WO2007080627A1 - Mobile communication terminal apparatus and communication system - Google Patents

Mobile communication terminal apparatus and communication system Download PDF

Info

Publication number
WO2007080627A1
WO2007080627A1 PCT/JP2006/300145 JP2006300145W WO2007080627A1 WO 2007080627 A1 WO2007080627 A1 WO 2007080627A1 JP 2006300145 W JP2006300145 W JP 2006300145W WO 2007080627 A1 WO2007080627 A1 WO 2007080627A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
received power
communication method
reception
value
Prior art date
Application number
PCT/JP2006/300145
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyasu Sato
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007553788A priority Critical patent/JPWO2007080627A1/en
Priority to PCT/JP2006/300145 priority patent/WO2007080627A1/en
Publication of WO2007080627A1 publication Critical patent/WO2007080627A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a mobile communication terminal apparatus and a communication system capable of performing communication by a plurality of communication methods.
  • Patent Document 1 As a communication method of a mobile terminal capable of communicating with a plurality of communication systems having different communication methods, for example, there is one disclosed in Patent Document 1.
  • This patent document 1 describes both a wireless LAN (Local Are a Network) and a third generation mobile communication system (hereinafter referred to as “3G”!), W—CDMA (Wi deband Code Division Multiple Access).
  • a wireless communication system including a mobile terminal capable of communicating with a mobile terminal is disclosed.
  • the mobile terminal in Patent Document 1 determines a communication system that accommodates a radio access station as a movement destination based on the received quality of the received downlink signal.
  • a database in the network is referred to based on the type information of the wireless system notified from the mobile terminal, and a node handover method that satisfies the request of the mobile terminal is selected on the server side.
  • Patent Document 2 when base stations of different generations using a CDMA (Code Division Multiple Access) communication method are arranged for each area and a mobile station moves to an area of a certain area power generation Describes a method for switching between base stations and realizing handover between base stations without disconnection.
  • CDMA Code Division Multiple Access
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-260444
  • Patent Document 2 JP 2000-201369 A
  • 3G is a communication system represented by W-CDMA and CDMA2000, the frequency band is 2 GHz, and the trunk network is an ATM network.
  • S3G is a communication method that is being studied using 1.7 or 2.5 GHz band as the usage frequency band.
  • S3G uses “VSF—Variable spreading factor, Orthogonal Frequency and Code Division Multiplexing” for upstream, and “DS—Direct Spread Code Division Multiple Access” for upstream, and the data transfer rate is stationary. 100 Mbps, 30 Mbps when moving, delay time is less than 2. Oms compared to the current 10 ms.
  • S3G's trunk network is an IP network.
  • 4G uses the same frequency technology as S3G, with a frequency band of 5 GHz, and has a frequency band of 100 MHz centered on 4.635 GHz for downstream and 30 MHz centered on 4.9 GHz for upstream. It is used.
  • This 4G is implemented by adding MIMO (Multiple Input, Multiple Output) using multiple antennas to the existing wireless system, and the data transfer rate is lGbps when stationary and 100Mbps when moving.
  • the network is an IP network.
  • mobile terminals are 3G, S3G area, 4G area and! /
  • mobile terminals are 3G, S3G, 4G, etc.
  • a receiving device and a transmitting device for different frequencies are provided.
  • the base stations of communication systems with different frequencies exchange cell information in their respective areas.
  • the cell terminals for the base stations of all communication systems are first connected to the mobile terminal side. Need to be conducted.
  • the power consumption increases.
  • the mobile terminal gives priority to a bit rate over networks of a plurality of communication methods having different frequency bands.
  • the communication method to be selected may be determined.
  • cell search is performed to measure each communication state, and switching to a communication system that always provides speed is possible. Since it is necessary to receive and demodulate (3G, S3G, 4G) signals, power consumption increases.
  • Patent Document 1 since the server side selects a node over method that satisfies the requirements of the mobile terminal based on the type information of the wireless system that is also notified of the mobile terminal power, the mobile terminal There is no need to select the handover method on the side, but the specific information on how to determine the reception quality and how to determine the specific information of the wireless system to be determined Is not disclosed.
  • Patent Document 2 discloses a method for selecting base stations of a plurality of generations (2G, 3G) having different communication methods performed by a mobile terminal. However, power saving when selecting a base station is disclosed. Any statement to be disclosed is disclosed.
  • An object of the present invention is to provide a mobile communication terminal device and a communication system that can smoothly communicate with each of a plurality of communication systems having different frequency bands and achieve power saving.
  • the mobile communication terminal device of the present invention is a battery, and is driven by the battery and transmits signals of the first, second, and third communication systems having different use frequency bands and communication areas via an antenna.
  • Each of the first, second, and third communication modes is received from the received signals, and the first, second, and third communication modes are measured and output as reception status information including received power values.
  • One of the first, second and third receiving means based on the second and third receiving means, the remaining battery level of the battery and the reception status information for each of the first, second and third receiving means.
  • a control unit that sets a measurement cycle of the reception state for two reception units, controls the one or two reception units according to the set measurement cycle, and measures the reception state, and the measured reception state.
  • the communication method for measuring the reception state is selected from the first, second, and third communication methods.
  • a method selection unit that sets the measurement period for the reception unit corresponding to the communication method selected from the first, second, and third reception units, and the control unit includes the method selection unit.
  • a configuration is adopted in which the reception state corresponding to the communication method selected by the unit is controlled to measure the reception state.
  • FIG. 1A shows an example of a communication system having a mobile communication terminal according to an embodiment of the present invention.
  • FIG. 1B is a diagram showing an example of the relationship between the received signal strength and the receiving position of each method received by the mobile communication terminal shown in FIG. 1A
  • FIG. 1C is a diagram showing an example of the relationship between received signal strength and frequency for each method received by the mobile communication terminal shown in FIG. 1A.
  • FIG. 2 is a block diagram showing a schematic configuration of a mobile terminal as a mobile communication terminal apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a main configuration of a control unit in the mobile communication terminal shown in FIG.
  • FIG. 5 is a flowchart for explaining basic processing of the mobile terminal according to the present embodiment.
  • FIG. 6 is a diagram showing a modification of the 3G data reception processing unit.
  • FIG. 7 is a diagram showing another modification of the 3G data reception processing unit.
  • FIG. 8 is a flowchart for explaining an example of a communication method selection method as processing of the mobile terminal according to the present invention.
  • FIG. 9 is a flowchart for explaining an example of processing for checking the signal level of the 4G communication method when the mobile terminal moves in the direction A in the communication system.
  • FIG. 10 A diagram showing another example of a communication method selection method in a mobile terminal
  • FIG. 12 is a block diagram showing a schematic configuration of a mobile terminal which is another example of the mobile communication terminal apparatus belonging to the communication system according to the embodiment of the present invention.
  • FIG. 13 is a block diagram showing the main configuration of the control unit in the mobile terminal shown in FIG.
  • FIG. 14 is a diagram showing an example of received signals of communication systems having the same power value and different power peaks when measuring received signals of different communication systems.
  • the mobile communication terminal device (hereinafter referred to as “mobile terminal”) in the present embodiment supports a plurality of communication methods with different usage frequency bands and communication areas, and these communication method areas (service networks). ) Overlap! /
  • first to third communication method areas areas of a plurality of communication methods with different use frequency bands and different use frequencies and communication areas are defined as first to third communication method areas.
  • the bit rate is from 1 to 3 in order.
  • the communication areas of the first to third communication systems are narrower in the order of the first to third.
  • an area of the second communication method that has a different frequency band than the first communication method and a higher bit rate than the first communication method exists within the area of the first communication method.
  • FIG. 1 is a diagram illustrating a communication state in a communication system 200 of a mobile communication terminal 100 according to an embodiment of the present invention
  • FIG. 1A is a mobile communication according to an embodiment of the present invention. It is a figure which shows an example of the communication system which has a terminal.
  • Fig. 1B is a diagram showing an example of the relationship between the received signal strength and the reception position of each method received by the mobile communication terminal shown in Fig. 1A.
  • Fig. 1C is the reception of each method received by the mobile communication terminal shown in Fig. 1A. It is a figure which shows an example of the relationship between signal strength and frequency.
  • Mobile terminal 100 of the present embodiment shown in FIG. 1A is capable of communication corresponding to each of a plurality of communication methods.
  • a plurality of communication methods with different frequency bands and bit rates used for communication are referred to as first to third communication methods, and each communication area overlaps, and the bit rate increases in order.
  • the 3G base station 210 and the S3G communication area (S3G) are included in the 3G communication area (3G service area 211) by the 3G base station 210. Service area 221).
  • a 4G base station 230 is arranged in this S3G communication area (S3G service area 221), and a communication area (4G service area 231) by this 4G base station 230 is arranged.
  • FIG. IB and FIG. 1C correspond to the case where the mobile terminal 100 moves in the arrow direction (arrow A direction) in the communication system 200 shown in FIG. 1A.
  • FIG. 1B shows the signal strength when the mobile terminal 100 receives signals transmitted from the base stations 210 to 230 of each communication method when the mobile terminal 100 moves in the direction A in the communication system 200 of FIG. 1A.
  • a graph 212 shows an example of signal strength at the mobile terminal 100 when a radio signal is received from the 3G base station 210, which is a signal with a frequency of 2 GHz.
  • Graph 222 shows an example of signal strength in mobile terminal 100 when a radio signal is received from S3G base station 220 having a frequency of 1.7 or 2.5 GHz.
  • the graph 232 shows an example of the reception intensity in the mobile terminal 100 when a radio signal from the 4G base station 230 which is a signal in the frequency power GHz band is received.
  • Fig. 1C shows the relationship between the signal strength and the frequency when the spread signal transmitted from each of the base stations 210 to 230 is received by the mobile terminal 100, and the graph 213 is from the 3G base station.
  • An example of the modulation signal that is output Graph 223 shows an example of the modulation signal output from the S3G base station, and Graph 233 shows an example of the modulation signal output from the 4G base station.
  • FIG. 2 is a block diagram showing a schematic configuration of a mobile terminal as a mobile communication terminal apparatus according to an embodiment of the present invention.
  • a mobile terminal 100 shown in FIG. 2 has a function of transmitting and receiving data corresponding to each of a plurality of communication methods in the communication system 200.
  • the communication method used when transmitting and receiving data is measured by changing the time interval for measuring signals from the base stations 210, 220, and 230 for each communication method, and based on the measured value. Determined.
  • a mobile terminal 100 shown in FIG. 2 includes a data transmission method selection unit 102, data transmission processing units 110, 120, and 130 that transmit data corresponding to each of a plurality of communication methods, and a plurality of communication methods.
  • the data transmission processing units 110, 120, and 130 and the data reception processing units 140, 150, and 160 correspond to 3G, S3G, and 4G, respectively.
  • Performs transmission and reception processing with 3G base station 210 Each processing unit is a 3G data transmission processing unit 110, 3G data reception processing unit 140, and each processing unit that performs transmission / reception processing with the S3G base station 220 is an S3G data transmission processing unit 120, 3G data reception processing unit
  • the processing units that perform transmission / reception processing with the 150 and 4G base stations 230 will be described as a 4G data transmission processing unit 130 and a 4G data reception processing unit 160.
  • data transmission method selection unit 102 Based on the control information input from control unit 170, data transmission method selection unit 102 selects which communication method information is to be transmitted from among a plurality of communication methods. To do. Then, the data transmission method selection unit 102 outputs information to be transmitted to the data transmission processing unit corresponding to the selected communication method. Specifically, when the communication method for transmitting information is one of the 3G, S3G, and 4G communication methods, the input signal input to the data transmission method selection unit 102 is the 3G data transmission processing unit 110. The data is output to one of the S3G data transmission processing unit 120 and the 4G data transmission processing unit 130.
  • the 3G data transmission processing unit 110, the S3G data transmission processing unit 120, and the 4G data transmission processing unit 130 respectively correspond to input signals input via the data transmission method selection unit 102. Process it so that it can be sent as communication method information and output it to the filter 105.
  • the signal input to the filter 105 is transmitted as a radio signal from the antenna 108 via the multiplexer / demultiplexer 107.
  • the 3G data transmission processing unit 110, the S3G data transmission processing unit 120, and the 4G data transmission processing unit 130 process the input signals in respective communication methods, respectively.
  • each of the data transmission processing units 110, 120, and 130 encodes the input signals input from the data transmission method selection unit 102 into the encoding processing units 112, 122, 132, modulation processing units 11 3, 123, 133, transmission processing units 114, 124, 134, and amplifiers 115, 125, 135.
  • the amplifiers 115, 125, and 135 are shown as a 3G amplifier 115, an S3G amplifier 125, and a 4G amplifier 135 in FIG. 2 in accordance with the communication method used for each processing.
  • Encoding processing sections 112, 122, and 132 encode input signals using the respective communication methods, and output the encoded signals to modulation processing sections 113, 123, and 133.
  • Modulation processing sections 113, 123, and 133 perform modulation processing on the signals input from encoding processing sections 112, 122, and 132 in their respective communication systems, and send them to transmission processing sections 114, 124, and 134. Out To help.
  • Transmission processing sections 114, 124, and 134 up-convert the signals input from modulation processing sections 113, 123, and 133 to convert them into signals of frequencies used in the respective communication schemes. Output to system amplifier 115, 125, 135.
  • the 3G amplifier 115, the S3G amplifier 125, and the 4G amplifier 135 are signals that are input from the transmission processing units 114, 124, and 134 and have signal levels suitable for the transmission frequency used in each communication method. And output to the filter 105.
  • the data reception processing units 140, 150, and 160 corresponding to each communication method correspond to each of 3G, S3 G, and 4G, and correspond to each communication method (3G, S3G, and 4G). Then, the signal (data) is received.
  • the data reception processing units 140, 150, and 160 corresponding to each communication method are illustrated as 3G data reception processing unit 140, S3G data reception processing unit 150, and 4G data reception processing unit 160, respectively.
  • Each data reception processing unit 140, 150, 160 passes through the antenna 108 and the multiplexer / demultiplexer 107, and then passes through the filter 106 to transmit a radio signal (3G, S3G, 4G) for each use frequency ( Data) is input. Then, each data reception processing unit 140, 150, 160 measures and controls reception state information of a radio signal that serves as an index when selecting a communication method to be used in the control unit 170 based on the input radio signal. In addition to outputting to unit 170, the received signal is output to the outside as data. In FIG. 2, each data reception processing unit 140, 150, 160 measures the total received power in each communication method at a predetermined time period set by the control unit 170 as reception state information.
  • Each data reception processing unit 140, 150, 160 will be described in detail.
  • the 3G, S3G, and 4G data reception processing units 140, 150, and 160 perform low-noise amplifiers 142, 152, 162, and 3G for 3G, S3G, and 4G that perform processing in their respective communication methods.
  • Low noise amplifiers 142, 152, and 162 for 3G, S3G, and 4G amplify the input signal while keeping the accompanying noise low, and measure the power intensity for 3G, S3G, and 4G 143, 153, 163 and the reception processing units 144, 154, 164.
  • the reception processing units 144, 154, and 164 are provided for down conversion and automatic gain control (AGC: Auto Gain Control) for input signals from the 3G, S3G, and 4G low noise amplifiers 142, 152, and 162, respectively.
  • AGC Auto Gain Control
  • Demodulation processing sections 145, 155, 165 demodulate the input signals by performing processing such as despreading processing, and the demodulated signals are output to decoding processing sections 146, 156, 166.
  • Decryption is performed in the decryption processing units 146, 156, and 166.
  • the signals decoded by the decoding processing units 146, 156, and 166 are output as data to the outside via the external output device 104 provided in the mobile terminal 100.
  • the external output device 104 include an LED (Light-Emitting Diode), a display device such as a liquid crystal display, a sound output device that outputs sound such as a speech force, and a storage device.
  • the power intensity measuring units 143, 153, and 163 for 3G, S3G, and 4G are respectively the power intensity of the input signals, specifically, the total received power in the use frequency band of the corresponding communication method. Measure P_ALL_3G_last, P_ALL_S3G_last, P_ALL_4G_last. These measurement results are output to the controller 170.
  • “_last” means the latest data of the measurement result.
  • control unit 170 selects a communication method to be used, and performs data reception processing unit 140 for 3G, S3G, and 4G in order to perform reception processing in the selected communication method. , 150 and 160, the corresponding data reception processing unit is controlled to perform the reception process, and the data subjected to the reception process is output to the external output device 104.
  • FIG. 3 is a block diagram showing a main configuration of control section 170 in the mobile communication terminal shown in FIG.
  • the control unit 170 performs communication based on the signals input from the 3G, S3G, and 4G data reception processing units 140, 150, and 160, the information from the memory 190, and the information of the battery 195. (In this case, 3G, S3G, 4G) is selected, and by using the selection result, the data transmission method selection unit 102 uses the transmission method to determine the input signal input to the data transmission method selection unit 102. Decide what to send as.
  • control unit 170 includes a battery remaining amount detection unit 172 and a reception state information comparison unit. 174 and an optimum method selection control unit 176.
  • the remaining battery level detection unit 172 detects the remaining power level of the battery 195 connected to the control unit 170, and outputs the output to the optimal mode selection control unit 176 by the optimal mode selection control unit 176. Be controlled.
  • the reception status information comparison unit 174 uses the reception status information, which is a signal input from the 3G data reception processing unit 140, the S3G data reception processing unit 150, and the 4G data reception processing unit 160, to The reception statuses of the signals from the communication system base stations 210, 220, and 230 are compared, and the comparison result is output to the optimum mode selection control unit 176.
  • reception state information comparison unit 174 may use the signals input from the data reception processing units 140, 150, and 160 as comparison targets as they are, or become another reference from the input signals. Information may be extracted and the extracted information may be compared. Furthermore, the input signal may be compared with a preset threshold value, or information extracted from the input signal may be compared with a preset threshold value. The reception state information comparison unit 174 is controlled by the optimum method selection control unit 176.
  • the reception state information includes the power intensity (reception power) of signals input from the 3G power intensity measurement unit 143, the S3G power intensity measurement unit 153, and the 4G power intensity measurement unit 163, that is, This is the received power level of the signal received by each communication method (3G, S3G, 4G).
  • reception state information comparison section 174 compares the signal power strengths in 3G, S3G, and 4G.
  • the optimum method selection control unit 176 is the most suitable in the actual radio wave propagation environment state. Select a communication method suitable for communication.
  • the optimum method selection control unit 176 outputs the received signals in descending order when the power values of the received signals from the respective communication methods output as the comparison results output from the reception state information comparing unit 174 are different.
  • the optimum scheme selection control unit 176 selects the communication scheme set as the default value.
  • the optimum method selection control unit 176 sends data to the 3G data reception processing unit 140, the S3G data reception processing unit 150, and the 4G data reception processing unit 160 in order to transmit and receive data according to the selected communication method.
  • the time period setting unit 177 outputs and controls a control signal for measuring the reception state at each set time period.
  • the time period setting unit 177 includes the corresponding base stations 210, 220, 230 for the 3G, S3G, and 4G data reception processing units 140, 150, 160, respectively. Set the time period (Tl, ⁇ 2, ⁇ 3) for measuring the signal from.
  • the optimum method selection control unit 176 allows the communication in which the reception state (in this case, the received signal strength) is actually measured. Select a method!
  • the setting of the time period in the time period setting unit 177 is associated with the remaining power of the battery 195, and the remaining power of the battery 195 stored in the memory 190 ( It is set based on the relationship between the remaining battery level and the base station check time.
  • the setting of the time period is synonymous with the setting of which received signal is to be measured among the received signals from the 3G, S3G, and 4G base stations 210, 220, and 230. .
  • FIG. 4 is a diagram showing an example of the relationship between the remaining power (battery remaining amount) of the battery 195 stored in the memory 190 and the time period when the communication state is measured. This figure shows the association between the remaining battery level and the time period (T_3G, T_S3G, T_4G) at which the mobile terminal 100 checks the base station of each communication method.
  • the reception state (signal strength) measurement time period T for each communication method is shortened. Measure signals from base stations 210, 220, and 230. Also, as shown in Figure 4, the battery As the remaining amount decreases, the number of communication methods to be measured in the reception state decreases.
  • the memory 190 is used for communication in addition to a control table such as a table (see FIG. 4) showing the relationship between the remaining power of the battery 195 (remaining battery power) and the time period when the communication state is measured. Information can be stored and read / written under the control of the optimum method selection control unit 176.
  • the control table stored in the memory 190 the received power level or propagation loss, the SIR value (Signal to Interference power Ratio), and the circuit that constitutes the data transmission / reception unit for each communication method are determined according to the remaining battery level and time period of the battery 195. An average power consumption value is associated.
  • Information used for communication stored in the memory 190 includes transmission information from the power intensity measuring units 143, 153, and 163, and base stations 210, 220, and 230 (see FIG. 1) having different communication methods. It is.
  • FIG. 5 is a flowchart explaining the basic processing of mobile terminal 100 according to the present embodiment.
  • step S101 the mobile terminal 100 is turned on, and in step S102, the 3G data reception processing unit 140 measures the total received power P_ALL_3G_last in the frequency band used in the 3G scheme, Control goes to step S103.
  • “Last” means the latest data of the measurement results.
  • step S103 the S3G data reception processing unit 150 measures the total received power P_ALL_S3GJast in the frequency band used in S3G, and proceeds to step S104.
  • step S104 the 4G data reception processing unit 160 measures the total received power P_ALL_4G_last in the frequency band used in 4G, and proceeds to step S105.
  • step S105 the remaining battery level detection unit 172 measures the remaining power level of the battery 195, and the reception status information comparison unit 174 performs the total received power P_ALL_3GJast, S3G in the frequency band used in 3G.
  • the reception status of each communication method (3G, S3G, 4G) is compared using the total received power P_ALL_S3 G_last in the frequency band used in, and the total received power P_ALL_4G_last in the frequency band used in 4G. Transition.
  • the comparison of the reception status of each communication method in S106 is, for example, the total received power P_ALL_3G_last in the frequency band used in 3G, the total received power P_ALL_S3G_last in the frequency band used in S3G, and the frequency band used in 4G. This is a comparison of the magnitude of the total received power P_AL L_4G_last.
  • step S106 based on the comparison result by the reception state information comparison unit 174 and the information from the memory 190, the optimum method selection control unit 176 is used in 3G, S3G, 4G using the time period setting unit 177. All received power in the frequency band P_ALL_3G_last, P_ALL_S3 G_last, P_ALL_4G_last Measure (check) received signals in descending order of power value Time Tl, ⁇ 2, ⁇ 3 (however, ⁇ 1 Set ⁇ 2 ⁇ 3)
  • step S106 when all the received power P_ALL_3G_last, P_ALL_S3G_last, and P_ALL_4G_last in each communication method (3G, S3G, 4G) are the same and the remaining battery capacity is low, the optimum method is selected.
  • the control unit 176 sets the time periods T1, ⁇ 2, and ⁇ 3 in ascending order of the average power consumption value of the transmission / reception circuits of each method.
  • step S106 the process proceeds to step S107.
  • step S107 the optimum method selection control unit 176 outputs the time periods ⁇ 1 to ⁇ 3 set in step S106 to each data reception processing unit 140, 150, 160, and each data reception processing unit 140, 150 160, based on the input time period, the reception status (reception power value in this case) of the received signal for each base station of each communication method is checked.
  • the optimum method selection control unit 176 uses the time period setting unit 177 to receive signals for each communication method. By setting the time period for checking the signal, it is determined which communication method is used for communication from multiple communication methods (3G, S3G, 4G), and information on the determined communication method is used.
  • the data transmission method selection unit 102 outputs the result.
  • the determined information is output to the corresponding transmission processing units 110, 120, and 130.
  • the transmission / reception processing signals 110, 120, 130, 140, 150, and 160 have the time periods Tl, ⁇ 2, and ⁇ 3 for measuring the signals of the base station power, etc.
  • the measurement time period is changed.
  • the power intensity measurement units 143, 153, 163 are the low-noise amplifiers 142, 152 in each processing unit 140, 150, 160, respectively.
  • the configured force placed after 162 is not limited to this.
  • each data reception processing unit 140, 150, 160 the configuration is arranged after the demodulation processing units 145, 155, 165 after the low noise amplifiers 142, 152, 162 Also good.
  • FIG. 6 is a diagram illustrating a first modification of the data reception processing unit.
  • FIG. 6 is a diagram showing a 3G data reception processing unit 14 Oa, which is a modified example 1 of the 3G data reception processing unit 140.
  • a 3G power intensity measurement unit 1 43 Is placed after the demodulation processing unit 145.
  • the received signal that is the target when the 3G power intensity measuring unit 143 measures the power intensity is subjected to the despreading process or the like in the demodulation processing unit 145 before the power intensity is measured. Is demodulated. Therefore, more accurate power intensity can be measured when measuring the power intensity in the 3G data reception processing unit 140 shown in FIG.
  • the 3G data reception processing unit 140 performs the 3G data reception processing.
  • the other communication schemes S3G and 4G data reception processing units 150 and 160 have the same configuration as the 3G data reception processing unit 140a. That is, in each of the S3G and 4G data reception processing units 150 and 160 (see FIG. 2), the S3G and 4G power intensity measurement units are respectively connected to the demodulation processing units 155, 155, It shall be placed after 1 65 and process the input signal. With this configuration, the same power and effect as those obtained when the 3G data reception processing unit 140a is changed to the 3G data reception processing unit 140, that is, accurate power intensity is also measured in S3G and 4G.
  • each data reception processing unit 140, 150, 160 of the present embodiment the reception status information output to the control unit is the total received power in the frequency band used in each communication method. It is good also as a propagation loss not only in each communication system.
  • each data reception processing unit 140, 150, 160 includes a propagation loss measuring unit for each communication method instead of the power intensity measuring unit for each communication method.
  • FIG. 7 is a diagram illustrating a 3G data reception processing unit 140b as a second modification of the 3G data reception processing unit, and the reception processing unit as the second modification is a 3G data reception processing of FIG.
  • the unit 14 Oa has a configuration in which the 3G power intensity measurement unit 143 is replaced with a 3G propagation loss measurement unit 147. That is, in the data reception processing unit 140b, the 3G propagation loss measurement unit is disposed after the demodulation processing unit 145.
