WO2007079757A2 - Water based pipeline primer - Google Patents

Water based pipeline primer Download PDF

Info

Publication number
WO2007079757A2
WO2007079757A2 PCT/DK2007/000021 DK2007000021W WO2007079757A2 WO 2007079757 A2 WO2007079757 A2 WO 2007079757A2 DK 2007000021 W DK2007000021 W DK 2007000021W WO 2007079757 A2 WO2007079757 A2 WO 2007079757A2
Authority
WO
WIPO (PCT)
Prior art keywords
primer
pigments
pigment
monomers
binder
Prior art date
Application number
PCT/DK2007/000021
Other languages
French (fr)
Other versions
WO2007079757A3 (en
Inventor
Martin SØRENSEN
Keith Jackson
Original Assignee
Phoenix International A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix International A/S filed Critical Phoenix International A/S
Priority to CA002636611A priority Critical patent/CA2636611A1/en
Priority to EP07700160A priority patent/EP1976943B1/en
Priority to DE602007013526T priority patent/DE602007013526D1/en
Priority to US12/087,718 priority patent/US20090082505A1/en
Priority to EA200870172A priority patent/EA014388B1/en
Priority to DK07700160.0T priority patent/DK1976943T3/en
Priority to AT07700160T priority patent/ATE503807T1/en
Publication of WO2007079757A2 publication Critical patent/WO2007079757A2/en
Publication of WO2007079757A3 publication Critical patent/WO2007079757A3/en
Priority to NO20083498A priority patent/NO20083498L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/12Coatings characterised by the materials used by tar or bitumen

