WO2007077932A1 - Optical device and image display device - Google Patents

Optical device and image display device Download PDF

Info

Publication number
WO2007077932A1
WO2007077932A1 PCT/JP2006/326265 JP2006326265W WO2007077932A1 WO 2007077932 A1 WO2007077932 A1 WO 2007077932A1 JP 2006326265 W JP2006326265 W JP 2006326265W WO 2007077932 A1 WO2007077932 A1 WO 2007077932A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wall surface
optical device
wall
mirror
Prior art date
Application number
PCT/JP2006/326265
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsugi Tanaka
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Publication of WO2007077932A1 publication Critical patent/WO2007077932A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the present invention relates to an optical device that bends a light beam by an optical member, and a retinal scanning type and screen scanning type image display device having the optical device.
  • an image display device or the like for displaying an image includes an optical device that includes an optical member such as a mirror and bends a light flux.
  • the optical device has a support structure that supports the optical device.
  • the conventional support structure supports the optical member by a so-called cantilever from below, or supports the optical member so as to be sandwiched from above and below. It was something.
  • the structure that supports the optical member so as to be sandwiched from above and below has a high positioning accuracy of the optical member, but the size in the height direction must be increased by the thickness of the member that sandwiches the optical member from above and below. If the optical device is not enlarged and the size of the optical device is increased, there is a problem.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an optical device that secures the positioning accuracy of an optical member while suppressing an increase in size, and an image display device having the optical device. And Means for solving the problem
  • an optical device that bends a light beam by an optical member, and has a wall surface provided so as to surround the bent light beam. It is in the optical apparatus characterized by the above. According to such a configuration, the optical path is formed by folding the light beam, so that the enlargement can be suppressed and the positioning accuracy of the optical member can be ensured by the wall surface.
  • An apparatus can be provided.
  • the wall surface includes an exit wall surface from which the light flux exits, and a plurality of adjacent wall surfaces adjacent to the exit wall surface.
  • the adjacent wall surface supports the optical member.
  • the wall surface has at least one of an incident wall surface on which the light beam is incident and an output wall surface on which the light beam is emitted. I did it.
  • the cover structure it is possible to suppress the enlargement by forming the optical path so that the light beam is folded by making the light beam enter from the incident wall surface or by emitting the light beam from the output wall surface, It is possible to provide an optical device with excellent optical characteristics that can maintain the positioning accuracy of the optical member by the wall surface.
  • the wall surface includes an incident wall surface on which the light beam is incident and an output wall surface on which the light beam is emitted,
  • the incident wall surface and the exit wall surface were made to face each other.
  • the incident wall force light beam facing each other is incident and the output wall force force is formed so that the light beam is folded in such a manner that the light beam is emitted. It is possible to provide an optical device with excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface.
  • the wall surface is perpendicular to a reference surface formed by the bent light flux. According to such a configuration, it is possible to provide an optical device with excellent optical characteristics that can ensure the positioning accuracy of the optical member by preventing the optical member from being tilted by the wall surface perpendicular to the reference surface.
  • the optical members are arranged symmetrically in a direction perpendicular to the reference plane. According to the configuration, the optical member can be prevented by better preventing the surface of the optical member from being tilted by arranging the optical member symmetrically in the direction perpendicular to the reference surface on the wall surface perpendicular to the reference surface. It is possible to provide an optical device with excellent optical characteristics that can guarantee the positioning accuracy of
  • the member having the wall surface is made of resin.
  • a wall surface can be easily formed into a desired size and shape as needed, and an optical device with excellent optical characteristics can be provided that can ensure the positioning accuracy of the optical member by the wall surface. .
  • the inner surface of the wall surface is black. According to the powerful configuration, it is possible to provide an optical device with excellent optical characteristics that can secure the positioning accuracy of the optical member by the wall surface and can prevent a ghost phenomenon or the like.
  • a first scanning system that includes the optical member and scans the light beam, and a direction that intersects the first scanning system And a second scanning system for scanning, and any one of the scanning planes of these scanning systems is perpendicular to the wall surface.
  • a support member that forms the wall surface and supports the optical member is provided. According to the powerful configuration, it is possible to provide an optical device having excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface formed by the support member.
  • the support member is solid. According to such a configuration, it is possible to provide an optical device having excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface formed by the solid support member having excellent strength.
  • the optical member is supported on the wall surface. According to the powerful configuration, it is possible to provide an optical device having excellent optical characteristics, in which the optical member can be accurately positioned by the wall surface formed by the solid support member having excellent strength.
  • positioning means for engaging and positioning the optical member on the wall surface supporting the optical member. did. According to the strong configuration, it is possible to provide an optical device capable of positioning the optical member with higher accuracy by the positioning means on the wall surface formed by the solid support member having excellent strength.
  • a holding member for holding the support member and the support member has a wall portion having the wall surface as an outer surface thereof. I did it. According to the powerful configuration, it is possible to suppress an increase in size, and it is possible to secure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the support member held by the holding member. An excellent optical device can be provided.
  • a plurality of the wall portions are provided, all of which are adjacent to the other plurality of wall portions or the holding member. I made it. According to such a configuration, it is possible to suppress an increase in size, and it is possible to ensure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the high-strength support member held by the holding member. An optical device having excellent optical characteristics can be provided.
  • the wall portion and the The holding member constitutes a box shape surrounding the bent light flux. According to the configuration, the increase in size can be suppressed, and the positioning accuracy of the optical member can be further secured by the wall surface formed by the wall portion of the supporting member having high strength held by the holding member. It is possible to provide an optical device that is superior in optical characteristics.
  • the optical member is supported on the wall portion. According to this configuration, it is possible to provide an optical device having excellent optical characteristics that can accurately position the optical member by the wall surface formed by the wall portion of the support member held by the holding member.
  • positioning means for engaging and positioning the optical member with the wall portion supporting the optical member. I made it.
  • an optical device having further excellent optical characteristics can be provided in which the optical member can be positioned with higher accuracy by the positioning means on the wall surface formed by the wall portion of the support member held by the holding member. be able to.
  • the thickness and Z or height of the wall portion supporting the optical member are set according to the optical element supported. I tried to do it. According to such a configuration, an optical device having excellent optical characteristics that can accurately position an optical member according to its shape and size by a wall surface formed by a wall portion of a support member held by a holding member. Can be provided.
  • the thickness of the wall portion supporting the optical member is set so that the optical path length of the light flux becomes a desired optical path length.
  • the wall surface formed by the wall portion of the support member held by the holding member can be positioned so as to form a desired optical path length without using a jig or the like that makes the optical member accurate.
  • An optical device having excellent optical characteristics can be provided.
  • the wall portion supporting the optical member supports the optical member on the outer wall surface, and An opening that transmits the light beam bent by the optical member is provided. According to such a configuration, the luminous flux formed by the wall portion of the support member held by the holding member is reduced. It is possible to provide an optical device having excellent optical characteristics, in which an optical member can be positioned accurately and easily by a wall surface having a transparent opening.
  • the optical member supported by the wall surface outside the wall portion is a reflecting member that reflects the light flux.
  • the optical surface as the reflecting member is formed by the wall surface having the opening that transmits the incident / reflected light to the optical member that is the reflecting member, which is formed by the wall portion of the supporting member held by the holding member. It is possible to provide an optical device excellent in optical characteristics, which can accurately and easily position a member.
  • the peripheral force of the opening is formed to have a tapered shape that is expanded toward the inside of the wall portion having the opening.
  • the opening that is formed by the wall portion of the support member held by the holding member and transmits the light beam, and its peripheral edge is tapered so that the strength of the wall portion is increased. It is possible to provide an optical device with further excellent optical characteristics in which the optical member can be positioned more accurately and easily by the wall surface having the opening that can be formed.
  • the wall portion having the opening supports the supported optical member at a plurality of locations.
  • the optical member is supported at a plurality of locations by the wall surface having the opening that transmits the light beam, which is formed by the wall portion of the support member held by the holding member, so that it can be performed more accurately and easily. It is possible to provide an optical device that can be positioned and has further excellent optical characteristics.
  • the opening force is made smaller than the optical member supported by the wall portion having the opening.
  • the optical member can be accurately and easily positioned by the wall surface having the opening that reliably transmits the light beam, which is formed by the wall portion of the support member held by the holding member.
  • An optical device having excellent characteristics can be provided.
  • the wall portion can be attached to and detached from the other wall portion. According to the powerful configuration, the enlargement can be suppressed.
  • an optical device that is easy to assemble and has excellent optical characteristics that can secure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the support member having high strength that is held by the holding member. Can do.
  • a first box-shaped part including the wall part detachably attached to the other wall part, and the other
  • a second box-shaped portion including a wall portion, and the first box-shaped portion is attachable to and detachable from the second box-shaped portion.
  • the enlargement can be suppressed, and the positioning accuracy of the optical member can be secured by the wall surface formed by the wall portion of the supporting member having a high strength that is held by the holding member. Since the strength of each part is high, the positioning accuracy of the optical member can be secured at a high level, and an optical device that is easy to assemble and has excellent optical characteristics can be provided.
  • At least the wall portion and the holding member are provided so as to surround the entire circumference of the bent light beam.
  • the powerful configuration it is possible to suppress an increase in size and to ensure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the supporting member having high strength that is held by the holding member.
  • stray light does not leak to the outside due to the annular wall, especially when this is mounted on a retinal scanning image display device, unexpected light is incident on the observer's eyes. It is possible to prevent the image quality of the image recognized by the camera from being deteriorated or lowered, and to provide an optical device having excellent optical characteristics.
  • a retinal scanning type image display apparatus that projects and displays an image formed by the light beam on the retina of an eye. Any one of the optical devices described above is provided. According to the powerful configuration, the optical path is formed by folding the light beam, so that the enlargement can be suppressed, and the positioning accuracy of the optical member can be ensured by the wall surface. It is possible to provide an image display device having particularly excellent characteristics for a network scanning image display device.
  • a screen scanning type image display device that projects and displays an image formed by the light beam on a screen. Any one optical device was provided. According to the powerful configuration, the luminous flux For the retinal scanning image display device with excellent optical characteristics, the optical path can be folded so that the enlargement can be suppressed and the positioning accuracy of the optical member can be secured by the wall surface. An image display device having excellent characteristics can be provided.
  • an optical device that bends a light beam by an optical member and has a wall surface provided so as to surround the bent light beam.
  • FIG. 1 is a schematic configuration diagram showing a retinal scanning type image display device as an image display device in the present embodiment.
  • FIG. 2 is a schematic view showing a scanning mode of beam light in the present embodiment.
  • FIG. 3 is a plan view showing an optical system and an optical path of laser light in the present embodiment and a configuration of a support member.
  • FIG. 4 is a perspective view showing an optical system and an optical path of laser light in the present embodiment and a configuration of a support member.
  • FIG. 5 is a perspective view showing an optical system and an optical path of a laser beam in the present embodiment and a configuration of a support member.
  • FIG. 6 is a diagram showing an optical system and an optical path of laser light in the present embodiment.
  • FIG. 7 is a side sectional view showing a configuration of positioning means.
  • FIG. 8 is a box-shaped perspective view.
  • FIG. 9 is a side cross-sectional view showing a configuration in which the peripheral edge of the opening formed in the wall is expanded toward the inside of the wall.
  • FIG. 10 is a plan view showing the configuration of the position adjusting means.
  • the retinal scanning display 1 is provided with a light source unit 2 for processing a video signal supplied from the outside.
  • the light source unit 2 is provided with a video signal supply circuit 3 that receives a video signal from the outside and generates each signal as an element for synthesizing the video based on the video signal.
  • Signal 4, vertical synchronization signal 5, and horizontal synchronization signal 6 are output.
  • the light source unit 2 has The light source emits laser light whose intensity is modulated based on the red (R), green (G), and blue (B) video signals transmitted from the video signal supply circuit 3 as the video signal 4.
  • R laser driver 10, G laser driver 9, and B laser driver 8 for driving the R laser 13, the G laser 12, and the B laser 11 are provided.
  • a collimating optical system 14 provided so as to collimate the laser light emitted from each laser into parallel light, and a dichroic mirror 15 for multiplexing the collimated laser lights are combined.
  • a coupling optical system 16 for guiding the laser light to the optical fiber 17 is provided.
  • a semiconductor laser such as a laser diode or a solid-state laser may be used as the R laser 13, the G laser 12, and the B laser 11.
  • the light source unit 2 in the present embodiment corresponds to an example of at least one light source and a modulation unit that modulates the intensity of the light beam emitted from the light source power according to an image signal.
  • the retinal scanning display 1 is guided by a collimating optical system 18 that guides laser light as a light beam propagated from the light source unit 2 to an optical device 100 described later, and the collimating optical system 18.
  • the optical device 100 includes a vertical scanning system 19 as a first scanning system that scans the collimated laser light guided by the collimating optical system 18 in the vertical direction using a galvano mirror 19a, and a vertical scanning system.
  • the first relay optical system 20 that guides the laser beam scanned by 19 to a horizontal scanning system 21 as a second scanning system, and a laser that is scanned by the vertical scanning system 19 and incident via the first relay optical system 20 It has a horizontal scanning system 21 that scans light in the horizontal direction using a galvano mirror 21a, and a support structure 50 shown in FIG. 3 that supports the galvano mirror 19a, the first relay optical system 20, and the galvano mirror 21a.
  • the first relay optical system 20 is configured such that the galvano mirror 19a of the vertical scanning system 19 and the galvano mirror 21a of the horizontal scanning system 21 are conjugate, and the second relay optical system 22 is galvano mirror 21a. And the pupil 24 of the observer are provided so as to be conjugate with each other.
  • the second relay optical system 22 makes the laser light scanned by the horizontal scanning system 21 of the optical device 100 enter the pupil 24 of the observer.
  • the vertical scanning system 19 is provided for each scanning line of an image to be displayed. This is an optical system that performs vertical scanning (an example of primary scanning) that vertically scans the laser beam in the vertical direction.
  • the vertical scanning system 19 includes a galvano mirror 19a that scans the laser beam in the vertical direction, and a vertical scanning control circuit 19c that controls driving of the galvano mirror 19a.
  • the horizontal scanning system 21 performs horizontal scanning (an example of secondary scanning) in which a laser beam is scanned horizontally from the first scanning line to the last scanning line for each frame of an image to be displayed. ). Further, the horizontal scanning system 21 includes a galvano mirror 21a that performs horizontal scanning, and a horizontal scanning control circuit 21c that controls driving of the galvano mirror 21a. Therefore, the vertical scanning system 19 and the horizontal scanning system 21 perform scanning in a direction crossing each other.
  • the vertical scanning system 19 is designed to scan the laser beam at a higher speed, that is, at a higher frequency than the horizontal scanning system 21. Further, the vertical scanning system 19 scans the beam light at the vertical scanning angle, and the horizontal scanning system 21 scans the beam light at the horizontal scanning angle. In this embodiment, the vertical scanning angle is the horizontal scanning angle. Is set smaller than. This is because, as shown in FIG. 2 (a), the display range 152 of the image is shorter in the vertical direction Y than in the horizontal direction X, so the scanning trajectory s of the light beam is also higher in the vertical direction Y than in the horizontal direction X. This is because the vertical scanning angle in the vertical direction is smaller than the horizontal scanning angle in the horizontal direction. For this reason, as shown in FIG.
  • the scanning angle must first be increased! After scanning in the horizontal direction, scanning is performed in the vertical direction where the scanning angle is small, and the beam light is Compared to the scanning configuration, as shown in Fig. 2 (a), after scanning in the vertical direction, which requires a small scanning angle, the scanning angle must be increased. , Space can be saved.
  • the vertical scanning system 19 having a small scanning angle is used as the scanning system (high-speed scanning system) that scans the beam light at high speed, and the scanning system (low-scanning system) that scans the beam light at low speed.
  • the power of adopting the horizontal scanning system 21 with a large scanning angle as a high-speed scanning system) For example, a normal video signal such as NTSC (National Television Standards Committee) is not shown because the horizontal scanning corresponds to high-speed scanning.
  • the video signal is converted into digital data so that the horizontal scan is at low speed and the vertical scan is at high speed. Conversion.
  • the video signal input to the video signal supply circuit 3 has a signal format such that the vertical scanning system 19 performs high-speed scanning, the above-described conversion processing can be performed without any particular necessity.
  • the vertical scanning system 19 with a small scanning angle is used as the scanning system (high-speed scanning system) that scans the beam light at high speed, and the scanning system (low-scanning system) that scans the beam light at low speed.
  • the high-speed scanning system the horizontal scanning system 21 having a large scanning angle is adopted.
  • the scanning system for scanning light at high speed has a large scanning angle.
  • the vertical scanning system 19 with a small scanning angle may be adopted.
  • the vertical scanning angle (an example of the primary scanning angle) scanned in the vertical direction (an example of the primary direction) is the horizontal scanning angle (an example of the secondary direction)
  • the scanning beam is scanned.
  • collimating optical system 18 that guides the directional beam light to vertical scanning system 19 vertical scanning system 19, first relay optical system 20 that guides the beam light from vertical scanning system 19 to horizontal scanning system 21, etc.
  • the space in which the space is provided can be reduced, and the apparatus can be further reduced in size.
  • the vertical scanning system 19 and the horizontal scanning system 21 are connected to the video signal supply circuit 3 and output from the video signal supply circuit 3, respectively.
  • the laser beam is scanned in synchronization with each of the signals 6.
  • the vertical scanning system 19 and the horizontal scanning system 21 in this embodiment scan the frame by scanning the incident light beam in the primary direction and the secondary direction substantially perpendicular to the primary direction. It is an example of the optical scanning device to form.
  • the vertical scanning system 19 in this embodiment corresponds to an example of a primary scanning unit that scans incident beam light in the vertical direction
  • the horizontal scanning system 21 in this embodiment has a vertical direction.
  • This corresponds to an example of secondary scanning means for scanning the light beam scanned in the horizontal direction.
  • the first relay optical system 20 in the present embodiment corresponds to an example of a relay optical system (relay optical means).
  • the video signal supply circuit 3 provided in the light source unit 2 is supplied with a video signal from an external force
  • the video signal is displayed.
  • the signal supply circuit 3 includes an R video signal, a G video signal, and a B video signal power 4 for outputting laser beams of red, green, and blue colors, a vertical synchronization signal 5, and a horizontal synchronization signal 6 Is output.
  • R laser driver 10, G laser driver 9, and B laser driver 8 are respectively connected to R laser 13, G laser 12, and B laser 11 based on the input R video signal, G video signal, and B video signal.
  • a drive signal is output.
  • the R laser 13, the G laser 12, and the B laser 11 Based on this drive signal, the R laser 13, the G laser 12, and the B laser 11 generate laser beams whose intensity is modulated, and output the laser beams to the collimating optical system 14, respectively.
  • the video signal supply circuit 3 controls the timing of generating laser light and outputting each to the collimating optical system 14 in accordance with a BD signal (not shown) indicating the driving state of the galvano mirror 19a described later. That is, such a retinal scanning display 1 (video signal supply circuit 3) controls the timing at which the galvanometer mirror 19a or the like emits a light beam.
  • Laser light that also generates point light source power is collimated into parallel light by the collimating optical system 14 and then combined into a single light beam by being incident on the dichroic mirror 15, and then coupled optical system 16 To be incident on the optical fiber 17.
  • the laser light propagated by the optical fiber 17 is guided from the optical fiber 17 by the collimating optical system 18 and emitted to the vertical scanning system 19.
  • the emitted laser light is incident on the deflection surface 19b of the galvanometer mirror 19a of the vertical scanning system 19.
  • the laser light incident on the polarization surface 19b of the galvanometer mirror 19a is scanned in the vertical direction in synchronization with the vertical synchronization signal and enters the deflection surface 21b of the galvanometer mirror 21a of the horizontal scanning system 21 via the first relay optical system 20.
  • the deflection surface 19b of the galvanometer mirror 19a and the deflection surface 21b of the galvanometer mirror 21a are adjusted to have a conjugate relationship, and the surface tilt of the galvanometer mirror 19a is corrected.
  • the galvanometer mirror 21a is synchronized with the horizontal synchronization signal 6 in the same way as the galvanometer mirror 19a is synchronized with the vertical synchronization signal, and its deflection surface 21b
  • the laser beam is scanned in the horizontal direction by the galvanometer mirror 21a.
  • Laser light scanned two-dimensionally in the horizontal and vertical directions by the vertical scanning system 19 and the horizontal scanning system 21 so that the deflection surface 21b of the galvano mirror 21a and the pupil 24 of the observer have a conjugate relationship.
  • the incident light is incident on the pupil 24 of the observer by the provided second relay optical system 22 and projected onto the retina.
  • the observer can thus recognize the image by the laser light that is two-dimensionally scanned and projected onto the retina.
  • the galvanometer mirror 19a of the vertical scanning system 19 and the galvanometer mirror 21a of the horizontal scanning system 21 have been described with the same names, their reflecting surfaces are swung (rotated) to scan light.
  • any drive system such as a resonance type, non-resonance type, piezoelectric drive, electromagnetic drive, electrostatic drive, etc. can be used.