  • the mobile terminal provided with the configuration of the data reception processing unit 140b as the second modification as a data reception processing unit corresponding to each different communication method corresponds to the control unit (the control unit 170 illustrated in FIG. 2). ) Determines the communication method for actual communication based on the output power of the transmission loss measuring unit provided in each data reception processing unit with a different communication method.
  • the mobile terminal having the configuration of the data reception processing unit 140b of the second modification is controlled based on the propagation loss instead of the power intensity.
  • the propagation loss is generally calculated from the base station output power transmitted from the base station and the received power at the mobile terminal 100.
  • the processing in the control unit is performed by replacing “P_ALL_last” shown in FIG. 5 with the reciprocal of the propagation loss.
  • the input reception state information includes a propagation loss
  • the reception state information comparison unit 174 determines the propagation loss of the reception state information in the first, second, and third communication methods and a preset value of the propagation loss.
  • a propagation loss comparing unit for comparing the two.
  • the control unit configured as described above selects the communication method having the highest received power by the optimum method selection unit, measures the reception state of the selected communication method, and then selects the selection by the reception state information comparison unit 174. If the propagation loss of the reception status information of the selected communication method is smaller than the specified value of the propagation loss, the optimum method selection control unit 176 selects the transmission loss first. A communication method other than the selected communication method is selected, and the reception state corresponding to the selected other communication method is measured.
  • this is not the only power that actually measures only the communication systems with time periods of ⁇ 1 and ⁇ 2, but it is not limited to this, and it is possible to reduce power consumption without always measuring signals from base stations of all communication methods. Any configuration can be used as long as it achieves both reduced processing volume and high bit rate.
  • the total reception power P_ALL_3G_last, P_ALL_S3G_last, and P_ALL_4G_last of each communication method is measured using the data reception processing units 140, 150, and 160 of all communication methods. Thereafter, the optimum method selection control unit 176 checks only the signal with the highest signal level and the signal with the second highest signal level.
  • the optimum method selection control unit 176 performs re-ranking using the received power of all the methods, and measures only the received power in the communication method in which the first and second highest signal levels are measured.
  • FIG. 8 is a flowchart for explaining an example of a communication method selection method as processing of the mobile terminal 100 according to the present invention.
  • the 3G data reception processing unit 140 uses the frequency used in the 3G system. Bandwidth The total received power P_ALL_3G_last is measured, the S3G data reception processing unit 150 measures the total received power P_ALL_S3G_last in the frequency band used by S3G, and the 4G data reception processing unit 160 uses the frequency band used by 4G. The total received power P_ALL_4G_last at is measured. Then, the remaining battery level detection unit 174 measures the remaining power level of the battery 195 and performs a communication method selection process.
  • reception state information comparison section 174 first starts with the total received power in the frequency band used in 3G (hereinafter described as “P_ALL_3G_last”). Is greater than the total received power in the frequency band used by S3G (hereinafter referred to as “P_A LL_S3G_lastJ”). If so, the process proceeds to step S202. If not, the process proceeds to step S203. Transition.
  • step S202 it is determined whether P_ALL_S3G_last is greater than the total received power in the frequency band used in 4G (hereinafter referred to as “P_ALL_4G_last ⁇ ”). If larger, the process proceeds to step S204. Otherwise, the process proceeds to step S205.
  • step S204 the reception state information comparison unit 174 outputs P ⁇ ⁇ ALL—3G—last> P—ALL—S3GJast> P_ALL_4G_last to the optimum method selection control unit 176, and outputs the comparison determination result to the step 176. Move to S 206.
  • step S207 the reception status information comparison unit 174 is used to determine whether or not P_ALL_3G_last-P_ALL_S3 GJast is a specified value PI. If P_ALL_3G_last-P_ALL_S3G_last is smaller than the specified value P1, step S208 If P—ALL—3G—last-P—ALL—S3G—last is greater than or equal to the specified value PI, the process ends.
  • step S208 the 4G data reception processing unit 160 measures the total received power P_ALL_4G_last in the frequency band used in 4G, and proceeds to step S201.
  • step S205 P—ALL—3GJast> P—ALL—4GJast is judged, and if P—ALL—3G—last> P_ALL_4G_last, the process proceeds to step S209 and satisfies! / Step S Move to 210.
  • step S209 the reception status information comparison unit 174 performs P—ALL—3G—last> P—ALL—4G—last.
  • step S211 the optimum method selection control unit 176 uses the time period setting unit 177 to set the time period for checking the signal from the base station in the order of the received power in the order of the highest received power.
  • Set 1 ⁇ Cho 2 ⁇ Cho 3 and Kaccho 3 Infinity), and go to Step S212.
  • step S212 the reception state information comparison unit 174 is used to determine whether or not P_ALL_3G_last-P_ALL_4 GJast is the specified value P2. If P_ALL_3G_last-P_ALL_4G_last is smaller than the specified value P2, the process proceeds to step S213. If P—ALL—3G—last-P—ALL—4G—last is equal to or greater than the specified value P2, the process ends.
  • step S213 the S3G data reception processing unit 150 measures the total received power P_ALL_S3G_last in the frequency band used in S3G, and proceeds to step S201.
  • step S210 the reception state information comparison unit 174 determines that P_ALL_4G_last> P_ALL_3G_last
  • step S215 the reception state information comparison unit 174 is used to determine whether or not P_ALL_4G_last-P_ALL_3 GJast is the specified value P3. If P_ALL_4G_last-P_ALL_3G_last is smaller than the specified value P3, the process proceeds to step S213. If P—ALL—3G—last-P—ALL—4G—last is equal to or greater than the specified value P3, the process ends.
  • step S203 the reception state information comparison unit 174 determines whether or not P_ALL_S3G_last> P_ALL_4G_last. If P_ALL_S3G_last> P_ALL_4G_last, the process proceeds to step S216. Move on to S217. [0112] In step S216, the reception state information comparison unit 174 determines whether or not P_ALL_3G_last> P_ALL_4G_last. If P_ALL_3G_last> P_ALL_4G_last, the process proceeds to step S218, and if not, the process proceeds to step S219. .
  • step S218 the reception status information comparison unit 174 outputs P_ALL_S3G_last> P_ALL_3G_last> P_ALL_4G_last!
  • step S221 the reception state information comparison unit 174 is used to determine whether or not P_ALL_S3G_last-P_ALL_3 GJast is a specified value P4. The process proceeds to step S208, and if P_ALL_S3G_last-P_ALL_3G_last is greater than or equal to the specified value P4, the process ends.
  • step S219 the reception state information comparison unit 174 outputs the comparison result to P_ALL_S3G_last> P_ALL_4G_last> P_ALL_3G_last and the optimal method selection control unit 176, and proceeds to step S222.
  • step S223 the reception state information comparison unit 174 is used to determine whether or not P_ALL_S3G_last-P_ALL_4 GJast is the specified value P5. If P_ALL_S3G_last-P_ALL_4G_last is smaller than the specified value P5! The process proceeds to step S224, and if P_ALL_S3G_last-P_ALL_4G_last is equal to or greater than the specified value P5, the process ends.
  • step S224 3G data reception processing section 140 measures the total received power P_ALL_3G_last in the frequency band used in 3G, and proceeds to step S201.
  • step S217 the reception state information comparison unit 174 determines that P_ALL_4G_last> P_ALL_S3G_las t> P_ALL_3G_last and!, the comparison result is output to the optimum method selection control unit 176, and the process proceeds to step S225.
  • step S226 the reception status information comparison unit 174 is used to determine whether or not P_ALL_4G_last-P_ALL_S3 GJast is a specified value P6, and if P_ALL_4G_last-P_ALL_S3G_last is smaller than the specified value P6! The process proceeds to step S224, and if P_ALL_4G_last-P_ALL_S3G_last is equal to or greater than the specified value P6, the process ends.
  • step S224 3G data reception processing section 140 measures the total received power P_ALL_3G_last in the frequency band used in 3G, and proceeds to step S201.
  • the received power difference SPn of the method with T1 and T2 selected More / J in this case, step S206, S211, S214, S220, S222, and S225 after measuring all received power in the frequency band used in the method that selected T3 as the signal check period
  • the received signals of each method are ranked again, and if it is larger, the process is terminated.In this embodiment, low power consumption, reduced processing amount and high bit rate are achieved at the same time. It becomes possible to make it.
  • the mobile terminal 100 is located in the area 221 of the S3G base station 220. Since it is assumed that the area 231 of the 4G base station 230 exists, the signal level of the 4G communication method may be checked when the S3G signal level becomes higher than 3G.
  • FIG. 9 is a flowchart for explaining an example of processing for checking the signal level of the 4 G communication method when the mobile terminal 100 moves in the A direction in the communication system 200.
  • step S301 the 3G reception data processing unit 140 measures the total reception power P_ALL_3G_last in the frequency band used in 3G.
  • step S302 the 3G reception data processing unit 150 measures the total reception power P_ALL_S3G_last in the frequency band used in S3G, and proceeds to step S303.
  • step S304 4G received data processing section 160 measures the total received power P_ALL_4G_last in the frequency band used in 4G, and proceeds to step S306.
  • step S306 the reception state information comparison unit 174 determines that the difference between the total received power P_ALL_S3GJast in the frequency band used in S3G and the total received power P_ALL_4G_last in the frequency band used in 4G is a specified value P8. If the difference is small, the process proceeds to step S307. If the difference is large, the process proceeds to step S308.
  • step S307 which is a process when (P_ALL_S3G_last) (P_ALL_4G_last) ⁇ P8, the optimal method selection control unit 176 uses the time period setting unit 177 to set the 4G, S3G, and 3G base stations 210 and 220.
  • the 4G communication system in the mobile terminal 100 Because the signal level is checked when the signal level of the S3G becomes higher than the S3G, the signal level is always 3 In the mobile terminal 100 in the communication system 200 that does not need to check the received signal levels of the two communication methods, it is possible to achieve both low power consumption, reduced processing amount, and high bit rate.
  • the mobile terminal 100 may first measure the reception states of all communication methods and check only the first one thereafter. In other words, check other communication methods only when the communication method being used is about to be cut off (when it becomes smaller than another specified value).
  • FIG. 10 is a diagram showing another example of a communication method selection method in the mobile terminal 100.
  • the reception state information comparison unit 174 performs the total received power P_ALL_3G_last in the frequency band used in 3G, all in the frequency band used in S3G. Receive power P_ALL_S3G_last, compare and judge the magnitude of all received power P_ALL_4G_last in the frequency band used by 4G.
  • the optimum method selection control unit 176 performs the total received power in the frequency band used in 3G, S3G, and 4G.
  • the signal check time period of the largest method is T1
  • the check time of the other methods is infinite.
  • reception state information comparison section 174 determines whether or not the received signal power of the method in which the signal check time period is T1 is smaller than the specified value. In each of these steps S405, S412, and S418, if the judgment result is large Return to Steps S405, S412, and S418, respectively, and check the signal from the base station of the method that uses T1 as the signal check time period without changing to another communication method at the time of check as it is f3 ⁇ 4Tl. I will.
  • steps S406, S407, S413, S414, S419, and S420 the total received power in the frequency band used in the method in which the check time is set to ⁇ in the previous steps S404, S411, and S417 is measured.
  • the reception status information comparison unit 174 uses the check time of ⁇ in each of the previous steps S404, S411, and S417, for example, S3G and 4G in step S417. The total received power in the frequency band to be compared is compared.
  • step S409 the S3G base station signal check time period is T1, and the check time of other systems is infinite.
  • the optimum method selection control unit 176 receives the received power value in the reception status information of the communication method having the first largest received power. If the received power value of the reception status information of the communication method having the first largest received power is smaller than the specified value of the received power value, the first, second and Of the third communication methods, a method of selecting the communication method having the largest quotient when the received power is divided by the communication rate is selected as the communication method for measuring the reception state.
  • the mobile terminal 100 first measures the reception status of all communication methods and checks only the first at that time, After that, only the first check is made, and the other communication method is checked only when the communication method being used is about to be cut (when it becomes smaller than the specified value).
  • the default value that is, the default measurement frequency is used. Force measured only by the method
  • the difference in signal reception power level of the three methods (3G, S3G, 4G) measured first is small (MAX (a, b, c) —MIN (a, b, c) ⁇ specified Value), it may be configured to measure only the method of the default measurement frequency (the mainstream at that time).
  • FIG. 11 is a flowchart for explaining processing when the power level difference of the received signal measured first is small.
  • reception state information comparison section 174 compares the difference between the value of the method that takes the maximum value and the value of the method that takes the minimum value of all the measured received power, and the preset specified value P12. (MAX (P—ALL—3GJast, P—ALL—S3GJast, P—ALL—4GJast) ⁇ MIN (P—ALL—3GJast, P—A LL—S3GJast, P—ALL—4GJast) ⁇ PI 2).
  • step S601 when the difference between the value of the method that takes the maximum value and the value of the method that takes the minimum value among the measured total received power is larger than the specified value P12, the process proceeds to step S602.
  • the processing from step S602 to step S622 is the same as the processing from step S401 to step S422 described in FIG.
  • step S601 if the difference between the value of the method taking the maximum value and the value of the method taking the minimum value is smaller than the specified value P12 among all the measured received powers, the process proceeds to step S623.
  • step S623 the optimal method selection control unit 176 sets, by the time period setting unit 177, to check only the signal of the base station that should be checked by default at the specified time period,
  • the data reception processing unit defined by default is measured.
  • the default checking method is the power of 3G method, but not limited to this, S3 G method or 4G method may be used.
  • step S624 the reception state information comparison unit 174 compares the total received power (here, 3G total received power P_ALL_3G_1 ast) in the frequency band used by default with the specified value P13, If it is more than the specified value P13, return to step S623 and check again the total received power (here, 3G total received power P_ALL_3GJast) in the frequency band used in the default method.
  • the total received power here, 3G total received power P_ALL_3G_1 ast
  • step S624 if it is determined in step S624 that the total received power in the frequency band used by default (here, 3G total received power P_ALL_3G_last) is smaller than the specified value P13, steps S625 and S626 are performed. In order, the total received power (P_ALL_S3G_last, P_ALL_4G_last in Fig. 11) of each communication method in the frequency band used in the non-default method (S 3G, 4G method in Fig. 11) is measured.
  • step S627 the total received power (P_ALL_S3G_last, P_ALL_4G_last in Fig. 11) in the frequency band used in the measured non-default scheme (S3G, 4G scheme in Fig. 11) is compared. Specifically, in step S627, it is determined whether the total received power of S3G P_ALL_S3G_last power 4G total received power P_ALL_4G_las is large or not. Move to step S611.
  • step S610 the base station signal check time period of the communication system with the larger received power is T1, and the check time of the other systems is infinite. After that, the process ends.
  • the base station signal check time period of the S3G system is set to T1, and the check time of other systems is set to infinity.
  • steps S610, S611, and S617 the processing is terminated with T1 as the signal check time period of the method with large received power among non-default communication methods and ⁇ as the others.
  • the method to be measured by default can be dealt with by rewriting the farm based on the control signal from the base station! As a result, the service has not yet started Alternatively, when the service is terminated, the control method in the terminal can be changed and the useless power consumption can be suppressed without the operator of the mobile terminal 100 performing consciousness and complicated operation.
  • FIG. 12 is a block diagram showing a schematic configuration of a mobile terminal 500 that is another example of the mobile terminal apparatus belonging to the communication system 200 according to the embodiment of the present invention.
  • Mobile terminal 500 shown in FIG. 12 has a function of transmitting and receiving data corresponding to each of a plurality of communication methods in communication system 200.
  • Mobile terminal 500 measures the signal from base stations 210, 220, and 230 for each communication method while changing the time interval for measurement, and uses it when transmitting and receiving data based on the measured value. Determine the communication method.
  • the determination method in mobile terminal 500 is SIR (ratio of desired signal power to interference power, Signa).
  • a mobile terminal 500 shown in FIG. 12 has the same basic configuration as the mobile terminal 100 corresponding to the embodiment shown in FIG. 2, and includes a measurement unit that measures reception state information of each communication method, Only the configuration of the control unit that selects the optimal communication method based on the reception status information measured by these measurement units is different. Therefore, below, the same code
  • data reception processing units 140, 150, and 160 for each communication method are used for 3G, S3G, and 4G power intensity measuring units 143, 153, and 163 instead of 3G, S3G And 4G SIR measurement units 148, 158 and 168.
  • the 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a perform low-noise amplifiers 142, 152, and 162 for 3G, S3G, and 4G that perform processing in their respective communication methods.
  • 3G, S3G, and 4G SIR measurement units 148, 158, and 168 And measure the SIR of each input signal after demodulation. These measurement results are output to the controller 170a.
  • the mobile terminal 500 includes a control unit 170a that performs communication method selection processing based on measurement information from each of the SIR measurement units 148, 158, and 168.
  • the mobile terminal 500 measures the SIR value in each communication method at a predetermined time period set by the control unit 170a in the data reception processing units 140c, 150a, 160a of a plurality of communication methods. To do. The measured total received power and SIR value are output to the controller 170a as reception status information.
  • FIG. 13 is a block diagram showing the main configuration of control section 170a in mobile terminal 500 shown in FIG.
  • control unit 170a is based on signals input from the 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a, information from the memory 190, and information from the battery 195.
  • the data transmission method selection unit 102 uses the selection result to input the data transmission method selection unit 102. The transmission method for transmitting the signal as information is determined.
  • the control unit 170a includes a remaining battery level detection unit 172, a reception state information comparison unit 174a, and an optimum method selection control unit 176a.
  • the reception state comparison unit 174a includes a SIR comparison unit 1742.
  • the SIR comparison unit 1742 uses the communication method of the reception status information that is input from the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a. Compare SIRs in frequency bands and output the result as a comparison result of the reception status of signals from base stations 210, 220, and 230 of each communication method to optimum method selection control unit 176a
  • the optimal method selection control unit 176a performs actual radio wave detection based on information from the battery remaining amount detection unit 172, the SIR comparison unit 1742 of the reception state information comparison unit 174a, the control table stored in the memory 190, and the like. Select the most suitable communication method for the propagation environment.
  • the optimum method selection control unit 176a sends the data to the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a in order to transmit and receive data according to the selected communication method.
  • the time period setting unit 177 outputs and controls the reception state at each set time period, in this case, a control signal for performing SIR measurement.
  • the time period setting unit 177 includes the corresponding base stations 210, 220, 230 for the 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a, respectively.
  • Tl, ⁇ 2, and ⁇ 3 in this embodiment are 0 and any period that satisfies Tl, ⁇ 2, ⁇ 3 ⁇ , and ⁇ 1 ⁇ 2 ⁇ 3.
  • the time period setting unit 177 assigns the set time period to each data reception processing unit 140c, 150a, 160a, so that the optimum method selection control unit 176a actually receives the reception state (here, SIR ) Select the communication method to measure!
  • the setting of the time period in the time period setting unit 177 is associated with the remaining power and SIR value of the battery 195, and the remaining power of the battery 195 stored in the memory 190 is It is set based on the relationship between the amount (battery level), SIR value, base station check time T and SIR. Specifically, the setting of the time period is for selecting the communication method. Which of the received signals is received among the 3G, S3G, 4G base stations 210, 220, and 230 received signals. Synonymous with setting whether to measure reception status (SIR)
  • the control unit 170a of the mobile terminal 500 causes the data reception processing units 140c, 15Oa, and 160a to measure the total received power for each communication method. And measured The received power for each communication method is compared by the SIR comparison unit 1742 of the reception state information comparison unit 174a, and the optimum method selection control unit 176a also compares the signal of the communication method with the highest SIR value. Select the communication method to be used. Then, the SIR of the selected signal after that is measured using the data reception processing unit of the communication method with the highest SIR value.
  • the SIR comparing section 1742 monitors the SIR of the received signal in the communication system with the highest received signal, and controls to measure the SIR of another communication system if it is smaller than a preset specified value.
  • the mobile terminal 500 can reduce power consumption and improve QoS (Quality of Service). Can be achieved.
  • QoS Quality of Service
  • the mobile terminal 500 is configured to measure the SIR of each communication method.
  • the present invention is not limited to this, and is performed by a base station that is a communication partner (for example, base stations indicated by 210, 220, and 230 in FIG. 1).
  • the mobile terminal 500 may be notified of only the SIR value.
  • a SIR value acquiring unit for acquiring the received signal strength SIR value is arranged.
  • the data reception processing units 140c, 150a, and 160a of each communication method include SIR measurement units 148, 158, and 168 as means for detecting the reception information state.
  • the present invention is not limited to this, and instead of the SIR measuring units 148, 158, 168, a bit rate measuring unit for measuring the bit rate of the received signal may be provided.
  • the reception state information comparison unit 174a has a configuration in which a bit rate comparison unit is provided instead of the SIR comparison unit 1742.
  • the data reception processing units 140c, 150a, and 160a of each communication method may use the received information state to be detected as BER or FER that is not SIR.
  • the SIR measurement unit 148, 158, 168 instead of each SIR measurement unit 148, 158, 168, a measurement unit for measuring the BER or FER of the received signal is provided, and in the comparison unit on the control unit side, instead of the SIR comparison unit, A BER comparison unit or FER comparison unit is arranged.
  • the mobile terminal 500 compares the received power value together with the SIR value in each communication method, It is good also as a structure which selects the communication system to be used based on these comparison results.
  • the data reception processing units 140c, 150a, and 160a of a plurality of communication methods have the power intensity together with the SIR value, specifically, the total received power P_ALL_3G_last in the corresponding frequency band of the corresponding communication method.
  • P_ALL_S3G_last and P_ALL_4G_last are measured and output to the controller 170a.
  • the control unit 170a configures the reception state information comparison unit 174a to compare the total received powers P_ALL_3G_last, P_ALL_S3G_last, and P_ALL_4G_last.
  • the SIR comparison unit 1742 receives signals that are input from the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a.
  • the SIR in the communication system's frequency band used for comparison is compared with the SIR value that has been set in advance, and the SIR for each communication system is set to the preset rule. Compared with the value, the result is output to the optimum method selection control unit 176a as a comparison result of the reception state of the signal from the base station 210, 220, 230 of each communication method.
  • the optimum method selection control unit 176a is based on information from the battery remaining amount detection unit 172, the SIR comparison unit 1742 of the reception state information comparison unit 174a, the control table stored in the memory 190, and the like. Select the communication method most suitable for communication according to the actual radio wave propagation environment. Specifically, the optimum method selection control unit 176a measures the SIR based on the received signals in descending order when the received signal power values from the respective communication methods output as the comparison results by the reception state information comparing unit 174a are different.
  • optimum scheme selection control section 176a selects the communication scheme set as the default value.
  • the optimum method selection control unit 176a sends the data to the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a to transmit and receive data according to the selected communication method.
  • Time period set by the period setting unit 177 Controls by outputting a control signal for measuring the reception status, here SIR.
  • the time period setting unit 177 includes the base stations 210, 220, 230 corresponding to the 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a, respectively.
  • Tl, ⁇ 2, and ⁇ 3 in this embodiment are 0 and any period that satisfies Tl, ⁇ 2, ⁇ 3 ⁇ , and ⁇ 1 ⁇ 2 ⁇ 3.
  • the optimum method selection control unit 176a determines the communication method for actually measuring the reception state (here, SIR). select.
  • control unit 170a of the mobile terminal 500 first causes the data reception processing units 140c, 15Oa, and 160a to measure the total received power for each communication method. Then, the measured received power for each communication method is compared, and this comparison result power is also selected as the communication method that uses the signal of the communication method with the highest received power level.
  • the SIR of the selected signal after that is measured using the data reception processing unit of the communication method with the highest received power level.
  • the SIR comparator 1742 monitors the SIR of the received signal in the communication method with the highest received signal, and if it is smaller than the preset specified value, it controls to measure the SIR of the other communication method. Since the communication method is selected in this way, it is not necessary to check the reception status of all signals of the receivable communication method.
  • the mobile terminal 500 can reduce power consumption and improve quality of service (QoS). It can be done.
  • the 3G data reception processing unit 140, 140c, the S3G data reception processing unit 150, 150a, and the 4G data reception processing unit 160, 160a are one system for RAKE reception. (Finger etc.)
  • the data reception processing units 140, 140a to 140c, 150, 150a, 160, and 160a of each communication method are measured with respect to the received signals in the used frequency bands. If the received signal power value of each communication method is the same, the optimum method selection control units 176 and 176a select the communication method set as the default value. However, the present invention is not limited to this, and a configuration may be adopted in which a communication method having a higher received signal power peak is selected.
  • Figure 14 shows the same when measuring received signals of different communication methods by adding the peak power measurement function to the power intensity measurement units 143, 153, 163 or SIR measurement units 148, 158, 168. It is a figure which shows an example of the received signal of the communication system which is an electric power value and has different electric power peaks.
  • the power value 801 of the total received power P_ALL_3G_last in the frequency band used in 3G and the power value 802 of the total received power P_ALL_S3G_last in the frequency band used in S3G are indicated as power values.
  • the area of 801 is the area of power value 802.
  • the information output from the power intensity measurement unit 143, 153, 16 3 or SIR measurement unit 148, 158, 168 to the control unit 170, 170a is used.
  • the reception status information comparison units 174 and 174a perform comparison including the power peak, and the optimum method selection control units 176 and 176a select the S3G communication method having a high power peak. In this way, since the method with high peak power is prioritized, it is possible to improve the communication speed and quality, as well as to reduce the power consumption and increase the bit rate in the communication method used.
  • control unit 170 compares the received power value in the reception state information of the first communication method with the highest received power with the specified value of the received power value in the reception state information comparing unit 174. If the received power value of the reception status information of the communication method with the second highest received power is smaller than the preset value of the received power value set in advance, the optimal method selection control unit 176 uses the 3G, S3G and 4G communication methods. Of these, the quotient when receiving power is divided by the communication rate is the largest! Select the communication method as the communication method for measuring the reception status, and measure the reception status.
  • the present embodiment is a communication system with a different communication method, mainly the cellular system and other wireless communication systems such as wireless LAN and fixed wireless system. Good as a merged system.
  • the mobile communication terminal device and the communication system according to the present invention can communicate with each of a plurality of communication systems having different frequency bands, have an effect of saving power, and have different frequency bands. Useful for use in certain areas

