ·ネットワーク ·システムを構成するネットヮ ーク上の任意の 3ノードを抽出した図である。  FIG. 10 is a diagram for explaining the features of the ad hoc “network” system according to the second embodiment of the present invention, and for any 3 on the network constituting the ad hoc network system shown in FIG. It is the figure which extracted the node.
[図 11]図 10に示すような位置関係にある各ノード間において、隣接ノードに対する仮 想トンネルの確立要請および隣接ノード間で仮想トンネルを確立する際の転送シー ケンスを示す図である。  FIG. 11 is a diagram showing a virtual tunnel establishment request to an adjacent node and a transfer sequence when establishing a virtual tunnel between adjacent nodes between the nodes in the positional relationship as shown in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に、本発明に力かるアドホック 'ネットワーク 'システムおよびそのノード装置を 説明するための各種の実施の形態を図面に基づいて詳細に説明する。なお、これら の実施の形態により本発明が限定されるものではない。 Hereinafter, various embodiments for describing an ad hoc “network” system and a node device thereof according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to these embodiments.
[0019] 実施の形態 1. [0019] Embodiment 1.
まず、本発明の実施の形態 1にかかるアドホック 'ネットワーク ·システムにつ 、て説 明する。 [0020] (システム構成) First, the ad hoc network system according to the first exemplary embodiment of the present invention will be described. [0020] (System configuration)
図 1は、複数のノード装置(以下、単に「ノード」と略す)が自律的にネットワークを構 成する本発明の実施の形態 1にかかるアドホック 'ネットワーク ·システムの構成を示 す図である。同図に示すアドホック 'ネットワーク 'システム 100は、当該システムを構 成するノード 101同士や、ノード 101と複数のノードで構成されるノード群 110と力 1 以上の無線リンク 102で結ばれている。  FIG. 1 is a diagram showing a configuration of an ad hoc network system according to a first embodiment of the present invention in which a plurality of node devices (hereinafter simply referred to as “nodes”) autonomously configure a network. The ad hoc “network” system 100 shown in FIG. 1 is connected to nodes 101 constituting the system, or a node group 110 composed of a plurality of nodes 101 and a wireless link 102 having a force of 1 or more.
[0021] また、これらの無線リンク 102の間を、例えば上述したオン 'デマンド型の DSRや A ODVといったアドホック 'ルーティング ·プロトコルに基づく所定の通信が実行されるこ とにより、その機能が発揮される。なお、ノード群 110には、複数の中間ノード(中継ノ ード)が存在しており、例えばノード 101— Bとノード 101— Xとの間の通信力 ノード 群 110を構成する複数のノード(中継ノード)を経由して行われることを意味している。  [0021] In addition, the function is exerted by performing predetermined communication based on the above-described ad-hoc routing protocol such as on-demand type DSR or A ODV between the wireless links 102. The Note that the node group 110 includes a plurality of intermediate nodes (relay nodes). For example, the communication power between the node 101-B and the node 101-X includes a plurality of nodes ( This means that it is performed via a relay node.
[0022] (経路探索手順)  [0022] (Route search procedure)
つぎに、実施の形態 1のアドホック 'ネットワーク 'システムにおける経路探索手順に ついて説明する。図 2は、アドホック 'ネットワーク 'システム内のノード間の通信を行う 際の経路探索手順を説明するための図である。なお、同図の破線部で示した部分は 、図 1で示したノード群 110と同様な複数の中継ノードの存在を示しており、例えば、 ノード 101— Fとノード 101— Y、およびノード 101— Xとノード 101— Υとは、複数の 中継ノードを介して接続されて 、る。  Next, a route search procedure in the ad hoc “network” system according to the first embodiment will be described. Fig. 2 is a diagram for explaining the route search procedure for communication between nodes in an ad hoc 'network' system. The portion indicated by the broken line in the figure indicates the presence of a plurality of relay nodes similar to the node group 110 shown in FIG. 1, for example, node 101-F, node 101-Y, and node 101 — X and node 101—Υ is connected through multiple relay nodes.
[0023] 図 2において、アドホック 'ネットワーク 'システム内のノード 101— Α力 ノード 101— Yと通信を行う際には、まず、ノード 101— Yに向けた経路探索要求メッセージ (Rout e Request)をアドホック 'ネットワーク内にフラッディング(Flooding)することにより、 送信先となるノード 101—Yまでの経路探索手順が開始される(シーケンス SQ101)  In FIG. 2, when communicating with the node 101—repulsive node 101—Y in the ad hoc “network” system, first, a route search request message (Route Request) for the node 101—Y is sent. Ad hoc 'Flooding in the network starts the route search procedure to the destination node 101-Y (sequence SQ101)
[0024] 一方、 Route Requestを受信するノードは、 Route Requestに含まれる送信先 ノードが自ノードでなぐかつ Route Requestに含まれるシーケンス番号とその他の 情報の組に基づく判定 (この判定処理を「受信 Route Requestの重複チェック」と呼 称)の結果、該当 Route Requestが未処理と判定された場合には、受信した Rout e Requestを、ネットワーク内に再度フラッディングする(シーケンス SQ102)。このと き、該当 Route Requestの送信元に戻る経路情報(Reverse Path :以下「リバ一 ス経路情報」 t 、う)が自身の経路テーブルに登録される(シーケンス SQ 103)。 [0024] On the other hand, the node that receives the Route Request determines whether the destination node included in the Route Request is not its own node and based on the combination of the sequence number included in the Route Request and other information. If it is determined that the corresponding Route Request is unprocessed as a result of “Route Request Duplication Check”), the received Route Request is flooded again in the network (sequence SQ102). This Then, route information (Reverse Path: “reverse route information” t, hereinafter) returned to the transmission source of the corresponding Route Request is registered in its own route table (sequence SQ 103).