  • various optical systems include a first reflection mirror 102, a galvano mirror 19a, a half mirror 104, a concave mirror 106, a second reflection mirror 108, and a galvano as optical members. It includes at least mirror 21a.
  • the first reflecting mirror 102, the galvano mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvano mirror 21a are erected with the reflecting surface in the horizontal direction and the vertical direction.
  • the first reflecting mirror 102 guides the beam light emitted from the optical fiber 17 to the deflecting surface 19b of the galvano mirror 19a by totally reflecting the light, and is reflected by the deflecting surface 19b of the galvano mirror 19a to be perpendicular.
  • the beam light scanned in the direction has a function of guiding it to the half mirror 104 by total reflection.
  • the first reflecting mirror 102 is included in the collimating optical system 18 and the first relay optical system 20 described above.
  • the galvanometer mirror 19a reflects the light beam reflected by the first reflecting mirror 102 by the polarization surface 19b by being driven to rotate in the direction indicated by reference numeral B1 with reference to the reference numeral A1 extending in the horizontal direction. By doing so, it scans in the vertical direction and guides it to the first reflecting mirror 102
  • the half mirror 104 guides the beam light reflected by the first reflecting mirror 102 to the concave mirror 106 by transmitting it, and reflects the beam light reflected by the concave mirror 106 to reflect the beam light. 2 Has a function of guiding to the reflection mirror 108.
  • the half mirror 104 is included in the first relay optical system 20 described above.
  • the concave mirror 106 is a condensing mirror that condenses the diffused beam light.
  • the concave mirror 106 totally reflects the beam light reflected by the first reflection mirror 102 and transmitted through the half mirror 104 to collect the light. And has a function of guiding to the half mirror 104.
  • the concave mirror 106 is included in the first relay optical system 20 described above.
  • the second reflecting mirror 108 has a function of guiding the beam light collected by the concave mirror 106 and reflected by the half mirror 104 to the deflecting surface 21b of the galvano mirror 21a by totally reflecting the beam light.
  • the second reflecting mirror 108 is included in the first relay optical system 20 described above.
  • the galvanometer mirror 21a is driven to rotate in the direction indicated by reference numeral B2 with reference to the reference numeral A2 extending in the vertical direction, so that the light beam reflected by the second reflecting mirror 108 is reflected by the polarization surface 21b. By doing so, it is scanned in the horizontal direction and led to the second relay optical system 22 (see FIG. 1).
  • the beam light emitted from the optical fiber 17 is collected and incident on the first reflection mirror 102.
  • the beam light incident on the first reflecting mirror 102 is totally reflected and incident on the galvanometer mirror 19a of the vertical scanning system 19 while being condensed.
  • the beam light incident on the galvanometer mirror 19a of the vertical scanning system 19 is incident on the first reflecting mirror 102 while being scanned in the vertical direction. This beam light is focused and then diffused until it enters the first reflecting mirror 102 from the galvano mirror 19a. Then, the beam light incident on the first reflecting mirror 102 is totally reflected, and is incident on the half mirror 104 by the undiffused force S.
  • the light beam incident from the galvano mirror 19a and the light beam emitted from the optical fiber 17 are reflected by the first reflection mirror 102 at different locations. Then, the beam light incident on the half mirror 104 from the first reflecting mirror 102 is transmitted through the noise mirror 104 at a predetermined ratio, and is incident on the concave mirror 106 while being diffused. The light beam incident on the concave mirror 106 is incident. The force diffused before being reflected is reflected and incident on the half mirror 104 while being condensed. The beam light incident on the half mirror 104 from the concave mirror 106 is reflected by the noise mirror 104 at a predetermined ratio, and is incident on the second reflecting mirror 108 while being condensed.
  • the beam light incident on the second reflecting mirror 108 is totally reflected and incident on the galvano mirror 21a of the horizontal scanning system 21 while being condensed.
  • the beam light incident on the galvano mirror 2 la of the horizontal scanning system 21 is scanned in the horizontal direction and is incident on the second relay optical system 2 2 (see FIG. 1) if condensed.
  • the diffused beam light power is condensed by the concave mirror 106 between the galvanometer mirror 19a of the vertical scanning system 19 and the galvanometer mirror 21a of the horizontal scanning system 21.
  • the first relay optical system 20 is provided in the optical path between the vertical scanning system 19 and the horizontal scanning system 21, and the light beam scanned in the primary direction by the vertical scanning system 19 is the horizontal scanning system 21.
  • At least a concave mirror 106 is introduced. Therefore, as will be described in detail later, without using a concave mirror, for example, a first convex lens that makes a diffusing beam a parallel beam or a second convex lens that collects the parallel beam is used. Compared to the conventional configuration, it is not necessary to use such a convex lens, so that the apparatus can be miniaturized. In addition, it is possible to design without considering chromatic aberration.
  • a half mirror 104 is provided between a galvano mirror 19a in the vertical scanning system 19 and a concave mirror 106 described later. Therefore, by using a half mirror between the primary scanning means and the condensing mirror, the optical path can be folded, so that space can be saved efficiently and the device can be further downsized. It is.
  • the galvanometer mirror 19a of the vertical scanning system 19 vertically transmits the beam light between the first reflection mirror 102 and the reference signs Cl, C2, and C3 as shown in FIG. 6 (a).
  • the surface indicated by reference numeral D including the beam light scanned by the vertical scanning system 19 becomes the vertical scanning surface.
  • the beam light scanned by the vertical scanning system 19 from the galvano mirror 19a of the vertical scanning system 19 to the first reflecting mirror 102 is directed to the vertical force.
  • the vertical scanning plane D is included, and the approximate center line in the vertical scanning plane is the scanning center line F.
  • the vertical scanning plane in this embodiment is a scanning plane including a light beam from the vertical scanning to the horizontal scanning, and the galvano of the vertical scanning system 19. This is the scanning plane of the optical path from the mirror 19a to the galvanometer mirror 2 la of the horizontal scanning system 21.
  • the incident direction of the beam light incident on the galvanometer mirror 19a of the vertical scanning system 19 is a direction indicated by a symbol E as shown in FIG. 6 (c). That is, the light beam is incident from the direction intersecting the vertical scanning plane D. Therefore, for example, an optical system that is incident on the primary scanning unit, a relay optical system between the primary scanning unit and the secondary scanning unit, a secondary scanning unit, and an optical that guides the light flux from the secondary scanning unit to the retina of the eye
  • various optical systems and scanning means such as optical systems, it is possible to provide a space to secure the optical path of the light beam that does not interfere with the primary scanning surface, and it is possible to further downsize the device. is there.
  • the first relay optical system 20 including the first reflecting mirror 102, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the like is as shown in FIGS. 6 (b) and 6 (c).
  • the scanning center line F is provided so as to intersect the vertical scanning plane D. Therefore, for example, when the scanning center line and the primary scanning plane intersect, the condensed light flux is diffused, and the diffused light flux is condensed by the condenser mirror and incident on the primary scanning means.
  • various optical systems and scanning means such as an optical system to be used and a relay optical system between the primary scanning means and the secondary scanning means, a space for securing the optical path of the light beam is provided.
  • the device can be downsized.
  • the optical device 100 emits laser light by the first reflecting mirror 102, the galvano mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvano mirror 21a as optical members. Made by folding. These optical members function as reflecting members that reflect laser light.
  • the support structure 50 has an annular shape as will be described later, a support member 51 that supports the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the galvano mirror 21a, and the half mirror 104 and the concave mirror.
  • the holding member 52 as a bottom plate member schematically shown in FIG. 8 is opposed to the holding member 52, which supports the lower force 106 and also holds the lower force of the support member 51 to block the entire lower side of the support member 51.
  • a top plate member (not shown) that closes the entire upper side of the support member 51.
  • the support member 51, the holding member 52, and the top plate member are made of resin-molded resin and have a box shape surrounding the bent beam light.
  • the support member 51 has an annular shape and a plurality of support members 51 so as to form a predetermined angle with each other. Formed as outer surfaces of the provided wall parts 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h and wall parts 51a, 51b, 51c, 51d, 51e, 51f, 51g, 5 lh Wall surfaces 5 la ', 51b', 51c ', 51d', 51e ', 51f', 51g ', 51h.
  • the wall surfaces 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h are the first reflecting mirror 102, the galvanometer mirror 19a, the noof mirror 104, the concave mirror 106, the second It is provided in an annular shape so as to surround the laser beam bent by the reflection mirror 108 and the Galnon mirror 21a.
  • the support member 51 includes a first reflecting mirror 102 on the wall surface 51c 'that is the outer surface of the wall portion 51c, a galvano mirror 19a on the wall surface 51e' that is the outer surface of the wall portion 51e, and the wall portion 51g.
  • the second reflecting mirror 108 is supported on the wall surface 51g ′ which is the outer surface
  • the gallon mirror 21a is supported on the wall surface 51 which is the outer surface of the wall portion 51h.
  • the wall 51c that supports the first reflecting mirror 102 has an opening 51c "that transmits the beam light bent by the first reflecting mirror 102, and is a galvanometer mirror.
  • the wall 51e supporting the 19a has an opening 51e "that transmits the beam light bent by the galvano mirror 19a, and is bent by the second reflecting mirror 108 to the wall 51g supporting the second reflecting mirror 108.
  • An opening 51g "that transmits the beam light is provided, and an opening 51h” that transmits the beam light that is bent by the galvano mirror 21a is provided on the wall 51h that supports the galvano mirror 21a.
  • the support member 51 has a wall surface 5la 'as an incident wall surface on which the light beam is incident on the optical device 100, in other words, the support member 51, so that the incident light is incident.
  • the support member 51 has a wall surface 51d ′ as an exit wall surface from which the beam light is emitted from the optical device 100, in other words, the support member 51, and emits the beam light. 51d ".
  • the incident wall surface 51a ′ and the emission wall surface 51d ′ are disposed so as to face each other. Therefore, the support member 51 is miniaturized and contributes to the miniaturization of the optical device 100.
  • the support member 51 includes a wall surface 51c 'supporting the first reflecting mirror 102 and a wall surface 51e' supporting the galvano mirror 19a as a plurality of adjacent wall surfaces adjacent to the output wall surface 51d '. Yes. For this reason, the light beam is emitted after being bent in the support member 51, which reduces the size of the support member 51 and contributes to the size reduction of the optical device 100. From the viewpoint of downsizing, it is desirable to support the optical member on the adjacent wall surface on both sides of the output wall surface as in the present embodiment, but it is sufficient that the optical member is supported on the adjacent wall surface in at least one side.
  • the support member 51 is erected with respect to the holding member 52 in a direction perpendicular to the running surface by the galvanometer mirror 21a of the horizontal scanning system 21. Therefore, wall 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h, wall 51a ', 51b', 51c ', 51d', 51e ', 51f, 51g', 51h ' Perpendicular to the surface.
  • each of the wall portions 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h is adjacent to a plurality of other wall portions, or another single wall portion, holding member 52. In addition, it is adjacent to and connected to the top plate member.
  • the wall surfaces 51a ', 51b, , 51c, 51d, 51e, 51f, 51g, 51h are all perpendicular to the virtual reference plane formed by the bent beam light.
  • a reference plane is a plane including the beam light when the beam light is scanned at the center in the scanning range of the beam light scanned by the galvanometer mirror 19a of the vertical scanning system 19. Therefore, the vertical scanning system 19 is adjusted so that the scanned light beam is on the same plane when the light beam is scanned at the center in the scanning range of the light beam scanned by the galvanometer mirror 19a.
  • the first reflection mirror 102, the galvano mirror 19a, and the half mirror with reference to the arrangement direction of the wall surfaces 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h. 104, concave mirror 106, second reflecting mirror 108, galvano mirror 21a Is possible.
  • the first reflecting mirror 102, the galvano mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvano mirror 21a are arranged so as to be symmetric in a direction orthogonal to the applied reference plane. ing. As a result, the first reflecting mirror 102, the galvanometer mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvanometer mirror 21a are positioned with high accuracy.
  • the opening 51c " is smaller than the first reflecting mirror 102 supported by the wall 51c.
  • the opening 51g" smaller than the galvanometer mirror 19a supported by the wall 51e is the wall 51g.
  • the opening 51h "which is smaller than the second reflecting mirror 108 supported on the wall is smaller than the galvanometer mirror 21a supported on the wall 51h. Therefore, the wall 51c, the wall 51e, the wall 51g, and the wall 51h are respectively the walls 51c, 51e, 51g corresponding to the peripheries of the opening 51c ", the opening 51e", the opening 51g ", and the opening 51h", respectively.
  • 51h, the edges of the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the galvano mirror 2la are supported.
  • the first reflection mirror 102, the galvano mirror 19a, the second reflection mirror 108, and the galvano mirror 21a are positioned with high accuracy in a stable state. From the standpoint of positioning accuracy, it is sufficient that the wall portion having the opening supports the optical elements supported by the wall at a plurality of points, in other words, at a plurality of points. In particular, the surface corresponding to the periphery of the opening as in this embodiment. It is preferable to support with.
  • the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the galvano mirror 21a are fixed to the wall surfaces 51c ′, 51e, 51g ′, 51h ′ with an adhesive.
  • the wall portion 51x is provided with a rib 53 as positioning means for positioning the optical member ⁇ ⁇ relative to the wall surface 51 ⁇ ′.
  • the rib 53 protrudes from the wall 51 ⁇ ′ by integral molding at a position near the periphery of the opening 51 ⁇ ′′ formed in the wall 51 ⁇ .
  • the rib 53 corresponds to the entire periphery of the optical member ⁇ .
  • the positioning means may be provided at the center of each side edge, or may be provided at the center of the opposite side edge. It may be a recess corresponding to the shape.
  • the optical member ⁇ corresponds to the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the Ganoleno mirror 21a, and the wall ⁇ 51 ⁇ , the wall ⁇ 51c, 51e, 51g , Five
  • the wall 51x corresponds to the wall 51c, 51e, 51g, 51h, and the opening 51x "is the opening 51c, the saddle opening 51e", the opening 51g ", the opening 51h. It corresponds to ".
  • the wall portions 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h have the same thickness, and the first reflecting mirror 102, the galvano mirror 19a, and the second reflecting mirror, which are optical members.
  • the wall portions 5lc, 51e, 51g, 51h supporting the galvanomirror 2la are also the same in thickness, but the thicknesses may be different.
  • the heights of the wall portions 51a, 51b ⁇ 51c ⁇ 51d, 51e, 51f, 51g, 51h are the same as each other, and the first reflecting mirror 102, the galvanometer mirror 19a, and the second reflecting, which are optical members
  • the heights of the walls 51c, 51e, 51g and 51h supporting the mirror 108 and the galvano mirror 21a are also the same as each other.
  • the applied heights are the first reflecting mirror 102, the galvano mirror 19a and the second reflecting mirror 108 which are supported.
  • the galvano mirror 21a may be different in size and shape.
  • the thickness may be varied to correspond to the size and shape of the galvanometer mirror 21a together with the height or instead of the height.
  • each wall surface 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h that is, in the present embodiment, each wall surface 51a, 51b, 51c, 51d 51e, 51f, 51g, 51h
  • the inner surface of J is painted black. This is to prevent ghosts and the like from being generated due to irregular reflection of the light beam.
  • the resin itself constituting the support member 51 may be black.
  • the support member 51, the holding member 52, and the bottom plate member are integrally formed to form a box shape surrounding the bent beam light.
  • the box shape is composed of a plurality of wall portions 51 ⁇ and a holding member 52 forming at least four wall portions.
  • Each of the plurality of wall portions 51x is adjacent to and connected to the other plurality of wall portions 51x, or adjacent to the other single wall portion 51x and the holding member 52. It is a shape that is installed and connected. Therefore, the minimum unit of the box shape is the shape shown in FIG. 8, and the number of wall portions 51x and the shape of the support member 51 are determined according to the number of optical members and the like.
  • any wall 5 lx is integral with a plurality of walls 5 lx, etc., so any wall 5 lx has high accuracy in its formation and improved positioning accuracy of the optical member attached thereto Contribute to.
  • the minimum unit of the box shape that can be applied may include the bottom plate member together with the holding member 52 instead of the holding member 52.
  • Some of the plurality of wall portions 51x may be detachable from the other wall portions 51x.
  • the support member 51 is assembled by integrating the unit including the part of the wall portion 5 lx that is powerful and the unit including the other wall portion 5 lx of the force. If the optical member is integrally attached to the wall portion 5 lx constituting each unit, the optical member can be easily attached to the wall portion 51x.
  • each wall 51x in each unit has high accuracy in its formation. This contributes to improving the positioning accuracy of the optical member attached to the lens.
  • the box-shaped portion includes a plurality of wall portions 51x or a structure including a single wall portion 51x and the holding member 52 or the top plate member.
  • the opening 51x " may have a taper shape whose peripheral edge is expanded toward the inside of the wall 51x. According to this configuration, the opening 51x" The space is reduced, the strength of the support member 51 is improved, and the contact area of the wall surface 51 ⁇ ′ with the optical member ⁇ can be increased, which contributes to improving positioning accuracy.
  • a positioning member such as the rib 53 described above may be provided.
  • the position adjusting means 60 may have a position adjusting means 60 for positioning the optical member ⁇ ⁇ ⁇ ⁇ with respect to the wall surface 51 ⁇ ′.
  • the position adjusting means 60 includes a holder 61 that integrally supports the optical member ⁇ , an attachment member 62 that is integrated with the holder 61 and is integrated with the wall portion 5 lx via the holder 61, A pin 63 is provided for rotating the member 62 to the wall 51x so as to be rotatable, and a screw 63 for fixing the attachment member 62 to the wall 51x.
  • the mounting member 62 is rotated around the pin 63 so that the optical member M occupies a desired position with respect to the wall surface 51 ⁇ ', and then the mounting member 62 is moved to the wall portion by the screw 63.
  • the optical member ⁇ can be accurately positioned at a desired position with respect to the wall surface 51 ⁇ '.
  • the supporting member 51 has the wall portions 51a, 51b, 51c, 51d, 51e, 51f, 5 lg, 5 lh or the wall portion 5 lx.
  • the supporting member 51 is solid. There may be.
  • the outer wall surface of the solid support member 51 forms the wall surface 51a ′, 51b ′, 51c ′, 51d ′, 51e ′, 5lf ′, 51g ′, 51h ′ or the wall surface 51 ⁇ ′.
  • the positioning member such as the rib 53 described above and the position adjusting means 60 can be provided.
  • the support member 51 is made of a transparent resin.
  • the wall surface 51a ', 51b, ⁇ 51c, 51d, 51e, 51f, 51g, 51h, or the wall surface 51 ⁇ ' black in order to make the inner side of the wall surface 51a ', 51b, ⁇ 51c, 51d, 51e, 51f, 51g, 51h, or the wall surface 51 ⁇ ' black, the wall surface 51a ', 51b ', 51c', 51d, 51e, 51f ', 51g', 51h 'or the force to apply the wall surface 51x' to the black wall If enclosed by a black member [substantially this wall surface 51a ', 51b ', 51c', 51d ⁇ 51e ⁇ 51f ⁇ 51g ', 51h, or the inside of the wall 51 ⁇ ' is black.
  • the portion other than the portion corresponding to the opening 51a, the heel opening 51c, the heel opening 51d, the opening 51e ", the opening 51g", the opening 51h "or the opening 51x" is black.
  • the integrally formed support member 51, holding member 52, and top plate member are members that should also be referred to as a casing of the optical device 100, and include a first reflecting mirror 102, a galvano mirror 19a, a half mirror 104, and a concave surface. It is provided as a hollow member so as to surround the entire circumference of the beam light bent by the mirror 106, the second reflecting mirror 108 and the galvanometer mirror 21a.
  • the openings 51a "and 51d" The whole It is desirable to close with a mirror, glass or the like. Closing the aperture 51a "with a half mirror that only allows the light beam to enter the optical device 100 and the support structure 50 contributes not only to dustproofness but also to the above-described deterioration or deterioration of image quality. When the aperture 51d "is closed with a noise mirror, only the beam light is allowed to be emitted out of the support structure 50.
  • the force having both the entrance wall portion and the exit wall portion.
  • the support member is a minimum unit of a box shape, etc. It may be a configuration with only the
  • the vertical scanning system 19 and the horizontal scanning system 21 are the concave mirror 1
  • the condensing mirror such as the concave mirror is provided between the vertical scanning system 19 and the horizontal scanning system 21, and between the horizontal scanning system 21 and the pupil 24.
  • a condensing mirror may not be provided between the horizontal scanning system 21 and the pupil 24, but at least a condensing mirror may be provided between the vertical scanning system 19 and the horizontal scanning system 21.
  • the first relay optical system 20 as described above is adopted as an example of the relay optical system.
  • the present invention is not limited to this, for example, a configuration not including the second reflection mirror 108, etc. Configurations other than those described above may be used.
  • the force provided by the half mirror 104 between the vertical scanning system 19 and the concave mirror 106 is not limited to this.
  • the half mirror 104 is provided between the vertical scanning system 19 and the concave mirror 106. It does not have to be.
  • the half mirror 104 may be provided at another position such as between the concave mirror 106 and the horizontal scanning system 21.
  • a part or all of the relay optical systems such as these are provided on the same plane that intersects the vertical scanning plane including the beam light that is scanned in the vertical direction by the vertical scanning system. It does not have to be done.
  • the force by which the light beam is incident from the direction intersecting the primary scanning plane is not limited to this. For example, the light beam is not incident from the direction intersecting the primary scanning plane. May be.
  • the vertical scanning angle scanned in the vertical direction by the vertical scanning system 19 is set to be smaller than the horizontal scanning angle scanned in the horizontal direction by the horizontal scanning system 21.
  • the vertical scanning angle may be set larger than or the same as the horizontal scanning angle.
  • the light beam is first scanned in the vertical direction by the vertical scanning system 19, and then the beam light is scanned first in the horizontal direction by the horizontal scanning system 21.
  • the present invention is not limited to this.
  • a configuration in which the beam light is first scanned in the horizontal direction by the horizontal scanning system and then the beam light is first scanned in the vertical direction by the vertical scanning system may be used. .
  • the incident beam light is configured to be moved in the vertical direction and the horizontal direction.
  • the present invention is not limited to this.
  • the incident beam light is shifted in the primary direction.
  • the scanning may be performed and the scanning may be performed in a secondary direction intersecting with the primary direction.
  • the concave mirror was employ
  • the optical device as described above is provided, and the light beam modulated in accordance with the image signal is scanned in the primary direction and the secondary direction by the optical device, whereby the eye retina
  • the retinal scanning display 1 (an example of a retinal scanning type image display device) that projects an image on the screen and displays the image has been described.
  • the present invention is not limited to this.
  • the image is projected directly onto the retina of the eye.
  • the optical device as described above is provided, and the image is projected on a screen or the like by scanning the light beam modulated according to the image signal in the primary direction and the secondary direction by the optical scanning device.
  • the present invention may be applied to a screen scanning type image display device for display (an example of an image display device is a laser display).
  • An optical device to which the present invention is applied includes an optical scanning device that scans a laser beam in a laser printer. It can also be applied to other optical devices.
  • the shape of the opening may be a cylindrical shape unlike the rectangular shape of the above-described embodiment.
  • An optical device capable of suppressing an increase in size by bending a light beam with an optical member, and a retinal scanning image display device and a screen scanning image display device using the optical device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

Provided are a optical device (100) that is compact in size and where the accuracy of positioning of optical members is secured, and an image display device (1) having the optical device (100). The optical device (100) bends a light flux by optical members (19a, 21a, 102, 104, 106, 108) and has wall surfaces (51a’, 51b’, 51c’, 51d’, 51e’, 51f’, 51g’, 51h’, 51x’) arranged surrounding the bent light flux.

