WO2007077627A1 - Substance separating device and method of substance separation - Google Patents

Substance separating device and method of substance separation Download PDF

Info

Publication number
WO2007077627A1
WO2007077627A1 PCT/JP2006/300066 JP2006300066W WO2007077627A1 WO 2007077627 A1 WO2007077627 A1 WO 2007077627A1 JP 2006300066 W JP2006300066 W JP 2006300066W WO 2007077627 A1 WO2007077627 A1 WO 2007077627A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
substance
separation
separation channel
stage
Prior art date
Application number
PCT/JP2006/300066
Other languages
French (fr)
Japanese (ja)
Inventor
Takanori Anazawa
Shinji Kato
Original Assignee
Kawamura Institute Of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute Of Chemical Research filed Critical Kawamura Institute Of Chemical Research
Priority to PCT/JP2006/300066 priority Critical patent/WO2007077627A1/en
Publication of WO2007077627A1 publication Critical patent/WO2007077627A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip

Definitions

  • the present invention relates to a substance separation device capable of continuously separating substances contained in a fluid.
  • a microfluidic device performs a reaction in a reaction field such as a minute capillary channel.
  • This microfluidic device has few by-products, greatly increases the reaction speed of heterogeneous reaction systems, can construct a continuous reaction device, can perform reactions with a small amount of reagent, and operates in parallel It is suitable for screening synthetic reactions because it is easy.
  • chromatography can be performed only by the force batch method that can increase the number of separation stages. Therefore, a control device capable of precise time control such as a sorting device and a flow path switching valve is required. . Furthermore, there is a problem when the processing amount is insufficient as a method for concentrating, refining, and collecting production equipment. Electrophoresis is capable of continuous separation. Force separation targets are limited to charged substances. Further, since bubbles are generated by electrolysis of water, there is a problem that it is difficult to incorporate the microfluidic device together with other mechanisms. Dialysis can be separated continuously, but the processing speed is slow. However, in order to separate molecules, there is a problem that the resolution is low and a large amount of dialysate is required.
  • a column-type adsorption separation method is known as a normal scale separation method.
  • this method is to be carried out with a microfluidic device, it is necessary to switch between the original solution and the washing solution on the introduction side, and the switching operation between the concentrated solution and the dilution solution on the outflow side, and a valve for that purpose.
  • a microfluidic device In addition to requiring an expensive microfluidic device with a structure, there are problems that it is difficult to perform a large number of parallel operations, which is a feature of microfluidic devices.
  • Patent Document 1 filed by the present inventors, liquid-liquid mass transfer is performed by bringing a small amount of liquids that are not miscible with each other into contact with each other in a layered manner and stably flowing, and thereafter There is disclosed a micro chemical device capable of continuously separating and recovering a liquid once again in contact with the soot.
  • This micro chemical device has a capillary channel inside, and the inner surface of the channel has a low contact angle part with a contact angle with water of 25 ° or less and a contact angle with water with a low contact angle part.
  • Patent Document 2 filed by the present inventors discloses a micro chemical device capable of continuously extracting and oil-water separation by contacting a minute amount of liquid that is immiscible with each other and then separating them. ing.
  • This microchemical device has a capillary channel inside thereof, and at the downstream end of the channel, the inner surface has a low contact angle portion where the contact angle with water is 25 ° or less, and the contact angle with water.
  • Has a liquid separation chamber that has a high contact angle portion that is 10 ° or more higher than that of the low contact angle portion, and a cross-sectional area that is 2 to: LOOO times that of a capillary channel.
  • An outflow path is formed for each of the contact angle portion and the high contact angle portion.
  • the two liquids that are immiscible with each other are introduced into the flow path, and the two liquids are separated and discharged in the separation chamber. It does not describe the separation of substances contained in the solution, but also discloses the configuration for performing the separation. It has not been.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-137613
  • Patent Document 2 JP 2000-262871 A
  • the problem to be solved by the present invention is that valve operation is required for two or more kinds of substances in the fluid, such as two or more kinds of fluids uniformly mixed, a solute and a solvent, and two or more kinds of solutes.
  • the object is to provide a material separation device and a material separation method capable of continuous high-level separation.
  • the inventor forms a first holding part capable of holding the separation target substance on one side of the inner surface of the separation channel through which the fluid as the sample flows, and in the vicinity of the first holding part Increase the concentration of uptake and release of the separation target material, and form a first outlet and a second outlet on the downstream end of the separation channel on the side closer to and farther from the first holding part, respectively. From the first outlet, the fluid in which the substance to be separated is concentrated, from the second outlet, the substance to be separated is diluted, and Z or a substance other than the substance to be separated is concentrated. It was found that fluids can be separated by taking out each one.
  • the present invention is a micro device for separating a first substance and a second substance in a fluid from each other, the separation channel for circulating the fluid, and a downstream end of the separation channel.
  • a first outlet and a second outlet formed, and a first holding portion provided on a part of a wall surface on the first outlet side of the separation channel, which can hold the first substance.
  • a material separation device is provided.
  • the present invention is a method for separating a first substance and a second substance in a fluid from each other, and (I) a first holding part capable of holding the first substance is provided in a part of a wall surface. A step of allowing the fluid to flow into the separation channel; (i) a step of incorporating the first substance into the first holding part; and (III) releasing the first substance from the first holding part.
  • the concentrated solution of the first substance is taken out from the downstream end force of the first holding part, and the diluted solution of the first substance and Z or the concentrated solution of the second substance are taken downstream of the first holding part. Remove from the other end of the end And a method for separating the substance.
  • the present invention concentrates two or more substances contained in a state dissolved in a fluid, for example, two or more uniformly mixed fluids, a solute and a solvent, and two or more solutes in a solution.
  • a substance separation device and a substance separation method that can be separated from each other for the purpose of purification, recovery, removal, analysis, and the like.
  • the substance separation device of the present invention can obtain a high-concentration separation liquid simply by connecting it in multiple stages, it can be used for each stage as in the case of stacking conventional membrane separation devices. Since a pump is not required, it is easy to incorporate the pump into a microfluidic device and create a single micro 'total' analysis 'TAS'.
  • FIG. 1 A three-dimensional embodiment material separation device.
  • (A) is a plan view
  • (b) is a side sectional view taken along the line ⁇ - ⁇ in (a).
  • FIG. 2 is a material separation device of a semi-stereoscopic embodiment.
  • A is a plan view
  • (b) is a side sectional view taken along line j8-j8 in (a)
  • (c) is a side sectional view taken along line ⁇ - ⁇ in (a).
  • FIG. 3 A material separation device of a planar type embodiment.
  • (A) is a plan view
  • (b) is a side view
  • (c) is a side sectional view taken along line ⁇ - ⁇ in (a).
  • FIG. 4 The substance separation device of Example 1.
  • (A) is a top view
  • (b) is a side view.
  • FIG. 5 is a plan view of a material separation device produced in Example 2 by a three-dimensional stepwise arrangement.
  • FIG. 6 is a side sectional view taken along the line ⁇ — ⁇ in FIG.
  • FIG. 7 is a plan view of the first outer layer.
  • FIG. 8 is a plan view of the inner layer.
  • FIG. 9 is a plan view of a second outer layer.
  • FIG. 10 is an exploded perspective view of a separation channel and a communication channel.
  • FIG. 11 is a partial plan view of the substance separation device of Example 3.
  • FIG. 12 is a side sectional view of the substance separation device of Example 3.
  • FIG. 13 is a side cross-sectional view of the substance separation device of Example 4.
  • the substance separation device and the substance separation method of the present invention separate at least two substances in a fluid containing two or more substances, that is, at least a first substance and a second substance from each other.
  • the first substance and the second substance in the solution may be either a liquid substance or a solid substance in a single state.
  • the fluid in which these substances are dissolved may be one in which either substance dissolves the other substance or both substances are dissolved in the third solvent. That is, examples of the first substance and the second substance include two fluids in a mixed fluid composed of two or more fluids, a solute and a solvent, and two kinds of solutes in a solution.
  • Examples of the above mixed fluid include a mixture of a water-soluble organic liquid such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, acetone, isopropyl alcohol, and ethanol, and trihalomethane.
  • dilute aqueous solutions of organic liquids that dissolve in trace amounts of water.
  • solutes and solvents include aqueous solutions of biochemical substances such as poly (or oligo) nucleotides, sugar chains, poly (or oligo) peptides (herein aqueous solutions include buffer solutions), various chemical substances Examples include aqueous solutions and organic solvent solutions.
  • Examples of two or more solutes include poly (or oligo) nucleotides having different base sequences, sugar chains having different sequences, poly (or oligos) having different sequences.
  • Biochemical substances such as peptides, optical isomers, products and by-products of synthetic reactions, and various other chemical substances.
  • the separation method of the present invention is effective particularly in a system with a low concentration.
  • the first substance and the second substance may be any two substances in the liquid, for example, two kinds of solutes dissolved in a common solvent may be V, Two or more fluids that are uniformly mixed may be used, and may be a solvent and a solute. In particular, two types of solutes dissolved in the solvent will be described.
  • the case of separating three or more substances will be explained in the specific mechanism and method section below.
  • the basic structure of the substance separation device of the present invention is a microdevice for separating a first substance and a second substance in a fluid from each other, the separation channel for circulating the fluid, and the separation channel.
  • a first outlet and a second outlet formed at the downstream end, and a first holder capable of holding the first substance provided on a part of the wall surface on the first outlet side of the separation channel.
  • the separation channel further includes a second holding part provided on a part of the wall surface on the second outlet side of the separation channel and capable of holding the second substance.
  • FIG. 1 is a diagram of a three-dimensional material separation device according to an embodiment of the present invention, in which FIG. 1 (a) is a plan view, and FIG. 1 (b) is a side sectional view taken along the line ⁇ - ⁇ .
  • a first outer layer 22 and a second outer layer 24 are laminated on both surfaces of the inner layer 23, respectively, and a base material 21 is laminated on the outer side of the first outer layer 22, and the first outer layer 22 is laminated.
  • a cover layer 25 is laminated outside the outer layer 24.
  • the separation channel 3 is formed in the inner layer 23, and the first holding part 1 is formed on the inner surface of the separation channel 3 on the first outer layer 22 side.
  • One end of the separation channel 3 in the length direction is an inlet 5, a hole that penetrates the base material 21 and the first outer layer 22 and communicates with the inlet 5 is formed as an inlet 15. .
  • the flow of the separation channel 3 is A communication channel 8 that connects the outlet 6 and the first outlet 7 is formed, and a communication channel 18 that connects the outlet 16 of the separation channel 3 and the second outlet 17 is formed in the second outer layer 24. Is formed.
  • the first outlet 7 is formed as a hole that penetrates the base material 21 and communicates with the communication channel 8 formed in the first outer layer 22, and the second outlet 17 is the base material 21, the first It is formed as a hole that penetrates the outer layer 22 and the inner layer 23 and communicates with the communication channel 18 formed in the second outer layer 24. That is, the fluid introduced from the inlet 15 enters the separation channel 3 from the inlet 5 and flows through the separation channel 3, and part of the fluid flows upward from the first outlet 6 in the figure, It flows out of the substance separation device from the first outlet 7 through the communication channel 8. In addition, the remaining part flows out from the second outlet 16 downward in the figure, then flows out of the substance separation device from the second outlet 17 through the communication channel 18.
  • the material constituting the inner layer 23, the first outer layer 22, the second outer layer 24, the base material 21, and the cover layer 25 is arbitrary, for example, a metal such as glass or stainless steel, or a semiconductor such as silicon. Crystals such as quartz, ceramics, carbon, and organic polymers can be used.
  • the organic polymer may be classified strictly as an inorganic polymer, such as polydimethylsiloxane, it usually includes those treated as an organic polymer. Each of these materials has short and long, and a suitable material may be selected according to the target separation system.
  • the organic polymer has a high degree of freedom for adjusting the retaining property of the inner wall of the flow path, which will be described later, and is likely to have a high retaining property. Therefore, particularly high heat resistance is preferable except for a system that requires organic solvent resistance.
  • After the organic polymer it is preferable to select a glass that can relatively easily adjust the retention of the inner wall of the channel.
  • the substance separation device 100 is configured by adhering a base material 21, a first outer layer 22, an inner layer 23, a second outer layer 24, and a cover layer 25 in a tightly stacked state.
  • the fixing may be bonding with an adhesive, may be fixing without using an adhesive, or may be fixed with screws or clamps in a state where each layer is liquid-tight.
  • each layer is integrally formed without forming each layer separately by a method such as a micro photo molding method, and each layer may not be recognized as a layer.
  • the outer shape of the substance separation device 100 is arbitrary, and may be, for example, a plate shape (including a straight plate shape and a curved plate shape), a sheet shape (including a film, a belt, a ribbon, etc.), a rod shape, and a spherical shape.
  • the plate shape or the sheet shape is easy to manufacture, can be easily integrated with other microfluidic devices, and can increase and decrease the heating / cooling speed in the case of usage methods that raise and lower the temperature.
  • a plate shape or the sheet shape is easy to manufacture, can be easily integrated with other microfluidic devices, and can increase and decrease the heating / cooling speed in the case of usage methods that raise and lower the temperature.
  • a capillary separation channel 3 is formed as a missing portion of the layer.
  • the cross-sectional shape of the separation channel 3 is arbitrary, and may be, for example, a rectangle such as a square or a rectangle, a trapezoid, a triangle, a pentagon, a hexagon, a circle, or a semicircle. Among these, a rectangular shape, a trapezoidal shape, or a semicircular shape is preferable for ease of production. In the case of a cross-sectional shape having corners, the corners may be rounded.
  • the separation channel is configured by the through groove of the inner layer. It is preferable because it is easy to design.
  • a communication flow that connects an outlet in the upstream separation channel and an inlet in the downstream separation channel to the outer layer laminated on the inner layer. It is preferable that the road is formed in the outer layer.
  • the inner wall of a part of the circumference of the cross section of the separation channel 3 can hold the first substance that is the separation target, and preferably has a higher holding ability than the second substance with respect to the first substance that is the separation target.
  • the first holding part 1 is formed, which exhibits higher retention than the other part of the inner wall with respect to the first substance. “Retention” as used herein may be based on any interaction such as adsorption, absorption, swelling, hydration, hydrophobic bond, hydrogen bond, electrostatic force, dielectric interaction and the like.
  • the first holding unit 1 may be an adsorbent fixing unit such as activated charcoal, zeolite, silica gel, surface-modified silica gel, and alumina when the holding property is based on adsorption.
  • the retention When the retention is based on absorption, it may be an absorbent fixing part such as a porous organic polymer or a porous gel. When the retention is based on swelling, it can be, for example, a fixed part of a temperature-responsive gel having a gel Z solid transition temperature. When the retention is based on hydration, for example, polysaccharides or ionic groups It can be a fixed part. When the retention is based on a hydrophobic bond, it may be a fixed part of a hydrophobic porous body such as activated carbon or hydrophobic silica gel. When the retention is based on hydrogen bonding, it can be a fixing part of a hydrophilic adsorbent such as silica gel.
  • a hydrophilic adsorbent such as silica gel.
  • the holding property When the holding property is based on static electricity, it may be a fixing part of a porous body having a cation group anion machine on the surface.
  • the holding property of the first holding unit 1 may be based on a plurality of types of these interactions.
  • the first holding unit 1 can be a probe fixing site having a molecular recognition function that exhibits a selective affinity for the first substance.
  • the first holding unit 1 can be an immobilized surface of probe DNA having a base sequence complementary to the DNA.
  • the probe can be a chemical substance, biochemical substance, biological tissue, or the like.
  • the selective affinity can be, for example, an antigen and antibody, an enzyme and a substrate, or an allele of a polynucleotide.
  • the first holding part is also preferably an adsorption site having stereoselectivity, for example, an optically active substance recognition adsorption site.
  • the part into which the first substance is taken in may be the surface and Z or the inside of the first holding part.
  • “can be held” means that it is taken in and released into the first holding unit, for example, adsorption and desorption when the interaction is adsorption, and absorption and desorption when the interaction is absorption. It is possible to say that even after a long period of operation, more first substance is taken up and released. Therefore, if the first substance is taken in but is not released by being fixed to the first holding part, it will not function as an uptake site after flowing a sufficiently large amount of sample solution, so it cannot be “held”. . It is preferable that the first holding unit 1 has a large amount of uptake and release because the separation efficiency is improved and a high-concentration stock solution can be separated.
  • the retention may occur as an equilibrium under a constant temperature condition, for example, as in a chromatographic carrier, and uptake and release may occur by changing the temperature.
  • a suitable degree of uptake and release may be selected according to the separation method of the present invention. Interactions in which uptake and release can occur particularly efficiently by changing temperature include adsorption, absorption on temperature-responsive gels with gel Z solid transition, and hybridization of poly (or oligo) nucleotides. And denoising hybridization and hydrogen bonding.
  • the amount that the first holding unit can hold the first substance is a suitable level depending on the separation conditions, for example, the concentration of the first substance in the raw fluid and the concentration of the first substance in the target separation / concentrate.
  • the amount of the first substance in the raw fluid introduced into the separation channel is preferably 3 times or more of the preferred amount, more preferably 10 times or more of the preferred amount. By setting it within this range, separation can be carried out efficiently, and a concentrated solution having a high concentration can be obtained.
  • the upper limit of the amount that the first holding part can hold the first substance is naturally limited, but it is not necessary to set an upper limit because it is high in itself. For example, it is also preferable that the amount of the first substance in the raw fluid introduced into the separation channel is 1000 times or 10,000 times.
  • the surface shape of the first holding part 1 is arbitrary, and a smooth surface, a concavo-convex structure, a surface on which powder is fixed, a surface on which porous body powder is fixed, a porous layer, and a layered gel are fixed.
  • the structure may be a structure in which a porous gel is fixed, a structure in which a chain polymer dissolved in a solution to be separated is chemically bonded to a channel wall, or the like.
  • a surface having a porous body that can take a large surface area in order to increase the amount of fixation of a probe or the like, that is, a porous powder fixing surface or a porous layer is particularly preferable.
  • the thickness of the porous layer is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and most preferably 5 ⁇ m or more. Further, the thickness of the porous body preferable in relation to the height of the separation channel is 1Z100 or more, more preferably 1Z30 or more, and most preferably the surface force on which the porous body is formed is the distance to the opposing surface of the channel. Preferably it is 1Z10 or more. The upper limit of the thickness of the porous body is the distance to the position, as close as possible to the opposed surface of the flow path. Separation efficiency can be increased by using a porous body having the above thickness.
  • the porous body is optional as long as it is a so-called continuous porous body in which pores communicate at least in the depth direction.
  • the pore shape is, for example, a sponge (sponge) composed of cellular cavities communicating with each other, a giroid structure in which the structure of the pore and the structure is equivalent, or a gap between the powder particles fixed in contact with each other. It may be a formed sintered body, a bundle of channels such as a plurality of capillaries or slits parallel to each other, a gap between fibers of a nonwoven fabric or a woven fabric, and the like.
  • the average pore diameter of the porous body is arbitrary, it is preferably smaller than the diameter of the separation channel 3, preferably 0.1-50 111, more preferably 0.5-20 111. preferably 1, 0 will have the time to mix the materials by diffusion and Ru this range less than der, separation efficiency is lowered. Mako If the above range is exceeded, the number of adsorption sites decreases, so the separation efficiency also decreases. If the cross section of the separation channel 3 is completely occupied by the porous body that is the first holding part 1 and the porous body that is the second holding part 2, and there is no other space, these The pore diameter of the porous body is preferably 3 to 50 111, more preferably 5 to 20 / ⁇ ⁇ . Below this range, the pressure loss becomes excessive.
  • the material of the porous body may be any material as long as it can form a porous body.
  • a suitable material may be selected.
  • an organic polymer is preferable because a porous body can be easily formed and surface characteristics can be easily controlled.
  • the active energy ray-curable resin is particularly preferable because it is easy to form a porous body in the minute separation channel 3.
  • the porous body made of active energy ray-curable resin and the production method thereof for example, those described in JP-A-7-316336 filed by the present inventors can be used.
  • an energy beam polymerizable compound and a phase separation agent that dissolves the compound but does not dissolve or swell the polymer are formed on the wall of the separation channel where the porous body is to be formed. Coat the mixture.
  • the coating portion is irradiated with active energy rays such as ultraviolet rays, and the energy ray polymerizable compound is polymerized and cured, and at the same time, phase separation is performed to form a porous body, and a phase separation agent in the porous is formed. It is to be removed by washing.
  • the energy beam polymerizable compound for example, a monomer or an oligomer having an taliloyl group or a maleimide group can be preferably used.
  • the material of the porous body is a material other than the active energy ray-curable resin
  • a material other than the active energy ray-curable resin for example, one component of the Zirgel method, the wet phase separation method, the dry phase separation method, and the co-continuous microphase separator
  • Known methods according to each material such as elution removal method and powder sintering method can be used.
  • the first holding part 1 occupies a part of the inner wall of the circumference of the cross section of the separation channel 3 and is substantially continuous in the length direction of the separation channel 3. At this time, the first holding unit 1 is preferably substantially parallel to the flow direction of the fluid flowing through the separation channel 3, but is preferably completely parallel. Further, the first holding unit 1 may have a partly interrupted place, but it is preferable that the first holding part 1 not be interrupted. By doing in this way, resolution can be improved.
  • the range that the first holding unit 1 occupies on the circumference of the cross section of the separation channel 3 is arbitrary. 0 to 50% is preferable.
  • the cross-sectional shape of the separation channel 3 is rectangular, the first holding part 1 is preferably formed as one side of the longer side.
  • the average distance from the formation surface of the first holding part 1 to the opposing surface is preferably 1 to 500 ⁇ m, more preferably 3 to 300 ⁇ m, and even more preferably 5 to 150 / ⁇ ⁇ . 5-: LOO / zm is most preferable. Below this range, pressure loss increases, requiring a large pump and reducing the separation throughput. On the contrary, if it exceeds this range, it takes time for the separation operation and the separation efficiency decreases.
  • the distance from the first holding part 1 to the facing surface means the distance to the surface facing the surface force of the thickness when the holding part has a thick structure such as a porous body.
  • the distance from the first holding portion 1 to the facing surface of the separation channel 3 is large near the outflow ports 6 and 16 that are small near the inflow port 5.
  • the distance is less than the average distance in the vicinity of the inlet 5, and it is also preferable that the average distance is exceeded in the vicinity of the outlet.
  • the material separation device 100 is formed in a plate shape or a sheet shape, the stream lines of the separation channel 3 are arranged in parallel to the plate surface or the sheet surface, and the first holding unit 1 is the plate surface or the sheet. Forming parallel to the surface is most preferable for ease of manufacturing. Next, it is preferable that the first holding portion 1 is provided perpendicularly to the plate surface or the sheet surface because manufacturing is relatively easy. In addition, the formation surface of the first holding portion 1 may be different for each separation channel or each stage of the separation channel.
  • each separation channel 3 is preferably an arbitrary force of 10 ⁇ m to 30 cm, more preferably 50 / ⁇ ⁇ to 10 cm, and even more preferably 100 m to 3 cm.
  • the preferred length of the separation channel 3 depends on the distance between the first holding part 1 and the second holding part 2, and is 2 to 2 times the average distance between the first holding part 1 and the second holding part 2. : L000 times preferred 3 to: L00 times more preferred 5 to 50 times Strength S More preferred. By setting this range, it is possible to construct a material separation device having sufficient separation ability and good space factor.
  • At least a part of the inner wall of the separation channel 3 other than the first holding portion has the second substance with respect to the second substance. It is also preferable to provide the second holding part 2 which shows higher holding ability than the one holding part and which shows higher holding ability than the other part of the inner wall with respect to the second substance. That is, the first holding part and the second holding part
  • the first holding unit 1 is a surface of a probe DNA that has a complementary base sequence to one of the DNAs.
  • the second holding part 2 can be the surface of the probe DNA fixed base having a base sequence complementary to the other DNA.
  • the first holding part 1 and the second holding part 2 are probes having different selective affinities for these biochemical substances. It can be.
  • the details of the retention and affinity that the second holding part shows for the second substance are the same as those shown by the first holding part 1 for the first substance.
  • the affinity between the first substance and the first holding part and the affinity between the second substance and the second holding part may be different.
  • the device having only the first holding part is provided.
  • the first substance in the solution is concentrated, but the second substance is not diluted, and the concentration of the second substance remains unchanged.
  • the concentration of the first substance and the dilution of the second substance can be performed simultaneously, so that the purity of the first substance and the second substance can be increased.
  • the separation device provided with the second holding part is particularly suitable for separating two kinds of solutes in the solution.
  • the first holding part 1 and the second holding part 2 occupy different ranges on the circumference of the cross section of the separation channel 3 and intersect each other. Each of them is substantially continuous in the length direction of the separation channel 3.
  • the second holding unit 2 is also the same as the first holding unit 1 in terms of parallelism and continuous state with respect to the flow direction of the fluid flowing through the separation channel 3.
  • the range occupied by each on the circumference of the cross section of the separation channel 3 is larger as much as possible, and the amount of the substance to be separated increases. Therefore, it is preferable.
  • the first holding part 1 and the second holding part 2 are in contact with each other on the circumference of the channel cross section.
  • a boundary region (non-holding portion or third holding portion) having different holding properties is provided at the boundary portion between the first holding portion 1 and the second holding portion 2.
  • the wall surface of the separation channel includes a pair of parallel surfaces, and the first holding unit and the second holding unit are provided on the pair of parallel surfaces.
  • the first holding part 1 and the second holding part 2 are formed on opposite long sides, and the two short sides are used as boundary regions. Is preferred.
  • the first holding part and the Z or second holding part are manufactured when the structure is provided on the surface on the inner layer side in the outer layer. It is easy and preferable. At this time, the average distance between the first holding unit 1 and the second holding unit 2 is the same as the distance from the first holding unit to the facing surface when the second holding unit is not provided.
  • the separation channel 3 has the second holding part and both the first holding part and the second holding part are porous layers, these surfaces may be in contact with each other.
  • the fluid flows only inside the porous layer.
  • the second holding part is formed, and the cross section of the separation channel 3 is completely occupied by the porous body that is the first holding part 1 and the porous body that is the second holding part 2.
  • the influence of the cross-sectional shape of the separation channel 3 on the separation performance and separation efficiency is relatively small.
  • the surface state of the second holding part is the same as that of the first holding part.
  • the thicknesses of the porous bodies of the first holding unit 1 and the second holding unit 2 do not have to be the same, but are preferably the same in terms of increasing the separation ability. Further, when the first holding part and the second holding part are formed of a porous body, the distance between these surfaces is preferably 100 m or less.
  • the porous bodies of the first holding unit 1 and the second holding unit 2 are preferred, where the sum of the body thicknesses is equal to the height of the separation channel and the porous body is completely in contact. More preferably, the distance to the opposing wall of the flow path is 1 ⁇ 2. With this form By doing so, the resolution can be increased.
  • the inlet 5 is provided on the first holding part 1 side at the upstream end of the separation channel 3, but at any position in the cross section of the separation channel. May be provided.
  • the first holding part 1 may be provided on the opposite surface side or the side surface side, or may be provided in the same cross-sectional shape as the separation channel cross section.
  • the inlet 5 may form the separation device as a part of the microfluidic device, and may be connected to other mechanisms in the microfluidic device, such as a pump mechanism or a valve mechanism. When this separation device is connected in multiple stages, it may be connected to the outlets of all stages.
  • the separation flow path 3 is formed with a first outlet 6 through which a fluid enriched in the first substance to be separated flows out and a second outlet 16 through which the fluid diluted with the first substance flows out.
  • the first outlet 6 is disposed in the cross section of the separation channel in the vicinity of the first holding part 1, and the second outlet 16 is connected to the first holding part 1 from the first outlet. Located far away.
  • the first outlet 6 is disposed at a position in contact with the first holding portion 1, and the second outlet 16 is disposed at a position in contact with the opposing surface. More preferably, the first outlet 6 is disposed inside the first holding part 1, and the second outlet 16 is disposed at a position in contact with the facing surface.
  • the first outlet 6 preferably contacts the first holding part 1 and does not contact the second holding part 2 in the same cross section.
  • the second outlet 16 is disposed at a position where it contacts the second holding part 2 and does not contact the first holding part 1. More preferably, the first outlet 6 is arranged inside the first holding part 1 and the second outlet 16 is arranged inside the second holding part 2.
  • each outlet is provided at the downstream end of the separation channel 3 because the loss of the dead volume is prevented and the reduction of the separation performance is prevented. Therefore, in the present embodiment, the first outlet 6 is formed at the downstream end of the first holding unit 1, and the second outlet 16 is formed at the downstream end of the opposing surface of the first holding unit 1. In this way, both outlets are provided on the opposing surface of the inner wall of the separation channel 3 so that the fluid flows out from the first outlet 6 and the second outlet 16 in opposite directions. Force remixing near the outlet Is preferable, and the separation performance is increased.
  • the length of the outlet in the longitudinal direction of the separation channel is preferably short. It is also preferable to increase the flow velocity at this portion by making the cross-sectional area of each outlet smaller than the cross-sectional area of the separation channel, preferably less than 1Z2.
  • first holding portion and its opposing surface the first outlet and the second outlet, and the communication channel
  • first outlet and the second outlet there may be, for example, the following two forms other than the above three-dimensional type.
  • Fig. 2 is an explanatory view of the semi-solid embodiment
  • Fig. 2 (a) is a plan view
  • Fig. 2 (b) is a side sectional view taken along line j8-j8 in Fig. 2 (a)
  • Fig. 2 ( c) is a cross-sectional side view taken along line ⁇ - ⁇ in Fig. 2 (a).
  • the inner layer 23 is composed of two layers of a base material side inner layer 23a and a cover layer side inner layer 23b, and the first outer layer 22 and the second outer layer 24 are omitted.
  • the deficient portions that form the separation channel 3 formed in the base material side inner layer 23a and the cover layer side inner layer 23b are combined to form a substantially rectangular separation channel 3, and the base of the separation channel 3 is formed.
  • the first holding part 1 is formed on the surface on the material 21 side.
  • the thickness of the substrate-side inner layer 23a on the first holding unit 1 side in the cross section at the downstream end of the separation channel 3 is the first outlet 6 and is opposed to the first holding unit.
  • the thickness of the cover layer side inner layer 23b on the surface side is the second outlet 16.
  • the base-side inner layer 23a is provided with a communication channel 8 that communicates from the first outlet 6 to the first outlet 7, and the cover-side inner layer 23b has a second outlet 16 from the second outlet 16.
  • a communication channel 18 that communicates with the outlet 17 is provided.
  • the cross-sectional shape of the outlets 6 and 16 when the cross-sectional shape of the outlets 6 and 16 is large with respect to the height, the concentrated liquid containing the substance desorbed from the first holding unit 1 is discharged from the first outlet 6. Before it flows out, it tends to reduce the resolution by remixing with the diluent flowing out from the second outlet 16. Further, when the second holding part is provided, before the substances detached from the first holding part 1 and the second holding part 2 respectively flow out from the first outlet 6 and the second outlet 16, respectively. Remix and resolution Tends to be reduced. In order to prevent this, the cross-sectional shape of the outlets 6 and 16 is preferably such that the ratio of height Z width is 0.5 or more, more preferably 0.7 or more, and most preferably 1 or more.
  • the upper limit of the ratio of height to Z width is preferably as high as possible, but there is no need to set any particular restrictions. However, from the viewpoint of ease of production, 10 or less is preferred, and 5 or less is more preferred. 3 The following is most preferred.
  • the first outlet 6 and the second outlet 16 are bent in opposite directions with a curvature as shown in FIG. .
  • the width of the width of the separation channel 3 is smaller than the ratio of the height Z width of the outlet, the width is gradually increased so as to become the ratio as approaching the outlet. It is preferable to narrow. Even in the semi-three-dimensional shape, the second holding part 2 may be formed on the opposing surface of the first holding part 1 of the separation channel 3 as necessary.
  • the first outlet 6 and the second outlet 16 may be provided on the side surface of the downstream end of the separation channel 3.
  • the communication channel 8 and the communication channel 18 are connected at right angles to the opposing side surfaces of the downstream end of the separation channel 3.
  • the ratio of the height Z width of the outlet is preferably as described above.
  • the width of the separation chamber is gradually narrowed as it approaches the outlet.
  • FIG. 3 is an explanatory view of a flat type
  • FIG. 3 (a) is a plan view
  • FIG. 3 (b) is a side view
  • the separation channel 3 having a rectangular cross section is formed in the inner layer 23, and the first holding part 1 is formed on one side surface of the separation channel 3 perpendicular to the inner layer 23.
  • a first outlet 6 that opens in a plane perpendicular to the inner layer 23 is provided at the downstream end of the first holding part 1, and a second outlet 16 is provided on the side surface of the opposite face of the first outlet 6.
  • the connecting flow path 8 and the connecting flow path 18 that connect the first outlet 6 and the second outlet 16 to the first outlet 7 and the second outlet 17 are the same inner layer as the separation channel 3.
  • the first outer layer 22 and the second outer layer 24 laminated on the surface of the inner layer 23 are omitted.
  • the second holding part 2 may be provided on the inner wall of the separation channel having a rectangular cross section on the side facing the first holding part.
  • the first outer layer 22 and the second outer layer 24 are formed as a compromise between a three-dimensional type and a planar type, One or both of the communication channel 8 connected to the first outlet 6 and the communication channel 18 connected to the second outlet 16 are partially formed in the first outer layer 22 and the second outer layer 24. May be.
  • Such a compromise type is suitably used for a separation device having a staged arrangement.
  • the first substance is concentrated twice and the concentration rate is improved. This is because, within one separation channel, the concentration difference does not exceed a certain level due to the homogenization effect due to diffusion, but when multiple separation channels are connected in series from the upstream side to the downstream side, the concentration Because the difference can be accumulated, it can be highly concentrated.
  • the two stages when seeking to concentrate the first substance or remove the second substance, the first outlet of the upstream stage
  • the inlet 5 of the downstream separation channel 3 may be connected to 6.
  • concentration of the second substance or removal of the first substance is required, the inlet 5 of the separation channel 3 in the downstream stage may be connected to the second outlet 16 in the upstream stage.
  • each separation channel of the substance separation device of the present invention include three typical embodiments: a three-dimensional shape, a semi-three-dimensional shape, and a planar shape.
  • the separation channels in these embodiments may be arranged in any combination. However, it is easy to manufacture by using the same separation channel for each separation channel. Yes, preferred.
  • the aspect of the stepwise arrangement will be described by taking as an example a three-dimensional shape that can maximize the separation efficiency in a single stage. The same applies to the arrangement of semi-solid type and flat type.
  • 5 and 6 are a plan view of a three-dimensional stepwise arrangement and a side cross-sectional view along the ⁇ - ⁇ line.
  • FIG. 7 is a plan view of the first outer layer 22.
  • the first outer layer 22 has a separation channel 3 for each stage.
  • a communication channel 38 is formed from the first outlet 6 to the inlet 5 of the downstream downstream separation channel 3.
  • FIG. 8 is a plan view of the inner layer 23.
  • the separation channels 3 are arranged in a plurality of stages along the length direction, and a plurality of separation channels 3 are arranged in parallel in each stage.
  • FIG. 9 is a plan view of the second outer layer 24.
  • a communication channel 48 is formed from the second outlet 16 of the separation channel 3 at each stage to the inlet 5 of the separation channel 3 at the downstream downstream stage. .
  • the range from the first stage force to the Kth stage in Figs. 5 to 10 shows the basic configuration of the staged arrangement.
  • the separation channel 3 is arranged in a plurality of stages from upstream to downstream, the separation channel 3a in the first stage, the separation channels 3b and 3c in the second stage, the separation channel 3d in the third stage, 3e and 3f are arranged, and the first outlet 6a of the separation channel 3a in the first stage is connected to the inlet 5b of the separation channel 3b in the second stage through the communication channel 38a.
  • the second outlet 16a of the separation channel 3a is connected to the inlet 5c of the separation channel 3c in the second stage through a communication channel 48a.
  • the first outlet 6b of the separation channel 3b in the second stage is connected to the inlet 5d of the separation channel 3d in the third stage through a communication channel 38b, and the separation channel
  • the second outlet 16b of 3b is connected to the inlet 5e of the separation channel 3e in the third stage through a communication channel 48b.
  • the first outlet 6c of the separation channel 3c in the second stage is connected to the inlet 5e of the separation channel 3e through the communication channel 38c, and the second outlet of the separation channel 3c. 16c is connected to the inlet 5f of the separation channel 3f in the third stage through the communication channel 48c.
  • the second outlet 16b of the separation channel 3b in the second stage and the first outlet 6c of the separation channel 3c are connected to the inlets of different separation channels in the third stage. It is not the same It is connected to the inlet 5e of one separation channel 3e.
  • concentrations of the first and second substances in the initial sample are 50% each.
  • the sample flowing out from the first outlet 6a increases the concentration of the first substance to 60%, for example, and at the same time the sample flowing out from the second outlet 16a For example, it drops to 40%.