[0025] 一方、経路探索要求メッセージ (Route Request)に含まれる送信先ノードに指定 されているノードは、 Route Requestの受信に対して、受信した Route Request の送信先に対する経路が最適となる際には、 Route Requestの送信元であるノー ド 101— A対して経路探索応答メッセージ (Route Reply)を通知する(シーケンス S Q104)。 [0025] On the other hand, the node specified as the destination node included in the route search request message (Route Request) is when the route to the destination of the received Route Request is optimal with respect to the reception of the Route Request. Sends a route search reply message (Route Reply) to node 101—A which is the source of Route Request (sequence S Q104).
[0026] ここで、送信先ノードより通知される Route Replyは、 Route Requestのフラッデ イングにより各ノードにて登録された送信先ノードから送信元ノードに戻る経路情報( Reverse Path)に沿って転送される。すなわち、 Route Replyを受信するノードは 、 Route Replyの送信元ノードに対する経路情報(Forwarding Path:以下「転送 経路情報」 t 、う)を自身の経路テーブルに登録するとともに、経路テーブルに登録 済であるリバース経路情報に従って、受信する Route Replyを転送する(シーケン ス SQ105)。  [0026] Here, the Route Reply notified from the destination node is transferred along the route information (Reverse Path) returning from the destination node registered in each node to the source node by flooding the Route Request. The In other words, the node that receives the Route Reply registers the route information (Forwarding Path: “forwarding route information” t, hereinafter) for the route reply source node in its own route table and has already been registered in the route table. The received route reply is forwarded according to the reverse route information (sequence SQ105).
[0027] 同様に、ノード 101— Bやノード 101— Cなど力 ノード 101—Yと通信を行う際にも 、送信先ノード 101— Yに向けた経路探索手順が行われ、ノード 101 -Bおよびノー ド 101—Cとの各ノードと、ノード 101—Yとの間の経路が決定される。  Similarly, when communicating with the power node 101-Y such as the node 101-B and the node 101-C, a route search procedure toward the destination node 101-Y is performed, and the nodes 101-B and A path between each node with node 101-C and node 101-Y is determined.
[0028] なお、このシーケンスに伴い、ノード 101— Bとノード 101— Yとの間の経路上の各ノ ードにおいて、ノード 101— Bに向けた転送経路情報が自身の経路テーブルに登録 されるとともに、ノード 101—Yを送信元として逆向きに迪るリバース経路情報が自身 の経路テーブルに登録される。同様に、ノード 101— Cとノード 101— Yとの間の経路 上の各ノードにおいても、ノード 101— Cに向けた転送経路情報や、ノード 101— C に戻るリバース経路情報が自身の経路テーブルに登録される。  [0028] With this sequence, the transfer route information for node 101-B is registered in its own route table at each node on the route between node 101-B and node 101-Y. At the same time, the reverse route information that goes in the reverse direction with the node 101-Y as the transmission source is registered in its own route table. Similarly, in each node on the route between the node 101-C and the node 101-Y, the transfer route information toward the node 101-C and the reverse route information returning to the node 101-C are stored in its own route table. Registered in
[0029] (経路テーブル)  [0029] (Route table)
図 3は、アドホック 'ネットワーク 'システム内のノード 101— Xにおける経路テーブル の一例を示す図表である。この経路テーブルには、送信元ノードの識別子 21、送信 先ノードの識別子 22、次ホップ (転送先)ノードの識別子 23、状態フラグ 24、寿命 25 、その他 26の各要素が保持され、同一の送信先ノード宛の N個(Nは所定の自然数 )の経路情報と、この同一の送信先ノードを送信元ノードとして逆向きに迪る M個(M は所定の自然数)のリバース経路情報が登録される。 FIG. 3 is a chart showing an example of a route table in the node 101-X in the ad hoc “network” system. This routing table holds the source node identifier 21, destination node identifier 22, next hop (forwarding destination) node identifier 23, status flag 24, lifetime 25, and other 26 elements, and the same transmission. N destined for the destination node (N is a predetermined natural number) ) Route information and M reverse route information (M is a predetermined natural number) reversely registered with the same destination node as the source node.
[0030] 例えば、図 3に示すように、ノード 101— Eとノード 101— Yの経路上に位置するノー ド 101— Xでは、ノード 101— Yに向けた N個の転送経路情報と、ノード 101— Yを送 信元とする M個のリバース経路情報とが、自身の経路テーブルに登録される。  [0030] For example, as shown in FIG. 3, in the node 101-X located on the route of the node 101-E and the node 101-Y, N pieces of transfer route information toward the node 101-Y and the node 101—M reverse route information with Y as the sender is registered in its route table.
[0031] (仮想トンネルの概念)  [0031] (Concept of virtual tunnel)
つぎに、本発明の各実施の形態に共通な仮想トンネルの概念について図 4を参照 して説明する。なお、図 4は、仮想トンネルが確立された状態における転送シーケン スの一例を示す図である。なお、同図に示す例は、ノード 101— A, B, Cの各ノード 力 ード 101—Yと通信を行って!/、るときに、ノード 101—Eがノード 101—Yと通信を 開始するケースを想定したものである。  Next, the concept of a virtual tunnel common to the embodiments of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing an example of a transfer sequence in a state where a virtual tunnel is established. In the example shown in the figure, node 101-E communicates with node 101-Y when communicating with node 101-Y of nodes 101-A, B, and C! /. This assumes a starting case.