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A mobile communication terminal apparatus that can perform smooth communications for each of a plurality of communication systems having different frequency bands and that exhibits a reduced power consumption. In the mobile communication terminal apparatus (100), a control part (170) establishes, based on the remaining quantity of a battery (195) and 3G, S3G and 4G reception status information, reception status determination periods for one or two of 3G, S3G and 4G data reception processing parts (140,150,160) and uses the established determination periods to control the one or two data reception processing parts to determine the reception statuses. A reception status information comparing part (174) uses reception status information indicative of the determined reception statuses to compare in magnitude the reception powers in the 3G, S3G and 4G communication systems. An optimum system selection control part (176) selects, based on a comparison result of the reception status information comparing part (174), one of the 3G, S3G and 4G communication systems for which the reception status is to be determined. The optimum system selection control part (176) then establishes a determination period for one of the 3G, S3G and 4G data reception processing parts corresponding to the selected communication system. The control part (170) controls the data reception processing part, which corresponds to the communication system selected by the optimum system selection control part (176), to determine the reception status.

Description

明 細 書  Specification
移動通信端末装置および通信システム  Mobile communication terminal device and communication system
技術分野  Technical field
[0001] 本発明は、複数の通信方式により通信を行うことができる移動通信端末装置および 通信システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a mobile communication terminal apparatus and a communication system capable of performing communication by a plurality of communication methods.
背景技術  Background art
[0002] 従来力 通信方式の異なる複数のサービスが混在して 、る地域にぉ 、て、すでに ある一つのネットワークに接続している移動端末力 移動に伴ってそのネットワークへ の接続が困難になった場合に、異なった種類の別のネットワークに切り替えて、接続 を «I続できるようにすることが考えられて 、る。  [0002] Conventional power When a plurality of services with different communication methods coexist, a mobile terminal that is already connected to a single network becomes difficult to connect to that network due to movement. In this case, it is possible to switch to another network of a different type so that the connection can be continued.
[0003] 複数の通信方式の異なる通信システムと通信可能な移動端末の通信方法としては 、例えば、特許文献 1に示すものがある。この特許文献 1には、無線 LAN (Local Are a Network)と第 3世代移動体通信システム(以下「3G」と!、う)である W— CDMA (Wi deband Code Division Multiple Access)の双方の方式と通信可能な移動端末を備え る無線通信システムが開示されている。この特許文献 1における移動端末は、受信し た下り信号の受信品質に基づ!/、て、移動先となる無線アクセス局を収容する方式の 通信システムを決定する。また、特許文献 1では、移動端末から通知される無線シス テムの種別情報に基づいてネットワーク内のデータベースを参照し、サーバ側で、移 動端末の要求を満たすノ、ンドオーバの方式を選択する。  [0003] As a communication method of a mobile terminal capable of communicating with a plurality of communication systems having different communication methods, for example, there is one disclosed in Patent Document 1. This patent document 1 describes both a wireless LAN (Local Are a Network) and a third generation mobile communication system (hereinafter referred to as “3G”!), W—CDMA (Wi deband Code Division Multiple Access). A wireless communication system including a mobile terminal capable of communicating with a mobile terminal is disclosed. The mobile terminal in Patent Document 1 determines a communication system that accommodates a radio access station as a movement destination based on the received quality of the received downlink signal. Further, in Patent Document 1, a database in the network is referred to based on the type information of the wireless system notified from the mobile terminal, and a node handover method that satisfies the request of the mobile terminal is selected on the server side.
[0004] また、特許文献 2では、 CDMA (Code Division Multiple Access)通信方式を用い た異なる世代の基地局がエリア毎に分かれて配置され、あるエリア力 世代の異なる エリアへ移動局が移動した場合に、基地局を切り替えて、切断なく基地局間のハンド オーバを実現する方法が記載されて 、る。  [0004] Also, in Patent Document 2, when base stations of different generations using a CDMA (Code Division Multiple Access) communication method are arranged for each area and a mobile station moves to an area of a certain area power generation Describes a method for switching between base stations and realizing handover between base stations without disconnection.
特許文献 1:特開 2004— 260444号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-260444
特許文献 2 :特開 2000— 201369号公報  Patent Document 2: JP 2000-201369 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] ところで、移動体通信システムにお!/、ては、第 4世代移動体通信システム(以下、「4 G」という)のサービスインが予定されている。 4Gへ至る過程において、既存の第 3世 代移動体通信システム(以下、「3G」という)から円滑に移行することを狙い、 3Gと 4G との間に中間的な位置付けである Super3G (以下、「S3G」という)の導入が提案さ れている。 Problems to be solved by the invention [0005] By the way, service-in of a 4th generation mobile communication system (hereinafter referred to as "4G") is planned for mobile communication systems. In the process of reaching 4G, Super3G (hereinafter referred to as “3G”), which is an intermediate position between 3G and 4G, aims to smoothly transition from the existing 3rd generation mobile communication system (hereinafter referred to as “3G”). The introduction of “S3G” is proposed.
[0006] なお、 3Gは、 W— CDMAや CDMA2000を代表とする通信方式であり、周波数 帯域は 2GHz帯であり、幹線ネットワークは ATMネットワークである。また、 S3Gは、 1. 7又は 2. 5GHz帯を利用周波数帯として検討されている通信方式である。 S3Gで 【ま、 りに「VSF— OFDM (Variable spreading Factor, Orthogonal Frequency and Code Division Multiplexing)」、上りに「DS— CDMA (Direct Spread Code Division Multiple Access)」が用いられ、データ転送速度は静止時に 100Mbps、移動時に 30 Mbps、遅延時間は現行の約 10msに対して 2. Oms以下となっている。 S3Gの幹線ネ ットワークは IPネットワークである。さらに、 4Gは、利用周波数帯を 5GHzとして S3G と同様の技術を用いてなり、下り用に 4. 635GHzを中心とする 100MHz分、上り用 に 4. 9GHzを中心とする 30MHz分の周波数帯が用いられている。この 4Gは、複数 のアンテナを使う MIMO (Multiple Input, Multiple Output)を既存の無線システムに 追加する形で導入してなり、データ転送速度は静止時に lGbps、移動時に 100Mb psとなっており、幹線ネットワークは IPネットワークである。  [0006] 3G is a communication system represented by W-CDMA and CDMA2000, the frequency band is 2 GHz, and the trunk network is an ATM network. In addition, S3G is a communication method that is being studied using 1.7 or 2.5 GHz band as the usage frequency band. S3G uses “VSF—Variable spreading factor, Orthogonal Frequency and Code Division Multiplexing” for upstream, and “DS—Direct Spread Code Division Multiple Access” for upstream, and the data transfer rate is stationary. 100 Mbps, 30 Mbps when moving, delay time is less than 2. Oms compared to the current 10 ms. S3G's trunk network is an IP network. Furthermore, 4G uses the same frequency technology as S3G, with a frequency band of 5 GHz, and has a frequency band of 100 MHz centered on 4.635 GHz for downstream and 30 MHz centered on 4.9 GHz for upstream. It is used. This 4G is implemented by adding MIMO (Multiple Input, Multiple Output) using multiple antennas to the existing wireless system, and the data transfer rate is lGbps when stationary and 100Mbps when moving. The network is an IP network.
[0007] このような 3G、 S3G及び 4G等のような周波数帯及び伝送速度(ビットレート)の異 なる複数の通信方式のエリアが混在する地域においては、それぞれの通信方式で通 信可能な移動端末な通信システムを実現した!/、と 、う要望がある。  [0007] In an area where a plurality of communication method areas having different frequency bands and transmission speeds (bit rates) such as 3G, S3G, and 4G are mixed, a mobile that can communicate with each communication method. There is a need to realize a terminal communication system! /.
[0008] これを実現するためには、 3Gエリア、 S3Gエリア、 4Gエリアと!/、う通信方式の異な る複数のサービスが混在している地域では、移動端末は、 3G、 S3G、 4Gといった異 なる周波数用の受信装置、送信装置を具備することになる。特に、周波数が異なる 通信方式の基地局のそれぞれが、それぞれのエリアにおけるセル情報を相互にやり 取りして 、な 、場合、移動端末側にお!、て最初に全通信方式の基地局分のセルサ ーチを行う必要が生じる。加えて、その後、常にそれぞれの方式の信号を受信及び 復号する必要が生じるため、消費電力が増大する。 [0009] また、移動端末により通信方式の異なる複数のサービスを利用できる通信システム を実現するために、移動端末では、周波数帯が異なる複数の通信方式のネットヮー クに対して、ビットレートを優先して、選択する通信方式を決定する場合が考えられる 。この場合、まず基本は全通信方式(3G、 S3G、 4G)においてそれぞれセルサーチ を行って各々の通信状態を測定し、常にスピードの出る通信方式に切り替えていくこ とになるが、常に全通信方式(3G、 S3G、 4G)の信号を受信、復調することが必要と なるため、消費電力が増大してしまう。 [0008] In order to achieve this, 3G area, S3G area, 4G area and! /, Where there are multiple services with different communication methods, mobile terminals are 3G, S3G, 4G, etc. A receiving device and a transmitting device for different frequencies are provided. In particular, the base stations of communication systems with different frequencies exchange cell information in their respective areas. In this case, the cell terminals for the base stations of all communication systems are first connected to the mobile terminal side. Need to be conducted. In addition, after that, since it becomes necessary to always receive and decode the signals of the respective systems, the power consumption increases. [0009] In addition, in order to realize a communication system in which a mobile terminal can use a plurality of services having different communication methods, the mobile terminal gives priority to a bit rate over networks of a plurality of communication methods having different frequency bands. In this case, the communication method to be selected may be determined. In this case, first, in all communication systems (3G, S3G, 4G), cell search is performed to measure each communication state, and switching to a communication system that always provides speed is possible. Since it is necessary to receive and demodulate (3G, S3G, 4G) signals, power consumption increases.
[0010] さらに、 3Gと S3Gと 4G等のそれぞれ通信方式の異なる基地局同士が相互にセル 情報をやり取りしている場合では、下りリンクのパイロットチャネルの受信レベルが最 大なセルに接続した後、このセル力ゝらの報知情報を受信、復号することで周辺のセル 情報を得ることになる。そして、 3つの周波数帯の異なる通信方式の基地局のうち、 最大受信レベルの基地局に接続した後、随時周辺セル情報を入手して適切なセル へハンドオーバすることが考えられる。  [0010] Furthermore, in the case where base stations with different communication methods such as 3G, S3G, and 4G exchange cell information with each other, after connecting to the cell with the highest reception level of the downlink pilot channel, Then, by receiving and decoding the broadcast information of the cell force, neighboring cell information can be obtained. Then, after connecting to the base station with the maximum reception level among the base stations with different communication systems in the three frequency bands, it is conceivable that the neighboring cell information is obtained and handed over to an appropriate cell at any time.
[0011] し力しながら、近隣にセルがあることは分力つてもその端末にとって最適条件かの 判断のためにセルサーチを行う必要がある。このため、移動端末では各通信方式の 基地局からそれぞれ送信される信号の受信レベルを定期的に全てチェックすること が必要となり、その分、消費電力が増大することとなる。  [0011] However, it is necessary to perform a cell search in order to determine whether there is a cell in the vicinity, even if there is a division, whether it is the optimum condition for the terminal. For this reason, it is necessary for the mobile terminal to periodically check all the reception levels of the signals transmitted from the base stations of the respective communication methods, and the power consumption increases accordingly.
[0012] このように、 3Gエリア、 S3Gエリア、 4Gエリアと!/、う通信方式の異なる複数のサービ スが混在している地域では、移動端末は、 3G、 S3G、 4Gといった異なる周波数用の 受信装置、送信装置を使用して、それぞれ異なる周波数帯の電波を常に監視するこ とになるため、それぞれ周波数帯の異なる方式の送受信用の受信装置及び送信装 置のそれぞれで電力を消費するため、消費電力量が非常に大きくなるという問題が 発生する。  [0012] In this way, in areas where 3G areas, S3G areas, and 4G areas are mixed with multiple services with different communication methods, mobile terminals are used for different frequencies such as 3G, S3G, and 4G. Because radio waves in different frequency bands are constantly monitored using the receiving device and transmitting device, power is consumed in each of the receiving and transmitting devices for transmission / reception of different systems in different frequency bands. Therefore, there is a problem that power consumption becomes very large.
[0013] また、 3Gエリア、 S3Gエリア、 4Gエリアと!/、う複数のサービスが混在して!/、る地域で は、セルサーチゃノ、ンドオーバはどの通信方式間移動に対応したものを選択すべき か等の処理が多く困難になる。  [0013] In addition, in the 3G area, S3G area, 4G area and! /, Where multiple services are mixed! Processing such as whether to select is difficult.
[0014] 特許文献 1では、移動端末力も通知される無線システムの種別情報に基づいてサ ーバ側で、移動端末の要求を満たすノヽンドオーバの方式を選択するため、移動端末 側でハンドオーバ方式を選択しなくてもよ!、が、決定する無線システムの諸別情報に つ!ヽて、どのように受信品質を判断しどのように決定するかにっ 、ては具体的に開示 されていない。 [0014] In Patent Document 1, since the server side selects a node over method that satisfies the requirements of the mobile terminal based on the type information of the wireless system that is also notified of the mobile terminal power, the mobile terminal There is no need to select the handover method on the side, but the specific information on how to determine the reception quality and how to determine the specific information of the wireless system to be determined Is not disclosed.
[0015] また、特許文献 2では、移動端末が行う通信方式が異なる複数の世代(2G、 3G)の 基地局の選択方法は開示されているが、基地局を選択する際の省電力化を図る記 載は一切開示されて 、な 、。  [0015] Also, Patent Document 2 discloses a method for selecting base stations of a plurality of generations (2G, 3G) having different communication methods performed by a mobile terminal. However, power saving when selecting a base station is disclosed. Any statement to be disclosed is disclosed.
[0016] 本発明の目的は、周波数帯の異なる複数の通信方式のそれぞれでスムーズに通 信可能であるとともに省電力化が図られた移動通信端末装置及び通信システムを提 供することである。 An object of the present invention is to provide a mobile communication terminal device and a communication system that can smoothly communicate with each of a plurality of communication systems having different frequency bands and achieve power saving.
課題を解決するための手段  Means for solving the problem
[0017] 本発明の移動通信端末装置は、電池と、前記電池により駆動し、利用周波数帯及 び通信エリアが異なる第 1、第 2及び第 3の通信方式の信号を、アンテナを介してそ れぞれ受信するとともに、受信した信号から、前記第 1、第 2及び第 3の通信方式毎 の受信状態をそれぞれ測定し、それぞれ受信電力値を含む受信状態情報として出 力する第 1、第 2及び第 3受信手段と、前記電池の電池残量と前記第 1、第 2及び第 3 受信手段毎の受信状態情報に基づいて、前記第 1、第 2及び第 3受信手段のうち一 つ又は二つの受信手段に対して受信状態の測定周期を設定し、設定した測定周期 により前記一つ又は二つの受信手段を制御して受信状態を測定させる制御手段と、 前記測定された受信状態を示す前記受信状態情報を用いて前記第 1、第 2及び第 3 の通信方式における受信電力の大小を比較する比較部と、前記比較部の比較結果 に基づいて、前記第 1、第 2及び第 3の通信方式のうち、受信状態を測定する通信方 式を選択して、前記第 1、第 2及び第 3受信手段のうち選択した通信方式に対応する 受信手段に対して前記測定周期を設定する方式選択部とを具備し、前記制御手段 は、前記方式選択部が選択した通信方式に対応する受信手段を制御して受信状態 を測定させる構成を採る。 [0017] The mobile communication terminal device of the present invention is a battery, and is driven by the battery and transmits signals of the first, second, and third communication systems having different use frequency bands and communication areas via an antenna. Each of the first, second, and third communication modes is received from the received signals, and the first, second, and third communication modes are measured and output as reception status information including received power values. One of the first, second and third receiving means based on the second and third receiving means, the remaining battery level of the battery and the reception status information for each of the first, second and third receiving means. Alternatively, a control unit that sets a measurement cycle of the reception state for two reception units, controls the one or two reception units according to the set measurement cycle, and measures the reception state, and the measured reception state. The first, second and third using the reception status information indicating Based on the comparison result of the comparison unit and the comparison unit that compares the received power in the communication method, the communication method for measuring the reception state is selected from the first, second, and third communication methods. And a method selection unit that sets the measurement period for the reception unit corresponding to the communication method selected from the first, second, and third reception units, and the control unit includes the method selection unit. A configuration is adopted in which the reception state corresponding to the communication method selected by the unit is controlled to measure the reception state.
発明の効果  The invention's effect
[0018] 以上説明したように、本発明によれば、周波数帯がそれぞれ異なる複数の通信方 式のそれぞれで通信可能であるとともに、省電力化を図ることができる。 図面の簡単な説明 [0018] As described above, according to the present invention, communication is possible using each of a plurality of communication methods having different frequency bands, and power saving can be achieved. Brief Description of Drawings
[図 1A]本発明の一実施の形態に係る移動通信端末を有する通信システムの一例を 示す図 FIG. 1A shows an example of a communication system having a mobile communication terminal according to an embodiment of the present invention.
[図 1B]図 1Aに示す移動通信端末が受信する各方式の受信信号強度と受信位置の 関係の一例を示す図  FIG. 1B is a diagram showing an example of the relationship between the received signal strength and the receiving position of each method received by the mobile communication terminal shown in FIG. 1A
[図 1C]図 1Aに示す移動通信端末が受信する各方式の受信信号強度と周波数の関 係の一例を示す図  FIG. 1C is a diagram showing an example of the relationship between received signal strength and frequency for each method received by the mobile communication terminal shown in FIG. 1A.
[図 2]本発明の一実施の形態に係る移動通信端末装置としての移動端末の概略構 成を示すブロック図  FIG. 2 is a block diagram showing a schematic configuration of a mobile terminal as a mobile communication terminal apparatus according to an embodiment of the present invention.
[図 3]図 2に示す移動通信端末における制御部の要部構成を示すブロック図  FIG. 3 is a block diagram showing a main configuration of a control unit in the mobile communication terminal shown in FIG.
[図 4]メモリに格納されるバッテリの電力残量と、通信状態を測定する際の時間周期と の関係を示す図  [Figure 4] Diagram showing the relationship between the remaining battery power stored in the memory and the time period when measuring the communication status
[図 5]本実施の形態に係る移動端末の基本的な処理を説明するフローチャート [図 6]3G用データ受信処理部の変形例を示す図  FIG. 5 is a flowchart for explaining basic processing of the mobile terminal according to the present embodiment. FIG. 6 is a diagram showing a modification of the 3G data reception processing unit.
[図 7]3G用データ受信処理部の別の変形例を示す図 FIG. 7 is a diagram showing another modification of the 3G data reception processing unit.
[図 8]本発明に係る移動端末の処理としての通信方式の選択方法の一例を説明する ためのフローチャート  FIG. 8 is a flowchart for explaining an example of a communication method selection method as processing of the mobile terminal according to the present invention.
[図 9]移動端末が、通信システム内において A方向に移動する際に、 4Gの通信方式 の信号レベルをチェックする処理の一例を説明するフローチャート  FIG. 9 is a flowchart for explaining an example of processing for checking the signal level of the 4G communication method when the mobile terminal moves in the direction A in the communication system.
[図 10]移動端末における通信方式の選択方法の別の例を示す図  [FIG. 10] A diagram showing another example of a communication method selection method in a mobile terminal
[図 11]最初に測定した受信信号の電力レベル差が小さい場合の処理を説明するフロ ーテヤー卜  [Fig. 11] Floater explaining the processing when the power level difference of the received signal measured first is small
[図 12]本発明の実施の形態に係る通信システムに属する移動通信端末装置の別例 である移動端末の概略構成を示すブロック図  FIG. 12 is a block diagram showing a schematic configuration of a mobile terminal which is another example of the mobile communication terminal apparatus belonging to the communication system according to the embodiment of the present invention.
[図 13]図 12に示す移動端末における制御部の要部構成を示すブロック図  FIG. 13 is a block diagram showing the main configuration of the control unit in the mobile terminal shown in FIG.
[図 14]異なる通信方式の受信信号を測定した際に、同じ電力値であり且つ電力ピー クが異なる通信方式の受信信号の一例を示す図  FIG. 14 is a diagram showing an example of received signals of communication systems having the same power value and different power peaks when measuring received signals of different communication systems.
発明を実施するための最良の形態 [0020] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。本実施の 形態における移動通信端末装置 (以下、「移動端末」という)は、利用周波数帯と通信 エリアの大きさがそれぞれ異なる複数の通信方式に対応しており、これら通信方式の エリア(サービスネットワーク)は重なって!/、る。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The mobile communication terminal device (hereinafter referred to as “mobile terminal”) in the present embodiment supports a plurality of communication methods with different usage frequency bands and communication areas, and these communication method areas (service networks). ) Overlap! /
[0021] ここでは、利用周波数帯が異なり、利用周波数及び通信エリアの大きさがそれぞれ 異なる複数の通信方式のエリアを、第 1〜第 3通信方式のエリアとし、これら通信方式 のエリアは、第 1から第 3までの順にビットレートが高いものする。さらに、第 1から第 3 通信方式の通信エリアは、第 1から第 3の順に狭いものとなっている。  [0021] Here, areas of a plurality of communication methods with different use frequency bands and different use frequencies and communication areas are defined as first to third communication method areas. The bit rate is from 1 to 3 in order. Further, the communication areas of the first to third communication systems are narrower in the order of the first to third.
[0022] 詳細には、第 1通信方式のエリア圏内に、第 1通信方式と利用周波数帯が異なると 共に第 1通信方式よりもビットレートの高い第 2通信方式のエリアが存在する。また、こ の第 2通信方式のエリア圏内に、第 2通信方式と利用周波数帯が異なるとともに第 2 通信方式よりもビットレートの高い第 3通信方式のエリアが存在している。  More specifically, an area of the second communication method that has a different frequency band than the first communication method and a higher bit rate than the first communication method exists within the area of the first communication method. In addition, within the area of the second communication method, there is an area for the third communication method that uses a different frequency band than the second communication method and has a higher bit rate than the second communication method.
[0023] 図 1は、本発明の一実施の形態に係る移動通信端末 100の通信システム 200にお ける通信状態を説明する図であり、図 1Aは本発明の一実施の形態に係る移動通信 端末を有する通信システムの一例を示す図である。図 1Bは、図 1 Aに示す移動通信 端末が受信する各方式の受信信号強度と受信位置の関係の一例を示す図、図 1C は、図 1Aに示す移動通信端末が受信する各方式の受信信号強度と周波数の関係 の一例を示す図である。  FIG. 1 is a diagram illustrating a communication state in a communication system 200 of a mobile communication terminal 100 according to an embodiment of the present invention, and FIG. 1A is a mobile communication according to an embodiment of the present invention. It is a figure which shows an example of the communication system which has a terminal. Fig. 1B is a diagram showing an example of the relationship between the received signal strength and the reception position of each method received by the mobile communication terminal shown in Fig. 1A. Fig. 1C is the reception of each method received by the mobile communication terminal shown in Fig. 1A. It is a figure which shows an example of the relationship between signal strength and frequency.
[0024] 図 1 Aに示す本実施の形態の移動端末 100は、複数の通信方式のそれぞれに対 応して通信可能なものである。通信に利用される周波数帯及びビットレートがそれぞ れ異なる複数の通信方式を、ここでは、第 1〜第 3通信方式とし、それぞれの通信エリ ァが重なるともに、ビットレートが順に高くなる 3G、 S3G、 4Gとする。  [0024] Mobile terminal 100 of the present embodiment shown in FIG. 1A is capable of communication corresponding to each of a plurality of communication methods. Here, a plurality of communication methods with different frequency bands and bit rates used for communication are referred to as first to third communication methods, and each communication area overlaps, and the bit rate increases in order. S3G, 4G.
[0025] まず、移動端末 100が属する通信システムについて説明する。  First, a communication system to which the mobile terminal 100 belongs will be described.
[0026] 図 1 Aに示す移動端末 100の属する通信システム 200では、 3G基地局 210による 3Gの通信エリア(3Gのサービスエリア 211)内に、 S3Gの基地局 220及び S3Gの通 信エリア(S3Gのサービスエリア 221)が配置されている。そして、この S3Gの通信ェ リア(S3Gのサービスエリア 221)内に、 4Gの基地局 230が配置されるとともに、この 4 Gの基地局 230による通信エリア(4Gのサービスエリア 231)が配置されている。なお 、図 IB及び図 1Cは、図 1 Aに示す通信システム 200内において移動端末 100が矢 印方向(矢印 A方向)に移動していく場合に対応する。 [0026] In the communication system 200 to which the mobile terminal 100 shown in Fig. 1A belongs, the 3G base station 210 and the S3G communication area (S3G) are included in the 3G communication area (3G service area 211) by the 3G base station 210. Service area 221). In addition, a 4G base station 230 is arranged in this S3G communication area (S3G service area 221), and a communication area (4G service area 231) by this 4G base station 230 is arranged. Yes. In addition FIG. IB and FIG. 1C correspond to the case where the mobile terminal 100 moves in the arrow direction (arrow A direction) in the communication system 200 shown in FIG. 1A.
[0027] つまり、図 1Bは、移動端末 100が図 1Aの通信システム 200において A方向に移動 する場合において、各通信方式の基地局 210〜230からそれぞれ送信された信号 を受信したときの信号強度を示している。具体的には、図 1B中、グラフ 212は、周波 数が 2GHz帯の信号である 3G基地局 210からの無線信号を受信した場合の移動端 末 100における信号強度の一例を示している。また、グラフ 222は、周波数が 1. 7も しくは 2. 5GHz帯の信号である S3G基地局 220からの無線信号を受信した場合の 移動端末 100における信号強度の一例を示している。さらに、グラフ 232は、周波数 力 GHz帯の信号である 4G基地局 230からの無線信号を受信した場合の移動端末 100における受信強度の一例を示している。  That is, FIG. 1B shows the signal strength when the mobile terminal 100 receives signals transmitted from the base stations 210 to 230 of each communication method when the mobile terminal 100 moves in the direction A in the communication system 200 of FIG. 1A. Is shown. Specifically, in FIG. 1B, a graph 212 shows an example of signal strength at the mobile terminal 100 when a radio signal is received from the 3G base station 210, which is a signal with a frequency of 2 GHz. Graph 222 shows an example of signal strength in mobile terminal 100 when a radio signal is received from S3G base station 220 having a frequency of 1.7 or 2.5 GHz. Further, the graph 232 shows an example of the reception intensity in the mobile terminal 100 when a radio signal from the 4G base station 230 which is a signal in the frequency power GHz band is received.
[0028] また、図 1Cは、各基地局 210〜230から発信している拡散信号を移動端末 100に て受信した時の信号強度と周波数の関係を示しており、グラフ 213は 3G基地局から 出されている変調信号の一例、グラフ 223は S3G基地局から出されている変調信号 の一例、グラフ 233は 4G基地局から出されている変調信号の一例をそれぞれ示す。  [0028] Fig. 1C shows the relationship between the signal strength and the frequency when the spread signal transmitted from each of the base stations 210 to 230 is received by the mobile terminal 100, and the graph 213 is from the 3G base station. An example of the modulation signal that is output, Graph 223 shows an example of the modulation signal output from the S3G base station, and Graph 233 shows an example of the modulation signal output from the 4G base station.
[0029] 図 2は、本発明の一実施の形態に係る移動通信端末装置としての移動端末の概略 構成を示すブロック図である。  FIG. 2 is a block diagram showing a schematic configuration of a mobile terminal as a mobile communication terminal apparatus according to an embodiment of the present invention.