Definitions

  • the present invention relates to a method for protecting iron or steel materials. Furthermore the invention relates to a primer to be used in the method and the use of the primer prior to a coating with a bituminous material.
  • the purpose of the primer is to ensure adhesion both with the metallic surface of the pipe and with the bituminous coating. It is also important that the entire protection system is sufficiently impermeable so as to ensure a high resistance against cathodic disbonding.
  • Some conventional primers consists of chlorinated rubber or a hydrocarbon resin, a plasticizer and a colouring matter together with solvents needed to give a consistency suitable for applying the primer.
  • WO 92/06141 discloses a primer including polychloroprene, chlorinated caout- chouc, terpene phenolic, silane and carbon black with xylene and methylenechlo- ride as the solvents.
  • This primer has been used in practice with an effective adhesion to the metal surface and to a bitumen based enamel.
  • organic solvents leads to emissions of volatile organic compounds (VOCs).
  • VOCs volatile organic compounds
  • a corrosion inhibiting pigment such as aluminium triphosphate
  • the amount of the corrosion inhibiting pigment in such conventional coating materials is typically from 17 to 25 parts by weight based on 100 parts by weight of the acrylic binder both calculated as dry matter.
  • the present invention relates to a method of protecting iron or steel materials against corrosion, characterised by priming with a water borne primer composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a cor- rosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water, and coating with a bituminous material.
  • a water borne primer composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a cor- rosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water, and coating with a bituminous material.
  • the invention also relates to a bonding and anti-corrosive primer, characterised in, that it is an aqueous composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a corrosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water.
  • the content of the corrosion inhibiting pigment (b) is 2 to 12 parts by weight, more preferred, 3 to 8 parts by weight, based on 100 parts by weight of the binder (a) both calculated as dry matter.
  • a substantial portion of the further pigments (c), i.e. the remaining pigments apart from the corrosion inhibiting pigment, includes lamellar pigments.
  • lamellar pigments Use of lamellar pigments gives a primer with improved adhesive and cohesive strengths and also assists in reducing the rate of water diffusion through the coating.
  • any known corrosion inhibiting pigments are usable as the component b).
  • Suitable examples of the corrosion inhibiting pigments are metal phosphate pigments. Any such metal phosphate pigments are usable as the corrosion inhibiting pigments (b) provided the metal cation has no detrimental effect on the primer performance.
  • contemplated corrosion inhibiting pigments are aluminium triphosphate, barium phosphate, zinc phosphate, phosphosilicates and ion exchanged pigments including mixtures thereof.
  • suitable lamellar pigments (c) are talc (magnesium silicate hydrate) and mica (potassium aluminium silicate)
  • the acrylic copolymer basis (a) includes acrylic monomers and mono- mers of mono- and/or di-halogenated C 2 - C- 12 -olefins, for example acrylic monomer combined with vinyl chloride and vinylidene chloride.
  • a conventional anti-corrosive acrylic coating typically includes 17 to 25 parts by weight of a corrosion inhibiting pigment as compared with 2 to 12 parts by weight in the inventive primer, both based on 100 parts by weight of the binder and calculated as dry matter.
  • the binder of the inventive primer is a conventional acrylic binder for anti-corrosion coatings.
  • the binder may be a copolymer of vinylidene chloride and/or vinyl chloride with one or more alkyl acrylates having from 1 to 12 carbon atoms in the alkyl group and/or one or more alkyl methacrylates having from 2 to 12 carbon atoms in the alkyl group and/or one or more aliphatic alpha-beta-unsaturated carboxylic acids and/or halogenated olefins of 2 - 12 carbon atoms.
  • Suitable binder is the waterborne airdrying vinyl/acrylic copolymer designed for protection of steel available under the trade mark Haloflex® from DSM NeoResins, Waalwijk The Netherlands.
  • Haloflex® is based on vinyl chloride and vinylidene chloride as the principal hard and soft monomers and is modified with acrylics.
  • Anti-corrosive coating compositions based on such binder includes a suitable amount of pigments.
  • pigments may include anti-corrosive pigments, such as phosphates, and extenders.
  • anti-corrosive pigments such as phosphates, and extenders.
  • the recommended amount of an anti-corrosive pigment according to the prior art primer or coating compositions for steel protection is 17 to 25 parts by weight based on 100 parts by weight of the binder calculated as dry matter.
  • the remaining amount of pigments is typically 42 - 100 parts by weight based on 100 parts by weight of the binder calculated as dry matter.
  • an anti-corrosive coating composition containing 21.5 parts by weight of aluminium triphosphate based on 100 parts by weight of the Haloflex® - calculated as dry matter - does not meet this requirement as the cathodic disbonding was 15 mm.