Description

明 細 書  Specification
光学装置及び画像表示装置  Optical device and image display device
技術分野  Technical field
[0001] 本発明は、光学部材により光束を折り曲げる光学装置及びこれを有する網膜走査 型、スクリーン走査型の画像表示装置に関する。  The present invention relates to an optical device that bends a light beam by an optical member, and a retinal scanning type and screen scanning type image display device having the optical device.
背景技術  Background art
[0002] 従来、画像を表示するための画像表示装置等には、ミラー等の光学部材を備え光 束を折り曲げるための光学装置などが含まれている。光学装置は、かかる光学装置 を支持する支持構造を有しているが、従来の支持構造は、光学部材を下方からいわ ゆる片持ちによって支持するものや、光学部材を上下方向から挟むようにして支持す るものであった。  Conventionally, an image display device or the like for displaying an image includes an optical device that includes an optical member such as a mirror and bends a light flux. The optical device has a support structure that supports the optical device. However, the conventional support structure supports the optical member by a so-called cantilever from below, or supports the optical member so as to be sandwiched from above and below. It was something.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、光学装置においては光学部材の位置決め精度が高い水準で要求さ れるにもかかわらず、光学部材を片持ちによって支持する力かる構造は、その精度を 確保することが困難であるという問題がある。 [0003] However, in an optical device, although the optical member is required to have a high level of positioning accuracy, it is difficult to secure the accuracy of the structure that supports the optical member by cantilevering. There is a problem that.
[0004] 光学部材を上下方向から挟むようにして支持する構造は、光学部材の位置決め精 度は高いものの、光学部材を上下から挟む部材の厚さ分だけ高さ方向の大きさが大 きくならざるを得ず、光学装置の大型化を招 、てしまうと!、う問題がある。 [0004] The structure that supports the optical member so as to be sandwiched from above and below has a high positioning accuracy of the optical member, but the size in the height direction must be increased by the thickness of the member that sandwiches the optical member from above and below. If the optical device is not enlarged and the size of the optical device is increased, there is a problem.
[0005] また、位置決め精度の担保のためには、かかる部材に、光学部材の位置決めを行 なうための突起等を設ける必要がある力 力かる突起等は光を遮ってしまうため、突 起等の大きさ分だけ光学部材の光学的な有効範囲が小さくなる。したがってかかる 有効範囲を十分にとるためには、光学部材の高さを大きくするなどの必要があり、や はり光学部材の大型化を招 、てしまう t 、う問題がある。 [0005] Further, in order to ensure positioning accuracy, it is necessary to provide a protrusion or the like for positioning the optical member on such a member. The effective optical range of the optical member is reduced by the same size. Therefore, in order to obtain such an effective range sufficiently, it is necessary to increase the height of the optical member, which leads to an increase in the size of the optical member.
[0006] 本発明は、上述したような課題に鑑みてなされたものであり、大型化を抑制しつつ 光学部材の位置決め精度を担保する光学装置及びこれを有する画像表示装置を提 供することを目的とする。 課題を解決するための手段 The present invention has been made in view of the above-described problems, and an object thereof is to provide an optical device that secures the positioning accuracy of an optical member while suppressing an increase in size, and an image display device having the optical device. And Means for solving the problem
[0007] 上記のような目的を達成するため、本発明の一つの観点によれば、光学部材により 光束を折り曲げる光学装置であって、折り曲げられた前記光束を囲むように設けられ た壁面を有することを特徴とする光学装置にある。カゝかる構成によれば、光束を折り 畳むようにして光路を形成することで、大型化を抑制することができるとともに、壁面 によって光学部材の位置決め精度を担保することができる、光学特性に優れた光学 装置を提供することができる。  In order to achieve the above object, according to one aspect of the present invention, an optical device that bends a light beam by an optical member, and has a wall surface provided so as to surround the bent light beam. It is in the optical apparatus characterized by the above. According to such a configuration, the optical path is formed by folding the light beam, so that the enlargement can be suppressed and the positioning accuracy of the optical member can be ensured by the wall surface. An apparatus can be provided.
[0008] また、上記の目的を達成するために、本発明の他の観点によれば、前記壁面が、 前記光束が出射する出射壁面と、この出射壁面に隣設された複数の隣設壁面とを有 し、この隣設壁面が前記光学部材を支持するようにした。力かる構成によれば、出射 壁面に隣り合う隣設壁面において支持した光学部材で光束を折り曲げ、出射壁面か らその光束を出射するようにして、光束を折り畳むように光路を形成することで、大型 化をより抑制することができるとともに、壁面によって光学部材の位置決め精度を担 保することができる、光学特性に優れた光学装置を提供することができる。  [0008] In order to achieve the above object, according to another aspect of the present invention, the wall surface includes an exit wall surface from which the light flux exits, and a plurality of adjacent wall surfaces adjacent to the exit wall surface. The adjacent wall surface supports the optical member. According to this configuration, by folding the light beam with the optical member supported on the adjacent wall surface adjacent to the output wall surface and emitting the light beam from the output wall surface, the optical path is formed by folding the light beam, It is possible to provide an optical device with excellent optical characteristics that can further suppress the increase in size and can maintain the positioning accuracy of the optical member by the wall surface.
[0009] また、上記目的を達成するために、本発明の他の観点によれば、前記壁面が、前 記光束が入射する入射壁面と、前記光束が出射する出射壁面との少なくとも一方を 有するようにした。カゝかる構成によれば、光束を入射壁面から入射させることや光束 を出射壁面から出射させるようにして、光束を折り畳むように光路を形成することで、 大型化を抑制することができるとともに、壁面によって光学部材の位置決め精度を担 保することができる、光学特性に優れた光学装置を提供することができる。  [0009] In order to achieve the above object, according to another aspect of the present invention, the wall surface has at least one of an incident wall surface on which the light beam is incident and an output wall surface on which the light beam is emitted. I did it. According to the cover structure, it is possible to suppress the enlargement by forming the optical path so that the light beam is folded by making the light beam enter from the incident wall surface or by emitting the light beam from the output wall surface, It is possible to provide an optical device with excellent optical characteristics that can maintain the positioning accuracy of the optical member by the wall surface.
[0010] また、上記目的を達成するために、本発明の他の観点によれば、前記壁面が、前 記光束が入射する入射壁面と、前記光束が出射する出射壁面とを有し、前記入射壁 面と前記出射壁面とが対向するようにした。力かる構成によれば、互いに対向する入 射壁面力 光束が入射し出射壁面力 光束が出射する態様で光束を折り畳むように 光路を形成することで、大型化をより抑制することができるとともに、壁面によって光 学部材の位置決め精度を担保することができる、光学特性に優れた光学装置を提供 することができる。  [0010] In order to achieve the above object, according to another aspect of the present invention, the wall surface includes an incident wall surface on which the light beam is incident and an output wall surface on which the light beam is emitted, The incident wall surface and the exit wall surface were made to face each other. According to the configuration, the incident wall force light beam facing each other is incident and the output wall force force is formed so that the light beam is folded in such a manner that the light beam is emitted. It is possible to provide an optical device with excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface.
[0011] また、上記目的を達成するために、本発明の他の観点によれば、前記壁面に対す る前記光学部材の位置決めを行なう位置調整手段を有するようにした。かかる構成 によれば、壁面及び位置調整手段によって光学部材の位置決め精度を担保すること ができる、光学特性に優れた光学装置を提供することができる。 [0011] In order to achieve the above object, according to another aspect of the present invention, against the wall surface, And a position adjusting means for positioning the optical member. According to such a configuration, it is possible to provide an optical device having excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface and the position adjusting means.
[0012] また、上記目的を達成するために、本発明の他の観点によれば、前記壁面が、折り 曲げられた前記光束によって形成される基準面に垂直になるようにした。かかる構成 によれば、基準面に垂直な壁面によって光学部材の面倒れを防止すること等により 光学部材の位置決め精度を担保することができる、光学特性に優れた光学装置を提 供することができる。  [0012] In order to achieve the above object, according to another aspect of the present invention, the wall surface is perpendicular to a reference surface formed by the bent light flux. According to such a configuration, it is possible to provide an optical device with excellent optical characteristics that can ensure the positioning accuracy of the optical member by preventing the optical member from being tilted by the wall surface perpendicular to the reference surface.
[0013] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 前記基準面に直交する方向において対称に配設した。力かる構成によれば、基準面 に垂直な壁面及びこの壁面に光学部材を基準面に直交する方向で対称に配設する ことによって光学部材の面倒れをより良好に防止すること等により光学部材の位置決 め精度を担保することができる、光学特性に優れた光学装置を提供することができる  In order to achieve the above object, according to another aspect of the present invention, the optical members are arranged symmetrically in a direction perpendicular to the reference plane. According to the configuration, the optical member can be prevented by better preventing the surface of the optical member from being tilted by arranging the optical member symmetrically in the direction perpendicular to the reference surface on the wall surface perpendicular to the reference surface. It is possible to provide an optical device with excellent optical characteristics that can guarantee the positioning accuracy of
[0014] また、上記目的を達成するために、本発明の他の観点によれば、前記壁面を有す る部材を榭脂製とした。壁面の形成を必要に応じて所望の大きさ、形状に容易に行う ことができ、壁面によって光学部材の位置決め精度を担保することができる、光学特 性に優れた光学装置を提供することができる。 [0014] In order to achieve the above object, according to another aspect of the present invention, the member having the wall surface is made of resin. A wall surface can be easily formed into a desired size and shape as needed, and an optical device with excellent optical characteristics can be provided that can ensure the positioning accuracy of the optical member by the wall surface. .
[0015] また、上記目的を達成するために、本発明の他の観点によれば、前記壁面の内側 を黒色とした。力かる構成によれば、壁面によって光学部材の位置決め精度を担保 することができ、またゴースト現象等を防止できる、光学特性に優れた光学装置を提 供することができる。  [0015] In order to achieve the above object, according to another aspect of the present invention, the inner surface of the wall surface is black. According to the powerful configuration, it is possible to provide an optical device with excellent optical characteristics that can secure the positioning accuracy of the optical member by the wall surface and can prevent a ghost phenomenon or the like.
[0016] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 備え前記光束を走査する第 1の走査系と、前記第 1の走査系と交差する方向に走査 する第 2の走査系とを有し、これらの走査系による走査面の何れか一方が前記壁面と 垂直となるようにした。力かる構成によれば、走査面に垂直な壁面によって光学部材 の位置決め精度を担保することができる、光学特性に優れた光学装置を提供するこ とがでさる。 [0017] また、上記目的を達成するために、本発明の他の観点によれば、前記壁面を形成 し前記光学部材を支持する支持部材を有するようにした。力かる構成によれば、支持 部材により形成された壁面によって光学部材の位置決め精度を担保することができ る、光学特性に優れた光学装置を提供することができる。 In order to achieve the above object, according to another aspect of the present invention, a first scanning system that includes the optical member and scans the light beam, and a direction that intersects the first scanning system And a second scanning system for scanning, and any one of the scanning planes of these scanning systems is perpendicular to the wall surface. According to the powerful configuration, it is possible to provide an optical device with excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface perpendicular to the scanning surface. [0017] In order to achieve the above object, according to another aspect of the present invention, a support member that forms the wall surface and supports the optical member is provided. According to the powerful configuration, it is possible to provide an optical device having excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface formed by the support member.
[0018] また、上記目的を達成するために、本発明の他の観点によれば、前記支持部材を 中実とした。カゝかる構成によれば、強度に優れる中実の支持部材により形成された壁 面によって光学部材の位置決め精度を担保することができる、光学特性に優れた光 学装置を提供することができる。  [0018] In order to achieve the above object, according to another aspect of the present invention, the support member is solid. According to such a configuration, it is possible to provide an optical device having excellent optical characteristics that can ensure the positioning accuracy of the optical member by the wall surface formed by the solid support member having excellent strength.
[0019] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 前記壁面に支持するようにした。力かる構成によれば、強度に優れる中実の支持部 材により形成された壁面によって光学部材を精度良く位置決めできる、光学特性に 優れた光学装置を提供することができる。  In order to achieve the above object, according to another aspect of the present invention, the optical member is supported on the wall surface. According to the powerful configuration, it is possible to provide an optical device having excellent optical characteristics, in which the optical member can be accurately positioned by the wall surface formed by the solid support member having excellent strength.
[0020] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 支持した前記壁面に同光学部材を係合させて位置決めするための位置決め手段を 有するようにした。力かる構成によれば、強度に優れる中実の支持部材によって形成 された壁面に、位置決め手段よつて光学部材をさらに精度良く位置決めできる、光学 装置を提供することができる。  [0020] In order to achieve the above object, according to another aspect of the present invention, there is provided positioning means for engaging and positioning the optical member on the wall surface supporting the optical member. did. According to the strong configuration, it is possible to provide an optical device capable of positioning the optical member with higher accuracy by the positioning means on the wall surface formed by the solid support member having excellent strength.
[0021] また、上記目的を達成するために、本発明の他の観点によれば、前記支持部材を 保持する保持部材を有し、前記支持部材が前記壁面をその外面とする壁部を有する ようにした。力かる構成によれば、大型化を抑制することができるとともに、保持部材 で保持された支持部材の壁部により形成された壁面によって光学部材の位置決め精 度を担保することができる、光学特性に優れた光学装置を提供することができる。  [0021] In order to achieve the above object, according to another aspect of the present invention, there is provided a holding member for holding the support member, and the support member has a wall portion having the wall surface as an outer surface thereof. I did it. According to the powerful configuration, it is possible to suppress an increase in size, and it is possible to secure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the support member held by the holding member. An excellent optical device can be provided.
[0022] また、上記目的を達成するために、本発明の他の観点によれば、前記壁部を複数 備え、その何れもが他の複数の壁部又は前記保持部材と隣設されるようにした。かか る構成によれば、大型化を抑制することができるとともに、保持部材で保持された、強 度の高い支持部材の壁部により形成された壁面によって光学部材の位置決め精度 を担保することができる、光学特性に優れた光学装置を提供することができる。  [0022] In order to achieve the above object, according to another aspect of the present invention, a plurality of the wall portions are provided, all of which are adjacent to the other plurality of wall portions or the holding member. I made it. According to such a configuration, it is possible to suppress an increase in size, and it is possible to ensure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the high-strength support member held by the holding member. An optical device having excellent optical characteristics can be provided.
[0023] また、上記目的を達成するために、本発明の他の観点によれば、前記壁部と前記 保持部材とにより、折り曲げられた前記光束を囲む箱形状を構成するようにした。 カゝる構成によれば、大型化を抑制することができるとともに、保持部材で保持された、 強度の高い支持部材の壁部により形成された壁面によって光学部材の位置決め精 度をさらに担保することができる、光学特性により優れた光学装置を提供することが できる。 [0023] In order to achieve the above object, according to another aspect of the present invention, the wall portion and the The holding member constitutes a box shape surrounding the bent light flux. According to the configuration, the increase in size can be suppressed, and the positioning accuracy of the optical member can be further secured by the wall surface formed by the wall portion of the supporting member having high strength held by the holding member. It is possible to provide an optical device that is superior in optical characteristics.
[0024] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 前記壁部に支持するようにした。力かる構成によれば、保持部材で保持された支持 部材の壁部により形成された壁面によって光学部材を精度良く位置決めできる、光 学特性に優れた光学装置を提供することができる。  In order to achieve the above object, according to another aspect of the present invention, the optical member is supported on the wall portion. According to this configuration, it is possible to provide an optical device having excellent optical characteristics that can accurately position the optical member by the wall surface formed by the wall portion of the support member held by the holding member.
[0025] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 支持した前記壁部に同光学部材を係合させて位置決めするための位置決め手段を 有するようにした。力かる構成によれば、保持部材で保持された支持部材の壁部によ り形成された壁面に位置決め手段によって光学部材をさらに精度良く位置決めでき る、光学特性にさらに優れた光学装置を提供することができる。  [0025] In order to achieve the above object, according to another aspect of the present invention, there is provided positioning means for engaging and positioning the optical member with the wall portion supporting the optical member. I made it. According to the powerful configuration, an optical device having further excellent optical characteristics can be provided in which the optical member can be positioned with higher accuracy by the positioning means on the wall surface formed by the wall portion of the support member held by the holding member. be able to.
[0026] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 支持した前記壁部の厚み及び Z又は高さを、支持した前記光学素子に応じて設定 するようにした。カゝかる構成によれば、保持部材で保持された支持部材の壁部により 形成された壁面によって、光学部材を、その形状や大きさに応じて精度良く位置決め できる、光学特性に優れた光学装置を提供することができる。  [0026] In order to achieve the above object, according to another aspect of the present invention, the thickness and Z or height of the wall portion supporting the optical member are set according to the optical element supported. I tried to do it. According to such a configuration, an optical device having excellent optical characteristics that can accurately position an optical member according to its shape and size by a wall surface formed by a wall portion of a support member held by a holding member. Can be provided.
[0027] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 支持した前記壁部の厚みを、前記光束の光路長が所望の光路長となるように設定し た。カゝかる構成によれば、保持部材で保持された支持部材の壁部により形成された 壁面によって光学部材を精度良ぐ治具等を用いることなく所望の光路長を形成する ように位置決めできる、光学特性に優れた光学装置を提供することができる。  In order to achieve the above object, according to another aspect of the present invention, the thickness of the wall portion supporting the optical member is set so that the optical path length of the light flux becomes a desired optical path length. Set. According to such a configuration, the wall surface formed by the wall portion of the support member held by the holding member can be positioned so as to form a desired optical path length without using a jig or the like that makes the optical member accurate. An optical device having excellent optical characteristics can be provided.
[0028] また、上記目的を達成するために、本発明の他の観点によれば、前記光学部材を 支持した前記壁部が、その外側の前記壁面に同光学部材を支持しているとともに、 同光学部材により折り曲げられる前記光束を透過する開口を有するようにした。かか る構成によれば、保持部材で保持された支持部材の壁部により形成された、光束を 透過する開口を有する壁面によって、光学部材を、精度良く且つ容易に位置決めで きる、光学特性に優れた光学装置を提供することができる。 [0028] In order to achieve the above object, according to another aspect of the present invention, the wall portion supporting the optical member supports the optical member on the outer wall surface, and An opening that transmits the light beam bent by the optical member is provided. According to such a configuration, the luminous flux formed by the wall portion of the support member held by the holding member is reduced. It is possible to provide an optical device having excellent optical characteristics, in which an optical member can be positioned accurately and easily by a wall surface having a transparent opening.
[0029] また、上記目的を達成するために、本発明の他の観点によれば、前記壁部の外側 の前記壁面に支持された前記光学部材が前記光束を反射する反射部材であるよう にした。カゝかる構成によれば、保持部材で保持された支持部材の壁部により形成さ れた、反射部材である光学部材への入反射光を透過する開口を有する壁面によって 、反射部材としての光学部材を、精度良く且つ容易に位置決めできる、光学特性に 優れた光学装置を提供することができる。  In order to achieve the above object, according to another aspect of the present invention, the optical member supported by the wall surface outside the wall portion is a reflecting member that reflects the light flux. did. According to this configuration, the optical surface as the reflecting member is formed by the wall surface having the opening that transmits the incident / reflected light to the optical member that is the reflecting member, which is formed by the wall portion of the supporting member held by the holding member. It is possible to provide an optical device excellent in optical characteristics, which can accurately and easily position a member.