[0030] 図 2に示す移動端末 100は、通信システム 200における複数の通信方式のそれぞ れに対応してデータを送受信する機能を有する。移動端末 100では、データを送受 信する際に利用する通信方式は、通信方式毎に基地局 210、 220、 230からの信号 を測定する時間間隔を変えて測定し、その測定した値に基づいて判定される。  A mobile terminal 100 shown in FIG. 2 has a function of transmitting and receiving data corresponding to each of a plurality of communication methods in the communication system 200. In the mobile terminal 100, the communication method used when transmitting and receiving data is measured by changing the time interval for measuring signals from the base stations 210, 220, and 230 for each communication method, and based on the measured value. Determined.
[0031] 図 2に示す移動端末 100は、データ送信方式選択部 102、複数の通信方式のそれ ぞれに対応してデータを送信するデータ送信処理部 110、 120、 130、複数の通信 方式のそれぞれに対応してデータを受信するデータ受信処理部 140、 150、 160、 フィルタ 105、 106、合分波器 107、アンテナ 108、制御部 170、メモリ 190、ノ ッテリ (図では電池 195で示す) 195を備える。  [0031] A mobile terminal 100 shown in FIG. 2 includes a data transmission method selection unit 102, data transmission processing units 110, 120, and 130 that transmit data corresponding to each of a plurality of communication methods, and a plurality of communication methods. Data reception processor 140, 150, 160, filter 105, 106, multiplexer / demultiplexer 107, antenna 108, controller 170, memory 190, battery (not shown in the figure) 195.
[0032] なお、データ送信処理部 110、 120、 130及びデータ受信処理部 140、 150、 160 は、それぞれ 3G、 S3G、 4Gに対応している。 3Gの基地局 210と送受信処理を行う 各処理部を 3G用データ送信処理部 110、 3G用データ受信処理部 140、 S3Gの基 地局 220と送受信処理を行う各処理部を S3G用データ送信処理部 120、 3G用デー タ受信処理部 150、 4Gの基地局 230と送受信処理を行う各処理部を 4G用データ送 信処理部 130、 4G用データ受信処理部 160として説明する。 Note that the data transmission processing units 110, 120, and 130 and the data reception processing units 140, 150, and 160 correspond to 3G, S3G, and 4G, respectively. Performs transmission and reception processing with 3G base station 210 Each processing unit is a 3G data transmission processing unit 110, 3G data reception processing unit 140, and each processing unit that performs transmission / reception processing with the S3G base station 220 is an S3G data transmission processing unit 120, 3G data reception processing unit The processing units that perform transmission / reception processing with the 150 and 4G base stations 230 will be described as a 4G data transmission processing unit 130 and a 4G data reception processing unit 160.
[0033] データ送信方式選択部 102は、制御部 170から入力される制御情報に基づいて、 入力される入力信号を、複数の通信方式のうち、どの通信方式の情報として送信す るかを選択する。そして、データ送信方式選択部 102は、選択した通信方式に対応 するデータ送信処理部に、送信する情報を出力する。詳細には、情報を送信する通 信方式が 3G、 S3G及び 4Gの通信方式のうちの一つである場合、データ送信方式 選択部 102に入力される入力信号は、 3G用データ送信処理部 110、 S3G用データ 送信処理部 120及び 4G用データ送信処理部 130の一つに出力される。  [0033] Based on the control information input from control unit 170, data transmission method selection unit 102 selects which communication method information is to be transmitted from among a plurality of communication methods. To do. Then, the data transmission method selection unit 102 outputs information to be transmitted to the data transmission processing unit corresponding to the selected communication method. Specifically, when the communication method for transmitting information is one of the 3G, S3G, and 4G communication methods, the input signal input to the data transmission method selection unit 102 is the 3G data transmission processing unit 110. The data is output to one of the S3G data transmission processing unit 120 and the 4G data transmission processing unit 130.
[0034] 3G用データ送信処理部 110、 S3G用データ送信処理部 120及び 4G用データ送 信処理部 130は、データ送信方式選択部 102を介して入力される入力信号を、それ ぞれ対応する通信方式の情報として送信できるように処理してフィルタ 105に出力す る。そして、フィルタ 105に入力される信号は、合分波器 107を介してアンテナ 108か ら無線信号として送信する。  [0034] The 3G data transmission processing unit 110, the S3G data transmission processing unit 120, and the 4G data transmission processing unit 130 respectively correspond to input signals input via the data transmission method selection unit 102. Process it so that it can be sent as communication method information and output it to the filter 105. The signal input to the filter 105 is transmitted as a radio signal from the antenna 108 via the multiplexer / demultiplexer 107.
[0035] ここで、 3G用データ送信処理部 110、 S3G用データ送信処理部 120及び 4G用デ ータ送信処理部 130は、入力される信号を、それぞれの通信方式で処理し、それぞ れの通信方式で送信できる情報にする。具体的な構成としては、各データ送信処理 部 110、 120、 130は、データ送信方式選択部 102から入力される入力信号に対し て、それぞれの通信方式で処理する符号化処理部 112、 122、 132、変調処理部 11 3、 123、 133、送信処理部 114、 124、 134、増幅器 115、 125、 135を有する。な お、増幅器 115、 125、 135は、それぞれの処理に用いる通信方式に対応して、図 2 では、 3G用増幅器 115、 S3G用増幅器 125、 4G用増幅器 135として示している。  [0035] Here, the 3G data transmission processing unit 110, the S3G data transmission processing unit 120, and the 4G data transmission processing unit 130 process the input signals in respective communication methods, respectively. Information that can be transmitted with the communication method of. Specifically, each of the data transmission processing units 110, 120, and 130 encodes the input signals input from the data transmission method selection unit 102 into the encoding processing units 112, 122, 132, modulation processing units 11 3, 123, 133, transmission processing units 114, 124, 134, and amplifiers 115, 125, 135. The amplifiers 115, 125, and 135 are shown as a 3G amplifier 115, an S3G amplifier 125, and a 4G amplifier 135 in FIG. 2 in accordance with the communication method used for each processing.
[0036] 符号化処理部 112、 122、 132は、それぞれの通信方式で、入力される信号を符 号化し、変調処理部 113、 123、 133に出力する。  [0036] Encoding processing sections 112, 122, and 132 encode input signals using the respective communication methods, and output the encoded signals to modulation processing sections 113, 123, and 133.
[0037] 変調処理部 113、 123、 133は、それぞれの通信方式で、符号化処理部 112、 12 2、 132から入力される信号に変調処理を施して、送信処理部 114、 124、 134に出 力する。 [0037] Modulation processing sections 113, 123, and 133 perform modulation processing on the signals input from encoding processing sections 112, 122, and 132 in their respective communication systems, and send them to transmission processing sections 114, 124, and 134. Out To help.
[0038] 送信処理部 114、 124、 134は、変調処理部 113、 123、 133から入力される信号 をアップコンバートして、それぞれの通信方式で利用される周波数の信号に変換して 、各通信方式用増幅器 115、 125、 135に出力する。  [0038] Transmission processing sections 114, 124, and 134 up-convert the signals input from modulation processing sections 113, 123, and 133 to convert them into signals of frequencies used in the respective communication schemes. Output to system amplifier 115, 125, 135.
[0039] 3G用増幅器 115、 S3G用増幅器 125、 4G用増幅器 135は、送信処理部 114、 12 4、 134から入力される信号を、それぞれの通信方式で利用される送信周波数に適し た信号レベルとなるように増幅してフィルタ 105に出力する。  [0039] The 3G amplifier 115, the S3G amplifier 125, and the 4G amplifier 135 are signals that are input from the transmission processing units 114, 124, and 134 and have signal levels suitable for the transmission frequency used in each communication method. And output to the filter 105.
[0040] 各通信方式に対応するデータ受信処理部 140、 150、 160は、ここでは、 3G、 S3 G、 4Gのそれぞれに対応しており、それぞれの通信方式(3G、 S3G、 4G)に対応し て信号 (データ)を受信する。なお、ここでは、各通信方式に対応するデータ受信処 理部 140、 150、 160をそれぞれ 3G用データ受信処理部 140、 S3G用データ受信 処理部 150、 4G用データ受信処理部 160として図示して 、る。  [0040] The data reception processing units 140, 150, and 160 corresponding to each communication method correspond to each of 3G, S3 G, and 4G, and correspond to each communication method (3G, S3G, and 4G). Then, the signal (data) is received. Here, the data reception processing units 140, 150, and 160 corresponding to each communication method are illustrated as 3G data reception processing unit 140, S3G data reception processing unit 150, and 4G data reception processing unit 160, respectively. RU
[0041] 各データ受信処理部 140、 150、 160は、アンテナ 108、合分波器 107を経た後、 フィルタ 106を介して 3G、 S3G、 4Gのそれぞれの利用周波数毎に分配された無線 信号 (データ)が入力される。そして、各データ受信処理部 140、 150、 160は、入力 された無線信号に基づいて、制御部 170において、利用する通信方式を選択する際 の指標となる無線信号の受信状態情報を測定し制御部 170に出力するとともに、受 信した信号をデータとして外部に出力する。図 2では、各データ受信処理部 140、 15 0、 160は、受信状態情報として、制御部 170により設定される所定の時間周期で各 通信方式のそれぞれにおける全受信電力を測定している。  [0041] Each data reception processing unit 140, 150, 160 passes through the antenna 108 and the multiplexer / demultiplexer 107, and then passes through the filter 106 to transmit a radio signal (3G, S3G, 4G) for each use frequency ( Data) is input. Then, each data reception processing unit 140, 150, 160 measures and controls reception state information of a radio signal that serves as an index when selecting a communication method to be used in the control unit 170 based on the input radio signal. In addition to outputting to unit 170, the received signal is output to the outside as data. In FIG. 2, each data reception processing unit 140, 150, 160 measures the total received power in each communication method at a predetermined time period set by the control unit 170 as reception state information.
[0042] 各データ受信処理部 140、 150、 160について詳細に説明する。  Each data reception processing unit 140, 150, 160 will be described in detail.
[0043] 3G用、 S3G用、 4G用データ受信処理部 140、 150、 160は、それぞれの通信方 式で処理を行う 3G用、 S3G用、 4G用低雑音増幅器 142、 152、 162、 3G用、 S3G 用、 4G用電力強度測定部 143、 153、 163、受信処理部 144、 154、 164、復調処 理部 145、 155、 165、復号ィ匕処理部 146、 156、 166を具備する。  [0043] The 3G, S3G, and 4G data reception processing units 140, 150, and 160 perform low-noise amplifiers 142, 152, 162, and 3G for 3G, S3G, and 4G that perform processing in their respective communication methods. , S3G and 4G power intensity measuring units 143, 153, 163, reception processing units 144, 154, 164, demodulation processing units 145, 155, 165, and decoding signal processing units 146, 156, 166.
[0044] 3G用、 S3G用、 4G用低雑音増幅器 142、 152、 162は、入力される信号を、付カロ 雑音を少なく保ちながら増幅して、 3G用、 S3G用、 4G用電力強度測定部 143、 153 、 163及び受信処理部 144、 154、 164に出力する。 [0045] 受信処理部 144、 154、 164は、 3G用、 S3G用、 4G用低雑音増幅器 142、 152、 162からの入力信号に対して、ダウンコンバートや自動利得制御(AGC :Auto Gain Control)処理を行う。そして、受信処理部 144、 154、 164は、処理を施した入力信 号を復調処理部 145、 155、 165に出力する。 [0044] Low noise amplifiers 142, 152, and 162 for 3G, S3G, and 4G amplify the input signal while keeping the accompanying noise low, and measure the power intensity for 3G, S3G, and 4G 143, 153, 163 and the reception processing units 144, 154, 164. [0045] The reception processing units 144, 154, and 164 are provided for down conversion and automatic gain control (AGC: Auto Gain Control) for input signals from the 3G, S3G, and 4G low noise amplifiers 142, 152, and 162, respectively. Process. Reception processing sections 144, 154, and 164 output the processed input signals to demodulation processing sections 145, 155, and 165.
[0046] 復調処理部 145、 155、 165は、入力された信号に対して、逆拡散処理などの処理 を行い復調し、復調された信号は、復号化処理部 146、 156、 166に出力され、復号 化処理部 146、 156、 166において復号化される。  Demodulation processing sections 145, 155, 165 demodulate the input signals by performing processing such as despreading processing, and the demodulated signals are output to decoding processing sections 146, 156, 166. Decryption is performed in the decryption processing units 146, 156, and 166.
[0047] 復号化処理部 146、 156、 166において復号ィ匕された信号はデータとして、移動端 末 100が備える外部出力装置 104を介して外部に出力される。なお、外部出力装置 104としては、 LED (Light- Emitting Diode)、液晶ディスプレイ等の表示装置、スピー 力等の音声を出力する音声出力装置、記憶装置などが挙げられる。  [0047] The signals decoded by the decoding processing units 146, 156, and 166 are output as data to the outside via the external output device 104 provided in the mobile terminal 100. Examples of the external output device 104 include an LED (Light-Emitting Diode), a display device such as a liquid crystal display, a sound output device that outputs sound such as a speech force, and a storage device.
[0048] 3G用、 S3G用、 4G用電力強度測定部 143、 153、 163は、それぞれ入力される信 号の電力強度、具体的には、それぞれ対応する通信方式の利用周波数帯における 全受信電力 P_ALL_3G_last、 P_ALL_S3G_last、 P_ALL_4G_lastを測定する。これら測定 結果は、制御部 170に出力される。なお、「_last」は、本実施の形態では測定結果の 最新データを意味することとする。  [0048] The power intensity measuring units 143, 153, and 163 for 3G, S3G, and 4G are respectively the power intensity of the input signals, specifically, the total received power in the use frequency band of the corresponding communication method. Measure P_ALL_3G_last, P_ALL_S3G_last, P_ALL_4G_last. These measurement results are output to the controller 170. In this embodiment, “_last” means the latest data of the measurement result.
[0049] これら測定結果を受けて、制御部 170は、利用する通信方式を選択し、選択する通 信方式での受信処理を行うために、 3G用、 S3G用、 4G用データ受信処理部 140、 150、 160のうち対応するデータ受信処理部を制御して、受信処理を行わせ、受信 処理が行われたデータを外部出力装置 104に出力させる。  [0049] In response to these measurement results, control unit 170 selects a communication method to be used, and performs data reception processing unit 140 for 3G, S3G, and 4G in order to perform reception processing in the selected communication method. , 150 and 160, the corresponding data reception processing unit is controlled to perform the reception process, and the data subjected to the reception process is output to the external output device 104.
[0050] 図 3は、図 2に示す移動通信端末における制御部 170の要部構成を示すブロック 図である。  FIG. 3 is a block diagram showing a main configuration of control section 170 in the mobile communication terminal shown in FIG.
[0051] 制御部 170は、 3G用、 S3G用、 4G用データ受信処理部 140、 150、 160から入力 される信号、メモリ 190からの情報、ノ ッテリ 195の情報に基づいて通信をどの通信 方式 (ここでは、 3G、 S3G、 4G)で行うかを選択し、その選択結果を用いて、データ 送信方式選択部 102において、データ送信方式選択部 102に入力される入力信号 をどの送信方式により情報として送信するかを決定する。  [0051] The control unit 170 performs communication based on the signals input from the 3G, S3G, and 4G data reception processing units 140, 150, and 160, the information from the memory 190, and the information of the battery 195. (In this case, 3G, S3G, 4G) is selected, and by using the selection result, the data transmission method selection unit 102 uses the transmission method to determine the input signal input to the data transmission method selection unit 102. Decide what to send as.
[0052] 図 3に示すように制御部 170は、バッテリ残量検知部 172と、受信状態情報比較部 174と、最適方式選択制御部 176とを有する。 As shown in FIG. 3, the control unit 170 includes a battery remaining amount detection unit 172 and a reception state information comparison unit. 174 and an optimum method selection control unit 176.
[0053] バッテリ残量検知部 172は、制御部 170に接続されているバッテリ 195の電力残量 状態を検知し、最適方式選択制御部 176によって、最適方式選択制御部 176に出 力するように制御される。  [0053] The remaining battery level detection unit 172 detects the remaining power level of the battery 195 connected to the control unit 170, and outputs the output to the optimal mode selection control unit 176 by the optimal mode selection control unit 176. Be controlled.
[0054] 受信状態情報比較部 174は、 3G用データ受信処理部 140、 S3G用データ受信処 理部 150、 4G用データ受信処理部 160から入力される信号である受信状態情報を 用いて、各通信方式の基地局 210、 220、 230からの信号の受信状態を比較し、そ の比較結果を最適方式選択制御部 176に出力する。  [0054] The reception status information comparison unit 174 uses the reception status information, which is a signal input from the 3G data reception processing unit 140, the S3G data reception processing unit 150, and the 4G data reception processing unit 160, to The reception statuses of the signals from the communication system base stations 210, 220, and 230 are compared, and the comparison result is output to the optimum mode selection control unit 176.
[0055] なお、この受信状態情報比較部 174は、各データ受信処理部 140、 150、 160から 入力される信号をそのまま比較対象として用いてもよいし、入力される信号から別の 基準となる情報を抽出して、抽出した情報同士を比較してもよい。さらに、入力される 信号と予め設定された閾値と比較してもよいし、入力信号から抽出した情報と、予め 設定された閾値とを比較してもよい。この受信状態情報比較部 174は、最適方式選 択制御部 176により制御される。  It should be noted that the reception state information comparison unit 174 may use the signals input from the data reception processing units 140, 150, and 160 as comparison targets as they are, or become another reference from the input signals. Information may be extracted and the extracted information may be compared. Furthermore, the input signal may be compared with a preset threshold value, or information extracted from the input signal may be compared with a preset threshold value. The reception state information comparison unit 174 is controlled by the optimum method selection control unit 176.
[0056] ここでは、受信状態情報は、 3G用電力強度測定部 143、 S3G用電力強度測定部 153、 4G用電力強度測定部 163からそれぞれ入力される信号の電力強度 (受信電 力)つまり、各通信方式(3G、 S3G、 4G)で受信する信号の受信電力レベルである。  [0056] Here, the reception state information includes the power intensity (reception power) of signals input from the 3G power intensity measurement unit 143, the S3G power intensity measurement unit 153, and the 4G power intensity measurement unit 163, that is, This is the received power level of the signal received by each communication method (3G, S3G, 4G).
[0057] よって、本実施の形態では、受信状態情報比較部 174は、 3G、 S3G、 4Gにおける 信号の電力強度を比較して!/、る。  Therefore, in the present embodiment, reception state information comparison section 174 compares the signal power strengths in 3G, S3G, and 4G.
[0058] 最適方式選択制御部 176は、バッテリ残量検知部 172、受信状態情報比較部 174 及びメモリ 190に格納される制御テーブルなどの情報に基づ 、て、実際の電波伝搬 環境状態において最も通信に適した通信方式を選択する。  [0058] Based on information such as a control table stored in the battery remaining amount detection unit 172, the reception state information comparison unit 174, and the memory 190, the optimum method selection control unit 176 is the most suitable in the actual radio wave propagation environment state. Select a communication method suitable for communication.
[0059] 具体的に最適方式選択制御部 176は、受信状態情報比較部 174により出力される 比較結果として出力される各通信方式からの受信信号の電力値が異なる場合、大き い順に、受信信号を測定する時間周期 Tl、 Τ2、 Τ3 (但し、 Τ1≤Τ2≤Τ3)を設定する 時間周期設定部 177を備える。このとき、時間周期設定部 177は、 Τ3 =∞として、実 際の測定は、時間周期が Tl、 Τ2の通信方式のみで行われるようにする。すなわち、 Τ 3=∞とすることで、 3つの通信方式のうち最も受信信号の電力値が小さい通信方式、 言い換えれば、 3つの通信方式のうち最も受信電力強度が小さい通信方式に対して は時間周期を設定しないようにする。なお、このように、所定の信号方式の受信信号 を測定する時間周期を設定しな 、場合は、時間周期 T=∞に代えて Τ=0としてもよ 、。 [0059] Specifically, the optimum method selection control unit 176 outputs the received signals in descending order when the power values of the received signals from the respective communication methods output as the comparison results output from the reception state information comparing unit 174 are different. A time period setting unit 177 is provided for setting time periods Tl, 、 2, 、 3 (however, Τ1≤Τ2≤Τ3). At this time, the time period setting unit 177 sets Τ3 = ∞ so that the actual measurement is performed only in the communication method with the time period of Tl and Τ2. In other words, by setting Τ 3 = ∞, the communication method with the smallest received signal power value among the three communication methods, In other words, the time period is not set for the communication method with the lowest received power intensity among the three communication methods. As described above, if the time period for measuring the received signal of the predetermined signal system is not set, 時間 = 0 may be used instead of the time period T = ∞.
[0060] また、複数の通信方式における受信信号の電力値が同じである場合、最適方式選 択制御部 176は、デフォルト値として設定された通信方式を選択する。  [0060] When the power values of the received signals in the plurality of communication schemes are the same, the optimum scheme selection control unit 176 selects the communication scheme set as the default value.
[0061] そして、最適方式選択制御部 176は、選択した通信方式によってデータの送受信 を行うために、 3G用データ受信処理部 140、 S3G用データ受信処理部 150、 4G用 データ受信処理部 160に、時間周期設定部 177によって、それぞれ設定された時間 周期で受信状態の測定を行わせる制御信号を出力して制御する。  [0061] Then, the optimum method selection control unit 176 sends data to the 3G data reception processing unit 140, the S3G data reception processing unit 150, and the 4G data reception processing unit 160 in order to transmit and receive data according to the selected communication method. Then, the time period setting unit 177 outputs and controls a control signal for measuring the reception state at each set time period.
[0062] つまり、最適方式選択制御部 176では、時間周期設定部 177が、 3G用、 S3G用、 4G用データ受信処理部 140、 150、 160毎に、それぞれ対応する基地局 210、 220 、 230からの信号を測定する時間周期 (Tl、 Τ2、 Τ3)を設定する。  That is, in the optimum method selection control unit 176, the time period setting unit 177 includes the corresponding base stations 210, 220, 230 for the 3G, S3G, and 4G data reception processing units 140, 150, 160, respectively. Set the time period (Tl, Τ2, Τ3) for measuring the signal from.
[0063] これら設定した時間周期を、各データ受信処理部 140、 150、 160に割り当てること によって、最適方式選択制御部 176は、実際に受信状態 (ここでは、受信信号強度) が測定される通信方式を選択して!/ヽる。  [0063] By assigning these set time periods to the respective data reception processing units 140, 150, and 160, the optimum method selection control unit 176 allows the communication in which the reception state (in this case, the received signal strength) is actually measured. Select a method!
[0064] この最適方式選択制御部 176において、時間周期設定部 177における時間周期 の設定は、バッテリ 195の電力残量に関連付けられており、メモリ 190に格納される ノ ッテリ 195の電力残量 (バッテリ残量)と基地局チェック時間丁との関係に基づ 、て 設定される。具体的には、時間周期の設定は、 3G、 S3G、 4Gの基地局 210、 220、 230からの受信信号のうち、どの受信信号に対して受信状態の測定を行うかの設定 と同義となる。  In this optimum method selection control unit 176, the setting of the time period in the time period setting unit 177 is associated with the remaining power of the battery 195, and the remaining power of the battery 195 stored in the memory 190 ( It is set based on the relationship between the remaining battery level and the base station check time. Specifically, the setting of the time period is synonymous with the setting of which received signal is to be measured among the received signals from the 3G, S3G, and 4G base stations 210, 220, and 230. .
[0065] 図 4は、メモリ 190に格納されるノ ッテリ 195の電力残量 (バッテリ残量)と、通信状 態を測定する際の時間周期との関係の一例を示す図である。この図は、バッテリ残量 と移動端末 100が各通信方式の基地局をチ ックする時間周期 (T_3G、 T_S3G、 T_4 G)との関連付けを示して 、る。  FIG. 4 is a diagram showing an example of the relationship between the remaining power (battery remaining amount) of the battery 195 stored in the memory 190 and the time period when the communication state is measured. This figure shows the association between the remaining battery level and the time period (T_3G, T_S3G, T_4G) at which the mobile terminal 100 checks the base station of each communication method.
[0066] 図 4に示すように、移動端末 100のバッテリ 195の電力残量が多い場合は、各通信 方式毎の受信状態 (信号強度)測定時間周期 Tは短くなつており、全ての通信方式 の基地局 210、 220、 230からの信号を測定する。また、図 4に示すように、バッテリ 残量が小さくなるにつれて、受信状態の測定対象とする通信方式の数は小さくなる。 [0066] As shown in FIG. 4, when the remaining power of the battery 195 of the mobile terminal 100 is large, the reception state (signal strength) measurement time period T for each communication method is shortened. Measure signals from base stations 210, 220, and 230. Also, as shown in Figure 4, the battery As the remaining amount decreases, the number of communication methods to be measured in the reception state decreases.
[0067] メモリ 190は、バッテリ 195の電力残量 (バッテリ残量)と、通信状態を測定する際の 時間周期との関係を示すテーブル(図 4参照)等の制御テーブルの他、通信で用い られる情報を格納し、最適方式選択制御部 176の制御により読み書き可能である。メ モリ 190が格納する制御テーブルにおいて、バッテリ 195の電池残量や時間周期に 、受信電力レベル或いは伝搬ロス、 SIR値(Signal to Interference power Ratio)、各 通信方式のデータ送受信部を構成する回路の平均消費電力値が関連づけられてい る。 SIR値に代えて BER (Bit Error Rate)値、 FER (Flame Error Rate)値を関連づけ てもよい。これら制御テーブルにおいて関連づけられる要素は必要に応じた要素の み関連づけられた構成としても良いことは勿論である。また、メモリ 190が格納する通 信で用いられる情報としては、各電力強度測定部 143、 153、 163や、通信方式の 異なる各基地局 210、 220、 230 (図 1参照)からの送信情報等である。  [0067] The memory 190 is used for communication in addition to a control table such as a table (see FIG. 4) showing the relationship between the remaining power of the battery 195 (remaining battery power) and the time period when the communication state is measured. Information can be stored and read / written under the control of the optimum method selection control unit 176. In the control table stored in the memory 190, the received power level or propagation loss, the SIR value (Signal to Interference power Ratio), and the circuit that constitutes the data transmission / reception unit for each communication method are determined according to the remaining battery level and time period of the battery 195. An average power consumption value is associated. Instead of the SIR value, a BER (Bit Error Rate) value or a FER (Flame Error Rate) value may be associated. Of course, the elements associated in these control tables may be configured such that only elements as necessary are associated. Information used for communication stored in the memory 190 includes transmission information from the power intensity measuring units 143, 153, and 163, and base stations 210, 220, and 230 (see FIG. 1) having different communication methods. It is.
[0068] 次いで、上記構成を有する移動端末 100の動作について、図 5を参照して説明す る。図 5は、本実施の形態に係る移動端末 100の基本的な処理を説明するフローチ ヤートである。  Next, the operation of mobile terminal 100 having the above configuration will be described with reference to FIG. FIG. 5 is a flowchart explaining the basic processing of mobile terminal 100 according to the present embodiment.
[0069] まず、ステップ S 101にて移動端末 100の電源をオンにし、ステップ S102にて 3G 用データ受信処理部 140が、 3G方式で利用される周波数帯域における全受信電力 P_ALL_3G_lastを測定して、ステップ S 103に移行する。なお、 last」は測定結果の最 新データを意味することとする。  [0069] First, in step S101, the mobile terminal 100 is turned on, and in step S102, the 3G data reception processing unit 140 measures the total received power P_ALL_3G_last in the frequency band used in the 3G scheme, Control goes to step S103. “Last” means the latest data of the measurement results.
[0070] ステップ S103では、 S3G用データ受信処理部 150が、 S3Gで利用される周波数 帯域における全受信電力 P_ALL_S3GJastを測定して、ステップ S 104に移行する。  [0070] In step S103, the S3G data reception processing unit 150 measures the total received power P_ALL_S3GJast in the frequency band used in S3G, and proceeds to step S104.
[0071] ステップ S104では、 4G用データ受信処理部 160が、 4Gで利用される周波数帯域 における全受信電力 P_ALL_4G_lastを測定し、ステップ S 105に移行する。  [0071] In step S104, the 4G data reception processing unit 160 measures the total received power P_ALL_4G_last in the frequency band used in 4G, and proceeds to step S105.