  • the concentration of the first substance introduced at 60% is, for example, the same as the first outlet 6b, as described above.
  • the sample flowing out from the outlet rises to 70%, and the sample flowing out from the second outlet 16b falls to 50%.
  • the sample flowing out from the first outlet 6c of the separation channel 3c into which the sample having the concentration of the first substance of 40% is introduced for example, increases the concentration of the first substance to 50% and the second stream. The sample flowing out of outlet 16c will drop to 40%.
  • the sample (B) flowing out from the second outlet 16b of the second-stage separation channel 3b is the first substance in the second stage after the concentration of the first substance is concentrated in the first stage.
  • the concentration of is diluted.
  • the concentration of the first substance is diluted in the first stage, and then the concentration of the first substance is concentrated in the second stage. It is a thing. And these two concentrations will be approximately equal. Therefore, there is no benefit of separating the above two samples having the same first substance concentration in different separation channels. Therefore, the two samples may be introduced into the same separation channel 3e rather than into the different separation channels.
  • the fourth and subsequent stages are similarly connected. That is, the separation channel is arranged in a plurality of stages from upstream to downstream, and any continuous three stages of the plurality of stages (in this case, the three stages are referred to as an upstream stage, a midstream stage, and a downstream stage).
  • the first outlet of the first separation channel in the upstream stage is connected to the inlet of the second separation channel in the middle stage, and the first outlet of the first separation channel
  • the second outlet is connected to the inlet of the third separation channel in the middle stage, and the first outlet of the second separation channel in the middle stage is the fourth separation channel in the downstream stage.
  • the second outlet of the second separation channel is connected to the inlet of the fifth separation channel in the middle stage, and the third separation outlet in the middle stage.
  • the second outlet of the channel is connected to the inlet of the sixth separation channel in the downstream stage, and the front The first outlet of the third separation channel is of the fifth Connected to the inlet of the separation channel! RU
  • the stepwise arrangement of the separation channels in the present embodiment is an arrangement in which the separation channel 3 is increased by one for each stage.
  • one separation flow path 3 is connected to each of the next two separation flow paths, that is, the number of flow paths is doubled for each stage.
  • the number of channels can be reduced and the space factor is improved.
  • the outlets of the plurality of separation channels in the most downstream stage (stage K in FIG. 5) Of these, the fluid outlet having the highest number of passages through the first outlet of the separation channel in each stage is connected to the first outlet 7 for taking out the fluid, and the most downstream stage (Kth stage).
  • the second fluid outlet 17 from which the fluid outlet having the largest number of passages through the second outlet of the separation channel in each stage takes out the fluid.
  • the separation channels arranged in parallel in each stage are represented as “columns”, and the column in which the first substance is most concentrated is referred to as the first column.
  • 3a is referred to as “separation channel [1, 1]”, and in general, the separation channel 3 in the n-th i-th row (n and i are positive integers, the same shall apply hereinafter) is referred to as “separation channel [n , i] ”.
  • the inflow port 5 the first outflow port 6, and the second outflow port 16
  • the n-th row and the i-th row are indicated by [n, i].
  • the first outlet 6a (that is, the first outlet [1, 1] of the separation channel 3a (that is, the separation channel [1, 1]) in the first row and the first row shown in FIG. ]) Is led to the separation channel 3b (that is, the separation channel [2, 1]) in the second stage and the first row.
  • the first-stage first-row separation channel [1, 1 second outlet 16a (that is, second-outlet [1, 1]) is the second-stage second row separation channel. Connected to the inlet 5 (ie, inlet 5 [2, 2]) of 3c (ie, the separation channel [2, 2])!
  • the first outlet [2, 1] is connected to the inlet [3, 1] and the second outlet [2, 1] with respect to the separation channel [2, 1]. Is connected to inlet 5 [3, 2].
  • the first outlet [2, 2] is connected to the inlet [3, 2] and the second outlet [2, 2]. 2] is connected to the inlet [3, 3].
  • the first outlet [n, i] of the nth stage and the second stage is connected to the inlet [n + 1, i] of the separation path [n + 1, i] of the (n + 1) stage.
  • the second outlet [n, i] of the separation channel of the nth stage and the second column is the separation channel [n + 1, i + 1] of the (n + 1) th stage (i + 1) row Connected to the inlet [n + 1, i + 1].
  • the solution most concentrated in the first substance is the second outlet from the second outlet [ ⁇ , K].
  • the solution with the highest concentration of the substance flows out.
  • the number of stages of the separation channel 3 is preferably 3 or more, more preferably 4 or more, and most preferably 5 or more.
  • the larger the number of stages the better the separation target with a low separation performance in a single stage can be separated.
  • the number of stages can be reduced in a system in which the separation ability in one separation channel 3 is excellent.
  • the upper limit of the number of stages is not particularly limited, but from the viewpoint of ease of production, 1000 stages or less is preferable, and 100 stages or less is more preferable.
  • the stepwise arrangement type separation device does not require a pump for each stage, the structure becomes extremely simple and can be easily incorporated in the microfluidic device. be able to. When the microfluidic devices have the same volume, the separation performance as a whole is improved by forming smaller separation channels in multiple stages.
  • the substance separation device When the substance separation device is configured with only the basic configuration of this staged arrangement, as described above, the first substance flowing out from the first outlet [K, 1] in the final stage (Kth stage) The most concentrated solution is connected to the first outlet 7 and the solution most concentrated in the second substance flowing out from the second outlet [ ⁇ , K] is connected to the second outlet 17. If the yield is calculated even if the rate drops somewhat, for example, the first outlet [K, 2] and the first outlet [K, 3] in the final stage (Kth stage) are also used for the first outlet. 7 may be connected. The same applies to the second outlet 17.
  • the above-described configuration is preferable in the case of three-component separation that separates the first substance and the second substance in the common solvent.
  • the concentration (or removal) of the first substance needs to be considered.
  • the second outlet 17 is not provided and the second outlet 17 is connected.
  • the first outlet 7 may not be provided, and the flow path connected to the first outlet 7 may be arranged to join 27.
  • the number of separation channels in each stage is half that of the first substance concentration side, and according to the general expression, the second outlet of the second stage “n, n / 2j” (However, if nZ2 is not an integer, it is the closest integer.) Connecting the downstream downstream inlet [n + 1, (n + l) Z2] Of course, this should be done for the first outlet when concentrating the second substance.
  • the outflow amount from each outlet is assumed.
  • the amount of liquid decreases as the number of stages increases.
  • the yield decreases as the number of plates increases.
  • the number of separation channels included in each stage is the same as the number of separation channels.
  • downstream range stage a substantially constant number of separation channels are formed in each stage.
  • two separation channels and one K-1 separation channel are formed alternately.
  • Outlet is the first thing A flow that is connected to the first outlet 7 for taking out the concentrated fluid and has the highest number of passages through the second outlet of the separation channel in each stage among the outlets of the plurality of separation channels in the most downstream stage. Since the outlet is connected to the second outlet 17 for taking out the second substance concentrated fluid, the first substance and the second substance concentrated in each outflow loca are taken out.
  • the number of separation channels in the nth stage after the Kth stage is alternately set to K and K-1.
  • outflow force of the fluid that maximizes the number of times of passage through the first outlet 6 among the outlets of each separation channel 3 in the stage where the number of separation channels 3 is K.
  • the other outlet is connected to the third outlet 27 by a take-out channel 43.
  • the general expression of the downstream range from the K-th stage as the boundary stage is as follows.
  • i separation channels are arranged in the nth stage, and at least one of n or i is 2 or more, and the number of times of passage through the first outlet of the separation channel is the largest in the nth stage.
  • the fluid outlet is connected to the first outlet 7 for taking out the fluid, and the fluid outlet having the maximum number of passages through the second outlet is connected to the second outlet 17 for taking out the fluid.
  • the fluid passes through the first outlet in the upstream of the separation channel outlet of the stage where the number of separation channels in the nth and subsequent stages is arranged.
  • the number of separation channels in the stage increases with the number of stages until the boundary stage is reached, but after the boundary stage, the number of separation channels does not increase even if the number of stages n increases!
  • the number of separation channels in the n-th stage is the K-th boundary stage, it is generally constant at K in the range where the number of stages n is K or more (downstream range stage). If the outlets are connected to the outlets every other stage, the number of channels in the range where n is K or more (downstream range stage) becomes K and (K 1) each time n increases.
  • the first outlet 6 of the separation channel 3 in each stage out of the plurality of separation channel outlets in the most downstream stage.
  • a plurality of outlets with a relatively large number of passages are connected together to the first outlet 7, and a plurality of passages with a relatively large number of passages through the second outlet 7 of the separation channel 3 in each stage are provided.
  • the outlets may be connected together to the second outlet 17.
  • several adjacent outlets are collectively connected to the first outlet 7 or the second outlet 17, and a large amount of solution separated (concentrated) above a predetermined value can be collected. .
  • the concentration (or removal) of the first substance needs to be considered. 2Make the flow path connected to the outlet 17 merge with 27. Conversely, the first outlet 7 may not be provided, and the flow path connected to the first outlet 7 may be arranged to join 27.
  • the number of separation channels in each stage after the Kth stage is halved only on the first substance concentration side, and according to the general expression, the second outlet “K, K / 2J or "( ⁇ - 1), ( ⁇ - 1) / 2 ⁇ (where ⁇ 2 or ( ⁇ - 1) ⁇ 2 is the nearest integer if ⁇ 2 is not an integer) ⁇ 1), ( ⁇ 1) It is preferable to connect to ⁇ 2] or [ ⁇ , ⁇ ⁇ ⁇ ⁇ 2] because the yield of the first substance concentrated fluid increases.Of course, when the second substance is concentrated, This should be done for one outlet.
  • the sum of the cross-sectional areas of the separation channel (s) at any particular stage is approximately the sum of the cross-sectional areas of the separation channel (s) at any stage downstream from it. Same It is a method to become. This can be done for any two stages, but it is preferable that the sum of the cross-sectional areas of the separation flow paths be substantially the same for all stages. As a result, even if the number of separation channels in the upstream stage is small, the amount of concentrated solution taken out can be increased. Specific examples can include the following (2-1), (2-2), and (2-3). Each of these methods may be used in combination, or may be used in combination with the first method.
  • the cross-sectional area of the separation channel in each stage is adjusted without changing the number of separation channels in each stage.
  • the cross-sectional area of the first-stage separation channel is Z times the cross-sectional area of each separation-channel in the final stage (the Z-th stage).
  • the amount of the undiluted solution supplied to the inlet 5 of the first-stage separation channel is multiplied by Z, so that the first outlet [Z, 1] and the second outlet [Z, Z From the above, it is possible to collect the concentrated solution at a flow rate Z times that when the cross-sectional areas of all the separation channels are the same.
  • each separation channel is used for separation in the final Zth stage in the nth stage.
  • This is a system consisting of the same number of separation channels connected in parallel, approximately ZZn times the number of channels.
  • the separation channel which is the basic structure of separation
  • a plurality of separation channels are completely formed.
  • This is a method of replacing with a separation unit connected in parallel.
  • the term “completely connected in parallel” means that the inlet 5, the first outlet 6, and the second outlet 7 are all connected in parallel.
  • the number of channels in the first stage is Z
  • the second stage is composed of two separation units with each number of separation channels ZZ2
  • the third stage is the number of separation channels. Consists of three separation units, each of which is ZZ3. If these fractions are not integers, the nearest integer may be used.
  • the amount of the undiluted solution supplied to the inlet 5 of the first-stage separation channel is increased N times, and the first outlet [Z, 1] and the second outlet [Z, Z] of the final stage are Concentrated solution can be collected at a flow rate Z times that when the cross-sectional areas of all separation channels are the same.
  • this method is suitable for all cases where the separation channel is a three-dimensional type, a semi-three-dimensional type, and a planar type.
  • the length of the separation channel in any specific stage is set longer than the length of the separation channel in the downstream next stage.
  • the residence time is maintained and the amount of concentrated solution taken out can be increased.
  • the length of the nth stage separation channel is set to the separation stage's Zth separation channel. The flow path length is approximately nZZ times.
  • the amount of the stock solution supplied to the inlet 5 of the first-stage separation channel is multiplied by Z, so that the first outlet [Z, 1] and the second outlet [Z, Z] in the final stage From this method, the concentrated solution can be collected at a flow rate Z times that when the length of all the separation channels is the same.
  • This method uses all three-dimensional, semi-solid, and flat-type separation channels. It is suitable for this case.
  • the concentration (or removal) of the first substance is performed in the case of separation of two components. Therefore, the flow path connected to the second outlet 17 may be joined to the third outlet 27 without providing the second outlet 17.
  • the number of separation channels in each stage is concentrated in the first substance.
  • the second outlet of the second stage “n, n / 2j (where nZ2 is not an integer is the closest integer) It is preferable to connect to the inlet [n + 1, (n + l) Z2] in the side stage because the yield of the first substance concentrated fluid increases.Of course, when concentrating the second substance, This should be done for the first outlet.
  • the inlet 15 for introducing the separation raw fluid into the separation channel 3 and the formation of the first outlet 7, the second outlet 17, and the third outlet 27 described above are formed.
  • the position and shape are arbitrary, and may be an opening to the outside of the separation device, or the connection pipe is connected! It may be connected to some mechanism such as a reaction channel. Further, it may be any surface of the material separation device, for example, a substrate side surface, a cover layer side surface, or an end surface or a side surface of the material separation device. When a large number of the substance separation devices are installed in parallel to increase the throughput, it is preferably the end face or side surface of the substance separation device.
  • each communication channel can be adjusted suitably without having to have the same cross-sectional area.
  • the amount of fluid flowing out from a certain separation channel flows to the downstream separation channel and the communication channel 42 or the communication channel 44. It is preferable to suitably adjust the cross-sectional areas of the communication flow paths 38, 48, 42, and 44 so that the flowing force is substantially equal.
  • each flow path In order to adjust the flow rate ratio of each flow path, it is possible to change the cross-sectional area of each separation flow path, the flow length of each connection flow path, and provide a flow control valve in any part of the flow path It is also possible. For example, on the way from the first outlet [K, 1] and the second outlet [ ⁇ , K] of the downstream range stage (n> K where n> K) to the connecting channel 42 and the connecting channel 44 Also, it is preferable to install a valve to adjust each outflow amount.
  • an outlet not connected to the outlet is connected to the inlet 5 in the separation channel of the upstream stage via a pump. Also Good.
  • the outlets other than the first outlet [Z, 1] and the second outlet [Z, Z] are connected to the third outlet 27,
  • the third outlet 27 is connected to the inlet 5a of the first-stage separation channel 3a through a pump in the substance separation device or outside through a transfer pipe. It is also possible to connect to separation channels other than the first stage, and it is also possible to connect to a plurality of separation channels depending on the concentration.
  • the second outlet 17 is not provided as described above, and when the flow path connected to the second outlet 17 is merged with the third outlet 27, the merged flow is You may connect so that a path may be recirculated.
  • the number of separation channels in the third and subsequent stages is halved only on the first substance concentration side as described above, the other outlets not connected to the first outlet 7 are refluxed. You can connect.
  • the mechanism for refluxing using such a stepwise arrangement of the separation flow path allows the first substance highly separated and concentrated to be recirculated from the second flow outlet of the single separation flow path. It is preferable because it can be obtained.
  • a pump used in the above reflux mechanism a pump incorporated in a microfluidic device can be preferably used.
  • a third holding part on the wall surface other than the first holding part and the second holding part of the separation channel, and to provide a third outlet on the side of the third holding part.
  • the solute and solvent can be separated.
  • a fourth holding part and a fourth outlet can be provided to separate the four types of solutes contained in the fluid from each other.
  • four holding portions and four outflow ports can be preferably formed on each side surface of the separation channel having a rectangular cross section.
  • a substance separation device having two types of holding parts, a first holding part and a second holding part, is preferable because it can achieve the highest separation performance.
  • the substance separation method of the present invention is a method for separating one side of an inner wall of a separation channel through which a sample fluid flows.
  • the first spillage rocker provided on the other side and the other side also contain the fluid in which the first substance is concentrated
  • the second spillage rocker also contains the solution in which the first substance is diluted and the solution in which the second substance is concentrated. obtain.
  • a separation device in which a second holding portion that exhibits higher holding ability with respect to the second substance can be used on the wall surface on the second outlet side of the separation channel.
  • a separation flow having a first holding part capable of holding the first substance on a part of a wall surface A step of flowing the fluid into the channel (hereinafter sometimes referred to as an “introduction step”), and (i) a step of incorporating the first substance into the first holding part (hereinafter referred to as an “intake step”).
  • the first substance is released from the first holding part, the concentrated solution of the first substance is taken out from the downstream end of the first holding part, and the first substance Removing the diluted solution and Z or the concentrated solution of the second substance from the other end of the downstream end of the first holding part (hereinafter also referred to as “release process”). It is a method of separating.
  • the flow rate flowing in the separation channel is made laminar with a Reynolds number of less than 2300.
  • the first substance from which the first holding portion force has also been released flows along the streamline, and the first outflow rocker on the first holding portion side can flow out more.
  • the separation device of the present invention is used, the fluid can flow in a laminar flow by setting the cross-sectional area of the separation channel to a predetermined value.
  • the fluid to be introduced is a two-component system such as a mixed fluid of two types of fluid, a solute and a solvent, and a dispersoid and a dispersion medium
  • the fluid is introduced from the first outlet on the first holding part side. Take out the fluid in which one substance is concentrated, and take out the fluid in which the first substance is diluted and the second substance is relatively concentrated from the second outlet.
  • the separation efficiency is further increased.
  • the fluid to be introduced is a three-component system composed of, for example, a first substance and a second substance, which are solutes, and a common solvent
  • the fluid in which the first substance is concentrated from the first outlet The second spiller removes the fluid in which the first substance is diluted.
  • the second substance Is affected by the retention of the first holding part for the second substance in the previous period and the retention of the inner wall surface other than the first holding part for the second substance. For example, if the first holding part shows a weaker holding property against the second substance than the first substance, the concentrated second substance is less than the first substance from the first outlet. Out of the second outlet, the second substance diluted to a lesser extent than the first substance flows out.
  • the first outlet and the second outflower will flow out the fluid in which the second substance is not concentrated or diluted.
  • the separation channel is provided with a second holding part that retains the second substance, a fluid in which the second substance is diluted flows out from the first outlet, The fluid enriched in the second substance flows out from the two outlets. That is, in this case, the three components of the first substance, the second substance, and the solvent are separated.
  • the two kinds of solutes are separated using a separation device that can separate the two kinds of solutes. Separation can be achieved by connecting a separation device that can separate the remaining substance to one or both of the outlets 17. Alternatively, by using a separation device that has a third holding part on the wall surface other than the first holding part and the second holding part of the separation channel, and a third outlet is provided on the third holding part side. It can also be separated. The same is true when the four substances contained in the fluid are separated from each other. However, it is preferable to use a substance separation device having two types of holding parts, a first holding part and a second holding part, because separation can be performed most efficiently.
  • the substance separation method of the present invention can be performed under a constant temperature condition.
  • the (I) introduction step, (II) uptake step, and (III) release step can be performed at the same temperature and flow rate, and there is no distinction as operation.
  • the first substance taken into the first holding part flows in the same manner as the movement of the sample spot in the liquid chromatograph while repeating uptake and release on the first holding part side of the separation channel.
  • the first substance released there flows out mainly from the first outlet together with the fluid flowing through the part other than the first holding part of the separation channel. The That is, in this method, the uptake process and the release process are performed simultaneously.
  • the first substance in the fluid flowing in from the inlet reaches the first holding part by diffusion, and a part of it is held in the first holding part. Accordingly, the concentration of the first substance in the part other than the first holding part of the separation channel decreases. Then, at the downstream end of the separation channel, the first substance released from the first holding part is added to the fluid flowing through the part other than the first holding part of the separation channel and added to the first substance. Since it flows out from the outlet, the concentration of the first substance flowing out of the first outlet loca rises. On the other hand, in the second outflow rocker, the solution in which the concentration of the first substance is reduced by the amount held in the first holding part flows out. The amount of the first substance released from the lower end of the first holding part is equal to the amount of the first substance held in the first holding part until reaching the lower end of the separation channel. Thus, the steady state is maintained.
  • This method is easy to operate and energy saving because there is no need for temperature changes.
  • the resolution in one stage is lower than the temperature change method described later. In order to reduce this, it is preferable to increase the amount of the first substance that can be taken up by the first holding part.
  • the fluid to be separated is continuously injected and separated. Therefore, the predetermined separation may not always be performed until the sample solution injection start force reaches a steady state. However, during this time, it is possible to collect a solution that also flows out the outlet force with a time division program, such as chromatography.
  • the continuous injection mentioned here means that it is not a batch method, and may be intermittent injection or an injection whose flow rate changes.
  • the fluid to be separated is introduced from the inflow port, and flows into the separation channel. At this time, it is not necessary for the fluid to flow through the separation channel in a laminar flow, but in the case where the steps (i) to (ii) are repeated, and (III) the laminar flow is used also as the discharge step. .
  • the temperature and flow rate of the introduction process are arbitrary.
  • the first substance in the fluid is taken into the first holding unit by diffusion in a state of fluid flow or in a state where the transfer is temporarily stopped.
  • the separation channel is kept at the adsorption temperature.
  • the root mean square of the diffusion distance (hereinafter referred to as the average diffusion distance) is proportional to the square root of time. Indicated.
  • the average diffusion distance is 100 m
  • the time required for diffusion in water is, for example, about 6 seconds for ethanol (molecular weight 46), about 60 seconds for single-stranded oligonucleotide (25 bases, molecular weight about 8 500), In the case of myosin (molecular weight about 540,000), it is calculated as about 600 seconds.
  • the average diffusion distance is 10 m, the time required for diffusion is 1Z100.
  • the residence time of the fluid in the separation channel is approximately equal to the diffusion when the average diffusion distance is 100 m when the distance from the first holding portion to the opposing wall surface is 100 m. It is preferable that the time is longer than required. For example, when the molecular weight of the substance to be separated is about 8500, it is preferable to set it to about 60 seconds or longer. By setting this time or longer, the first substance is sufficiently taken into the first holding part, and high separation efficiency is realized. However, since it takes time to express selectivity for incorporation, such as polynucleotide hybridization, in this case, it is preferable that the time is longer than the time required for the diffusion. .
  • the upper limit of the residence time is not particularly limited, but is preferably 10 minutes or less, more preferably 3 minutes or less, and most preferably 1 minute or less.
  • the separation channel is changed to the desorption temperature.
  • the fluid flows through the separation channel, the fluid flows out into the first outlet and the second outlet at the downstream end of the separation channel.
  • the first substance released from the first holding part flows along the streamline and flows out more from the first outlet on the first holding part side.
  • the separation device of the present invention since the cross-sectional area of the separation channel is sufficiently small V, it is possible to flow a fluid that is difficult to be turbulent in a laminar flow.
  • the first substance released from the first holding part flows in the vicinity of the opposing surface of the first holding part. It is important that the first spillage loca spill out without remixing.
  • the structure of the outlet of the separation device should be designed so that it is difficult to remix as described above, and the force of the first holding part before the first substance released by diffusion is remixed by diffusion. It is important to select a flow rate that will flow out of the first holder.
  • the first substance is taken into the first holding part at a low temperature in the uptake process, and the first holding part is used in the release process.
  • the temperature is changed to a high temperature to release the first substance and the first spillage loca is spilled.
  • the time required for the discharge process is preferably shorter than the time required for diffusion of the average diffusion distance when the distance from the first holding part to the opposite wall surface is defined as the average diffusion distance. Its preferred value is 1Z3 or less.
  • the distance between the first holding part force and the opposite wall is 100 m and the molecular weight of the substance to be separated is about 8500, approximately 60 seconds or less is preferable, and 30 seconds or less is more preferable. 20 seconds or less is most preferable.
  • the lower limit of the time required for the release process is short as long as the temperature can be raised sufficiently. For example, lms may be used, but 0.01 seconds or more is preferable. The above is preferable. This makes it possible to raise the temperature sufficiently and to suppress the pressure loss increase tl. [0093]
  • the method of raising and lowering the temperature is arbitrary.
  • Program control of the temperature control block transfer between temperature control blocks adjusted to different temperatures, immersion in liquid such as hot water, blowing of temperature-controlled gas, Examples include infrared heating, laser heating, and microwave heating.
  • infrared heating laser heating
  • microwave heating microwave heating
  • the time used for raising or lowering the temperature to a predetermined temperature is long, remixing may occur during that time. Heating is preferable because laser heating and microwave heating power can increase the rate of temperature rise.
  • the material separation device of the present invention if the material separation device of the present invention is used, the heat capacity of the device is small, so that the temperature can be increased and decreased quickly, for example, in the order of seconds.
  • the lower limit of the time required for the release process can be set to such a short time.
  • the steps after the uptake step (I) can be repeated.
  • the cooling rate after the discharge process is arbitrary. Performing both the release process and the next uptake process at the temperature of the release process, and then lowering or stopping the flow rate and lowering the temperature to a predetermined uptake process temperature also increases the selectivity of selective adsorption. This is preferable because it can be performed. In the case of using a multi-stage type material separation device, this method is preferable because it is not necessary to provide a temporary storage volume in the communication channel of the material separation device, and the device structure is simplified.
  • the solutions separated from the first outlet 7, the second outlet 17, and the third outlet 27 of the stepwise arrangement type material separation device according to the present invention take out.
  • the stepwise arrangement differs from the separation method using a single-stage material separation device in that a third outlet is formed and the force can also remove fluid.
  • the fluid to be introduced is a fluid in which the first substance and the second substance are uniformly dissolved, or a two-component system such as a solute and a solvent
  • the first holding unit side first From the outlet, the fluid enriched in the first substance is taken out, and the second outflow locuser can take out the fluid in which the first substance is diluted and the second substance is relatively concentrated.
  • the third spill loca removes intermediate concentrations of the first and second substances.
  • the fluid to be introduced includes a first substance that is a solute, a second substance that is a solute, and a combination of them.
  • the first outflow rocker takes out the fluid in which the first substance is concentrated
  • the second outflow rocker takes out the fluid in which the first substance is diluted
  • the third outflow Loca can remove fluids of intermediate concentration of the first substance.
  • the second substance is affected by the retention of the first holding part in the first holding part with respect to the second substance and the holding ability of the wall part other than the first holding part with respect to the second substance.
  • the concentrated second substance is less than the first substance but is concentrated from the first outlet. From the second outlet, the second substance diluted to a lesser extent than the first substance flows out from the second outlet, and the second substance with an intermediate concentration flows out from the third stream loca. If the first holding part does not hold the second substance, the first outlet, the second outlet, and the third outflower will flow out the fluid in which the second substance is not concentrated or diluted. .
  • the separation channel 3 is provided with a second holding part that retains the second substance
  • the fluid diluted with the second substance flows out from the first outlet, From the two outlets, the fluid in which the second substance is concentrated flows out, and in the third outlet loca, the fluid in which both the first substance and the second substance are diluted, that is, the concentrated solvent flows out.
  • the fluid flows into the separation channel 3 in the downstream downstream stage at the temperature of the discharge process. Therefore, after the inflow, the transfer is substantially stopped, the temperature is changed to the temperature of the intake process, and the next intake process is performed. Or, the communication flow path between any two continuous stages (upstream and downstream stages) should be connected so that the fluid flowing out of the upstream stage will not rise in temperature during the discharge process. The temperature may be lowered in the flow path and flowed into the downstream inlet. Such a temperature distribution can be effectively implemented when a fluid by laser or microwave is selectively heated.
  • the usage methods of the first means and the second means in securing the amount of the concentrated solution are the same as those described in the section of these substance separation devices.
  • the second means when paying attention to any three consecutive stages, when the solution is sent from the upstream stage to the middle stage, the middle stage and the downstream stage can be sent with a single delivery. In some cases, the separation channel 3 is not filled. But, Even in this case, only the upstream volume can be separated because it is separated and transferred from the midstream stage to the downstream stage. However, it is preferable to use the second means because the processing efficiency deteriorates.
  • the above "temperature change method 1" can also be a method in which the temperature change method is reversed.
  • the ( ⁇ ) introduction step is integrated with the next capture step.
  • the fluid to be separated is introduced from the inflow port, and flows in a laminar flow into the separation channel.
  • the separation channel is kept at the adsorption temperature, and the first substance located farther from the middle between the first holding part and its opposite surface is diffused to the first holding part.
  • the flow rate is such that the residence time is insufficient for movement.
  • the concentration of the first substance in the solution near the first holding part becomes lower due to the polarization, and the concentration of the first substance in the solution is not different from that after the inflow near the opposite surface.
  • the liquid feeding is stopped or very slow, and if the uptake is adsorption, the separation channel is changed to the desorption temperature. Then, the desorbed first substance diffuses to the opposing surface of the first holding part, and the concentration of the first substance is made substantially uniform throughout the separation channel. Thereafter, when the liquid is sent, a solution having substantially the same first substance concentration flows out from the first outlet and the second outlet.
  • the solution flowing out of the first outflow loca flows out in the ( ⁇ ′) uptake step, and is almost the same as the solution diluted in the first substance and the original solution outflowing in the ( ⁇ ′) release step.
  • the solution of the concentration is mixed, and the total solution becomes a solution in which the first substance is diluted.
  • the solution from which the second outflow loca also flows out is a solution in which the first substance is concentrated in total. That is, the concentration side and the dilution side of the first substance are opposite to the above “temperature change method 1”.
  • the outlets other than the outlet connected to the first outlet 7 are connected to the upstream stage via a pump. It is also preferable to reflux to the inlet 5 or the inlet 15. Further, the first substance concentrated liquid flowing out from the first outlet 7 of the substance separation device in which the separation channel is arranged in stages may be connected to the second substance separation device. At this time, it is preferable that the second outlet 17 and Z or the third outlet 27 are refluxed to the inlet 15 of the substance separation device or the inlet 15 of the upstream substance separation device via a pump.
  • FIG. 4 is a plan view and a side view of the three-dimensional single-stage material separation device produced in Example 1.
  • the first outer layer 22 and the second outer layer 24 are fixed to both surfaces of the inner layer 23, and the base material 21 is fixed to the outer side of the first outer layer 22, respectively.
  • the separation layer 3 is formed in the inner layer 23, and the first holding portion is formed in the first outer layer 22 facing the separation channel 3.
  • the communication channel 8 is formed in the first outer layer 22, the communication channel 18 is formed in the second outer layer 24, and the first outlet is formed at the boundary surface between the inner layer 23 and the first outer layer 22. 6 and a second outlet 16 is provided at the interface between the inner layer 23 and the second outer layer 24.
  • UV light with a wavelength of 365nm and an intensity of 40mWZcm2 was irradiated in a nitrogen atmosphere at room temperature unless otherwise specified.
  • the fluorescence intensity was measured using a confocal laser microscope TCS-NT manufactured by Leica Corporation.
  • Example 1 the porous layer is produced by “reaction-induced phase separation”.
  • the composition XI is applied on the base material 21 by a spin coater, and the connecting channel 8 of the coating film is to be formed (see FIG. 4).
  • the first outer layer 22 was formed by semi-curing the film-forming solution XI by irradiating ultraviolet light through a photomask with an ultraviolet lamp # 2 for 40 seconds to the other part of the film. Thereafter, the uncured composition XI remaining in the non-irradiated part of the ultraviolet rays was washed and removed with a 50% aqueous ethanol solution to form a groove serving as the communication channel 8.
  • the composition Y1 is applied onto the first outer layer 22 with a spin coater, and the portion (see Fig. 4) where the separation channel 3 for separation of the coating film is to be formed (see Fig. 4) by an ultraviolet lamp # 2. Irradiate UV light for 40 seconds through a photomask to cure the irradiated film-forming solution Y1 in a porous state, and wash and remove the uncured composition Y1 remaining in the UV-irradiated part with 50% aqueous ethanol. Next, the pore-forming agent remaining inside the pores of the porous layer 33 was washed away with n-xane to form the porous layer 33.
  • the composition XI is coated on this with a bar coater to form the separation channel 3.
  • the uncured coating film other than the part to be cured was irradiated with UV light through a photomask for 40 seconds by UV lamp # 2 to be semi-cured to form an inner layer 23 on a temporary support (not shown).
  • UV lamp # 2 UV lamp # 2
  • the uncured composition XI left in the non-irradiated part of the ultraviolet ray was washed and removed with a 50% aqueous ethanol solution to form a defective part of the inner layer 23 to be the separation channel 3.
  • the defect portion of the inner layer 23 that becomes the separation channel 3 is laminated in alignment with the porous layer 33 of the first outer layer 22 formed on the base material 21, and in this state, UV light was irradiated for 60 seconds with UV lamp # 2 to cure and fix. Thereafter, the temporary support (not shown) was peeled off from the inner layer 23 to obtain a member in which the inner layer 23 was fixed on the first outer layer 22. This On the surface of this member, a groove serving as a separation channel 3 having a porous layer 33 formed on the bottom surface was formed.
  • a 5% by weight polyallylamine (molecular weight: 15000, manufactured by Nittobo Co., Ltd.) aqueous solution is placed in the groove produced above, and allowed to stand at 60 ° C for 1 hour, so that some amino groups in polyallylamine are porous. Reacted with the epoxy group in the layer 33. Thereafter, it was washed with running water for 15 minutes to introduce amino groups into the porous layer 33.
  • the base material containing the porous layer 33 having the amino group introduced therein was placed in a 5 mass% aqueous solution of dartalaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) and allowed to stand at 50 ° C for 2 hours. Almost all amino groups in polyallylamine were reacted with one aldehyde group in dartalaldehyde. Thereafter, the aldehyde group was introduced into the porous layer 33 by washing with running water for 10 minutes.
  • dartalaldehyde manufactured by Wako Pure Chemical Industries, Ltd.
  • composition X2 was coated on the uncured film with a bar coater.
  • the cover layer 25 was formed by irradiating with UV rays for 1 second and semi-curing.
  • the composition XI is applied on the cover layer 25 with a bar coater, and through a photomask, the communication path 18 of the uncured coating film 18 is to be formed (see FIG. 4).
  • the second outer layer 24 is formed by semi-curing the film-forming solution XI by irradiating it with ultraviolet lamp # 2 for 120 seconds. It was. Thereafter, the uncured composition XI remaining in the non-irradiated portion of the ultraviolet rays was removed by washing with a 50% aqueous ethanol solution to form a groove serving as the communication channel 8 to obtain a cover layer side member.
  • the second outer layer 24 of the cover layer side member is laminated in alignment with the first outer layer 22 of the base member side member, and in this state, the ultraviolet ray lamp # 1 is irradiated with ultraviolet rays for 60 seconds to be cured. Proceeded and stuck. Thereafter, the temporary support (not shown) was peeled from the cover layer 25 to obtain a separation device precursor.
  • a hole having a diameter of 0.5 mm was formed in the base material 21 and the first outer layer 22 by using a drill at the end portion of the separation channel 3 that becomes the inlet 5 to form the inlet 5.
  • a hole having a diameter of 0.3 mm is formed in the base material 21 to form the outlet 7, and a pipe having an inner diameter of 8 mm and a height of 10 mm is bonded to the outlet 7 and stored.
  • the liquid tank was 37.
  • a hole having a diameter of 0.3 mm is formed in the base material 21, the first outer layer 22, and the inner layer 23 to form the outlet 17, and the inner diameter is 8 mm.
  • a pipe with a height of 10 mm was bonded to the outlet 17 to form a liquid storage tank 37.
  • the separation device 100 including the first holding unit 1 on which DNA (probe NO) was fixed was produced.
  • the outline of the separation device 100 is 100 mm X 25 mm XI .4 mm.
  • the thickness of the base material 21 is lmm
  • the thicknesses of the first outer layer 22, the inner layer 23, the second outer layer 24, and the cover layer 25 are all about 100 m
  • the pore size of the porous layer is about 1 ⁇ m.
  • the dimensions of the separation channel 3 are about 500 m in width, 95 m in height, and about 40 mm in length, so that the separation channel 3 has a width of about 100 m near the outlet.
  • the communication channel 8 and the communication channel 18 have a width force S of about 100 / ⁇ ⁇ , a height force S of about 100 / ⁇ ⁇ , a length of about 30 mm, and the first outlet 6 and the second outlet 16 have dimensions.
  • the width was 100 m
  • the length of the separation channel 3 in the length direction was 100 m. From the above dimensions, the volume of the separation channel 3 is about 1.9 / ⁇ 1 ( ⁇ 3 ).
  • a lmm thick acrylic plate (not shown) is placed on the upper surface of the separation channel 3 of the separation device 100 as a heat insulating material, and the separation device 100 is adjusted to a temperature control plate (not shown) at 54 ° C. I put it on the top. In this state, the temperature of the separation channel 3 was 50 ° C.
  • the separation device 100 was placed on the above-described temperature control plate (not shown) adjusted to 54 ° C., and the pump was turned off and allowed to stand for 1 minute. Only in the first intake step, the liquid accumulated in the storage tank 37 of the first outlet 7 and the second outlet 17 was extracted during the two minutes, and the storage tank was emptied.