[0030] また、上記目的を達成するために、本発明の他の観点によれば、前記開口の周縁 力 この開口を有する前記壁部の内側に向けて拡開したテーパー形状をなすように した。カゝかる構成によれば、保持部材で保持された支持部材の壁部により形成され た、光束を透過する開口であって、その周縁がテーパー形状であることにより壁部の 強度を大きくすることができる開口を有する壁面によって、光学部材を、さらに精度良 く且つ容易に位置決めできる、光学特性にさらに優れた光学装置を提供することが できる。  [0030] Further, in order to achieve the above object, according to another aspect of the present invention, the peripheral force of the opening is formed to have a tapered shape that is expanded toward the inside of the wall portion having the opening. . According to the construction, the opening that is formed by the wall portion of the support member held by the holding member and transmits the light beam, and its peripheral edge is tapered so that the strength of the wall portion is increased. It is possible to provide an optical device with further excellent optical characteristics in which the optical member can be positioned more accurately and easily by the wall surface having the opening that can be formed.
[0031] また、上記目的を達成するために、本発明の他の観点によれば、前記開口を有す る前記壁部が、支持した前記光学部材を複数箇所で支持するようにした。かかる構 成によれば、保持部材で保持された支持部材の壁部により形成された、光束を透過 する開口を有する壁面によって、光学部材を複数個所で支持することで、さらに精度 良く且つ容易に位置決めできる、光学特性にさらに優れた光学装置を提供すること ができる。  [0031] In order to achieve the above object, according to another aspect of the present invention, the wall portion having the opening supports the supported optical member at a plurality of locations. According to such a configuration, the optical member is supported at a plurality of locations by the wall surface having the opening that transmits the light beam, which is formed by the wall portion of the support member held by the holding member, so that it can be performed more accurately and easily. It is possible to provide an optical device that can be positioned and has further excellent optical characteristics.
[0032] また、上記目的を達成するために、本発明の他の観点によれば、前記開口力 同 開口を有する前記壁部により支持される前記光学部材より小さくなるようにした。かか る構成によれば、保持部材で保持された支持部材の壁部により形成された、光束を 確実に透過する開口を有する壁面によって、光学部材を、精度良く且つ容易に位置 決めできる、光学特性に優れた光学装置を提供することができる。  In order to achieve the above object, according to another aspect of the present invention, the opening force is made smaller than the optical member supported by the wall portion having the opening. According to such a configuration, the optical member can be accurately and easily positioned by the wall surface having the opening that reliably transmits the light beam, which is formed by the wall portion of the support member held by the holding member. An optical device having excellent characteristics can be provided.
[0033] また、上記目的を達成するために、本発明の他の観点によれば、前記壁部が、他 の前記壁部に着脱可能とした。力かる構成によれば、大型化を抑制することができる とともに、保持部材で保持された、強度の高い支持部材の壁部により形成された壁面 によって光学部材の位置決め精度を担保することができる、組み立て容易で光学特 性に優れた光学装置を提供することができる。 [0033] In order to achieve the above object, according to another aspect of the present invention, the wall portion can be attached to and detached from the other wall portion. According to the powerful configuration, the enlargement can be suppressed. In addition, an optical device that is easy to assemble and has excellent optical characteristics that can secure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the support member having high strength that is held by the holding member. Can do.
[0034] また、上記目的を達成するために、本発明の他の観点によれば、前記他の前記壁 部に着脱可能な前記壁部を含む第 1の箱状部と、前記他の前記壁部を含む第 2の 箱状部とを有し、第 1の箱状部が第 2の箱状部に着脱可能とした。力かる構成によれ ば、大型化を抑制することができるとともに、保持部材で保持された、強度の高い支 持部材の壁部により形成された壁面によって光学部材の位置決め精度を担保するこ とができる、各部の強度が高 、ことで光学部材の位置決め精度を高 、レベルで担保 可能であり、組み立て容易で光学特性に優れた光学装置を提供することができる。  [0034] In order to achieve the above object, according to another aspect of the present invention, a first box-shaped part including the wall part detachably attached to the other wall part, and the other A second box-shaped portion including a wall portion, and the first box-shaped portion is attachable to and detachable from the second box-shaped portion. According to the strong structure, the enlargement can be suppressed, and the positioning accuracy of the optical member can be secured by the wall surface formed by the wall portion of the supporting member having a high strength that is held by the holding member. Since the strength of each part is high, the positioning accuracy of the optical member can be secured at a high level, and an optical device that is easy to assemble and has excellent optical characteristics can be provided.
[0035] また、上記目的を達成するために、本発明の他の観点によれば、折り曲げられた前 記光束の全周囲を囲むように少なくとも前記壁部と前記保持部材とを備えるようにし た。力かる構成によれば、大型化を抑制することができるとともに、保持部材で保持さ れた、強度の高い支持部材の壁部により形成された壁面によって光学部材の位置決 め精度を担保することができ、また壁部を環状としたことで迷光が外部に漏れることが なぐ特にこれを網膜走査型の画像表示装置に搭載した場合に予期せぬ光が観察 者の眼に入射して観察者が認識する画像の画質を劣化ないし低下させることを防止 でき、光学特性に優れた光学装置を提供することができる。  [0035] Further, in order to achieve the above object, according to another aspect of the present invention, at least the wall portion and the holding member are provided so as to surround the entire circumference of the bent light beam. . According to the powerful configuration, it is possible to suppress an increase in size and to ensure the positioning accuracy of the optical member by the wall surface formed by the wall portion of the supporting member having high strength that is held by the holding member. In addition, stray light does not leak to the outside due to the annular wall, especially when this is mounted on a retinal scanning image display device, unexpected light is incident on the observer's eyes. It is possible to prevent the image quality of the image recognized by the camera from being deteriorated or lowered, and to provide an optical device having excellent optical characteristics.
[0036] また、上記目的を達成するために、本発明の他の観点によれば、眼の網膜上に前 記光束によって形成される画像を投影表示する網膜走査型の画像表示装置であつ て、上記いずれか一の光学装置を備えるようにした。力かる構成によれば、光束を折 り畳むようにして光路を形成することで、大型化を抑制することができるとともに、壁面 によって光学部材の位置決め精度を担保することができる、光学特性に優れた、網 膜走査型の画像表示装置にとって特に優れた特性を備えた画像表示装置を提供す ることがでさる。  In order to achieve the above object, according to another aspect of the present invention, there is provided a retinal scanning type image display apparatus that projects and displays an image formed by the light beam on the retina of an eye. Any one of the optical devices described above is provided. According to the powerful configuration, the optical path is formed by folding the light beam, so that the enlargement can be suppressed, and the positioning accuracy of the optical member can be ensured by the wall surface. It is possible to provide an image display device having particularly excellent characteristics for a network scanning image display device.
[0037] また、上記目的を達成するために、本発明の他の観点によれば、スクリーン上に前 記光束によって形成される画像を投影表示するスクリーン走査型の画像表示装置で あって、上記いずれか一の光学装置を備えるようにした。力かる構成によれば、光束 を折り畳むようにして光路を形成することで、大型化を抑制することができるとともに、 壁面によって光学部材の位置決め精度を担保することができる、光学特性に優れた 、網膜走査型の画像表示装置にとって優れた特性を備えた画像表示装置を提供す ることがでさる。 [0037] Further, in order to achieve the above object, according to another aspect of the present invention, there is provided a screen scanning type image display device that projects and displays an image formed by the light beam on a screen. Any one optical device was provided. According to the powerful configuration, the luminous flux For the retinal scanning image display device with excellent optical characteristics, the optical path can be folded so that the enlargement can be suppressed and the positioning accuracy of the optical member can be secured by the wall surface. An image display device having excellent characteristics can be provided.
発明の効果  The invention's effect
[0038] 本発明によれば、光学部材により光束を折り曲げる光学装置であって、折り曲げら れた前記光束を囲むように設けられた壁面を有することを特徴とする光学装置にある ので、光束を折り畳むようにして光路を形成することで、大型化を抑制することができ るとともに、壁面によって光学部材の位置決め精度を担保することができる、光学特 性に優れた光学装置、及び、この光学装置を用いた画像表示装置を提供することが できる。  [0038] According to the present invention, there is provided an optical device that bends a light beam by an optical member and has a wall surface provided so as to surround the bent light beam. By forming the optical path so as to be folded, it is possible to suppress an increase in size, and to ensure the positioning accuracy of the optical member by the wall surface, and an optical device having excellent optical characteristics, and the optical device An image display device using can be provided.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]本実施形態における画像表示装置としての網膜走査型の画像表示装置を示す 概略構成図である。  FIG. 1 is a schematic configuration diagram showing a retinal scanning type image display device as an image display device in the present embodiment.
[図 2]本実施形態におけるビーム光の走査態様を示す概略図である。  FIG. 2 is a schematic view showing a scanning mode of beam light in the present embodiment.
[図 3]本実施形態における光学系とレーザ光の光路とを示すとともに支持部材の構成 を示す平面図である。  FIG. 3 is a plan view showing an optical system and an optical path of laser light in the present embodiment and a configuration of a support member.
[図 4]本実施形態における光学系とレーザ光の光路とを示すとともに支持部材の構成 を示す斜視図である。  FIG. 4 is a perspective view showing an optical system and an optical path of laser light in the present embodiment and a configuration of a support member.
[図 5]本実施形態における光学系とレーザ光の光路とを示すとともに支持部材の構成 を示す斜視図である。  FIG. 5 is a perspective view showing an optical system and an optical path of a laser beam in the present embodiment and a configuration of a support member.
[図 6]本実施形態における光学系とレーザ光の光路とを示す図である。  FIG. 6 is a diagram showing an optical system and an optical path of laser light in the present embodiment.
[図 7]位置決め手段の構成を示す側断面図である。  FIG. 7 is a side sectional view showing a configuration of positioning means.
[図 8]箱形状の斜視図である。  FIG. 8 is a box-shaped perspective view.
[図 9]壁部に形成された開口部の周縁が壁部の内側に向けて拡開した構成を示す側 断面図である。  FIG. 9 is a side cross-sectional view showing a configuration in which the peripheral edge of the opening formed in the wall is expanded toward the inside of the wall.
[図 10]位置調整手段の構成を示す平面図である。  FIG. 10 is a plan view showing the configuration of the position adjusting means.
符号の説明 [0040] 1 画像表示装置 Explanation of symbols [0040] 1 image display device
19 第 1の走査系  19 First scan system
19a, 21a, 102、 104、 106、 108、 M 光学部材、反射部材  19a, 21a, 102, 104, 106, 108, M Optical member, Reflective member
21 第 2の走査系  21 Second scanning system
24 瞳孔  24 pupil
51 支持部材  51 Support member
51a、 51b、 51c、 51d、 51e、 51f、 51g、 51h、 51x 壁部  51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h, 51x Wall
51a' 入射壁面  51a 'Incident wall
51c' 隣設壁面  51c 'Adjacent wall
51d' 入射壁面  51d 'Incident wall
51e' 隣設壁面 51e 'Adjacent wall
Figure imgf000011_0001
51x' 壁面
Figure imgf000011_0001
51x 'wall
51a,,、 51c,,、 51d,,、 51e,,、 51g,,、 51h,,、 51x 開口 51a, ..., 51c, ..., 51d, ..., 51e, ..., 51g, ..., 51h, ..., 51x opening
52 保持部材  52 Holding member
53 位置決め手段  53 Positioning means
60 位置調整手段  60 Position adjustment means
100 光学装置  100 optics
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 以下に、本発明に好適な実施形態を図面に基づいて説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0042] [画像表示装置の構成]  [0042] [Configuration of image display apparatus]
以下、本発明に係る画像表示装置の一実施の形態について図面を用いて説明す る。まず、本発明に係る画像表示装置の一例である網膜走査型ディスプレイ 1の構成 について図 1を用いて説明する。  Hereinafter, an embodiment of an image display device according to the present invention will be described with reference to the drawings. First, the configuration of a retinal scanning display 1 that is an example of an image display device according to the present invention will be described with reference to FIG.
[0043] 図 1に示すように、網膜走査型ディスプレイ 1には、外部から供給される映像信号を 処理するための光源ユニット部 2が設けられている。光源ユニット部 2には、外部から の映像信号が入力され、それに基づいて映像を合成するための要素となる各信号を 発生する映像信号供給回路 3が設けられ、この映像信号供給回路 3から映像信号 4 、垂直同期信号 5、及び、水平同期信号 6が出力される。また、光源ユニット部 2には 、映像信号供給回路 3から映像信号 4として伝達される赤 (R) ,緑 (G) ,青 (B)の各 映像信号をもとにそれぞれ強度変調されたレーザ光を出射するように、光源としての Rレーザ 13, Gレーザ 12, Bレーザ 11を、それぞれ駆動するための Rレーザドライバ 10, Gレーザドライバ 9, Bレーザドライバ 8が設けられている。さらに、各レーザより出 射されたレーザ光を平行光にコリメートするように設けられたコリメート光学系 14と、そ れぞれコリメートされたレーザ光を合波するダイクロイツクミラー 15と、合波されたレー ザ光を光ファイバ 17に導く結合光学系 16とが設けられている。尚、 Rレーザ 13, Gレ 一ザ 12, Bレーザ 11として、レーザダイオード等の半導体レーザや固体レーザを利 用してもよい。尚、本実施形態における光源ユニット部 2は、少なくとも 1つの光源と、 当該光源力 出射される光束を画像信号に応じて強度変調する変調手段の一例に 相当する。 As shown in FIG. 1, the retinal scanning display 1 is provided with a light source unit 2 for processing a video signal supplied from the outside. The light source unit 2 is provided with a video signal supply circuit 3 that receives a video signal from the outside and generates each signal as an element for synthesizing the video based on the video signal. Signal 4, vertical synchronization signal 5, and horizontal synchronization signal 6 are output. The light source unit 2 has The light source emits laser light whose intensity is modulated based on the red (R), green (G), and blue (B) video signals transmitted from the video signal supply circuit 3 as the video signal 4. R laser driver 10, G laser driver 9, and B laser driver 8 for driving the R laser 13, the G laser 12, and the B laser 11 are provided. Furthermore, a collimating optical system 14 provided so as to collimate the laser light emitted from each laser into parallel light, and a dichroic mirror 15 for multiplexing the collimated laser lights are combined. A coupling optical system 16 for guiding the laser light to the optical fiber 17 is provided. A semiconductor laser such as a laser diode or a solid-state laser may be used as the R laser 13, the G laser 12, and the B laser 11. Note that the light source unit 2 in the present embodiment corresponds to an example of at least one light source and a modulation unit that modulates the intensity of the light beam emitted from the light source power according to an image signal.
[0044] また、網膜走査型ディスプレイ 1は、光源ユニット部 2から伝搬された光束としてのレ 一ザ光を後述する光学装置 100に導くコリメート光学系 18と、コリメート光学系 18に よって導かれたレーザ光を走査する光学装置 100と、光学装置 100によって走査さ れたレーザ光を観察者の瞳孔 24に導く第 2リレー光学系を有している。  In addition, the retinal scanning display 1 is guided by a collimating optical system 18 that guides laser light as a light beam propagated from the light source unit 2 to an optical device 100 described later, and the collimating optical system 18. An optical device 100 that scans the laser light, and a second relay optical system that guides the laser light scanned by the optical device 100 to the pupil 24 of the observer.
[0045] 光学装置 100は、コリメート光学系 18によって導かれコリメートされたレーザ光を、 ガルバノミラー 19aを利用して垂直方向に走査する第 1の走査系としての垂直走査系 19と、垂直走査系 19によって走査されたレーザ光を第 2の走査系としての水平走査 系 21に導く第 1リレー光学系 20と、垂直走査系 19に走査され、第 1リレー光学系 20 を介して入射されたレーザ光を、ガルバノミラー 21aを利用して水平方向に走査する 水平走査系 21と、ガルバノミラー 19a、第 1リレー光学系 20、ガルバノミラー 21aを支 持する図 3に示す支持構造 50とを有して 、る。  The optical device 100 includes a vertical scanning system 19 as a first scanning system that scans the collimated laser light guided by the collimating optical system 18 in the vertical direction using a galvano mirror 19a, and a vertical scanning system. The first relay optical system 20 that guides the laser beam scanned by 19 to a horizontal scanning system 21 as a second scanning system, and a laser that is scanned by the vertical scanning system 19 and incident via the first relay optical system 20 It has a horizontal scanning system 21 that scans light in the horizontal direction using a galvano mirror 21a, and a support structure 50 shown in FIG. 3 that supports the galvano mirror 19a, the first relay optical system 20, and the galvano mirror 21a. And
[0046] 第 1リレー光学系 20は、垂直走査系 19のガルバノミラー 19aと、水平走査系 21の ガルバノミラー 21aとが共役となるように、また、第 2リレー光学系 22は、ガルバノミラ 一 21aと、観察者の瞳孔 24とが共役となるように、各々設けられている。第 2リレー光 学系 22は、光学装置 100の水平走査系 21によって走査されたレーザ光を観察者の 瞳孔 24に入射させるものである。  [0046] The first relay optical system 20 is configured such that the galvano mirror 19a of the vertical scanning system 19 and the galvano mirror 21a of the horizontal scanning system 21 are conjugate, and the second relay optical system 22 is galvano mirror 21a. And the pupil 24 of the observer are provided so as to be conjugate with each other. The second relay optical system 22 makes the laser light scanned by the horizontal scanning system 21 of the optical device 100 enter the pupil 24 of the observer.
[0047] 尚、具体的な一例としては、垂直走査系 19は、表示すべき画像の 1走査線ごとに、 レーザビームを垂直方向に垂直走査する垂直走査(1次走査の一例)を行う光学系 である。また、垂直走査系 19は、レーザビームを垂直方向に走査するガルバノミラー 19aと、そのガルバノミラー 19aの駆動制御を行う垂直走査制御回路 19cとを備えて いる。 [0047] As a specific example, the vertical scanning system 19 is provided for each scanning line of an image to be displayed. This is an optical system that performs vertical scanning (an example of primary scanning) that vertically scans the laser beam in the vertical direction. The vertical scanning system 19 includes a galvano mirror 19a that scans the laser beam in the vertical direction, and a vertical scanning control circuit 19c that controls driving of the galvano mirror 19a.
[0048] これに対し、水平走査系 21は、表示すべき画像の 1フレームごとに、レーザビーム を最初の走査線から最後の走査線に向かって水平に走査する水平走査( 2次走査の 一例)を行う光学系である。また、水平走査系 21は、水平走査するガルバノミラー 21 aと、そのガルバノミラー 21aの駆動制御を行う水平走査制御回路 21cとを備えている 。よって、垂直走査系 19と水平走査系 21とは互いに交差する方向に走査を行うよう になっている。  On the other hand, the horizontal scanning system 21 performs horizontal scanning (an example of secondary scanning) in which a laser beam is scanned horizontally from the first scanning line to the last scanning line for each frame of an image to be displayed. ). Further, the horizontal scanning system 21 includes a galvano mirror 21a that performs horizontal scanning, and a horizontal scanning control circuit 21c that controls driving of the galvano mirror 21a. Therefore, the vertical scanning system 19 and the horizontal scanning system 21 perform scanning in a direction crossing each other.
[0049] 垂直走査系 19は、水平走査系 21より高速にすなわち高周波数でレーザビームを 走査するように設計されている。また、垂直走査系 19は、ビーム光を垂直走査角度 で走査させ、水平走査系 21は、ビーム光を水平走査角度で走査させるが、本実施形 態においては、垂直走査角度が、水平走査角度よりも小さく設定されている。これは 、図 2 (a)に示すように、画像の表示範囲 152が、水平方向 Xよりも垂直方向 Yのほう が短いため、ビーム光の走査軌跡 sも、水平方向 Xよりも垂直方向 Yのほうが短くなる ためであり、よって、垂直方向への垂直走査角度が、水平方向への水平走査角度よ りも小さくなる。このため、図 2 (b)に示すように、先に走査角度を大きくしなければな らな!、水平方向に走査させた後に、走査角度が小さくて済む垂直方向に走査させ、 ビーム光を走査させる構成と比べて、図 2 (a)に示すように、先に走査角度が小さくて 済む垂直方向に走査させた後に、走査角度を大きくしなければならな 、水平方向に 走査させたほうが、省スペース化を図ることができる。  The vertical scanning system 19 is designed to scan the laser beam at a higher speed, that is, at a higher frequency than the horizontal scanning system 21. Further, the vertical scanning system 19 scans the beam light at the vertical scanning angle, and the horizontal scanning system 21 scans the beam light at the horizontal scanning angle. In this embodiment, the vertical scanning angle is the horizontal scanning angle. Is set smaller than. This is because, as shown in FIG. 2 (a), the display range 152 of the image is shorter in the vertical direction Y than in the horizontal direction X, so the scanning trajectory s of the light beam is also higher in the vertical direction Y than in the horizontal direction X. This is because the vertical scanning angle in the vertical direction is smaller than the horizontal scanning angle in the horizontal direction. For this reason, as shown in FIG. 2 (b), the scanning angle must first be increased! After scanning in the horizontal direction, scanning is performed in the vertical direction where the scanning angle is small, and the beam light is Compared to the scanning configuration, as shown in Fig. 2 (a), after scanning in the vertical direction, which requires a small scanning angle, the scanning angle must be increased. , Space can be saved.