[0072] ステップ S105では、バッテリ残量検知部 172が、バッテリ 195の電力残量を測定す るとともに、受信状態情報比較部 174が、 3Gで利用される周波数帯域における全受 信電力 P_ALL_3GJast、 S3Gで利用される周波数帯域における全受信電力 P_ALL_S3 G_last、 4Gで利用される周波数帯域における全受信電力 P_ALL_4G_lastを用いて各 通信方式(3G、 S3G、 4G)の受信状態を比較して、ステップ S 106に移行する。ステ ップ S106における各通信方式の受信状態の比較は、例えば、 3Gで利用される周波 数帯域における全受信電力 P_ALL_3G_last、 S3Gで利用される周波数帯域における 全受信電力 P_ALL_S3G_last、 4Gで利用される周波数帯域における全受信電力 P_AL L_4G_lastの大小を比較である。 [0072] In step S105, the remaining battery level detection unit 172 measures the remaining power level of the battery 195, and the reception status information comparison unit 174 performs the total received power P_ALL_3GJast, S3G in the frequency band used in 3G. The reception status of each communication method (3G, S3G, 4G) is compared using the total received power P_ALL_S3 G_last in the frequency band used in, and the total received power P_ALL_4G_last in the frequency band used in 4G. Transition. Ste The comparison of the reception status of each communication method in S106 is, for example, the total received power P_ALL_3G_last in the frequency band used in 3G, the total received power P_ALL_S3G_last in the frequency band used in S3G, and the frequency band used in 4G. This is a comparison of the magnitude of the total received power P_AL L_4G_last.
[0073] ステップ S106では、受信状態情報比較部 174による比較結果及びメモリ 190から の情報に基づいて最適方式選択制御部 176は、時間周期設定部 177を用いて、 3G 、 S3G、 4Gで利用される周波数帯域における全受信電力 P_ALL_3G_last、 P_ALL_S3 G_last、 P_ALL_4G_lastの中で、電力値の大きい順に受信信号を測定 (チェック)する 時間周期(T_3G、 T_S3G、 T_4G)に時間 Tl、 Τ2、 Τ3 (但し、 Τ1≤Τ2≤Τ3)を設定する [0073] In step S106, based on the comparison result by the reception state information comparison unit 174 and the information from the memory 190, the optimum method selection control unit 176 is used in 3G, S3G, 4G using the time period setting unit 177. All received power in the frequency band P_ALL_3G_last, P_ALL_S3 G_last, P_ALL_4G_last Measure (check) received signals in descending order of power value Time Tl, Τ2, Τ3 (however, Τ1 Set ≤Τ2≤Τ3)
[0074] なお、このステップ S 106において、各通信方式(3G、 S3G、 4G)のそれぞれにお ける全受信電力 P_ALL_3G_last、 P_ALL_S3G_last、 P_ALL_4G_lastが同等であり、バッ テリ残量が少ない場合、最適方式選択制御部 176は、各方式の送受信回路の平均 消費電力値の低い順に、時間周期 Tl、 Τ2、 Τ3を設定する。 [0074] Note that in this step S106, when all the received power P_ALL_3G_last, P_ALL_S3G_last, and P_ALL_4G_last in each communication method (3G, S3G, 4G) are the same and the remaining battery capacity is low, the optimum method is selected. The control unit 176 sets the time periods T1, Τ2, and Τ3 in ascending order of the average power consumption value of the transmission / reception circuits of each method.
[0075] これは、各通信方式において、使用する周波数帯における増幅器 (アンプ)、変調 部、復調部などを構成する電子回路の消費電力量が異なることに起因する。つまり、 各通信方式のデータ送受信処理部 110、 120、 130、 140, 150、 160のうち、処理 部を構成する電子回路での平均消費電力が低い通信方式が選択されるように時間 周期を設定する。このステップ S106の後、ステップ S107に移行する。  [0075] This is due to the fact that the power consumption of the electronic circuits constituting the amplifier (amplifier), modulator, demodulator, etc. in the used frequency band is different in each communication system. In other words, the time period is set so that the communication method with the low average power consumption in the electronic circuit that constitutes the processing unit is selected from the data transmission / reception processing units 110, 120, 130, 140, 150, and 160 for each communication method. To do. After step S106, the process proceeds to step S107.
[0076] ステップ S107では、最適方式選択制御部 176は、ステップ S106により設定された 時間周期 Τ1〜Τ3を、各データ受信処理部 140、 150、 160に出力し、各データ受信 処理部 140、 150、 160では、入力される時間周期に基づいて、各通信方式の基地 局毎の受信信号の受信状態 (ここでは受信電力値)をチ ックする。各通信方式の基 地局毎に、これら基地局から送信される信号の受信状態をチ ックする時間周期を 設定するため、時間周期を変化させることによって、測定する通信方式の送信信号 が決定される。例えば Τ3 =無限大に設定する場合、時間周期 T1及び Τ2が設定され た通信方式の受信信号の受信状態のみチ ックすることとなる。  In step S107, the optimum method selection control unit 176 outputs the time periods Τ1 to Τ3 set in step S106 to each data reception processing unit 140, 150, 160, and each data reception processing unit 140, 150 160, based on the input time period, the reception status (reception power value in this case) of the received signal for each base station of each communication method is checked. For each base station of each communication method, to set the time period for checking the reception status of signals transmitted from these base stations, the transmission signal of the communication method to be measured is determined by changing the time period. Is done. For example, when Τ3 = infinity is set, only the reception status of the received signal of the communication method in which the time periods T1 and Τ2 are set is checked.
[0077] 最適方式選択制御部 176は、時間周期設定部 177を用いて各通信方式の受信信 号をチ ックする時間周期を設定することで、複数の通信方式 (3G、 S3G、 4G)から どの通信方式を通信で使用するかを決定することとなり、この決定した通信方式の情 報を、データ送信方式選択部 102に出力する。また、決定した情報を、対応する各送 信処理部 110、 120、 130に出力する。 The optimum method selection control unit 176 uses the time period setting unit 177 to receive signals for each communication method. By setting the time period for checking the signal, it is determined which communication method is used for communication from multiple communication methods (3G, S3G, 4G), and information on the determined communication method is used. The data transmission method selection unit 102 outputs the result. The determined information is output to the corresponding transmission processing units 110, 120, and 130.
[0078] このように各送受信処理咅 110、 120、 130, 140、 150、 160に、基地局力らの信 号を測定する時間周期 Tl、 Τ2、 Τ3として、各通信方式毎に、信号の測定時間周期を 変化させている。ここで、時間周期を丁1≤丁2≤丁3、 Τ3 =無限大としているため、時間 周期が Τ3である通信方式は実際には測定する時間周期は設定されず、移動端末 1 00では、時間周期が T1と Τ2の通信方式のみを、実際には測定することになる。  [0078] In this way, the transmission / reception processing signals 110, 120, 130, 140, 150, and 160 have the time periods Tl, Τ2, and Τ3 for measuring the signals of the base station power, etc. The measurement time period is changed. Here, since the time period is set to 1 ≤ 2 2 ≤ 3 and Τ3 = infinity, the communication method with the time period Τ3 does not actually set the time period to be measured. Only the communication method with time period T1 and Τ2 will actually be measured.
[0079] よって、常に全ての通信方式の基地局からの信号を測定することなぐ受信電力が 大きい通信方式の受信信号を測定するため、低消費電力化、処理量削減と高ビット レートを両立させることが可能となる。  [0079] Therefore, in order to measure a received signal of a communication method with a large received power without always measuring signals from base stations of all communication methods, both low power consumption, reduced processing amount and high bit rate are achieved. It becomes possible.
[0080] なお、本実施の形態の各データ受信処理部 140、 150、 160では、電力強度測定 部 143、 153、 163は、それぞれ各処理部 140、 150、 160における低雑音増幅器 1 42、 152、 162の後に配置される構成した力 これに限らない。  In each data reception processing unit 140, 150, 160 of the present embodiment, the power intensity measurement units 143, 153, 163 are the low-noise amplifiers 142, 152 in each processing unit 140, 150, 160, respectively. The configured force placed after 162 is not limited to this.
[0081] 例えば、各データ受信処理部 140、 150、 160と同様の構成において、低雑音増 幅器 142、 152、 162の後ではなぐ復調処理部 145、 155、 165の後に配置される 構成としてもよい。  [0081] For example, in the same configuration as each data reception processing unit 140, 150, 160, the configuration is arranged after the demodulation processing units 145, 155, 165 after the low noise amplifiers 142, 152, 162 Also good.
[0082] この一例を図 6に示す。図 6は、データ受信処理部の変形例 1を示す図である。  An example of this is shown in FIG. FIG. 6 is a diagram illustrating a first modification of the data reception processing unit.
[0083] 図 6は、 3G用データ受信処理部 140の変形例 1である 3G用データ受信処理部 14 Oaを示す図であり、このデータ受信処理部 140aにおいて、 3G用電力強度測定部 1 43は復調処理部 145の後に配置されて 、る。 FIG. 6 is a diagram showing a 3G data reception processing unit 14 Oa, which is a modified example 1 of the 3G data reception processing unit 140. In this data reception processing unit 140a, a 3G power intensity measurement unit 1 43 Is placed after the demodulation processing unit 145.
[0084] この構成によれば、 3G用電力強度測定部 143が電力強度を測定する際の対象と する受信信号には、電力強度を測定する前に、復調処理部 145において、逆拡散 処理などの復調処理が施されることとなる。このため、図 2で示す 3G用データ受信処 理部 140において電力強度を測定する際に、より正確な電力強度が測定可能となる [0084] According to this configuration, the received signal that is the target when the 3G power intensity measuring unit 143 measures the power intensity is subjected to the despreading process or the like in the demodulation processing unit 145 before the power intensity is measured. Is demodulated. Therefore, more accurate power intensity can be measured when measuring the power intensity in the 3G data reception processing unit 140 shown in FIG.
[0085] なお、移動端末 100において、 3G用データ受信処理部 140を 3G用データ受信処 理部 140aにする場合、他の通信方式である S3G、 4G用データ受信処理部 150、 1 60 (図 2参照)も、 3G用データ受信処理部 140aと同様の構成とする。つまり、 S3G、 4G用データ受信処理部 150、 160 (図 2参照)の各々において、 S3G、 4G用電力強 度測定部は、それぞれ、低雑音増幅器 152、 162の後ではなぐ復調処理部 155、 1 65の後に配置され、入力信号に処理を行うものとする。この構成により、 3G用データ 受信処理部 140aを 3G用データ受信処理部 140に変えた場合の効果と同様の作用 効果、つまり、 S3G、 4Gにおいても正確な電力強度が測定される。 Note that in the mobile terminal 100, the 3G data reception processing unit 140 performs the 3G data reception processing. When the processing unit 140a is used, the other communication schemes S3G and 4G data reception processing units 150 and 160 (see FIG. 2) have the same configuration as the 3G data reception processing unit 140a. That is, in each of the S3G and 4G data reception processing units 150 and 160 (see FIG. 2), the S3G and 4G power intensity measurement units are respectively connected to the demodulation processing units 155, 155, It shall be placed after 1 65 and process the input signal. With this configuration, the same power and effect as those obtained when the 3G data reception processing unit 140a is changed to the 3G data reception processing unit 140, that is, accurate power intensity is also measured in S3G and 4G.
[0086] さらに、本実施の形態の各データ受信処理部 140、 150、 160では、制御部に出力 する受信状態情報を、各通信方式で利用される周波数帯域における全受信電力とし たが、これに限らず各通信方式における伝搬ロスとしてもよい。この場合、各データ受 信処理部 140、 150、 160は、各通信方式用の電力強度測定部に換えて、各通信方 式用の伝搬ロス測定部をそれぞれ備えるものとなる。  [0086] Further, in each data reception processing unit 140, 150, 160 of the present embodiment, the reception status information output to the control unit is the total received power in the frequency band used in each communication method. It is good also as a propagation loss not only in each communication system. In this case, each data reception processing unit 140, 150, 160 includes a propagation loss measuring unit for each communication method instead of the power intensity measuring unit for each communication method.
[0087] 図 7は、 3G用データ受信処理部の変形例 2としての 3G用データ受信処理部 140b を示す図であり、変形例 2としての受信処理部は、図 6の 3G用データ受信処理部 14 Oaにおいて、 3G用電力強度測定部 143を 3G用伝搬ロス測定部 147に換えた構成 を有する。つまり、データ受信処理部 140bでは、 3G用伝搬ロス測定部は復調処理 部 145の後に配置されている。  FIG. 7 is a diagram illustrating a 3G data reception processing unit 140b as a second modification of the 3G data reception processing unit, and the reception processing unit as the second modification is a 3G data reception processing of FIG. The unit 14 Oa has a configuration in which the 3G power intensity measurement unit 143 is replaced with a 3G propagation loss measurement unit 147. That is, in the data reception processing unit 140b, the 3G propagation loss measurement unit is disposed after the demodulation processing unit 145.
[0088] このように変形例 2としてのデータ受信処理部 140bの構成を、それぞれ異なる通信 方式毎に対応したデータ受信処理部として備える移動端末は、制御部(図 2で示す 制御部 170に対応)では、通信方式の異なるデータ受信処理部がそれぞれ備える伝 搬ロス測定部力 出力される情報に基づいて実際に通信する通信方式を判定してい る。  [0088] As described above, the mobile terminal provided with the configuration of the data reception processing unit 140b as the second modification as a data reception processing unit corresponding to each different communication method corresponds to the control unit (the control unit 170 illustrated in FIG. 2). ) Determines the communication method for actual communication based on the output power of the transmission loss measuring unit provided in each data reception processing unit with a different communication method.
[0089] つまり、この変形例 2のデータ受信処理部 140bの構成を有する移動端末は、電力 強度の代わりに伝搬ロスを基準に制御が行われる。なお、伝搬ロスは、一般的に、基 地局から送信される基地局出力電力と移動端末 100における受信電力から算出され る。この場合、制御部における処理は、図 5で示した「P_ALL_last」を伝搬ロスの逆数 に置き換えるなどして行われるものである。  That is, the mobile terminal having the configuration of the data reception processing unit 140b of the second modification is controlled based on the propagation loss instead of the power intensity. The propagation loss is generally calculated from the base station output power transmitted from the base station and the received power at the mobile terminal 100. In this case, the processing in the control unit is performed by replacing “P_ALL_last” shown in FIG. 5 with the reciprocal of the propagation loss.
[0090] すなわち、所定の通信方式のデータ受信処理部から受信状態情報比較部 174に 入力される受信状態情報には伝搬ロスが含まれ、受信状態情報比較部 174は、第 1 、第 2及び第 3の通信方式における受信状態情報の伝搬ロスと予め設定された伝搬 ロスの規定値とを比較する伝搬ロス比較部を備えた構成する。このように構成された 制御部は、最適方式選択部によって 1番目に受信電力の大きい通信方式を選択し、 選択した通信方式の受信状態を測定した後、受信状態情報比較部 174によって、選 択した通信方式の伝搬ロスと当該伝搬ロスの規定値とを比較し、選択した通信方式 の受信状態情報の伝搬ロスが伝搬ロスの規定値より小さ 、場合、最適方式選択制御 部 176によって先に選択した通信方式以外の他の通信方式を選択して、選択した他 の通信方式に対応する受信手段に受信状態を測定させる。 That is, from the data reception processing unit of a predetermined communication method to the reception state information comparison unit 174 The input reception state information includes a propagation loss, and the reception state information comparison unit 174 determines the propagation loss of the reception state information in the first, second, and third communication methods and a preset value of the propagation loss. And a propagation loss comparing unit for comparing the two. The control unit configured as described above selects the communication method having the highest received power by the optimum method selection unit, measures the reception state of the selected communication method, and then selects the selection by the reception state information comparison unit 174. If the propagation loss of the reception status information of the selected communication method is smaller than the specified value of the propagation loss, the optimum method selection control unit 176 selects the transmission loss first. A communication method other than the selected communication method is selected, and the reception state corresponding to the selected other communication method is measured.
[0091] また、本実施の形態では、各受信処理部 140、 150、 160に、基地局からの信号を 測定する時間周期 Tl、 Τ2、 Τ3を Τ1≤Τ2≤Τ3として、 Τ3 =無限大とし、時間周期が Τ 1と Τ2の通信方式のみを実際には測定することにしている力 これに限らず、常に全 ての通信方式の基地局からの信号を測定することなぐ低消費電力化、処理量削減 と高ビットレートを両立させるものであればどのように構成されて 、てもよ 、。  [0091] Further, in this embodiment, the time periods Tl, Τ2, and Τ3 for measuring signals from the base station are set to 受 信 1 ≤ と し て 2 ≤ Τ3 and 受 信 3 = infinity in each reception processing unit 140, 150, 160 However, this is not the only power that actually measures only the communication systems with time periods of Τ1 and Τ2, but it is not limited to this, and it is possible to reduce power consumption without always measuring signals from base stations of all communication methods. Any configuration can be used as long as it achieves both reduced processing volume and high bit rate.
[0092] 詳細には、まず、全ての通信方式のデータ受信処理部 140、 150、 160を用いて、 各通信方式の全受信電力 P_ALL_3G_last、 P_ALL_S3G_last、 P_ALL_4G_lastを測定す る。その後、最適方式選択制御部 176は、 1番高い信号レベルのものと 2番に高い信 号レベルのもののみチェックする。  In detail, first, the total reception power P_ALL_3G_last, P_ALL_S3G_last, and P_ALL_4G_last of each communication method is measured using the data reception processing units 140, 150, and 160 of all communication methods. Thereafter, the optimum method selection control unit 176 checks only the signal with the highest signal level and the signal with the second highest signal level.
[0093] そして、 1番と 2番の差が、予め設定された一定値より小さくなつた場合 (逆転含む) 3番目の信号レベルであった通信方式における信号レベルを測定する。そして、最 適方式選択制御部 176は、全ての方式の受信電力を用いて再度順位付けをして 1 番目、 2番目に高い信号レベルが測定された通信方式における受信電力のみ測定 する。  [0093] When the difference between No. 1 and No. 2 is smaller than a predetermined constant value (including reverse rotation), the signal level in the communication system that is the third signal level is measured. Then, the optimum method selection control unit 176 performs re-ranking using the received power of all the methods, and measures only the received power in the communication method in which the first and second highest signal levels are measured.
[0094] この処理を詳細に説明する。  This process will be described in detail.
[0095] 図 8は、本発明に係る移動端末 100の処理としての通信方式の選択方法の一例を 説明するためのフローチャートである。  [0095] FIG. 8 is a flowchart for explaining an example of a communication method selection method as processing of the mobile terminal 100 according to the present invention.
[0096] 図 8に示す処理の前には、図 5に示す処理と同様に、まず、移動端末 100の電源を オンにした後、 3G用データ受信処理部 140が 3G方式で利用される周波数帯域にお ける全受信電力 P_ALL_3G_lastを測定し、 S3G用データ受信処理部 150が、 S3Gで 利用される周波数帯域における全受信電力 P_ALL_S3G_lastを測定し、 4G用データ 受信処理部 160が、 4Gで利用される周波数帯域における全受信電力 P_ALL_4G_las tを測定している。そして、バッテリ残量検知部 174が、ノ ッテリ 195の電力残量を測 定するとともに、通信方式選択処理が行われる。 [0096] Before the process shown in FIG. 8, as in the process shown in FIG. 5, first, after the mobile terminal 100 is turned on, the 3G data reception processing unit 140 uses the frequency used in the 3G system. Bandwidth The total received power P_ALL_3G_last is measured, the S3G data reception processing unit 150 measures the total received power P_ALL_S3G_last in the frequency band used by S3G, and the 4G data reception processing unit 160 uses the frequency band used by 4G. The total received power P_ALL_4G_last at is measured. Then, the remaining battery level detection unit 174 measures the remaining power level of the battery 195 and performs a communication method selection process.
[0097] この通信方式の選択方法では、ステップ S201にお 、て、受信状態情報比較部 17 4は、まず、 3Gで利用される周波数帯域における全受信電力(以下、「P_ALL_3G_last 」として説明する)が S3Gで利用される周波数帯域における全受信電力(以下、「P_A LL_S3G_lastJとして説明する)より大き!/、か否かを判断し大きければステップ S202移 行し、否であれば、ステップ S 203に移行する。  [0097] In this communication method selection method, in step S201, reception state information comparison section 174 first starts with the total received power in the frequency band used in 3G (hereinafter described as "P_ALL_3G_last"). Is greater than the total received power in the frequency band used by S3G (hereinafter referred to as “P_A LL_S3G_lastJ”). If so, the process proceeds to step S202. If not, the process proceeds to step S203. Transition.
[0098] ステップ S202では、 P_ALL_S3G_lastが、 4Gで利用される周波数帯域における全受 信電力(以下、「P_ALL_4G_last^して説明する)より大きいか否かを判断し、大きけれ ばステップ S204に移行し、そうでなければ、ステップ S205に移行する。  [0098] In step S202, it is determined whether P_ALL_S3G_last is greater than the total received power in the frequency band used in 4G (hereinafter referred to as “P_ALL_4G_last ^”). If larger, the process proceeds to step S204. Otherwise, the process proceeds to step S205.
[0099] ステップ S204では、受信状態情報比較部 174は、 P— ALL— 3G— last > P— ALL— S3GJas t > P_ALL_4G_lastと ヽぅ比較判断結果を最適方式選択制御部 176に出力し、ステツ プ S 206に移行する。  [0099] In step S204, the reception state information comparison unit 174 outputs P ヽ ぅ ALL—3G—last> P—ALL—S3GJast> P_ALL_4G_last to the optimum method selection control unit 176, and outputs the comparison determination result to the step 176. Move to S 206.
[0100] ステップ S206では、最適方式選択制御部 176は、時間周期設定部 177により、基 地局からの信号をチェックする時間周期を受信電力の高い方式力 順に、 Tl、 Τ2、 Τ 3 (丁1≤丁2≤丁3でかっ丁3 =無限大)を設定し、ステップ S207に移行する。詳細には 、ステップ S206では、 T— 3G=T1、 T— S3G=T2、 T— 4G=T3=∞に設定している。  [0100] In step S206, the optimum method selection control unit 176 uses the time cycle setting unit 177 to set the time cycle for checking the signal from the base station in the order of the received power in the order of the highest power, T1, Τ2, Τ3 (D Set 1≤Cho 2≤Cho 3 and Kaccho 3 = Infinity), and go to Step S207. Specifically, in step S206, T−3G = T1, T−S3G = T2, and T−4G = T3 = ∞ are set.
[0101] ステップ S207では、受信状態情報比較部 174を用いて、 P_ALL_3G_last-P_ALL_S3 GJastく規定値 PIであるか否かを判断し、 P_ALL_3G_last- P_ALL_S3G_lastが規定値 P 1よりも小さ 、場合、ステップ S208に移行し、 P— ALL— 3G— last- P— ALL— S3G— lastが規定 値 PI以上である場合、処理を終了する。  [0101] In step S207, the reception status information comparison unit 174 is used to determine whether or not P_ALL_3G_last-P_ALL_S3 GJast is a specified value PI. If P_ALL_3G_last-P_ALL_S3G_last is smaller than the specified value P1, step S208 If P—ALL—3G—last-P—ALL—S3G—last is greater than or equal to the specified value PI, the process ends.
[0102] ステップ S208では、 4G用データ受信処理部 160が 4Gで利用される周波数帯域 における全受信電力 P_ALL_4G_lastを測定し、ステップ S 201に移行する。  [0102] In step S208, the 4G data reception processing unit 160 measures the total received power P_ALL_4G_last in the frequency band used in 4G, and proceeds to step S201.
[0103] 一方、ステップ S205では、 P— ALL— 3GJast > P— ALL— 4GJastを判断し、 P— ALL— 3G— las t > P_ALL_4G_lastであれば、ステップ S209に移行し、満たして!/、なければステップ S 210に移行する。 [0103] On the other hand, in step S205, P—ALL—3GJast> P—ALL—4GJast is judged, and if P—ALL—3G—last> P_ALL_4G_last, the process proceeds to step S209 and satisfies! / Step S Move to 210.
[0104] ステップ S209では、受信状態情報比較部 174は、 P— ALL— 3G— last > P— ALL— 4G— last  [0104] In step S209, the reception status information comparison unit 174 performs P—ALL—3G—last> P—ALL—4G—last.
>P_ALL_S3G_lastと ヽぅ比較判断結果を最適方式選択制御部 176に出力し、ステツ プ S211に移行する。  > P_ALL_S3G_last and ヽ ぅ The comparison judgment result is output to the optimum method selection control unit 176, and the process proceeds to step S211.
[0105] ステップ S211では、最適方式選択制御部 176は、時間周期設定部 177により、基 地局からの信号をチェックする時間周期を受信電力の高い方式力 順に、 Tl、 Τ2、 Τ 3 (丁1≤丁2≤丁3でかっ丁3 =無限大)を設定し、ステップ S212に移行する。詳細には 、ステップ S211では、 T_3G=T1、 T_4G=T2、丁_33〇=丁3=∞に設定している。  [0105] In step S211, the optimum method selection control unit 176 uses the time period setting unit 177 to set the time period for checking the signal from the base station in the order of the received power in the order of the highest received power. Set 1≤Cho 2≤Cho 3 and Kaccho 3 = Infinity), and go to Step S212. Specifically, in step S211, T_3G = T1, T_4G = T2, and Ding_3300 = Ding 3 = ∞ are set.
[0106] ステップ S212では、受信状態情報比較部 174を用いて、 P_ALL_3G_last-P_ALL_4 GJastく規定値 P2であるか否かを判断し、 P_ALL_3G_last- P_ALL_4G_lastが規定値 P2 よりも小さ 、場合、ステップ S213に移行し、 P— ALL— 3G— last- P— ALL— 4G— lastが規定値 P 2以上である場合、処理を終了する。  [0106] In step S212, the reception state information comparison unit 174 is used to determine whether or not P_ALL_3G_last-P_ALL_4 GJast is the specified value P2. If P_ALL_3G_last-P_ALL_4G_last is smaller than the specified value P2, the process proceeds to step S213. If P—ALL—3G—last-P—ALL—4G—last is equal to or greater than the specified value P2, the process ends.
[0107] ステップ S213では、 S3G用データ受信処理部 150が S3Gで利用される周波数帯 域における全受信電力 P_ALL_S3G_lastを測定し、ステップ S201に移行する。  In step S213, the S3G data reception processing unit 150 measures the total received power P_ALL_S3G_last in the frequency band used in S3G, and proceeds to step S201.
[0108] ステップ S210では、受信状態情報比較部 174は、 P_ALL_4G_last > P_ALL_3G_last  [0108] In step S210, the reception state information comparison unit 174 determines that P_ALL_4G_last> P_ALL_3G_last
> P_ALL_S3G_lastと!、う比較結果を最適方式選択制御部 176に出力し、ステップ S2 14に移行する。  > P_ALL_S3G_last and!, The comparison result is output to the optimum method selection control unit 176, and the process proceeds to step S214.
[0109] ステップ S214では、最適方式選択制御部 176は、時間周期設定部 177により、基 地局からの信号をチェックする時間周期を受信電力の高い方式力 順に、 Tl、 Τ2、 Τ 3 (丁1≤丁2≤丁3でかっ丁3 =無限大)を設定し、ステップ S215に移行する。詳細には 、ステップ S214では、 T_4G=T1、 T_3G =T2、丁_33〇=丁3=∞に設定している。  [0109] In step S214, the optimum method selection control unit 176 uses the time cycle setting unit 177 to set the time cycle for checking the signal from the base station in the order of the received power in the order of the highest power, T1, Τ2, Τ3 (D Set 1≤Cho 2≤Cho 3 and Kaccho 3 = Infinity), and go to Step S215. Specifically, in step S214, T_4G = T1, T_3G = T2, and Ding_3300 = Ding 3 = ∞ are set.
[0110] ステップ S215では、受信状態情報比較部 174を用いて、 P_ALL_4G_last-P_ALL_3 GJastく規定値 P3であるか否かを判断し、 P_ALL_4G_last-P_ALL_3G_lastが規定値 P3 よりも小さ 、場合、ステップ S213に移行し、 P— ALL— 3G— last- P— ALL— 4G— lastが規定値 P 3以上である場合、処理を終了する。  [0110] In step S215, the reception state information comparison unit 174 is used to determine whether or not P_ALL_4G_last-P_ALL_3 GJast is the specified value P3. If P_ALL_4G_last-P_ALL_3G_last is smaller than the specified value P3, the process proceeds to step S213. If P—ALL—3G—last-P—ALL—4G—last is equal to or greater than the specified value P3, the process ends.
[0111] また、ステップ S203では、受信状態情報比較部 174は、 P_ALL_S3G_last > P_ALL_ 4G_lastであるか否かを判断し、 P_ALL_S3G_last > P_ALL_4G_lastであれば、ステップ S 216に移行し、満たしていなければ、ステップ S217に移行する。 [0112] ステップ S216では、受信状態情報比較部 174は、 P_ALL_3G_last > P_ALL_4G_last であるか否かを判断し、 P_ALL_3G_last>P_ALL_4G_lastであれば、ステップ S218に 移行し、満たしていなければ、ステップ S219に移行する。 In step S203, the reception state information comparison unit 174 determines whether or not P_ALL_S3G_last> P_ALL_4G_last. If P_ALL_S3G_last> P_ALL_4G_last, the process proceeds to step S216. Move on to S217. [0112] In step S216, the reception state information comparison unit 174 determines whether or not P_ALL_3G_last> P_ALL_4G_last. If P_ALL_3G_last> P_ALL_4G_last, the process proceeds to step S218, and if not, the process proceeds to step S219. .
[0113] ステップ S218では、受信状態情報比較部 174は、 P_ALL_S3G_last > P_ALL_3G_las t > P_ALL_4G_lastと!、う比較結果を最適方式選択制御部 176に出力し、ステップ S 2[0113] In step S218, the reception status information comparison unit 174 outputs P_ALL_S3G_last> P_ALL_3G_last> P_ALL_4G_last!
20に移行する。 Move to 20.
[0114] ステップ S220では、最適方式選択制御部 176は、時間周期設定部 177により、基 地局からの信号をチェックする時間周期を受信電力の高い方式力 順に、 Tl、 Τ2、 Τ 3 (丁1≤丁2≤丁3でかっ丁3 =無限大)を設定し、ステップ S221に移行する。詳細には 、ステップ S220では、 T— S3G=T1、 T_3G =T2、 T— 4G=T3=∞に設定している。  [0114] In step S220, the optimum method selection control unit 176 uses the time cycle setting unit 177 to set the time cycle for checking the signal from the base station in the order of the received power in the order of the highest power, T1, Τ2, Τ3 (D Set 1≤Cho 2≤Cho 3 and Kaccho 3 = Infinity), and go to Step S221. Specifically, in step S220, T—S3G = T1, T_3G = T2, and T—4G = T3 = ∞ are set.
[0115] ステップ S221では、受信状態情報比較部 174を用いて、 P_ALL_S3G_last-P_ALL_3 GJastく規定値 P4であるか否かを判断し、 P_ALL_S3G_last- P_ALL_3G_lastが規定値 P 4よりも小さ!/、場合、ステップ S 208に移行し、 P_ALL_S3G_last- P_ALL_3G_lastが規定 値 P4以上である場合、処理を終了する。  [0115] In step S221, the reception state information comparison unit 174 is used to determine whether or not P_ALL_S3G_last-P_ALL_3 GJast is a specified value P4. The process proceeds to step S208, and if P_ALL_S3G_last-P_ALL_3G_last is greater than or equal to the specified value P4, the process ends.