[0032] 図 4において、ノード 101— Eは、ノード 101— Yとの通信に先立ち、経路探索要求 メッセージ(Route Request)をフラッディングする(シーケンス SQ201)。ノード 101 —Eがフラッディングする Route Requestは、アドホック 'ネットワーク内の複数の中 継ノードを介してノード 101— Xが受信する。ノード 101— Xは、後述するトンネル確 立要求メッセージ(Tunnel Request)をノード 101— Yに送信するためにノード 101 Yに向けた経路探索を行う(シーケンス SQ202)。  In FIG. 4, prior to communication with the node 101-Y, the node 101-E floods a route search request message (Route Request) (sequence SQ201). The route request flooded by the node 101-E is received by the node 101-X via a plurality of relay nodes in the ad hoc network. The node 101-X performs a route search toward the node 101Y in order to transmit a tunnel establishment request message (Tunnel Request) described later to the node 101-Y (sequence SQ202).
[0033] このとき、ノード 101— Xとノード 101— Xとの間の中継ノードにおいて、上述した経 路探索手順に基づく Route Requestのフラッディングゃ、 Route Replyの受信/ 返信等の処理が行われ、ノード 101— Xとノード 101— Yとの間の経路が確立される 。なお、この経路探索は、ノード 101— Yに対する経路が既知の場合には省略可能 である。  [0033] At this time, in the relay node between the node 101-X and the node 101-X, processing such as route request flooding / route reply reception / reply based on the route search procedure described above is performed, A path between node 101—X and node 101—Y is established. This route search can be omitted when the route to the node 101-Y is known.
[0034] ノード 101— Xとノード 101— Yとの間の経路が確立された後、ノード 101— Xは、ノ ード 101— Yに向けてトンネル確立要求メッセージ(Tunnel Request)をュ-キャス トにて通知する(シーケンス SQ203)。ここで、仮想トンネル Tunnel Requestには、 仮想トンネルの要求先に対するリバース経路情報(ノード 101—A, 101—Bおよび 1 01— C)が含まれる。仮想トンネル Tunnel Requestを受信するノード 101—Xおよ びノード 101— Y間の経路上の各ノードは、各ノードの経路テーブルに保持された経 路情報に従って、仮想トンネル Tunnel Requestを転送する(シーケンス SQ204)。 [0034] After the path between the node 101—X and the node 101—Y is established, the node 101—X encapsulates the tunnel establishment request message (Tunnel Request) toward the node 101—Y. (Sequence SQ203). Here, the virtual tunnel Tunnel Request includes reverse path information (nodes 101-A, 101-B and 1101-C) for the request destination of the virtual tunnel. Each node on the route between the node 101-X and the node 101-Y that receives the virtual tunnel Tunnel Request is stored in the route table of each node. The virtual tunnel Tunnel Request is transferred according to the route information (sequence SQ204).
[0035] ノード 101— Yは、受信した仮想トンネル Tunnel Requestに含まれる情報に従つ て、トンネル確立応答メッセージ(Tunnel Reply)をノード 101— Xに向けて通知す る(シーケンス SQ205)。なお、 Tunnel Requestは、仮想トンネルにて収容するノ ードとしてノード 101— A, 101— B及び 101— Cを含んでおり、ノード 101— A, 101 —B及び 101— Cの経路情報を仮想トンネル向けに更新する。  Node 101—Y reports a tunnel establishment response message (Tunnel Reply) to node 101—X according to the information included in the received virtual tunnel Tunnel Request (sequence SQ205). The Tunnel Request includes nodes 101-A, 101-B and 101-C as nodes to be accommodated in the virtual tunnel, and the route information of the nodes 101-A, 101-B and 101-C is virtualized. Update for tunnels.
[0036] このような処理が行われた後、ノード 101— Xが仮想トンネル Tunnel Replyを受 信することにより、ノード 101— Xとノード 101— Yとの間において、仮想トンネルが確 立され、ノード 101— Xは、ノード 101— Eからの Route Requestへの応答である R oute Replyを転送する(シーケンス SQ206)。  [0036] After such processing is performed, the node 101-X receives the virtual tunnel Tunnel Reply, whereby a virtual tunnel is established between the node 101-X and the node 101-Y. The node 101—X forwards R oute Reply that is a response to the Route Request from the node 101—E (sequence SQ206).
[0037] ここで、ノード 101— Xとノード 101— Yの経路上のノードにおいては、トンネル確立 要求メッセージ(Tunnel Request)に含まれるノード 101— A, 101— Bおよび 101 —Cに対する経路情報は、ノード 101— Xとノード 101— Y間においては仮想トンネ ル上で転送されるため、該当経路情報に基づくメッセージの転送は行われない。した がって、ノード 101— A, 101— Bおよび 101— Cなどの中継ノードにおける該当経路 情報は、一定時間の経過後に経路テーブルから削除するようにする。なお、このよう な状況を、図 5〜図 7の図表に示している。  [0037] Here, in the nodes 101-X and 101-Y, the route information for the nodes 101-A, 101-B and 101-C included in the tunnel establishment request message (Tunnel Request) is Since the message is transferred on the virtual tunnel between the node 101-X and the node 101-Y, the message is not transferred based on the corresponding route information. Therefore, the corresponding route information in the relay nodes such as the nodes 101-A, 101-B and 101-C is deleted from the route table after a predetermined time has elapsed. This situation is shown in the charts in Figs.
[0038] (仮想トンネル確立後の経路テーブル)  [0038] (Route table after establishing virtual tunnel)
例えば、図 5は、ノード 101— Xとノード 101— Yとの間に仮想トンネルが確立された 後のノード 101— Xにおける経路テーブルの一例を示す図表であり、図 6は、ノード 1 01—Xとノード 101— Yとの間に仮想トンネルが確立された後のノード 101— Xとノー ド 101— Yとの間の中継ノードにおける経路テーブルの一例を示す図表であり、図 7 は、ノード 101— Xとノード 101— Yとの間に仮想トンネルが確立された後のノード 10 1—Yにおける経路テーブルの一例を示す図表である。  For example, FIG. 5 is a diagram showing an example of a route table in the node 101-X after the virtual tunnel is established between the node 101-X and the node 101-Y, and FIG. FIG. 7 is a diagram showing an example of a route table in a relay node between the node 101-X and the node 101-Y after the virtual tunnel is established between the node X and the node 101-Y. FIG. 10 is a chart showing an example of a route table in the node 101-Y after the virtual tunnel is established between the 101-X and the node 101-Y.