[0050] 尚、本実施形態においては、ビーム光を高速で走査させる走査系(高速走査系)と して、走査角度が小さい垂直走査系 19を、ビーム光を低速で走査させる走査系(低 速走査系)として、走査角度が大きい水平走査系 21を採用した力 例えば NTSC (N ational Television Standards Committee)などの通常の映像信号は水平走 查が高速走査に該当するため、図示はしないが、映像信号供給回路 3で水平走査が 低速走査に、垂直走査が高速走査になるように映像信号をデジタルデータ化しデー タ変換している。もちろん、映像信号供給回路 3に入力される映像信号が、垂直走査 系 19が高速走査であるような信号形式であると想定すれば、上述した変換処理は特 に必要とせず実施可能である。 In the present embodiment, the vertical scanning system 19 having a small scanning angle is used as the scanning system (high-speed scanning system) that scans the beam light at high speed, and the scanning system (low-scanning system) that scans the beam light at low speed. The power of adopting the horizontal scanning system 21 with a large scanning angle as a high-speed scanning system) For example, a normal video signal such as NTSC (National Television Standards Committee) is not shown because the horizontal scanning corresponds to high-speed scanning. In the video signal supply circuit 3, the video signal is converted into digital data so that the horizontal scan is at low speed and the vertical scan is at high speed. Conversion. Of course, if it is assumed that the video signal input to the video signal supply circuit 3 has a signal format such that the vertical scanning system 19 performs high-speed scanning, the above-described conversion processing can be performed without any particular necessity.
[0051] 尚、本実施形態においては、ビーム光を高速で走査させる走査系(高速走査系)と して、走査角度が小さい垂直走査系 19を、ビーム光を低速で走査させる走査系(低 速走査系)として、走査角度が大きい水平走査系 21を採用したが、これに限らず、例 えば、ビーム光を高速で走査させる走査系(高速走査系)として、走査角度が大きい 水平走査系 21を、ビーム光を低速で走査させる走査系(低速走査系)として、走査角 度が小さ!/ヽ垂直走査系 19を採用してもょ ヽ。 In the present embodiment, the vertical scanning system 19 with a small scanning angle is used as the scanning system (high-speed scanning system) that scans the beam light at high speed, and the scanning system (low-scanning system) that scans the beam light at low speed. As the high-speed scanning system, the horizontal scanning system 21 having a large scanning angle is adopted. However, the present invention is not limited to this. For example, the scanning system for scanning light at high speed (high-speed scanning system) has a large scanning angle. As a scanning system (low-speed scanning system) that scans the light beam 21 at a low speed, the vertical scanning system 19 with a small scanning angle may be adopted.
[0052] つまり、垂直方向(1次方向の一例)に走査される垂直走査角度(1次走査角度の一 例)は、水平方向(2次方向の一例)に走査される水平走査角度(2次走査角度の一 例)よりも小さく設定されているので、垂直方向に走査するビーム光の走査幅を、水平 方向に走査するビーム光の走査幅より小さくすることができるため、走査されるビーム 光の光路を考慮すると、垂直走査系 19に向力 ビーム光を導くコリメート光学系 18、 垂直走査系 19、垂直走査系 19から水平走査系 21に向かうビーム光を導く第 1リレー 光学系 20などが設けられるスペースを小さくすることができ、より一層、装置の小型化 が可能である。 That is, the vertical scanning angle (an example of the primary scanning angle) scanned in the vertical direction (an example of the primary direction) is the horizontal scanning angle (an example of the secondary direction) (2 Since the scanning width of the beam light scanned in the vertical direction can be made smaller than the scanning width of the beam light scanned in the horizontal direction, the scanning beam is scanned. Considering the optical path of light, collimating optical system 18 that guides the directional beam light to vertical scanning system 19, vertical scanning system 19, first relay optical system 20 that guides the beam light from vertical scanning system 19 to horizontal scanning system 21, etc. The space in which the space is provided can be reduced, and the apparatus can be further reduced in size.
[0053] また、垂直走査系 19,水平走査系 21は、図 1に示すように、各々映像信号供給回 路 3に接続され、映像信号供給回路 3より出力される垂直同期信号 5,水平同期信号 6にそれぞれ同期してレーザ光を走査するように構成されて 、る。  In addition, as shown in FIG. 1, the vertical scanning system 19 and the horizontal scanning system 21 are connected to the video signal supply circuit 3 and output from the video signal supply circuit 3, respectively. The laser beam is scanned in synchronization with each of the signals 6.
[0054] 尚、本実施形態における垂直走査系 19及び水平走査系 21などは、入射した光束 を、 1次方向及びその 1次方向に略垂直な 2次方向に走査させることによって、前記 フレームを形成する光走査装置の一例である。  Note that the vertical scanning system 19 and the horizontal scanning system 21 in this embodiment scan the frame by scanning the incident light beam in the primary direction and the secondary direction substantially perpendicular to the primary direction. It is an example of the optical scanning device to form.
[0055] 尚、本実施形態における垂直走査系 19は、入射されるビーム光を垂直方向に走査 させる 1次走査手段の一例に相当し、本実施形態における水平走査系 21は、その垂 直方向に走査されたビーム光を、水平方向に走査させる 2次走査手段の一例に相当 する。また、本実施形態における第 1リレー光学系 20は、中継光学系(中継光学手段 )の一例に相当する。 [0056] 次に、本発明の一実施形態の網膜走査型ディスプレイ 1が、外部からの映像信号 を受けてから、観察者の網膜上に映像を投影するまでの過程について図 1を用いて 説明する。 Note that the vertical scanning system 19 in this embodiment corresponds to an example of a primary scanning unit that scans incident beam light in the vertical direction, and the horizontal scanning system 21 in this embodiment has a vertical direction. This corresponds to an example of secondary scanning means for scanning the light beam scanned in the horizontal direction. Further, the first relay optical system 20 in the present embodiment corresponds to an example of a relay optical system (relay optical means). Next, the process from when the retinal scanning display 1 according to the embodiment of the present invention receives an image signal from the outside until the image is projected onto the retina of the observer will be described with reference to FIG. To do.
[0057] 図 1に示すように、本実施形態の網膜走査型ディスプレイ 1では、光源ユニット部 2 に設けられた映像信号供給回路 3が外部力ゝらの映像信号の供給を受けると、映像信 号供給回路 3は、赤,緑,青の各色のレーザ光を出力させるための R映像信号, G映 像信号, B映像信号力もなる映像信号 4と、垂直同期信号 5と、水平同期信号 6とを出 力する。 Rレーザドライバ 10, Gレーザドライバ 9, Bレーザドライバ 8は各々入力され た R映像信号, G映像信号, B映像信号に基づいて Rレーザ 13, Gレーザ 12, Bレー ザ 11に対してそれぞれの駆動信号を出力する。この駆動信号に基づいて、 Rレーザ 13, Gレーザ 12, Bレーザ 11はそれぞれ強度変調されたレーザ光を発生し、各々を コリメート光学系 14に出力する。また、映像信号供給回路 3は、後述するガルバノミラ 一 19aの駆動状態を示す BD信号(図示せず)に応じて、レーザ光を発生し、各々を コリメート光学系 14に出力するタイミングを制御する。つまり、このような網膜走査型 ディスプレイ 1 (映像信号供給回路 3)は、ガルバノミラー 19aなどに光束を出射させる タイミングを制御することとなる。点光源力も発生されるレーザ光は、このコリメート光 学系 14によってそれぞれが平行光にコリメートされ、さらに、ダイクロイツクミラー 15に 入射されて 1つの光束となるよう合成された後、結合光学系 16によって光ファイバ 17 に入射されるよう導かれる。  As shown in FIG. 1, in the retinal scanning display 1 of the present embodiment, when the video signal supply circuit 3 provided in the light source unit 2 is supplied with a video signal from an external force, the video signal is displayed. The signal supply circuit 3 includes an R video signal, a G video signal, and a B video signal power 4 for outputting laser beams of red, green, and blue colors, a vertical synchronization signal 5, and a horizontal synchronization signal 6 Is output. R laser driver 10, G laser driver 9, and B laser driver 8 are respectively connected to R laser 13, G laser 12, and B laser 11 based on the input R video signal, G video signal, and B video signal. A drive signal is output. Based on this drive signal, the R laser 13, the G laser 12, and the B laser 11 generate laser beams whose intensity is modulated, and output the laser beams to the collimating optical system 14, respectively. The video signal supply circuit 3 controls the timing of generating laser light and outputting each to the collimating optical system 14 in accordance with a BD signal (not shown) indicating the driving state of the galvano mirror 19a described later. That is, such a retinal scanning display 1 (video signal supply circuit 3) controls the timing at which the galvanometer mirror 19a or the like emits a light beam. Laser light that also generates point light source power is collimated into parallel light by the collimating optical system 14 and then combined into a single light beam by being incident on the dichroic mirror 15, and then coupled optical system 16 To be incident on the optical fiber 17.
[0058] 光ファイバ 17によって伝搬されたレーザ光は、光ファイバ 17からコリメート光学系 1 8によって導かれて垂直走査系 19に出射される。この出射されたレーザ光は、垂直 走査系 19のガルバノミラー 19aの偏向面 19bに入射される。ガルバノミラー 19aの偏 向面 19bに入射したレーザ光は垂直同期信号に同期して垂直方向に走査されて第 1リレー光学系 20を介し、水平走査系 21のガルバノミラー 21aの偏向面 21bに入射 する。第 1リレー光学系 20ではガルバノミラー 19aの偏向面 19bとガルバノミラー 21a の偏向面 21bとが共役の関係となるように調整され、また、ガルバノミラー 19aの面倒 れが補正されている。ガルバノミラー 21aは、ガルバノミラー 19aが垂直同期信号に 同期すると同様に水平同期信号 6に同期して、その偏向面 21bが入射光を水平方向 に反射するように往復振動をしており、このガルバノミラー 21aによってレーザ光は水 平方向に走査される。垂直走査系 19及び水平走査系 21によって水平方向及び垂 直方向に 2次元に走査されたレーザ光は、ガルバノミラー 21aの偏向面 21bと、観察 者の瞳孔 24とが共役の関係となるように設けられた第 2リレー光学系 22により観察者 の瞳孔 24へ入射され、網膜上に投影される。観察者はこのように 2次元走査されて 網膜上に投影されたレーザ光による画像を認識することができる。尚、垂直走査系 1 9のガルバノミラー 19aと、水平走査系 21のガルバノミラー 21aとは、名称を同じように 説明したが、光を走査するように其の反射面が揺動(回転)させられるものであれば、 共振タイプ、非共振タイプ等、圧電駆動、電磁駆動、静電駆動等いずれの駆動方式 によるものであってもよ 、ことは言うまでもな 、。 The laser light propagated by the optical fiber 17 is guided from the optical fiber 17 by the collimating optical system 18 and emitted to the vertical scanning system 19. The emitted laser light is incident on the deflection surface 19b of the galvanometer mirror 19a of the vertical scanning system 19. The laser light incident on the polarization surface 19b of the galvanometer mirror 19a is scanned in the vertical direction in synchronization with the vertical synchronization signal and enters the deflection surface 21b of the galvanometer mirror 21a of the horizontal scanning system 21 via the first relay optical system 20. To do. In the first relay optical system 20, the deflection surface 19b of the galvanometer mirror 19a and the deflection surface 21b of the galvanometer mirror 21a are adjusted to have a conjugate relationship, and the surface tilt of the galvanometer mirror 19a is corrected. The galvanometer mirror 21a is synchronized with the horizontal synchronization signal 6 in the same way as the galvanometer mirror 19a is synchronized with the vertical synchronization signal, and its deflection surface 21b The laser beam is scanned in the horizontal direction by the galvanometer mirror 21a. Laser light scanned two-dimensionally in the horizontal and vertical directions by the vertical scanning system 19 and the horizontal scanning system 21 so that the deflection surface 21b of the galvano mirror 21a and the pupil 24 of the observer have a conjugate relationship. The incident light is incident on the pupil 24 of the observer by the provided second relay optical system 22 and projected onto the retina. The observer can thus recognize the image by the laser light that is two-dimensionally scanned and projected onto the retina. Although the galvanometer mirror 19a of the vertical scanning system 19 and the galvanometer mirror 21a of the horizontal scanning system 21 have been described with the same names, their reflecting surfaces are swung (rotated) to scan light. Needless to say, any drive system such as a resonance type, non-resonance type, piezoelectric drive, electromagnetic drive, electrostatic drive, etc. can be used.
[0059] [各種の光学系の構成]  [0059] [Configurations of various optical systems]
上述したように、光ファイバ 17から出射されたビーム光を、 2次元に走査しながら観 察者の瞳孔 24へ導く各種の光学系の構成について図 3から図 5を用いて説明する。  As described above, the configurations of various optical systems that guide the beam light emitted from the optical fiber 17 to the pupil 24 of the observer while scanning two-dimensionally will be described with reference to FIGS.
[0060] 各種の光学系には、図 3から図 5に示すように、光学部材として、第 1反射ミラー 10 2、ガルバノミラー 19a、ハーフミラー 104、凹面ミラー 106、第 2反射ミラー 108及び ガルバノミラー 21aなどが少なくとも含まれている。これら第 1反射ミラー 102、ガルバ ノミラー 19a、ハーフミラー 104、凹面ミラー 106、第 2反射ミラー 108及びガルバノミラ 一 21aは、反射面が水平方向に向力 状態で、垂直方向に向力つて立設されている  As shown in FIGS. 3 to 5, various optical systems include a first reflection mirror 102, a galvano mirror 19a, a half mirror 104, a concave mirror 106, a second reflection mirror 108, and a galvano as optical members. It includes at least mirror 21a. The first reflecting mirror 102, the galvano mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvano mirror 21a are erected with the reflecting surface in the horizontal direction and the vertical direction. ing
[0061] 第 1反射ミラー 102は、光ファイバ 17から出射されたビーム光を、全反射させること によって、ガルバノミラー 19aの偏向面 19bに導くとともに、ガルバノミラー 19aの偏向 面 19bで反射され、垂直方向に走査されたビーム光を、全反射させることによって、 ハーフミラー 104に導く機能を有する。尚、この第 1反射ミラー 102は、上述したコリメ ート光学系 18、第 1リレー光学系 20に含まれている。 [0061] The first reflecting mirror 102 guides the beam light emitted from the optical fiber 17 to the deflecting surface 19b of the galvano mirror 19a by totally reflecting the light, and is reflected by the deflecting surface 19b of the galvano mirror 19a to be perpendicular. The beam light scanned in the direction has a function of guiding it to the half mirror 104 by total reflection. The first reflecting mirror 102 is included in the collimating optical system 18 and the first relay optical system 20 described above.
[0062] ガルバノミラー 19aは、水平方向に延びる符号 A1を軸として、符号 B1に示す方向 に回動駆動することによって、第 1反射ミラー 102によって反射されたビーム光を、偏 向面 19bで反射させることによって、垂直方向に走査して、第 1反射ミラー 102に導く [0063] ハーフミラー 104は、第 1反射ミラー 102によって反射されたビーム光を、透過する ことによって、凹面ミラー 106に導くとともに、凹面ミラー 106によって反射されたビー ム光を反射することによって、第 2反射ミラー 108に導く機能を有する。尚、このハー フミラー 104は、上述した第 1リレー光学系 20に含まれている。 [0062] The galvanometer mirror 19a reflects the light beam reflected by the first reflecting mirror 102 by the polarization surface 19b by being driven to rotate in the direction indicated by reference numeral B1 with reference to the reference numeral A1 extending in the horizontal direction. By doing so, it scans in the vertical direction and guides it to the first reflecting mirror 102 [0063] The half mirror 104 guides the beam light reflected by the first reflecting mirror 102 to the concave mirror 106 by transmitting it, and reflects the beam light reflected by the concave mirror 106 to reflect the beam light. 2 Has a function of guiding to the reflection mirror 108. The half mirror 104 is included in the first relay optical system 20 described above.
[0064] 凹面ミラー 106は、拡散しているビーム光を集光させる集光ミラーであり、第 1反射ミ ラー 102によって反射され、ハーフミラー 104を透過したビーム光を、全反射させ、集 光させてハーフミラー 104に導く機能を有する。尚、この凹面ミラー 106は、上述した 第 1リレー光学系 20に含まれている。  The concave mirror 106 is a condensing mirror that condenses the diffused beam light. The concave mirror 106 totally reflects the beam light reflected by the first reflection mirror 102 and transmitted through the half mirror 104 to collect the light. And has a function of guiding to the half mirror 104. The concave mirror 106 is included in the first relay optical system 20 described above.
[0065] 第 2反射ミラー 108は、凹面ミラー 106で集光され、ハーフミラー 104で反射された ビーム光を、全反射させることによって、ガルバノミラー 21aの偏向面 21bに導く機能 を有する。尚、この第 2反射ミラー 108は、上述した第 1リレー光学系 20に含まれてい る。  [0065] The second reflecting mirror 108 has a function of guiding the beam light collected by the concave mirror 106 and reflected by the half mirror 104 to the deflecting surface 21b of the galvano mirror 21a by totally reflecting the beam light. The second reflecting mirror 108 is included in the first relay optical system 20 described above.
[0066] ガルバノミラー 21aは、垂直方向に延びる符号 A2を軸として、符号 B2に示す方向 に回動駆動することによって、第 2反射ミラー 108によって反射されたビーム光を、偏 向面 21bで反射させることによって、水平方向に走査して、第 2リレー光学系 22 (図 1 参照)に導くこととなる。  [0066] The galvanometer mirror 21a is driven to rotate in the direction indicated by reference numeral B2 with reference to the reference numeral A2 extending in the vertical direction, so that the light beam reflected by the second reflecting mirror 108 is reflected by the polarization surface 21b. By doing so, it is scanned in the horizontal direction and led to the second relay optical system 22 (see FIG. 1).
[0067] このような各種の光学系において、光ファイバ 17から出射されたビーム光は、集光 され、第 1反射ミラー 102に入射される。この第 1反射ミラー 102に入射されたビーム 光は、全反射されて、集光しながら、垂直走査系 19のガルバノミラー 19aに入射され る。垂直走査系 19のガルバノミラー 19aに入射されたビーム光は、垂直方向に走査 されながら、第 1反射ミラー 102に入射される。このビーム光は、ガルバノミラー 19aか ら第 1反射ミラー 102に入射されるまでに、集光された後に、結像し、拡散されることと なる。そして、第 1反射ミラー 102に入射されたビーム光は、全反射されて、拡散しな 力 Sらハーフミラー 104に入射される。尚、このガルバノミラー 19aから入射されるビーム 光と、上述した光ファイバ 17から出射されたビーム光とでは、第 1反射ミラー 102でも 異なる箇所で反射されることとなる。そして、第 1反射ミラー 102からハーフミラー 104 に入射されたビーム光は、所定の割合でノヽーフミラー 104において透過され、拡散し ながら凹面ミラー 106に入射される。凹面ミラー 106に入射されたビーム光は、入射さ れる前まで拡散されていた力 反射させることによって、集光しながらハーフミラー 10 4に入射される。凹面ミラー 106からハーフミラー 104に入射されたビーム光は、所定 の割合でノヽーフミラー 104にお 、て反射され、集光しながら第 2反射ミラー 108に入 射される。第 2反射ミラー 108に入射されたビーム光は、全反射されて、集光しながら 水平走査系 21のガルバノミラー 21aに入射される。水平走査系 21のガルバノミラー 2 laに入射されたビーム光は、水平方向に走査され、集光しならが第 2リレー光学系 2 2 (図 1参照)に入射されることとなる。このように、垂直走査系 19のガルバノミラー 19a と、水平走査系 21のガルバノミラー 21aとの間で、拡散したビーム光力 凹面ミラー 1 06で集光されることとなる。 In such various optical systems, the beam light emitted from the optical fiber 17 is collected and incident on the first reflection mirror 102. The beam light incident on the first reflecting mirror 102 is totally reflected and incident on the galvanometer mirror 19a of the vertical scanning system 19 while being condensed. The beam light incident on the galvanometer mirror 19a of the vertical scanning system 19 is incident on the first reflecting mirror 102 while being scanned in the vertical direction. This beam light is focused and then diffused until it enters the first reflecting mirror 102 from the galvano mirror 19a. Then, the beam light incident on the first reflecting mirror 102 is totally reflected, and is incident on the half mirror 104 by the undiffused force S. The light beam incident from the galvano mirror 19a and the light beam emitted from the optical fiber 17 are reflected by the first reflection mirror 102 at different locations. Then, the beam light incident on the half mirror 104 from the first reflecting mirror 102 is transmitted through the noise mirror 104 at a predetermined ratio, and is incident on the concave mirror 106 while being diffused. The light beam incident on the concave mirror 106 is incident. The force diffused before being reflected is reflected and incident on the half mirror 104 while being condensed. The beam light incident on the half mirror 104 from the concave mirror 106 is reflected by the noise mirror 104 at a predetermined ratio, and is incident on the second reflecting mirror 108 while being condensed. The beam light incident on the second reflecting mirror 108 is totally reflected and incident on the galvano mirror 21a of the horizontal scanning system 21 while being condensed. The beam light incident on the galvano mirror 2 la of the horizontal scanning system 21 is scanned in the horizontal direction and is incident on the second relay optical system 2 2 (see FIG. 1) if condensed. Thus, the diffused beam light power is condensed by the concave mirror 106 between the galvanometer mirror 19a of the vertical scanning system 19 and the galvanometer mirror 21a of the horizontal scanning system 21.
[0068] つまり、第 1リレー光学系 20は、垂直走査系 19と水平走査系 21との間の光路に設 けられ、垂直走査系 19によって 1次方向に走査させた光束を水平走査系 21に導く 凹面ミラー 106を少なくとも含んでいる。従って、詳しく後述するが、凹面ミラーを含ま ずに、例えば、拡散する光束を平行な光束とする第 1の凸面レンズや、その平行な光 束を集光させる第 2の凸面レンズなどを用いた従来の構成と比べて、これらのような 凸面レンズなどを用いる必要もないため、装置の小型化が可能である。また、色収差 などを考慮する必要もなく設計可能である。  That is, the first relay optical system 20 is provided in the optical path between the vertical scanning system 19 and the horizontal scanning system 21, and the light beam scanned in the primary direction by the vertical scanning system 19 is the horizontal scanning system 21. At least a concave mirror 106 is introduced. Therefore, as will be described in detail later, without using a concave mirror, for example, a first convex lens that makes a diffusing beam a parallel beam or a second convex lens that collects the parallel beam is used. Compared to the conventional configuration, it is not necessary to use such a convex lens, so that the apparatus can be miniaturized. In addition, it is possible to design without considering chromatic aberration.