  • the primer used by the present invention differs from the prior art anti-corrosive coating compositions by a lower amount of the anti- corrosive pigment, which for example may be 2 to 12 parts by weight based on 100 parts by weight of the Haloflex® binder calculated as dry matter.
  • the total amount of pigments should not be changed. Accordingly, the remaining amount of pigments will typically be 40 - 85 parts by weight based on 100 parts by weight of the binder calculated as dry matter.
  • a primer with 5 parts by weight based on 100 parts by weight of the binder gives a cathodic disbonding value of 8 mm meeting the maximum 10 mm requirement.
  • a preferred anti-corrosive pigment for use in the primer in connection with a bituminous coating is aluminium triphosphate such as K-White 84 available from Tayca Corporation, Osaka, Japan. Also other corrosion inhibiting pigments such as barium phosphate zinc phosphate, phosphosilicates and ion exchanged pigments are contemplated.
  • the primer composition contains other pigments suitable for use in anti-corrosive compositions including colouring pigments and extenders.
  • these "non-corrosion- inhibiting" pigments are lamellar pigments because lamellar pigments provide a primer with improved adhesive and cohesive strengths, and also assist in reducing the rate of water diffusion through the coating.
  • Examples of useful lamellar pig- ments are talc, (magnesium silicate hydrate) and mica (potassium aluminium silicate).
  • talc magnesium silicate hydrate
  • mica potential aluminium silicate
  • a suitable example is carbon black.
  • the primer may also contain one or more op- tional conventional additives and/or adjuvants known in the art.
  • additives and/or adjuvants include - but are not limited to coalescents, thickeners, defoamers, stabilisers, wetting agents, preservatives, dispersing agents, flash rust inhibitors and pH regulators.
  • the total amount of such additives and/or adjuvants is typically between 1 and 30 % by weight based on the binder calculated as dry matter, preferably 8 - 25 % by weight.
  • the ratio (b):(a) by weight of the corrosion inhibiting pigment (b) to the binder (a) is 2:100 - 12:100.
  • the ratio (b):(a) is 3.4:100 - 8.5:100, even more preferred 4:100 - 7:100.
  • At least a major part of the "non-corrosion-inhibiting" or other pigments (c) should be lamellar pigments, such as talc.
  • at least 50 % by weight, preferably at least 75 % by weight and more preferred at least 85 % by weight of the "non-corrosion-inhibiting" pigments should be lamellar pigments.
  • inventive primer is suitable together with any conventional bituminous materials of the type used for external coating of steel tubes and fittings for onshore and offshore pipelines.
  • Such materials also termed bitumen based coating enamels - can be oxidized, non-oxidized or modi- fied bitumen enamels.
  • Such enamels may or may not contain a filler and they are normally applied in hot state.
  • a waterborne primer according to the invention (Primer 1 ) with about 5 parts by weight of aluminium triphosphate per 100 parts by weight of vinyl chlo- ride/vinylidene chloride/acrylic copolymer and two comparative primers (Primers A and B) with about 21.5 parts by weight of aluminium triphosphate per 100 parts by weight of vinyl chloride/vinylidene chloride/acrylic copolymer were prepared and applied on clean steel plates in accordance with European Standard EN 10300:2005, Annexes A and B. The compositions of the tested primers are shown in table 1.
  • Haloflex®202S is available from DSM NeoResins, Waalwijk The Netherlands; the non volatile content of Haloflex®202S is about 59 % w/w.
  • K-White 84 (aluminium triphosphate) is available from Tayca Corporation, Osaka,
  • Westmin D30E is available from Mondo Minerals OY, Helsinki, Finland
  • Bentone® LT is a suspending agent (thickener) of hectorite and hydroxyethylcellu- lose, available from Elementis Specialties, Inc. Hightstown, NJ, USA.
  • Foamaster® H2 anti foaming agent available from Cognis, D ⁇ sseldorf, Germany.
  • Synperonic® F87 is a nonionic stabilisator available from Uniqema, Gouda, The
  • Netherlands byk 181 is an alkylolammonium salt of a polyfunctional anionic/nonionic polymer available from Byk Chemie, Wessel, Germany.
  • Dowanol® DPM is available from Dow Chemical Company. Midland, Ml, USA.
  • Emadox® NA is a flash rust inhibitor from Laboratoires Labema, Lorette, France.
  • a category 2 bitumen enamel coating (EN 10300:2005; 5.3.2.3) was then applied to the primed steel plates in accordance with (EN10300:2005, Annex C).
  • the primed and coated plates were tested according to EN 10300:2005 to estimate sag (Annex D), impact (Annex E), peel (Annex F), bend (Annex G) and catodic disbonding (Annex I). The results are shown in Table 2.
  • test results show that the inventive primer (primer 1 ) meets the requirements for the corrosion inhibiting effect as the cathodic disbonding is below the maximum value of 10 mm according to EN 10300:2005, 4.2.4.1 , table 3.
  • the comparative primers A and B do not meet this requirement although they both have a larger amount of the corrosion inhibiting aluminium triphosphate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Pipeline Systems (AREA)