[0039] 図 5および図 7に示す図表と、図 6に示す図表とを比較すれば明らかなように、ノー ド 101—Xとノード 101— Yとの間の中継ノードにおける経路テーブルのサイズを大 幅に削減することができる。したがって、中継ノードにおけるメモリ'リソースの所要を 大幅に低減することが可能となる。 [0040] なお、ノード 101— Xとノード 101— Yとの経路上〖こ位置するノードは、トンネル確立 要求メッセージ(Tunnel Request)ある 、はトンネル確立応答メッセージ(Tunnel Reply)を盗み見することにより、トンネル確立要求メッセージ(Tunnel Request)に 含まれるノード 101— A, 101— Bおよび 101— Cに対する転送経路情報およびリバ ース経路情報を自ノードの経路テーブルより削除することも可能である。 [0039] As can be seen by comparing the charts shown in Figs. 5 and 7 with the chart shown in Fig. 6, the size of the routing table in the relay node between node 101-X and node 101-Y is It can be greatly reduced. Therefore, it is possible to significantly reduce the memory resource requirement at the relay node. [0040] It should be noted that a node located on the path between the node 101-X and the node 101-Y has a tunnel establishment request message (Tunnel Request) or sniffs a tunnel establishment response message (Tunnel Reply), It is also possible to delete the transfer route information and the reverse route information for the nodes 101—A, 101—B and 101—C included in the tunnel establishment request message (Tunnel Request) from the route table of the own node.
[0041] (仮想トンネル確立後の転送シーケンス)  [0041] (Transfer sequence after establishing virtual tunnel)
図 8は、仮想トンネル確立後の経路テーブルの維持 ·管理における転送シーケンス を示す図である。一般に、経路が確立されたノード間においては、確立した経路にお ける(転送経路情報 Zリバース経路情報)を維持'管理するために、一定の間隔にて 経路探索手順を行っている。例えば、図 8に示すように、ノード 101— Aは、自身が保 持する経路テーブルの維持'管理のため、経路探索要求メッセージ (Route Reque st)をフラッディングする(シーケンス SQ301)。  Fig. 8 is a diagram showing the transfer sequence for maintaining and managing the route table after the virtual tunnel is established. In general, a route search procedure is performed at regular intervals between nodes where a route has been established in order to maintain and manage (transfer route information Z reverse route information) in the established route. For example, as shown in FIG. 8, the node 101-A floods a route search request message (Route Request) for maintaining and managing the route table held by itself (sequence SQ301).
[0042] 一方、自身の経路テーブルに仮想トンネルを確立しているノード 101— Xは、仮想ト ンネルの終端であるノード 101— Y宛の Route Requestに対し、ノード 101— Yに 代わり、経路探索応答メッセージ (Route Reply)を代理にて応答する(シーケンス S Q302) oこの代理応答処理は、図 8に示すように、ノード 101— B, 101—Cおよび 1 01—Eに対しても行われる。 [0042] On the other hand, the node 101—X, which has established a virtual tunnel in its own route table, searches for a route instead of the node 101—Y in response to a Route Request addressed to the node 101—Y that is the end of the virtual tunnel. Reply reply message (Route Reply) with proxy (sequence S Q302) o This proxy response processing is also performed for nodes 101- B, 101-C and 1 01-E, as shown in Figure 8 .
[0043] さらに、ノード 101— Xは、ノード 101— A, 101— B, 101— Cおよび 101— Eから の経路の維持'管理のための周期的な経路探索要求メッセージ (Route Request) の受信処理とは独立に、仮想トンネルの終端であるノード 101—Yに対して経路の維 持 ·管理のための Route Requestを周期的にフラッディングするとともに(シーケン ス SQ303)、仮想トンネルの要求先であるノード 101— Yに対して、経路(リバース経 路情報)の維持'管理のためのトンネル確立要求メッセージ(Tunnel Request)を 周期的に通知する(シーケンス SQ304)。  [0043] Further, the node 101—X receives a periodic route search request message (Route Request) for the maintenance of the routes from the nodes 101—A, 101—B, 101—C and 101—E 'management. Independent of processing, the node 101-Y, which is the end of the virtual tunnel, periodically floods the route request for maintaining and managing the route (sequence SQ303) and is the request destination of the virtual tunnel The node 101—Y is periodically notified of a tunnel establishment request message (Tunnel Request) for maintenance (management) of the route (reverse route information) (sequence SQ304).
[0044] これらの処理により、ノード 101— Xとノード 101— Yとの間の仮想トンネルが維持さ れるとともに、図 6の経路テーブルの一例で示したように、ノード 101— Xとノード 101 —Yとの間の中継ノードにおける経路テーブルのサイズを削減することができる。  [0044] Through these processes, the virtual tunnel between the node 101-X and the node 101-Y is maintained, and the node 101-X and the node 101- The size of the route table in the relay node with Y can be reduced.
[0045] (新規ノード追加時の転送シーケンス) 図 9は、仮想トンネル確立後に新規ノードが追加された場合の転送シーケンスを示 す図である。この場合、まず、ノード 101— Fは、新たにノード 101— Yと通信を行うた めにノード 101— Y向けの経路探索要求メッセージ(Route Request)をフラッディ ングする(シーケンス SQ401)。 [0045] (Transfer sequence when adding a new node) Figure 9 shows the transfer sequence when a new node is added after the virtual tunnel is established. In this case, first, the node 101-F floods a route search request message (Route Request) for the node 101-Y to newly communicate with the node 101-Y (sequence SQ401).
[0046] このとき、ノード 101— Yとの間で仮想トンネルを確立済のノード 101— Xは、この Ro ute Requestを受信すると、ノード 101— Yに代わり、経路探索応答メッセージ (Ro ute Reply)を代理にて応答するとともに(シーケンス SQ402)、ノード 101— Yに対 して仮想トンネルの要求先に対するリバース経路情報として新たにノード 101— Fを 追加したトンネル確立要求メッセージ(Tunnel Request)を通知(シーケンス SQ40 3)。 At this time, when the node 101—X having established the virtual tunnel with the node 101—Y receives this route request, the node 101—Y replaces the route search reply message (route reply). (Sequence SQ402) and notifies node 101—Y a tunnel establishment request message (Tunnel Request) with node 101—F newly added as reverse route information to the request destination of the virtual tunnel ( Sequence SQ40 3).