  • the separation device 100 is placed on a temperature control plate (not shown) adjusted to 105 ° C, and after 10 seconds, the force is also applied for 6 seconds, and the pump is operated at a flow rate of 190 1Z to obtain a new one.
  • the original solution was introduced into the separation channel 3 and at the same time, the solution in the separation channel 3 was extruded with the solution. Separately, when the temperature rise state of the separation channel 3 was measured, it was about 80 ° C 10 seconds after the transfer and about 90 ° C after 16 seconds.
  • Separation device 100 was placed on the above temperature control plate (not shown) adjusted to 54 ° C.
  • the microsyringe pump (not shown) is continuously operated at a constant speed of 1. O / z lZ for 60 minutes, and the solution accumulated in the storage tanks of the first outlet 7 and the second outlet 17 is collected. did.
  • the first extraction force is the fluorescence intensity ratio of the extracted solution [ie, the concentration ratio of DNA (FO)] is 1.05, and the solution extracted from the second extraction port 17 The fluorescence intensity of was 0.95.
  • FIGS. 5 and 6 are a plan view and a side cross-sectional view of the substance separation device manufactured in Example 2.
  • FIG. In the same manner as in Example 1, a stepwise arrangement type three-dimensional separation device having the shape shown in FIGS. 5 and 6 was produced. However, the porous layer is formed on the surface of the first outer layer 22 other than the inner wall of the separation channel 3, and the portion other than the inner wall of the separation channel 3 is coated with the composition XI. Applying and irradiating the part other than the part opposite to the flow path 3 with ultraviolet rays, it is sealed with the cured resin to make it non-porous, and is applied to the inner wall of the separation flow path 3 on the first outer layer 22 side. Only the porous layer 33 is left and the first holding part 1 is formed.
  • FIGS. 5 and 6 show a multi-stage connection method, and the detailed shape of each separation chamber is omitted. The details of each separation chamber are the same as those shown in FIG.
  • the separation channel 3 is connected in series over 21 stages.
  • the number of separation flow paths 3 in each stage increases sequentially from 1 for the first stage and 2 for the second stage, and 11 and 10 alternately after the 11th stage.
  • the passage through the first outlet 6 of the separation channel 3 in the upstream stage Flow out of the fluid with the highest number of times It is connected to the first outlet 7 via the loca outlet channel 42.
  • the fluid is connected to the second outlet 17 via the outlet outlet force outlet 44 of the fluid having the largest number of passages through the second outlet 16 of the separation channel 3 in the upstream stage.
  • the other outlet is connected to the third outlet 27 via the outlet 43.
  • the substance separation device of Example 2 includes the first outer layer 22 and the second outer layer on both sides of the inner layer 23.
  • the separation channel 3 is formed on the inner layer 23, the base material 21 is provided outside the first outer layer, and the cover layer 25 is provided outside the second outer layer 24.
  • 3D type The first holding part 1 and the first outlet 6 are provided on the surface of the first outer layer 22 on the inner layer 23 side, and the second holding part 2 and the first outlet 6 are provided on the surface of the second outer layer 24 on the inner layer 23 side. Two outlets 16 are provided.
  • each part of the substance separation device of Example 2 are 50 mm X 50 mm X 2.365 mm, and the dimensions of the separation channel 3 are about 300 / ⁇ ⁇ in width, about lmm in length,
  • the height is about 60 m (including the thickness of the porous layer 1 is about 5 m and the thickness of the porous layer 2 is about 5 m)
  • the communication channel 38, the communication channel 48, and the extraction channels 42 and 44 are width forces About 100 m
  • diameter of inlet 5 and outlet 6, 6 is about 300 m.
  • the sum of the cross-sectional areas of the separation channel in the upstream stage is the sum of the cross-sectional areas of the plurality of separation channels in the downstream stage. It was formed so as to be substantially the same.
  • FIGS. 11 and 12 are a partial plan view and a side view of the first stage and the second stage part of the substance separation device of Example 3.
  • FIG. In Example 3, the separation flow path 3 is formed in a gap between a pair of opposed flat surfaces.
  • the first holding part 1 and the second holding part 2 are formed inside the pair of planes, respectively, and the distance between them (that is, the thickness of the separation channel) is constant by the spacer 36 (about 55 m).
  • the width of each separation channel 3 is enlarged from the inlet 5 for a while.
  • a plurality of first outlets 6 and second outlets 16 are arranged at predetermined intervals (approximately every 600 ⁇ m) at the downstream ends of the first holding part 1 and the second holding part 2, respectively.
  • the plurality of communication channels 38 connected to the plurality of first outlets 6 in the upstream separation channel 3a are joined together and connected to the inlet 5 of the separation channel 3b in the downstream stage. ing.
  • the plurality of communication channels 48 connected to the plurality of second outlets 16 in the upstream separation channel 3a are joined together into the inlets 5 of the separation channel 3c in the downstream stage. It is connected to the.
  • Table 1 shows the number and width of the separation channels in each stage. Since the thickness of the separation channel 3 in each stage is substantially constant, the width of the separation channel is proportional to the channel cross-sectional area. As shown in Table 1), in Example 2, the same number of separation channels 3 as the number of stages are formed in each stage. On the other hand, the width of the separation channel increases from the downstream stage to the upstream stage. The product of the width of the separation channel and the number thereof is substantially the same in each stage. That is, the sum of the cross-sectional areas of the plurality of separation channels in the upstream stage is substantially the same as the sum of the cross-sectional areas of the plurality of separation channels in the downstream stage.
  • FIG. 5 is a plan view of the material separation device produced in Example 4, and FIG. 13 is a side sectional view taken along the line ⁇ - ⁇ .
  • Example 4 instead of the film-forming solution Y1 in which the amount of methyl decanoate (manufactured by Wako Pure Chemical Industries, Ltd.) was 180 parts by mass, the amount of the film-forming solution Y1 was changed to 350 parts by mass.
  • a film-forming solution 2 having the same composition as in Example 1 was used. This film-forming solution 2 was applied to the inner surface of the resin layer 1 and cured by irradiating it with ultraviolet rays using an ultraviolet lamp # 1 to form a porous layer 33.
  • Example 2 the thickness force of the porous layer 33 which was about 5 m was formed to about 30 m. Further, the average pore diameter force of the porous layer 33 that was about m in Example 2 was increased to about 8 m by increasing the amount of added force of methyl decanoate.
  • the thread and the product XI were applied with a spin coater, and the porous layer 33 was impregnated.
  • the porous material in the irradiated part is awaited (non- The DNA (NO) was fixed to the porous layer 33 that had been made porous and was not targeted. Then, holes were drilled using drills at both ends of the groove to be the separation channel 3 to form the inlet 5 and the first outlet 6.
  • the average pore diameter of the porous bodies 33 and 34 is formed as large as about 8 ⁇ m, and therefore does not hinder the flow of fluid.
  • a porous layer 34 is also formed on the surface of the second outer layer 24 of the cover layer side member, and the separation A second holding part 2 similar to that shown in FIG. 1 is formed on the surface of the first flow path 3 facing the first holding part 1, and the second holding part includes a first holding part
  • DNA probe Nl, sequence 5'-amine-ACGTCATTGTC TCGATCTCG-3 '
  • the fluorescent dye Cy5 (manufactured by Amersham Biosciences) has a single-stranded DNA (FO) labeled with the fluorescent dye Cy3 and a base sequence complementary to the probe N1.
  • FO single-stranded DNA
  • a material separation device similar to that of Example 3 was produced, except that the number of stages was 3 and the dimensions of the separation channel 3 were as follows.
  • the size of the separation channel is 10 m high, 1500 ⁇ m wide, 3 cm long, 2nd stage, 100 ⁇ m high, 750 ⁇ m wide, 3 cm long, and 3rd high.
  • the height was 100 ⁇ m, the width was 500 ⁇ m, and the length was 3 cm.
  • Example 5 As a stock solution for the separation experiment, the same DNA mixed solution as in Example 5 was used, and the temperature change method was the same as in Example 1 except that the time for one liquid delivery from the pump was 15 seconds. A separation experiment was performed.
  • Example 1 Prior to the step of forming the first outer layer 22, the composition XI was applied to the surface of the substrate 21, and the entire surface was irradiated with ultraviolet rays for 10 seconds to be semi-cured, and an adhesive layer (not shown) (2) After forming the first outer layer 22, instead of forming the porous layer 33, hydrophobized silica gel powder having an average particle size of about 10 ⁇ m (phenylpropylsilane-treated silica gel: (Made by Kokuyo Pure Chemical Co., Ltd.), leaving the adhesive layer attached to the adhesive layer, leaving it removed, and irradiating the separation channel part with ultraviolet rays to cure the adhesive layer, so that the silica gel is removed from the separation channel.
  • hydrophobized silica gel powder having an average particle size of about 10 ⁇ m (phenylpropylsilane-treated silica gel: (Made by Kokuyo Pure Chemical Co., Ltd.)
  • the silica gel layer 33 was used instead of the porous layer 33 in the same manner as in Example 1 except that the silica gel that was fixed to the bottom surface and the non-fixed silica gel other than the separation channel was washed away with ethanol. A material separation device was created.
  • Example 2 As in Example 1, except that a 1 M aqueous solution of 2,3-dihydroxynaphthalene (DHN: Wako Pure Chemical Industries) was used as the stock solution for the separation experiment, and the adsorption temperature was 25 ° C. Then, a separation experiment was conducted by the temperature change method. However, the concentration of DHN in the effluent was measured by UV absorbance at 342 nm.
  • DHN 2,3-dihydroxynaphthalene
  • Example 6 a material separation device having the same dimensions as in Example 6 was produced, except that the same silica gel layer 33 as produced in Example 7 was formed.
  • Example 6 except that the same solution of 2,3-dihydroxynaphthalene (DHN: manufactured by Wako Pure Chemical Industries, Ltd.): LM aqueous solution was used as the stock solution for the separation experiment, and the adsorption temperature was 25 ° C.
  • the separation experiment was conducted by the temperature change method in the same manner as described above.
  • the present invention concentrates, purifies, and purifies two or more substances contained in a fluid dissolved state, for example, two or more uniformly mixed fluids, solutes and solvents, and two or more solutes in a solution.
  • a substance separation device and a substance separation method that can be separated from each other for the purpose of recovery, removal, analysis, and the like.
  • the substance separation device of the present invention can obtain a high-concentration separation liquid simply by connecting it in multiple stages, it can be used for each stage as in the case of stacking conventional membrane separation devices. Since a pump is not required, it is easy to incorporate the pump into a microfluidic device and create a single micro 'total' analysis 'TAS'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A substance separating device that is capable of continuously highly separating two or more substances contained in a fluid. There is provided a substance separating device comprising separation flow channel (3) through which a fluid as a sample passes, first outflow aperture (6) formed at a downstream end of the separation flow channel (3) and first holding member (1) capable of holding a first substance, disposed at a region of wall surface on the side of first outflow aperture (6) of the separation flow channel (3). In the substance separating device, such separation flow channels (3) in multi-stages are connected to each other.

Description

明 細 書  Specification
物質分離デバイスおよび物質分離方法  Substance separation device and substance separation method
技術分野  Technical field
[0001] 本発明は、流体に含まれる物質を連続的に分離することのできる物質分離デバイス [0001] The present invention relates to a substance separation device capable of continuously separating substances contained in a fluid.
、および流体に含まれる物質を連続的に分離することのできる物質分離方法に関す る。 And a substance separation method capable of continuously separating substances contained in a fluid.
背景技術  Background art
[0002] マイクロ流体デバイスは、微小な毛細管状の流路などの反応場で反応を行うもので ある。このマイクロ流体デバイスは、副生成物が少ないこと、不均一反応系の反応速 度が大幅に増すこと、連続反応装置を構築できること、微量の試薬量で反応が行え ること、及び、多数並列運転が容易なことなどの理由で、合成反応のスクリーニングに 向いている。また、最適条件が求まると、スケールアップの検討を行うことなくナンバリ ングアップシステムにより、直ちに生産が可能であることなどの特徴があり、今後の化 学反応装置として期待されて ヽる。  A microfluidic device performs a reaction in a reaction field such as a minute capillary channel. This microfluidic device has few by-products, greatly increases the reaction speed of heterogeneous reaction systems, can construct a continuous reaction device, can perform reactions with a small amount of reagent, and operates in parallel It is suitable for screening synthetic reactions because it is easy. In addition, when optimum conditions are found, there is a feature that production is possible immediately with a numbering-up system without considering scale-up, and it is expected to be a chemical reaction device in the future.
[0003] 上述したマイクロ流体デバイスの用途の多くは合成生成物の分離を必要とするが、 マイクロ流体デバイスに組み込める高効率の分離手段は限られている。マイクロ流体 デバイスに組み込んで、流体に含有される 2種以上の物質、例えば、均一に混合し た 2種以上の流体、溶質と溶媒、溶液中の 2種以上の溶質、分散質と分散媒、分散 液中の 2種以上の分散質、溶液中の分断質と溶質などを、濃縮、精製、回収、分析 などの目的で互いに分離する方法として、透析法、クロマトグラフィー、電気泳動法な どが知られている。これらの中でクロマトグラフィーは、分離段数を大きくできる力 回 分法でしか実施できな 、ために、分取装置ゃ流路切替バルブなどの精密な時間制 御が可能な制御装置を必要となる。更には、生産装置の濃縮、精製、回収方法とし ては処理量が不足するといつた問題がある。電気泳動法は、連続分離が可能である 力 分離対象が荷電物質に限られる。また、水の電気分解による気泡が発生するた め、他の機構と共にマイクロ流体デバイス内に組み込むことが困難であるという問題 がある。透析法は連続分離が可能であるが、処理速度が遅ぐまた、分子量や特性 が近 、分子を分離するには分離能が低く、多量の透析液を必要とする t 、う問題が ある。 [0003] Many of the applications of the microfluidic device described above require separation of the synthesized product, but the high-efficiency separation means that can be incorporated into the microfluidic device is limited. Two or more substances contained in a fluid incorporated into a microfluidic device, for example, two or more fluids that are uniformly mixed, a solute and a solvent, two or more solutes in a solution, a dispersoid and a dispersion medium, Examples of methods for separating two or more kinds of dispersoids in a dispersion liquid, and fragments and solutes in a solution from each other for the purpose of concentration, purification, recovery, analysis, etc. include dialysis, chromatography, and electrophoresis. Are known. Among these, chromatography can be performed only by the force batch method that can increase the number of separation stages. Therefore, a control device capable of precise time control such as a sorting device and a flow path switching valve is required. . Furthermore, there is a problem when the processing amount is insufficient as a method for concentrating, refining, and collecting production equipment. Electrophoresis is capable of continuous separation. Force separation targets are limited to charged substances. Further, since bubbles are generated by electrolysis of water, there is a problem that it is difficult to incorporate the microfluidic device together with other mechanisms. Dialysis can be separated continuously, but the processing speed is slow. However, in order to separate molecules, there is a problem that the resolution is low and a large amount of dialysate is required.
[0004] また、通常スケールの分離方法としてカラム式吸着分離法が知られている。しかし ながら、この方法をマイクロ流体デバイスで実施しょうとすると、導入側の原溶液と洗 浄液の切り替え、及び流出側の濃縮液と希釈液の切り替え操作やそのためのバルブ が必要であり、複雑な構造の高価なマイクロ流体デバイスを必要とする上、マイクロ流 体デバイスの特長である多数並列運転が困難となるという問題があった。  [0004] In addition, a column-type adsorption separation method is known as a normal scale separation method. However, if this method is to be carried out with a microfluidic device, it is necessary to switch between the original solution and the washing solution on the introduction side, and the switching operation between the concentrated solution and the dilution solution on the outflow side, and a valve for that purpose. In addition to requiring an expensive microfluidic device with a structure, there are problems that it is difficult to perform a large number of parallel operations, which is a feature of microfluidic devices.
[0005] 一方、本発明者等の出願による特許文献 1には、互いに混和しない微少量の液体 を層状に接触させて安定して流すことにより液液間物質移動を行わしめ、その後、互 Vヽに接触して 、る液体を再び連続的に分離、回収することのできる微小ケミカルデバ イスが開示されている。この微小ケミカルデバイスはその内部に毛細管状の流路を有 し、該流路の内面が、水との接触角が 25°以下の低接触角部分と、水との接触角が 低接触角部分のそれより 10°以上高い高接触角部分を有し、かつ、低接触角部分と 高接触角部分がそれぞれ流路の上流端力 下流端にわたって途切れずに連続して いる。しかし、これは、相互に混和しない 2種の液体を流路に導入し、層状に接触さ せて安定して流すためのデバイスであるため、均一に相溶している溶液に含まれる 物質の分離に関する記述はなぐ当該分離を行うための構成についても開示されて いない。  [0005] On the other hand, in Patent Document 1 filed by the present inventors, liquid-liquid mass transfer is performed by bringing a small amount of liquids that are not miscible with each other into contact with each other in a layered manner and stably flowing, and thereafter There is disclosed a micro chemical device capable of continuously separating and recovering a liquid once again in contact with the soot. This micro chemical device has a capillary channel inside, and the inner surface of the channel has a low contact angle part with a contact angle with water of 25 ° or less and a contact angle with water with a low contact angle part. It has a high contact angle portion that is 10 ° or more higher than the above, and the low contact angle portion and the high contact angle portion are continuously connected across the upstream end and downstream end of the flow path. However, this is a device for introducing two types of liquids that are not miscible with each other into the flow path, making them come into contact with each other in a layered manner, and allowing them to flow in a stable manner. There is no description of the separation, nor is there any disclosure of the configuration for performing the separation.
[0006] また、本発明者等の出願による特許文献 2には、互いに混和しない微少量の液体 を接触させた後それらを分離し、連続的に抽出や油水分離ができる微小ケミカルデ バイスが開示されている。この微小ケミカルデバイスはその内部に毛細管状の流路を 有し、該流路の下流端において、内面が、水との接触角が 25° 以下である低接触角 部分と、水との接触角が低接触角部分のそれより 10° 以上高い高接触角部分を有 し、かつ、断面積が毛細管状の流路の 2〜: LOOO倍である分液室を有し、分液室の低 接触角部分と高接触角部分カゝらそれぞれ流出路が形成されている。しかし、この場 合も、相互に混和しない 2種の液体を流路に導入し、前記分液室において該 2種の 液体を分離して流出させるためのデバイスであるため、均一に相溶している溶液に含 まれる物質の分離に関する記述はなぐ当該分離を行うための構成についても開示 されていない。 [0006] In addition, Patent Document 2 filed by the present inventors discloses a micro chemical device capable of continuously extracting and oil-water separation by contacting a minute amount of liquid that is immiscible with each other and then separating them. ing. This microchemical device has a capillary channel inside thereof, and at the downstream end of the channel, the inner surface has a low contact angle portion where the contact angle with water is 25 ° or less, and the contact angle with water. Has a liquid separation chamber that has a high contact angle portion that is 10 ° or more higher than that of the low contact angle portion, and a cross-sectional area that is 2 to: LOOO times that of a capillary channel. An outflow path is formed for each of the contact angle portion and the high contact angle portion. However, in this case as well, the two liquids that are immiscible with each other are introduced into the flow path, and the two liquids are separated and discharged in the separation chamber. It does not describe the separation of substances contained in the solution, but also discloses the configuration for performing the separation. It has not been.
特許文献 1 :特開 2001— 137613号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-137613
特許文献 2 :特開 2000— 262871号公報  Patent Document 2: JP 2000-262871 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明が解決しょうとする課題は、均一に混合された 2種以上の流体、溶質と溶媒 、 2種以上の溶質などの、流体中の 2種以上の物質を、バルブ操作を必要とせずに、 連続的に高度に分離することが可能な物質分離デバイスおよび物質分離方法を提 供することにある。 [0007] The problem to be solved by the present invention is that valve operation is required for two or more kinds of substances in the fluid, such as two or more kinds of fluids uniformly mixed, a solute and a solvent, and two or more kinds of solutes. The object is to provide a material separation device and a material separation method capable of continuous high-level separation.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者は、試料である流体を流す分離用流路の内面の一方の側に、分離対象 物質を保持できる第 1保持部を形成して、該第 1保持部近辺に於ける該分離対象物 質の取り込みと放出の濃度を増し、この分離用流路の下流端に於ける第 1保持部に より近い側とより遠い側にそれぞれ第 1流出口および第 2流出口を形成して、第 1流 出口からは該分離対象物質が濃縮された流体を、第 2流出口からは該分離対象物 質が希釈された、及び Z又は該分離対象物質以外の物質が濃縮された流体を、そ れぞれ取り出すことにより分離しうることを見出した。  [0008] The inventor forms a first holding part capable of holding the separation target substance on one side of the inner surface of the separation channel through which the fluid as the sample flows, and in the vicinity of the first holding part Increase the concentration of uptake and release of the separation target material, and form a first outlet and a second outlet on the downstream end of the separation channel on the side closer to and farther from the first holding part, respectively. From the first outlet, the fluid in which the substance to be separated is concentrated, from the second outlet, the substance to be separated is diluted, and Z or a substance other than the substance to be separated is concentrated. It was found that fluids can be separated by taking out each one.
[0009] すなわち、本発明は、流体中の第 1物質および第 2物質を相互に分離するマイクロ デバイスであって、前記流体を流通させる分離用流路と、前記分離用流路の下流端 に形成された第 1流出口および第 2流出口と、前記分離用流路の前記第 1流出口側 の壁面の一部に設けられた、前記第 1物質を保持できる第 1保持部と、を有する物質 分離デバイスを提供する。  [0009] That is, the present invention is a micro device for separating a first substance and a second substance in a fluid from each other, the separation channel for circulating the fluid, and a downstream end of the separation channel. A first outlet and a second outlet formed, and a first holding portion provided on a part of a wall surface on the first outlet side of the separation channel, which can hold the first substance. A material separation device is provided.
[0010] また、本発明は、流体中の第 1物質および第 2物質を相互に分離する方法であって 、(I)前記第 1物質を保持できる第 1保持部を壁面の一部に備えた分離用流路に、前 記流体を流入させる工程と、(Π)前記第 1保持部に前記第 1物質を取り込ませる工程 と、(III)前記第 1保持部から前記第 1物質を放出させ、前記第 1物質の濃縮溶液を前 記第 1保持部の下流側端部力 取り出し、前記第 1物質の希釈溶液および Zまたは 前記第 2物質の濃縮溶液を前記第 1保持部の下流側端部の他端部から取り出すェ 程と、を有する物質分離方法を提供する。 [0010] Further, the present invention is a method for separating a first substance and a second substance in a fluid from each other, and (I) a first holding part capable of holding the first substance is provided in a part of a wall surface. A step of allowing the fluid to flow into the separation channel; (i) a step of incorporating the first substance into the first holding part; and (III) releasing the first substance from the first holding part. The concentrated solution of the first substance is taken out from the downstream end force of the first holding part, and the diluted solution of the first substance and Z or the concentrated solution of the second substance are taken downstream of the first holding part. Remove from the other end of the end And a method for separating the substance.
発明の効果  The invention's effect
[0011] 本発明は、流体に溶解した状態で含有される 2種以上の物質、例えば、均一に混 合した 2種以上の流体、溶質と溶媒、溶液中の 2種以上の溶質を、濃縮、精製、回収 、除去、分析などの目的で互いに分離することが可能な物質分離デバイスおよび物 質分離方法を提供する。また、流路切り替えやバルブ操作が必要な回分法でなぐ 連続的に分離することが可能な物質分離デバイスおよび物質分離方法を提供するこ とができる。従って、クロマトグラフィーなどのように、時間制御プログラムでサンプルを 採取する操作は必要なぐカラム式吸着分離のように、流路切替バルブを切り替える 必要もない。また、本発明の物質分離デバイスは、単に多段に接続するだけで高濃 度の分離液を得ることが出来るため、従来の膜分離デバイスをスタックして使用する 場合のように、各段毎にポンプを必要とすることもないため、ポンプをマイクロ流体デ バイス中に組み込み、一つのマイクロ 'トータル 'アナリシス 'システム TAS)とす ることち容易である。  [0011] The present invention concentrates two or more substances contained in a state dissolved in a fluid, for example, two or more uniformly mixed fluids, a solute and a solvent, and two or more solutes in a solution. Provided are a substance separation device and a substance separation method that can be separated from each other for the purpose of purification, recovery, removal, analysis, and the like. In addition, it is possible to provide a substance separation device and a substance separation method that can be separated continuously by a batch method that requires flow path switching and valve operation. Therefore, the operation of collecting a sample with a time control program such as chromatography does not need to switch the flow path switching valve as in the case of column-type adsorption separation. In addition, since the substance separation device of the present invention can obtain a high-concentration separation liquid simply by connecting it in multiple stages, it can be used for each stage as in the case of stacking conventional membrane separation devices. Since a pump is not required, it is easy to incorporate the pump into a microfluidic device and create a single micro 'total' analysis 'TAS'.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]立体型の実施形態の物質分離デバイス。(a)は平面図、(b)は (a)の α— α線 における側面断面図である。  [0012] [Fig. 1] A three-dimensional embodiment material separation device. (A) is a plan view, and (b) is a side sectional view taken along the line α-α in (a).
[図 2]半立体型の実施形態の物質分離デバイス。(a)は平面図、(b)は (a)の j8— j8 線における側面断面図、(c)は (a)の γ— γ線における側面断面図である。  FIG. 2 is a material separation device of a semi-stereoscopic embodiment. (A) is a plan view, (b) is a side sectional view taken along line j8-j8 in (a), and (c) is a side sectional view taken along line γ-γ in (a).
[図 3]平面型の実施形態の物質分離デバイス。(a)は平面図、(b)は側面図、(c)は( a)の δ— δ線における側面断面図である。  [FIG. 3] A material separation device of a planar type embodiment. (A) is a plan view, (b) is a side view, and (c) is a side sectional view taken along line δ-δ in (a).
[図 4]実施例 1の物質分離デバイス。(a)は平面図、(b)は側面図である。  [FIG. 4] The substance separation device of Example 1. (A) is a top view, (b) is a side view.
[図 5]実施例 2で作製した立体型の段階配置による物質分離デバイスの平面図であ る。  FIG. 5 is a plan view of a material separation device produced in Example 2 by a three-dimensional stepwise arrangement.
[図 6]図 5の ε — ε線における側面断面図である。  6 is a side sectional view taken along the line ε—ε in FIG.
[図 7]第 1外部層の平面図である。  FIG. 7 is a plan view of the first outer layer.
[図 8]内部層の平面図である。  FIG. 8 is a plan view of the inner layer.
[図 9]第 2外部層の平面図である。 [図 10]分離用流路および連絡流路の分解斜視図である。 FIG. 9 is a plan view of a second outer layer. FIG. 10 is an exploded perspective view of a separation channel and a communication channel.
[図 11]実施例 3の物質分離デバイスの部分平面図である。  FIG. 11 is a partial plan view of the substance separation device of Example 3.
[図 12]実施例 3の物質分離デバイスの側面断面図である。  FIG. 12 is a side sectional view of the substance separation device of Example 3.
[図 13]実施例 4の物質分離デバイスの側面断面図である。  FIG. 13 is a side cross-sectional view of the substance separation device of Example 4.
符号の説明  Explanation of symbols
[0013] 1 第1保持部 2 · ·第 2保持部 3 · ·分離用流路 5 · ·流入口 6 第1流出ロ 7  [0013] 1 1st holding part 2 ··· 2nd holding part 3 · · Separation channel 5 · · Inlet 6 1st outflow 7
· ·第 1取出口 8, 18, 38、 48 · ·連絡流路 15 · ·導入口 16 · ·第 2流出口 17 · · 第 2取出口 33、 34 · ·多孔質層、シリカゲル層 36 · ·スぺーサ 42, 43, 44 · ·取出 流路  · · First outlet 8, 18, 38, 48 · · Communication channel 15 · · Inlet 16 · · Second outlet 17 · · Second outlet 33, 34 · · Porous layer, silica gel layer 36 · · Spacers 42, 43, 44 · · Extraction flow path
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施形態につき、図面を参照して詳細に説明する。なお、以下の 説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を 適宜変更している。また、同じ目的機能の構造体は同じ番号で示した。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each drawing used in the following description, the scale of each member is appropriately changed to make each member a recognizable size. Structures having the same objective function are indicated by the same numbers.
[0015] 本発明の物質分離デバイスおよび物質分離方法は、 2種以上の物質を含有する流 体中の少なくとも 2種の物質、即ち、少なくとも第 1物質と第 2物質とを相互に分離す るデバイスと方法を提供するものである。ここで溶液中の第 1物質および第 2物質は、 単独状態では液体物質でも固体物質でもよ 、。またこれら物質を溶解して 、る流体 は、いずれか一方の物質が他方の物質を溶解したものでも、両物質が第 3の溶媒に 溶解したものであってもよい。即ち、前記第 1物質および第 2物質としては、 2種以上 の流体から成る混合流体中の 2つの流体、溶質と溶媒、溶液中の 2種の溶質などが 例示できる。上記混合流体の例としては、 N, N—ジメチルホルムアミド、 N, N—ジメ チルァセトアミド、 N, N—ジメチルスルホキシド、アセトン、イソプロピルアルコール、 エタノールなどの水溶性有機液体と水との混合物や、トリハロメタンなどの水に微量 溶解する有機液体の希薄水溶液などが挙げられる。溶質と溶媒の例としては、ポリ( 又はオリゴ)ヌクレオチド、糖鎖、ポリ(又はオリゴ)ペプチドなどの生化学物質の水溶 液 (ここで言う水溶液は緩衝液溶液を含む)、種々の化学物質の水溶液や有機溶剤 溶液などが挙げられる。 2種以上の溶質の例としては、互に塩基配列の異なるポリ( 又はオリゴ)ヌクレオチド、互に配列の異なる糖鎖、互に配列の異なるポリ(又はオリゴ )ペプチドなどの生化学物質、光学異性体、合成反応の生成物と副生成物、その他 種々の化学物質が挙げられる。本発明の分離方法は、これらの中で、特に濃度が希 薄な系で効果を発揮する。例えば上記生化学物質の水溶液、水中に微量溶解した 水溶性溶剤などである。 [0015] The substance separation device and the substance separation method of the present invention separate at least two substances in a fluid containing two or more substances, that is, at least a first substance and a second substance from each other. Provide devices and methods. Here, the first substance and the second substance in the solution may be either a liquid substance or a solid substance in a single state. In addition, the fluid in which these substances are dissolved may be one in which either substance dissolves the other substance or both substances are dissolved in the third solvent. That is, examples of the first substance and the second substance include two fluids in a mixed fluid composed of two or more fluids, a solute and a solvent, and two kinds of solutes in a solution. Examples of the above mixed fluid include a mixture of a water-soluble organic liquid such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, acetone, isopropyl alcohol, and ethanol, and trihalomethane. And dilute aqueous solutions of organic liquids that dissolve in trace amounts of water. Examples of solutes and solvents include aqueous solutions of biochemical substances such as poly (or oligo) nucleotides, sugar chains, poly (or oligo) peptides (herein aqueous solutions include buffer solutions), various chemical substances Examples include aqueous solutions and organic solvent solutions. Examples of two or more solutes include poly (or oligo) nucleotides having different base sequences, sugar chains having different sequences, poly (or oligos) having different sequences. ) Biochemical substances such as peptides, optical isomers, products and by-products of synthetic reactions, and various other chemical substances. Among these, the separation method of the present invention is effective particularly in a system with a low concentration. For example, an aqueous solution of the above biochemical substance, a water-soluble solvent dissolved in a small amount in water, and the like.
[0016] 以下、説明の煩雑ィ匕を避けるために、前記流体が液体であり、分離対象物質が 2種 類 (第 1物質および第 2物質)である場合を例にして説明する。この時、第 1物質およ び第 2物質は、液体中の任意の 2物質であって良ぐ例えば、共通ぼ溶媒に溶解して V、る 2種類の溶質であっても良 、し、均一に混合した 2種以上の流体であっても良 ヽ し、溶媒と溶質であっても良いが、特に、溶媒に溶解している 2種類の溶質を念頭に 置いて説明する。 3種以上の物質を分離する場合については、以下の具体的な機構 や方法の項で説明する。  [0016] Hereinafter, in order to avoid complicated explanation, the case where the fluid is a liquid and the separation target substances are two types (first substance and second substance) will be described as an example. At this time, the first substance and the second substance may be any two substances in the liquid, for example, two kinds of solutes dissolved in a common solvent may be V, Two or more fluids that are uniformly mixed may be used, and may be a solvent and a solute. In particular, two types of solutes dissolved in the solvent will be described. The case of separating three or more substances will be explained in the specific mechanism and method section below.
[0017] [物質分離デバイスの基本構成]  [0017] [Basic configuration of substance separation device]
本発明の物質分離デバイスの基本構成は、流体中の第 1物質および第 2物質を相 互に分離するマイクロデバイスであって、前記流体を流通させる分離用流路と、前記 分離用流路の下流端に形成された第 1流出口および第 2流出口と、前記分離用流路 の前記第 1流出口側の壁面の一部に設けられた、前記第 1物質を保持できる第 1保 持部とを有する構成である。好適には前記分離用流路が、さらに前記分離用流路の 前記第 2流出口側の壁面の一部に設けられた、前記第 2物質を保持できる第 2保持 部を有する構成である。以下、当該構成につき具体例を挙げながら説明する。  The basic structure of the substance separation device of the present invention is a microdevice for separating a first substance and a second substance in a fluid from each other, the separation channel for circulating the fluid, and the separation channel. A first outlet and a second outlet formed at the downstream end, and a first holder capable of holding the first substance provided on a part of the wall surface on the first outlet side of the separation channel. Part. Preferably, the separation channel further includes a second holding part provided on a part of the wall surface on the second outlet side of the separation channel and capable of holding the second substance. Hereinafter, the configuration will be described with specific examples.
[0018] 〔立体型〕  [0018] [Three-dimensional type]
図 1は本発明の実施形態である立体型物質分離デバイスの図であり、図 1 (a)は平 面図、図 1 (b)は α— α線における側面断面図である。本実施形態の物質分離デバ イス 100は、内部層 23の両面にそれぞれ第 1外部層 22および第 2外部層 24が積層 され、第 1外部層 22の外側には基材 21が積層され、第 2外部層 24の外側にはカバ 一層 25が積層されている。また、分離用流路 3が内部層 23に形成され、分離用流路 3の第 1外部層 22側の内表面に第 1保持部 1が形成されている。分離用流路 3の長さ 方向の一端が流入口 5とされ、基材 21と第 1外部層 22を貫通し、該流入口 5に連絡 する穴が開けられて導入口 15とされている。第 1外部層 22には、分離用流路 3の流 出口 6と第 1取出口 7を連絡する連絡流路 8が形成され、第 2外部層 24には、分離用 流路 3の流出口 16と第 2取出口 17を連絡する連絡流路 18が形成されている。第 1取 出口 7は、基材 21を貫通し、第 1外部層 22に形成された連絡流路 8に連絡する穴と して形成され、第 2取出口 17は、基材 21、第 1外部層 22、及び内部層 23を貫通し、 第 2外部層 24に形成された連絡流路 18に連絡する穴として形成されて!ヽる。即ち、 導入口 15から導入された流体は、流入口 5から分離用流路 3に入って分離用流路 3 を流れ、その一部は第 1流出口 6から図中上方へ流出して、連絡流路 8を通って第 1 取出口 7から本物質分離デバイス外へ流出する。また、残る一部は第 2流出口 16か ら図中下方へ流出して、連絡流路 18を通って第 2取出口 17から本物質分離デバィ ス外へ流出する。 FIG. 1 is a diagram of a three-dimensional material separation device according to an embodiment of the present invention, in which FIG. 1 (a) is a plan view, and FIG. 1 (b) is a side sectional view taken along the line α-α. In the material separation device 100 of this embodiment, a first outer layer 22 and a second outer layer 24 are laminated on both surfaces of the inner layer 23, respectively, and a base material 21 is laminated on the outer side of the first outer layer 22, and the first outer layer 22 is laminated. 2 A cover layer 25 is laminated outside the outer layer 24. Further, the separation channel 3 is formed in the inner layer 23, and the first holding part 1 is formed on the inner surface of the separation channel 3 on the first outer layer 22 side. One end of the separation channel 3 in the length direction is an inlet 5, a hole that penetrates the base material 21 and the first outer layer 22 and communicates with the inlet 5 is formed as an inlet 15. . In the first outer layer 22, the flow of the separation channel 3 is A communication channel 8 that connects the outlet 6 and the first outlet 7 is formed, and a communication channel 18 that connects the outlet 16 of the separation channel 3 and the second outlet 17 is formed in the second outer layer 24. Is formed. The first outlet 7 is formed as a hole that penetrates the base material 21 and communicates with the communication channel 8 formed in the first outer layer 22, and the second outlet 17 is the base material 21, the first It is formed as a hole that penetrates the outer layer 22 and the inner layer 23 and communicates with the communication channel 18 formed in the second outer layer 24. That is, the fluid introduced from the inlet 15 enters the separation channel 3 from the inlet 5 and flows through the separation channel 3, and part of the fluid flows upward from the first outlet 6 in the figure, It flows out of the substance separation device from the first outlet 7 through the communication channel 8. In addition, the remaining part flows out from the second outlet 16 downward in the figure, then flows out of the substance separation device from the second outlet 17 through the communication channel 18.