Abstract

A water based primer and a method for protecting iron or steel materials against corrosion by first priming with a water borne primer composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a corrosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water and then coating with a bituminous material. Contrary to the current primers on organic solvent basis the water borne primer gives low to no emission of volatile organic compounds (VOCs) and still fulfils the requirements for anti- corrosive effect, cohesive and adhesive strength.

Description

Title: Water based pipeline primer
Technical field
The present invention relates to a method for protecting iron or steel materials. Furthermore the invention relates to a primer to be used in the method and the use of the primer prior to a coating with a bituminous material.
Technical background
Conventional protection of materials against corrosion, of for instance pipes to be used both offshore and onshore, starts with priming with a primer followed by hot application of a bituminous material. To support the bituminous material one or more layers of wrapping material or another supporting system such as a polymer coat is/are simultaneously applied to the liquid bituminous material.
The purpose of the primer is to ensure adhesion both with the metallic surface of the pipe and with the bituminous coating. It is also important that the entire protection system is sufficiently impermeable so as to ensure a high resistance against cathodic disbonding.
Some conventional primers consists of chlorinated rubber or a hydrocarbon resin, a plasticizer and a colouring matter together with solvents needed to give a consistency suitable for applying the primer.
WO 92/06141 discloses a primer including polychloroprene, chlorinated caout- chouc, terpene phenolic, silane and carbon black with xylene and methylenechlo- ride as the solvents. This primer has been used in practice with an effective adhesion to the metal surface and to a bitumen based enamel. However the use of organic solvents leads to emissions of volatile organic compounds (VOCs). Such emissions are environmentally damaging and according to Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 primers based on such volatile organic solvents will be phased out in the near future. The European Standard EN 10300:2005 from European Committee for Standardization (CEN): "Steel tubes and fittings for onshore and offshore pipelines - Bituminous hot applied materials for external coating" mentions further to the above mentioned types of primers based on chlorinated rubber or hydrocarbon resin aqueous primers which are based on epoxy resins. Examples of this type of primers are the waterbome epoxy resin coating compositions disclosed in WO 00/01780 and WO 00/04106. Although such waterbome primers could avoid the emission of VOCs, the use of epoxy resins involves health hazards for the operator applying such primers.
Thus although the EN 10300:2005 allows epoxy resins in the primers there is a need for a less hazardous primer still being on an aqueous basis.
It is known to add a corrosion inhibiting pigment such as aluminium triphosphate to coating materials on acrylic basis to obtain coatings with anti-corrosive properties. To ensure the anti-corrosive properties the amount of the corrosion inhibiting pigment in such conventional coating materials is typically from 17 to 25 parts by weight based on 100 parts by weight of the acrylic binder both calculated as dry matter. Although such coatings used alone or as primers for many applications are found to have a satisfactory anti-corrosive effect, they have insufficient cohesive, adhesive and/or anti-corrosive effects when used as a primer applied on for instance onshore or offshore pipelines and followed by hot application of a bituminous material.
Accordingly it is an object of the present invention to provide a method and a primer formulation for the protection of materials against corrosion in combination with a coating of a bituminous material which method and primer fulfil the requirements for an anti-corrosive effect, cohesive and adhesive strength, low to no emission of VOCs.
Brief description of the invention Accordingly the present invention relates to a method of protecting iron or steel materials against corrosion, characterised by priming with a water borne primer composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a cor- rosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water, and coating with a bituminous material.
The invention also relates to a bonding and anti-corrosive primer, characterised in, that it is an aqueous composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a corrosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water.
In a preferred embodiment the content of the corrosion inhibiting pigment (b) is 2 to 12 parts by weight, more preferred, 3 to 8 parts by weight, based on 100 parts by weight of the binder (a) both calculated as dry matter.
In a further preferred embodiment a substantial portion of the further pigments (c), i.e. the remaining pigments apart from the corrosion inhibiting pigment, includes lamellar pigments. Use of lamellar pigments gives a primer with improved adhesive and cohesive strengths and also assists in reducing the rate of water diffusion through the coating.