[0047] その後、ノード 101— Yからのトンネル確立応答メッセージ (Tunnel Reply)をノー ド 101—Xが受信することで(シーケンス SQ404)、新たなノード 101—Fが追加され た場合にも、ノード 101—Xとノード 101—Yとの間の仮想トンネルが維持される。  [0047] After that, node 101-X receives the tunnel establishment response message (Tunnel Reply) from node 101-Y (sequence SQ404), and when new node 101-F is added, A virtual tunnel between 101-X and node 101-Y is maintained.
[0048] なお、仮想トンネルがー且形成された後は、仮想トンネルに向けた経路探索要求メ ッセージ (Route Request)に対して、仮想トンネルの両端に位置するノード装置の それぞれが、代理応答することができる。例えば、上記の例では、ノード 101— Y向け の経路探索要求メッセージ (Route Request)を受信したノード 101— X力 送信元 のノードに対して、ノード 101— Yに代わって代理応答する場合を示した力 これとは 逆に、ノード 101— X向けの経路探索要求メッセージ (Route Request)を受信した ノード 101— Y力 送信元のノードに対して、ノード 101— Xに代わって代理応答する ようになる。  [0048] After the virtual tunnel is formed, each of the node devices located at both ends of the virtual tunnel responds in response to a route search request message (Route Request) for the virtual tunnel. be able to. For example, the above example shows a case where a proxy response is made on behalf of node 101—Y to the node 101—X power source node that has received the route search request message (Route Request) for node 101—Y. On the contrary, the node 101—Y force that received the route search request message (Route Request) for the node 101—X will respond as a proxy instead of the node 101—X to the source node. Become.
[0049] また、上記の例では、ノード 101—Xとノード 101—Yとの間に形成される仮想トンネ ルについて示した力 ノード 101— Xを一端とする仮想トンネルは一つに限定される ものではなぐ他の任意のノード装置との間においても、仮想トンネルを形成すること ができる。  [0049] In the above example, the force tunnel 101-X shown for the virtual tunnel formed between the node 101-X and the node 101-Y is limited to one virtual tunnel. Virtual tunnels can also be formed with other arbitrary node devices.
[0050] 以上説明したように、この実施の形態では、アドホック 'ネットワーク 'システムを構成 する中継ノードが、同一の送信先に対して複数のノードより経路探索要求があり、継 続して経路を使用中である場合に、該当中継ノードと該当送信先ノード間で仮想トン ネルを自律的に形成することにより、複数経路を仮想トンネルに集約するようにして!/ヽ るので、該当中継ノードと該当送信先ノード間に位置する中継ノードにて保持される 経路情報の削減が可能となる。 [0050] As described above, in this embodiment, a relay node constituting an ad hoc 'network' system has a route search request from a plurality of nodes to the same destination, and continues to route. When in use, a virtual tunnel between the relay node and the destination node By forming a channel autonomously, multiple routes are aggregated into a virtual tunnel! / Reduce the route information held by the relay node located between the corresponding relay node and the corresponding destination node Is possible.
[0051] また、この実施の形態では、 自律的に形成される仮想トンネルの終端点となるノード が経路の維持 ·管理のための経路探索要求メッセージに対して代理で経路探索応 答メッセージを応答し、かつ、仮想トンネルを介して通信を行うノードによる経路の維 持 ·管理とは独立に、仮想トンネルの終端ノード間で経路の維持'管理、および仮想ト ンネルを介して通信を行うノード情報の維持 ·管理を行うとともに、新たに仮想トンネ ルを介して通信を行うノードに対して、仮想トンネルの片方の終端ノードにぉ ヽて代 理で経路探索応答メッセージを応答するようにして ヽるので、仮想トンネルの終端点 ノード間の経路上の中継ノードにおいて、経路の維持'管理のための経路探索要求 メッセージおよび経路探索応答メッセージのメッセージ量を削減可能であり、経路情 報の維持 ·管理に要するオーバヘッドを削減することが可能となる。  [0051] Also, in this embodiment, the node that is the end point of the autonomously formed virtual tunnel responds with a route search response message as a proxy to the route search request message for route maintenance and management. In addition to maintaining and managing the route by the node that communicates via the virtual tunnel, the route information is maintained between the end nodes of the virtual tunnel and the node information that communicates via the virtual tunnel. In addition to maintaining / managing the network, the node that newly communicates via the virtual tunnel can return to the other end node of the virtual tunnel and respond to the route search response message instead. Therefore, in the relay node on the route between the endpoint nodes of the virtual tunnel, the message of the route search request message and route search response message for maintaining the route 'management The amount is the possible reduction, it is possible to reduce the overhead needed to maintain and manage routing information.
[0052] また、この実施の形態に力る経路情報削減手法を用いることにより、アドホック'ネッ トワーク ·システムの設計 ·構築をより効率的に行うことができる。  [0052] Further, by using the route information reduction method that is effective in this embodiment, it is possible to more efficiently design and construct an ad hoc network / system.
[0053] 実施の形態 2. [0053] Embodiment 2.
つぎに、本発明の実施の形態 2にかかるアドホック 'ネットワーク 'システムについて 説明する。実施の形態 1では、経路探索要求メッセージを処理する中継ノードにおい て、送信先までの経路^^約する手法について説明したが、この実施の形態では、 アドホック ·ネットワーク ·システムを構成する各ノードにおいて、自ノードにおける経路 情報の増大に伴い、隣接ノード間で仮想トンネルの確立を要求し、 自ノードにおける 経路情報の削減をは力る手法について示すものである。  Next, an ad hoc “network” system according to the second exemplary embodiment of the present invention will be described. In the first embodiment, the relay node that processes the route search request message explained the method of reducing the route to the destination. However, in this embodiment, each node constituting the ad hoc network system is used. This paper describes a technique that requires the establishment of a virtual tunnel between adjacent nodes as the route information in the own node increases, and helps reduce the route information in the own node.