[0019] 内部層 23、第 1外部層 22、第 2外部層 24、基材 21、及びカバー層 25を構成する 素材は任意であり、例えば、ガラス、ステンレススチールなどの金属、シリコンなどの 半導体、石英などの結晶、セラミック、炭素、有機重合体などが使用できる。その有機 重合体には、ポリジメチルシロキサンのように、厳密には無機重合体に分類される場 合もるが通常は有機重合体として扱うものも含まれる。これらの材料にはそれぞれ長 短があり、目的の分離系に応じて好適なものを選択すればよい。特に有機重合体は 、後述の流路内壁の保持性を調節する自由度が高ぐまた高い保持性を持たせ易い ため、特に高い耐熱性ゃ耐有機溶剤性が要求される系以外では好ましい。有機重 合体に次いで、流路内壁の保持性の調節が比較的容易なガラスを選択することが好 ましい。  [0019] The material constituting the inner layer 23, the first outer layer 22, the second outer layer 24, the base material 21, and the cover layer 25 is arbitrary, for example, a metal such as glass or stainless steel, or a semiconductor such as silicon. Crystals such as quartz, ceramics, carbon, and organic polymers can be used. Although the organic polymer may be classified strictly as an inorganic polymer, such as polydimethylsiloxane, it usually includes those treated as an organic polymer. Each of these materials has short and long, and a suitable material may be selected according to the target separation system. In particular, the organic polymer has a high degree of freedom for adjusting the retaining property of the inner wall of the flow path, which will be described later, and is likely to have a high retaining property. Therefore, particularly high heat resistance is preferable except for a system that requires organic solvent resistance. After the organic polymer, it is preferable to select a glass that can relatively easily adjust the retention of the inner wall of the channel.
[0020] 物質分離デバイス 100は、基材 21、第 1外部層 22、内部層 23、第 2外部層 24及び カバー層 25を密着積層された状態で固着して構成されている。固着は、接着剤によ る接着であっても良いし、接着剤を用いない固着であっても良いし、各層間が液密で ある状態で、ネジゃクランプなどで固定されていてもよい。また、例えばマイクロ光造 形法などの方法により、各層を別々に形成することなく一体成型されていて、各層が 層として認識されなくても良いし、また例えば、射出成型や切削やエッチングなどの 方法により、上記のうちの複数の層、例えば基材 21と第 1外部層 22や、第 2外部層 2 4とカバー層 25が、それぞれ一体成型された部材とされていて、該部材に於いては 各層が層として認識されなくても良い。物質分離デバイス 100の外形は任意であり、 例えば板状 (直板状、曲板状を含む)、シート (フィルム、ベルト、リボンなどを含む)状 、棒状、球状などであって良い。これらの中で、板状又はシート状であることが、製造 の容易さ、他のマイクロ流体デバイスと一体化することの容易さ、昇降温する使用方 法の場合に昇降温速度を高くできるため好ま 、。 [0020] The substance separation device 100 is configured by adhering a base material 21, a first outer layer 22, an inner layer 23, a second outer layer 24, and a cover layer 25 in a tightly stacked state. The fixing may be bonding with an adhesive, may be fixing without using an adhesive, or may be fixed with screws or clamps in a state where each layer is liquid-tight. . In addition, for example, each layer is integrally formed without forming each layer separately by a method such as a micro photo molding method, and each layer may not be recognized as a layer. For example, a method such as injection molding, cutting or etching Thus, a plurality of the above layers, for example, the base material 21 and the first outer layer 22, and the second outer layer 24 and the cover layer 25 are formed as integrally molded members, respectively. Is Each layer may not be recognized as a layer. The outer shape of the substance separation device 100 is arbitrary, and may be, for example, a plate shape (including a straight plate shape and a curved plate shape), a sheet shape (including a film, a belt, a ribbon, etc.), a rod shape, and a spherical shape. Among these, the plate shape or the sheet shape is easy to manufacture, can be easily integrated with other microfluidic devices, and can increase and decrease the heating / cooling speed in the case of usage methods that raise and lower the temperature. Favored ,.
[0021] (分離用流路)  [0021] (Separation flow path)
内部層 23には、該層の欠損部として、毛細管状の分離用流路 3が形成されている 。分離用流路 3の断面形状は任意であり、例えば正方形や長方形などの矩形、台形 、三角形、五角形、六角形、円形、半円形などであってよい。これらの中で、矩形、台 形、または半円形とすることが、製造の容易性力も好ましい。なお、角部を有する断 面形状の場合には、その角部に丸面取りが施された形状であっても良い。  In the inner layer 23, a capillary separation channel 3 is formed as a missing portion of the layer. The cross-sectional shape of the separation channel 3 is arbitrary, and may be, for example, a rectangle such as a square or a rectangle, a trapezoid, a triangle, a pentagon, a hexagon, a circle, or a semicircle. Among these, a rectangular shape, a trapezoidal shape, or a semicircular shape is preferable for ease of production. In the case of a cross-sectional shape having corners, the corners may be rounded.
[0022] 本発明の物質分離デバイスが、上記のように内部層の両面に外部層を積層して構 成されている場合には、分離用流路は、内部層の貫通溝によって構成されていると 設計が容易であるため好ましい。後述する多段構造の場合には、該内部層に積層さ れた外部層に、上流段の分離用流路における流出口と下流段の分離用流路におけ る流入口とを接続する連絡流路が、外部層に形成されて 、ることが好ま 、。  [0022] In the case where the substance separation device of the present invention is configured by laminating the outer layer on both sides of the inner layer as described above, the separation channel is configured by the through groove of the inner layer. It is preferable because it is easy to design. In the case of a multi-stage structure, which will be described later, a communication flow that connects an outlet in the upstream separation channel and an inlet in the downstream separation channel to the outer layer laminated on the inner layer. It is preferable that the road is formed in the outer layer.
[0023] (第 1保持部)  [0023] (first holding part)
分離用流路 3の断面の周の一部の内壁には、分離対象である第 1物質を保持でき 、好ましくは、分離対象である第 1物質に対して第 2物質に対するよりも高い保持性を 示し、かつ、第 1物質に対して内壁の他の部分より高い保持性を示す第 1保持部 1が 形成されている。ここで言う「保持性」は、吸着、吸収、膨潤、水和、疎水結合、水素 結合、静電気力、誘電相互作用その他の任意の相互作用に基づくものであってよい 。 第 1保持部 1は、前記保持性が吸着に基づくものである場合には、例えば、活性 炭、ゼォライト、シリカゲル、表面修飾シリカゲル、アルミナ等の吸着剤固定部であり 得る。前記保持性が吸収に基づくものである場合には、例えば多孔質有機重合体、 多孔質ゲルなどの吸収剤固定部であり得る。前記保持性が膨潤に基づくものである 場合には、例えばゲル Z固体転移温度を有する温度応答性ゲルの固定部であり得 る。前記保持性が水和に基づくものである場合には、例えば多糖類やイオン性基の 固定部であり得る。前記保持性が疎水結合に基づくものである場合には、活性炭や 疎水化シリカゲルなどの疎水性多孔質体の固定部であり得る。前記保持性が水素結 合に基づくものである場合には、シリカゲルなどの親水性吸着剤の固定部であり得る 。前記保持性が静電気に基づくものである場合には、カチオン基ゃァニオン機を表 面に有する多孔質体の固定部であり得る。勿論、第 1保持部 1の保持性は、これらの 相互作用の複数種に基づくものであって良い。 The inner wall of a part of the circumference of the cross section of the separation channel 3 can hold the first substance that is the separation target, and preferably has a higher holding ability than the second substance with respect to the first substance that is the separation target. The first holding part 1 is formed, which exhibits higher retention than the other part of the inner wall with respect to the first substance. “Retention” as used herein may be based on any interaction such as adsorption, absorption, swelling, hydration, hydrophobic bond, hydrogen bond, electrostatic force, dielectric interaction and the like. The first holding unit 1 may be an adsorbent fixing unit such as activated charcoal, zeolite, silica gel, surface-modified silica gel, and alumina when the holding property is based on adsorption. When the retention is based on absorption, it may be an absorbent fixing part such as a porous organic polymer or a porous gel. When the retention is based on swelling, it can be, for example, a fixed part of a temperature-responsive gel having a gel Z solid transition temperature. When the retention is based on hydration, for example, polysaccharides or ionic groups It can be a fixed part. When the retention is based on a hydrophobic bond, it may be a fixed part of a hydrophobic porous body such as activated carbon or hydrophobic silica gel. When the retention is based on hydrogen bonding, it can be a fixing part of a hydrophilic adsorbent such as silica gel. When the holding property is based on static electricity, it may be a fixing part of a porous body having a cation group anion machine on the surface. Of course, the holding property of the first holding unit 1 may be based on a plurality of types of these interactions.
第 1物質が特に生化学物質である場合には、第 1保持部 1は、第 1物質に対して選 択的な親和力を示す分子認識機能を有するプローブの固定部位であり得る。例えば 第 1物質が DNAである場合には、第 1保持部 1は該 DNAに対して相補的な塩基配 列を持つプローブ DNAの固定化表面であり得る。プローブとしては、化学物質、生 化学物質、生物組織等であり得る。選択的な親和力は、例えば抗原と抗体、酵素と 基質、ポリヌクレオチドの対立鎖であり得る。又、第 1保持部は、立体選択性を持った 吸着サイト、例えば、光学活性物質認識吸着サイトであることも好ましい。第 1物質が 取り込まれる部分は、第 1保持部の表面及び Z又は内部であってよい。  When the first substance is a biochemical substance in particular, the first holding unit 1 can be a probe fixing site having a molecular recognition function that exhibits a selective affinity for the first substance. For example, when the first substance is DNA, the first holding unit 1 can be an immobilized surface of probe DNA having a base sequence complementary to the DNA. The probe can be a chemical substance, biochemical substance, biological tissue, or the like. The selective affinity can be, for example, an antigen and antibody, an enzyme and a substrate, or an allele of a polynucleotide. The first holding part is also preferably an adsorption site having stereoselectivity, for example, an optically active substance recognition adsorption site. The part into which the first substance is taken in may be the surface and Z or the inside of the first holding part.
[0024] ここで、「保持できる」とは、第 1保持部への取り込みと放出、例えば相互作用が吸 着の場合には吸着と脱着、相互作用が吸収の場合には吸収と放出、が可能であって 、長時間運転した後にも、より多くの第 1物質が取り込み 放出されることを言う。従つ て、第 1物質が取り込まれるものの第 1保持部に固定されて放出されない場合は、十 分多量の試料溶液を流した後には取り込みサイトとして働かなくなる為、「保持できる 」ことにはならない。第 1保持部 1は、取り込み 放出の量が多いことが、分離効率が 向上し、高濃度の原液まで分離できるため好ましい。  [0024] Here, "can be held" means that it is taken in and released into the first holding unit, for example, adsorption and desorption when the interaction is adsorption, and absorption and desorption when the interaction is absorption. It is possible to say that even after a long period of operation, more first substance is taken up and released. Therefore, if the first substance is taken in but is not released by being fixed to the first holding part, it will not function as an uptake site after flowing a sufficiently large amount of sample solution, so it cannot be “held”. . It is preferable that the first holding unit 1 has a large amount of uptake and release because the separation efficiency is improved and a high-concentration stock solution can be separated.
[0025] 前記保持性は、例えばクロマトグラフィーの担体のように一定温度の条件で平衡と して生じるものであっても良いし、温度を変えることにより、取り込みと放出が起こりうる ものであっても良ぐ本発明の分離方法に応じて好適な取り込みと放出の程度を選 択すればよい。温度を変えることにより、取り込みと放出が特に効率良く起こりうる相 互作用としては、吸着、ゲル Z固体転移点を有する温度応答性ゲルへの吸収、ポリ( 又はオリゴ)ヌクレオチドのハイブリダィゼーシヨンと脱ノヽイブリダィゼーシヨン、水素結 合を例示できる。 第 1保持部が第 1物質を保持できる量は、分離の条件、例えば原流体中の第 1物質 の濃度や、目的とする分離'濃縮液中の第 1物質の濃度などにより好適な程度が変 わりうるが、分離用流路に導入された原流体中の第 1物質の量以上が好ましぐ該量 の 3倍以上が更に好ましぐ該量の 10倍以上が最も好ましい。この範囲とすることで、 効率よく分離が実施でき、また、高濃度の濃縮液を得ることが出来る。第 1保持部が 第 1物質を保持できる量の上限は、自ずと限界はあろうが、高いことそれ自身に不都 合はないため、上限を設けることは要しない。例えば、分離用流路に導入された原流 体中の第 1物質の量の 1000倍や 10000倍であることも好ましい。 [0025] The retention may occur as an equilibrium under a constant temperature condition, for example, as in a chromatographic carrier, and uptake and release may occur by changing the temperature. A suitable degree of uptake and release may be selected according to the separation method of the present invention. Interactions in which uptake and release can occur particularly efficiently by changing temperature include adsorption, absorption on temperature-responsive gels with gel Z solid transition, and hybridization of poly (or oligo) nucleotides. And denoising hybridization and hydrogen bonding. The amount that the first holding unit can hold the first substance is a suitable level depending on the separation conditions, for example, the concentration of the first substance in the raw fluid and the concentration of the first substance in the target separation / concentrate. The amount of the first substance in the raw fluid introduced into the separation channel is preferably 3 times or more of the preferred amount, more preferably 10 times or more of the preferred amount. By setting it within this range, separation can be carried out efficiently, and a concentrated solution having a high concentration can be obtained. The upper limit of the amount that the first holding part can hold the first substance is naturally limited, but it is not necessary to set an upper limit because it is high in itself. For example, it is also preferable that the amount of the first substance in the raw fluid introduced into the separation channel is 1000 times or 10,000 times.
[0026] 第 1保持部 1の表面形状は任意であり、滑らかな表面、凹凸構造、粉末が固定され た表面、多孔質体粉末が固定された表面、多孔質層、層状のゲルが固着された構造 、多孔質ゲルが固着された構造、分離すべき溶液に溶解する鎖状ポリマーが流路壁 に化学的に結合した構造などであってよい。これらの中で、プローブなどの固定量を 増すために表面積を大きく取れる多孔質体を有する表面、即ち、多孔質粉末固定表 面又は多孔質層が好ましぐ特に多孔質層が好ましい。多孔質層の厚みは好ましく は 1 μ m以上、さらに好ましくは 3 μ m以上、最も好ましくは 5 μ m以上である。また、 分離用流路の高さとの関係で好ましい多孔質体の厚みは、該多孔質体が形成され た面力も流路の対向面までの距離の 1Z100以上、さらに好ましくは 1Z30以上、最 も好ましくは 1Z10以上である。該多孔質体の厚みの上限は、流路の対向面に限り なく近 、が接して 、な 、位置までの距離である。上記のような厚みを持つ多孔質体と することで、分離効率を高くすることができる。  [0026] The surface shape of the first holding part 1 is arbitrary, and a smooth surface, a concavo-convex structure, a surface on which powder is fixed, a surface on which porous body powder is fixed, a porous layer, and a layered gel are fixed. The structure may be a structure in which a porous gel is fixed, a structure in which a chain polymer dissolved in a solution to be separated is chemically bonded to a channel wall, or the like. Among these, a surface having a porous body that can take a large surface area in order to increase the amount of fixation of a probe or the like, that is, a porous powder fixing surface or a porous layer is particularly preferable. The thickness of the porous layer is preferably 1 μm or more, more preferably 3 μm or more, and most preferably 5 μm or more. Further, the thickness of the porous body preferable in relation to the height of the separation channel is 1Z100 or more, more preferably 1Z30 or more, and most preferably the surface force on which the porous body is formed is the distance to the opposing surface of the channel. Preferably it is 1Z10 or more. The upper limit of the thickness of the porous body is the distance to the position, as close as possible to the opposed surface of the flow path. Separation efficiency can be increased by using a porous body having the above thickness.
[0027] 該多孔質体は、少なくとも深さ方向に細孔が連通している、いわゆる連通多孔質体 であれば任意である。細孔形状は、例えば互いに連絡した細胞状の空洞から成る海 綿 (スポンジ)状、細孔と構造体の構造が等価であるギロイド構造、互いに接触して固 着された粉体粒子の間隙として形成された焼結体状、互いに平行な多数の毛細管 状やスリット状などの流路の束、不織布又は編織体の繊維の間隙等であり得る。  [0027] The porous body is optional as long as it is a so-called continuous porous body in which pores communicate at least in the depth direction. The pore shape is, for example, a sponge (sponge) composed of cellular cavities communicating with each other, a giroid structure in which the structure of the pore and the structure is equivalent, or a gap between the powder particles fixed in contact with each other. It may be a formed sintered body, a bundle of channels such as a plurality of capillaries or slits parallel to each other, a gap between fibers of a nonwoven fabric or a woven fabric, and the like.
[0028] 前記多孔質体の平均孔径は任意であるが、分離用流路 3の直径より細いことが好 ましく、 0. 1〜50 111カ^好ましく、0. 5〜20 111カ^更に好まし1、0この範囲未満であ ると拡散による物質の混合に時間を有することになり、分離効率が低下する。またこ の範囲を超えると、吸着サイト数が減少するため、やはり分離効率が低下する。分離 用流路 3の断面が、第 1保持部 1である多孔質体と第 2保持部 2である多孔質体で完 全に占められていて、それ以外の空間がない場合には、これらの多孔質体の孔径は 、 3〜50 111カ 子ましく、 5〜20 /ζ πιが更に好ましい。この範囲未満では、圧力損失 が過大となる。 [0028] Although the average pore diameter of the porous body is arbitrary, it is preferably smaller than the diameter of the separation channel 3, preferably 0.1-50 111, more preferably 0.5-20 111. preferably 1, 0 will have the time to mix the materials by diffusion and Ru this range less than der, separation efficiency is lowered. Mako If the above range is exceeded, the number of adsorption sites decreases, so the separation efficiency also decreases. If the cross section of the separation channel 3 is completely occupied by the porous body that is the first holding part 1 and the porous body that is the second holding part 2, and there is no other space, these The pore diameter of the porous body is preferably 3 to 50 111, more preferably 5 to 20 / ζ πι. Below this range, the pressure loss becomes excessive.
[0029] 前記多孔質体の素材は、多孔質体を形成できる素材であれば任意であり、例えば 酸化珪素、アルミナ、ゼォライト、ガラス、セラミック、炭素、金属、有機重合体等から、 分析対象により好適な素材を選択すればよい。これらの中で、有機重合体は、多孔 質体の形成が容易であり、表面特性の制御も容易であるために好ましい。その中でも 、活性エネルギー線硬化性榭脂が、微小な分離用流路 3内に多孔質体を形成するこ とが容易であるため特に好ま Uヽ。活性エネルギー線硬化性榭脂による多孔質体及 びその製造方法は、例えば本発明者等の出願による特開平 7— 316336号に記載 のものを使用できる。この方法は、まず多孔質体を形成すべき分離用流路の壁面に 、エネルギー線重合性ィヒ合物と、該化合物は溶解するがその重合体は溶解又は膨 潤させない相分離剤との混合物をコーティングする。次に、コーティング部分に紫外 線などの活性エネルギー線を照射し、エネルギー線重合性ィ匕合物を重合硬化させる と同時に相分離させて多孔質体と成し、多孔質内の相分離剤を洗浄除去するもので ある。エネルギー線重合性ィ匕合物としては、例えばアタリロイル基ゃマレイミド基を有 するモノマー又はオリゴマーを好適に使用することができる。また、前記多孔質体の 素材が活性エネルギー線硬化性榭脂以外の物である場合には、例えば、ジルゲル 法、湿式相分離法、乾式相分離法、共連続ミクロ相分離体の一方の成分の溶出除 去法、粉体の焼結法など、各素材に応じた公知の方法を使用できる。  [0029] The material of the porous body may be any material as long as it can form a porous body. For example, silicon oxide, alumina, zeolite, glass, ceramic, carbon, metal, organic polymer, etc. A suitable material may be selected. Among these, an organic polymer is preferable because a porous body can be easily formed and surface characteristics can be easily controlled. Among them, the active energy ray-curable resin is particularly preferable because it is easy to form a porous body in the minute separation channel 3. As the porous body made of active energy ray-curable resin and the production method thereof, for example, those described in JP-A-7-316336 filed by the present inventors can be used. In this method, first, an energy beam polymerizable compound and a phase separation agent that dissolves the compound but does not dissolve or swell the polymer are formed on the wall of the separation channel where the porous body is to be formed. Coat the mixture. Next, the coating portion is irradiated with active energy rays such as ultraviolet rays, and the energy ray polymerizable compound is polymerized and cured, and at the same time, phase separation is performed to form a porous body, and a phase separation agent in the porous is formed. It is to be removed by washing. As the energy beam polymerizable compound, for example, a monomer or an oligomer having an taliloyl group or a maleimide group can be preferably used. In addition, when the material of the porous body is a material other than the active energy ray-curable resin, for example, one component of the Zirgel method, the wet phase separation method, the dry phase separation method, and the co-continuous microphase separator Known methods according to each material such as elution removal method and powder sintering method can be used.
[0030] 第 1保持部 1は分離用流路 3の断面の周の一部の内壁を占めていて、分離用流路 3の長さ方向に実質的に連続している。このとき、第 1保持部 1は、分離用流路 3を流 れる流体の流線方向に対して略平行であればょ 、が、完全に平行であることが好ま しい。また、第 1保持部 1は、部分的に途切れる場所があってもよいが、途切れないこ とが好ましい。このようにすることにより、分離能を向上させることができる。  The first holding part 1 occupies a part of the inner wall of the circumference of the cross section of the separation channel 3 and is substantially continuous in the length direction of the separation channel 3. At this time, the first holding unit 1 is preferably substantially parallel to the flow direction of the fluid flowing through the separation channel 3, but is preferably completely parallel. Further, the first holding unit 1 may have a partly interrupted place, but it is preferable that the first holding part 1 not be interrupted. By doing in this way, resolution can be improved.
[0031] 第 1保持部 1が分離用流路 3の断面の周上において占める範囲は任意であるが、 2 0〜50%が好ましい。分離用流路 3の断面形状が矩形である場合には、第 1保持部 1はその長い方の一辺として形成することが好ましい。このとき、第 1保持部 1の形成 面からその対向面までの平均距離は 1〜500 μ mが好ましぐ 3〜300 μ mがより好 ましぐ 5〜150 /ζ πιがさらに好ましぐ 5〜: LOO /z mが最も好ましい。この範囲未満で は圧力損失が大きくなり、大規模なポンプが必要となる上、分離の処理量も減じる。 逆に、この範囲を超えると、分離操作に時間を要し、分離効率が低下するからである 。分離用流路の長さ方向に於いて、部分的にこの距離以外の部分があってもよい。 また第 1保持部 1からその対向面までの距離は、上記保持部が例えば多孔質体のよ うに厚みのある構造である場合には、その厚みの表面力 対向面までの距離を言う。 但し、後述のように、分離用流路 3が第 2保持部を有し、第 1保持部と第 2保持部が共 に多孔質層である場合には、これらの表面は互いに接していて良い。分離用流路 3 の、第 1保持部 1から対向面までの距離は、流入口 5付近で小さぐ流出口 6、 16付 近で大きいことも好ましい。このとき、流入口 5付近において上記平均距離未満であ ることも好ましいし、流出口付近において上記平均距離を超えることも好ましい。この ような構造とすることによって、分離能と分離効率を増すことが出来る。 [0031] The range that the first holding unit 1 occupies on the circumference of the cross section of the separation channel 3 is arbitrary. 0 to 50% is preferable. When the cross-sectional shape of the separation channel 3 is rectangular, the first holding part 1 is preferably formed as one side of the longer side. At this time, the average distance from the formation surface of the first holding part 1 to the opposing surface is preferably 1 to 500 μm, more preferably 3 to 300 μm, and even more preferably 5 to 150 / ζ πι. 5-: LOO / zm is most preferable. Below this range, pressure loss increases, requiring a large pump and reducing the separation throughput. On the contrary, if it exceeds this range, it takes time for the separation operation and the separation efficiency decreases. There may be a portion other than this distance in the length direction of the separation channel. Further, the distance from the first holding part 1 to the facing surface means the distance to the surface facing the surface force of the thickness when the holding part has a thick structure such as a porous body. However, as described later, when the separation channel 3 has the second holding part, and the first holding part and the second holding part are both porous layers, these surfaces are in contact with each other. good. It is also preferable that the distance from the first holding portion 1 to the facing surface of the separation channel 3 is large near the outflow ports 6 and 16 that are small near the inflow port 5. At this time, it is also preferable that the distance is less than the average distance in the vicinity of the inlet 5, and it is also preferable that the average distance is exceeded in the vicinity of the outlet. By adopting such a structure, the resolution and separation efficiency can be increased.
[0032] 物質分離デバイス 100を板状又はシート状とし、該板面又はシート面と平行に分離 用流路 3の流線を配置して、なおかつ、第 1保持部 1を該板面又はシート面と平行に 形成することが、製造の容易性力も最も好ましい。次いで、第 1保持部 1を該板面又 はシート面に垂直に設けることが、製造が比較的容易であって好ましい。そのほか、 分離用流路毎、或いは分離用流路の段毎に、第 1保持部 1の形成面が異なっていて も良い。 [0032] The material separation device 100 is formed in a plate shape or a sheet shape, the stream lines of the separation channel 3 are arranged in parallel to the plate surface or the sheet surface, and the first holding unit 1 is the plate surface or the sheet. Forming parallel to the surface is most preferable for ease of manufacturing. Next, it is preferable that the first holding portion 1 is provided perpendicularly to the plate surface or the sheet surface because manufacturing is relatively easy. In addition, the formation surface of the first holding portion 1 may be different for each separation channel or each stage of the separation channel.
[0033] 上記各分離用流路 3の一本の長さは任意である力 10 μ m〜30cmが好ましぐ 5 0 /ζ πι〜 10cmがより好ましぐ 100 m〜 3cmがさらに好ましい。分離用流路 3の好 ましい長さは、上記第 1保持部 1と第 2保持部 2との距離に依存し、第 1保持部 1と第 2 保持部 2との平均距離の 2〜: L000倍が好ましぐ 3〜: L00倍がより好ましぐ 5〜50倍 力 Sさらに好ましい。この範囲とすることによって、十分な分離能と、良好なスペースファ クタ一を持つ物質分離デバイスを構築できる。  [0033] One length of each separation channel 3 is preferably an arbitrary force of 10 μm to 30 cm, more preferably 50 / ζ πι to 10 cm, and even more preferably 100 m to 3 cm. The preferred length of the separation channel 3 depends on the distance between the first holding part 1 and the second holding part 2, and is 2 to 2 times the average distance between the first holding part 1 and the second holding part 2. : L000 times preferred 3 to: L00 times more preferred 5 to 50 times Strength S More preferred. By setting this range, it is possible to construct a material separation device having sufficient separation ability and good space factor.
[0034] 分離用流路 3の第 1保持部以外の内壁の少なくとも一部には、第 2物質に対して第 1保持部より高い保持性を示し、かつ、第 2物質に対して該内壁の他の部分より高い 保持性を示す第 2保持部 2を設けることも好ましい。即ち、第 1保持部と第 2保持部は[0034] At least a part of the inner wall of the separation channel 3 other than the first holding portion has the second substance with respect to the second substance. It is also preferable to provide the second holding part 2 which shows higher holding ability than the one holding part and which shows higher holding ability than the other part of the inner wall with respect to the second substance. That is, the first holding part and the second holding part
、分離すべき物質に対して互いに異なる保持性を示す。例えば分離すべき物質が異 なる塩基配列を持つ 2種の DNAである場合には、第 1保持部 1は一方の DNAに対 して相補的な塩基配列を持つプローブ DNAの固定ィ匕表面、第 2保持部 2は他方の DNAに対して相補的な塩基配列を持つプローブ DNAの固定ィ匕表面であり得る。こ のように、分離すべき物質が特に生化学物質である場合には、第 1保持部 1と第 2保 持部 2は、これらの生化学物質に対して異なる選択的親和性をもつプローブであり得 る。第 2保持部が第 2物質に対して示す保持性と親和性の詳細については、第 1保 持部 1が第 1物質に対して示すものと同様である。なお、第 1物質と第 1保持部との間 の親和性と、第 2物質と第 2保持部との間の親和性とは、種類が異なっていても良い , Different retention properties for the substances to be separated. For example, when the substance to be separated is two types of DNA having different base sequences, the first holding unit 1 is a surface of a probe DNA that has a complementary base sequence to one of the DNAs. The second holding part 2 can be the surface of the probe DNA fixed base having a base sequence complementary to the other DNA. Thus, when the substance to be separated is a biochemical substance in particular, the first holding part 1 and the second holding part 2 are probes having different selective affinities for these biochemical substances. It can be. The details of the retention and affinity that the second holding part shows for the second substance are the same as those shown by the first holding part 1 for the first substance. The affinity between the first substance and the first holding part and the affinity between the second substance and the second holding part may be different.
[0035] 第 2保持部を設けることによって、より分離の選択性と効率を上げることが出来る。 By providing the second holding part, it is possible to further increase the selectivity and efficiency of separation.
例えば、第 1物質路第 2物質とが溶液中の 2種類の溶質である場合のように 3成分以 上の溶液中の 2成分である場合には、第 1保持部のみが設けられたデバイスでは、溶 液中の第 1物質は濃縮されるが、第 2物質は希釈されず、第 2物質の濃度は不変で あるため、いかに第 1物質の濃度を高めても、第 1物質の純度向上には限界がある。 しかし、第 2保持部を設けることによって、第 1物質の濃縮と第 2物質の希釈が同時に 行えるため、第 1物質及び第 2物質の純度を高くすることが出来る。このように、第 2保 持部を設けた分離デバイスは、溶液中の 2種の溶質の分離に特に好適である。  For example, when the first substance path and the second substance are two kinds of solutes in the solution, such as when the second substance is two kinds of solutes in the solution, the device having only the first holding part is provided. In the solution, the first substance in the solution is concentrated, but the second substance is not diluted, and the concentration of the second substance remains unchanged.Therefore, no matter how high the concentration of the first substance, the purity of the first substance There are limits to improvement. However, by providing the second holding portion, the concentration of the first substance and the dilution of the second substance can be performed simultaneously, so that the purity of the first substance and the second substance can be increased. Thus, the separation device provided with the second holding part is particularly suitable for separating two kinds of solutes in the solution.
[0036] 第 2保持部 2が形成されている場合には、第 1保持部 1と第 2保持部 2は分離用流 路 3の断面の周上において異なる範囲を占めていて、互いに交差することなぐそれ ぞれ分離用流路 3の長さ方向に実質的に連続している。第 2保持部 2についても、分 離用流路 3を流れる流体の流線方向に対する平行性や連続状態については前記第 1保持部 1と同様である。  When the second holding part 2 is formed, the first holding part 1 and the second holding part 2 occupy different ranges on the circumference of the cross section of the separation channel 3 and intersect each other. Each of them is substantially continuous in the length direction of the separation channel 3. The second holding unit 2 is also the same as the first holding unit 1 in terms of parallelism and continuous state with respect to the flow direction of the fluid flowing through the separation channel 3.
[0037] 第 2保持部 2が形成されている場合には、それぞれが分離用流路 3の断面の周上 において占める範囲は、どちらもなるべく大きい方が分離すべき物質の保持量が増 すため好ましい。第 1保持部 1と第 2保持部 2は、流路断面の周上で互いに端部を接 して 1Z2ずつを占めても良いが、第 1保持部 1と第 2保持部 2との境界部に両者と異 なる保持性を持つ境界領域 (非保持部又は第 3保持部)を設けて、間を開けることが 、両保持部力 放出された第 1物質と第 2物質の再混合を防ぐために好ましい。従つ て、分離用流路の壁面が一対の平行面を含み、第 1保持部および第 2保持部は、前 記一対の平行面に設けられていることが好ましい。例えば、分離用流路 3の断面形 状が矩形である場合には、第 1保持部 1と第 2保持部 2は対向する長辺に形成し、 2 つの短辺をそれぞれ境界領域とすることが好ましい。なお、本物質分離デバイスが積 層構造を有する場合には、第 1保持部および Zまたは第 2保持部は、外部層におけ る内部層側の表面に設けられている構成であると作製が容易となり好ましい。このとき 、第 1保持部 1と第 2保持部 2との平均距離は、上記第 2保持部がない場合の第 1保 持部から対向面までの距離と同様である。 [0037] In the case where the second holding part 2 is formed, the range occupied by each on the circumference of the cross section of the separation channel 3 is larger as much as possible, and the amount of the substance to be separated increases. Therefore, it is preferable. The first holding part 1 and the second holding part 2 are in contact with each other on the circumference of the channel cross section. However, a boundary region (non-holding portion or third holding portion) having different holding properties is provided at the boundary portion between the first holding portion 1 and the second holding portion 2. In order to prevent re-mixing of the first substance and the second substance, both holding force is released. Therefore, it is preferable that the wall surface of the separation channel includes a pair of parallel surfaces, and the first holding unit and the second holding unit are provided on the pair of parallel surfaces. For example, when the cross-sectional shape of the separation channel 3 is rectangular, the first holding part 1 and the second holding part 2 are formed on opposite long sides, and the two short sides are used as boundary regions. Is preferred. When the material separation device has a layered structure, the first holding part and the Z or second holding part are manufactured when the structure is provided on the surface on the inner layer side in the outer layer. It is easy and preferable. At this time, the average distance between the first holding unit 1 and the second holding unit 2 is the same as the distance from the first holding unit to the facing surface when the second holding unit is not provided.
[0038] 但し、分離用流路 3が第 2保持部を有し、第 1保持部と第 2保持部が共に多孔質層 である場合には、これらの表面は互いに接していて良い。該互いに接している場合に は、流体は多孔質層の内部のみを流れる。第 2保持部が形成されていて、分離用流 路 3の断面が、第 1保持部 1である多孔質体と第 2保持部 2である多孔質体で完全に 占められていて、それ以外の空間がない場合には、分離用流路 3の断面形状が分離 能や分離効率に与える影響は比較的小さくなる。この場合、分離用流路 3の断面形 状として製造が容易な形状を採用することが好ましぐ特に矩形、台形、円、楕円とす ることが好ましい。 [0038] However, when the separation channel 3 has the second holding part and both the first holding part and the second holding part are porous layers, these surfaces may be in contact with each other. When in contact with each other, the fluid flows only inside the porous layer. The second holding part is formed, and the cross section of the separation channel 3 is completely occupied by the porous body that is the first holding part 1 and the porous body that is the second holding part 2. When there is no space, the influence of the cross-sectional shape of the separation channel 3 on the separation performance and separation efficiency is relatively small. In this case, it is preferable to adopt a shape that is easy to manufacture as the cross-sectional shape of the separation channel 3, and in particular, a rectangle, trapezoid, circle, or ellipse is preferable.
[0039] 第 2保持部を有する場合には、第 2保持部の表面状態は上記第 1保持部と同様で ある。第 1保持部 1および第 2保持部 2の多孔質体の厚みは同じでなくとも良いが、同 程度であることが、分離能を増す意味で好ましい。また、第一保持部および第 2保持 部が多孔質体で形成されている場合には、これら表面間が 100 m以下であること が好ましい。また、多孔質体の細孔径が例えば 3〜50 mと大きぐ多孔質体中を流 れる流体の圧力損失がそれほど高くならない場合には、第 1保持部 1および第 2保持 部 2の多孔質体の厚みの和が分離用流路の高さに等しく形成されて、両多孔質体が 完全に接触している形態も好ましぐ第 1保持部 1および第 2保持部 2の厚みが共に 流路の対向壁までの距離の 1/2とされていることがさらに好ましい。このような形態と することによって、分離能を高くすることが出来る。 [0039] When the second holding part is provided, the surface state of the second holding part is the same as that of the first holding part. The thicknesses of the porous bodies of the first holding unit 1 and the second holding unit 2 do not have to be the same, but are preferably the same in terms of increasing the separation ability. Further, when the first holding part and the second holding part are formed of a porous body, the distance between these surfaces is preferably 100 m or less. In addition, when the pressure loss of the fluid flowing through the porous body whose pore diameter is large, for example, 3 to 50 m is not so high, the porous bodies of the first holding unit 1 and the second holding unit 2 The thickness of the first holding part 1 and the second holding part 2 is preferred, where the sum of the body thicknesses is equal to the height of the separation channel and the porous body is completely in contact. More preferably, the distance to the opposing wall of the flow path is ½. With this form By doing so, the resolution can be increased.