In principle any known corrosion inhibiting pigments are usable as the component b). Suitable examples of the corrosion inhibiting pigments are metal phosphate pigments. Any such metal phosphate pigments are usable as the corrosion inhibiting pigments (b) provided the metal cation has no detrimental effect on the primer performance. Not limiting examples of contemplated corrosion inhibiting pigments are aluminium triphosphate, barium phosphate, zinc phosphate, phosphosilicates and ion exchanged pigments including mixtures thereof. Examples of suitable lamellar pigments (c) are talc (magnesium silicate hydrate) and mica (potassium aluminium silicate)
Typically the acrylic copolymer basis (a) includes acrylic monomers and mono- mers of mono- and/or di-halogenated C2 - C-12-olefins, for example acrylic monomer combined with vinyl chloride and vinylidene chloride.
Compared with conventional anti-corrosive coating formulations based on a vinyl/acrylic binder and a corrosion inhibiting pigment as an anti-corrosive ingredi- ent, the amount of the anti-corrosive pigment in the inventive primer is substantially smaller in general. As mentioned above a conventional anti-corrosive acrylic coating typically includes 17 to 25 parts by weight of a corrosion inhibiting pigment as compared with 2 to 12 parts by weight in the inventive primer, both based on 100 parts by weight of the binder and calculated as dry matter.
Bearing in mind that the use of a conventional anti-corrosive acrylic coating as a primer followed by coating with a bituminous material cannot fulfil the requirements of corrosion inhibition, it is quite surprising that a corresponding primer having a lower content of an anti-corrosive pigment fulfils this requirement of a cathodic disbonding of maximum 10 mm (European Standard EN 10300:2005; 4,2,4,1 Table 3).
The extent of applicability of the invention appears from the following detailed description. It should, however, be understood that the detailed description and the specific examples are merely included to illustrate the preferred embodiments, and that various alterations and modifications within the scope of protection will be obvious to persons skilled in the art on the basis of the detailed description.
Detailed description of the invention The binder of the inventive primer is a conventional acrylic binder for anti-corrosion coatings. The binder may be a copolymer of vinylidene chloride and/or vinyl chloride with one or more alkyl acrylates having from 1 to 12 carbon atoms in the alkyl group and/or one or more alkyl methacrylates having from 2 to 12 carbon atoms in the alkyl group and/or one or more aliphatic alpha-beta-unsaturated carboxylic acids and/or halogenated olefins of 2 - 12 carbon atoms.
An example of a suitable binder is the waterborne airdrying vinyl/acrylic copolymer designed for protection of steel available under the trade mark Haloflex® from DSM NeoResins, Waalwijk The Netherlands.. Haloflex® is based on vinyl chloride and vinylidene chloride as the principal hard and soft monomers and is modified with acrylics.
Anti-corrosive coating compositions based on such binder includes a suitable amount of pigments. Such pigments may include anti-corrosive pigments, such as phosphates, and extenders. As mentioned above the recommended amount of an anti-corrosive pigment according to the prior art primer or coating compositions for steel protection is 17 to 25 parts by weight based on 100 parts by weight of the binder calculated as dry matter. The remaining amount of pigments is typically 42 - 100 parts by weight based on 100 parts by weight of the binder calculated as dry matter.
An important test for the anti-corrosive properties of a coating is the cathodic dis- bonding test (EN 10300:2005, Annex I) in which the disbonded radius in mm caused by an applied voltage in 28 days is determined. The requirements for steel tubes coated with a bitumen based enamel coating in conjunction with an appropriate primer by this cathodic disbonding test is maximum 10 mm (EN 10300:2005, 4.2.4.1 , table 3).
As appears from the following example an anti-corrosive coating composition containing 21.5 parts by weight of aluminium triphosphate based on 100 parts by weight of the Haloflex® - calculated as dry matter - does not meet this requirement as the cathodic disbonding was 15 mm.
By some preliminary tests it was found that a reduction of the corrosion inhibitor from the conventional 17 to 25 parts by weight based on 100 parts by weight of the binder down to about 11 parts by weight did not - as expected - worsen the ca- thodic disbonding. Surprisingly the cathodic disbonding was reduced. After further test 4 - 7 parts by weight, for example about 5 parts by weight of aluminium triphosphate based on 100 parts by weight of the binder calculated as dry matter are at the present time believed to give the most satisfactory corrosion inhibiting results.
Based on the above findings the primer used by the present invention differs from the prior art anti-corrosive coating compositions by a lower amount of the anti- corrosive pigment, which for example may be 2 to 12 parts by weight based on 100 parts by weight of the Haloflex® binder calculated as dry matter. Preferably the total amount of pigments should not be changed. Accordingly, the remaining amount of pigments will typically be 40 - 85 parts by weight based on 100 parts by weight of the binder calculated as dry matter. As shown in the example a primer with 5 parts by weight based on 100 parts by weight of the binder gives a cathodic disbonding value of 8 mm meeting the maximum 10 mm requirement.