[0054] 図 10は、本発明の実施の形態 2にかかるアドホック 'ネットワーク 'システムの特徴を 説明するための図であり、図 1に示したアドホック 'ネットワーク 'システム 100を構成す るネットワーク上の任意の 3ノード 101— L、 101— M、 101— Nを抽出した図である。 図 10において、ノード 101— Lの隣接ノードとしてノード 101— Mおよびノード 101— Nが位置しており、これらのノード 101— Mとノード 101— L、ノード 101— Nとが無線 リンク 102を介して接続されている。 103は、 101— M、ノード 101— L、 101— Nを介 する経路を示す。 [0054] FIG. 10 is a diagram for explaining the features of the ad hoc 'network' system according to the second embodiment of the present invention, on the network constituting the ad hoc 'network' system 100 shown in FIG. It is the figure which extracted arbitrary 3 nodes 101-L, 101-M, 101-N. In FIG. 10, node 101-M and node 101-N are located as adjacent nodes of node 101-L, and these node 101-M and node 101-L are connected via radio link 102. Connected. 103 through 101-M, nodes 101-L, 101-N Shows the route to go.
[0055] (仮想トンネル確立要請に基づく転送シーケンス)  [0055] (Transfer sequence based on virtual tunnel establishment request)
つぎに、実施の形態 2のアドホック 'ネットワーク 'システムにおける転送シーケンス について図 11を用いて説明する。なお、図 11は、図 10に示すような位置関係にある 各ノード間において、隣接ノードに対する仮想トンネルの確立要請および隣接ノード 間で仮想トンネルを確立する際の転送シーケンスを示す図である。  Next, a transfer sequence in the ad hoc “network” system according to the second embodiment will be described with reference to FIG. FIG. 11 is a diagram showing a virtual tunnel establishment request to an adjacent node and a transfer sequence when establishing a virtual tunnel between adjacent nodes between nodes having the positional relationship as shown in FIG.
[0056] まず、図 11に示すように、ノード 101— Lにそれぞれ隣接するノード 101— Mとノー ド 101— Nとの間の経路が確立されているものとする。このような状態から、例えば、ノ ード 101— Lが、転送経路情報やリバース経路情報の増大により、自身の持つ経路 テーブルにおいてオーバフローが発生する可能性を検出した際には、仮想トンネル の確立要請を決定し (シーケンス SQ501)、隣接するノードであるノード 101— Mお よびノード 101—Nに対してトンネル確立要請メッセージ(Tunnel Solicitation)を 送信する(シーケンス SQ502)。  First, as shown in FIG. 11, it is assumed that a path is established between a node 101-M and a node 101-N adjacent to the node 101-L, respectively. From this state, for example, when node 101-L detects the possibility of overflow in its route table due to an increase in transfer route information or reverse route information, it establishes a virtual tunnel. The request is determined (sequence SQ501), and a tunnel establishment request message (Tunnel Solicitation) is transmitted to adjacent nodes 101-M and 101-N (sequence SQ502).
[0057] 一方、このトンネル確立要請メッセージ(Tunnel Solicitation)を受信したノード 1 01— M, 101— Nは、任意のランダム時間の経過後にトンネル確立要求メッセージを 、それぞれノード 101— N, 101—Mに宛てて送信する。なお、既にトンネル確立要 求メッセージを受信している際には、トンネル確立要求メッセージ(Tunnel Reques t)の送信はキャンセルする。  On the other hand, the node 1 01—M, 101—N receiving this tunnel establishment request message (Tunnel Solicitation) sends the tunnel establishment request message to the nodes 101—N, 101—M after an arbitrary random time has passed. Send to. If a tunnel establishment request message has already been received, transmission of the tunnel establishment request message (Tunnel Request) is cancelled.
[0058] 図 11に示す例では、ノード 101— Mからのトンネル確立要求メッセージ(Tunnel In the example shown in FIG. 11, a tunnel establishment request message (Tunnel) from the node 101-M.
Request)が先に送信されているので(シーケンス SQ503)、このトンネル確立要求メ ッセージ(Tunnel Request)を受信したノード 101— Nは、トンネル確立要求メッセ ージ(Tunnel Request)の送信元であるノード 101—Nに宛てて(つまり双方のノー ド装置間同士で)トンネル確立応答メッセージ (Tunnel Reply)にて応答する(シー ケンス SQ504)。このようにして、ノード 101— Mとノード 101— Nとの間の仮想トンネ ルが確立される(シーケンス SQ505)。 Request 101) is sent first (sequence SQ503), so that the node 101—N receiving this tunnel establishment request message (Tunnel Request) is the node that is the source of the tunnel establishment request message (Tunnel Request) Respond with a tunnel establishment response message (Tunnel Reply) addressed to 101-N (that is, between both node devices) (sequence SQ504). In this way, a virtual tunnel is established between the node 101-M and the node 101-N (sequence SQ505).
[0059] 以上説明したように、この実施の形態では、アドホック 'ネットワーク 'システムを構成 する各ノードが、増大する経路情報に応じて、自律的に、隣接するノードに対して仮 想トンネルを利用した転送を要求することにより、自ノードにて保持される経路情報の 削減が可能となる。 [0059] As described above, in this embodiment, each node constituting the ad hoc 'network' system autonomously uses a virtual tunnel with respect to an adjacent node according to increasing route information. Of the route information held in the local node by requesting Reduction is possible.
[0060] また、この実施の形態に力る経路情報削減手法を用いることにより、アドホック'ネッ トワーク ·システムの設計 ·構築をより効率的に行うことができる。 産業上の利用可能性  [0060] Further, by using the route information reduction technique that is effective in this embodiment, the design and construction of an ad hoc network system can be performed more efficiently. Industrial applicability
[0061] 以上のように、本発明は、複数のノード装置が自律的にネットワークを形成するアド ホック'ネットワーク 'システムに有用である。 [0061] As described above, the present invention is useful for an ad hoc 'network' system in which a plurality of node devices autonomously form a network.