[0069] また、垂直走査系 19におけるガルバノミラー 19aと後述する凹面ミラー 106との間 にハーフミラー 104が設けられている。従って、 1次走査手段と集光ミラーとの間にハ 一フミラーを用いることによって、光路を折りたたむことができるため省スペース化を 効率よく実現することができ、より一層、装置の小型化が可能である。  Further, a half mirror 104 is provided between a galvano mirror 19a in the vertical scanning system 19 and a concave mirror 106 described later. Therefore, by using a half mirror between the primary scanning means and the condensing mirror, the optical path can be folded, so that space can be saved efficiently and the device can be further downsized. It is.
[0070] 特に、垂直走査系 19のガルバノミラー 19aは、第 1反射ミラー 102との間において、 図 6 (a)に示すように、符号 Cl、 C2、 C3に示すように、ビーム光を垂直方向に走査し 、図 6 (b)に示すように、垂直走査系 19によって走査されるビーム光を含む符号 Dに 示す面が、垂直走査面となる。また、具体的には、図 6 (c)に示すように、垂直走査系 19のガルバノミラー 19aから第 1反射ミラー 102に向力 垂直方向の面力 垂直走査 系 19によって走査されるビーム光を含む垂直走査面 Dとなり、垂直走査面中の略中 心線を走査中心線 Fとする。尚、本実施形態における垂直走査面とは、垂直走査さ れてカも水平走査されるまでの光束を含む走査面であり、垂直走査系 19のガルバノ ミラー 19aから水平走査系 21のガルバノミラー 2 laまでの光路の走査面である。 [0070] In particular, the galvanometer mirror 19a of the vertical scanning system 19 vertically transmits the beam light between the first reflection mirror 102 and the reference signs Cl, C2, and C3 as shown in FIG. 6 (a). As shown in FIG. 6B, the surface indicated by reference numeral D including the beam light scanned by the vertical scanning system 19 becomes the vertical scanning surface. Specifically, as shown in FIG. 6 (c), the beam light scanned by the vertical scanning system 19 from the galvano mirror 19a of the vertical scanning system 19 to the first reflecting mirror 102 is directed to the vertical force. The vertical scanning plane D is included, and the approximate center line in the vertical scanning plane is the scanning center line F. Note that the vertical scanning plane in this embodiment is a scanning plane including a light beam from the vertical scanning to the horizontal scanning, and the galvano of the vertical scanning system 19. This is the scanning plane of the optical path from the mirror 19a to the galvanometer mirror 2 la of the horizontal scanning system 21.
[0071] また、垂直走査系 19のガルバノミラー 19aに対して入射するビーム光の入射方向 は、図 6 (c)に示すように、符号 Eで示す方向である。つまり、垂直走査面 Dに対して 交差する方向からビーム光を入射させることとなる。従って、例えば、 1次走査手段に 入射させる光学系や、 1次走査手段と 2次走査手段との間の中継光学系、 2次走査 手段、 2次走査手段から眼の網膜まで光束を導く光学系など、各種の光学系や走査 手段を設ける場合に、それらが 1次走査面と干渉することなぐ光束の光路を確保す るためのスペースを設けやすぐより一層、装置の小型化が可能である。  Further, the incident direction of the beam light incident on the galvanometer mirror 19a of the vertical scanning system 19 is a direction indicated by a symbol E as shown in FIG. 6 (c). That is, the light beam is incident from the direction intersecting the vertical scanning plane D. Therefore, for example, an optical system that is incident on the primary scanning unit, a relay optical system between the primary scanning unit and the secondary scanning unit, a secondary scanning unit, and an optical that guides the light flux from the secondary scanning unit to the retina of the eye When installing various optical systems and scanning means such as optical systems, it is possible to provide a space to secure the optical path of the light beam that does not interfere with the primary scanning surface, and it is possible to further downsize the device. is there.
[0072] また、第 1反射ミラー 102、ハーフミラー 104、凹面ミラー 106、第 2反射ミラー 108 などを含む第 1リレー光学系 20は、図 6 (b)及び図 6 (c)に示すように、走査中心線 F が垂直走査面 Dに対して交差するように設けられている。従って、例えば、走査中心 線と 1次走査面とが交差することによって、集光されていた光束が拡散され、その拡 散された光束が集光ミラーによって集光され、 1次走査手段に入射させる光学系や、 1次走査手段と 2次走査手段との間の中継光学系など、各種の光学系や走査手段を 設ける場合に、光束の光路を確保するためのスペースを設けやすぐより一層、装置 の小型化が可能である。  [0072] The first relay optical system 20 including the first reflecting mirror 102, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the like is as shown in FIGS. 6 (b) and 6 (c). The scanning center line F is provided so as to intersect the vertical scanning plane D. Therefore, for example, when the scanning center line and the primary scanning plane intersect, the condensed light flux is diffused, and the diffused light flux is condensed by the condenser mirror and incident on the primary scanning means. When providing various optical systems and scanning means, such as an optical system to be used and a relay optical system between the primary scanning means and the secondary scanning means, a space for securing the optical path of the light beam is provided. The device can be downsized.
[0073] このようなことは、光学装置 100が、光学部材としての、第 1反射ミラー 102、ガルバ ノミラー 19a、ハーフミラー 104、凹面ミラー 106、第 2反射ミラー 108、ガルバノミラー 21aによりレーザ光を折り曲げることによってなされる。これらの光学部材はレーザ光 を反射する反射部材として機能するものである。  [0073] This is because the optical device 100 emits laser light by the first reflecting mirror 102, the galvano mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvano mirror 21a as optical members. Made by folding. These optical members function as reflecting members that reflect laser light.
[0074] 支持構造 50は、後述するように環状をなし、第 1反射ミラー 102、ガルバノミラー 19 a、第 2反射ミラー 108及びガルバノミラー 21aを支持する支持部材 51と、ハーフミラ 一 104及び凹面ミラー 106を下方力も支持するとともに支持部材 51を下方力も保持 し、支持部材 51の下側の全体を塞ぐ、図 8に模式的に示す底板部材としての保持部 材 52と、保持部材 52に対向するように配設され支持部材 51の上側の全体を塞ぐ、 図示しない天板部材とを有している。支持部材 51、保持部材 52及び天板部材はー 体成形された榭脂製であり、折り曲げられたビーム光を囲む箱形状をなして 、る。  [0074] The support structure 50 has an annular shape as will be described later, a support member 51 that supports the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the galvano mirror 21a, and the half mirror 104 and the concave mirror. The holding member 52 as a bottom plate member schematically shown in FIG. 8 is opposed to the holding member 52, which supports the lower force 106 and also holds the lower force of the support member 51 to block the entire lower side of the support member 51. And a top plate member (not shown) that closes the entire upper side of the support member 51. The support member 51, the holding member 52, and the top plate member are made of resin-molded resin and have a box shape surrounding the bent beam light.
[0075] 図 3に示すように、支持部材 51は、環状をなし互いに所定の角度をなすように複数 備えられた所定厚さの壁部 51a、 51b、 51c、 51d、 51e、 51f、 51g、 51hと、壁部 51 a、 51b、 51c、 51d、 51e、 51f、 51g、 5 lhの外面としてそれぞれ形成された、壁面 5 la'、 51b '、 51c '、 51d'、 51e'、 51f'、 51g'、 51h,を有している。 [0075] As shown in FIG. 3, the support member 51 has an annular shape and a plurality of support members 51 so as to form a predetermined angle with each other. Formed as outer surfaces of the provided wall parts 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h and wall parts 51a, 51b, 51c, 51d, 51e, 51f, 51g, 5 lh Wall surfaces 5 la ', 51b', 51c ', 51d', 51e ', 51f', 51g ', 51h.
[0076] 壁面 51a,、 51b,、 51c,、 51d,、 51e,、 51f,、 51g,、 51h,は、第 1反射ミラー 10 2、ガルバノミラー 19a、ノヽーフミラー 104、凹面ミラー 106、第 2反射ミラー 108、ガル ノ ノミラー 21aによって折り曲げられたレーザ光を囲むように環状に設けられている。 よって、第 1反射ミラー 102、ガルバノミラー 19a、ハーフミラー 104、凹面ミラー 106、 第 2反射ミラー 108、ガルバノミラー 21a折り曲げられたレーザ光によって形成される 光路を囲むように、壁部 51a、 51b, 51c, 51d、 51e、 51f、 51g、 51h、及び、壁面 5 la,、 51b,、 51c,、 51d,、 51e,、 51f,、 51g,、 51h,力無端状の環状とされている。  [0076] The wall surfaces 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h are the first reflecting mirror 102, the galvanometer mirror 19a, the noof mirror 104, the concave mirror 106, the second It is provided in an annular shape so as to surround the laser beam bent by the reflection mirror 108 and the Galnon mirror 21a. Therefore, the first reflection mirror 102, the galvano mirror 19a, the half mirror 104, the concave mirror 106, the second reflection mirror 108, the galvano mirror 21a, the wall portions 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h, and the wall surface 5 la, 51b, 51c, 51d, 51e, 51f, 51g, 51h, a forceless endless ring.
[0077] 支持部材 51は、壁部 51cの外側の面である壁面 51c 'に第 1反射ミラー 102を、壁 部 51eの外側の面である壁面 51e'にガルバノミラー 19aを、壁部 51gの外側の面で ある壁面 51g'に第 2反射ミラー 108を、壁部 51hの外側の面である壁面 51 にガル ノ ノミラー 21aを支持して!/、る。  [0077] The support member 51 includes a first reflecting mirror 102 on the wall surface 51c 'that is the outer surface of the wall portion 51c, a galvano mirror 19a on the wall surface 51e' that is the outer surface of the wall portion 51e, and the wall portion 51g. The second reflecting mirror 108 is supported on the wall surface 51g ′ which is the outer surface, and the gallon mirror 21a is supported on the wall surface 51 which is the outer surface of the wall portion 51h.
[0078] 図 4、図 5に示すように、第 1反射ミラー 102を支持した壁部 51cに第 1反射ミラー 10 2により折り曲げられるビーム光を透過する開口 51c"を有しており、ガルバノミラー 19 aを支持した壁部 51eにガルバノミラー 19aにより折り曲げられるビーム光を透過する 開口 51e"を有しており、第 2反射ミラー 108を支持した壁部 51gに第 2反射ミラー 10 8により折り曲げられるビーム光を透過する開口 51g"を有しており、ガルバノミラー 21 aを支持した壁部 51hにガルバノミラー 21aにより折り曲げられるビーム光を透過する 開口 51h"を有している。  As shown in FIGS. 4 and 5, the wall 51c that supports the first reflecting mirror 102 has an opening 51c "that transmits the beam light bent by the first reflecting mirror 102, and is a galvanometer mirror. The wall 51e supporting the 19a has an opening 51e "that transmits the beam light bent by the galvano mirror 19a, and is bent by the second reflecting mirror 108 to the wall 51g supporting the second reflecting mirror 108. An opening 51g "that transmits the beam light is provided, and an opening 51h" that transmits the beam light that is bent by the galvano mirror 21a is provided on the wall 51h that supports the galvano mirror 21a.
[0079] 支持部材 51は、光学装置 100、言い換えると支持部材 51内にビーム光が入射す る入射壁面として壁面 5 la'を有しており、カゝかるビーム光を入射させるための入射開 口 51a"を有している。 支持部材 51は、光学装置 100、言い換えると支持部材 51か らビーム光が出射する出射壁面として壁面 51d'を有しており、かかるビーム光を出 射させるための出射開口 51d"を有している。  [0079] The support member 51 has a wall surface 5la 'as an incident wall surface on which the light beam is incident on the optical device 100, in other words, the support member 51, so that the incident light is incident. The support member 51 has a wall surface 51d ′ as an exit wall surface from which the beam light is emitted from the optical device 100, in other words, the support member 51, and emits the beam light. 51d ".
[0080] 入射壁面 51a'と出射壁面 51d'とは互いに対向するように配設されている。そのた め、支持部材 51が小型化され、光学装置 100の小型化に寄与している。 [0081] 支持部材 51は、第 1反射ミラー 102を支持した壁面 51c 'とガルバノミラー 19aを支 持した壁面 51e'とを、出射壁面 51d'に隣接された複数の隣設壁面として有している 。そのため、支持部材 51内でビーム光が折り曲げられた上で出射されることとなり、 支持部材 51が小型化され、光学装置 100の小型化に寄与している。小型化の観点 力 は、本形態のように、出射壁面の両側において隣る壁面に光学部材を支持する ことが望ましいが、少なくとも一方において隣る壁面に光学部材を支持していれば良 い。 The incident wall surface 51a ′ and the emission wall surface 51d ′ are disposed so as to face each other. Therefore, the support member 51 is miniaturized and contributes to the miniaturization of the optical device 100. [0081] The support member 51 includes a wall surface 51c 'supporting the first reflecting mirror 102 and a wall surface 51e' supporting the galvano mirror 19a as a plurality of adjacent wall surfaces adjacent to the output wall surface 51d '. Yes. For this reason, the light beam is emitted after being bent in the support member 51, which reduces the size of the support member 51 and contributes to the size reduction of the optical device 100. From the viewpoint of downsizing, it is desirable to support the optical member on the adjacent wall surface on both sides of the output wall surface as in the present embodiment, but it is sufficient that the optical member is supported on the adjacent wall surface in at least one side.
[0082] 支持部材 51は、保持部材 52に対し、水平走査系 21のガルバノミラー 21aによる走 查面と垂直な方向に立設されている。よって、壁部 51a、 51b、 51c、 51d、 51e、 51f 、 51g、 51h、壁面 51a'、 51b '、 51c'、 51d'、 51e'、 51f、 51g'、 51h'は何れも、 力かる走査面と垂直である。  The support member 51 is erected with respect to the holding member 52 in a direction perpendicular to the running surface by the galvanometer mirror 21a of the horizontal scanning system 21. Therefore, wall 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h, wall 51a ', 51b', 51c ', 51d', 51e ', 51f, 51g', 51h ' Perpendicular to the surface.
[0083] また、壁部 51a、 51b、 51c、 51d、 51e、 51f、 51g、 51hの何れも力 他の複数の 壁部と隣設されており、または他の単数の壁部、保持部材 52及び天板部材と隣設さ れ連設されている。これにより、各壁部 51a、 51b, 51c、 51d、 51e、 51f、 51g、 51h の成形精度が高ぐ各壁部 51a、 51b、 51c、 51d、 51e、 51f、 51g、 51h相互間の 位置決め精度が高ぐ後述するようにこれを基準として取り付けられる第 1反射ミラー 102、ガルバノミラー 19a、ノヽーフミラー 104、凹面ミラー 106、第 2反射ミラー 108、 ガルバノミラー 21aの位置決め精度の向上に寄与する。  [0083] In addition, each of the wall portions 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h is adjacent to a plurality of other wall portions, or another single wall portion, holding member 52. In addition, it is adjacent to and connected to the top plate member. This increases the molding accuracy of each wall 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h Positioning accuracy between each wall 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h As will be described later, this contributes to improving the positioning accuracy of the first reflecting mirror 102, the galvanometer mirror 19a, the nouveau mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvanometer mirror 21a that are attached on the basis of this.
[0084] 壁面 51a'、 51b,ゝ 51c,、 51d,、 51e,、 51f,、 51g,、 51h,は何れも、折り曲げら れたビーム光によって形成される仮想の基準面に垂直である。かかる基準面は、垂 直走査系 19のガルバノミラー 19aによって走査されるビーム光の走査範囲における 中心においてビーム光が走査された場合に、ビーム光を含む平面である。そのため 、垂直走査系 19は、ガルバノミラー 19aによって走査されるビーム光の走査範囲にお ける中心においてビーム光を走査した場合に、走査されたビーム光が同一平面上に あるように調整されている。  [0084] The wall surfaces 51a ', 51b, , 51c, 51d, 51e, 51f, 51g, 51h are all perpendicular to the virtual reference plane formed by the bent beam light. Such a reference plane is a plane including the beam light when the beam light is scanned at the center in the scanning range of the beam light scanned by the galvanometer mirror 19a of the vertical scanning system 19. Therefore, the vertical scanning system 19 is adjusted so that the scanned light beam is on the same plane when the light beam is scanned at the center in the scanning range of the light beam scanned by the galvanometer mirror 19a. .
[0085] これにより、壁面 51a,、 51b,、 51c,、 51d,、 51e,、 51f,、 51g,、 51h,の配設方 向を基準に第 1反射ミラー 102、ガルバノミラー 19a、ハーフミラー 104、凹面ミラー 1 06、第 2反射ミラー 108、ガルバノミラー 21aを取付ければ、精度良く位置決めするこ とが可能となる。 [0085] Thereby, the first reflection mirror 102, the galvano mirror 19a, and the half mirror with reference to the arrangement direction of the wall surfaces 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h. 104, concave mirror 106, second reflecting mirror 108, galvano mirror 21a Is possible.
[0086] 第 1反射ミラー 102、ガルバノミラー 19a、ハーフミラー 104、凹面ミラー 106、第 2反 射ミラー 108、ガルバノミラー 21aは、力かる基準面に直交する方向において対称と なるように配設されている。これにより、第 1反射ミラー 102、ガルバノミラー 19a、ハー フミラー 104、凹面ミラー 106、第 2反射ミラー 108、ガルバノミラー 21aが、精度良く 位置決めされる。  [0086] The first reflecting mirror 102, the galvano mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvano mirror 21a are arranged so as to be symmetric in a direction orthogonal to the applied reference plane. ing. As a result, the first reflecting mirror 102, the galvanometer mirror 19a, the half mirror 104, the concave mirror 106, the second reflecting mirror 108, and the galvanometer mirror 21a are positioned with high accuracy.
[0087] 開口 51c"は、その壁部 51cに支持する第 1反射ミラー 102より小さぐ開口 51e"は 、その壁部 51eに支持するガルバノミラー 19aより小さぐ開口 51g"は、その壁部 51g に支持する第 2反射ミラー 108より小さぐ開口 51h"は、その壁部 51hに支持するガ ルバノミラー 21aより小さい。そのため、壁部 51c、壁部 51e、壁部 51g、壁部 51hは それぞれ、開口 51c"、開口 51e"、開口 51g"、開口 51h"それぞれの周縁に対応す る壁面 51c,、 51e,、 51g,、 51h,上で、第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミラー 108、ガルバノミラー 2 laの縁部をそれぞれ支持している。  [0087] The opening 51c "is smaller than the first reflecting mirror 102 supported by the wall 51c. The opening 51g" smaller than the galvanometer mirror 19a supported by the wall 51e is the wall 51g. The opening 51h "which is smaller than the second reflecting mirror 108 supported on the wall is smaller than the galvanometer mirror 21a supported on the wall 51h. Therefore, the wall 51c, the wall 51e, the wall 51g, and the wall 51h are respectively the walls 51c, 51e, 51g corresponding to the peripheries of the opening 51c ", the opening 51e", the opening 51g ", and the opening 51h", respectively. 51h, the edges of the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the galvano mirror 2la are supported.
[0088] よって、第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミラー 108、ガルバノミラ 一 21aは安定した状態で精度良く位置決めされる。なお、位置決め精度の観点から は、開口を有する壁部が、その支持した光学素子を複数個所、言い換えると複数点 で支持していれば良ぐ特に本形態のように開口の周囲に対応する面で支持するこ とが好ましい。第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミラー 108、ガルバノ ミラー 21aは、壁面 51c'、 51e,、 51g'、 51h'に対し、接着剤によって固定される。  Therefore, the first reflection mirror 102, the galvano mirror 19a, the second reflection mirror 108, and the galvano mirror 21a are positioned with high accuracy in a stable state. From the standpoint of positioning accuracy, it is sufficient that the wall portion having the opening supports the optical elements supported by the wall at a plurality of points, in other words, at a plurality of points. In particular, the surface corresponding to the periphery of the opening as in this embodiment. It is preferable to support with. The first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the galvano mirror 21a are fixed to the wall surfaces 51c ′, 51e, 51g ′, 51h ′ with an adhesive.
[0089] 図 7に示すように、位置決め精度の観点からは、壁部 51xが、その壁面 51χ'に対 する光学部材 Μの位置決めを行う位置決め手段としてのリブ 53を備えていることが 望ましい。リブ 53は、壁部 51χに形成された開口 51χ"の周縁近傍の位置において、 壁面 51χ'に、一体成形により突設されている。リブ 53は、光学部材 Μの周縁全体に 対応するように配設されているが、各側縁の中央にそれぞれ 1つ設けてもよいし、対 向する側縁の中央にそれぞれ設けてもよい。位置決め手段は壁部 51χに形成した、 光学部材 Μの形状に対応した凹部であっても良い。  As shown in FIG. 7, from the viewpoint of positioning accuracy, it is desirable that the wall portion 51x is provided with a rib 53 as positioning means for positioning the optical member す る relative to the wall surface 51χ ′. The rib 53 protrudes from the wall 51χ ′ by integral molding at a position near the periphery of the opening 51χ ″ formed in the wall 51χ. The rib 53 corresponds to the entire periphery of the optical member Μ. However, the positioning means may be provided at the center of each side edge, or may be provided at the center of the opposite side edge. It may be a recess corresponding to the shape.
[0090] 同図において、光学部材 Μは、第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミ ラー 108、ガノレノ ノミラー 21aに対応しており、壁咅 51χίま、壁咅 51c、 51e、 51g、 5 lhに対応しており、壁面 51x,は、壁面 51c,、 51e,、 51g,、 51h,に対応しており、 開口 51x"は、開口 51c,,ゝ開口 51e"、開口 51g"、開口 51h"に対応している。これは 図 8以下においても同様である。 [0090] In the figure, the optical member に corresponds to the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the Ganoleno mirror 21a, and the wall 咅 51χί, the wall 咅 51c, 51e, 51g , Five The wall 51x corresponds to the wall 51c, 51e, 51g, 51h, and the opening 51x "is the opening 51c, the saddle opening 51e", the opening 51g ", the opening 51h. It corresponds to ". The same applies to Fig. 8 and below.
[0091] リブ 53を設けた構成において、光学部材 Mがリブ 53によって壁面 51χ'に対し、例 えば嵌合状態となって、固定支持される場合には、接着剤による固定を行う必要はな いが、接着剤で固定しても良い。  [0091] In the configuration in which the rib 53 is provided, when the optical member M is fitted and fixed to the wall surface 51χ 'by the rib 53, for example, it is not necessary to perform fixing with an adhesive. However, it may be fixed with an adhesive.
[0092] 各壁部 51a、 51b、 51c、 51d、 51e、 51f、 51g、 51hの厚みは、互いに同一の厚 みであり、光学部材たる第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミラー 108 、ガルバノミラー 2 laを支持した壁部 5 lc、 51e、 51g、 51hの厚みも互いに同一であ るが、かかる厚さは異なっていても良い。ビーム光の光路長が所望の光路長となるよ うに、光学部材たる第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミラー 108、ガ ルバノミラー 21aを支持した壁部 51c、 51e、 51g、 51hの厚みを設定すれば、治具 等を用いることなく容易に所望の光路を得る。  [0092] The wall portions 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h have the same thickness, and the first reflecting mirror 102, the galvano mirror 19a, and the second reflecting mirror, which are optical members. 108, the wall portions 5lc, 51e, 51g, 51h supporting the galvanomirror 2la are also the same in thickness, but the thicknesses may be different. The wall portions 51c, 51e, 51g, and 51h supporting the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108, and the galvano mirror 21a, which are optical members, so that the optical path length of the beam light becomes a desired optical path length. If the thickness is set, a desired optical path can be easily obtained without using a jig or the like.