[0116] ステップ S219では、受信状態情報比較部 174は、 P_ALL_S3G_last > P_ALL_4G_las t > P_ALL_3G_lastと!、う比較結果を最適方式選択制御部 176に出力し、ステップ S 2 22に移行する。  In step S219, the reception state information comparison unit 174 outputs the comparison result to P_ALL_S3G_last> P_ALL_4G_last> P_ALL_3G_last and the optimal method selection control unit 176, and proceeds to step S222.
[0117] ステップ S222では、最適方式選択制御部 176は、時間周期設定部 177により、基 地局からの信号をチェックする時間周期を受信電力の高い方式力 順に、 Tl、 Τ2、 Τ 3 (丁1≤丁2≤丁3でかっ丁3 =無限大)を設定し、ステップ S223に移行する。詳細には 、ステップ S222では、 T— S3G=T1、 T_4G =T2、 Τ— 3〇=丁3=∞に設定している。  [0117] In step S222, the optimum method selection control unit 176 uses the time cycle setting unit 177 to set the time cycle for checking the signal from the base station in the order of the received power in the order of the highest received power Tl, Τ2, Τ3 (D Set 1≤Cho 2≤Cho 3 and Kaccho 3 = Infinity), and go to Step S223. Specifically, in step S222, T—S3G = T1, T_4G = T2, and Τ—30 = cho 3 = ∞ are set.
[0118] ステップ S223では、受信状態情報比較部 174を用いて、 P_ALL_S3G_last-P_ALL_4 GJastく規定値 P5であるか否かを判断し、 P_ALL_S3G_last-P_ALL_4G_lastが規定値 P 5よりも小さ!/、場合、ステップ S 224に移行し、 P_ALL_S3G_last- P_ALL_4G_lastが規定 値 P5以上である場合、処理を終了する。  [0118] In step S223, the reception state information comparison unit 174 is used to determine whether or not P_ALL_S3G_last-P_ALL_4 GJast is the specified value P5. If P_ALL_S3G_last-P_ALL_4G_last is smaller than the specified value P5! The process proceeds to step S224, and if P_ALL_S3G_last-P_ALL_4G_last is equal to or greater than the specified value P5, the process ends.
[0119] ステップ S224では、 3G用データ受信処理部 140が、 3Gで利用される周波数帯域 における全受信電力 P_ALL_3G_lastを測定し、ステップ S 201に移行する。  [0119] In step S224, 3G data reception processing section 140 measures the total received power P_ALL_3G_last in the frequency band used in 3G, and proceeds to step S201.
[0120] ステップ S217では、受信状態情報比較部 174は、 P_ALL_4G_last > P_ALL_S3G_las t > P_ALL_3G_lastと!、う比較結果を最適方式選択制御部 176に出力し、ステップ S 2 25に移行する。 [0120] In step S217, the reception state information comparison unit 174 determines that P_ALL_4G_last> P_ALL_S3G_las t> P_ALL_3G_last and!, the comparison result is output to the optimum method selection control unit 176, and the process proceeds to step S225.
[0121] ステップ S225では、最適方式選択制御部 176は、時間周期設定部 177により、基 地局からの信号をチェックする時間周期を受信電力の高い方式力 順に、 Tl、 Τ2、 Τ 3 (丁1≤丁2≤丁3でかっ丁3 =無限大)を設定し、ステップ S226に移行する。詳細には 、ステップ S225では、 T4=T1、 T— S3G =Τ2、 Τ— 3〇=丁3=∞に設定している。  [0121] In step S225, the optimum method selection control unit 176 uses the time cycle setting unit 177 to set the time cycle for checking the signal from the base station in the order of the received power in the order of the highest power, T1, Τ2, Τ3 (D Set 1≤Cho 2≤Cho 3 and Kaccho 3 = Infinity), and go to Step S226. Specifically, in step S225, T4 = T1, T—S3G = Τ2, Τ—30 = cho 3 = ∞.
[0122] ステップ S226では、受信状態情報比較部 174を用いて、 P_ALL_4G_last-P_ALL_S3 GJastく規定値 P6であるか否かを判断し、 P_ALL_4G_last- P_ALL_S3G_lastが規定値 P 6よりも小さ!/、場合、ステップ S 224に移行し、 P_ALL_4G_last- P_ALL_S3G_lastが規定 値 P6以上である場合、処理を終了する。  [0122] In step S226, the reception status information comparison unit 174 is used to determine whether or not P_ALL_4G_last-P_ALL_S3 GJast is a specified value P6, and if P_ALL_4G_last-P_ALL_S3G_last is smaller than the specified value P6! The process proceeds to step S224, and if P_ALL_4G_last-P_ALL_S3G_last is equal to or greater than the specified value P6, the process ends.
[0123] ステップ S224では、 3G用データ受信処理部 140が、 3Gで利用される周波数帯域 における全受信電力 P_ALL_3G_lastを測定し、ステップ S 201に移行する。  [0123] In step S224, 3G data reception processing section 140 measures the total received power P_ALL_3G_last in the frequency band used in 3G, and proceeds to step S201.
[0124] すなわち、上述の通信方式の選択方法は、 3G、 S3G、 4Gで利用される周波数帯域 における全受信電力の大 /J、のノターン毎に、ステップ S204、 S209、 S210、 S217 〜S 219の場合を分類する。この後、ステップ S206、 S211、 S214、 S220、 S222、 S225においては、基地局力 の信号をチェックする時間周期を受信電力の高い方 式から順に、 Tl、 Τ2、 Τ3 (但し、 Τ1≤Τ2≤Τ3, Τ3 =無限大)とし、チェックする時間周 期をそれぞれ方式ごとに変化させる。  [0124] That is, the above communication method selection method is performed in steps S204, S209, S210, S217 to S219 for every turn of large received power / J in the frequency bands used in 3G, S3G, and 4G. Classify cases. After this, in steps S206, S211, S214, S220, S222, and S225, Tl, Τ2, Τ3 (however, Τ1≤Τ2≤ (Τ3, Τ3 = infinity), and change the time period to be checked for each method.
[0125] 次いで、ステップ S207、 S212、 S215、 S221、 S223、 S226では、ステップ S206 、 S211、 S214、 S220、 S222、 S225で信号チェック周期として Tlと T2を選択した 方式の受信電力差、つまり、受信電力(真数)比が規定した値 Pn (n= l、 2、 3 · · より も、小さいかどうかを判断する。この判断の結果、 T1と T2を選択した方式の受信電力 差力 SPnより/ J、さい場合は、ステップ S206、 S211、 S214、 S220、 S222、 S225で信 号チ ック周期として T3を選択した方式で利用される周波数帯域における全受信電 力を測定した後でステップ S201へと戻り再度、各方式の受信信号の順位付けを行う 。大きい場合は、処理を終了する。このように本実施の形態では、低消費電力化、処 理量削減と高ビットレートを両立させることが可能となる。  Next, in steps S207, S212, S215, S221, S223, and S226, the received power difference of the method in which Tl and T2 are selected as signal check periods in steps S206, S211, S214, S220, S222, and S225, that is, Judge whether the received power (true number) ratio is smaller than the specified value Pn (n = l, 2, 3 ···). As a result of this judgment, the received power difference SPn of the method with T1 and T2 selected More / J, in this case, step S206, S211, S214, S220, S222, and S225 after measuring all received power in the frequency band used in the method that selected T3 as the signal check period Returning to S201, the received signals of each method are ranked again, and if it is larger, the process is terminated.In this embodiment, low power consumption, reduced processing amount and high bit rate are achieved at the same time. It becomes possible to make it.
[0126] また、通信システム 200では、移動端末 100は、 S3G基地局 220のエリア 221内に 4G基地局 230のエリア 231が存在すると仮定しているため、 4Gの通信方式につい ては、 S3Gの信号レベルが 3Gよりも高くなつたときに、信号レベルをチェックするよう にしてもよい。 [0126] Also, in the communication system 200, the mobile terminal 100 is located in the area 221 of the S3G base station 220. Since it is assumed that the area 231 of the 4G base station 230 exists, the signal level of the 4G communication method may be checked when the S3G signal level becomes higher than 3G.
[0127] 図 9は、移動端末 100が、通信システム 200内において A方向に移動する際に、 4 Gの通信方式の信号レベルをチェックする処理の一例を説明するフローチャートであ る。  FIG. 9 is a flowchart for explaining an example of processing for checking the signal level of the 4 G communication method when the mobile terminal 100 moves in the A direction in the communication system 200.
[0128] 図 9に示すように、ステップ S301では、 3G用受信データ処理部 140が、 3Gで利用 される周波数帯域における全受信電力 P_ALL_3G_lastを測定する。次いで、ステップ S302において、 3G用受信データ処理部 150が、 S3Gで利用される周波数帯域に おける全受信電力 P_ALL_S3G_lastを測定し、ステップ S 303〖こ移行する。  [0128] As shown in FIG. 9, in step S301, the 3G reception data processing unit 140 measures the total reception power P_ALL_3G_last in the frequency band used in 3G. Next, in step S302, the 3G reception data processing unit 150 measures the total reception power P_ALL_S3G_last in the frequency band used in S3G, and proceeds to step S303.
[0129] ステップ S303では、受信状態情報比較部 174は、 3Gで利用される周波数帯域に おける全受信電力 P_ALL_3G_lastと S3Gで利用される周波数帯域における全受信電 力 P_ALL_S3G_lastの差が規定の値 P7と比較して大き!/、か小さ!/、かを比較する。この 差が小さい場合、ステップ S304に移行し、差が大きい場合は、ステップ S305に移行 して、 3G、 S3G、 4Gの基地局 210、 220、 230力もの信号をチェックする時間周期を それぞれ Tl、 Τ2、 Τ3 ( =∞)とした後に処理を終了する。  [0129] In step S303, the reception state information comparison unit 174 determines that the difference between the total received power P_ALL_3G_last in the frequency band used in 3G and the total received power P_ALL_S3G_last in the frequency band used in S3G is the specified value P7. Compare large! / Or small! /. If this difference is small, the process proceeds to step S304, and if the difference is large, the process proceeds to step S305, and the time period for checking the signals of 3G, S3G, 4G base stations 210, 220, 230 is set to Tl, After setting Τ2 and Τ3 (= ∞), the process is terminated.
[0130] ステップ S304では、 4G用受信データ処理部 160が、 4Gで利用される周波数帯域 における全受信電力 P_ALL_4G_lastを測定して、ステップ S306に移行する。  [0130] In step S304, 4G received data processing section 160 measures the total received power P_ALL_4G_last in the frequency band used in 4G, and proceeds to step S306.
[0131] ステップ S306では、受信状態情報比較部 174が、 S3Gで利用される周波数帯域 における全受信電力 P_ALL_S3GJastと、 4Gで利用される周波数帯域における全受 信電力 P_ALL_4G_lastとの差が規定の値 P8と比較し、差が小さい場合、ステップ S30 7に移行し、差が大きい場合ステップ S308に移行する。  [0131] In step S306, the reception state information comparison unit 174 determines that the difference between the total received power P_ALL_S3GJast in the frequency band used in S3G and the total received power P_ALL_4G_last in the frequency band used in 4G is a specified value P8. If the difference is small, the process proceeds to step S307. If the difference is large, the process proceeds to step S308.
[0132] (P_ALL_S3G_last) (P_ALL_4G_last) < P8の場合の処理であるステップ S307では 、最適方式選択制御部 176は、時間周期設定部 177を用いて、 4G、 S3G、 3Gの基 地局 210、 220、 230からの信号をチェックする時間周期をそれぞれ Tl、 Τ2、 Τ3 ( = ∞)とし、その後、処理を終了する。  [0132] In step S307, which is a process when (P_ALL_S3G_last) (P_ALL_4G_last) <P8, the optimal method selection control unit 176 uses the time period setting unit 177 to set the 4G, S3G, and 3G base stations 210 and 220. , 230 is the time period for checking the signal from T1, Τ2, Τ3 (= ∞), respectively, and then the process ends.
[0133] (P_ALL_S3G_last) (P_ALL_4G_last)≥P8の場合の処理であるステップ S308では 、 S3G、 4G、 3Gの基地局 210、 220、 230力もの信号をチェックする時間周期をそ れぞれ Tl、 Τ2、 Τ3 ( =∞)とし、その後、処理は終了する。 [0133] In step S308, which is a process in the case of (P_ALL_S3G_last) (P_ALL_4G_last) ≥P8, the time period for checking the signals of S3G, 4G, 3G base stations 210, 220, 230 is adjusted. Tl, Τ2, and Τ3 (= ∞) are set, and then the process ends.
[0134] このように、移動端末 100における 4Gの通信方式につ!、ては、 S3Gの信号レベル 力 S3Gよりも高くなつたときに、信号レベルをチェックするようにしているため、常に、 3 つの通信方式の受信信号レベルをチェックする必要がなぐ通信システム 200にお ける移動端末 100において、低消費電力化、処理量削減と高ビットレートを両立させ ることが可能となる。 [0134] As described above, the 4G communication system in the mobile terminal 100 is! Because the signal level is checked when the signal level of the S3G becomes higher than the S3G, the signal level is always 3 In the mobile terminal 100 in the communication system 200 that does not need to check the received signal levels of the two communication methods, it is possible to achieve both low power consumption, reduced processing amount, and high bit rate.
[0135] また、移動端末 100では、最初に全ての通信方式の受信状態を測定し、その時点 で 1番目のみそれ以降もチェックするようにしてもよい。つまり、使用している通信方式 が切れそうになったとき (別の規定値より小さくなつたとき)のみ他の通信方式をチエツ クするようにしてちょい。  [0135] In addition, the mobile terminal 100 may first measure the reception states of all communication methods and check only the first one thereafter. In other words, check other communication methods only when the communication method being used is about to be cut off (when it becomes smaller than another specified value).
[0136] 図 10は、移動端末 100における通信方式の選択方法の別の例を示す図である。  FIG. 10 is a diagram showing another example of a communication method selection method in the mobile terminal 100.
[0137] まず、最初に、 3G、 S3G、 4G用データ受信処理咅 140、 150、 160力 3G、 S3G 、 4Gでそれぞれ利用される周波数帯域における全受信電力 P_ALL_3G_last、 P_ALL_ S3G_last、 P_ALL_4G_lastを各々測定する。また、バッテリ残量検知部 172が、バッテリ 195の電力残量を測定する。これらの処理の後、移動端末 100は、図 10に示すよう な通信方式の選択処理を行う。  [0137] First, data reception processing for 3G, S3G, and 4G 咅 140, 150, 160, and all received power P_ALL_3G_last, P_ALL_S3G_last, and P_ALL_4G_last in the frequency bands used by 3G, S3G, and 4G, respectively . Further, the remaining battery level detection unit 172 measures the remaining power level of the battery 195. After these processes, the mobile terminal 100 performs a communication method selection process as shown in FIG.
[0138] すなわち、図 10に示すように、ステップ S401〜ステップ S403において、受信状態 情報比較部 174は、 3Gで利用される周波数帯域における全受信電力 P_ALL_3G_las t、 S3Gで利用される周波数帯域における全受信電力 P_ALL_S3G_last、 4Gで利用さ れる周波数帯域における全受信電力 P_ALL_4G_lastの大小を比較するとともに判断 する。  That is, as shown in FIG. 10, in step S401 to step S403, the reception state information comparison unit 174 performs the total received power P_ALL_3G_last in the frequency band used in 3G, all in the frequency band used in S3G. Receive power P_ALL_S3G_last, compare and judge the magnitude of all received power P_ALL_4G_last in the frequency band used by 4G.
[0139] その後、ステップ S404、 S411、 S417において、受信状態情報比較部 174の判断 結果に基づいて、最適方式選択制御部 176は、 3G、 S3G、 4Gで利用される周波数帯 域における全受信電力のうち最大である方式の信号チェック時間周期を T1とし、そ れ以外の方式のチ ック時間を無限大とする。  [0139] After that, in steps S404, S411, and S417, based on the determination result of the reception state information comparison unit 174, the optimum method selection control unit 176 performs the total received power in the frequency band used in 3G, S3G, and 4G. The signal check time period of the largest method is T1, and the check time of the other methods is infinite.
[0140] その後、ステップ S405、 S412、 S418において、受信状態情報比較部 174は、信 号チェック時間周期を T1とした方式の受信信号電力が規定値よりも小さいか否かを 判断する。これらの各ステップ S405、 S412、 S418において、判断結果が大きい場 合 ίま、ステップ S405、 S412、 S418にそれぞれ戻り、そのままのチェック時 f¾Tlで、 他の通信方式に変更することなぐ信号チ ック時間周期を T1とした方式の基地局か らの信号をチ ックする。 [0140] After that, in steps S405, S412, and S418, reception state information comparison section 174 determines whether or not the received signal power of the method in which the signal check time period is T1 is smaller than the specified value. In each of these steps S405, S412, and S418, if the judgment result is large Return to Steps S405, S412, and S418, respectively, and check the signal from the base station of the method that uses T1 as the signal check time period without changing to another communication method at the time of check as it is f¾Tl. I will.
[0141] 一方、これらの各ステップ S405、 S412、 S418において、半 IJ断結果カ J、さい場合、 ステップ S406、 S413、 S419にそれぞれ移行する。  [0141] On the other hand, in each of these steps S405, S412, and S418, the process shifts to half-IJ disconnection result J, and in this case, steps S406, S413, and S419, respectively.
[0142] ステップ S406、 S407、 S413、 S414、 S419、 S420では、先のステップ S404、 S 411、 S417でチェック時間を∞とした方式で利用される周波数帯域における全受信 電力をそれぞれ測定する。  [0142] In steps S406, S407, S413, S414, S419, and S420, the total received power in the frequency band used in the method in which the check time is set to ∞ in the previous steps S404, S411, and S417 is measured.
[0143] ステップ S408、 S415、 S421では、受信状態情報比較部 174は、それぞれの先の ステップ S404、 S411、 S417でチェック時間を∞とした方式、例えば、ステップ S41 7では S3Gと 4G、で利用される周波数帯域における全受信電力を比較する。  [0143] In steps S408, S415, and S421, the reception status information comparison unit 174 uses the check time of ∞ in each of the previous steps S404, S411, and S417, for example, S3G and 4G in step S417. The total received power in the frequency band to be compared is compared.
[0144] その結果、受信状態情報比較部 174からの比較結果に基づいて、最適方式選択 帘1』御咅 176ίまステップ S409、 S410、 S416にお!/ヽて、より受信電力力大き ヽ方式の 基地局信号チェック時間周期を T1とし、それ以外の方式のチェック時間を無限大とし た後、処理を終了する。例えばステップ S409では S3G方式の基地局信号チェック時 間周期を T1とし、それ以外の方式のチェック時間を無限大としている。  [0144] As a result, based on the comparison result from the reception status information comparison unit 174, the optimum method selection 帘 1 ”咅 176ί or steps S409, S410, S416! After the base station signal check time period of T1 is set to T1 and the check time of other systems is set to infinity, the process ends. For example, in step S409, the S3G base station signal check time period is T1, and the check time of other systems is infinite.
[0145] なお、図 10に示す移動端末 100における通信方式の選択方法のバリエーションと しては、最適方式選択制御部 176が、 1番目に受信電力の大きい通信方式の受信 状態情報における受信電力値と受信電力値の規定値とを比較して、 1番目に受信電 力の大きい通信方式の受信状態情報の前記受信電力値が前記受信電力値の規定 値より小さい場合、第 1、第 2及び第 3の通信方式のうち、受信電力を通信レートで除 算したときの商が最も大きい通信方式を受信状態の測定をする通信方式として選択 する方法も考えられる。  Note that, as a variation of the communication method selection method in the mobile terminal 100 shown in FIG. 10, the optimum method selection control unit 176 receives the received power value in the reception status information of the communication method having the first largest received power. If the received power value of the reception status information of the communication method having the first largest received power is smaller than the specified value of the received power value, the first, second and Of the third communication methods, a method of selecting the communication method having the largest quotient when the received power is divided by the communication rate is selected as the communication method for measuring the reception state.
[0146] すなわち、測定した通信方式の周波数帯域における受信電力値が、当該受信電 力値の規定値より小さい場合であっても、測定した通信方式の通信レートが小さい場 合であれば、エラーレートを低くできるため、受信電力に対する電力 Z通信レートの 比が最も大きい通信方式を測定 (チェック)するものである。よって、移動端末 100で は、最初に全ての通信方式の受信状態を測定し、その時点で 1番目のみチェックし、 それ以降も一番目のみチェックし、使用している通信方式が切れそうになったとき (規 定値より小さくなつたとき)のみ他の通信方式をチェックする。 That is, even if the received power value in the frequency band of the measured communication method is smaller than the specified value of the received power value, if the measured communication method has a low communication rate, an error will occur. Since the rate can be lowered, the communication method with the largest ratio of the power Z communication rate to the received power is measured (checked). Therefore, the mobile terminal 100 first measures the reception status of all communication methods and checks only the first at that time, After that, only the first check is made, and the other communication method is checked only when the communication method being used is about to be cut (when it becomes smaller than the specified value).
[0147] このように通信方式を選択するため、受信可能な全ての通信方式の信号の受信状 態をチェックする必要がないため、移動端末 100における低消費電力化が可能とな る。  [0147] Since the communication method is selected in this way, it is not necessary to check the reception states of signals of all receivable communication methods, so that the power consumption in the mobile terminal 100 can be reduced.
[0148] また、上記構成の移動端末 100では、最初に測定した 3つ(3G、 S3G、 4G)の方式 の信号受信電力レベル差が同じである場合、デフォルト値、つまりデフォルト測定周 波数である方式のみ測るとした力 最初に測定した 3つ(3G、 S3G、 4G)の方式の信 号受信電力レベル差が小さい (MAX(a,b,c)— MIN(a,b,c)<規定値)場合も、デフオル ト測定周波数である(その時の主流の)方式のみ測る構成としても良い。  [0148] Also, in the mobile terminal 100 having the above configuration, when the signal reception power level difference between the three methods (3G, S3G, and 4G) measured first is the same, the default value, that is, the default measurement frequency is used. Force measured only by the method The difference in signal reception power level of the three methods (3G, S3G, 4G) measured first is small (MAX (a, b, c) —MIN (a, b, c) <specified Value), it may be configured to measure only the method of the default measurement frequency (the mainstream at that time).
[0149] 例えば、デフォルト測定周波数として設定された信号の通信方式が 3Gである場合 、 3G基地局からの信号のみ測定する。なお、デフォルトの基地局はファームの書き換 えで対応する。  [0149] For example, when the communication method of the signal set as the default measurement frequency is 3G, only the signal from the 3G base station is measured. The default base station is supported by rewriting the farm.
[0150] 図 11は、最初に測定した受信信号の電力レベル差が小さい場合の処理を説明す るフローチャートである。  [0150] FIG. 11 is a flowchart for explaining processing when the power level difference of the received signal measured first is small.
[0151] ステップ S601では、受信状態情報比較部 174は、測定した全受信電力のうち最大 値をとる方式の値と最小値をとる方式の値の差と、予め設定された規定値 P12と比較 する(MAX(P— ALL— 3GJast,P— ALL— S3GJast,P— ALL— 4GJast) - MIN(P— ALL— 3GJast,P— A LL— S3GJast,P— ALL— 4GJast) < PI 2)。  [0151] In step S601, reception state information comparison section 174 compares the difference between the value of the method that takes the maximum value and the value of the method that takes the minimum value of all the measured received power, and the preset specified value P12. (MAX (P—ALL—3GJast, P—ALL—S3GJast, P—ALL—4GJast) −MIN (P—ALL—3GJast, P—A LL—S3GJast, P—ALL—4GJast) <PI 2).
[0152] ステップ S601では、測定した全受信電力のうち最大値をとる方式の値と最小値をと る方式の値の差が、規定値 P12より大きい場合、ステップ S602に移行する。ステップ S602〜ステップ S622までの処理は、図 10で説明したステップ S401〜ステップ S4 21までの処理と同様の処理であるため説明は省略する。  [0152] In step S601, when the difference between the value of the method that takes the maximum value and the value of the method that takes the minimum value among the measured total received power is larger than the specified value P12, the process proceeds to step S602. The processing from step S602 to step S622 is the same as the processing from step S401 to step S422 described in FIG.
[0153] ステップ S601において、測定した全受信電力のうち最大値をとる方式の値と最小 値をとる方式の値の差が規定値 P12より小さい場合、ステップ S623に移行する。  [0153] In step S601, if the difference between the value of the method taking the maximum value and the value of the method taking the minimum value is smaller than the specified value P12 among all the measured received powers, the process proceeds to step S623.
[0154] ステップ S623では、最適方式選択制御部 176は、時間周期設定部 177によって、 デフォルトでチェックすべきと規定されている基地局の信号のみを規定の時間周期で チェックするように設定し、デフォルトで規定されたデータ受信処理部に測定させる。 なお、図 11では、デフォルトのチェックする方式を 3G方式とした力 これに限らず、 S3 G方式、 4G方式としても良い。 [0154] In step S623, the optimal method selection control unit 176 sets, by the time period setting unit 177, to check only the signal of the base station that should be checked by default at the specified time period, The data reception processing unit defined by default is measured. In FIG. 11, the default checking method is the power of 3G method, but not limited to this, S3 G method or 4G method may be used.
[0155] 次いで、ステップ S624では、受信状態情報比較部 174によって、そのデフォルトで 利用される周波数帯域における全受信電力(ここでは、 3Gの全受信電力 P_ALL_3G_1 ast)と規定値 P13とを比較し、規定値 P13以上であれば、ステップ S623へと戻り再度 デフォルト方式で利用される周波数帯域における全受信電力(ここでは、 3Gの全受 信電力 P_ALL_3GJast)をチェックする。  [0155] Next, in step S624, the reception state information comparison unit 174 compares the total received power (here, 3G total received power P_ALL_3G_1 ast) in the frequency band used by default with the specified value P13, If it is more than the specified value P13, return to step S623 and check again the total received power (here, 3G total received power P_ALL_3GJast) in the frequency band used in the default method.
[0156] 一方、ステップ S624において、デフォルトで利用される周波数帯域における全受 信電力(ここでは、 3Gの全受信電力 P_ALL_3G_last)が規定値 P13より小さいと判断さ れた場合、ステップ S625、 S626と順〖こ移行し、デフォルトでない方式(図 11では、 S 3G,4G方式)で利用される周波数帯域における各通信方式の全受信電力(図 11で は、 P_ALL_S3G_last, P_ALL_4G_last)を測定する。  [0156] On the other hand, if it is determined in step S624 that the total received power in the frequency band used by default (here, 3G total received power P_ALL_3G_last) is smaller than the specified value P13, steps S625 and S626 are performed. In order, the total received power (P_ALL_S3G_last, P_ALL_4G_last in Fig. 11) of each communication method in the frequency band used in the non-default method (S 3G, 4G method in Fig. 11) is measured.
[0157] ステップ S627では、測定したデフォルトでない方式(図 11では、 S3G,4G方式)で 利用される周波数帯域における全受信電力(図 11では、 P_ALL_S3G_last,P_ALL_4G_ last)を比較する。具体的に、ステップ S627では、 S3Gの全受信電力 P_ALL_S3G_last 力 4Gの全受信電力 P_ALL_4G_lasはり大きいか否かを判断し、大きい場合、ステツ プ S610〖こ移行し、 4Gの全受信電力 P_ALL_4G_last以下の場合、ステップ S611〖こ移 行する。  [0157] In step S627, the total received power (P_ALL_S3G_last, P_ALL_4G_last in Fig. 11) in the frequency band used in the measured non-default scheme (S3G, 4G scheme in Fig. 11) is compared. Specifically, in step S627, it is determined whether the total received power of S3G P_ALL_S3G_last power 4G total received power P_ALL_4G_las is large or not. Move to step S611.
[0158] ステップ S610、 S611では、それぞれ、比較した全受信電力のうち、大きい受信電 力の通信方式の基地局信号チェック時間周期を T1とし、それ以外の方式のチ ック 時間を無限大とした後、処理を終了する。例えばステップ S610では S3G方式の基 地局信号チェック時間周期を T1とし、それ以外の方式のチェック時間を無限大として いる。  [0158] In steps S610 and S611, the base station signal check time period of the communication system with the larger received power is T1, and the check time of the other systems is infinite. After that, the process ends. For example, in step S610, the base station signal check time period of the S3G system is set to T1, and the check time of other systems is set to infinity.
[0159] すなわち、ステップ S610、 S611、 S617では、デフォルトでない通信方式のうち受 信電力が大きい方式の信号チェック時間周期を T1としそれ以外を∞として処理を終 了している。  That is, in steps S610, S611, and S617, the processing is terminated with T1 as the signal check time period of the method with large received power among non-default communication methods and ∞ as the others.
[0160] ここで、デフォルトで測定すべき方式は、基地局からの制御信号に基づ!/、てファー ムの書き換えを行うなどで対応できる。これにより、サービスがまだ開始されていない 、もしくは、サービスが終了された場合に、移動端末 100の操作者が意識および煩雑 な操作をすることなく端末における制御方式が変更され無駄な電力消費を抑えること が出来る。 [0160] Here, the method to be measured by default can be dealt with by rewriting the farm based on the control signal from the base station! As a result, the service has not yet started Alternatively, when the service is terminated, the control method in the terminal can be changed and the useless power consumption can be suppressed without the operator of the mobile terminal 100 performing consciousness and complicated operation.
[0161] 図 12は、本発明の実施の形態の通信システム 200に属する移動端末装置の別例 である移動端末 500の概略構成を示すブロック図である。  FIG. 12 is a block diagram showing a schematic configuration of a mobile terminal 500 that is another example of the mobile terminal apparatus belonging to the communication system 200 according to the embodiment of the present invention.
[0162] 図 12に示す移動端末 500は、通信システム 200における複数の通信方式のそれ ぞれに対応してデータを送受信する機能を有する。 Mobile terminal 500 shown in FIG. 12 has a function of transmitting and receiving data corresponding to each of a plurality of communication methods in communication system 200.
[0163] 移動端末 500は、通信方式毎に基地局 210、 220、 230からの信号を測定する時 間間隔を変えて測定し、その測定した値に基づいてデータを送受信する際に利用す る通信方式を判断する。 [0163] Mobile terminal 500 measures the signal from base stations 210, 220, and 230 for each communication method while changing the time interval for measurement, and uses it when transmitting and receiving data based on the measured value. Determine the communication method.
[0164] 移動端末 500における判断の方法は、 SIR (希望波信号電力対干渉電力比、 Signa[0164] The determination method in mobile terminal 500 is SIR (ratio of desired signal power to interference power, Signa
1 to Interference power Ratio)を用いるものであり、通信可能な通信方式の受信状態1 to Interference power Ratio)