Claims

請求の範囲 The scope of the claims
[1] オン'デマンド型のルーティング 'プロトコルに基づいて複数のノード装置が自律的 にネットワークを形成するアドホック ·ネットワーク ·システムにお 、て、  [1] In an ad hoc network system where multiple node devices autonomously form a network based on the on-demand routing protocol,
所定の通信先ノード装置に対して複数のノード装置力 の経路探索要求があり、か つ、該経路探索要求のあった経路が継続して使用されるときに、  When there are multiple route search requests for a given node device for a given communication destination node device and the route for which the route search request has been made is used continuously,
前記所定の通信先ノード装置へのメッセージを中継する中継ノード装置は、自身と 該所定の通信先ノード装置との間に位置する中継ノード装置における該所定の通信 先ノード装置に向けた経路探索要求への応答動作を不要とするための仮想トンネル を自身と該所定の通信先ノード装置との間に設定することを特徴とするアドホック'ネ ットワーク'システム。  The relay node device that relays the message to the predetermined communication destination node device is a route search request for the predetermined communication destination node device in the relay node device positioned between itself and the predetermined communication destination node device. An ad hoc 'network' system, characterized in that a virtual tunnel for making a response operation to a node unnecessary is set between itself and the predetermined communication destination node device.
[2] 前記仮想トンネルの両端に位置するノード装置のうちの一端のノード装置は、 自身 と該所定の通信先ノード装置である他端のノード装置との間に位置する中継ノード装 置に代わって、該他端のノード装置に向けた経路探索要求に対して代理応答するこ とを特徴とする請求項 1に記載のアドホック ·ネットワーク ·システム。  [2] Of the node devices located at both ends of the virtual tunnel, the node device at one end replaces the relay node device located between itself and the node device at the other end which is the predetermined communication destination node device. 2. The ad hoc network system according to claim 1, wherein a proxy response is made to a route search request toward the node device at the other end.
[3] 前記ノード装置は、前記所定の通信先ノード装置に向けたメッセージを中継伝送す るための複数の次転送先ノード情報を含む経路情報を保持する経路テーブルを備 え、  [3] The node device includes a route table that holds route information including a plurality of pieces of next transfer destination node information for relay transmission of a message directed to the predetermined communication destination node device.
前記仮想トンネル内の中継ノード装置は、自身の前記経路テーブルに保持されて いる前記所定の通信先ノード装置を含む経路情報のうち、前記仮想トンネルの両端 に位置するノード装置以外のエントリを削除することを特徴とする請求項 2に記載のァ ドホック ·ネットワーク ·システム。  The relay node device in the virtual tunnel deletes entries other than the node devices located at both ends of the virtual tunnel from the route information including the predetermined communication destination node device held in the route table of the virtual tunnel. The ad hoc network system according to claim 2.
[4] 前記仮想トンネル内の中継ノード装置は、前記仮想トンネルの両端に位置するノー ド装置以外のエントリを所定時間の経過後に削除することを特徴とする請求項 3に記 載のアドホック ·ネットワーク ·システム。  [4] The ad hoc network according to claim 3, wherein the relay node device in the virtual tunnel deletes entries other than the node devices located at both ends of the virtual tunnel after a lapse of a predetermined time. ·system.
[5] 前記仮想トンネルを形成する際に、前記所定の通信先ノード装置へのメッセージを 中継する中継ノード装置力 該所定の通信先ノード装置に向けてトンネル確立要求 メッセージが送信されるとともに、該所定の通信先ノード装置から該所定の通信先ノ ード装置へのメッセージを中継する中継ノード装置に対してトンネル確立応答メッセ ージが送信され、 [5] When forming the virtual tunnel, a relay node apparatus power that relays a message to the predetermined communication destination node apparatus. A tunnel establishment request message is transmitted to the predetermined communication destination node apparatus, and A tunnel establishment response message is sent to the relay node device that relays the message from the predetermined communication destination node device to the predetermined communication destination node device. Page is sent,
前記仮想トンネル内の中継ノード装置は、前記仮想トンネルの両端に位置するノー ド装置以外のエントリを前記トンネル確立要求メッセージまたは前記トンネル確立応 答メッセージに含まれる情報を参照して削除することを特徴とする請求項 3に記載の アドホック ·ネットワーク ·システム。  The relay node device in the virtual tunnel deletes entries other than the node devices located at both ends of the virtual tunnel with reference to information included in the tunnel establishment request message or the tunnel establishment response message. The ad hoc network system according to claim 3.
[6] 前記ノード装置は、自身に隣接するノード装置に対して仮想トンネルの形成を要請 するトンネル確立要請メッセージを送信することを特徴とする請求項 3〜5のいずれか 一つに記載のアドホック ·ネットワーク ·システム。 6. The ad hoc according to claim 3, wherein the node device transmits a tunnel establishment request message for requesting formation of a virtual tunnel to a node device adjacent to the node device. · Network · System.
[7] 前記仮想トンネルの要請を受けた一方および他方のノード装置のうち、システムに よって決定された一方ノード装置から他方のノード装置に向けて前記トンネル確立要 求メッセージが送信されるとともに、該他方のノード装置カも該一方のノード装置に向 けて前記トンネル確立応答メッセージが送信されることを特徴とする請求項 6に記載 のアドホック ·ネットワーク ·システム。 [7] Among the one and the other node devices that have received the request for the virtual tunnel, the tunnel establishment request message is transmitted from the one node device determined by the system to the other node device, and 7. The ad hoc network system according to claim 6, wherein the other node equipment also transmits the tunnel establishment response message to the one node equipment.
[8] オン'デマンド型のルーティング 'プロトコルに基づいて自律的なネットワークを形成 して 、るアドホック ·ネットワーク ·システムのノード装置にお!、て、 [8] An on-demand routing 'protocol' network node system that forms an autonomous network based on the protocol!
自身とは異なる所定の通信先ノード装置に対して複数のノード装置力 の経路探 索要求があり、かつ、該探索要求のあった経路が継続して使用されるときに、 前記所定の通信先ノード装置へのメッセージを中継する際に、自身と該所定の通 信先ノード装置との間に位置する中継ノード装置における該所定の通信先ノード装 置に向けた経路探索要求への応答動作を不要とするための仮想トンネルを自身と該 所定の通信先ノード装置との間に設定することを特徴とするノード装置。  When there are a plurality of node device power route search requests to a predetermined communication destination node device different from itself, and the route for which the search request has been used is continuously used, the predetermined communication destination When relaying a message to a node device, the relay node device located between itself and the predetermined communication destination node device performs a response operation to the route search request for the predetermined communication destination node device. A node device characterized in that a virtual tunnel to be unnecessary is set between itself and the predetermined communication destination node device.
[9] 前記仮想トンネルの両端に位置するノード装置のうちの一端のノード装置は、自身 と該所定の通信先ノード装置である他端のノード装置との間に位置する中継ノード装 置に代わって、該他端のノード装置に向けた経路探索要求に対して代理応答するこ とを特徴とする請求項 8に記載のノード装置。 [9] Of the node devices located at both ends of the virtual tunnel, the node device at one end replaces the relay node device located between itself and the node device at the other end which is the predetermined communication destination node device. 9. The node device according to claim 8, wherein a proxy response is made to a route search request directed to the node device at the other end.
[10] 前記所定の通信先ノード装置に向けたメッセージを中継伝送するための複数の次 転送先ノード情報を含む経路情報を保持する経路テーブルが具備され、 [10] A path table holding path information including a plurality of next transfer destination node information for relaying and transmitting a message directed to the predetermined communication destination node apparatus is provided,
前記仮想トンネルの形成後に、該仮想トンネル内の中継ノード装置の経路テープ ルに保持されている前記所定の通信先ノード装置を含む経路情報のうち、該仮想ト ンネルの両端に位置するノード装置以外のエントリが削除されることを特徴とする請 求項 9に記載のノード装置。 After forming the virtual tunnel, the route tape of the relay node device in the virtual tunnel 10. The entry according to claim 9, wherein entries other than the node devices located at both ends of the virtual tunnel are deleted from the route information including the predetermined communication destination node device held in a node. Node device.
[11] 前記ノード装置は、 自身に隣接するノード装置に対して仮想トンネルの形成を要請 するトンネル確立要請メッセージを送信することを特徴とする請求項 8〜: LOのいずれ か一つに記載のノード装置。 11. The node device according to claim 8, wherein the node device transmits a tunnel establishment request message for requesting formation of a virtual tunnel to a node device adjacent to the node device. Node device.
[12] 前記仮想トンネルの要請を受けた一方および他方のノード装置のうち、システムに よって決定された一方ノード装置から他方のノード装置に向けて前記トンネル確立要 求メッセージが送信されるとともに、該他方のノード装置カも該一方のノード装置に向 けて前記トンネル確立応答メッセージが送信されることを特徴とする請求項 11に記載 のノード装置。 [12] Among the one and the other node devices that have received the request for the virtual tunnel, the tunnel establishment request message is transmitted from the one node device determined by the system to the other node device, and 12. The node device according to claim 11, wherein the other node device also transmits the tunnel establishment response message to the one node device.
PCT/JP2006/325749 2006-01-11 2006-12-25 Ad hoc network system and its node device WO2007080773A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007513527A JP4335945B2 (en) 2006-01-11 2006-12-25 Ad hoc network system and its node equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006003936 2006-01-11
JP2006-003936 2006-01-11