[0093] 各壁部 51a、 51bゝ 51cゝ 51d、 51e、 51f、 51g、 51hの高さは、互いに同一の高さ であり、光学部材たる第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミラー 108、 ガルバノミラー 21aを支持した壁部 51c、 51e、 51g、 51hの高さも互いに同一である 力 かかる高さは、その支持した第 1反射ミラー 102、ガルバノミラー 19a、第 2反射ミ ラー 108、ガルバノミラー 21aの大きさ、形状に対応するように異ならせても良い。厚 さも、高さとともに、または高さに代えてガルバノミラー 21aの大きさ、形状に対応する ように異ならせても良い。  [0093] The heights of the wall portions 51a, 51b ゝ 51c ゝ 51d, 51e, 51f, 51g, 51h are the same as each other, and the first reflecting mirror 102, the galvanometer mirror 19a, and the second reflecting, which are optical members The heights of the walls 51c, 51e, 51g and 51h supporting the mirror 108 and the galvano mirror 21a are also the same as each other. The applied heights are the first reflecting mirror 102, the galvano mirror 19a and the second reflecting mirror 108 which are supported. The galvano mirror 21a may be different in size and shape. The thickness may be varied to correspond to the size and shape of the galvanometer mirror 21a together with the height or instead of the height.
[0094] 各壁面 51a,、 51b,、 51c,、 51d,、 51e,、 51f,、 51g,、 51h,の内側、すなわち本 形態にお ヽて ίま各壁咅 51a、 51b、 51c、 51d、 51e、 51f、 51g、 51hの内佃 Jの面 ίま 、黒色に塗られている。これはビーム光の乱反射等によってゴースト等が発生するこ とを防止するためである。黒色に塗布する代わりに、支持部材 51を構成する榭脂そ のものを黒色としても良い。  [0094] Inside each wall surface 51a, 51b, 51c, 51d, 51e, 51f, 51g, 51h, that is, in the present embodiment, each wall surface 51a, 51b, 51c, 51d 51e, 51f, 51g, 51h The inner surface of J is painted black. This is to prevent ghosts and the like from being generated due to irregular reflection of the light beam. Instead of applying black, the resin itself constituting the support member 51 may be black.
[0095] ここで、既に述べたように、支持部材 51、保持部材 52及び底板部材は一体成形さ れ、折り曲げられたビーム光を囲む箱形状をなしている。箱形状とは、図 8に示すよう に、少なくとも 4つの壁部をなす、複数の壁部 51χ及び保持部材 52によって構成され る形状を含む形状であって、複数の壁部 51xの何れもが、他の複数の壁部 51xと隣 設され連設されており、または他の単数の壁部 51x及び保持部材 52と隣設され連設 された形状である。よって、箱形状の最小単位は図 8に示す形状であって、光学部材 の数等に応じて壁部 51xの数、支持部材 51の形状が決定される。 Here, as already described, the support member 51, the holding member 52, and the bottom plate member are integrally formed to form a box shape surrounding the bent beam light. As shown in FIG. 8, the box shape is composed of a plurality of wall portions 51χ and a holding member 52 forming at least four wall portions. Each of the plurality of wall portions 51x is adjacent to and connected to the other plurality of wall portions 51x, or adjacent to the other single wall portion 51x and the holding member 52. It is a shape that is installed and connected. Therefore, the minimum unit of the box shape is the shape shown in FIG. 8, and the number of wall portions 51x and the shape of the support member 51 are determined according to the number of optical members and the like.
[0096] 箱形状では、どの壁部 5 lxも複数の壁部 5 lx等と一体であるので、どの壁部 5 lxも その形成に関する精度が高ぐこれに取付けられる光学部材の位置決め精度の向上 に寄与する。なお、力かる箱形状の最小単位は、保持部材 52に代え、または保持部 材 52とともに底板部材を含むものであっても良い。  [0096] In the box shape, any wall 5 lx is integral with a plurality of walls 5 lx, etc., so any wall 5 lx has high accuracy in its formation and improved positioning accuracy of the optical member attached thereto Contribute to. Note that the minimum unit of the box shape that can be applied may include the bottom plate member together with the holding member 52 instead of the holding member 52.
[0097] 複数の壁部 51xのうちの一部の壁部 51xは、他の壁部 5 lxに対して着脱自在であ つても良い。この場合、力かる一部の壁部 5 lxを含むユニットと、力かる他の壁部 5 lx を含むユニットを一体ィ匕することで、支持部材 51が組み立てられる。各ユニットを構 成する壁部 5 lxに光学部材を取付けた状態で一体ィ匕を行なうようにすれば、光学部 材を壁部 51xに取付けることを容易化することができる。  [0097] Some of the plurality of wall portions 51x may be detachable from the other wall portions 51x. In this case, the support member 51 is assembled by integrating the unit including the part of the wall portion 5 lx that is powerful and the unit including the other wall portion 5 lx of the force. If the optical member is integrally attached to the wall portion 5 lx constituting each unit, the optical member can be easily attached to the wall portion 51x.
[0098] とくに、力かる各ユニットを箱状部とし、これら箱状部を組み立てて支持部材 51を構 成することとすれば、各ユニットにおいてどの壁部 51xもその形成に関する精度が高 ぐこれに取付けられる光学部材の位置決め精度の向上に寄与する。ここで、箱状部 とは、複数の壁部 51xを含むか、単数の壁部 5 lxと保持部材 52または天板部材とを 含む構成をいう。  [0098] In particular, if each unit to be applied is a box-shaped part and the box-shaped part is assembled to form the support member 51, each wall 51x in each unit has high accuracy in its formation. This contributes to improving the positioning accuracy of the optical member attached to the lens. Here, the box-shaped portion includes a plurality of wall portions 51x or a structure including a single wall portion 51x and the holding member 52 or the top plate member.
[0099] 図 9に示すように、開口 51x"は、その周縁が壁部 51xの内側に向けて拡開したテ 一パー形状となっていても良い。この構成によれば、開口 51x"の空間が小さくなり、 支持部材 51の強度が向上するとともに、壁面 51χ'における光学部材 Μに対する接 触面積を大きくすることができ、位置決め精度を向上することにも寄与する。この場合 も上述のリブ 53等の位置決め部材を設けてもょ 、。  [0099] As shown in FIG. 9, the opening 51x "may have a taper shape whose peripheral edge is expanded toward the inside of the wall 51x. According to this configuration, the opening 51x" The space is reduced, the strength of the support member 51 is improved, and the contact area of the wall surface 51χ ′ with the optical member Μ can be increased, which contributes to improving positioning accuracy. In this case as well, a positioning member such as the rib 53 described above may be provided.
[0100] 図 10に示すように、壁面 51χ'に対する光学部材 Μの位置決めを行う位置調整手 段 60を有していても良い。位置調整手段 60は、光学部材 Μを一体に支持したホル ダ 61と、ホルダ 61と一体をなしホルダ 61を介して光学部材 Μを壁部 5 lxに一体化す るための取り付け部材 62と、取り付け部材 62を壁部 51xに回動自在に一体ィ匕するた めのピン 63と、取り付け部材 62を壁部 51xに固定するためのねじ 63とを有している。 [0101] よって、取り付け部材 62を、ピン 63を中心にして回動し、光学部材 Mを壁面 51χ' に対して所望の位置を占める状態とした上で、ねじ 63によって取り付け部材 62を壁 部 51χに固定することで、光学部材 Μを壁面 51χ'に対して所望の位置に正確に位 置決めすることができる。 As shown in FIG. 10, it may have a position adjusting means 60 for positioning the optical member に 対 す る with respect to the wall surface 51χ ′. The position adjusting means 60 includes a holder 61 that integrally supports the optical member と, an attachment member 62 that is integrated with the holder 61 and is integrated with the wall portion 5 lx via the holder 61, A pin 63 is provided for rotating the member 62 to the wall 51x so as to be rotatable, and a screw 63 for fixing the attachment member 62 to the wall 51x. [0101] Therefore, the mounting member 62 is rotated around the pin 63 so that the optical member M occupies a desired position with respect to the wall surface 51χ ', and then the mounting member 62 is moved to the wall portion by the screw 63. By fixing to 51χ, the optical member Μ can be accurately positioned at a desired position with respect to the wall surface 51χ '.
[0102] 上述の形態においては、支持部材 51が壁部 51a、 51b、 51c、 51d、 51e、 51f、 5 lg、 5 lhまたは壁部 5 lxを有することとした力 支持部材 51は中実であっても良い。 この場合、中実の支持部材 51の外壁面が壁面 51a'、 51b '、 51c '、 51d'、 51e'、 5 lf '、 51g'、 51h'または壁面 51χ'をなす。この場合も、上述のリブ 53等の位置決め 部材、位置調整手段 60を配設することができる。支持部材 51は透明の榭脂で構成 する。  [0102] In the above-described form, the supporting member 51 has the wall portions 51a, 51b, 51c, 51d, 51e, 51f, 5 lg, 5 lh or the wall portion 5 lx. The supporting member 51 is solid. There may be. In this case, the outer wall surface of the solid support member 51 forms the wall surface 51a ′, 51b ′, 51c ′, 51d ′, 51e ′, 5lf ′, 51g ′, 51h ′ or the wall surface 51χ ′. Also in this case, the positioning member such as the rib 53 described above and the position adjusting means 60 can be provided. The support member 51 is made of a transparent resin.
[0103] また、この場合、壁面 51a'、 51b,ゝ 51c,、 51d,、 51e,、 51f,、 51g,、 51h,また は壁面 51χ'の内側を黒色とするには、壁面 51a'、 51b '、 51c'、 51d,、 51e,、 51f '、 51g'、 51h'または壁面 51x'を黒色に塗布する力 黒色の部材で囲めばよぐこ れ【こよって実質的【こ壁面 51a'、 51b'、 51c'、 51d\ 51e\ 51f\ 51g'、 51h,ま たは壁面 51χ'の内側が黒色になる。ただし、開口 51a,,ゝ開口 51c,,ゝ開口 51d,,、開 口 51e"、開口 51g"、開口 51h"または開口 51x"、に対応する部分以外の部分を黒 色とする。  [0103] In this case, in order to make the inner side of the wall surface 51a ', 51b, ゝ 51c, 51d, 51e, 51f, 51g, 51h, or the wall surface 51χ' black, the wall surface 51a ', 51b ', 51c', 51d, 51e, 51f ', 51g', 51h 'or the force to apply the wall surface 51x' to the black wall If enclosed by a black member [substantially this wall surface 51a ', 51b ', 51c', 51d \ 51e \ 51f \ 51g ', 51h, or the inside of the wall 51χ' is black. However, the portion other than the portion corresponding to the opening 51a, the heel opening 51c, the heel opening 51d, the opening 51e ", the opening 51g", the opening 51h "or the opening 51x" is black.
[0104] 一体成形された支持部材 51、保持部材 52及び天板部材は、光学装置 100の筐体 とも言うべき部材であって、第 1反射ミラー 102、ガルバノミラー 19a、ハーフミラー 10 4、凹面ミラー 106、第 2反射ミラー 108及びガルバノミラー 21aによって折り曲げられ たビーム光の全周囲を囲むように中空状の部材として備えられて 、る。  [0104] The integrally formed support member 51, holding member 52, and top plate member are members that should also be referred to as a casing of the optical device 100, and include a first reflecting mirror 102, a galvano mirror 19a, a half mirror 104, and a concave surface. It is provided as a hollow member so as to surround the entire circumference of the beam light bent by the mirror 106, the second reflecting mirror 108 and the galvanometer mirror 21a.
[0105] これにより、迷光が外部に漏れることがなぐよって網膜走査型ディスプレイ 1の使用 者である観察者の眼に予期せぬ光が入射して、観察者が認識する画像の画質を劣 化ないし低下させることが防止される。これを高精度に担保するため開口 51c"、開口 51e"、開口 51g"、開口 51h"はそれぞれその全体を第 1反射ミラー 102、ガルバノミ ラー 19a、第 2反射ミラー 108及びガルバノミラー 21aによって閉じられている。  [0105] As a result, stray light does not leak to the outside, so that unexpected light is incident on the eyes of the observer who is the user of the retinal scanning display 1, and the image quality recognized by the observer is deteriorated. It is prevented from being lowered. In order to ensure this with high accuracy, the entire opening 51c ", opening 51e", opening 51g "and opening 51h" are closed by the first reflecting mirror 102, the galvano mirror 19a, the second reflecting mirror 108 and the galvano mirror 21a, respectively. ing.
[0106] なお、このことは、光学装置 100内、支持構造 50内の防塵性を高めることにも寄与 しており、防塵性の更なる向上のため、開口 51a"、開口 51d"は、それぞれその全体 をノヽーフミラー、ガラス等によって閉じることが望ましい。開口 51a"を、ビーム光の光 学装置 100内、支持構造 50内への入射のみを許容するハーフミラーで閉じることは 、防塵性のみならず、上述の画質の劣化ないし低下の防止にも寄与する。開口 51d" をノヽーフミラーで閉じるときは、ビーム光の支持構造 50外への出射のみを許容するも のとする。 [0106] Note that this also contributes to improving the dust resistance in the optical device 100 and the support structure 50. For further improvement of the dust resistance, the openings 51a "and 51d" The whole It is desirable to close with a mirror, glass or the like. Closing the aperture 51a "with a half mirror that only allows the light beam to enter the optical device 100 and the support structure 50 contributes not only to dustproofness but also to the above-described deterioration or deterioration of image quality. When the aperture 51d "is closed with a noise mirror, only the beam light is allowed to be emitted out of the support structure 50.
[0107] 以上、本発明の好ましい実施の形態について詳述したが、本発明は係る特定の実 施形態に限定されるものではなぐ特許請求の範囲に記載された本発明の要旨の範 囲内において、種々の変形 ·変更が可能である。  [0107] While the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and within the scope of the gist of the present invention described in the claims. Various modifications and changes are possible.
[0108] たとえば、上述の実施形態では、入射壁部と出射壁部との両者を有している力 上 述のように支持部材を箱形状の最小単位等とした場合等には、そのいずれかのみを 備えた構成となることがある。 [0108] For example, in the above-described embodiment, the force having both the entrance wall portion and the exit wall portion. As described above, when the support member is a minimum unit of a box shape, etc. It may be a configuration with only the
[0109] 上述した実施形態においては、垂直走査系 19及び水平走査系 21は、凹面ミラー 1In the above-described embodiment, the vertical scanning system 19 and the horizontal scanning system 21 are the concave mirror 1
06からその凹面ミラー 106の曲率半径と同等の光路距離となる位置に設けられたがIt was installed at a position where the optical path distance was equivalent to the radius of curvature of the concave mirror 106 from 06
、これに限らない。 Not limited to this.
[0110] 上述した実施形態においては、凹面ミラーなどの集光ミラーを、垂直走査系 19と水 平走査系 21との間、水平走査系 21と瞳孔 24との間にそれぞれ設けられたが、これ に限らず、例えば、水平走査系 21と瞳孔 24との間に集光ミラーを設けなくても、少な くとも、垂直走査系 19と水平走査系 21との間に集光ミラーを設ければよ!、。  [0110] In the above-described embodiment, the condensing mirror such as the concave mirror is provided between the vertical scanning system 19 and the horizontal scanning system 21, and between the horizontal scanning system 21 and the pupil 24. For example, a condensing mirror may not be provided between the horizontal scanning system 21 and the pupil 24, but at least a condensing mirror may be provided between the vertical scanning system 19 and the horizontal scanning system 21. Goodbye!
[0111] 上述した実施形態においては、中継光学系の一例として、上述したような第 1リレー 光学系 20を採用したが、これに限らず、例えば、第 2反射ミラー 108を備えない構成 など、上述した実施形態以外の構成であってもよい。また、例えば、垂直走査系 19と 凹面ミラー 106との間にハーフミラー 104が設けられた力 これに限らず、例えば、垂 直走査系 19と凹面ミラー 106との間にハーフミラー 104が設けられなくてもよい。また 、例えば、凹面ミラー 106と水平走査系 21との間など、他の位置にハーフミラー 104 が設けられていてもよい。  [0111] In the embodiment described above, the first relay optical system 20 as described above is adopted as an example of the relay optical system. However, the present invention is not limited to this, for example, a configuration not including the second reflection mirror 108, etc. Configurations other than those described above may be used. Further, for example, the force provided by the half mirror 104 between the vertical scanning system 19 and the concave mirror 106 is not limited to this. For example, the half mirror 104 is provided between the vertical scanning system 19 and the concave mirror 106. It does not have to be. Further, for example, the half mirror 104 may be provided at another position such as between the concave mirror 106 and the horizontal scanning system 21.
[0112] 上述した実施形態においては、垂直走査系 19によって垂直方向に走査されるビー ム光を含む垂直走査面に対して交差する同一平面上に、第 1反射ミラー 102、 ハー フミラー 104、凹面ミラー 106、第 2反射ミラー 108などの中継光学系が設けられたが 、これに限らず、例えば、これらのような中継光学系のうちの一部又は全部力 垂直 走査系によって垂直方向に走査されるビーム光を含む垂直走査面に対して交差する 同一平面上に設けられなくてもよい。また、本実施形態においては、 1次走査面に対 して交差する方向から光束を入射させた力 これに限らず、例えば、 1次走査面に対 して交差する方向から光束を入射させなくてもよい。 [0112] In the embodiment described above, the first reflecting mirror 102, the half mirror 104, the concave surface on the same plane intersecting the vertical scanning plane including the beam light scanned in the vertical direction by the vertical scanning system 19. There are relay optical systems such as mirror 106 and second reflection mirror 108. Not limited to this, for example, a part or all of the relay optical systems such as these are provided on the same plane that intersects the vertical scanning plane including the beam light that is scanned in the vertical direction by the vertical scanning system. It does not have to be done. Further, in the present embodiment, the force by which the light beam is incident from the direction intersecting the primary scanning plane is not limited to this. For example, the light beam is not incident from the direction intersecting the primary scanning plane. May be.
[0113] 上述した実施形態においては、垂直走査系 19によって垂直方向に走査される垂 直走査角度は、水平走査系 21によって水平方向に走査される水平走査角度よりも 小さく設定されていたが、これに限らず、例えば、垂直走査角度が、水平走査角度よ りも大きく又は同じように設定されて 、てもよ 、。  In the embodiment described above, the vertical scanning angle scanned in the vertical direction by the vertical scanning system 19 is set to be smaller than the horizontal scanning angle scanned in the horizontal direction by the horizontal scanning system 21. For example, the vertical scanning angle may be set larger than or the same as the horizontal scanning angle.
[0114] 上述した実施形態においては、ビーム光を先に垂直方向に垂直走査系 19によつ て走査され、その後に、ビーム光を先に水平方向に水平走査系 21によって走査され る構成であつたが、これに限らず、例えば、ビーム光を先に水平方向に水平走査系 によって走査され、その後に、ビーム光を先に垂直方向に垂直走査系によって走査 される構成であってもよい。  [0114] In the above-described embodiment, the light beam is first scanned in the vertical direction by the vertical scanning system 19, and then the beam light is scanned first in the horizontal direction by the horizontal scanning system 21. However, the present invention is not limited to this. For example, a configuration in which the beam light is first scanned in the horizontal direction by the horizontal scanning system and then the beam light is first scanned in the vertical direction by the vertical scanning system may be used. .
[0115] 上述した実施形態においては、入射されるビーム光を垂直方向と水平方向とに走 查させるように構成したが、これに限らず、例えば、入射されるビーム光を、 1次方向 に走査させるとともに、その 1次方向と交差する 2次方向に走査させるように構成して もよい。また、本実施形態においては、凹面ミラーを集光ミラーの一例に採用したが、 これに限らない。  [0115] In the above-described embodiment, the incident beam light is configured to be moved in the vertical direction and the horizontal direction. However, the present invention is not limited to this. For example, the incident beam light is shifted in the primary direction. The scanning may be performed and the scanning may be performed in a secondary direction intersecting with the primary direction. Moreover, in this embodiment, although the concave mirror was employ | adopted as an example of a condensing mirror, it is not restricted to this.
[0116] 上述した実施形態においては、上述したような光学装置を備え、画像信号に応じて 変調された光束を、光学装置によって 1次方向及び 2次方向に走査することで、眼の 網膜上に画像を投影し、画像を表示する網膜走査型ディスプレイ 1 (網膜走査型の 画像表示装置の一例)について説明したが、これに限らず、例えば、眼の網膜に画 像を直接的に投影しなくても、上述したような光学装置を備え、画像信号に応じて変 調された光束を、その光走査装置によって 1次方向及び 2次方向に走査することで画 像をスクリーン上などに投影表示するスクリーン走査型の画像表示装置 (画像表示装 置の一例でレーザーディスプレイとも ヽぅ)等に本発明を採用してもよ!ヽ。また本発明 を適用した光学装置は、レーザプリンタ内でレーザビームを走査する光走査装置等 の光学装置にも応用できる。 [0116] In the above-described embodiment, the optical device as described above is provided, and the light beam modulated in accordance with the image signal is scanned in the primary direction and the secondary direction by the optical device, whereby the eye retina The retinal scanning display 1 (an example of a retinal scanning type image display device) that projects an image on the screen and displays the image has been described. However, the present invention is not limited to this. For example, the image is projected directly onto the retina of the eye. Even without this, the optical device as described above is provided, and the image is projected on a screen or the like by scanning the light beam modulated according to the image signal in the primary direction and the secondary direction by the optical scanning device. The present invention may be applied to a screen scanning type image display device for display (an example of an image display device is a laser display). An optical device to which the present invention is applied includes an optical scanning device that scans a laser beam in a laser printer. It can also be applied to other optical devices.
[0117] 開口の形状は、開口の体積を減じ、強度を向上する観点から、上述した実施形態 の方形状と異なり、円柱状としても良い。  [0117] From the viewpoint of reducing the volume of the opening and improving the strength, the shape of the opening may be a cylindrical shape unlike the rectangular shape of the above-described embodiment.
[0118] 本発明の実施の形態に記載された効果は、本発明カゝら生じる最も好適な効果を列 挙したに過ぎず、本発明による効果は、本発明の実施の形態に記載されたものに限 定されるものではない。 [0118] The effects described in the embodiments of the present invention only list the most preferable effects generated by the present invention, and the effects of the present invention are described in the embodiments of the present invention. It is not limited to things.
産業上の利用可能性  Industrial applicability
[0119] 光束を光学部材により折り曲げることにより大型化を抑制することができる光学装置 、これを用いた網膜走査型の画像表示装置及びスクリーン走査型の画像表示装置 に適用できる。 [0119] An optical device capable of suppressing an increase in size by bending a light beam with an optical member, and a retinal scanning image display device and a screen scanning image display device using the optical device.