A preferred anti-corrosive pigment for use in the primer in connection with a bituminous coating is aluminium triphosphate such as K-White 84 available from Tayca Corporation, Osaka, Japan. Also other corrosion inhibiting pigments such as barium phosphate zinc phosphate, phosphosilicates and ion exchanged pigments are contemplated.
Further to the corrosion inhibiting pigments the primer composition contains other pigments suitable for use in anti-corrosive compositions including colouring pigments and extenders. Preferably a major amount of these "non-corrosion- inhibiting" pigments are lamellar pigments because lamellar pigments provide a primer with improved adhesive and cohesive strengths, and also assist in reducing the rate of water diffusion through the coating. Examples of useful lamellar pig- ments are talc, (magnesium silicate hydrate) and mica (potassium aluminium silicate). Typically also a minor amount of other pigments will be included for example for colouring purposes. A suitable example is carbon black.
Apart from the binder and pigments the primer may also contain one or more op- tional conventional additives and/or adjuvants known in the art. Examples thereof include - but are not limited to coalescents, thickeners, defoamers, stabilisers, wetting agents, preservatives, dispersing agents, flash rust inhibitors and pH regulators. The total amount of such additives and/or adjuvants is typically between 1 and 30 % by weight based on the binder calculated as dry matter, preferably 8 - 25 % by weight.
An important feature of the primer composition is that the ratio (b):(a) by weight of the corrosion inhibiting pigment (b) to the binder (a) is 2:100 - 12:100. Preferably the ratio (b):(a) is 3.4:100 - 8.5:100, even more preferred 4:100 - 7:100.
As stated above at least a major part of the "non-corrosion-inhibiting" or other pigments (c) should be lamellar pigments, such as talc. Thus at least 50 % by weight, preferably at least 75 % by weight and more preferred at least 85 % by weight of the "non-corrosion-inhibiting" pigments should be lamellar pigments.
Due to the excellent bonding properties the inventive primer is suitable together with any conventional bituminous materials of the type used for external coating of steel tubes and fittings for onshore and offshore pipelines. Such materials — also termed bitumen based coating enamels - can be oxidized, non-oxidized or modi- fied bitumen enamels. Such enamels may or may not contain a filler and they are normally applied in hot state.
Example
A waterborne primer according to the invention (Primer 1 ) with about 5 parts by weight of aluminium triphosphate per 100 parts by weight of vinyl chlo- ride/vinylidene chloride/acrylic copolymer and two comparative primers (Primers A and B) with about 21.5 parts by weight of aluminium triphosphate per 100 parts by weight of vinyl chloride/vinylidene chloride/acrylic copolymer were prepared and applied on clean steel plates in accordance with European Standard EN 10300:2005, Annexes A and B. The compositions of the tested primers are shown in table 1.
Table 1
Figure imgf000009_0001
Haloflex®202S is available from DSM NeoResins, Waalwijk The Netherlands; the non volatile content of Haloflex®202S is about 59 % w/w.
K-White 84 (aluminium triphosphate) is available from Tayca Corporation, Osaka,
Japan.
Westmin D30E is available from Mondo Minerals OY, Helsinki, Finland
Bentone® LT is a suspending agent (thickener) of hectorite and hydroxyethylcellu- lose, available from Elementis Specialties, Inc. Hightstown, NJ, USA.
Foamaster® H2, anti foaming agent available from Cognis, Dϋsseldorf, Germany.
Synperonic® F87 is a nonionic stabilisator available from Uniqema, Gouda, The
Netherlands Byk 181 is an alkylolammonium salt of a polyfunctional anionic/nonionic polymer available from Byk Chemie, Wessel, Germany.
Dowanol® DPM is available from Dow Chemical Company. Midland, Ml, USA. Emadox® NA is a flash rust inhibitor from Laboratoires Labema, Lorette, France.
A category 2 bitumen enamel coating (EN 10300:2005; 5.3.2.3) was then applied to the primed steel plates in accordance with (EN10300:2005, Annex C). The primed and coated plates were tested according to EN 10300:2005 to estimate sag (Annex D), impact (Annex E), peel (Annex F), bend (Annex G) and catodic disbonding (Annex I). The results are shown in Table 2.
Table 2
Figure imgf000010_0001
The test results show that the inventive primer (primer 1 ) meets the requirements for the corrosion inhibiting effect as the cathodic disbonding is below the maximum value of 10 mm according to EN 10300:2005, 4.2.4.1 , table 3. The comparative primers A and B do not meet this requirement although they both have a larger amount of the corrosion inhibiting aluminium triphosphate.
The above description of the invention reveals that it is obvious that it can be varied in many ways. Such variations are not to be considered a deviation from the scope of the invention, and all such modifications which are obvious to persons skilled in the art are also to be considered comprised by the scope of the succeeding claims.