Publications (1)

Publication Number Publication Date
WO2007080773A1 true WO2007080773A1 (en) 2007-07-19

Family

ID=38256185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325749 WO2007080773A1 (en) 2006-01-11 2006-12-25 Ad hoc network system and its node device

Country Status (2)

Country Link
JP (1) JP4335945B2 (en)
WO (1) WO2007080773A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050520A (en) * 2008-08-19 2010-03-04 Buffalo Inc Wireless lan relay device, wireless lan relay method, and computer program
JP2010165112A (en) * 2009-01-14 2010-07-29 National Institute Of Information & Communication Technology Sensor information system for mobile terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354020A (en) * 2001-05-28 2002-12-06 Fujitsu Ltd Path aggregate method and node device
JP2005072720A (en) * 2003-08-20 2005-03-17 Sony Corp Communication network system, communication path selecting apparatus, and information communication means
JP2005236764A (en) * 2004-02-20 2005-09-02 Kddi Corp Route establishment method in ad hoc radio network, and radio node

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354020A (en) * 2001-05-28 2002-12-06 Fujitsu Ltd Path aggregate method and node device
JP2005072720A (en) * 2003-08-20 2005-03-17 Sony Corp Communication network system, communication path selecting apparatus, and information communication means
JP2005236764A (en) * 2004-02-20 2005-09-02 Kddi Corp Route establishment method in ad hoc radio network, and radio node

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050520A (en) * 2008-08-19 2010-03-04 Buffalo Inc Wireless lan relay device, wireless lan relay method, and computer program
US8503349B2 (en) 2008-08-19 2013-08-06 Buffalo Inc. Wireless LAN relay apparatus
JP2010165112A (en) * 2009-01-14 2010-07-29 National Institute Of Information & Communication Technology Sensor information system for mobile terminal

Also Published As

Publication number Publication date
JPWO2007080773A1 (en) 2009-06-11
JP4335945B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4800067B2 (en) Communication node and routing method
JP4229182B2 (en) Wireless communication system, wireless communication apparatus, wireless communication method, and program
WO2016002404A1 (en) Communication control method and mobile terminal
US8213352B2 (en) Wireless communication system, wireless communication device, wireless communication method, and program
JP4708111B2 (en) Ad hoc network system and its node equipment
Adam et al. Delay aware reactive routing protocols for QoS in MANETs: A review
JP5036602B2 (en) Wireless ad hoc terminal and ad hoc network system
Jacob et al. Performance analysis and enhancement of routing protocol in MANET
Gandhi et al. Performance evaluation of DSR, OLSR and ZRP protocols in MANETs
Sharma et al. P-AODV: A priority based route maintenance process in mobile ad hoc networks
Lawrence et al. A comparative study of routing protocols for mobile ad-hoc networks
Mistry et al. A survey: Use of ACO on AODV & DSR routing protocols in MANET
JP4810606B2 (en) Nodes in ad hoc networks and ad hoc network systems
JP4335945B2 (en) Ad hoc network system and its node equipment
JP4855176B2 (en) Nodes that make up an ad hoc network
Gruber et al. Ad hoc routing for cellular coverage extension
JP2009124303A (en) Message transfer method in ad hoc network
JP4033301B2 (en) Multihop wireless network routing method and wireless terminal
JP4445829B2 (en) Mobile terminal and mobile communication method
Natesapillai et al. A performance evaluation of proactive and reactive protocols using NS2 simulation
Kalaivani et al. Dynamic Data Routing in manet using position based opportunistic Routing Protocol
Gopinath et al. An optimized multicast backbone routing for increasing residual energy in MANET
KR101616278B1 (en) Grid Based Hybrid Routing System and Method in Mobile Ad-hoc Networks
Agarwal et al. Enhanced AODV routing protocol for ad hoc networks
Singh et al. Study of routing protocol with link estimation time in MANETs.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007513527

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843153

Country of ref document: EP

Kind code of ref document: A1