[0040] (流入口)  [0040] (Inlet)
図 1の本実施形態に於いては、流入口 5は分離用流路 3の上流端において、第 1保 持部 1側に設けられているが、分離用流路の断面の任意の位置に設けて良い。例え ば、第 1保持部 1の対向面側、あるいは側面側に設けてもよいし、分離用流路断面と 同じ断面形状に設けてもょ 、。流入口 5は本分離デバイスをマイクロ流体デバイスの 一部に形成し、マイクロ流体デバイス内の他の機構、例えばポンプ機構やバルブ機 構に接続しても良い。また、本分離デバイスを多段に接続する場合には、全段の流 出口に接続してもよい。  In the present embodiment of FIG. 1, the inlet 5 is provided on the first holding part 1 side at the upstream end of the separation channel 3, but at any position in the cross section of the separation channel. May be provided. For example, the first holding part 1 may be provided on the opposite surface side or the side surface side, or may be provided in the same cross-sectional shape as the separation channel cross section. The inlet 5 may form the separation device as a part of the microfluidic device, and may be connected to other mechanisms in the microfluidic device, such as a pump mechanism or a valve mechanism. When this separation device is connected in multiple stages, it may be connected to the outlets of all stages.
[0041] (第 1流出口および第 2流出口)  [0041] (First outlet and second outlet)
分離用流路 3には、分離すべき第 1物質が濃縮された流体を流出させる第 1流出口 6と、第 1物質が希釈された流体を流出させる第 2流出口 16とが形成されている。第 1 流出口 6は、分離用流路の断面内に於いて、第 1保持部 1に近接して配置され、第 2 流出口 16は、第 1保持部 1に対して第 1流出口より遠くに配置されている。好ましくは 同断面内に於いて、第 1流出口 6は第 1保持部 1に接する位置に配設され、第 2流出 口 16はその対向面に接する位置に配設される。更に好ましくは、第 1流出口 6が第 1 保持部 1の内部に配設され、第 2流出口 16はその対向面に接する位置に配設する。  The separation flow path 3 is formed with a first outlet 6 through which a fluid enriched in the first substance to be separated flows out and a second outlet 16 through which the fluid diluted with the first substance flows out. Yes. The first outlet 6 is disposed in the cross section of the separation channel in the vicinity of the first holding part 1, and the second outlet 16 is connected to the first holding part 1 from the first outlet. Located far away. Preferably, in the same cross section, the first outlet 6 is disposed at a position in contact with the first holding portion 1, and the second outlet 16 is disposed at a position in contact with the opposing surface. More preferably, the first outlet 6 is disposed inside the first holding part 1, and the second outlet 16 is disposed at a position in contact with the facing surface.
[0042] 第 2保持部 2が形成されている場合には、同断面内に於いて、第 1流出口 6は好ま しくは第 1保持部 1に接するとともに第 2保持部 2とは接しない位置に配設され、第 2 流出口 16は第 2保持部 2に接するとともに第 1保持部 1とは接しない位置に配設され る。更に好ましくは、第 1保持部 1の内部に第 1流出口 6が配設され、第 2保持部 2の 内部に第 2流出口 16が配設される。  [0042] When the second holding part 2 is formed, the first outlet 6 preferably contacts the first holding part 1 and does not contact the second holding part 2 in the same cross section. The second outlet 16 is disposed at a position where it contacts the second holding part 2 and does not contact the first holding part 1. More preferably, the first outlet 6 is arranged inside the first holding part 1 and the second outlet 16 is arranged inside the second holding part 2.
[0043] 勿論、各流出口は分離用流路 3の下流側端部に設けられることが、死容積が無くな ることによって分離能の低下が防がれ好ましい。そこで、本実施形態では、第 1保持 部 1の下流側端部に第 1流出口 6を形成し、第 1保持部 1の対向面の下流側端部に 第 2流出口 16を形成する。このように、両流出口を分離用流路 3の内壁の対向面に 設け、流体が第 1流出口 6および第 2流出口 16から互いに逆方向へ流出すること力 流出口付近での再混合が抑制され、分離能が高くなるため好ましい。また、上記流 出口付近において、第 1物質と第 2物質との拡散による再混合が生じて分離能が低 下することを防ぐために、分離用流路の長さ方向の流出口寸法は短いことが好ましく 、さらに、各流出口の断面積を分離用流路の断面積より小さぐ好ましくは 1Z2より小 さくして、この部分での流速を増すことも好ましい。 [0043] Of course, it is preferable that each outlet is provided at the downstream end of the separation channel 3 because the loss of the dead volume is prevented and the reduction of the separation performance is prevented. Therefore, in the present embodiment, the first outlet 6 is formed at the downstream end of the first holding unit 1, and the second outlet 16 is formed at the downstream end of the opposing surface of the first holding unit 1. In this way, both outlets are provided on the opposing surface of the inner wall of the separation channel 3 so that the fluid flows out from the first outlet 6 and the second outlet 16 in opposite directions. Force remixing near the outlet Is preferable, and the separation performance is increased. In addition, the above flow In order to prevent remixing due to diffusion of the first substance and the second substance in the vicinity of the outlet and thereby reducing the separation ability, the length of the outlet in the longitudinal direction of the separation channel is preferably short. It is also preferable to increase the flow velocity at this portion by making the cross-sectional area of each outlet smaller than the cross-sectional area of the separation channel, preferably less than 1Z2.
[0044] 第 1保持部とその対向面、第 1流出口および第 2流出口、ならびに連絡流路の配置 について、上記立体型以外に、例えば次の二つの形態があり得る。  [0044] Regarding the arrangement of the first holding portion and its opposing surface, the first outlet and the second outlet, and the communication channel, there may be, for example, the following two forms other than the above three-dimensional type.
[0045] 〔半立体型〕  [0045] [Semi-solid]
図 2は半立体型の実施形態の説明図であり、図 2 (a)は平面図、図 2 (b)は図 2 (a) の j8 - j8線に於ける側面断面図、図 2 (c)は図 2 (a)の γ - γ線に於ける側面断面図 である。半立体型では、内部層 23は基材側内部層 23aとカバー層側内部層 23bの 2 層から成っていて、第 1外部層 22と第 2外部層 24は省略されている。基材側内部層 23aとカバー層側内部層 23b内に形成された分離用流路 3となる欠損部は合わされ て略矩形の分離用流路 3を形成し、その分離用流路 3の基材 21側の面に第 1保持 部 1を形成する。  Fig. 2 is an explanatory view of the semi-solid embodiment, Fig. 2 (a) is a plan view, Fig. 2 (b) is a side sectional view taken along line j8-j8 in Fig. 2 (a), and Fig. 2 ( c) is a cross-sectional side view taken along line γ-γ in Fig. 2 (a). In the semi-three-dimensional type, the inner layer 23 is composed of two layers of a base material side inner layer 23a and a cover layer side inner layer 23b, and the first outer layer 22 and the second outer layer 24 are omitted. The deficient portions that form the separation channel 3 formed in the base material side inner layer 23a and the cover layer side inner layer 23b are combined to form a substantially rectangular separation channel 3, and the base of the separation channel 3 is formed. The first holding part 1 is formed on the surface on the material 21 side.
[0046] 分離用流路 3の下流側端部における断面の、第 1保持部 1側の、基材側内部層 23 aの厚み分が第 1流出口 6とされ、第 1保持部の対向面側のカバー層側内部層 23bの 厚み分が第 2流出口 16とされる。一方、基材側内部層 23aには、第 1流出口 6から第 1取出口 7に連絡する連絡流路 8が設けられ、カバー側内部層 23bには、第 2流出口 16から第 2取出口 17に連絡する連絡流路 18が設けられる。即ち、分離用流路 3およ びその下流端である流出口 6, 16までは、基材側内部層 23aとカバー側内部層 23b の欠損部は完全に重なり合い断面は矩形を呈するが [図 2 (b) ]、流出口 6、 16から 下流方向に進むにつれ、平面内の横方向に少しずつずれて [図 2 (c) ]、最終的には 互いに独立した連絡流路 8、 18となる。  [0046] The thickness of the substrate-side inner layer 23a on the first holding unit 1 side in the cross section at the downstream end of the separation channel 3 is the first outlet 6 and is opposed to the first holding unit. The thickness of the cover layer side inner layer 23b on the surface side is the second outlet 16. On the other hand, the base-side inner layer 23a is provided with a communication channel 8 that communicates from the first outlet 6 to the first outlet 7, and the cover-side inner layer 23b has a second outlet 16 from the second outlet 16. A communication channel 18 that communicates with the outlet 17 is provided. That is, up to the separation channel 3 and the outlets 6 and 16, which are the downstream ends of the separation channel 3, the defect portions of the base-side inner layer 23a and the cover-side inner layer 23b are completely overlapped, and the cross section is rectangular [Fig. (b)], as it progresses downstream from outlets 6 and 16, it slightly shifts laterally in the plane [Fig. 2 (c)], and finally becomes mutually independent communication channels 8 and 18. .
[0047] 半立体型は、流出口 6、 16の断面形状が、高さに対して幅が大きい場合には、第 1 保持部 1から脱着した物質を含む濃縮液が第 1流出口 6から流出する前に、第 2流出 口 16から流出する希釈液と再混合して分離能を低下させがちである。また、第 2保持 部が設けられている場合には、第 1保持部 1および第 2保持部 2からそれぞれ脱着し た物質が第 1流出口 6と第 2流出口 16からそれぞれ流出する前に再混合して分離能 を低下させがちである。これを防ぐために、流出口 6、 16の断面形状は、高さ Z幅の 比が好ましくは 0. 5以上、さらに好ましくは 0. 7以上、最も好ましくは 1以上である。高 さ Z幅の比の上限は製造可能であれば高いほど好ましぐ特に制約を設ける必要は ないが、製造の容易さの点から、 10以下が好ましぐ 5以下が更に好ましぐ 3以下が 最も好ましい。また、再混合による分離能の低下を防ぐために、第 1流出口 6と第 2流 出口 16は、図 3に示すように、曲率を持って互いに逆方向へ曲げられていることが好 ましい。 [0047] In the semi-solid type, when the cross-sectional shape of the outlets 6 and 16 is large with respect to the height, the concentrated liquid containing the substance desorbed from the first holding unit 1 is discharged from the first outlet 6. Before it flows out, it tends to reduce the resolution by remixing with the diluent flowing out from the second outlet 16. Further, when the second holding part is provided, before the substances detached from the first holding part 1 and the second holding part 2 respectively flow out from the first outlet 6 and the second outlet 16, respectively. Remix and resolution Tends to be reduced. In order to prevent this, the cross-sectional shape of the outlets 6 and 16 is preferably such that the ratio of height Z width is 0.5 or more, more preferably 0.7 or more, and most preferably 1 or more. The upper limit of the ratio of height to Z width is preferably as high as possible, but there is no need to set any particular restrictions. However, from the viewpoint of ease of production, 10 or less is preferred, and 5 or less is more preferred. 3 The following is most preferred. In addition, in order to prevent a decrease in resolution due to remixing, it is preferable that the first outlet 6 and the second outlet 16 are bent in opposite directions with a curvature as shown in FIG. .
[0048] 分離用流路 3の高さ Z幅の比が上記流出口の高さ Z幅の比に比べて小さい場合 には、流出口に近づくにつれ上記の比になるように幅を徐々に狭めることが好ましい 。半立体型においても、必要に応じて、分離用流路 3の第 1保持部 1の対向面に第 2 保持部 2を形成しても良い。  [0048] When the ratio of the height Z width of the separation channel 3 is smaller than the ratio of the height Z width of the outlet, the width is gradually increased so as to become the ratio as approaching the outlet. It is preferable to narrow. Even in the semi-three-dimensional shape, the second holding part 2 may be formed on the opposing surface of the first holding part 1 of the separation channel 3 as necessary.
半立体型における流出口の別の態様として、第 1流出口 6と第 2流出口 16を、分離 用流路 3の下流端の側面に設けても良い。本態様では、連絡流路 8と連絡流路 18が 分離用流路 3の下流端の対向ずる側面に直角に接続された状態になる。この場合に も、流出口の高さ Z幅の比は上記のようにすることが好ましい。また、分離室の幅も、 流出口に近づくにつれ徐々に狭めることが好ましい。  As another mode of the outlet in the semi-three-dimensional type, the first outlet 6 and the second outlet 16 may be provided on the side surface of the downstream end of the separation channel 3. In this embodiment, the communication channel 8 and the communication channel 18 are connected at right angles to the opposing side surfaces of the downstream end of the separation channel 3. Also in this case, the ratio of the height Z width of the outlet is preferably as described above. In addition, it is preferable that the width of the separation chamber is gradually narrowed as it approaches the outlet.
[0049] 〔平面型〕  [0049] [Plane type]
図 3は平面型の態様の説明図であり、図 3 (a)は平面図、図 3 (b)は側面図である。 平面型の態様では、内部層 23に断面矩形状の分離用流路 3を形成し、その分離用 流路 3における内部層 23と垂直な一方の側面に、第 1保持部 1を形成する。その第 1 保持部 1の下流側端部に、内部層 23と垂直な面内において開口する第 1流出口 6、 および該第 1流出口 6の対向面の側面に第 2流出口 16を設ける。そして、その第 1流 出口 6および第 2流出口 16を第 1取出口 7、第 2取出口 17にそれぞれ接続する連絡 流路 8及び連絡流路 18を、分離用流路 3と同じ内部層 23に形成する。内部層 23の 表面に積層した第 1外部層 22及び第 2外部層 24は省略される。また、必要に応じて 、断面矩形状の分離用流路の、第 1保持部に対向する側の内壁に第 2保持部 2を設 けても良い。  FIG. 3 is an explanatory view of a flat type, FIG. 3 (a) is a plan view, and FIG. 3 (b) is a side view. In the planar type, the separation channel 3 having a rectangular cross section is formed in the inner layer 23, and the first holding part 1 is formed on one side surface of the separation channel 3 perpendicular to the inner layer 23. A first outlet 6 that opens in a plane perpendicular to the inner layer 23 is provided at the downstream end of the first holding part 1, and a second outlet 16 is provided on the side surface of the opposite face of the first outlet 6. . The connecting flow path 8 and the connecting flow path 18 that connect the first outlet 6 and the second outlet 16 to the first outlet 7 and the second outlet 17 are the same inner layer as the separation channel 3. Form in 23. The first outer layer 22 and the second outer layer 24 laminated on the surface of the inner layer 23 are omitted. If necessary, the second holding part 2 may be provided on the inner wall of the separation channel having a rectangular cross section on the side facing the first holding part.
[0050] なお、立体型と平面型との折衷型として、第 1外部層 22や第 2外部層 24を形成し、 第 1流出口 6に接続される連絡流路 8又は第 2流出口 16に接続される連絡流路 18の 一方又は両方を、部分的に該第 1外部層 22や第 2外部層 24に形成してもよい。この ような折衷型は、段階的配置の分離デバイスに好適に用いられる。 [0050] The first outer layer 22 and the second outer layer 24 are formed as a compromise between a three-dimensional type and a planar type, One or both of the communication channel 8 connected to the first outlet 6 and the communication channel 18 connected to the second outlet 16 are partially formed in the first outer layer 22 and the second outer layer 24. May be. Such a compromise type is suitably used for a separation device having a staged arrangement.
[0051] [分離用流路の段階的配置] [0051] [Stepwise arrangement of separation channels]
分離用流路 3の第 1流出口 6をもう一つの分離用流路 3の流入口 5に接続すると、第 1物質が 2回濃縮され、濃縮率が向上する。これは、一つの分離用流路内では、拡散 による均一化効果のために濃度差が一定以上にならないのに対し、複数の分離用 流路を上流側から下流側へ直列に接続すると、濃度差を積算してゆける為に、高度 に濃縮することが可能になるのである。  When the first outlet 6 of the separation channel 3 is connected to the inlet 5 of the other separation channel 3, the first substance is concentrated twice and the concentration rate is improved. This is because, within one separation channel, the concentration difference does not exceed a certain level due to the homogenization effect due to diffusion, but when multiple separation channels are connected in series from the upstream side to the downstream side, the concentration Because the difference can be accumulated, it can be highly concentrated.
〔2段配置〕  [Two-stage arrangement]
段数が 2段の場合 (この場合に関して、該 2段を上流段と下流段と称する)において 、第 1物質の濃縮、又は第 2物質の除去を求める場合には、上流段の第 1流出口 6に 下流段の分離用流路 3の流入口 5を接続すればよい。第 2物質の濃縮、又は第 1物 質の除去を求める場合には、上流段の第 2流出口 16に下流段の分離用流路 3の流 入口 5を接続すればよい。第 1物質と第 2物質の両方を濃縮する場合には。第 1流出 口 6、第 2流出口 16にそれぞれ別の下流段の分離用流路 3の流入口 5を接続すれば よい。  When the number of stages is two (in this case, the two stages are referred to as the upstream stage and the downstream stage), when seeking to concentrate the first substance or remove the second substance, the first outlet of the upstream stage The inlet 5 of the downstream separation channel 3 may be connected to 6. When concentration of the second substance or removal of the first substance is required, the inlet 5 of the separation channel 3 in the downstream stage may be connected to the second outlet 16 in the upstream stage. When concentrating both the first and second substances. What is necessary is just to connect the inlet 5 of the separation flow path 3 in a separate downstream stage to the first outlet 6 and the second outlet 16, respectively.
[0052] 上述したように、本発明の物質分離デバイスの各分離用流路の好ま 、態様として 、立体型、半立体型、及び平面型の 3つの代表的な態様を例示できる。分離用流路 の段階的配置においては、これらの態様の分離用流路を任意に組み合わせて配置 すればよいが、使用する各分離用流路の態様を同じにすることが、製造が容易であり 好ましい。以下、単段での分離効率を最も高くすることが出来る立体型を例として、段 階的配置の態様について説明する。半立体型や平面型についても、配置の仕方に 関しては同様である。  [0052] As described above, the preferred embodiments of each separation channel of the substance separation device of the present invention include three typical embodiments: a three-dimensional shape, a semi-three-dimensional shape, and a planar shape. In the stepwise arrangement of the separation channels, the separation channels in these embodiments may be arranged in any combination. However, it is easy to manufacture by using the same separation channel for each separation channel. Yes, preferred. Hereinafter, the aspect of the stepwise arrangement will be described by taking as an example a three-dimensional shape that can maximize the separation efficiency in a single stage. The same applies to the arrangement of semi-solid type and flat type.
[0053] 〔立体型に於ける段階的配置〕  [0053] [Stepwise arrangement in three-dimensional shape]
図 5、図 6は立体型の段階的配置の態様の平面図及び ε — ε線に於ける側面断 面図である。  5 and 6 are a plan view of a three-dimensional stepwise arrangement and a side cross-sectional view along the ε-ε line.
図 7は、第 1外部層 22の平面図である。第 1外部層 22には、各段の分離用流路 3 の第 1流出口 6から、下流側次段の分離用流路 3の流入口 5まで、それぞれ連絡流 路 38が形成されている。 FIG. 7 is a plan view of the first outer layer 22. The first outer layer 22 has a separation channel 3 for each stage. A communication channel 38 is formed from the first outlet 6 to the inlet 5 of the downstream downstream separation channel 3.
図 8は、内部層 23の平面図である。内部層 23には、分離用流路 3がその長さ方向 に沿って複数段に配置され、各段には複数本の分離用流路 3が平行に配置されて いる。  FIG. 8 is a plan view of the inner layer 23. In the inner layer 23, the separation channels 3 are arranged in a plurality of stages along the length direction, and a plurality of separation channels 3 are arranged in parallel in each stage.
図 9は、第 2外部層 24の平面図である。第 2外部層 24には、各段の分離用流路 3 の第 2流出口 16から、下流側次段の分離用流路 3の流入口 5まで、それぞれ連絡流 路 48が形成されている。  FIG. 9 is a plan view of the second outer layer 24. In the second outer layer 24, a communication channel 48 is formed from the second outlet 16 of the separation channel 3 at each stage to the inlet 5 of the separation channel 3 at the downstream downstream stage. .
[0054] 〔3段以上の段階的配置の基本構成〕 [Basic configuration of stepwise arrangement of three or more steps]
以下、共通の媒体に溶解している第 1物質と第 2物質を、それぞれ媒体から濃縮す る場合における、段階的配置の基本構成について述べる。  The basic structure of the stepwise arrangement when the first and second substances dissolved in a common medium are concentrated from the medium is described below.
図 5〜図 10の第 1段力ゝら第 K段までの範囲は、段階的配置の基本構成を示したも のである。図 5、図 6に示された態様では、分離流路を多段に接続する方式のうち、 次のような好ましい接続方式で接続されている。即ち、上流から下流にかけて分離用 流路 3が複数段にわたって配置され、第 1段に分離用流路 3a、第 2段に分離用流路 3b及び 3c、第三段に分離用流路 3d、 3e及び 3fが配置されていて、第 1段における 分離用流路 3aの第 1流出口 6aが、第 2段における分離用流路 3bの流入口 5bに連 絡流路 38aでもって接続され、前記分離用流路 3aの第 2流出口 16aが、第 2段にお ける分離用流路 3cの流入口 5cに連絡流路 48aでもって接続されて 、る。  The range from the first stage force to the Kth stage in Figs. 5 to 10 shows the basic configuration of the staged arrangement. In the embodiment shown in FIG. 5 and FIG. 6, among the methods of connecting the separation channels in multiple stages, they are connected by the following preferable connection method. That is, the separation channel 3 is arranged in a plurality of stages from upstream to downstream, the separation channel 3a in the first stage, the separation channels 3b and 3c in the second stage, the separation channel 3d in the third stage, 3e and 3f are arranged, and the first outlet 6a of the separation channel 3a in the first stage is connected to the inlet 5b of the separation channel 3b in the second stage through the communication channel 38a. The second outlet 16a of the separation channel 3a is connected to the inlet 5c of the separation channel 3c in the second stage through a communication channel 48a.
[0055] さらに、第 2段における分離用流路 3bの第 1流出口 6bが、第三段における分離用 流路 3dの流入口 5dに連絡流路 38bでもって接続され、前記分離用流路 3bの第 2流 出口 16bが、第三段における分離用流路 3eの流入口 5eに連絡流路 48bでもって接 続されている。また、第 2段における分離用流路 3cの第 1流出口 6cが、前記分離用 流路 3eの流入口 5eに連絡流路 38cでもって接続され、前記分離用流路 3cの第 2流 出口 16cが、第三段における分離用流路 3fの流入口 5fに連絡流路 48cでもって接 続されている。 [0055] Further, the first outlet 6b of the separation channel 3b in the second stage is connected to the inlet 5d of the separation channel 3d in the third stage through a communication channel 38b, and the separation channel The second outlet 16b of 3b is connected to the inlet 5e of the separation channel 3e in the third stage through a communication channel 48b. In addition, the first outlet 6c of the separation channel 3c in the second stage is connected to the inlet 5e of the separation channel 3e through the communication channel 38c, and the second outlet of the separation channel 3c. 16c is connected to the inlet 5f of the separation channel 3f in the third stage through the communication channel 48c.
[0056] 第 2段における分離用流路 3bの第 2流出口 16bと、分離用流路 3cの第 1流出口 6c とが、第三段において異なる分離用流路の流入口に接続されているのではなぐ同 一の分離用流路 3eの流入口 5eに接続されている。いま、当初試料に含まれる第 1物 質および第 2物質の濃度をそれぞれ 50%ずっと仮定する。その試料を分離用流路 3 aに流入させると、第 1流出口 6aから流出する試料は、第 1物質の濃度が例えば 60% に上昇すると同時に、第 2流出口 16aから流出する試料は、例えば 40%に降下する 。分離用流路 3aの第 1流出口 6aから流出する試料を分離用流路 3bに流入させると、 上記と同様に、 60%で導入された第 1物質の濃度は、例えば第 1流出口 6bから流出 する試料では 70%に上昇するとともに、第 2流出口 16bから流出する試料では 50% に下降する。一方、第 1物質の濃度が 40%の試料を導入された分離用流路 3cの第 1流出口 6cから流出する試料は、例えば第 1物質の濃度が 50%に上昇するとともに 、第 2流出口 16cから流出する試料では 40%に下降することになる。 [0056] The second outlet 16b of the separation channel 3b in the second stage and the first outlet 6c of the separation channel 3c are connected to the inlets of different separation channels in the third stage. It is not the same It is connected to the inlet 5e of one separation channel 3e. Now, assume that the concentrations of the first and second substances in the initial sample are 50% each. When the sample flows into the separation channel 3a, the sample flowing out from the first outlet 6a increases the concentration of the first substance to 60%, for example, and at the same time the sample flowing out from the second outlet 16a For example, it drops to 40%. When the sample flowing out from the first outlet 6a of the separation channel 3a flows into the separation channel 3b, the concentration of the first substance introduced at 60% is, for example, the same as the first outlet 6b, as described above. The sample flowing out from the outlet rises to 70%, and the sample flowing out from the second outlet 16b falls to 50%. On the other hand, the sample flowing out from the first outlet 6c of the separation channel 3c into which the sample having the concentration of the first substance of 40% is introduced, for example, increases the concentration of the first substance to 50% and the second stream. The sample flowing out of outlet 16c will drop to 40%.
ここで、第 2段の分離用流路 3bの第 2流出口 16bから流出する試料 (B)は、前記第 1段で第 1物質の濃度が濃縮された後、第 2段で第 1物質の濃度が希釈されたもので ある。同様に、分離用流路 3cの第 1流出口 6cから流出する試料 (C)は、第 1段で第 1 物質の濃度が希釈された後、第 2段で第 1物質の濃度が濃縮されたものである。そし てこの二つの濃度は略等しくなるだろう。従って、第 1物質の濃度がほぼ等しい上記 2 つの試料を異なる分離用流路で分離処理する利益はない。そこで、上記 2つの試料 を異なる分離用流路に流入させるのではなぐ同一の分離用流路 3eに流入させれば よい。  Here, the sample (B) flowing out from the second outlet 16b of the second-stage separation channel 3b is the first substance in the second stage after the concentration of the first substance is concentrated in the first stage. The concentration of is diluted. Similarly, in the sample (C) flowing out from the first outlet 6c of the separation channel 3c, the concentration of the first substance is diluted in the first stage, and then the concentration of the first substance is concentrated in the second stage. It is a thing. And these two concentrations will be approximately equal. Therefore, there is no benefit of separating the above two samples having the same first substance concentration in different separation channels. Therefore, the two samples may be introduced into the same separation channel 3e rather than into the different separation channels.
第四段以降も同様に接続される。即ち、上流から下流にかけて前記分離用流路が 複数段にわたって配置され、該複数段のうちの任意の連続した 3段 (この場合に関し て、該 3段を上流段、中流段、下流段と称する)において、上流段における第 1の分 離用流路の第 1流出口が、中流段における第 2の分離用流路の流入口に接続される とともに、前記第 1の分離用流路の第 2流出口が、中流段における第 3の分離用流路 の流入口に接続され、中流段における前記第 2の分離用流路の第 1流出口が、下流 段における第 4の分離用流路の流入口に接続されるとともに、前記第 2の分離用流 路の第 2流出口が、中流段における第 5の分離用流路の流入口に接続され、中流段 における前記第 3の分離用流路の第 2流出口が、下流段における第 6の分離用流路 の流入口に接続されるとともに、前記第 3の分離用流路の第 1流出口が、前記第 5の 分離用流路の流入口に接続されて!、る。 The fourth and subsequent stages are similarly connected. That is, the separation channel is arranged in a plurality of stages from upstream to downstream, and any continuous three stages of the plurality of stages (in this case, the three stages are referred to as an upstream stage, a midstream stage, and a downstream stage). ), The first outlet of the first separation channel in the upstream stage is connected to the inlet of the second separation channel in the middle stage, and the first outlet of the first separation channel The second outlet is connected to the inlet of the third separation channel in the middle stage, and the first outlet of the second separation channel in the middle stage is the fourth separation channel in the downstream stage. And the second outlet of the second separation channel is connected to the inlet of the fifth separation channel in the middle stage, and the third separation outlet in the middle stage. The second outlet of the channel is connected to the inlet of the sixth separation channel in the downstream stage, and the front The first outlet of the third separation channel is of the fifth Connected to the inlet of the separation channel! RU
[0058] このように、本実施態様における分離用流路の段階的配置は、 1段毎に分離用流 路 3が 1本ずつ増える配置である。このような接続構造とすることによって、 1本の分離 用流路 3がそれぞれ次段の 2本の分離用流路に接続された構造、即ち、 1段毎に流 路数が 2倍になる構造に比べて流路数を少なくでき、スペースファクターが向上する  As described above, the stepwise arrangement of the separation channels in the present embodiment is an arrangement in which the separation channel 3 is increased by one for each stage. By adopting such a connection structure, one separation flow path 3 is connected to each of the next two separation flow paths, that is, the number of flow paths is doubled for each stage. Compared to the structure, the number of channels can be reduced and the space factor is improved.
[0059] そして、物質分離デバイスが、本段階的配置の基本構成のみで構成されて ヽる場 合には、最下流段(図 5の第 K段)における複数の分離用流路の流出口のうち、各段 における分離用流路の第 1流出口の通過回数が最多となる前記流体の流出口が、 前記流体を取り出す第 1取出口 7に接続され、最下流段 (第 K段)における複数の分 離用流路の流出口のうち、各段における分離用流路の第 2流出口の通過回数が最 多となる前記流体の流出口が、前記流体を取り出す第 2取出口 17に接続されている ことにより、各々の流出口から第 1物質濃縮流体および第 2物質濃縮流体がそれぞ れ取り出される。 [0059] When the substance separation device is configured only with the basic configuration of this staged arrangement, the outlets of the plurality of separation channels in the most downstream stage (stage K in FIG. 5) Of these, the fluid outlet having the highest number of passages through the first outlet of the separation channel in each stage is connected to the first outlet 7 for taking out the fluid, and the most downstream stage (Kth stage). Among the plurality of separation channel outlets in FIG. 2, the second fluid outlet 17 from which the fluid outlet having the largest number of passages through the second outlet of the separation channel in each stage takes out the fluid. By connecting to each other, the first substance concentrated fluid and the second substance concentrated fluid are respectively taken out from the respective outlets.
[0060] 上記の本方式を一般ィ匕して述べると、以下のようになる。  [0060] The above-described method is generally described as follows.
すなわち、各段において並列に配された分離用流路を「列」として表し、第 1物質が 最も濃縮される列を第 1列と称することにし、第 1段第 1列の分離用流路 3aを「分離用 流路 [1, 1]」と称し、一般に、第 n段第 i列 (n, iは正の整数、以下同様)の分離用流 路 3を「分離用流路 [n, i]」と称することにする。流入口 5、第 1流出口 6、第 2流出口 1 6についても同様に、第 n段第 i列のものを [n, i]で示すものとする。  In other words, the separation channels arranged in parallel in each stage are represented as “columns”, and the column in which the first substance is most concentrated is referred to as the first column. 3a is referred to as “separation channel [1, 1]”, and in general, the separation channel 3 in the n-th i-th row (n and i are positive integers, the same shall apply hereinafter) is referred to as “separation channel [n , i] ”. Similarly, for the inflow port 5, the first outflow port 6, and the second outflow port 16, the n-th row and the i-th row are indicated by [n, i].
[0061] すると、図 7に示す第 1段第 1列の分離用流路 3a (即ち分離用流路 [1, 1])の第 1流 出口 6a (即ち、第 1流出口 [1, 1])は、第 2段第 1列の分離用流路 3b (即ち分離用流 路 [2, 1])に導かれる。一方、第 1段第 1列の分離用流路 [1, 1の第 2流出口 16a (即 ち、第 2流出口 [1, 1])は、第 2段第 2列の分離用流路 3c (即ち、分離用流路 [2, 2] )の流入口 5 (即ち、流入口 5 [2, 2] )に接続されて!ヽる。  [0061] Then, the first outlet 6a (that is, the first outlet [1, 1] of the separation channel 3a (that is, the separation channel [1, 1]) in the first row and the first row shown in FIG. ]) Is led to the separation channel 3b (that is, the separation channel [2, 1]) in the second stage and the first row. On the other hand, the first-stage first-row separation channel [1, 1 second outlet 16a (that is, second-outlet [1, 1]) is the second-stage second row separation channel. Connected to the inlet 5 (ie, inlet 5 [2, 2]) of 3c (ie, the separation channel [2, 2])!
第 2段と第 3段の接続については、分離用流路 [2, 1]に関して第 1流出口 [2, 1] は流入口 [3, 1]に、第 2流出口 [2, 1]は流入口 5 [3, 2]に接続される。また、分離 用流路 [2, 2]に関して第 1流出口 [2, 2]は流入口流入口 [3, 2]に、第 2流出口 [2, 2]は流入口 [3, 3]に接続される。 Regarding the connection between the second and third stages, the first outlet [2, 1] is connected to the inlet [3, 1] and the second outlet [2, 1] with respect to the separation channel [2, 1]. Is connected to inlet 5 [3, 2]. For the separation channel [2, 2], the first outlet [2, 2] is connected to the inlet [3, 2] and the second outlet [2, 2]. 2] is connected to the inlet [3, 3].
そして一般に、第 n段第冽の第 1流出口 [n, i]は、第 (n+ 1)段第洌の分離用流 路 [n+ 1, i]の流入口 [n+ 1, i]に接続されており、第 n段第冽の分離用流路の第 2 流出口 [n, i]は、第 (n+ 1)段第 (i+ 1)列の分離用流路 [n+ 1, i+ 1]の流入口 [n + 1, i+ 1]に接続されている。  In general, the first outlet [n, i] of the nth stage and the second stage is connected to the inlet [n + 1, i] of the separation path [n + 1, i] of the (n + 1) stage. The second outlet [n, i] of the separation channel of the nth stage and the second column is the separation channel [n + 1, i + 1] of the (n + 1) th stage (i + 1) row Connected to the inlet [n + 1, i + 1].
そして、本基本構成部分の最終段 (第 K段)の第 1流出口 [K, 1]からは第 1物質が 最も濃縮された溶液が、第 2流出口 [Κ, K]からは第 2物質が最も濃縮された溶液が 流出する。  From the first outlet [K, 1] of the final stage (Kth stage) of this basic component, the solution most concentrated in the first substance is the second outlet from the second outlet [Κ, K]. The solution with the highest concentration of the substance flows out.
[0062] 本段階的配置の基本構成に於ける分離用流路 3の段数は 3段以上が好ましぐ 4段 以上が更に好ましぐ 5段以上が最も好ましい。段数を多くするほど、単段での分離 能が低い分離対象も良好に分離することができる。勿論、 1つの分離用流路 3におけ る分離能が優れる系に於いては、段数を少なくすることができる。段数の上限は特に 制限はないが、製造の容易さの点から、 1000段以下が好ましぐ 100段以下が更に 好ましい。本発明においては、このように段階的配置型の分離デバイスとしても、膜 分離装置とは異なって各段毎にポンプを要しないため、構造が極めて単純となり、容 易にマイクロ流体デバイス内に組み込むことができる。マイクロ流体デバイスの容積を 同一としたとき、より小さな分離用流路をより多段に形成する方が全体としての分離能 が向上する。  [0062] In the basic configuration of this stepwise arrangement, the number of stages of the separation channel 3 is preferably 3 or more, more preferably 4 or more, and most preferably 5 or more. The larger the number of stages, the better the separation target with a low separation performance in a single stage can be separated. Of course, the number of stages can be reduced in a system in which the separation ability in one separation channel 3 is excellent. The upper limit of the number of stages is not particularly limited, but from the viewpoint of ease of production, 1000 stages or less is preferable, and 100 stages or less is more preferable. In the present invention, unlike the membrane separation apparatus, since the stepwise arrangement type separation device does not require a pump for each stage, the structure becomes extremely simple and can be easily incorporated in the microfluidic device. be able to. When the microfluidic devices have the same volume, the separation performance as a whole is improved by forming smaller separation channels in multiple stages.
物質分離デバイスが、本段階的配置の基本構成のみで構成されている場合には、 上記のように、最終段 (第 K段)の第 1流出口 [K, 1]から流出する第 1物質が最も濃 縮された溶液を第 1取出口 7に接続し、第 2流出口 [Κ, K]から流出する第 2物質が 最も濃縮された溶液を第 2取り出し口 17に接続するが、濃縮率が多少低下しても、収 率を求める場合には、例えば、最終段 (第 K段)の第 1流出口 [K, 2]や第 1流出口 [ K, 3]も第 1取出口 7に接続してもよい。第 2取出口 17についても同様である。  When the substance separation device is configured with only the basic configuration of this staged arrangement, as described above, the first substance flowing out from the first outlet [K, 1] in the final stage (Kth stage) The most concentrated solution is connected to the first outlet 7 and the solution most concentrated in the second substance flowing out from the second outlet [Κ, K] is connected to the second outlet 17. If the yield is calculated even if the rate drops somewhat, for example, the first outlet [K, 2] and the first outlet [K, 3] in the final stage (Kth stage) are also used for the first outlet. 7 may be connected. The same applies to the second outlet 17.