(SIR)を、最初に全部測定し、その時点での 1番目に受信状態 (ここでは、 SIR)のみ それ以降もチェックする。 SIRが規定値より小さくなつたら他の通信方式の SIRを測定 するよう制御される。 First, measure all (SIR), and check only the first reception status (SIR in this case) after that. If the SIR becomes smaller than the specified value, control is performed to measure the SIR of another communication method.
[0165] 図 12に示す移動端末 500は、図 2に示す一実施の形態に対応する移動端末 100 と同様の基本的構成を有し、各通信方式の受信状態情報を測定する測定部と、これ ら測定部により測定される受信状態情報に基づいて最適な通信方式を選択する制 御部の構成のみ異なる。よって、以下では、同一の構成要素には同一の符号を付し 、その説明を省略する。  A mobile terminal 500 shown in FIG. 12 has the same basic configuration as the mobile terminal 100 corresponding to the embodiment shown in FIG. 2, and includes a measurement unit that measures reception state information of each communication method, Only the configuration of the control unit that selects the optimal communication method based on the reception status information measured by these measurement units is different. Therefore, below, the same code | symbol is attached | subjected to the same component and the description is abbreviate | omitted.
[0166] すなわち、移動端末 500は、各通信方式用データ受信処理部 140、 150、 160は、 3G用、 S3G用、 4G用電力強度測定部 143、 153、 163に代えて、 3G用、 S3G用、 4G用 SIR測定部 148、 158、 168を備える。  That is, in mobile terminal 500, data reception processing units 140, 150, and 160 for each communication method are used for 3G, S3G, and 4G power intensity measuring units 143, 153, and 163 instead of 3G, S3G And 4G SIR measurement units 148, 158 and 168.
[0167] そして、 3G用、 S3G用、 4G用データ受信処理部 140c、 150a, 160aは、それぞ れの通信方式で処理を行う 3G用、 S3G用、 4G用低雑音増幅器 142、 152、 162、 受信処理部 144、 154, 164,復調処理部 145、 155, 165,復号ィ匕処理部 146、 15 6、 166、 3G用、 S3G用、 4G用 SIR測定部 148、 158、 168を具備する。  [0167] The 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a perform low-noise amplifiers 142, 152, and 162 for 3G, S3G, and 4G that perform processing in their respective communication methods. Reception processing units 144, 154, 164, demodulation processing units 145, 155, 165, decoding signal processing units 146, 156, 166, 3G, S3G, 4G SIR measurement units 148, 158, 168 .
[0168] 3G用、 S3G用、 4G用 SIR測定部 148、 158、 168は、それぞれ入力される信号を 用いて、復調後にそれぞれ入力される信号の SIRを測定する。これら測定結果は、 制御部 170aに出力される。 [0168] 3G, S3G, and 4G SIR measurement units 148, 158, and 168 And measure the SIR of each input signal after demodulation. These measurement results are output to the controller 170a.
[0169] また、移動端末 500は、各 SIR測定部 148、 158、 168からの測定情報に基づいて 通信方式選択の処理を行う制御部 170aを備える。 [0169] In addition, the mobile terminal 500 includes a control unit 170a that performs communication method selection processing based on measurement information from each of the SIR measurement units 148, 158, and 168.
[0170] 移動端末 500は、複数の通信方式のデータ受信処理部 140c、 150a, 160aにお いて、制御部 170aにより設定される所定の時間周期で各通信方式のそれぞれにお ける SIR値を測定する。測定した全受信電力及び SIR値は、受信状態情報として制 御部 170aに出力する。 [0170] The mobile terminal 500 measures the SIR value in each communication method at a predetermined time period set by the control unit 170a in the data reception processing units 140c, 150a, 160a of a plurality of communication methods. To do. The measured total received power and SIR value are output to the controller 170a as reception status information.
[0171] 図 13は、図 12に示す移動端末 500における制御部 170aの要部構成を示すブロッ ク図である。  FIG. 13 is a block diagram showing the main configuration of control section 170a in mobile terminal 500 shown in FIG.
[0172] 図 13に示すように制御部 170aは、 3G用、 S3G用、 4G用データ受信処理部 140c 、 150a, 160aから入力される信号、メモリ 190からの情報、ノ ッテリ 195の情報に基 づいて通信をどの通信方式 (ここでは、 3G、 S3G、 4G)で行うかを選択し、その選択 結果を用いて、データ送信方式選択部 102において、データ送信方式選択部 102 に入力される入力信号をどの送信方式により情報として送信するかを決定する。  As shown in FIG. 13, the control unit 170a is based on signals input from the 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a, information from the memory 190, and information from the battery 195. Based on the selected communication method (here, 3G, S3G, 4G), the data transmission method selection unit 102 uses the selection result to input the data transmission method selection unit 102. The transmission method for transmitting the signal as information is determined.
[0173] 制御部 170aは、バッテリ残量検知部 172と、受信状態情報比較部 174aと、最適方 式選択制御部 176aとを有し、受信状態比較部 174aは、 SIR比較部 1742を有する  [0173] The control unit 170a includes a remaining battery level detection unit 172, a reception state information comparison unit 174a, and an optimum method selection control unit 176a. The reception state comparison unit 174a includes a SIR comparison unit 1742.
[0174] SIR比較部 1742は、 3G用データ受信処理部 140c、 S3G用データ受信処理部 15 0a、 4G用データ受信処理部 160aから入力される信号である受信状態情報のうち通 信方式の利用周波数帯における SIRを比較して、各通信方式の基地局 210、 220、 230からの信号の受信状態の比較結果として最適方式選択制御部 176aに出力する [0174] The SIR comparison unit 1742 uses the communication method of the reception status information that is input from the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a. Compare SIRs in frequency bands and output the result as a comparison result of the reception status of signals from base stations 210, 220, and 230 of each communication method to optimum method selection control unit 176a
[0175] 最適方式選択制御部 176aは、バッテリ残量検知部 172、受信状態情報比較部 17 4aの SIR比較部 1742及びメモリ 190に格納される制御テーブルなどからの情報に 基づいて、実際の電波伝搬環境状態において最も通信に適した通信方式を選択す る。 [0175] The optimal method selection control unit 176a performs actual radio wave detection based on information from the battery remaining amount detection unit 172, the SIR comparison unit 1742 of the reception state information comparison unit 174a, the control table stored in the memory 190, and the like. Select the most suitable communication method for the propagation environment.
[0176] 詳細には、最適方式選択制御部 176aは、受信状態情報比較部 174aにより比較 結果として出力される各通信方式からの受信信号の SIR値が異なる場合、大きい順 に、受信信号に基づく SIRを測定する時間周期 Tl、 Τ2、 Τ3 (但し、 Τ1≤Τ2≤Τ3)を 設定する時間周期設定部 177を備える。このとき、時間周期設定部 177は、 Τ2=Τ3 =∞として、実際の測定は、時間周期が T1の通信方式のみで行われるようにする。 なお、複数の通信方式における受信信号の SIR値が同じである場合、最適方式選択 制御部 176aは、デフォルト値として設定された通信方式を選択する。 [0176] Specifically, the optimum method selection control unit 176a performs comparison using the reception state information comparison unit 174a. If the SIR value of the received signal from each communication method that is output as a result is different, set the time period Tl, Τ2, Τ3 (however, Τ1≤Τ2≤Τ3) to measure the SIR based on the received signal in descending order A time period setting unit 177 is provided. At this time, the time cycle setting unit 177 sets Τ2 = Τ3 = ∞ so that the actual measurement is performed only in the communication method with the time cycle of T1. If the SIR values of the received signals in the plurality of communication methods are the same, the optimum method selection control unit 176a selects the communication method set as the default value.
[0177] そして、最適方式選択制御部 176aは、選択した通信方式によってデータの送受信 を行うために、 3G用データ受信処理部 140c、 S3G用データ受信処理部 150a、 4G 用データ受信処理部 160aに、時間周期設定部 177によって、それぞれ設定された 時間周期で受信状態、ここでは SIRの測定を行わせる制御信号を出力して制御する [0177] Then, the optimum method selection control unit 176a sends the data to the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a in order to transmit and receive data according to the selected communication method. The time period setting unit 177 outputs and controls the reception state at each set time period, in this case, a control signal for performing SIR measurement.
[0178] つまり、最適方式選択制御部 176aでは、時間周期設定部 177が、 3G用、 S3G用 、 4G用データ受信処理部 140c、 150a, 160a毎に、それぞれ対応する基地局 210 、 220、 230の SIRを測定する時間周期(Tl、 Τ2、 Τ3)を設定する。なお、本実施の形 態における Tl、 Τ2、 Τ3は、 0く Tl、 Τ2、 Τ3≤∞、且つ、 Τ1≤Τ2≤Τ3を満たす任意の 期間とする。 In other words, in the optimum method selection control unit 176a, the time period setting unit 177 includes the corresponding base stations 210, 220, 230 for the 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a, respectively. Set the time period (Tl, Τ2, Τ3) for measuring the SIR. Note that Tl, Τ2, and Τ3 in this embodiment are 0 and any period that satisfies Tl, Τ2, Τ3≤∞, and Τ1≤Τ2≤Τ3.
[0179] これら設定した時間周期を、時間周期設定部 177が、各データ受信処理部 140c、 150a, 160aに割り当てることによって、最適方式選択制御部 176aでは、実際に受 信状態 (ここでは、 SIR)を測定する通信方式を選択して!/、る。  [0179] The time period setting unit 177 assigns the set time period to each data reception processing unit 140c, 150a, 160a, so that the optimum method selection control unit 176a actually receives the reception state (here, SIR ) Select the communication method to measure!
[0180] この最適方式選択制御部 176aにおいて、時間周期設定部 177における時間周期 の設定は、バッテリ 195の電力残量、 SIR値に関連付けられており、メモリ 190に格納 されるバッテリ 195の電力残量 (バッテリ残量)、 SIR値、基地局チェック時間 T及び SI Rとの関係に基づいて設定される。具体的には、時間周期の設定は、通信方式を選 択するためのものであり、 3G、 S3G、 4Gの基地局 210, 220、 230力もの受信信号 のうち、どの受信信号を受信して受信状態 (SIR)の測定を行うかの設定と同義となる  In this optimum method selection control unit 176a, the setting of the time period in the time period setting unit 177 is associated with the remaining power and SIR value of the battery 195, and the remaining power of the battery 195 stored in the memory 190 is It is set based on the relationship between the amount (battery level), SIR value, base station check time T and SIR. Specifically, the setting of the time period is for selecting the communication method. Which of the received signals is received among the 3G, S3G, 4G base stations 210, 220, and 230 received signals. Synonymous with setting whether to measure reception status (SIR)
[0181] このように、移動端末 500の制御部 170aは、まず、各データ受信処理部 140c、 15 Oa、 160aにより、それぞれ通信方式毎の全受信電力を測定させる。そして、測定さ れた各通信方式毎の受信電力を、受信状態情報比較部 174aの SIR比較部 1742に より比較させて、その比較結果力も最適方式選択制御部 176aが、最も SIR値が高い 通信方式の信号を使用する通信方式として選択する。そして、最も SIR値が高い通 信方式のデータ受信処理部を用いて、それ以降の選択した信号の SIRを測定させる 。この最も受信信号が高力つた通信方式における受信信号の SIRを SIR比較部 174 2が監視し、予め設定された規定値より小さい場合、他の通信方式の SIRを測定する よう制御する。 [0181] Thus, first, the control unit 170a of the mobile terminal 500 causes the data reception processing units 140c, 15Oa, and 160a to measure the total received power for each communication method. And measured The received power for each communication method is compared by the SIR comparison unit 1742 of the reception state information comparison unit 174a, and the optimum method selection control unit 176a also compares the signal of the communication method with the highest SIR value. Select the communication method to be used. Then, the SIR of the selected signal after that is measured using the data reception processing unit of the communication method with the highest SIR value. The SIR comparing section 1742 monitors the SIR of the received signal in the communication system with the highest received signal, and controls to measure the SIR of another communication system if it is smaller than a preset specified value.
[0182] このように通信方式を選択するため、受信可能な全通信方式の信号の受信状態を チェックする必要がないため、移動端末 500における低消費電力化とともに QoS (Qu ality of Service )の向上化を図ることができる。  [0182] Since the communication method is selected in this way, it is not necessary to check the reception status of signals of all receivable communication methods, so the mobile terminal 500 can reduce power consumption and improve QoS (Quality of Service). Can be achieved.
[0183] 上記移動端末 500において、各通信方式の SIRを測定する構成としたが、これに 限らず、通信相手である基地局(例えば図 1では 210、 220、 230で示す基地局)で 行い、 SIR値のみ移動端末 500に通知する構成としても良い。この場合、 SIR測定部 148、 458、 168に代えて受信信号力 SIR値を取得する SIR値取得部を配置する 構成とする。  [0183] The mobile terminal 500 is configured to measure the SIR of each communication method. However, the present invention is not limited to this, and is performed by a base station that is a communication partner (for example, base stations indicated by 210, 220, and 230 in FIG. 1). The mobile terminal 500 may be notified of only the SIR value. In this case, instead of the SIR measuring units 148, 458, 168, a SIR value acquiring unit for acquiring the received signal strength SIR value is arranged.
[0184] また、上記移動端末 500において、各通信方式のデータ受信処理部 140c、 150a 、 160aは、受信情報状態検出のための手段として、 SIR測定部 148、 158、 168を 備える構成とした力 これに限らず、各 SIR測定部 148、 158、 168に代えて、受信信 号のビットレートを測定するビットレート測定部を設けた構成としても良い。この場合、 制御部 170aでは、受信状態情報比較部 174aは、 SIR比較部 1742に代えてビット レート比較部を設けた構成となる。この場合、比較する対象が、各通信方式における SIRが、各通信方式におけるビットレートに代わり、その他比較の方法などは同様で あるため説明は省略する。また、移動端末 500において、各通信方式のデータ受信 処理部 140c、 150a, 160aは、検出する受信情報状態を SIRではなぐ BER、 FER としてもよい。この場合、各 SIR測定部 148、 158、 168に代えて、受信信号の BER 或いは FERを測定する測定部を設けた構成とし、制御部側に比較部においても、 SI R比較部に代えて、 BER比較部或いは FER比較部を配置する構成とする。  [0184] Further, in the mobile terminal 500 described above, the data reception processing units 140c, 150a, and 160a of each communication method include SIR measurement units 148, 158, and 168 as means for detecting the reception information state. However, the present invention is not limited to this, and instead of the SIR measuring units 148, 158, 168, a bit rate measuring unit for measuring the bit rate of the received signal may be provided. In this case, in the control unit 170a, the reception state information comparison unit 174a has a configuration in which a bit rate comparison unit is provided instead of the SIR comparison unit 1742. In this case, since the SIR for each communication method is the same as the comparison target in place of the bit rate for each communication method, the other comparison methods are the same, and the explanation is omitted. In the mobile terminal 500, the data reception processing units 140c, 150a, and 160a of each communication method may use the received information state to be detected as BER or FER that is not SIR. In this case, instead of each SIR measurement unit 148, 158, 168, a measurement unit for measuring the BER or FER of the received signal is provided, and in the comparison unit on the control unit side, instead of the SIR comparison unit, A BER comparison unit or FER comparison unit is arranged.
[0185] また、移動端末 500は、各通信方式における SIR値とともに受信電力値を比較し、 これらの比較結果に基づいて使用する通信方式を選択する構成としてもよい。例え ば、移動端末 500は、複数の通信方式のデータ受信処理部 140c、 150a, 160aが 、 SIR値とともに電力強度、具体的には、それぞれ対応する通信方式の利用周波数 帯における全受信電力 P_ALL_3G_last、 P_ALL_S3G_last、 P_ALL_4G_lastをそれぞれ 測定し、制御部 170aに出力する構成とする。一方、制御部 170aは、受信状態情報 比較部 174aを、全受信電力 P_ALL_3G_last、 P_ALL_S3G_last、 P_ALL_4G_lastの大小 比較も行う構成とする。 [0185] Also, the mobile terminal 500 compares the received power value together with the SIR value in each communication method, It is good also as a structure which selects the communication system to be used based on these comparison results. For example, in the mobile terminal 500, the data reception processing units 140c, 150a, and 160a of a plurality of communication methods have the power intensity together with the SIR value, specifically, the total received power P_ALL_3G_last in the corresponding frequency band of the corresponding communication method. P_ALL_S3G_last and P_ALL_4G_last are measured and output to the controller 170a. On the other hand, the control unit 170a configures the reception state information comparison unit 174a to compare the total received powers P_ALL_3G_last, P_ALL_S3G_last, and P_ALL_4G_last.
[0186] 詳細には、制御部 170aにおいて、 SIR比較部 1742は、 3G用データ受信処理部 1 40c、 S3G用データ受信処理部 150a、 4G用データ受信処理部 160aから入力され る信号である受信状態情報のうち通信方式の利用周波数帯における SIRを比較する とともに、これら入力される SIR値と比較するために予め設定された規定値を有し、各 通信方式の SIRを、予め設定された規定値と比較して、各通信方式の基地局 210、 220、 230からの信号の受信状態の比較結果として最適方式選択制御部 176aに出 力する。  [0186] Specifically, in the control unit 170a, the SIR comparison unit 1742 receives signals that are input from the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a. In the status information, the SIR in the communication system's frequency band used for comparison is compared with the SIR value that has been set in advance, and the SIR for each communication system is set to the preset rule. Compared with the value, the result is output to the optimum method selection control unit 176a as a comparison result of the reception state of the signal from the base station 210, 220, 230 of each communication method.
[0187] そして、最適方式選択制御部 176aは、バッテリ残量検知部 172、受信状態情報比 較部 174aの SIR比較部 1742及びメモリ 190に格納される制御テーブルなどからの 情報に基づ 、て、実際の電波伝搬環境状態にぉ 、て最も通信に適した通信方式を 選択する。詳細には、最適方式選択制御部 176aは、受信状態情報比較部 174aに より比較結果として出力される各通信方式からの受信信号の電力値が異なる場合、 大きい順に、受信信号に基づく SIRを測定する時間周期 Tl、 Τ2、 Τ3 (但し、 Τ1≤Τ2 ≤Τ3)を設定する時間周期設定部 177を備える。このとき、時間周期設定部 177は、 Τ2=Τ3 =∞として、実際の測定は、時間周期が T1の通信方式のみで行われるよう〖こ する。  [0187] Then, the optimum method selection control unit 176a is based on information from the battery remaining amount detection unit 172, the SIR comparison unit 1742 of the reception state information comparison unit 174a, the control table stored in the memory 190, and the like. Select the communication method most suitable for communication according to the actual radio wave propagation environment. Specifically, the optimum method selection control unit 176a measures the SIR based on the received signals in descending order when the received signal power values from the respective communication methods output as the comparison results by the reception state information comparing unit 174a are different. A time period setting unit 177 is provided for setting a time period Tl, Τ2, Τ3 (where Τ1≤Τ2≤Τ3). At this time, the time period setting unit 177 sets Τ2 = Τ3 = ∞, and confirms that the actual measurement is performed only in the communication method with the time period T1.
[0188] なお、複数の通信方式における受信信号の電力値が同じである場合、最適方式選 択制御部 176aは、デフォルト値として設定された通信方式を選択する。次いで、最 適方式選択制御部 176aは、選択した通信方式によってデータの送受信を行うため に、 3G用データ受信処理部 140c、 S3G用データ受信処理部 150a、 4G用データ 受信処理部 160aに、時間周期設定部 177によって、それぞれ設定された時間周期 で受信状態、ここでは SIRの測定を行わせる制御信号を出力して制御する。 [0188] When the power values of the received signals in the plurality of communication schemes are the same, optimum scheme selection control section 176a selects the communication scheme set as the default value. Next, the optimum method selection control unit 176a sends the data to the 3G data reception processing unit 140c, the S3G data reception processing unit 150a, and the 4G data reception processing unit 160a to transmit and receive data according to the selected communication method. Time period set by the period setting unit 177 Controls by outputting a control signal for measuring the reception status, here SIR.
[0189] つまり、最適方式選択制御部 176aでは、時間周期設定部 177が、 3G用、 S3G用 、 4G用データ受信処理部 140c、 150a, 160a毎に、それぞれ対応する基地局 210 、 220、 230の SIRを測定する時間周期(Tl、 Τ2、 Τ3)を設定する。なお、本実施の形 態における Tl、 Τ2、 Τ3は、 0く Tl、 Τ2、 Τ3≤∞、且つ、 Τ1≤Τ2≤Τ3を満たす任意の 期間とする。 In other words, in the optimum method selection control unit 176a, the time period setting unit 177 includes the base stations 210, 220, 230 corresponding to the 3G, S3G, and 4G data reception processing units 140c, 150a, and 160a, respectively. Set the time period (Tl, Τ2, Τ3) for measuring the SIR. Note that Tl, Τ2, and Τ3 in this embodiment are 0 and any period that satisfies Tl, Τ2, Τ3≤∞, and Τ1≤Τ2≤Τ3.
[0190] これら設定した時間周期を、各データ受信処理部 140c、 150a, 160aに割り当てる ことによって、最適方式選択制御部 176aは、実際に受信状態 (ここでは、 SIR)を測 定する通信方式を選択する。  [0190] By allocating these set time periods to the respective data reception processing units 140c, 150a, and 160a, the optimum method selection control unit 176a determines the communication method for actually measuring the reception state (here, SIR). select.
[0191] このように、移動端末 500の制御部 170aは、まず、各データ受信処理部 140c、 15 Oa、 160aにより、それぞれ通信方式毎の全受信電力を測定させる。そして、測定さ れた通信方式毎の受信電力を比較し、この比較結果力も最適方式選択制御部 176a 力 最も受信電力レベルが高い通信方式の信号を使用する通信方式として選択する  [0191] As described above, the control unit 170a of the mobile terminal 500 first causes the data reception processing units 140c, 15Oa, and 160a to measure the total received power for each communication method. Then, the measured received power for each communication method is compared, and this comparison result power is also selected as the communication method that uses the signal of the communication method with the highest received power level.
[0192] そして、最も受信電力レベルが高 、通信方式のデータ受信処理部を用いて、それ 以降の選択した信号の SIRを測定させる。この最も受信信号が高力つた通信方式に おける受信信号の SIRを SIR比較部 1742が監視し、予め設定された規定値より小さ い場合、他の通信方式の SIRを測定するよう制御する。このように通信方式が選択さ れるため、受信可能な通信方式の信号の受信状態を全てチ ックする必要がなぐ 移動端末 500における低消費電力化とともに QoS (Quality of Service )の向上化を図 ることがでさる。 [0192] Then, the SIR of the selected signal after that is measured using the data reception processing unit of the communication method with the highest received power level. The SIR comparator 1742 monitors the SIR of the received signal in the communication method with the highest received signal, and if it is smaller than the preset specified value, it controls to measure the SIR of the other communication method. Since the communication method is selected in this way, it is not necessary to check the reception status of all signals of the receivable communication method. The mobile terminal 500 can reduce power consumption and improve quality of service (QoS). It can be done.
[0193] また、移動端末 100、 500において、 3G用データ受信処理部 140、 140c, S3G用 データ受信処理部 150、 150a, 4G用データ受信処理部 160、 160aは、 RAKE受 信での 1系統 (フィンガ等)で構成されてもょ 、。  [0193] In addition, in the mobile terminals 100 and 500, the 3G data reception processing unit 140, 140c, the S3G data reception processing unit 150, 150a, and the 4G data reception processing unit 160, 160a are one system for RAKE reception. (Finger etc.)
[0194] なお、各通信方式のデータ受信処理部 140、 140a〜140c、 150、 150a, 160、 1 60aにお 、てそれぞれ測定される利用周波数帯域における受信信号にっ 、てであ るが測定した各通信方式の受信信号の電力値が同じである場合、最適方式選択制 御部 176、 176aは、それぞれデフォルト値として設定された通信方式を選択するも のとしたが、これに限らず、受信信号の電力ピークが高い方の通信方式を選択する 構成としても良い。 [0194] The data reception processing units 140, 140a to 140c, 150, 150a, 160, and 160a of each communication method are measured with respect to the received signals in the used frequency bands. If the received signal power value of each communication method is the same, the optimum method selection control units 176 and 176a select the communication method set as the default value. However, the present invention is not limited to this, and a configuration may be adopted in which a communication method having a higher received signal power peak is selected.
[0195] 例えば、本実施の形態における移動端末 100、 500において、電力強度測定部 14 3、 153、 163もしくは SIR測定部 148、 158、 168にピーク電力測定機能を付加する ことによって、受信信号の帯域は狭 、が信号の強 、方式を優先するようにする。  [0195] For example, in mobile terminals 100 and 500 in the present embodiment, by adding a peak power measurement function to power intensity measurement units 143, 153, 163 or SIR measurement units 148, 158, 168, The bandwidth is narrow, but the signal strength is given priority.
[0196] 図 14は、電力強度測定部 143、 153、 163もしくは SIR測定部 148、 158、 168に ピーク電力測定機能を付加することによって、異なる通信方式の受信信号を測定し た際に、同じ電力値であり且つ電力ピークが異なる通信方式の受信信号の一例を示 す図である。  [0196] Figure 14 shows the same when measuring received signals of different communication methods by adding the peak power measurement function to the power intensity measurement units 143, 153, 163 or SIR measurement units 148, 158, 168. It is a figure which shows an example of the received signal of the communication system which is an electric power value and has different electric power peaks.
[0197] 図 14では、 3Gで利用される周波数帯域における全受信電力 P_ALL_3G_lastの電力 値 801と、 S3Gで利用される周波数帯域における全受信電力 P_ALL_S3G_lastの電力 値 802と力示されており、電力値 801の面積 =電力値 802の面積となっている。  [0197] In Fig. 14, the power value 801 of the total received power P_ALL_3G_last in the frequency band used in 3G and the power value 802 of the total received power P_ALL_S3G_last in the frequency band used in S3G are indicated as power values. The area of 801 is the area of power value 802.
[0198] この図 14に示すように S3G方式の方が高い場合、電力強度測定部 143、 153、 16 3もしくは SIR測定部 148、 158、 168から制御部 170、 170aに出力される情報を用 いて、受信状態情報比較部 174、 174aでは、電力ピークを含めた比較を行い、最適 方式選択制御部 176、 176aでは、電力ピークの高い S3Gの通信方式を選択する。 このように、ピーク電力が高い方式を優先するため、通信速度及び品質の向上化を 図ることができるとともに、省電力化及び利用通信方式における高ビットレートイ匕を図 ることがでさる。  [0198] As shown in Fig. 14, when the S3G method is higher, the information output from the power intensity measurement unit 143, 153, 16 3 or SIR measurement unit 148, 158, 168 to the control unit 170, 170a is used. The reception status information comparison units 174 and 174a perform comparison including the power peak, and the optimum method selection control units 176 and 176a select the S3G communication method having a high power peak. In this way, since the method with high peak power is prioritized, it is possible to improve the communication speed and quality, as well as to reduce the power consumption and increase the bit rate in the communication method used.
[0199] また、上記制御部 170は、受信状態情報比較部 174において、 1番目に受信電力 の大きい通信方式の受信状態情報における受信電力値と受信電力値の規定値とを 比較して、 1番目に受信電力の大きい通信方式の受信状態情報の受信電力値が、 予め設定された受信電力値の規定値より小さい場合、最適方式選択制御部 176に おいて、 3G、 S3G及び 4Gの通信方式のうち、受信電力を通信レートで除算したとき の商が最も大き!、通信方式を受信状態の測定をする通信方式として選択して、受信 状態を測定させる構成としてもょ 、。  Further, the control unit 170 compares the received power value in the reception state information of the first communication method with the highest received power with the specified value of the received power value in the reception state information comparing unit 174. If the received power value of the reception status information of the communication method with the second highest received power is smaller than the preset value of the received power value set in advance, the optimal method selection control unit 176 uses the 3G, S3G and 4G communication methods. Of these, the quotient when receiving power is divided by the communication rate is the largest! Select the communication method as the communication method for measuring the reception status, and measure the reception status.
[0200] なお、本実施の形態は通信方式の異なる通信システムとして、主にセルラシステム につ 、て説明した力 無線 LANや固定無線システムのような他の無線通信システムと 併合したシステムとしても良 、。 [0200] Note that the present embodiment is a communication system with a different communication method, mainly the cellular system and other wireless communication systems such as wireless LAN and fixed wireless system. Good as a merged system.
産業上の利用可能性 Industrial applicability
本発明に係る移動通信端末装置及び通信システムは、周波数帯がそれぞれ異な る複数の通信方式のそれぞれで通信可能であるとともに、省電力化を図る効果を有 し、周波数帯がそれぞれ異なり混在している地域に用いられるものとして有用である  The mobile communication terminal device and the communication system according to the present invention can communicate with each of a plurality of communication systems having different frequency bands, have an effect of saving power, and have different frequency bands. Useful for use in certain areas