Claims

Claims
1. A method for protecting iron or steel materials against corrosion characterised by priming with a water borne primer composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a corrosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water, and coating with a bituminous material.
2. A method according to claim 1 , characterised in, that the content of the cor- rosion inhibiting pigment (b) is 2 - 12 parts by weight based on 100 parts by weight of the binder (a) calculated as dry matter.
3. A method according to claim 1 or 2, characterised in, that the said further pigments (c) include lamellar pigments.
4. A method according to one of the preceding claims, characterised in, that the corrosion inhibiting pigment (b) is a phosphate pigment.
5. A method according to claim 4, characterised in, that the corrosion inhibit- ing phosphate pigment (b) is aluminium triphosphate.
6. A method according to claim 3, characterised in, that the lamellar pigments (c) include talc and/or mica.
7. A method according to one of the preceding claims, wherein the acrylic copolymer basis (a) includes acrylic monomers and monomers of mono- and/or di- halogenated C2 - C-|2-olefins.
8. A primer, characterised in, that it is an aqueous composition containing a) a binder of one or more acrylic copolymers based on one or more acrylic monomers and one or more chlorinated monomers, b) a corrosion inhibiting pigment, c) one or more further pigments, d) optionally conventional additives and/or adjuvants, and e) water.
9. A primer according to claim 8, characterised in, that the content of the corrosion inhibiting pigment (b) is 2 - 12 parts by weight based on 100 parts by weight of the binder (a) calculated as dry matter.
10. A primer according to claim 8 or 9, characterised in, that said further pig- ments (c) include lamellar pigments.
11.. A primer according to any one of the claims 8 to 10, characterised in, that the corrosion inhibiting pigment (b) is a phosphate pigment.
12. A primer according to claim 11 , characterised in, that the corrosion inhibiting phosphate pigment (b) is aluminium triphosphate.
13. A primer according to one of the preceding claims 10 to 12, characterised in, that the lamellar pigments (c) include talc and/or mica.
14. A primer according to one of the preceding claims 8 to 13, wherein the acrylic copolymer basis (a) includes acrylic monomers and monomers of mono- and/or di- halogenated C2 - Ci2-olefins.
15. Use of a primer according to one of the claims 8 to 14 in a method for protecting materials against corrosion 6y priming with the primer and coating with a bituminous material.
16. Use according to claim 15 wherein the materials to be protected are onshore or offshore materials including pipelines.
PCT/DK2007/000021 2006-01-16 2007-01-15 Water based pipeline primer WO2007079757A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002636611A CA2636611A1 (en) 2006-01-16 2007-01-15 Water based pipeline primer
EP07700160A EP1976943B1 (en) 2006-01-16 2007-01-15 Water based pipeline primer
DE602007013526T DE602007013526D1 (en) 2006-01-16 2007-01-15 WATER-BASED PIPELINE GROUNDING AGENT
US12/087,718 US20090082505A1 (en) 2006-01-16 2007-01-15 Water Based Pipeline Primer
EA200870172A EA014388B1 (en) 2006-01-16 2007-01-15 Water based pipeline primer
DK07700160.0T DK1976943T3 (en) 2006-01-16 2007-01-15 Water-based Pipeline Primer
AT07700160T ATE503807T1 (en) 2006-01-16 2007-01-15 WATER BASED PIPELINE PRIMER
NO20083498A NO20083498L (en) 2006-01-16 2008-08-13 Water-based pipelines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200600066 2006-01-16
DKPA200600066 2006-01-16

Publications (2)

Publication Number Publication Date
WO2007079757A2 true WO2007079757A2 (en) 2007-07-19
WO2007079757A3 WO2007079757A3 (en) 2007-11-15

Family

ID=37943944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2007/000021 WO2007079757A2 (en) 2006-01-16 2007-01-15 Water based pipeline primer

Country Status (14)

Country Link
US (1) US20090082505A1 (en)
EP (1) EP1976943B1 (en)
KR (1) KR20080085228A (en)
CN (1) CN101374916A (en)
AT (1) ATE503807T1 (en)
CA (1) CA2636611A1 (en)
DE (1) DE602007013526D1 (en)
DK (1) DK1976943T3 (en)
EA (1) EA014388B1 (en)
GE (1) GEP20115173B (en)
NO (1) NO20083498L (en)
UA (1) UA91894C2 (en)
WO (1) WO2007079757A2 (en)
ZA (1) ZA200805825B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157963A1 (en) 2016-03-18 2017-09-21 Solvay Sa Water-based anti-corrosion coating composition
CN108977003A (en) * 2018-05-30 2018-12-11 广州擎天材料科技有限公司 Watery anti-corrosion low temperature self-drying paint and anti-flash rusting coating process for ironcasting