[0063] また、上記段階的配置の態様に於いて、共通溶剤中の第 1物質と第 2物質を分離 するような 3成分の分離の場合には上記の構成が好適であるが、第 2物質が溶媒で あるような 2成分の分離の場合には、第 1物質の濃縮 (又は除去)だけを考えればよい から、第 2取出口 17は設けずに、第 2取出口 17に接続される流路は 27に合流させて よい。逆に、第 1取出口 7は設けずに、第 1取出口 7に接続される流路は 27に合流さ せる配置でもよい。あるいは、第 3段以降は、各段の分離用流路数を第 1物質濃縮側 だけの半分とし、前記一般的な表現によれば、第 2段の第 2流出口「n、 n/2j (但し、 nZ2が整数にならない場合には最も近い整数とする)は、下流側次段の流入口 [n + 1, (n+ l) Z2]に接続することが、第 1物質濃縮流体の収率が増加するため好ま しい。勿論、第 2物質を濃縮する場合には、第 1流出口に関してこのようにすればよい [0063] In the above-described stepwise arrangement, the above-described configuration is preferable in the case of three-component separation that separates the first substance and the second substance in the common solvent. In the case of a two-component separation in which the substance is a solvent, only the concentration (or removal) of the first substance needs to be considered.Therefore, the second outlet 17 is not provided and the second outlet 17 is connected. The flow path to be joined to 27 Good. Conversely, the first outlet 7 may not be provided, and the flow path connected to the first outlet 7 may be arranged to join 27. Alternatively, after the third stage, the number of separation channels in each stage is half that of the first substance concentration side, and according to the general expression, the second outlet of the second stage “n, n / 2j” (However, if nZ2 is not an integer, it is the closest integer.) Connecting the downstream downstream inlet [n + 1, (n + l) Z2] Of course, this should be done for the first outlet when concentrating the second substance.
[0064] 物質分離デバイスが、本段階的配置の基本構成部分の後に、次に述べる下流範 囲段が形成されている場合には、各取出口は、下記のように接続される。 [0064] When the substance separation device is formed with the downstream range stage described below after the basic components of the staged arrangement, the outlets are connected as follows.
[0065] 〔濃縮溶液量の確保〕  [Securement of concentrated solution amount]
上記の段階的配置の基本構成を採用した場合、各流出口からの流出量を均等と 仮定すると、第 1物質が最大に濃縮された流体の取り出し量、即ち、第 K段の、それ までに第 1流出口を最も多い回数通過した流体が流出する流出口、また、一般化さ れた表示では 第 1物質が最大に濃縮される第 1流出口 [K, 1]、から採取される溶 液の量は、段数が増えるほど収率が低下する。同様に、第 2物質が最大に濃縮され る第 2流出口 [Κ, K]、力 採取される溶液の量は、段数が増えるほど収率が低下す る。この不都合を回避する手段として下記の 2つの方式が好ま 、ものとして用いら れる。下記の 2つの手段は併用して良い。  When the above-mentioned basic arrangement of the stepwise arrangement is adopted, assuming that the outflow amount from each outlet is equal, the amount of the fluid with the maximum concentration of the first substance, that is, the extraction amount of the K-stage up to that point, is assumed. The outlet from which the fluid that has passed through the first outlet the most times flows out, or the first outlet [K, 1] where the first substance is concentrated to the maximum in the generalized display. The amount of liquid decreases as the number of stages increases. Similarly, at the second outlet [流, K] where the second substance is concentrated to the maximum, the yield decreases as the number of plates increases. As a means for avoiding this inconvenience, the following two methods are preferred and used. The following two methods may be used in combination.
[0066] (第 1方式:下流範囲段の分離用流路数を各段で略一定とした方式)  [0066] (First method: Method in which the number of separation channels in the downstream range stage is substantially constant in each stage)
図 5、図 6に示したように、本方式では、第 1段から境界段である第 Κ段 (即ち、 η= Κである段)までの範囲の上流範囲段においては、上記の基本構成のように、各段に 含まれる分離用流路の本数は、段数と同じ本数の分離用流路が形成されている。そ して、境界段の第 Κ段より下流側の任意の段 (以下「下流範囲段」と称する)には、各 段ほぼ一定本数の分離用流路が形成されている。例えば、第 Κ段以降には交互に Κ 本および K—1本の分離用流路が形成されている。このような構成にすることによって 、スペースファクターを高く維持しながら、濃縮流体の収率を増すことが出来る。  As shown in Fig. 5 and Fig. 6, in this method, the basic configuration described above is used in the upstream range stage from the first stage to the Κ stage that is the boundary stage (that is, the stage where η = Κ). As described above, the number of separation channels included in each stage is the same as the number of separation channels. In addition, in an arbitrary stage (hereinafter referred to as “downstream range stage”) downstream of the first stage of the boundary stage, a substantially constant number of separation channels are formed in each stage. For example, in the first and subsequent stages, two separation channels and one K-1 separation channel are formed alternately. By adopting such a configuration, it is possible to increase the yield of the concentrated fluid while maintaining a high space factor.
[0067] そして、最下流段 (第 Ζ段)における複数の分離用流路の流出口のうち、各段にお ける分離用流路の第 1流出口の通過回数が最多となる前記流体の流出口が、第 1物 質濃縮流体を取り出す第 1取出口 7に接続され、最下流段における複数の分離用流 路の流出口のうち、各段における分離用流路の第 2流出口の通過回数が最多となる 流出口が、第 2物質濃縮流体を取り出す第 2取出口 17に接続されていることにより、 各々の流出ロカ 濃縮された第 1物質、第 2物質がそれぞれ取り出される。 [0067] Of the plurality of separation channel outlets in the most downstream stage (first stage), the number of passages of the first outlet of the separation channel in each stage is the highest. Outlet is the first thing A flow that is connected to the first outlet 7 for taking out the concentrated fluid and has the highest number of passages through the second outlet of the separation channel in each stage among the outlets of the plurality of separation channels in the most downstream stage. Since the outlet is connected to the second outlet 17 for taking out the second substance concentrated fluid, the first substance and the second substance concentrated in each outflow loca are taken out.
[0068] なお本方式では、第 K段以降の第 n段における分離用流路の本数が交互に K本お よび K—1本とされている。この場合、分離用流路 3の本数が K本となる段における各 分離用流路 3の流出口のうち、それまでの第 1流出口 6の通過回数が最多となる流体 の流出口力 取出流路 42を介して第 1取出口 7に接続され、それまでの第 2流出口 7 の通過回数が最多となる流体の流出口力 取出流路 44を介して第 2取出口 17に接 続されている。その他の流出口は取り出し流路 43により第 3取出口 27に接続されて いる。 [0068] In this method, the number of separation channels in the nth stage after the Kth stage is alternately set to K and K-1. In this case, outflow force of the fluid that maximizes the number of times of passage through the first outlet 6 among the outlets of each separation channel 3 in the stage where the number of separation channels 3 is K. Connected to the first outlet 7 via the flow path 42 and connected to the second outlet 17 via the outlet flow path 44. Has been. The other outlet is connected to the third outlet 27 by a take-out channel 43.
このようにすることによって、最小の流路数で所定値以上に分離 (濃縮)された溶液 を、多量に採取することができる。し力も、第 K段以降、一段おきに溶液が取り出され る分だけ下流側次段の分離用流路に流入する流体量は減少して行くから、十分多 数の下流範囲段を設けると、最終的には導入された溶液のほとんどが第 1取出口 7 又は第 2取出口 17から分離されて取り出される。即ち、分離の収率が向上する。  By doing so, a large amount of the solution separated (concentrated) with a minimum number of flow paths to a predetermined value or more can be collected. Since the amount of fluid flowing into the separation channel on the downstream downstream side is reduced by the amount of solution taken out every other stage after the Kth stage, if a sufficiently large number of downstream range stages are provided, Finally, most of the introduced solution is separated from the first outlet 7 or the second outlet 17 and taken out. That is, the separation yield is improved.
[0069] 境界段である第 K段より下流範囲ついて一般ィ匕した表現では次のようになる。即ち 、第 n段において分離用流路が i本配され、 n又は iの少なくともいずれかが 2以上であ り、第 n段において分離用流路の第 1流出口の通過回数が最多となる前記流体の流 出口が、前記流体を取り出す第 1取出口 7に接続され、第 2流出口の通過回数が最 多となる前記流体の流出口が、前記流体を取り出す第 2取出口 17に接続されてなり 、第 n段以降の段における分離用流路が i本配された段の分離用流路の流出口のう ち、当該段より上流段において、前記流体が第 1流出口を通過する回数を 1、前記流 体が第 2流出口を通過する回数を mとした際に、 1-mが最も大きい流出口が、前記 第 1取出口 7に接続され、 m— 1が最も大きい流出口力 第 2取出口 17に接続されて いる構成である。具体的には、段数と列数とが同じ場合には、 n本の分離用流路を含 む第 n段の第 1流出口 [n, 1]が第 1取出口 7に接続され、第 2流出口 [n, n]が第 2取 出口 17に接続されている。 [0070] 上記第 1の方式のように接続することにより、下流範囲段において、段が進む程に 分離用流路を増す必要がなくなるので、下流範囲段における分離用流路の本数の 増加が抑制される。すなわち、前記境界段に至るまでは段数と共に該段の分離用流 路数が増加するが、境界段以降は、段数 nが増しても分離用流路数が増力!]しない。 この場合、第 n段の分離用流路数を、境界段を第 K段とすると、段数 nが K以上の範 囲(下流範囲段)では概ね Kで一定とする。なお、一段おきに流出口を取出口に接続 すれば、 nが K以上の範囲(下流範囲段)における流路数は、 nが増加するごとに交 互に Kおよび (K 1 )となる。 [0069] The general expression of the downstream range from the K-th stage as the boundary stage is as follows. In other words, i separation channels are arranged in the nth stage, and at least one of n or i is 2 or more, and the number of times of passage through the first outlet of the separation channel is the largest in the nth stage. The fluid outlet is connected to the first outlet 7 for taking out the fluid, and the fluid outlet having the maximum number of passages through the second outlet is connected to the second outlet 17 for taking out the fluid. Thus, the fluid passes through the first outlet in the upstream of the separation channel outlet of the stage where the number of separation channels in the nth and subsequent stages is arranged. 1 is the number of times that the fluid passes through the second outlet, and m is the largest outlet, where 1-m is the largest outlet connected to the first outlet 7 Outlet force It is configured to be connected to the second outlet 17. Specifically, when the number of stages and the number of columns are the same, the n-th first outlet [n, 1] including n separation channels is connected to the first outlet 7, and Two outlets [n, n] are connected to the second outlet 17. [0070] By connecting as in the first method, it is not necessary to increase the number of separation channels as the stage advances in the downstream range stage, so that the number of separation channels in the downstream range stage increases. It is suppressed. That is, the number of separation channels in the stage increases with the number of stages until the boundary stage is reached, but after the boundary stage, the number of separation channels does not increase even if the number of stages n increases! In this case, if the number of separation channels in the n-th stage is the K-th boundary stage, it is generally constant at K in the range where the number of stages n is K or more (downstream range stage). If the outlets are connected to the outlets every other stage, the number of channels in the range where n is K or more (downstream range stage) becomes K and (K 1) each time n increases.
上記段階的配置の基本構成の場合と同様に、本態様においても、最下流段にお ける複数の分離用流路の流出口のうち、各段における分離用流路 3の第 1流出口 6 の通過回数が比較的多くなる複数の流出口をまとめて第 1取出口 7に接続するととも に、各段における分離用流路 3の第 2流出口 7の通過回数が比較的多くなる複数の 流出口をまとめて第 2取出口 17に接続してもよい。この場合、隣接するいくつかの流 出口をまとめて第 1取出口 7または第 2取出口 17に接続することになり、所定値以上 に分離 (濃縮)された溶液を多量に採取することができる。  As in the case of the basic configuration of the stepwise arrangement described above, also in this embodiment, the first outlet 6 of the separation channel 3 in each stage out of the plurality of separation channel outlets in the most downstream stage. A plurality of outlets with a relatively large number of passages are connected together to the first outlet 7, and a plurality of passages with a relatively large number of passages through the second outlet 7 of the separation channel 3 in each stage are provided. The outlets may be connected together to the second outlet 17. In this case, several adjacent outlets are collectively connected to the first outlet 7 or the second outlet 17, and a large amount of solution separated (concentrated) above a predetermined value can be collected. .
[0071] また、第 2物質が溶媒であるような 2成分の分離の場合には、第 1物質の濃縮 (又は 除去)だけを考えればよいから、第 2取出口 17は設けずに、第 2取出口 17に接続さ れる流路は 27に合流させてょ 、。逆に、第 1取出口 7は設けずに、第 1取出口 7に接 続される流路は 27に合流させる配置でもよい。あるいは、第 K段以降の各段の分離 用流路数を第 1物質濃縮側だけの半分とし、前記一般的な表現によれば、第 n段の 第 2流出口「K、 K/2J又は「 (Κ— 1)、 (Κ- 1) /2\ (但し、 ΚΖ2又は (Κ— 1) Ζ2が 整数にならない場合には最も近い整数とする)は、下流側次段の流入口 [ (Κ 1) , ( Κ 1) Ζ2]又は [Κ, ΚΖ2]に接続することが、第 1物質濃縮流体の収率が増加す るため好ましい。勿論、第 2物質を濃縮する場合には、第 1流出口に関してこのように すればよい。  [0071] In the case of separation of two components in which the second substance is a solvent, only the concentration (or removal) of the first substance needs to be considered. 2Make the flow path connected to the outlet 17 merge with 27. Conversely, the first outlet 7 may not be provided, and the flow path connected to the first outlet 7 may be arranged to join 27. Alternatively, the number of separation channels in each stage after the Kth stage is halved only on the first substance concentration side, and according to the general expression, the second outlet “K, K / 2J or "(Κ- 1), (Κ- 1) / 2 \ (where ΚΖ2 or (Κ- 1) Ζ2 is the nearest integer if Ζ2 is not an integer) Κ 1), (Κ 1) It is preferable to connect to Κ2] or [Κ, 好 ま し い 2] because the yield of the first substance concentrated fluid increases.Of course, when the second substance is concentrated, This should be done for one outlet.
[0072] (第 2方式:各段の分離用流路の断面積の総和を略同一とする方式)  [0072] (Second method: Method in which the sum of the cross-sectional areas of the separation flow paths in each stage is substantially the same)
第 2の方式は、任意の特定段の分離用流路 (単数又は複数)の断面積の総和が、 それより下流側の任意の段における分離用流路 (複数)の断面積の総和と略同一と なるようにする方式である。これは任意の二つの段について行えるが、全段について 分離用流路の断面積の総和を略同一とすることが好ましい。これにより、上流段にお ける分離用流路の本数が少なくても、濃縮溶液の取出量を増カロさせることが可能に なる。具体お的な態様は、下記 (2-1)、(2-2)、(2-3)を例示できる。これらの各方式は 併用しても良いし、上記第 1方式と併用しても良い。 In the second method, the sum of the cross-sectional areas of the separation channel (s) at any particular stage is approximately the sum of the cross-sectional areas of the separation channel (s) at any stage downstream from it. Same It is a method to become. This can be done for any two stages, but it is preferable that the sum of the cross-sectional areas of the separation flow paths be substantially the same for all stages. As a result, even if the number of separation channels in the upstream stage is small, the amount of concentrated solution taken out can be increased. Specific examples can include the following (2-1), (2-2), and (2-3). Each of these methods may be used in combination, or may be used in combination with the first method.
[0073] (2-1)分離用流路の横断面積を調節する方式 [0073] (2-1) Method for adjusting the cross-sectional area of the separation channel
本方式は、図 12、図 13に示したように、各段に於ける分離用流路の数は変更せず に、各段に於ける分離用流路の横断面積を調節する。例えば、第 1段の分離用流路 の横断面積は、最終段 (第 Z段とする)の各分離用流路の横断面積の Z倍とする。こ れにより、第 1段の分離用流路の流入口 5に供給する原液の量を Z倍とすることにより 最終段の第 1流出口 [Z, 1]および第 2流出口 [Z, Z]から、全ての分離用流路の断 面積が同じ場合の Z倍の流量で濃縮溶液を採取することができる。このとき、分離用 流路の流路断面積を拡大する際に、第 1保持部とその対向面間の距離を大きくする ことは、拡散で分離すべき距離の増加を招き、分離速度が低下する方向にあるため 好ましくない。そこで、第 1保持部とその対向面間の距離を変えずに、分離用流路の 幅のみを広げることが好ましい。幅を拡大する場合には、流路内に支柱や壁を設ける 方法により、第 1保持部とその対向面間の距離の精度の低下を防止することが出来る 本方式は、立体型又は半立体型の態様に好適である。この場合、分離用流路にお ける第 1保持部とその対向面間の距離 (または、第 2保持部 2が設けられる場合には 第 1保持部 1と第 2保持部 2との間の距離)は内部層 23の厚さによって固定されるが、 流路幅の拡大は容易に実施可能だ力 である。  In this method, as shown in FIGS. 12 and 13, the cross-sectional area of the separation channel in each stage is adjusted without changing the number of separation channels in each stage. For example, the cross-sectional area of the first-stage separation channel is Z times the cross-sectional area of each separation-channel in the final stage (the Z-th stage). As a result, the amount of the undiluted solution supplied to the inlet 5 of the first-stage separation channel is multiplied by Z, so that the first outlet [Z, 1] and the second outlet [Z, Z From the above, it is possible to collect the concentrated solution at a flow rate Z times that when the cross-sectional areas of all the separation channels are the same. At this time, when enlarging the cross-sectional area of the separation channel, increasing the distance between the first holding portion and the facing surface increases the distance to be separated by diffusion, and the separation speed decreases. Because it is in the direction of Therefore, it is preferable to increase only the width of the separation channel without changing the distance between the first holding portion and the facing surface. When expanding the width, it is possible to prevent a decrease in the accuracy of the distance between the first holding part and its facing surface by providing a column or wall in the flow path. Suitable for mold embodiment. In this case, the distance between the first holding part and the opposing surface in the separation channel (or between the first holding part 1 and the second holding part 2 when the second holding part 2 is provided). The distance) is fixed by the thickness of the inner layer 23, but the expansion of the channel width is a force that can be easily implemented.
[0074] (2-2)各段の分離用流路の数を調節する方式 [0074] (2-2) Method of adjusting the number of separation channels in each stage
各段の分離用流路の数を調節して、各段に流れる流体の総和を略同一にする方 式である。第 n段 (n= l〜Z)に含まれる分離用流路が n本である場合には、第 n段に おいて、各分離用流路を、最終段である第 Z段の分離用流路の数の略 ZZn倍の、 完全に並列に接続された同じ寸法の分離用流路の数で構成する方式である。換言 すれば、分離の基本構成である分離用流路の代わりに、複数の分離用流路が完全 に並列に接続された分離ユニットで置き換える方式である。ここで言う完全に並列に 接続するとは、流入口 5、第 1流出口 6、および第 2流出口 7を全て並列に接続するこ とを言う。但し、流路の本数は自然数なので、 ZZnの値が整数にならない場合には、 それに近い整数にすればよい。例えば、第 1段の分離用流路数を Zとし、第 2段を、 分離用流路の数が各 ZZ2である 2つの分離ユニットで構成し、第 3段を、分離用流 路の数が各 ZZ3である 3つの分離ユニットで構成する。これらの分数が整数でな ヽ 場合には、最も近い整数とすればよい。これにより、第 1段の分離用流路の流入口 5 に供給する原液の量を N倍とし、最終段の第 1流出口 [Z, 1]および第 2流出口 [Z, Z ]から、全ての分離用流路の断面積が同じ場合の Z倍の流量で濃縮溶液を採取する ことができる。 This is a method in which the number of separation channels in each stage is adjusted so that the sum of fluids flowing in each stage is substantially the same. When there are n separation channels included in the nth stage (n = l to Z), each separation channel is used for separation in the final Zth stage in the nth stage. This is a system consisting of the same number of separation channels connected in parallel, approximately ZZn times the number of channels. In other words, instead of the separation channel, which is the basic structure of separation, a plurality of separation channels are completely formed. This is a method of replacing with a separation unit connected in parallel. Here, the term “completely connected in parallel” means that the inlet 5, the first outlet 6, and the second outlet 7 are all connected in parallel. However, since the number of channels is a natural number, if the value of ZZn is not an integer, it should be an integer close to it. For example, the number of separation channels in the first stage is Z, the second stage is composed of two separation units with each number of separation channels ZZ2, and the third stage is the number of separation channels. Consists of three separation units, each of which is ZZ3. If these fractions are not integers, the nearest integer may be used. As a result, the amount of the undiluted solution supplied to the inlet 5 of the first-stage separation channel is increased N times, and the first outlet [Z, 1] and the second outlet [Z, Z] of the final stage are Concentrated solution can be collected at a flow rate Z times that when the cross-sectional areas of all separation channels are the same.
本方式は、上記 (2-2)と同様に、分離用流路が、立体型、半立体型、および平面型 の全ての場合に好適である。  Similar to the above (2-2), this method is suitable for all cases where the separation channel is a three-dimensional type, a semi-three-dimensional type, and a planar type.
(2-3)分離用流路の長さを調節する方式 (2-3) Adjusting the length of the separation channel
本方式は、任意の特定段に於ける分離用流路の流路長を、前記下流側次段段に おける分離用流路の流路長より長くする構成である。これにより、前記特定段の分離 用流路を流れる流体の流速を増しても、滞留時間は保たれ、濃縮溶液の取出量を増 カロさせることが可能になる。具体的には、第 n段に含まれる分離用流路数 nである場 合には、第 n段の分離用流路の流路長を、最終段である第 Z段の分離用流路の流路 長の略 nZZ倍にする。そして、第 1段の分離用流路の流入口 5に供給する原液の量 を Z倍とすることにより、最終段の第 1流出口 [Z, 1]および第 2流出口 [Z, Z]から、全 ての分離用流路の長さが同じ場合の Z倍の流量で濃縮溶液を採取することができる 本方式は、分離用流路が、立体型、半立体型および平面型の全ての場合に好適 である。  In this system, the length of the separation channel in any specific stage is set longer than the length of the separation channel in the downstream next stage. As a result, even when the flow rate of the fluid flowing through the separation channel in the specific stage is increased, the residence time is maintained and the amount of concentrated solution taken out can be increased. Specifically, when the number of separation channels included in the nth stage is n, the length of the nth stage separation channel is set to the separation stage's Zth separation channel. The flow path length is approximately nZZ times. The amount of the stock solution supplied to the inlet 5 of the first-stage separation channel is multiplied by Z, so that the first outlet [Z, 1] and the second outlet [Z, Z] in the final stage From this method, the concentrated solution can be collected at a flow rate Z times that when the length of all the separation channels is the same. This method uses all three-dimensional, semi-solid, and flat-type separation channels. It is suitable for this case.
以上述べた、濃縮溶液量の確保のための第 2方式においても、前記段階的配置の 基本構成の場合と同様に、 2成分の分離の場合には、第 1物質の濃縮 (又は除去)だ けを考えればよいから、第 2取出口 17は設けずに、第 2取出口 17に接続される流路 は第 3取出口 27に合流させてよい。あるいは、各段の分離用流路数を第 1物質濃縮 側だけの半分とし、前記一般的な表現によれば、第 2段の第 2流出口「n、 n/2j (伹 し、 nZ2が整数にならない場合には最も近い整数とする)は、下流側次段の流入口 [ n+1, (n+ l)Z2]に接続することが、第 1物質濃縮流体の収率が増加するため好 ましい。勿論、第 2物質を濃縮する場合には、第 1流出口に関してこのようにすればよ い。 In the second method for securing the concentrated solution amount as described above, as in the case of the basic configuration of the stepwise arrangement, the concentration (or removal) of the first substance is performed in the case of separation of two components. Therefore, the flow path connected to the second outlet 17 may be joined to the third outlet 27 without providing the second outlet 17. Alternatively, the number of separation channels in each stage is concentrated in the first substance. The second outlet of the second stage “n, n / 2j (where nZ2 is not an integer is the closest integer) It is preferable to connect to the inlet [n + 1, (n + l) Z2] in the side stage because the yield of the first substance concentrated fluid increases.Of course, when concentrating the second substance, This should be done for the first outlet.
[0076] 〔導入口、取出口、連絡流路〕  [Inlet, outlet, communication channel]
本発明の物質分離デバイスに於 ヽて、分離用流路 3へ分離原流体を導入する導入 口 15、及び上述した第 1取出口 7、第 2取出口 17、並びに第 3取出口 27の形成位置 や形状は任意であり、分離デバイス外への開口部であってよいし、接続配管が接続 されて!/ヽてもよ!/ヽし、該分離デバイスと一体化されたマイクロ流体デバイスの何らかの 機構、例えば反応用流路、に接続されていても良い。また、物質分離デバイスの任意 の面であってよぐ例えば基材側表面、カバー層側表面、物質分離デバイスの端面 や側面であってよい。本物質分離デバイスを多数並列に設置して処理量の増加を計 る場合には、物質分離デバイスの端面や側面であることが好ましい。  In the substance separation device of the present invention, the inlet 15 for introducing the separation raw fluid into the separation channel 3 and the formation of the first outlet 7, the second outlet 17, and the third outlet 27 described above are formed. The position and shape are arbitrary, and may be an opening to the outside of the separation device, or the connection pipe is connected! It may be connected to some mechanism such as a reaction channel. Further, it may be any surface of the material separation device, for example, a substrate side surface, a cover layer side surface, or an end surface or a side surface of the material separation device. When a large number of the substance separation devices are installed in parallel to increase the throughput, it is preferably the end face or side surface of the substance separation device.
また、各連絡流路は断面積が同じである必要はなぐ好適に調節できる。例えば、 濃縮溶液量の確保の為の第 1方式におおいて、ある分離用流路から流出する流体 の、下流段の分離用流路へ流れる量と、連絡流路 42或いは連絡流路 44へ流れる量 力 概ね等しくなるようにするため、連絡流路 38、 48、 42、及び 44の断面積を好適 に調節することが好ましい。  Also, each communication channel can be adjusted suitably without having to have the same cross-sectional area. For example, in the first method for securing the amount of concentrated solution, the amount of fluid flowing out from a certain separation channel flows to the downstream separation channel and the communication channel 42 or the communication channel 44. It is preferable to suitably adjust the cross-sectional areas of the communication flow paths 38, 48, 42, and 44 so that the flowing force is substantially equal.
[0077] 〔その他の機構〕 [0077] [Other mechanisms]
上述した本実施形態の構成に対して、以下の構成を付加してもよ 、。  The following configuration may be added to the configuration of the present embodiment described above.
各流路の流量比を調節するために、各分離用流路ゃ各連絡流路の断面積ゃ流路 長を変えることも可能であるし、流路の任意の部分に流量調節バルブを設けることも 可能である。例えば、下流範囲段 (n>Kなる第 n段)の第 1流出口 [K, 1]および第 2 流出口 [Κ, K]から連絡流路 42や連絡流路 44に接続される途上に、各流出量を調 節するバルブを設けることも好ま 、。  In order to adjust the flow rate ratio of each flow path, it is possible to change the cross-sectional area of each separation flow path, the flow length of each connection flow path, and provide a flow control valve in any part of the flow path It is also possible. For example, on the way from the first outlet [K, 1] and the second outlet [Κ, K] of the downstream range stage (n> K where n> K) to the connecting channel 42 and the connecting channel 44 Also, it is preferable to install a valve to adjust each outflow amount.
[0078] また、最終段の分離用流路における複数の流出口のうち、取出口に接続されてい ない流出口を、上流段の分離用流路における流入口 5にポンプを介して接続しても よい。例えば、最終段の分離用流路における複数の流出口のうち、第 1流出口 [Z, 1 ]および第 2流出口 [Z, Z]以外の流出口を第 3取出口 27に接続し、この第 3取出口 2 7を、本物質分離デバイス内で、又は、外部は移管を通じて、ポンプを介して第一段 の分離用流路 3aの流入口 5aに接続する。なお、第一段以外の分離用流路に接続 することも可能であり、濃度に応じて、複数の分離用流路に接続することも可能である 。これにより、第 1取出口 7と第 2取出口 17に接続されていない流出ロカも流出した 流体を、上流段の分離用流路に還流させることが可能になり、試料を効率的に利用 することができる。段階的配置に於いて、前記のように第 2取出口 17は設けず、第 2 取出口 17に接続される流路を第 3取出口 27に合流させた場合には、該合流させた 流路を還流させるように接続して良い。また、前記のように第 3段以降の各段の分離 用流路数を第 1物質濃縮側だけの半分とした場合は、第 1取出口 7に接続されない 他の流出口を還流させるように接続して良い。このような、分離用流路の段階的配置 を用いて還流させる機構は、単独の分離用流路の第 2流出口から還流させる機構に 比べて、高度に分離'濃縮された第 1物質を得ることが出来るため好ましい。上記の 還流機構に用いるポンプは、マイクロ流体デバイスに組み込まれたポンプを好ましく 使用することができる。 [0078] In addition, out of the plurality of outlets in the separation channel of the final stage, an outlet not connected to the outlet is connected to the inlet 5 in the separation channel of the upstream stage via a pump. Also Good. For example, out of the plurality of outlets in the separation channel in the final stage, the outlets other than the first outlet [Z, 1] and the second outlet [Z, Z] are connected to the third outlet 27, The third outlet 27 is connected to the inlet 5a of the first-stage separation channel 3a through a pump in the substance separation device or outside through a transfer pipe. It is also possible to connect to separation channels other than the first stage, and it is also possible to connect to a plurality of separation channels depending on the concentration. As a result, it is possible to return the fluid that has flowed out from the outflow loci not connected to the first outlet 7 and the second outlet 17 to the upstream separation channel, and to efficiently use the sample. be able to. In the stepwise arrangement, the second outlet 17 is not provided as described above, and when the flow path connected to the second outlet 17 is merged with the third outlet 27, the merged flow is You may connect so that a path may be recirculated. In addition, when the number of separation channels in the third and subsequent stages is halved only on the first substance concentration side as described above, the other outlets not connected to the first outlet 7 are refluxed. You can connect. The mechanism for refluxing using such a stepwise arrangement of the separation flow path allows the first substance highly separated and concentrated to be recirculated from the second flow outlet of the single separation flow path. It is preferable because it can be obtained. As a pump used in the above reflux mechanism, a pump incorporated in a microfluidic device can be preferably used.
前記分離用流路の第 1保持部、第 2保持部以外の壁面に第 3保持部を形成し、該 第 3保持部の側に第 3流出口が設けることも可能であり、同時に 3種の溶質と溶媒を 分離することが出来る。同様に、第 4保持部と第 4流出口を設けて、流体に含まれる 4 種の溶質を互いに分離することも可能である。この場合、例えば断面が矩形の分離 用流路の各側面にそれぞれ 4つの保持部と 4つの流出口を好ましく形成できる。しか し、第 1保持部と第 2保持部の 2種の保持部を有する物質分離デバイスが、最も分離 能を高く出来るため好ま 、。  It is also possible to form a third holding part on the wall surface other than the first holding part and the second holding part of the separation channel, and to provide a third outlet on the side of the third holding part. The solute and solvent can be separated. Similarly, a fourth holding part and a fourth outlet can be provided to separate the four types of solutes contained in the fluid from each other. In this case, for example, four holding portions and four outflow ports can be preferably formed on each side surface of the separation channel having a rectangular cross section. However, a substance separation device having two types of holding parts, a first holding part and a second holding part, is preferable because it can achieve the highest separation performance.
[0079] [物質分離方法]  [0079] [Substance separation method]
以下に本発明の物質分離方法を説明するが、下記に記載されていない細部につ いては、本発明の物質分離デバイスの項で説明した内容と同じである。  The material separation method of the present invention will be described below, but details not described below are the same as those described in the section of the material separation device of the present invention.
[0080] 〔基本構成〕  [0080] [Basic configuration]
本発明の物質分離方法は、試料である流体を流す分離用流路の内壁の一方の側 に、第 1物質を保持できる第 1保持部を形成して、該第 1保持部に於いて第 1物質の 取り込みと放出を行わせ、分離用流路の下流端に於ける第 1保持側と他の側にそれ ぞれ設けられた第 1流出ロカも第 1物質が濃縮された流体を、第 2流出ロカも第 1物 質が希釈された溶液や第 2物質が濃縮された溶液を得る。また、必要に応じて、分離 用流路の第 2流出口側の壁面に第 2物質に対してより高い保持性を示す第 2保持部 を設けた分離デバイスを使用することも出来る。 The substance separation method of the present invention is a method for separating one side of an inner wall of a separation channel through which a sample fluid flows. Forming a first holding part capable of holding the first substance, and taking in and releasing the first substance in the first holding part, and the first holding side at the downstream end of the separation channel. The first spillage rocker provided on the other side and the other side also contain the fluid in which the first substance is concentrated, and the second spillage rocker also contains the solution in which the first substance is diluted and the solution in which the second substance is concentrated. obtain. In addition, if necessary, a separation device in which a second holding portion that exhibits higher holding ability with respect to the second substance can be used on the wall surface on the second outlet side of the separation channel.
[0081] すなわち、流体中の第 1物質および第 2物質を相互に分離する方法であって、 (I) 前記第 1物質を保持できる第 1保持部を壁面の一部に備えた分離用流路に、前記流 体を流入させる工程 (以下、「導入工程」と称する場合がある)と、(Π)前記第 1保持部 に前記第 1物質を取り込ませる工程 (以下、「取り込み工程」と称する場合がある)と、 (III)前記第 1保持部から前記第 1物質を放出させ、前記第 1物質の濃縮溶液を前記 第 1保持部の下流側端部から取り出し、前記第 1物質の希釈溶液および Zまたは前 記第 2物質の濃縮溶液を前記第 1保持部の下流側端部の他端部から取り出す工程( 以下、「放出工程」と称する場合がある)とを有する方法により物質を分離する方法で ある。 [0081] That is, a method of separating a first substance and a second substance in a fluid from each other, wherein (I) a separation flow having a first holding part capable of holding the first substance on a part of a wall surface A step of flowing the fluid into the channel (hereinafter sometimes referred to as an “introduction step”), and (i) a step of incorporating the first substance into the first holding part (hereinafter referred to as an “intake step”). (III) The first substance is released from the first holding part, the concentrated solution of the first substance is taken out from the downstream end of the first holding part, and the first substance Removing the diluted solution and Z or the concentrated solution of the second substance from the other end of the downstream end of the first holding part (hereinafter also referred to as “release process”). It is a method of separating.
本発明の物質分離方法に於いては、少なくとも前記 (III)の放出工程においては、 分離用流路内を流れる流速を、レイノルズ数が 2300未満として層流で流す。これに より、第 1保持部力も放出された第 1物質は、流線に沿って流れ、第 1保持部側の第 1 流出ロカもより多く流出させることが出来る。本発明の分離デバイスを用いると、分離 用流路の断面積を所定の値とすることにより、流体を層流で流すことが出来る。  In the substance separation method of the present invention, at least in the release step (III), the flow rate flowing in the separation channel is made laminar with a Reynolds number of less than 2300. As a result, the first substance from which the first holding portion force has also been released flows along the streamline, and the first outflow rocker on the first holding portion side can flow out more. When the separation device of the present invention is used, the fluid can flow in a laminar flow by setting the cross-sectional area of the separation channel to a predetermined value.
[0082] 導入する流体が、 2種の流体の混合流体、溶質と溶媒、分散質と分散媒であるよう な 2成分系の場合には、前記第 1保持部側の第 1流出口から第 1物質が濃縮された 流体を取り出し、前記第 2流出口から第 1物質が希釈され、相対的に第 2物質が濃縮 されたた流体を取り出す。第 2保持部が設けられている場合には、さらに分離の効率 が増す。 [0082] When the fluid to be introduced is a two-component system such as a mixed fluid of two types of fluid, a solute and a solvent, and a dispersoid and a dispersion medium, the fluid is introduced from the first outlet on the first holding part side. Take out the fluid in which one substance is concentrated, and take out the fluid in which the first substance is diluted and the second substance is relatively concentrated from the second outlet. When the second holding portion is provided, the separation efficiency is further increased.