Claims

請求の範囲 The scope of the claims
[1] 電池と、  [1] batteries,
前記電池により駆動し、利用周波数帯及び通信エリアが異なるとともに前記通信ェ リアが重なり順に狭くなる第 1、第 2及び第 3の通信方式の信号を、アンテナを介して それぞれ受信するとともに、受信した信号から、前記第 1、第 2及び第 3の通信方式毎 の受信状態をそれぞれ測定し、それぞれ受信電力値を含む受信状態情報として出 力する第 1、第 2及び第 3受信手段と、  The first, second, and third communication method signals that are driven by the battery and that have different usage frequency bands and communication areas and that the communication areas narrow in the overlapping order are received and received via the antennas, respectively. First, second, and third receiving means for measuring reception states for each of the first, second, and third communication schemes from signals and outputting as reception state information including reception power values, respectively;
前記電池の電池残量と前記第 1、第 2及び第 3受信手段毎の受信状態情報に基づ いて、前記第 1、第 2及び第 3受信手段のうち一つ又は二つの受信手段に対して受 信状態の測定周期を設定し、設定した測定周期により前記一つ又は二つの受信手 段を制御して受信状態を測定させる制御手段と、  Based on the remaining battery level of the battery and the reception status information for each of the first, second and third receiving means, one or two receiving means among the first, second and third receiving means. Control means for measuring the reception state by setting the measurement period of the reception state and controlling the one or two reception means according to the set measurement period;
前記測定された受信状態を示す前記受信状態情報を用いて前記第 1、第 2及び第 3の通信方式における受信電力の大小を比較する比較部と、  A comparison unit that compares the received power in the first, second, and third communication methods using the reception state information indicating the measured reception state;
前記比較部の比較結果に基づいて、前記第 1、第 2及び第 3の通信方式のうち、受 信状態を測定する通信方式を選択して、前記第 1、第 2及び第 3受信手段のうち選択 した通信方式に対応する受信手段に対して前記測定周期を設定する方式選択部と を具備し、  Based on the comparison result of the comparison unit, the communication method for measuring the reception state is selected from the first, second and third communication methods, and the first, second and third receiving means A method selection unit for setting the measurement period for the receiving means corresponding to the selected communication method,
前記制御手段は、前記方式選択部が選択した通信方式に対応する受信手段を制 御して受信状態を測定させる移動通信端末装置。  The mobile communication terminal apparatus, wherein the control means controls reception means corresponding to the communication method selected by the method selection unit and measures a reception state.
[2] 前記方式選択部は、 1番目に受信電力の大きい通信方式の受信状態情報におけ る受信電力値と受信電力値の規定値とを比較して、前記 1番目に受信電力の大きい 通信方式の受信状態情報の前記受信電力値が前記受信電力値の規定値より小さい 場合、前記第 1、第 2及び第 3の通信方式のうち、受信電力を通信レートで除算したと きの商が最も大きい通信方式を受信状態の測定をする通信方式として選択する請求 項 1記載の移動通信端末装置。  [2] The method selection unit compares the received power value in the reception state information of the communication method with the first largest received power with the specified value of the received power value, and communicates with the first largest received power. If the received power value of the reception status information of the system is smaller than the specified value of the received power value, the quotient when the received power is divided by the communication rate among the first, second and third communication systems is The mobile communication terminal device according to claim 1, wherein the largest communication method is selected as a communication method for measuring a reception state.
[3] 前記方式選択部は、 1番目及び 2番目に受信電力の大きい 2つの通信方式の受信 状態情報の受信電力値の比と受信電力比の規定値とを比較して、前記受信電力値 の比が前記受信電力比の規定値より小さい場合、 1番目に受信電力の大きい通信方 式以外の他の通信方式を選択する請求項 1記載の移動通信端末装置。 [3] The method selection unit compares the received power value ratio of the reception status information of the two communication methods with the first and second largest received power with a specified value of the received power ratio, and receives the received power value. If the ratio is smaller than the specified value of the received power ratio, the communication method with the largest received power 2. The mobile communication terminal device according to claim 1, wherein a communication method other than the communication type is selected.
[4] 前記受信状態情報には SIR値が含まれ、 [4] The reception status information includes an SIR value,
前記比較部は、前記第 1、第 2及び第 3の通信方式における前記受信状態情報の SIR値と予め設定された SIRの規定値とを比較する SIR比較部を備え、  The comparison unit includes a SIR comparison unit that compares a SIR value of the reception state information in the first, second, and third communication methods with a preset SIR specified value;
前記方式選択部は、 1番目に受信電力の大きい通信方式の前記 SIR値と前記 SIR の規定値とを比較し、 1番目に受信電力の大きい通信方式の受信状態情報の前記 S IR値が前記 SIRの規定値より小さい場合、 1番目に受信電力の大きい通信方式以外 の他の通信方式を選択する請求項 1記載の移動通信端末装置。  The method selection unit compares the SIR value of the first communication method with the highest received power with the specified value of the SIR, and the SIR value of the reception state information of the communication method with the first highest received power is the value. 2. The mobile communication terminal apparatus according to claim 1, wherein when the value is smaller than the prescribed value of SIR, a communication method other than the communication method having the first highest received power is selected.
[5] 前記受信状態情報には伝搬ロスが含まれ、 [5] The reception status information includes a propagation loss,
前記比較部は、前記第 1、第 2及び第 3の通信方式における前記受信状態情報の 伝搬ロスと予め設定された伝搬ロスの規定値とを比較する伝搬ロス比較部を備え、 前記方式選択部は、 1番目に受信電力の大きい通信方式の前記伝搬ロスと前記伝 搬ロスの規定値とを比較し、 1番目に受信電力の大きい通信方式の受信状態情報の 前記伝搬ロスが前記伝搬ロスの規定値より小さい場合、 1番目に受信電力の大きい 通信方式以外の他の通信方式を選択する請求項 1記載の移動通信端末装置。  The comparison unit includes a propagation loss comparison unit that compares a propagation loss of the reception state information in the first, second, and third communication methods with a preset value of a propagation loss, and the method selection unit Compares the propagation loss of the communication method with the largest received power with the specified value of the propagation loss, and the propagation loss of the reception status information of the communication method with the first received power is the propagation loss. 2. The mobile communication terminal apparatus according to claim 1, wherein if it is smaller than the specified value, a communication method other than the communication method having the first largest received power is selected.
[6] 前記制御手段は、前記受信状態の測定周期を前記第 1及び第 2受信手段に設定 して第 1通信方式及び第 2通信方式の信号の受信状態を測定させ、第 2通信方式の 受信電力値が第 1通信方式の受信電力値より高い場合、前記第 1受信手段に代えて 前記第 3受信手段に前記測定周期を設定する請求項 1記載の移動通信端末装置。 [6] The control means sets the measurement period of the reception state in the first and second reception means to measure the reception state of the signals of the first communication method and the second communication method, and The mobile communication terminal apparatus according to claim 1, wherein when the received power value is higher than the received power value of the first communication scheme, the measurement period is set in the third receiving means instead of the first receiving means.
[7] 請求項 1記載の移動通信端末装置と、 [7] The mobile communication terminal device according to claim 1,
前記移動通信端末装置に対し第 1通信方式の信号で通信を行う第 1基地局装置と 前記移動通信端末装置に対し前記第 1通信方式と利用周波数帯が異なり前記第 1 通信方式の通信エリアより通信エリアが狭い第 2通信方式の信号で通信を行う第 2基 地局装置と、  The first base station device that communicates with the mobile communication terminal device using a signal of the first communication method and the mobile communication terminal device differ in the use frequency band from the first communication method and from the communication area of the first communication method. A second base station device that performs communication using signals of the second communication method with a narrow communication area;
前記移動通信端末装置に対し前記第 1及び第 2通信方式と利用周波数帯が異なり 前記第 2通信方式の通信エリアより通信エリアが狭い第 3通信方式の信号で通信を 行う第 3基地局装置と、 を具備し、 A third base station apparatus that communicates with a signal of a third communication system that has a different frequency band from the first and second communication systems and a communication area that is narrower than the communication area of the second communication system with respect to the mobile communication terminal apparatus; , Comprising
前記第 2基地局装置は、前記第 1通信方式のエリア内に配置され、前記第 3基地局 装置は、前記第 2通信方式の通信エリア内に配置されている通信システム。  The second base station apparatus is arranged in the area of the first communication scheme, and the third base station apparatus is a communication system arranged in the communication area of the second communication scheme.
PCT/JP2006/300145 2006-01-10 2006-01-10 Mobile communication terminal apparatus and communication system WO2007080627A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007553788A JPWO2007080627A1 (en) 2006-01-10 2006-01-10 Mobile communication terminal device and communication system
PCT/JP2006/300145 WO2007080627A1 (en) 2006-01-10 2006-01-10 Mobile communication terminal apparatus and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300145 WO2007080627A1 (en) 2006-01-10 2006-01-10 Mobile communication terminal apparatus and communication system

Publications (1)

Publication Number Publication Date
WO2007080627A1 true WO2007080627A1 (en) 2007-07-19

Family

ID=38256042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300145 WO2007080627A1 (en) 2006-01-10 2006-01-10 Mobile communication terminal apparatus and communication system

Country Status (2)

Country Link
JP (1) JPWO2007080627A1 (en)
WO (1) WO2007080627A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055326A (en) * 2007-08-27 2009-03-12 Canon Inc Communication equipment
JP2009278244A (en) * 2008-05-13 2009-11-26 Ntt Docomo Inc Mobile terminal device and method of controlling the same, and communication system
WO2011037215A1 (en) * 2009-09-24 2011-03-31 日本電気株式会社 Base station, terminal station, radio system, radio control method, and storage medium
JP2013513337A (en) * 2009-12-07 2013-04-18 クゥアルコム・インコーポレイテッド System and method for dynamic cell search
WO2013105260A1 (en) * 2012-01-13 2013-07-18 富士通株式会社 Radio terminal, wireless communication system, and wireless communication method
JP2016178666A (en) * 2016-05-06 2016-10-06 華為技術有限公司Huawei Technologies Co.,Ltd. Method of minimizing power consumption during operation of battery type mobile wireless information device
US10420026B2 (en) 2014-09-30 2019-09-17 Nec Corporation Wireless base station, mobile station, wireless communication system, control method for wireless base station, and recording medium
JP2021044839A (en) * 2017-01-16 2021-03-18 株式会社パインベース Mobile communication device and operation control system
WO2021260058A1 (en) 2020-06-24 2021-12-30 Ipcom Gmbh & Co. Kg Transmission band selection using battery status

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201369A (en) * 1998-12-02 2000-07-18 Infineon Technol North America Corp Method for actualizing soft handoff between generations, mobile station, and radio telephone system
JP2001189970A (en) * 1999-12-28 2001-07-10 Ntt Docomo Inc Channel measurement control method, mobile station and mobile communication system
JP2004274458A (en) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp Handover control system between different radio systems, edge node and mobile communication terminal used for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201369A (en) * 1998-12-02 2000-07-18 Infineon Technol North America Corp Method for actualizing soft handoff between generations, mobile station, and radio telephone system
JP2001189970A (en) * 1999-12-28 2001-07-10 Ntt Docomo Inc Channel measurement control method, mobile station and mobile communication system
JP2004274458A (en) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp Handover control system between different radio systems, edge node and mobile communication terminal used for the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055326A (en) * 2007-08-27 2009-03-12 Canon Inc Communication equipment
US8320976B2 (en) 2008-05-13 2012-11-27 Ntt Docomo, Inc. Apparatus and communications system for extending life of a battery for a mobile terminal
JP2009278244A (en) * 2008-05-13 2009-11-26 Ntt Docomo Inc Mobile terminal device and method of controlling the same, and communication system
US8918059B2 (en) 2009-09-24 2014-12-23 Nec Corporation Base station, terminal station, radio system, radio control method and storage medium
WO2011037215A1 (en) * 2009-09-24 2011-03-31 日本電気株式会社 Base station, terminal station, radio system, radio control method, and storage medium
JPWO2011037215A1 (en) * 2009-09-24 2013-02-21 日本電気株式会社 Base station, terminal station, radio system, radio control method, and storage medium
JP5590037B2 (en) * 2009-09-24 2014-09-17 日本電気株式会社 Base station, terminal station, radio system, radio control method, and storage medium
JP2013513337A (en) * 2009-12-07 2013-04-18 クゥアルコム・インコーポレイテッド System and method for dynamic cell search
US10869208B2 (en) 2012-01-13 2020-12-15 Fujitsu Limited Radio terminal, radio communication system, and radio communication method
US9301187B2 (en) 2012-01-13 2016-03-29 Fujitsu Limited Radio terminal, radio communication system, and radio communication method
US10349292B2 (en) 2012-01-13 2019-07-09 Fujitsu Limited Radio terminal, radio communication system, and radio communication method
WO2013105260A1 (en) * 2012-01-13 2013-07-18 富士通株式会社 Radio terminal, wireless communication system, and wireless communication method
US11758414B2 (en) 2012-01-13 2023-09-12 Fujitsu Limited Radio terminal, radio communication system, and radio communication method
US10420026B2 (en) 2014-09-30 2019-09-17 Nec Corporation Wireless base station, mobile station, wireless communication system, control method for wireless base station, and recording medium
JP2016178666A (en) * 2016-05-06 2016-10-06 華為技術有限公司Huawei Technologies Co.,Ltd. Method of minimizing power consumption during operation of battery type mobile wireless information device
JP2021044839A (en) * 2017-01-16 2021-03-18 株式会社パインベース Mobile communication device and operation control system
WO2021260058A1 (en) 2020-06-24 2021-12-30 Ipcom Gmbh & Co. Kg Transmission band selection using battery status

Also Published As

Publication number Publication date
JPWO2007080627A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
WO2007080627A1 (en) Mobile communication terminal apparatus and communication system
US7953417B2 (en) Methods and apparatus for selecting and signaling a preferred link among a plurality of maintained wireless communications links
CN100375564C (en) System and method for estimating interfrequency measurements used for radio network
EP3232509B1 (en) System and method for controlling a wireless device
RU2367090C2 (en) Method and device for controlling communication equipment with several carriers in wireless communication system
AU2003202868C1 (en) Method and apparatus for controlling communications of data from multiple base stations to a mobile station in a communication system
JP4305915B2 (en) Method for obtaining criteria used for base station selection
CN101563858B (en) Method and arrangement for selecting an antenna mode in a mobile telecommunication network
US20080051096A1 (en) Method for adaptively controlling other cell interference
JP4977015B2 (en) Communication system, primary station, and transmission power control method
KR20040097282A (en) Method and apparatus for determining receive diversity in mobile station
KR20110048564A (en) Methods and apparatus related to power control and/or interference management in a mixed wireless communications system supporting wan signaling and peer to peer signaling
JP4138769B2 (en) Wireless communication terminal, wireless communication method, and wireless communication system
CN101978743B (en) Cell selection method for generating layer structure using cell quality
JPWO2010071186A1 (en) Base station, radio communication system, base station control method, radio communication method, control program, and mobile station
US8179830B2 (en) Transmission control method and transmission control device
CN105682166A (en) Carrier switching in a multi-carrier wireless communication network
JP2003037547A (en) Potable communication terminal
KR101126988B1 (en) Methods and apparatus for selecting and signaling a preferred link among a plurality of maintained wireless communications links
EP1443681A1 (en) INFORMATION RATE CONTROL METHOD&amp;comma; MOBILE STATION&amp;comma; RADIO CONTROL APPARATUS&amp;comma; BASE STATION&amp;comma; AND MOBILE COMMUNICATION SYSTEM
JP4305933B2 (en) Mobile communication terminal and base station apparatus
KR19980077725A (en) Forward Power Control Method of Mobile Communication System
JPH11234284A (en) Communication system and transmission power control method for the same
JPH1028282A (en) Method for judging cell/sector and selecting frequency and base station device and mobile station device in cdma mobile communication system
GB2391755A (en) Apparatus and method for cell selection in mobile communcation system.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007553788

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06702676

Country of ref document: EP

Kind code of ref document: A1