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174285B (en) * 2011-03-04 2013-09-11 苏州市金近涂料有限公司 Aqueous anti-corrosion and anti-frost paint for steel structure and preparation method thereof
DK3517585T3 (en) 2011-03-08 2021-08-23 Swimc Llc PROCEDURE FOR COATING A SHIPPING CONTAINER
CN114840987B (en) * 2022-04-20 2023-02-17 北京工业大学 Road asphalt compound design method for realizing VOCs full-component inhibition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781948A (en) * 1985-06-10 1988-11-01 Imperial Chemical Industries Plc Water-based film-forming coating compositions and the use thereof
EP0845508A1 (en) * 1996-12-02 1998-06-03 Tayca Corporation Anticorrosive pigment composition and coating compositions containing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574652A (en) * 1967-06-13 1971-04-13 Monsanto Co Protective coating on a metallic surface
US4133352A (en) * 1975-11-18 1979-01-09 Lion Oil Company Pipe coating compositions
EP0075396B1 (en) * 1981-09-14 1985-06-05 Imperial Chemical Industries Plc Aqueous coating compositions
US4749731A (en) * 1986-04-14 1988-06-07 The Celotex Corporation Coating for roof surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781948A (en) * 1985-06-10 1988-11-01 Imperial Chemical Industries Plc Water-based film-forming coating compositions and the use thereof
EP0845508A1 (en) * 1996-12-02 1998-06-03 Tayca Corporation Anticorrosive pigment composition and coating compositions containing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157963A1 (en) 2016-03-18 2017-09-21 Solvay Sa Water-based anti-corrosion coating composition
RU2739769C2 (en) * 2016-03-18 2020-12-28 Солвей Са Water-based coating composition
CN108977003A (en) * 2018-05-30 2018-12-11 广州擎天材料科技有限公司 Watery anti-corrosion low temperature self-drying paint and anti-flash rusting coating process for ironcasting
CN108977003B (en) * 2018-05-30 2020-11-17 擎天材料科技有限公司 Water-based anti-corrosion low-temperature self-drying coating for iron casting and anti-flash rust coating method

Also Published As

Publication number Publication date
CA2636611A1 (en) 2007-07-19
KR20080085228A (en) 2008-09-23
UA91894C2 (en) 2010-09-10
DK1976943T3 (en) 2011-07-25
EP1976943A2 (en) 2008-10-08
ATE503807T1 (en) 2011-04-15
US20090082505A1 (en) 2009-03-26
EA200870172A1 (en) 2009-12-30
EA014388B1 (en) 2010-10-29
DE602007013526D1 (en) 2011-05-12
GEP20115173B (en) 2011-03-10
NO20083498L (en) 2008-08-13
WO2007079757A3 (en) 2007-11-15
EP1976943B1 (en) 2011-03-30
ZA200805825B (en) 2009-04-29
CN101374916A (en) 2009-02-25

Similar Documents

Publication Publication Date Title
KR101491459B1 (en) A friendly heavy duty steel paint composition and steel coating method of using friendly heavy duty steel paint composition
EP1976943B1 (en) Water based pipeline primer
WO2009084849A3 (en) Chrome-free coating compositions for surface-treating steel sheet including carbon nanotube, methods for surface-treating steel sheet and surface-treated steel sheets using the same
JP6242318B2 (en) Weak solvent type high corrosion resistance coating composition using Sn ions
JP2007314762A (en) Powder coating composition, and heavy corrosion-resistant coated steel stock using the same
AU2005247041A1 (en) Metal oxides and hydroxides as corrosion inhibitor pigments for a chromate-free corrosion resistant epoxy primer
JP5514969B2 (en) Rust conversion water based paint
JP2010070603A (en) Aqueous rust-preventive coating composition
JP5142965B2 (en) Water-based anticorrosive coating
JP2014227434A (en) HIGHLY CORROSION RESISTANT PAINT COMPOSITION UTILIZING Sn ION
JP6745279B2 (en) Anticorrosion pigment made of aluminum polyphosphate and rare earth
JP2016121221A (en) Aqueous rustproof coating composition
JP4560284B2 (en) Anticorrosion coating composition for gas transport steel pipe and gas transport steel pipe
JP2005279318A (en) Coating finishing method
JP6592344B2 (en) Thick film type inorganic zinc rich paint coating composition using Sn ion
KR20220100027A (en) corrosion inhibitor
JP3586857B2 (en) Zinc treated iron tubing
JP6517134B2 (en) One-component high corrosion resistant paint composition using Sn ion
JP3787047B2 (en) Anticorrosive paint composition for steel
JP6733180B2 (en) Paint composition and coating member using the same
JPWO2019065939A1 (en) Water-based rust-proof coating composition, rust-proof coating film, substrate with rust-proof coating film, and method for producing substrate with rust-proof coating
JP5614876B2 (en) Water-based anticorrosive coating composition and use thereof
JP3163908B2 (en) Polyolefin resin coated steel
JP3111908B2 (en) Polyethylene resin coated steel
JP2000073003A (en) Anticorrosion coating composition for steel stock

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2636611

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12087718

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780003206.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3003/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007700160

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087019998

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10868

Country of ref document: GE

Ref document number: 200870172

Country of ref document: EA