[0083] 導入する流体が、例えば溶質である第 1物質と第 2物質、及び共通の溶媒から成る ような 3成分系の場合には、前記第 1流出口から第 1物質が濃縮された流体を取り出 し、前記第 2流出ロカ は第 1物質が希釈された流体を取り出す。この時、第 2物質 については、前期第 1保持部の第 2物質に対する保持性や、第 1保持部以外の内壁 面部分の第 2物質に対する保持性の影響を受ける。例えば、第 1保持部が第 2物質 に対して、第 1物質に対するよりは弱い保持性を示す場合には、第 1流出口からは第 1物質より程度は低いが濃縮された第 2物質が流出し、第 2流出口からは第 1物質より 程度は低いが希釈された第 2物質が流出する。第 1保持部が第 2物質に対して保持 性を示さない場合には、第 1流出口及び第 2流出ロカ は第 2物質が濃縮も希釈もさ れない流体が流出する。前記分離用流路に、第 2物質に対して保持性を示す第 2保 持部が形成されている場合には、第 1流出口からは第 2物質が希釈された流体が流 出し、第 2流出口からは第 2物質が濃縮された流体が流出する。即ちこの場合には、 第 1物質、第 2物質、及び溶媒の 3成分の分離がなされる。 [0083] In the case where the fluid to be introduced is a three-component system composed of, for example, a first substance and a second substance, which are solutes, and a common solvent, the fluid in which the first substance is concentrated from the first outlet The second spiller removes the fluid in which the first substance is diluted. At this time, the second substance Is affected by the retention of the first holding part for the second substance in the previous period and the retention of the inner wall surface other than the first holding part for the second substance. For example, if the first holding part shows a weaker holding property against the second substance than the first substance, the concentrated second substance is less than the first substance from the first outlet. Out of the second outlet, the second substance diluted to a lesser extent than the first substance flows out. In the case where the first holding part does not hold the second substance, the first outlet and the second outflower will flow out the fluid in which the second substance is not concentrated or diluted. When the separation channel is provided with a second holding part that retains the second substance, a fluid in which the second substance is diluted flows out from the first outlet, The fluid enriched in the second substance flows out from the two outlets. That is, in this case, the three components of the first substance, the second substance, and the solvent are separated.
[0084] 流体に含まれる 3種以上の溶質を互いに分離する場合には、まず、その内の 2種を 分離出来る分離デバイスを用いて分離し、該分離デバイスの第 1取出口 7、第 2取出 口 17の一方又は両方に、残りの物質を分離することが出来る分離デバイスを接続す ることによって、分離することが出来る。或いは、前記分離用流路の第 1保持部、第 2 保持部以外の壁面に第 3保持部を有し、該第 3保持部の側に第 3流出口が設けられ た分離デバイスを用いて分離することも出来る。流体に含まれる 4種の物質を互いに 分離する場合も同様である。しかし、第 1保持部と第 2保持部の 2種の保持部を有す る物質分離デバイスを用いる場合が、最も分離が効率的に行えるため好ましい。  [0084] When three or more kinds of solutes contained in a fluid are separated from each other, first, the two kinds of solutes are separated using a separation device that can separate the two kinds of solutes. Separation can be achieved by connecting a separation device that can separate the remaining substance to one or both of the outlets 17. Alternatively, by using a separation device that has a third holding part on the wall surface other than the first holding part and the second holding part of the separation channel, and a third outlet is provided on the third holding part side. It can also be separated. The same is true when the four substances contained in the fluid are separated from each other. However, it is preferable to use a substance separation device having two types of holding parts, a first holding part and a second holding part, because separation can be performed most efficiently.
[0085] 以下には溶媒に含まれる 2種類の溶質 (第 1物質および第 2物質)を分離する場合 を例にして説明する。  [0085] Hereinafter, a case where two types of solutes (first substance and second substance) contained in a solvent are separated will be described as an example.
〔一定温度法〕  [Constant temperature method]
本発明の物質分離方法は一定温度条件で行うことが出来る。この場合、上記 (I)導 入工程、(II)取り込み工程、(III)放出工程は、同一温度、同一流速で行うことができ、 操作としての区別はない。第 1保持部に取り込まれた第 1物質は、液体クロマトグラフ ィ一に於ける試料スポットの移動と同様にして、分離用流路の第 1保持部側で取り込 みと放出を繰り返しながら流れに乗って、分離用流路内を流体の流速より遅い速度 で移動し、分離用流路の下流端に達する。そこで放出された第 1物質は、分離用流 路の第 1保持部以外の部分を流れて来た流体と共に、主として第 1流出口より流出す る。即ち本方法においては取り込み工程と放出工程が同時に行われる。マテリアル ノ ランスを考えると、流入口から流入した流体中の第 1物質は、拡散で第 1保持部に 達し、その一部が第 1保持部に保持される。その分だけ分離用流路の第 1保持部以 外の部分の第 1物質濃度は減少する。そして、分離用流路の下流端に於いて、第 1 保持部から放出された第 1物質は、分離用流路の第 1保持部以外の部分を流れて来 た流体にプラスされて第 1流出口より流出するため、第 1流出ロカ 流出する第 1物 質の濃度は上昇する。一方、第 2流出ロカもは、第 1保持部に保持された分だけ第 1 物質濃度が減少した溶液が流出する。第 1保持部の下端カゝら放出される第 1物質の 量と分離用流路の下端に到達するまでに第 1保持部に保持される第 1物質の量は等 しい。以上により定常状態が維持される。 The substance separation method of the present invention can be performed under a constant temperature condition. In this case, the (I) introduction step, (II) uptake step, and (III) release step can be performed at the same temperature and flow rate, and there is no distinction as operation. The first substance taken into the first holding part flows in the same manner as the movement of the sample spot in the liquid chromatograph while repeating uptake and release on the first holding part side of the separation channel. To move in the separation channel at a speed slower than the flow velocity of the fluid and reach the downstream end of the separation channel. The first substance released there flows out mainly from the first outlet together with the fluid flowing through the part other than the first holding part of the separation channel. The That is, in this method, the uptake process and the release process are performed simultaneously. Considering the material tolerance, the first substance in the fluid flowing in from the inlet reaches the first holding part by diffusion, and a part of it is held in the first holding part. Accordingly, the concentration of the first substance in the part other than the first holding part of the separation channel decreases. Then, at the downstream end of the separation channel, the first substance released from the first holding part is added to the fluid flowing through the part other than the first holding part of the separation channel and added to the first substance. Since it flows out from the outlet, the concentration of the first substance flowing out of the first outlet loca rises. On the other hand, in the second outflow rocker, the solution in which the concentration of the first substance is reduced by the amount held in the first holding part flows out. The amount of the first substance released from the lower end of the first holding part is equal to the amount of the first substance held in the first holding part until reaching the lower end of the separation channel. Thus, the steady state is maintained.
本法は、温度変化の必要がないため操作が容易であり省エネである。しかし、一段 での分離能は後述の温度変化法より低い。これを軽減するため、第 1保持部の第 1物 質取り込み可能量を多くすることが好まし 、。  This method is easy to operate and energy saving because there is no need for temperature changes. However, the resolution in one stage is lower than the temperature change method described later. In order to reduce this, it is preferable to increase the amount of the first substance that can be taken up by the first holding part.
なお、本方法は、分離すべき流体を連続的に注入して分離するものである。従って 試料溶液の注入開始力 定常状態に達するまでの間は、必ずしも所定の分離がなさ れない場合がある。ただし、この間もクロマトグラフィーのように時間分割プログラムで 各取出口力も流出する溶液を採取することは可能ある。なお、ここで言う連続的注入 とは、回分法でないという意味であって、間欠的注入や流量が変化する注入であつ てもよい。  In this method, the fluid to be separated is continuously injected and separated. Therefore, the predetermined separation may not always be performed until the sample solution injection start force reaches a steady state. However, during this time, it is possible to collect a solution that also flows out the outlet force with a time division program, such as chromatography. The continuous injection mentioned here means that it is not a batch method, and may be intermittent injection or an injection whose flow rate changes.
〔温度変化法〕 [Temperature change method]
第 1保持部の第 1物質に対する保持性が温度依存性を有するとき、例えば、吸着や When the retention of the first holding part with respect to the first substance has temperature dependence, for example, adsorption or
、ゲル Z固体転移点を有するゲルへの吸収、等の場合には、この特性を利用して、 一段または少ない段数で高能率に分離することが出来る。保持性の温度変化は、例 えば吸着の場合には、吸着量は低温で多ぐ高温で低下する。吸収その他の取り込 み機構の場合にも、同様の特性を示す。しかし、温度応答性ゲルによる吸収の場合 には、例えばポリ—N—イソプロピリアクリルアミドゲルのように、低温でゲル状態とな つて吸収量が増し、高温で固体となって吸収量が減少する例もある。本発明では、こ れらの特性に合わせて運転条件を変えることが出来る。 [0087] (I)導入工程では、流入口から分離すべき流体を導入して分離用流路に流す。この とき、流体が分離用流路を層流で流れる必要はないが、上記 (Ι)〜(ΠΙ)の工程を繰り返 す場合であって、(III)放出工程を兼ねるときには層流で流す。導入工程の温度や流 速は任意である。 In the case of absorption into a gel having a gel Z solid transition point, etc., it is possible to separate it with high efficiency in one or a few steps by utilizing this characteristic. In the case of adsorption, for example, in the case of adsorption, the amount of adsorption decreases at a high temperature and a high temperature. Absorption and other uptake mechanisms show similar characteristics. However, in the case of absorption by a temperature-responsive gel, for example, the amount of absorption increases when it is in a gel state at a low temperature, and becomes solid at high temperature, such as poly-N-isopropylacrylamide gel. There is also. In the present invention, the operating conditions can be changed in accordance with these characteristics. [0087] (I) In the introducing step, the fluid to be separated is introduced from the inflow port, and flows into the separation channel. At this time, it is not necessary for the fluid to flow through the separation channel in a laminar flow, but in the case where the steps (i) to (ii) are repeated, and (III) the laminar flow is used also as the discharge step. . The temperature and flow rate of the introduction process are arbitrary.
(II)取り込み工程では、流体の流動緒状態、または、移送を一時停止した状態で、流 体中の第 1物質を拡散によって第 1保持部に取り込ませる。例えば取り込みが吸着で ある場合には、分離用流路を吸着温度に保つ。この時、取り込み工程の時間を、第 1 保持部から最も遠い、第 1保持部の対向面付近にある第 1物質も、拡散によって第 1 保持部へ移動させるに十分な時間をとることにより、第 1保持部に取り込まれるように する。  (II) In the taking-in process, the first substance in the fluid is taken into the first holding unit by diffusion in a state of fluid flow or in a state where the transfer is temporarily stopped. For example, when the uptake is adsorption, the separation channel is kept at the adsorption temperature. At this time, by taking the time of the taking-in process by taking sufficient time for the first substance that is farthest from the first holding part and near the opposing surface of the first holding part to move to the first holding part by diffusion, It should be taken into the first holding part.
[0088] 拡散によって流体中を物質が移動する速度は、フィックの拡散の第 2法則より、拡 散距離の 2乗平均の根 (以下、平均拡散距離という)は時間の平方根に比例すること が示される。平均拡散距離が 100 mの時、水中での拡散に要する時間は、例えば エタノール (分子量 46)の場合約 6秒、 1本鎖オリゴヌクレオチド(25塩基、分子量約 8 500)の場合約 60秒、ミオシン (分子量約 54万)の場合約 600秒と計算される。平均 拡散距離が 10 mの時は、拡散に要する時間は上記の 1Z100となる。  [0088] According to Fick's second law, the root mean square of the diffusion distance (hereinafter referred to as the average diffusion distance) is proportional to the square root of time. Indicated. When the average diffusion distance is 100 m, the time required for diffusion in water is, for example, about 6 seconds for ethanol (molecular weight 46), about 60 seconds for single-stranded oligonucleotide (25 bases, molecular weight about 8 500), In the case of myosin (molecular weight about 540,000), it is calculated as about 600 seconds. When the average diffusion distance is 10 m, the time required for diffusion is 1Z100.
[0089] 従って、分離用流路内の流体の滞留時間は、第 1保持部からその対向壁面までの 距離が 100 mである場合には、略上記平均拡散距離が 100 mの場合の拡散に 要する時間以上とすることが好ましい。例えば、分離すべき物質の分子量が分子量 8 500程度である場合には略 60秒以上とすることが好ましい。この時間以上とすること により、第 1物質が第 1保持部に十分に取り込まれて、高い分離効率が実現される。 但し、例えばポリヌクレオチドのハイブリダィゼーシヨンのように、取り込みに選択性を 発現させるためには時間を要する為、この場合には、上記拡散に要する時間より更 に長時間とすることが好ましい。滞留時間の上限は特に限定する必要はないが、好 ましくは 10分以下、より好ましくは 3分以下、最も好ましくは 1分以下である。該滞留時 間を上記上限以下とすることによって、分離の処理量を増すことが出来る。即ち、分 離すべき物質の分子量が高いほど、分離用流路の第 1保持部力 その対向面までの 距離を小さくすることが、短い滞留時間で十分な取り込みが行われ、分離の処理量を 増すことが出来るため好ま U、。 [0089] Therefore, the residence time of the fluid in the separation channel is approximately equal to the diffusion when the average diffusion distance is 100 m when the distance from the first holding portion to the opposing wall surface is 100 m. It is preferable that the time is longer than required. For example, when the molecular weight of the substance to be separated is about 8500, it is preferable to set it to about 60 seconds or longer. By setting this time or longer, the first substance is sufficiently taken into the first holding part, and high separation efficiency is realized. However, since it takes time to express selectivity for incorporation, such as polynucleotide hybridization, in this case, it is preferable that the time is longer than the time required for the diffusion. . The upper limit of the residence time is not particularly limited, but is preferably 10 minutes or less, more preferably 3 minutes or less, and most preferably 1 minute or less. By setting the residence time to be less than or equal to the above upper limit, the separation throughput can be increased. In other words, the higher the molecular weight of the substance to be separated, the smaller the first holding part force of the separation channel and its distance to the opposite surface. U, because it can increase.
[0090] (III)放出工程では、例えば取り込みが吸着である場合には、分離用流路を脱着温 度に変化させる。分離用流路に流体を流すと、分離用流路の下流端において、流体 は第 1流出口と第 2流出口に分かれて流出するが、このとき、分離用流路内を流れる 流速を、レイノルズ数が 2300未満として層流で流すことにより、第 1保持部から放出 された第 1物質は流線に沿って流れ、第 1保持部側の第 1流出口からより多く流出す ることになる。本発明の分離デバイスを用いると、分離用流路の断面積が十分に小さ V、ため乱流に成りにくぐ流体を層流で流すことが出来る。  [0090] (III) In the release step, for example, when the uptake is adsorption, the separation channel is changed to the desorption temperature. When fluid flows through the separation channel, the fluid flows out into the first outlet and the second outlet at the downstream end of the separation channel. By flowing in a laminar flow with a Reynolds number of less than 2300, the first substance released from the first holding part flows along the streamline and flows out more from the first outlet on the first holding part side. Become. When the separation device of the present invention is used, since the cross-sectional area of the separation channel is sufficiently small V, it is possible to flow a fluid that is difficult to be turbulent in a laminar flow.
[0091] 本物質分離方法において、分離効率を高くするためには、放出工程に於いて、第 1 保持部から放出された第 1物質を、第 1保持部の対向面付近を流れてきた流体となる ベく再混合させることなぐ第 1流出ロカ 流出させることが重要である。再混合を防 ぐためには、分離デバイスの流出口の構造を前記のように再混合しにくい形状に設 計することのほか、第 1保持部力 放出された第 1物質が拡散で再混合する前に第 1 保持部から流出するような流速を選択することが重要である。  [0091] In this substance separation method, in order to increase the separation efficiency, in the release step, the first substance released from the first holding part flows in the vicinity of the opposing surface of the first holding part. It is important that the first spillage loca spill out without remixing. In order to prevent remixing, the structure of the outlet of the separation device should be designed so that it is difficult to remix as described above, and the force of the first holding part before the first substance released by diffusion is remixed by diffusion. It is important to select a flow rate that will flow out of the first holder.
[0092] 例えば吸着のように、低温で取り込み量が増す系の例で説明すると、取り込み工程 に於いては低温で第 1物質を第 1保持部に取り込ませ、放出工程において第 1保持 部を高温に変化させて第 1物質を放出させると共に、第 1流出ロカ 流出させる。こ のとき、放出工程の時間は、拡散による再混を減じるために、出来るだけ急速に昇温 し、高い流速で流出させることが好ましい。放出工程に要する時間は、第 1保持部か らその対向壁面までの距離を平均拡散距離としたときの、平均拡散距離の拡散に要 する時間より短くすることが好ましぐその 1Z2以下がさらに好ましぐその 1Z3以下 が最も好ましい。  [0092] For example, in the case of a system in which the amount of uptake increases at low temperatures, such as adsorption, the first substance is taken into the first holding part at a low temperature in the uptake process, and the first holding part is used in the release process. The temperature is changed to a high temperature to release the first substance and the first spillage loca is spilled. At this time, it is preferable to raise the temperature of the release process as rapidly as possible so as to reduce remixing due to diffusion and to flow out at a high flow rate. The time required for the discharge process is preferably shorter than the time required for diffusion of the average diffusion distance when the distance from the first holding part to the opposite wall surface is defined as the average diffusion distance. Its preferred value is 1Z3 or less.
例えば第 1保持部力もその対向壁面までの距離が 100 mの場合で、分離すべき 物質の分子量が分子量 8500程度である場合には略 60秒以下が好ましぐ 30秒以 下が更に好ましぐ 20秒以下が最も好ましい。放出工程に要する時間の下限は、十 分に昇温することが出来れば、短いことそれ自体による不都合はなぐ例えば lmsで あっても良いが、 0. 01秒以上が好ましぐ 0. 1秒以上が好ましい。これにより、十分 な昇温が可能になるし、圧力損失の増力 tlも抑制できる。 [0093] 昇降温方法は任意であり、温調ブロックのプログラムコントロール、異なる温度に調 節された温調ブロック間の乗せ替え、湯などの液体への浸漬、温調された気体の吹 きつけ、赤外線加熱、レーザー加熱、マイクロ波加熱を例示できる。放出工程に於い て、所定の温度まで昇温又は降温するために用する時間が長くては、その間に再混 合が生じる恐れがある。加熱は、レーザー加熱、マイクロ波加熱力 温度の上昇速度 を大きく出来るため好ましい。また、その他の加熱冷却方法の場合にも、本発明の物 質分離デバイスを使用すれば、デバイスの熱容量が小さいため、温度の上昇下降を 速やかに、例えば秒オーダーで行うことが出来るため、上記放出工程に要する時間 の下限をこのような短時間にすることができる。 For example, if the distance between the first holding part force and the opposite wall is 100 m and the molecular weight of the substance to be separated is about 8500, approximately 60 seconds or less is preferable, and 30 seconds or less is more preferable. 20 seconds or less is most preferable. The lower limit of the time required for the release process is short as long as the temperature can be raised sufficiently. For example, lms may be used, but 0.01 seconds or more is preferable. The above is preferable. This makes it possible to raise the temperature sufficiently and to suppress the pressure loss increase tl. [0093] The method of raising and lowering the temperature is arbitrary. Program control of the temperature control block, transfer between temperature control blocks adjusted to different temperatures, immersion in liquid such as hot water, blowing of temperature-controlled gas, Examples include infrared heating, laser heating, and microwave heating. In the discharging process, if the time used for raising or lowering the temperature to a predetermined temperature is long, remixing may occur during that time. Heating is preferable because laser heating and microwave heating power can increase the rate of temperature rise. In addition, in the case of other heating and cooling methods, if the material separation device of the present invention is used, the heat capacity of the device is small, so that the temperature can be increased and decreased quickly, for example, in the order of seconds. The lower limit of the time required for the release process can be set to such a short time.
[0094] (III)の放出工程の後、(I)の取り込み工程以下を再び繰り返すことも出来る。放出ェ 程終了後の冷却速度は任意である。放出工程の温度で、放出工程と次回の取り込 み工程を兼ねて行い、その後、流速を低下又は停止すると共に、所定の取り込みェ 程温度へ降温することも、選択的吸着の選択性を増すことが出来るために好ましい。 多段配置型の物質分離デバイスを使用する場合には、この方法が、物質分離デバィ スの連絡流路に一時貯蔵用の体積を設ける必要が無くなり、デバイス構造が単純と なり好ましい。  [0094] After the release step (III), the steps after the uptake step (I) can be repeated. The cooling rate after the discharge process is arbitrary. Performing both the release process and the next uptake process at the temperature of the release process, and then lowering or stopping the flow rate and lowering the temperature to a predetermined uptake process temperature also increases the selectivity of selective adsorption. This is preferable because it can be performed. In the case of using a multi-stage type material separation device, this method is preferable because it is not necessary to provide a temporary storage volume in the communication channel of the material separation device, and the device structure is simplified.
[0095] 〔段階的配置による物質分離方法〕  [0095] [Method for separating substances by stepwise arrangement]
段階的配置による物質分離方法に於いては、本発明になる段階的配置型物質分 離デバイスの第 1取出口 7、第 2取出口 17、及び第 3取出口 27からそれぞれ分離さ れた溶液を取り出す。段階的配置においては、第 3取出口を形成して、そこ力も流体 を取り出しうることが、一段型物質分離デバイスを使用した分離方法と異なる。  In the substance separation method by stepwise arrangement, the solutions separated from the first outlet 7, the second outlet 17, and the third outlet 27 of the stepwise arrangement type material separation device according to the present invention, respectively. Take out. The stepwise arrangement differs from the separation method using a single-stage material separation device in that a third outlet is formed and the force can also remove fluid.
[0096] この場合、導入する流体が、第 1物質と第 2物質が均一に溶解した流体や、溶質と 溶媒であるような 2成分系の場合には、前記第 1保持部側の第 1流出口からは第 1物 質が濃縮された流体を取り出し、前記第 2流出ロカ は第 1物質が希釈され、相対的 に第 2物質が濃縮された流体を取り出すことが出来る。第 3流出ロカ は中間濃度の 第 1物質と第 2物質が取り出される。分離用流路 3に第 2保持部が設けられている場 合には、さらに分離の効率が増す。  [0096] In this case, if the fluid to be introduced is a fluid in which the first substance and the second substance are uniformly dissolved, or a two-component system such as a solute and a solvent, the first holding unit side first From the outlet, the fluid enriched in the first substance is taken out, and the second outflow locuser can take out the fluid in which the first substance is diluted and the second substance is relatively concentrated. The third spill loca removes intermediate concentrations of the first and second substances. When the separation holding channel 3 is provided with the second holding portion, the separation efficiency is further increased.
[0097] また、導入する流体が、溶質である第 1物質、溶質である第 2物質、及びそれらの共 通の溶媒力 成る 3成分系の場合には、前記第 1流出ロカ は第 1物質が濃縮され た流体を取り出し、前記第 2流出ロカ は第 1物質が希釈された流体を取り出し、第 3 流出ロカ は第 1物質の中間濃度の流体を取り出すことが出来る。この時、第 2物質 については、前期第 1保持部の第 2物質に対する保持性や、第 1保持部以外の壁面 部分の第 2物質に対する保持性の影響を受ける。例えば、第 1保持部が第 2物質に 対して、第 1物質に対するよりは弱い保持性を示す場合には、第 1流出口からは第 1 物質より程度は低いが濃縮された第 2物質が流出し、第 2流出口からは第 1物質より 程度は低いが希釈された第 2物質が流出し、第 3流ロカ は中間濃度の第 2物質が 流出する。第 1保持部が第 2物質に対して保持性を示さない場合には、第 1流出口、 第 2流出口、及び第 3流出ロカ は第 2物質が濃縮も希釈もされない流体が流出す る。前記分離用流路 3に、第 2物質に対して保持性を示す第 2保持部が形成されてい る場合には、第 1流出口からは第 2物質が希釈された流体が流出し、第 2流出口から は第 2物質が濃縮された流体が流出し、第 3流出ロカ は第 1物質も第 2物質も希釈 された流体、即ち濃縮された溶媒が流出する。即ち、一つの物質分離デバイスで 3成 分の分離が可能である。よって、段階的配置による物質分離方法においては、第 2 保持部を設けた物質分離デバイスを用いることが特に好まし 、。 [0097] Further, the fluid to be introduced includes a first substance that is a solute, a second substance that is a solute, and a combination of them. In the case of a three-component system having a common solvent power, the first outflow rocker takes out the fluid in which the first substance is concentrated, and the second outflow rocker takes out the fluid in which the first substance is diluted, and the third outflow Loca can remove fluids of intermediate concentration of the first substance. At this time, the second substance is affected by the retention of the first holding part in the first holding part with respect to the second substance and the holding ability of the wall part other than the first holding part with respect to the second substance. For example, if the first holding part shows a weaker holding ability for the second substance than the first substance, the concentrated second substance is less than the first substance but is concentrated from the first outlet. From the second outlet, the second substance diluted to a lesser extent than the first substance flows out from the second outlet, and the second substance with an intermediate concentration flows out from the third stream loca. If the first holding part does not hold the second substance, the first outlet, the second outlet, and the third outflower will flow out the fluid in which the second substance is not concentrated or diluted. . In the case where the separation channel 3 is provided with a second holding part that retains the second substance, the fluid diluted with the second substance flows out from the first outlet, From the two outlets, the fluid in which the second substance is concentrated flows out, and in the third outlet loca, the fluid in which both the first substance and the second substance are diluted, that is, the concentrated solvent flows out. In other words, it is possible to separate the three components with a single material separation device. Therefore, it is particularly preferable to use a substance separation device provided with a second holding part in the substance separation method by stepwise arrangement.
[0098] 段階的配置を使用して温度変化させる方法の場合には、放出工程において、流体 は放出工程の温度で下流側次段の分離用流路 3に流入する。よって、流入させた後 、移送を実質的に停止し、取り込み工程の温度に変化させて、次の取り込み工程を 行う。又は、連続する任意の二段(上流段と下流段とする)の間の連絡流路部を、放 出工程に於いても温度上昇しないようにして、上流段の流出ロカ 流出する流体を 連絡流路内で温度を低下させ、下流段の流入口に流入させても良い。このような温 度分布は、レーザーやマイクロ波による流体を選択的に加熱する場合に効果的に実 施できる。 [0098] In the case of the method of changing the temperature using the stepwise arrangement, in the discharge process, the fluid flows into the separation channel 3 in the downstream downstream stage at the temperature of the discharge process. Therefore, after the inflow, the transfer is substantially stopped, the temperature is changed to the temperature of the intake process, and the next intake process is performed. Or, the communication flow path between any two continuous stages (upstream and downstream stages) should be connected so that the fluid flowing out of the upstream stage will not rise in temperature during the discharge process. The temperature may be lowered in the flow path and flowed into the downstream inlet. Such a temperature distribution can be effectively implemented when a fluid by laser or microwave is selectively heated.
[0099] 濃縮溶液量の確保における第 1手段及び第 2手段の各使用方法はこれら物質分離 デバイスの項で述べたものと同様である。但し、第 2手段を使用しない場合には、任 意の 3つの連続する段に注目したとき、上流段から中流段へ溶液が送られたとき、 1 回の送液で中流段や下流段の分離用流路 3が満たされない場合が生じる。しかし、 このような場合でも、前記上流段の体積分だけが、分離されて中流段から下流段へ 移送される為分離可能である。しかし、処理効率が悪化するため、第 2手段を使用す ることが好ましい。 [0099] The usage methods of the first means and the second means in securing the amount of the concentrated solution are the same as those described in the section of these substance separation devices. However, when the second means is not used, when paying attention to any three consecutive stages, when the solution is sent from the upstream stage to the middle stage, the middle stage and the downstream stage can be sent with a single delivery. In some cases, the separation channel 3 is not filled. But, Even in this case, only the upstream volume can be separated because it is separated and transferred from the midstream stage to the downstream stage. However, it is preferable to use the second means because the processing efficiency deteriorates.
[0100] 〔温度変化法 2〕 [0100] [Temperature change method 2]
上記「温度変化法 1」とは温度変化の仕方を逆にした方法も採ることが出来る。  The above "temperature change method 1" can also be a method in which the temperature change method is reversed.
(Γ)導入工程は、本方法では、次の取り込み工程と一体ィ匕される。  In this method, the (Γ) introduction step is integrated with the next capture step.
(π')取り込み工程では、流入口から分離すべき流体を導入し、分離用流路に層流 で流す。この時、取り込みが吸着である場合には、分離用流路を吸着温度に保ち、 第 1保持部とその対向面との中間より遠い位置にある第 1物質は、拡散によって第 1 保持部へ移動させるには不十分な滞留時間となる流速で流す。これにより、第 1保持 部に近い部分の溶液の第 1物質濃度は分極により低くなり、その対向面近くでは、溶 液中の第 1物質濃度は流入次と変わらない。このように流動を制御することにより、第 1流出ロカゝら第 1物質濃度が低下した溶液が流出し、第 2流出口から、流入口に流入 する溶液とほぼ同じ組成の溶液が流出する。  (π ′) In the intake step, the fluid to be separated is introduced from the inflow port, and flows in a laminar flow into the separation channel. At this time, if the uptake is adsorption, the separation channel is kept at the adsorption temperature, and the first substance located farther from the middle between the first holding part and its opposite surface is diffused to the first holding part. The flow rate is such that the residence time is insufficient for movement. As a result, the concentration of the first substance in the solution near the first holding part becomes lower due to the polarization, and the concentration of the first substance in the solution is not different from that after the inflow near the opposite surface. By controlling the flow in this manner, a solution having a reduced first substance concentration flows out from the first outflow locuser, and a solution having almost the same composition as the solution flowing into the inflow port flows out from the second outflow port.
(ιπ')放出工程では、送液を停止するか非常に遅くし、取り込みが吸着である場合に は、分離用流路を脱着温度に変化させる。そして、脱着した第 1物質が、第 1保持部 の対向面まで拡散し、分離用流路全体がほぼ均一な第 1物質濃度にする。その後、 送液すると、第 1流出口と第 2流出口から、ほぼ同一の第 1物質濃度の溶液が流出す る。  In the (ιπ ′) release step, the liquid feeding is stopped or very slow, and if the uptake is adsorption, the separation channel is changed to the desorption temperature. Then, the desorbed first substance diffuses to the opposing surface of the first holding part, and the concentration of the first substance is made substantially uniform throughout the separation channel. Thereafter, when the liquid is sent, a solution having substantially the same first substance concentration flows out from the first outlet and the second outlet.
従って、第 1流出ロカ 流出する溶液は、前記 (π')取り込み工程において流出する 、第 1物質が希釈された溶液と、本 (ιπ')放出工程に於いて流出する原溶液とほぼ同 じ濃度の溶液が混合され、合計として第 1物質が希釈された溶液となる。他方、第 2 流出ロカも流出する溶液は、合計として、第 1物質が濃縮された溶液となる。即ち、 第 1物質の濃縮側と希釈側は、上記「温度変化法 1」とは逆になる。  Therefore, the solution flowing out of the first outflow loca flows out in the (π ′) uptake step, and is almost the same as the solution diluted in the first substance and the original solution outflowing in the (ιπ ′) release step. The solution of the concentration is mixed, and the total solution becomes a solution in which the first substance is diluted. On the other hand, the solution from which the second outflow loca also flows out is a solution in which the first substance is concentrated in total. That is, the concentration side and the dilution side of the first substance are opposite to the above “temperature change method 1”.
勿論、本温度変化方 2に於いても、上記 (ΠΓ)の放出工程の後に、上記 (ΙΓ)の取り込 み工程以下を繰り返すことが出来るし、段階的配置による物質分離を行うことも出来 る。  Of course, even in this temperature change method 2, after the above (ΠΓ) release step, the above (ΙΓ) uptake step and the following steps can be repeated, and material separation can be performed by stepwise arrangement. The
[0101] 〔異なる分離デバイスの直列配置〕 例えば溶液に含まれる 3種以上の溶質を互いに分離する場合には、まず、その内 の 2種を分離出来る分離デバイスを用いて分離し、該分離デバイスの第 1取出口 7、 第 2取出口 17、及び Z又は第 3取出口 27に残りの物質を分離することが出来る分離 デバイスを接続することによって、分離することが出来る。 [0101] [Serial arrangement of different separation devices] For example, when three or more kinds of solutes contained in a solution are separated from each other, first, use a separation device that can separate two of them, and then separate the first outlet 7 and the second outlet of the separation device. 17 and Z or the third outlet 27 can be separated by connecting a separation device that can separate the remaining material.
〔還流と多段接続〕  [Reflux and multi-stage connection]
上記「分離用流路の段階的配置」の「その他の機構」の項で述べたように、第 1取出 口 7に接続される流出口以外の流出口は、ポンプを介して上流段の流入口 5若しくは 導入口 15に還流させることも好ましい。また、分離用流路が段階的配置された本物 質分離デバイスの第 1取出口 7から流出する第 1物質濃縮液体を第 2の本物質分離 デバイスに接続しても良い。この際、第 2取出口 17及び Z又は第 3取出口 27は、ポ ンプを介して当該物質分離デバイスの導入口 15や上流側の物質分離デバイスの導 入口 15に還流させることが好ましい。段階的配置された本物質分離デバイスをこのよ うに直列配置することにより、 1段の物質分離デバイスを単に直列に接続するのに比 ベて第 1物質濃縮液の収率が高くなり、還流のためのポンプも小さくて済む。  As described in the section “Other mechanisms” in “Stepwise arrangement of separation channels” above, the outlets other than the outlet connected to the first outlet 7 are connected to the upstream stage via a pump. It is also preferable to reflux to the inlet 5 or the inlet 15. Further, the first substance concentrated liquid flowing out from the first outlet 7 of the substance separation device in which the separation channel is arranged in stages may be connected to the second substance separation device. At this time, it is preferable that the second outlet 17 and Z or the third outlet 27 are refluxed to the inlet 15 of the substance separation device or the inlet 15 of the upstream substance separation device via a pump. By arranging the substance separation devices arranged in stages in this way in series, the yield of the first substance concentrate is increased compared to simply connecting the substance separation device in one stage in series, and the reflux concentration is reduced. The pump for this is also small.
以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例の 範囲に限定されるものではない。  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the scope of the following examples.
実施例 1  Example 1
[0102] 「物質分離デバイスの作製および物質分離方法」  [0102] “Production of substance separation device and substance separation method”
図 4は、実施例 1で作製する立体型単段の物質分離デバイスの平面図及び側面図 である。実施例 1の物質分離デバイスは、内部層 23の両面にそれぞれ第 1外部層 22 および第 2外部層 24を固着し、第 1外部層 22の外側に基材 21を固着し、第 2外部層 24の外側にカバー層 25を固着して構成されて 、て、内部層 23に分離用流路 3が形 成され、分離用流路 3に面した第 1外部層 22に第 1保持部が形成され、第 1外部層 2 2に連絡流路 8が形成され、第 2外部層 24に連絡流路 18が形成され、内部層 23と第 1外部層 22との境界面に第 1流出口 6が設けられ、内部層 23と第 2外部層 24との境 界面に第 2流出口 16が設けられたものである。  FIG. 4 is a plan view and a side view of the three-dimensional single-stage material separation device produced in Example 1. FIG. In the material separation device of Example 1, the first outer layer 22 and the second outer layer 24 are fixed to both surfaces of the inner layer 23, and the base material 21 is fixed to the outer side of the first outer layer 22, respectively. 24, the separation layer 3 is formed in the inner layer 23, and the first holding portion is formed in the first outer layer 22 facing the separation channel 3. Formed, the communication channel 8 is formed in the first outer layer 22, the communication channel 18 is formed in the second outer layer 24, and the first outlet is formed at the boundary surface between the inner layer 23 and the first outer layer 22. 6 and a second outlet 16 is provided at the interface between the inner layer 23 and the second outer layer 24.
[0103] [分離デバイスの作製]  [0103] [Preparation of separation device]
まず、本実施例における紫外線照射および蛍光特性測定の方法について説明す る。 First, the method of ultraviolet irradiation and fluorescence characteristic measurement in this example will be described. The
(紫外線ランプ # 1による照射)  (Irradiation with UV lamp # 1)
3kWメタルノヽライドランプを光源とするアイグラフィックス株式会社製の UE031— 3 53CHC型 UV照射装置を用いて、波長 365nmで強度 40mWZcm2の紫外線を、 特に指定が無い限り室温、窒素雰囲気中で照射した。  Using a UE031-3 53CHC type UV irradiation device manufactured by Eye Graphics Co., Ltd., which uses a 3kW metal nitride lamp as the light source, UV light with a wavelength of 365nm and an intensity of 40mWZcm2 was irradiated in a nitrogen atmosphere at room temperature unless otherwise specified. .
(紫外線ランプ # 2による照射)  (Irradiation with UV lamp # 2)
250W高圧水銀ランプを光源とするゥシォ電機株式会社製のマルチライト 250Wシ リーズ露光装置用光源ユニットを用いて、波長 365nmで強度 50mWZcm2の紫外 線を、特に指定が無い限り室温、窒素雰囲気中で照射した。  Irradiates UV light with a wavelength of 365 nm and an intensity of 50 mWZcm2 in a nitrogen atmosphere at room temperature unless otherwise specified using a multi-light 250 W series exposure light source unit manufactured by Usio Electric Co., Ltd., which uses a 250 W high-pressure mercury lamp as the light source. did.
(蛍光強度測定方法)  (Fluorescence intensity measurement method)
蛍光強度は、ライカ株式会社製の共焦点レーザー顕微鏡 TCS— NTを用いて測定 した。  The fluorescence intensity was measured using a confocal laser microscope TCS-NT manufactured by Leica Corporation.
[0104] 次に、本実施例における製膜液および組成物の調整方法にっ 、て説明する。本実 施例 1は、多孔質層を「反応誘発型相分離法」によって製造する。  [0104] Next, a method for adjusting a film forming solution and a composition in this example will be described. In Example 1, the porous layer is produced by “reaction-induced phase separation”.