Claims

請求の範囲 The scope of the claims
[I] 光学部材により光束を折り曲げる光学装置であって、  [I] An optical device for bending a light beam by an optical member,
折り曲げられた前記光束を囲むように設けられた壁面を有することを特徴とする光 学装置。  An optical apparatus comprising a wall surface provided so as to surround the bent light beam.
[2] 前記壁面が、前記光束が出射する出射壁面と、この出射壁面に隣設された複数の 隣設壁面とを有し、この隣設壁面が前記光学部材を支持したことを特徴とする請求 項 1に記載の光学装置。  [2] The wall surface has an exit wall surface from which the light beam exits and a plurality of adjacent wall surfaces adjacent to the exit wall surface, and the adjacent wall surface supports the optical member. The optical device according to claim 1.
[3] 前記壁面が、前記光束が入射する入射壁面と、前記光束が出射する出射壁面との 少なくとも一方を有することを特徴とする請求項 1に記載の光学装置。 [3] The optical device according to [1], wherein the wall surface includes at least one of an incident wall surface on which the light beam is incident and an output wall surface on which the light beam is emitted.
[4] 前記壁面が、前記光束が入射する入射壁面と、前記光束が出射する出射壁面とを 有し、前記入射壁面と前記出射壁面とが対向することを特徴とする請求項 1に記載の 光学装置。 4. The wall surface according to claim 1, wherein the wall surface has an incident wall surface on which the light beam is incident and an output wall surface on which the light beam is emitted, and the incident wall surface and the output wall surface face each other. Optical device.
[5] 前記壁面に対する前記光学部材の位置決めを行なう位置調整手段を有することを 特徴とする請求項 1に記載の光学装置。  5. The optical device according to claim 1, further comprising position adjusting means for positioning the optical member with respect to the wall surface.
[6] 前記壁面が、折り曲げられた前記光束によって形成される基準面に垂直であること を特徴とする請求項 1に記載の光学装置。 6. The optical device according to claim 1, wherein the wall surface is perpendicular to a reference surface formed by the bent light beam.
[7] 前記光学部材を前記基準面に直交する方向において対称に配設したことを特徴と する請求項 6に記載の光学装置。 7. The optical device according to claim 6, wherein the optical members are arranged symmetrically in a direction orthogonal to the reference plane.
[8] 前記壁面を有する部材が榭脂製であることを特徴とする請求項 1に記載の光学装 置。 8. The optical device according to claim 1, wherein the member having the wall surface is made of resin.
[9] 前記壁面の内側が黒色であることを特徴とする請求項 1に記載の光学装置。  9. The optical device according to claim 1, wherein the inside of the wall surface is black.
[10] 前記光学部材を備え前記光束を走査する第 1の走査系と、前記第 1の走査系と交 差する方向に走査する第 2の走査系とを有し、これらの走査系による走査面の何れか 一方が前記壁面と垂直であることを特徴とする請求項 1に記載の光学装置。 [10] A first scanning system that includes the optical member and scans the light beam, and a second scanning system that scans in a direction crossing the first scanning system, and scanning by these scanning systems. 2. The optical device according to claim 1, wherein any one of the surfaces is perpendicular to the wall surface.
[I I] 前記壁面を形成し前記光学部材を支持する支持部材を有することを特徴とする請 求項 1に記載の光学装置。  [I I] The optical device according to claim 1, further comprising a support member that forms the wall surface and supports the optical member.
[12] 前記支持部材が中実であることを特徴とする請求項 11に記載の光学装置。  12. The optical device according to claim 11, wherein the support member is solid.
[13] 前記光学部材を前記壁面に支持したことを特徴とする請求項 12に記載の光学装 置。 13. The optical device according to claim 12, wherein the optical member is supported on the wall surface. Place.
[14] 前記光学部材を支持した前記壁面に同光学部材を係合させて位置決めするため の位置決め手段を有することを特徴とする請求項 13に記載の光学装置。  14. The optical apparatus according to claim 13, further comprising positioning means for engaging and positioning the optical member on the wall surface supporting the optical member.
[15] 前記支持部材を保持する保持部材を有し、前記支持部材が前記壁面をその外面 とする壁部を有することを特徴とする請求項 11に記載の光学装置。 15. The optical device according to claim 11, further comprising a holding member that holds the support member, wherein the support member has a wall portion having the wall surface as an outer surface.
[16] 前記壁部を複数備え、その何れもが他の複数の壁部又は前記保持部材と隣設され て 、ることを特徴とする請求項 15に記載の光学装置。 16. The optical device according to claim 15, comprising a plurality of the wall portions, all of which are adjacent to the plurality of other wall portions or the holding member.
[17] 前記壁部と前記保持部材とにより、折り曲げられた前記光束を囲む箱形状を構成 することを特徴とする請求項 16に記載の光学装置。 17. The optical device according to claim 16, wherein the wall portion and the holding member form a box shape surrounding the bent light beam.
[18] 前記光学部材を前記壁部に支持したことを特徴とする請求項 15に記載の光学装 置。 18. The optical device according to claim 15, wherein the optical member is supported on the wall portion.
[19] 前記光学部材を支持した前記壁部に同光学部材を係合させて位置決めするため の位置決め手段を有することを特徴とする請求項 18に記載の光学装置。  19. The optical apparatus according to claim 18, further comprising positioning means for engaging and positioning the optical member on the wall portion supporting the optical member.
[20] 前記光学部材を支持した前記壁部の厚み及び Z又は高さを、支持した前記光学 素子に応じて設定したことを特徴とする請求項 18に記載の光学装置。 20. The optical device according to claim 18, wherein the wall portion supporting the optical member has a thickness and a Z or height set in accordance with the supported optical element.
[21] 前記光学部材を支持した前記壁部の厚みを、前記光束の光路長が所望の光路長 となるように設定したことを特徴とする請求項 18に記載の光学装置。 21. The optical device according to claim 18, wherein a thickness of the wall portion supporting the optical member is set so that an optical path length of the light flux becomes a desired optical path length.
[22] 前記光学部材を支持した前記壁部が、その外側の前記壁面に同光学部材を支持 しているとともに、同光学部材により折り曲げられる前記光束を透過する開口を有す ることを特徴とする請求項 18に記載の光学装置。 [22] The wall portion supporting the optical member supports the optical member on the outer wall surface, and has an opening that transmits the light beam bent by the optical member. The optical device according to claim 18.
[23] 前記壁部の外側の前記壁面に支持された前記光学部材が前記光束を反射する反 射部材であることを特徴とする請求項 22に記載の光学装置。 23. The optical device according to claim 22, wherein the optical member supported by the wall surface outside the wall portion is a reflecting member that reflects the light flux.
[24] 前記開口の周縁が、この開口を有する前記壁部の内側に向けて拡開したテーパー 形状をなしていることを特徴とする請求項 22に記載の光学装置。 24. The optical device according to claim 22, wherein a peripheral edge of the opening has a tapered shape that expands toward the inside of the wall portion having the opening.
[25] 前記開口を有する前記壁部が、支持した前記光学部材を複数箇所で支持して!/、る ことを特徴とする請求項 22に記載の光学装置。 25. The optical device according to claim 22, wherein the wall portion having the opening supports the supported optical member at a plurality of locations.
[26] 前記開口が、同開口を有する前記壁部により支持される前記光学部材より小さいこ とを特徴とする請求項 22に記載の光学装置。 26. The optical device according to claim 22, wherein the opening is smaller than the optical member supported by the wall portion having the opening.
[27] 前記壁部が、他の前記壁部に着脱可能であることを特徴とする請求項 16に記載の 光学装置。 27. The optical device according to claim 16, wherein the wall portion is detachable from other wall portions.
[28] 前記他の前記壁部に着脱可能な前記壁部を含む第 1の箱状部と、前記他の前記 壁部を含む第 2の箱状部とを有し、第 1の箱状部が第 2の箱状部に着脱可能であるこ とを特徴とする請求項 27に記載の光学装置。  [28] A first box-shaped part including a first box-shaped part including the wall part detachably attached to the other wall part, and a second box-shaped part including the other wall part. 28. The optical device according to claim 27, wherein the portion is detachable from the second box-shaped portion.
[29] 折り曲げられた前記光束の全周囲を囲むように少なくとも前記壁部と前記保持部材 とを備えていることを特徴とする請求項 16に記載の光学装置。 29. The optical device according to claim 16, further comprising at least the wall portion and the holding member so as to surround the entire periphery of the bent light beam.
[30] 眼の網膜上に前記光束によって形成される画像を投影表示する網膜走査型の画 像表示装置であって、請求項 1に記載の光学装置を備えたことを特徴とする画像表 示装置。 [30] A retinal scanning type image display device for projecting and displaying an image formed by the light flux on the retina of an eye, comprising the optical device according to claim 1. apparatus.
[31] スクリーン上に前記光束によって形成される画像を投影表示するスクリーン走査型 の画像表示装置であって、請求項 1に記載の光学装置を備えたことを特徴とする画 像表示装置。  [31] An image display device comprising the optical device according to claim 1, which is a screen scanning type image display device that projects and displays an image formed by the light beam on a screen.
PCT/JP2006/326265 2005-12-28 2006-12-28 Optical device and image display device WO2007077932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-380250 2005-12-28
JP2005380250A JP2007178944A (en) 2005-12-28 2005-12-28 Optical device and image display device

Publications (1)

Publication Number Publication Date
WO2007077932A1 true WO2007077932A1 (en) 2007-07-12

Family

ID=38228281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326265 WO2007077932A1 (en) 2005-12-28 2006-12-28 Optical device and image display device

Country Status (2)

Country Link
JP (1) JP2007178944A (en)
WO (1) WO2007077932A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644663B2 (en) * 2018-05-31 2023-05-09 Ricoh Company, Ltd. Light deflector and its manufacturing method, image projector, object recognition device, laser headlamp device, optical writing device, and mobile object

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106003B2 (en) * 2007-08-28 2012-12-26 キヤノン株式会社 Optical scanning device
JP5404342B2 (en) * 2009-01-06 2014-01-29 キヤノン株式会社 Optical scanning device and image forming apparatus using the same
US8107147B2 (en) * 2009-03-27 2012-01-31 Microvision, Inc. Two-mirror scanning system
JP5274400B2 (en) * 2009-07-28 2013-08-28 日本信号株式会社 Planar actuator mounting unit
WO2017199640A1 (en) * 2016-05-18 2017-11-23 株式会社Jvcケンウッド Display device for vehicle and display system for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687088A (en) * 1992-09-09 1994-03-29 Kawasaki Heavy Ind Ltd Laser beam machine
JP2003050423A (en) * 2001-08-07 2003-02-21 Canon Inc Method of manufacturing projector of projection display
JP2003057586A (en) * 2001-08-20 2003-02-26 Brother Ind Ltd Optical scanner, vibrating body used for optical scanner and image forming apparatus equipped with optical scanner
JP2005181924A (en) * 2003-12-24 2005-07-07 Canon Inc Light source driving circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687088A (en) * 1992-09-09 1994-03-29 Kawasaki Heavy Ind Ltd Laser beam machine
JP2003050423A (en) * 2001-08-07 2003-02-21 Canon Inc Method of manufacturing projector of projection display
JP2003057586A (en) * 2001-08-20 2003-02-26 Brother Ind Ltd Optical scanner, vibrating body used for optical scanner and image forming apparatus equipped with optical scanner
JP2005181924A (en) * 2003-12-24 2005-07-07 Canon Inc Light source driving circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644663B2 (en) * 2018-05-31 2023-05-09 Ricoh Company, Ltd. Light deflector and its manufacturing method, image projector, object recognition device, laser headlamp device, optical writing device, and mobile object

Also Published As

Publication number Publication date
JP2007178944A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5304380B2 (en) Optical scanning device, image projection device using the same, head-up display device, and mobile phone
JP4522253B2 (en) Optical scanning device and image display device using the same
US7385745B2 (en) Two-dimensional scanning apparatus and scanning type image displaying apparatus using the same
JP5358451B2 (en) Planar illumination device and image display device
KR100709637B1 (en) Image displaying apparatus
US8128238B2 (en) Projection optical system and image displaying apparatus
JP2013061554A (en) Image forming apparatus, and vehicle with image forming apparatus mounted thereon
US8432595B2 (en) Scanning image displayer, mobile phone, mobile information processor, and mobile imager
JP2007531030A (en) Projection module and projector using projection module
JP6848219B2 (en) Image display device
KR102051359B1 (en) Head-up display device
JP2006323383A (en) Optical system of portable projector and mobile communication terminal using the same
WO2007077932A1 (en) Optical device and image display device
CN110462488B (en) Head-up display device
JP2018005078A (en) Optical scanner, projector, and display device
WO2017138430A1 (en) Display device and head-up display
US20100253991A1 (en) Scanning projection device
JP2017142509A (en) Image forming apparatus, and vehicle having image forming apparatus mounted thereon
JP2017142284A (en) Display device and head-up display
JP2010197495A (en) Projection optical system and image display
US7596157B2 (en) Laser optical apparatus
US20090002791A1 (en) Optical scanning device, imaging display device, and retinal scanning display
JP5173295B2 (en) Optical scanning device and scanning image display device
JP6107996B2 (en) Image forming apparatus and vehicle equipped with image forming apparatus
JP4174288B2 (en) Two-dimensional scanning device and scanning image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843643

Country of ref document: EP

Kind code of ref document: A1