(組成物 XIの調製)  (Preparation of composition XI)
エネルギー線重合性化合物として、平均分子量 2000の 3官能ウレタンアタリレート オリゴマー「ュ-ディック V— 4263」(大日本インキ化学工業株式会社製)を 70部、へ キサンジオールジアタリレート「ニューフロンティア HDDA」(第 1工業製薬株式会社 製)を 30部、光重合開始剤として 1 ヒドロキシシクロへキシルフエ-ルケトン「ィルガ キュア一 184」(チバガイギ一社製)を 3部、及び重合遅延剤として 2, 4 ジフエ-ル —4—メチル 1—ペンテン(関東ィ匕学株式会社製)を 0. 5部、それぞれ混合して組 成物 XIを調製した。  As an energy ray polymerizable compound, 70 parts of trifunctional urethane acrylate oligomer “Dudic V-4263” (Dainippon Ink Chemical Co., Ltd.) with an average molecular weight of 2000, hexanediol diatalate “New Frontier HDDA” 30 parts (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 3 parts 1-hydroxycyclohexyl phenol ketone “Ilga Cure 1 184” (Ciba-Gaigi Co., Ltd.) as a photopolymerization initiator, and 2, 4 diphenyl as a polymerization retarder A composition XI was prepared by mixing 0.5 parts of -l-4-methyl 1-pentene (manufactured by Kanto Yigaku Co., Ltd.).
[0105] (組成物 X2の調製) [0105] (Preparation of composition X2)
エネルギー線重合性化合物として、前記「ュ-ディック V— 4263」を 80部、前記「二 ユーフロンティア HDD A」を 20部、光重合開始剤として前記「ィルガキュア一 184」を 2部、それぞれ混合して組成物 X2を調製した。  As an energy ray polymerizable compound, 80 parts of “Dudic V-4263”, 20 parts of “Neufrontier HDD A”, and 2 parts of “Irgacure 1 184” as a photopolymerization initiator were mixed. A composition X2 was prepared.
[0106] (製膜液 Y1の調製) [0106] (Preparation of film-forming solution Y1)
エネルギー線重合性化合物として、前記「ュ-ディック V— 4263」を 72質量部、ジ シクロペンタ -ルジアタリレート「R— 684」(日本ィ匕薬株式会社製)を 18質量部、メタ クリル酸グリシジル (和光純薬工業株式会社製)を 10質量部、孔形成剤としてデカン 酸メチル (和光純薬工業株式会社製)を 180質量部、揮発性の良溶剤としてアセトン を 10質量部、紫外線重合開始剤として前記「ィルガキュア一 184」を 3質量部、それ ぞれ均一に混合して製膜液 Y1を調製した。 As an energy ray polymerizable compound, 72 parts by mass of the above-mentioned “Dudic V-4263” 18 parts by mass of cyclopenta-rudiatalylate “R-684” (manufactured by Nippon Gyaku Co., Ltd.), 10 parts by mass of glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), methyl decanoate ( 180 parts by weight of Wako Pure Chemical Industries, Ltd., 10 parts by weight of acetone as a volatile good solvent, and 3 parts by weight of “Irgacure-1 184” as an ultraviolet polymerization initiator were mixed uniformly. Membrane liquid Y1 was prepared.
[0107] (基材側部材の形成) [Formation of base material side member]
厚さ lmmのアクリル板を基材 21として使用し、該基材 21上にスピンコーターにて 組成物 XIを塗工し、該塗膜の連絡流路 8を形成すべき部分(図 4参照)以外の部分 に、紫外線ランプ # 2によりフォトマスクを介して紫外線を 40秒間照射して製膜液 XI を半硬化させ、第 1外部層 22を形成した。その後、紫外線の非照射部分に残された 未硬化の組成物 XIを 50%エタノール水溶液で洗浄除去し、連絡流路 8となる溝を 形成した。  Using an acrylic plate having a thickness of 1 mm as the base material 21, the composition XI is applied on the base material 21 by a spin coater, and the connecting channel 8 of the coating film is to be formed (see FIG. 4). The first outer layer 22 was formed by semi-curing the film-forming solution XI by irradiating ultraviolet light through a photomask with an ultraviolet lamp # 2 for 40 seconds to the other part of the film. Thereafter, the uncured composition XI remaining in the non-irradiated part of the ultraviolet rays was washed and removed with a 50% aqueous ethanol solution to form a groove serving as the communication channel 8.
[0108] 該第 1外部層 22の上にスピンコーターにて組成物 Y1を塗工し、該塗膜の分離用 流路 3を形成すべき部分(図 4参照)に、紫外線ランプ # 2によりフォトマスクを介して 紫外線を 40秒間照射して照射部分の製膜液 Y1を多孔質状に硬化させ、紫外線の 非照射部分に残された未硬化の組成物 Y1を 50%エタノール水溶液で洗浄除去し、 次いで、多孔質層 33の細孔内部に残された孔形成剤を n キサンで洗浄除去し て、多孔質層 33を形成した。  [0108] The composition Y1 is applied onto the first outer layer 22 with a spin coater, and the portion (see Fig. 4) where the separation channel 3 for separation of the coating film is to be formed (see Fig. 4) by an ultraviolet lamp # 2. Irradiate UV light for 40 seconds through a photomask to cure the irradiated film-forming solution Y1 in a porous state, and wash and remove the uncured composition Y1 remaining in the UV-irradiated part with 50% aqueous ethanol. Next, the pore-forming agent remaining inside the pores of the porous layer 33 was washed away with n-xane to form the porous layer 33.
[0109] 厚さ 80 mのポリエチレンテレフタレート(PET)シートを一時的な支持体(図示略) として、この上にバーコ一ターにて組成物 XIを塗工し、分離用流路 3を形成すべき 部分以外の未硬化塗膜に、紫外線ランプ # 2によりフォトマスクを通して紫外線を 40 秒間照射して半硬化させ、一時的な支持体 (図示略)上に内部層 23を形成した。 次 、で、紫外線の非照射部分に残された未硬化の組成物 XIを 50%エタノール水溶 液により洗浄除去し、分離用流路 3となる内部層 23の欠損部を形成した。その後、該 分離用流路 3となる内部層 23の欠損部を、前記基材 21上に形成された第 1外部層 2 2の多孔質層 33と位置を合わせて積層し、その状態で、紫外線ランプ # 2により紫外 線を 60秒間照射して硬化を進めて固着した。その後、一時的な支持体(図示略)を 内部層 23から剥離し、第 1外部層 22の上に内部層 23が固着された部材を得た。こ の部材の表面には底面に多孔質層 33が形成された分離用流路 3となる溝が形成さ れていた。 [0109] Using a polyethylene terephthalate (PET) sheet having a thickness of 80 m as a temporary support (not shown), the composition XI is coated on this with a bar coater to form the separation channel 3. The uncured coating film other than the part to be cured was irradiated with UV light through a photomask for 40 seconds by UV lamp # 2 to be semi-cured to form an inner layer 23 on a temporary support (not shown). Next, the uncured composition XI left in the non-irradiated part of the ultraviolet ray was washed and removed with a 50% aqueous ethanol solution to form a defective part of the inner layer 23 to be the separation channel 3. Thereafter, the defect portion of the inner layer 23 that becomes the separation channel 3 is laminated in alignment with the porous layer 33 of the first outer layer 22 formed on the base material 21, and in this state, UV light was irradiated for 60 seconds with UV lamp # 2 to cure and fix. Thereafter, the temporary support (not shown) was peeled off from the inner layer 23 to obtain a member in which the inner layer 23 was fixed on the first outer layer 22. This On the surface of this member, a groove serving as a separation channel 3 having a porous layer 33 formed on the bottom surface was formed.
[0110] (プローブ DNAの固定)  [0110] (Immobilization of probe DNA)
上記で作製した溝の中に、 5重量%ポリアリルアミン (分子量 15000、 日東紡株式 会社製)水溶液を配し、 60°Cで 1時間静置し、ポリアリルアミン中の一部のアミノ基を 多孔質層 33中のエポキシ基と反応させた。その後、流水で 15分間洗浄して、多孔質 層 33へのアミノ基の導入を行った。  A 5% by weight polyallylamine (molecular weight: 15000, manufactured by Nittobo Co., Ltd.) aqueous solution is placed in the groove produced above, and allowed to stand at 60 ° C for 1 hour, so that some amino groups in polyallylamine are porous. Reacted with the epoxy group in the layer 33. Thereafter, it was washed with running water for 15 minutes to introduce amino groups into the porous layer 33.
[0111] 上記アミノ基を導入した多孔質層 33を含む基材を、 5質量%のダルタルアルデヒド( 和光純薬工業株式会社製)水溶液中に入れ、 50°Cで 2時間静置して、ポリアリルアミ ン中のほぼ全てのアミノ基をダルタルアルデヒド中の片方のアルデヒド基と反応させ た。その後、流水で 10分洗浄して、多孔質層 33へのアルデヒド基の導入を行った。  [0111] The base material containing the porous layer 33 having the amino group introduced therein was placed in a 5 mass% aqueous solution of dartalaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.) and allowed to stand at 50 ° C for 2 hours. Almost all amino groups in polyallylamine were reacted with one aldehyde group in dartalaldehyde. Thereafter, the aldehyde group was introduced into the porous layer 33 by washing with running water for 10 minutes.
[0112] 上記アルデヒド基を導入した多孔質体 33に、 5'末端にァミノ修飾した 20塩基の DN A (プローブ N0、配列 5'- amine- ACGTCATCGTCTCGATCTCG- 3'、エスペックオリ ゴサービス株式会社製)の濃度 50 μ Μ水溶液を 2 μ L滴下して、湿度 100%、 50°C にて 15時間静置し、 DNAの末端アミノ基を多孔質層 33のアルデヒド基と反応させた 。さらに、 0. 2質量%のテトラヒドロ硼酸ナトリウム水溶液中に入れ、 5分間還元反応さ せた。次 ヽで、 0. 2XSSC/0. 10/0SDS溶液で洗净し(0. 2XSSCiま 0. 03MNaCl , 3mMクェン酸ナトリウム水溶液であり、 0. 1%SDSは 0. 1質量%ドデシル硫酸ナト リウム水溶液である)、 0. 2 X SSCでリンスし、更に蒸留水で洗浄し、自然乾燥させて 、多孔質層 33に DNA (プローブ NO)を固定した。以上により、多孔質体 33の細孔表 面に DNA (プローブ NO)が固定された第 1保持部 1を構成した。 [0112] 20-base DN A amino-modified at the 5 'end of the porous body 33 introduced with the aldehyde group (probe N0, sequence 5'-amine-ACGTCATCGTCTCGATCTCG-3', manufactured by Espec Oligo Service Co., Ltd.) 2 μL of a 50 μM aqueous solution of the solution was dropped, and allowed to stand at 100% humidity and 50 ° C. for 15 hours to react the terminal amino group of DNA with the aldehyde group of the porous layer 33. Further, it was placed in a 0.2 mass% sodium tetrahydroborate aqueous solution and subjected to a reduction reaction for 5 minutes. In the next ヽ, 0. 2XSSC / 0. 1 0 /0 SDS solution was washed净(0. 2XSSCi or 0. 03MNaCl, a 3mM Kuen aqueous solution of sodium, 0.1% SDS is 0.1% by weight dodecyl sulfate It was rinsed with 0.2 X SSC, further washed with distilled water, and naturally dried to immobilize DNA (probe NO) on the porous layer 33. As described above, the first holding unit 1 in which DNA (probe NO) was immobilized on the pore surface of the porous body 33 was configured.
[0113] (カバー層側部材の形成)  [0113] (Formation of cover layer side member)
厚さ 80 mのポリエチレンテレフタレート(PET)シートを一時的な支持体(図示略) として、この上にバーコ一ターにて組成物 X2を塗工し、該未硬化塗膜に、紫外線ラ ンプ # 1により紫外線を 1秒間照射して半硬化させ、カバー層 25を形成した。 カバ 一層 25の上に、バーコ一ターにて組成物 XIを塗工し、フォトマスクを通して、該未硬 化塗膜の連絡流路 18を形成すべき部分 (図 4参照)以外の部分に、紫外線ランプ # 2により紫外線を 120秒間照射して製膜液 XIを半硬化させ、第 2外部層 24を形成し た。その後、紫外線の非照射部分に残された未硬化の組成物 XIを 50%エタノール 水溶液で洗浄除去し、連絡流路 8となる溝を形成し、カバー層側部材とした。 Using an 80 m thick polyethylene terephthalate (PET) sheet as a temporary support (not shown), composition X2 was coated on the uncured film with a bar coater. The cover layer 25 was formed by irradiating with UV rays for 1 second and semi-curing. The composition XI is applied on the cover layer 25 with a bar coater, and through a photomask, the communication path 18 of the uncured coating film 18 is to be formed (see FIG. 4). The second outer layer 24 is formed by semi-curing the film-forming solution XI by irradiating it with ultraviolet lamp # 2 for 120 seconds. It was. Thereafter, the uncured composition XI remaining in the non-irradiated portion of the ultraviolet rays was removed by washing with a 50% aqueous ethanol solution to form a groove serving as the communication channel 8 to obtain a cover layer side member.
[0114] (2つの部材の固着)  [0114] (Fixing two members)
前記カバー層側部材の第 2外部層 24を、前記基材側部材の第 1外部層 22に位置 を合わせて積層し、その状態で、紫外線ランプ # 1により紫外線を 60秒間照射して 硬化を進めて固着した。その後、一時的な支持体(図示略)をカバー層 25から剥離し 、分離デバイス前駆体を得た。  The second outer layer 24 of the cover layer side member is laminated in alignment with the first outer layer 22 of the base member side member, and in this state, the ultraviolet ray lamp # 1 is irradiated with ultraviolet rays for 60 seconds to be cured. Proceeded and stuck. Thereafter, the temporary support (not shown) was peeled from the cover layer 25 to obtain a separation device precursor.
[0115] (その他の構造の形成)  [0115] (Formation of other structures)
次に、分離用流路 3の流入口 5となる端部において、ドリルを用いて、基材 21、及び 第 1外部層 22に直径 0. 5mmの穴を開けて流入口 5を形成した。同様にして、連絡 流路 8の端部において、基材 21に直径 0. 3mmの穴を開けて取出口 7を形成し、内 径 8mm、高さ 10mmの管を取出口 7に接着し貯液槽 37とした。また同様にして、連 絡流路 18の端部において、基材 21、第 1外部層 22、および内部層 23に直径 0. 3m mの穴を開けて取出口 17を形成し、内径 8mm、高さ 10mmの管を取出口 17に接着 し貯液槽 37とした。  Next, a hole having a diameter of 0.5 mm was formed in the base material 21 and the first outer layer 22 by using a drill at the end portion of the separation channel 3 that becomes the inlet 5 to form the inlet 5. Similarly, at the end of the communication channel 8, a hole having a diameter of 0.3 mm is formed in the base material 21 to form the outlet 7, and a pipe having an inner diameter of 8 mm and a height of 10 mm is bonded to the outlet 7 and stored. The liquid tank was 37. Similarly, at the end of the communication channel 18, a hole having a diameter of 0.3 mm is formed in the base material 21, the first outer layer 22, and the inner layer 23 to form the outlet 17, and the inner diameter is 8 mm. A pipe with a height of 10 mm was bonded to the outlet 17 to form a liquid storage tank 37.
[0116] 以上のようにして、 DNA (プローブ NO)が固定された第 1保持部 1を備えた分離デ バイス 100を作製した。分離デバイス 100の外形は 100mm X 25mm X I . 4mmで ある。各部の寸法は、基材 21の厚みが lmmであり、第 1外部層 22、内部層 23、第 2 外部層 24、及びカバー層 25の厚みは全て約 100 mであり、多孔質層の厚みは約 5 m、多孔質層の細孔径は約 1 μ mである。また、分離用流路 3の寸法は、幅が約 500 m、高さが 95 m、長さが約 40mmであり、分離用流路 3は流出口付近で幅 が約 100 mになるよう、徐々に狭められている。連絡流路 8及び連絡流路 18は、幅 力 S約 100 /ζ πι、高さ力 S約 100 /ζ πι、長さが約 30mmであり、第 1流出口 6及び第 2流 出口 16寸法は、幅が 100 m、分離用流路 3の長さ方向の寸法が 100 mであった 。上記の寸法から、分離用流路 3の容積は約 1. 9 /ζ 1 (πιπι3)となる。 [0116] As described above, the separation device 100 including the first holding unit 1 on which DNA (probe NO) was fixed was produced. The outline of the separation device 100 is 100 mm X 25 mm XI .4 mm. As for the dimensions of each part, the thickness of the base material 21 is lmm, and the thicknesses of the first outer layer 22, the inner layer 23, the second outer layer 24, and the cover layer 25 are all about 100 m, and the thickness of the porous layer Is about 5 m, and the pore size of the porous layer is about 1 μm. The dimensions of the separation channel 3 are about 500 m in width, 95 m in height, and about 40 mm in length, so that the separation channel 3 has a width of about 100 m near the outlet. It is gradually narrowed. The communication channel 8 and the communication channel 18 have a width force S of about 100 / ζ πι, a height force S of about 100 / ζ πι, a length of about 30 mm, and the first outlet 6 and the second outlet 16 have dimensions. The width was 100 m, and the length of the separation channel 3 in the length direction was 100 m. From the above dimensions, the volume of the separation channel 3 is about 1.9 / ζ 1 (πιπι 3 ).
[0117] [物質分離方法]  [0117] [Method of substance separation]
〔温度変化法〕  [Temperature change method]
(準備) 分離実験用の原溶液として、プローブ NOと相補的な塩基配列を有し、蛍光色素 C y3 (アマシャムバイオサイエンス社製)で標識された 20塩基 1本鎖 DNA(FO、配列 3 '― TGCAGTAGCAGAGCTAGAGC— Cy3— 5,)の 1 μ Μの緩衝液溶液を、ァスピレー ターで減圧しつつ超音波洗浄機に 1分間掛けて脱気したものを使用した。 (Preparation) As a stock solution for separation experiments, a 20-base single-stranded DNA (FO, sequence 3'- TGCAGTAGCAGAGCTAGAGC) that has a base sequence complementary to probe NO and is labeled with the fluorescent dye Cy3 (Amersham Biosciences) A 1 μ , buffer solution of Cy3-5,) was degassed by placing it in an ultrasonic cleaner for 1 minute while reducing the pressure with an aspirator.
[0118] 分離デバイス 100の分離用流路 3部分の上面に lmm厚のアクリル板(図示略)を 断熱材として置き、該分離デバイス 100を 54°Cに調節された温調プレート(図示略) の上に乗せた。この状態で分離用流路 3の温度は 50°Cであった。  [0118] A lmm thick acrylic plate (not shown) is placed on the upper surface of the separation channel 3 of the separation device 100 as a heat insulating material, and the separation device 100 is adjusted to a temperature control plate (not shown) at 54 ° C. I put it on the top. In this state, the temperature of the separation channel 3 was 50 ° C.
[0119] 導入口 15に、マイクロシリンジポンプ(図示略)から原溶液を 5 μ 1Z分で 30分間導 入したところ、第 1取出口 7及び第 2取出口 17から流出する溶液の蛍光強度は当初 ほぼゼロであつたが、徐々に増えて行き、一定強度に収束した。  [0119] When the original solution was introduced into the inlet 15 from a microsyringe pump (not shown) for 30 minutes at 5 µ1Z, the fluorescence intensity of the solution flowing out from the first outlet 7 and the second outlet 17 was Although it was almost zero at first, it gradually increased and converged to a certain intensity.
[0120] (取り込み工程)  [0120] (Uptake process)
分離デバイス 100を上記の 54°Cに調節された温調プレート(図示略)の上に乗せ、 ポンプを止めて 1分間静置した。第 1回目の取り込み工程に限り、該 2分間の間に、 第 1取出口 7及び第 2取出口 17の貯液槽 37に溜まった液を抜き出し、貯液槽を空に した。  The separation device 100 was placed on the above-described temperature control plate (not shown) adjusted to 54 ° C., and the pump was turned off and allowed to stand for 1 minute. Only in the first intake step, the liquid accumulated in the storage tank 37 of the first outlet 7 and the second outlet 17 was extracted during the two minutes, and the storage tank was emptied.
[0121] (放出工程)  [0121] (Release process)
次いで、分離デバイス 100を 105°Cに調節された温調プレート(図示略)の上に載 せ替え、 10秒経過後力も 6秒間、ポンプを 190 1Z分の流速で運転することにより、 新たな原溶液を分離用流路 3に導入すると同時に該溶液にて分離用流路 3内の溶 液を押し出した。なお、別途、分離用流路 3部分の昇温状態を測定したところ、乗せ 替えた 10秒後に約 80°C、 16秒後には約 90°Cであった。  Next, the separation device 100 is placed on a temperature control plate (not shown) adjusted to 105 ° C, and after 10 seconds, the force is also applied for 6 seconds, and the pump is operated at a flow rate of 190 1Z to obtain a new one. The original solution was introduced into the separation channel 3 and at the same time, the solution in the separation channel 3 was extruded with the solution. Separately, when the temperature rise state of the separation channel 3 was measured, it was about 80 ° C 10 seconds after the transfer and about 90 ° C after 16 seconds.
[0122] 上記の取り込み工程と放出工程を交互にそれぞれ 30回繰り返し、第 1取出口 7と第 2取出口 17の貯液槽 37に溜まった溶液を採取し、蛍光分光光度系にて蛍光強度を 測定した。その結果、原溶液の蛍光強度を基準として、第 1取出口力 取り出された 溶液の蛍光強度比 [即ち DNA (FO)の濃度比]は 1. 24、第 2取出口 17から取り出さ れた溶液の蛍光強度比は 0. 76であった。  [0122] The above uptake and release steps were repeated 30 times alternately, and the solution collected in the storage tank 37 of the first outlet 7 and the second outlet 17 was collected, and the fluorescence intensity was measured using a fluorescence spectrophotometric system. Was measured. As a result, with reference to the fluorescence intensity of the original solution, the first outlet force fluorescence intensity ratio of the solution taken out (ie, the concentration ratio of DNA (FO)) is 1.24, and the solution taken out from the second outlet 17 The fluorescence intensity ratio was 0.76.
[0123] 〔一定温度法〕  [0123] [Constant temperature method]
分離デバイス 100を上記の 54°Cに調節された温調プレート(図示略)の上に乗せた まま、マイクロシリンジポンプ(図示略)を 1. O /z lZ分の一定速度で連続的に 60分間 運転し、第 1取出口 7と第 2取出口 17の貯液槽に溜まった溶液を採取した。その結果 、原溶液の蛍光強度を基準として、第 1取出口力 取り出された溶液の蛍光強度比 [ 即ち DNA(FO)の濃度比]は 1. 05、第 2取出口 17から取り出された溶液の蛍光強 度は 0. 95であった。 Separation device 100 was placed on the above temperature control plate (not shown) adjusted to 54 ° C. The microsyringe pump (not shown) is continuously operated at a constant speed of 1. O / z lZ for 60 minutes, and the solution accumulated in the storage tanks of the first outlet 7 and the second outlet 17 is collected. did. As a result, with reference to the fluorescence intensity of the original solution, the first extraction force is the fluorescence intensity ratio of the extracted solution [ie, the concentration ratio of DNA (FO)] is 1.05, and the solution extracted from the second extraction port 17 The fluorescence intensity of was 0.95.
実施例 2  Example 2
[0124] 本実施例では、立体型の段階的配置型物質分離デバイスであって、前記実施態 様の第 1手段の例を示す。  In this example, a three-dimensional stepwise arrangement type material separation device, which is an example of the first means of the above embodiment, will be described.
図 5、図 6は、実施例 2で作製した物質分離デバイスの平面図及び側面断面図であ る。実施例 1と同様の方法で、図 5、図 6に示された形状の段階配置型の立体型の分 離デバイスを作製した。但し、多孔質層は、分離用流路 3の内壁となる部分以外の第 1外部層 22表面にも形成されている力 分離用流路 3の内壁となる部分以外の場所 は組成物 XIを塗布し、流路 3に相対する部分以外の部分に紫外線照射することによ つて該硬化樹脂で目止めされて非多孔質とされ、分離用流路 3の第 1外部層 22側の 内壁にのみ多孔質層 33が残されて第 1保持部 1とされている。又、同じ構造の多孔 質層 34が、分離用流路 3の第 2外部層 24側の内壁に形成されて第 2保持部 2とされ ている。なお、図 5、図 6は、多段配置の接続方法を示したものであり、各分離室の詳 細な形状は略されている。各分離室の詳細は、図 4に示したものと同様である。  5 and 6 are a plan view and a side cross-sectional view of the substance separation device manufactured in Example 2. FIG. In the same manner as in Example 1, a stepwise arrangement type three-dimensional separation device having the shape shown in FIGS. 5 and 6 was produced. However, the porous layer is formed on the surface of the first outer layer 22 other than the inner wall of the separation channel 3, and the portion other than the inner wall of the separation channel 3 is coated with the composition XI. Applying and irradiating the part other than the part opposite to the flow path 3 with ultraviolet rays, it is sealed with the cured resin to make it non-porous, and is applied to the inner wall of the separation flow path 3 on the first outer layer 22 side. Only the porous layer 33 is left and the first holding part 1 is formed. In addition, a porous layer 34 having the same structure is formed on the inner wall of the separation channel 3 on the second outer layer 24 side to serve as the second holding portion 2. FIGS. 5 and 6 show a multi-stage connection method, and the detailed shape of each separation chamber is omitted. The details of each separation chamber are the same as those shown in FIG.
[0125] 本実施例 2の物質分離デバイスは、分離用流路 3が 21段にわたって直列接続され ている。また、各段における分離用流路 3の本数は、第一段が 1本、第二段が 2本と 順次増加し、第十一段以降は交互に 11本および 10本となっている。そして、分離用 流路 3の本数が 11本となる段 (奇数段)における各分離用流路 3の流出口のうち、そ の上流段における分離用流路 3の第 1流出口 6の通過回数が最多となる流体の流出 ロカ 取出流路 42を介して第 1取出口 7に接続されている。また、その上流段におけ る分離用流路 3の第 2流出口 16の通過回数が最多となる流体の流出口力 取出流 路 44を介して第 2取出口 17に接続されている。さらに、その他の流出口が、取出流 路 43を介して第 3取出口 27に接続されて 、る。  [0125] In the substance separation device of Example 2, the separation channel 3 is connected in series over 21 stages. In addition, the number of separation flow paths 3 in each stage increases sequentially from 1 for the first stage and 2 for the second stage, and 11 and 10 alternately after the 11th stage. Then, among the outlets of each separation channel 3 in the stage where the number of separation channels 3 is 11 (odd stage), the passage through the first outlet 6 of the separation channel 3 in the upstream stage Flow out of the fluid with the highest number of times It is connected to the first outlet 7 via the loca outlet channel 42. Further, the fluid is connected to the second outlet 17 via the outlet outlet force outlet 44 of the fluid having the largest number of passages through the second outlet 16 of the separation channel 3 in the upstream stage. In addition, the other outlet is connected to the third outlet 27 via the outlet 43.
[0126] 実施例 2の物質分離デバイスは、内部層 23の両面に第 1外部層 22および第 2外部 層 24を固着して構成され、内部層 23に分離用流路 3が構成され、第 1外部層の外側 に基材 21が設けられ、第 2外部層 24の外側にカバー層 25が設けられた立体型であ る。そして、第 1外部層 22における内部層 23側の表面に第 1保持部 1および第 1流 出口 6が設けられ、第 2外部層 24における内部層 23側の表面に第 2保持部 2および 第 2流出口 16が設けられている。 [0126] The substance separation device of Example 2 includes the first outer layer 22 and the second outer layer on both sides of the inner layer 23. The separation channel 3 is formed on the inner layer 23, the base material 21 is provided outside the first outer layer, and the cover layer 25 is provided outside the second outer layer 24. 3D type. The first holding part 1 and the first outlet 6 are provided on the surface of the first outer layer 22 on the inner layer 23 side, and the second holding part 2 and the first outlet 6 are provided on the surface of the second outer layer 24 on the inner layer 23 side. Two outlets 16 are provided.
[0127] 実施例 2の物質分離デバイス各部の寸法は、外形が 50mm X 50mm X 2. 365m mであり、分離用流路 3の寸法は幅が約 300 /ζ πι、長さが約 lmm、高さが約 60 m ( 多孔質層 1の厚み約 5 m、および多孔質層 2の厚み約 5 mを含む)、連絡流路 38 ,連絡流路 48、取出流路 42、 44は幅力約 100 m、高さ力 ^約 60 /ζ πι、流入口 5およ び流出口 6、 16の直径が約 300 mである。 [0127] The dimensions of each part of the substance separation device of Example 2 are 50 mm X 50 mm X 2.365 mm, and the dimensions of the separation channel 3 are about 300 / ζ πι in width, about lmm in length, The height is about 60 m (including the thickness of the porous layer 1 is about 5 m and the thickness of the porous layer 2 is about 5 m), the communication channel 38, the communication channel 48, and the extraction channels 42 and 44 are width forces About 100 m, height force ^ about 60 / ζ πι, diameter of inlet 5 and outlet 6, 6 is about 300 m.
実施例 3  Example 3
[0128] 実施例 3の物質分離デバイスでは、任意の連続する 2つの段について、上流段に おける分離用流路の断面積の総和が、下流段における複数の分離用流路の断面積 の総和と略同一になるように形成した。  [0128] In the substance separation device of Example 3, for any two consecutive stages, the sum of the cross-sectional areas of the separation channel in the upstream stage is the sum of the cross-sectional areas of the plurality of separation channels in the downstream stage. It was formed so as to be substantially the same.
[0129] 図 11、図 12は、実施例 3の物質分離デバイスの第一段と第二段部分の部分平面 図と側面図である。実施例 3では、対向配置された一対の平面の隙間に、分離用流 路 3が形成されている。その一対の平面の内側には、それぞれ第 1保持部 1および第 2保持部 2が形成され、両者の間隔 (すなわち分離用流路の厚さ)は、スぺーサ 36に より一定 (約 55 m)に保持されている。各分離用流路 3の幅は、流入口 5から暫時 拡大されている。第 1保持部 1および第 2保持部 2の下流側端部には、それぞれ複数 の第 1流出口 6および第 2流出口 16が所定間隔 (約 600 μ mおき)に配設されて!/、る 。上流段の分離用流路 3aにおける複数の第 1流出口 6に接続された複数本の連絡 流路 38は、一本に合流されて下流段における分離用流路 3bの流入口 5に接続され ている。同様に、上流段の分離用流路 3aにおける複数の第 2流出口 16に接続され た複数本の連絡流路 48は、一本に合流されて下流段における分離用流路 3cの流 入口 5に接続されている。  FIGS. 11 and 12 are a partial plan view and a side view of the first stage and the second stage part of the substance separation device of Example 3. FIG. In Example 3, the separation flow path 3 is formed in a gap between a pair of opposed flat surfaces. The first holding part 1 and the second holding part 2 are formed inside the pair of planes, respectively, and the distance between them (that is, the thickness of the separation channel) is constant by the spacer 36 (about 55 m). The width of each separation channel 3 is enlarged from the inlet 5 for a while. A plurality of first outlets 6 and second outlets 16 are arranged at predetermined intervals (approximately every 600 μm) at the downstream ends of the first holding part 1 and the second holding part 2, respectively. , Ru The plurality of communication channels 38 connected to the plurality of first outlets 6 in the upstream separation channel 3a are joined together and connected to the inlet 5 of the separation channel 3b in the downstream stage. ing. Similarly, the plurality of communication channels 48 connected to the plurality of second outlets 16 in the upstream separation channel 3a are joined together into the inlets 5 of the separation channel 3c in the downstream stage. It is connected to the.
[0130] [表 1] 段 分離用流路の本数 (本) 分離用流路の幅(// m) [0130] [Table 1] Stage Number of separation channels (pieces) Separation channel width (// m)
1 1 6000  1 1 6000
2 2 3000  2 2 3000
3 3 2000  3 3 2000
4 4 1500  4 4 1500
5 5 1200  5 5 1200
6 6 1000  6 6 1000
7 7 860  7 7 860
8 8 750  8 8 750
9 9 670  9 9 670
10 10 600  10 10 600
1 1 1 1 550  1 1 1 1 550
12 12 500  12 12 500
13 13 460  13 13 460
14 14 430  14 14 430
15 15 400  15 15 400
16 16 375  16 16 375
17 17 352  17 17 352
18 18 333  18 18 333
19 19 315  19 19 315
20 20 300  20 20 300
21 21 300  21 21 300
[0131] 表 1に、各段における分離用流路の本数および幅を示す。なお、各段における分 離用流路 3の厚さは略一定であるから、分離用流路の幅は流路断面積に比例してい る。表 1からわカ^)ように、実施例 2では、段数と同じ本数の分離用流路 3が各段に形 成されている。一方、分離用流路の幅は、下流段から上流段にかけて広くなつている 。そして、分離用流路の幅と本数との積は、各段とも略一致している。すなわち、上流 段における複数の分離用流路の断面積の総和が、下流段における複数の分離用流 路の断面積の総和と、略同一になっている。 [0131] Table 1 shows the number and width of the separation channels in each stage. Since the thickness of the separation channel 3 in each stage is substantially constant, the width of the separation channel is proportional to the channel cross-sectional area. As shown in Table 1), in Example 2, the same number of separation channels 3 as the number of stages are formed in each stage. On the other hand, the width of the separation channel increases from the downstream stage to the upstream stage. The product of the width of the separation channel and the number thereof is substantially the same in each stage. That is, the sum of the cross-sectional areas of the plurality of separation channels in the upstream stage is substantially the same as the sum of the cross-sectional areas of the plurality of separation channels in the downstream stage.
[0132] 実施例 3の物質分離デバイスによれば、上流段における分離用流路の本数が少な くても、多量の試料を流通させることができるので、濃縮溶液の取出量を確保すること が可能になる。  [0132] According to the substance separation device of Example 3, a large amount of sample can be circulated even if the number of separation channels in the upstream stage is small, so that the amount of concentrated solution taken out can be secured. It becomes possible.
実施例 4  Example 4
[0133] 実施例 4の物質分離デバイスでは、立体型の物質分離デバイスにおいて、第 1保 持部 1と第 2保持部 2が形成されていて、該第 1保持部 1と第 2保持部 2は多孔質層で 形成されて!、て、その合計の厚みが分離用流路の高さに等 U、物質分離デバイスを 形成した。 [0133] In the substance separation device of Example 4, in the three-dimensional substance separation device, The holding part 1 and the second holding part 2 are formed, and the first holding part 1 and the second holding part 2 are formed of a porous layer! The total thickness is high in the separation channel. In addition, a material separation device was formed.
[0134] 図 5は実施例 4で作製した物質分離デバイスの平面図であり、図 13は ε— ε線に おける側面断面図である。実施例 4では、デカン酸メチル (和光純薬工業株式会社 製)の添加量を 180質量部とした製膜液 Y1の代わりに、その添加量を 350質量部と したこと以外は製膜液 Y1と同じ組成の、製膜液 Υ2を使用した。この製膜液 Υ2を榭 脂層 1の内面に塗工し、紫外線ランプ # 1により紫外線を照射して硬化させ、多孔質 層 33を形成した。実施例 2では約 5 mであった多孔質層 33の厚さ力 約 30 mに 形成されている。また、実施例 2では約: mであった多孔質層 33の平均孔径力 デ カン酸メチルの添力卩量を増加させることにより、約 8 mに形成されている。  FIG. 5 is a plan view of the material separation device produced in Example 4, and FIG. 13 is a side sectional view taken along the line ε-ε. In Example 4, instead of the film-forming solution Y1 in which the amount of methyl decanoate (manufactured by Wako Pure Chemical Industries, Ltd.) was 180 parts by mass, the amount of the film-forming solution Y1 was changed to 350 parts by mass. A film-forming solution 2 having the same composition as in Example 1 was used. This film-forming solution 2 was applied to the inner surface of the resin layer 1 and cured by irradiating it with ultraviolet rays using an ultraviolet lamp # 1 to form a porous layer 33. In Example 2, the thickness force of the porous layer 33 which was about 5 m was formed to about 30 m. Further, the average pore diameter force of the porous layer 33 that was about m in Example 2 was increased to about 8 m by increasing the amount of added force of methyl decanoate.
[0135] 次に、多孔質層 33の上に、スピンコーターにて糸且成物 XIを塗工し、多孔質層 33に 含浸させた。フォトマスクを通して、分離用流路 3、や取出流路 43を形成すべき部分 以外の部分に、紫外線ランプ # 2により紫外線を照射することにより、照射部分にお ける多孔質体を目止め(非多孔質化)し、目止めされな力つた多孔質層 33に DNA ( NO)を固定した。そして、分離用流路 3となる溝の両端部に、ドリルを用いて孔を穿ち 、流入口 5および第 1流出口 6を形成した。  Next, on the porous layer 33, the thread and the product XI were applied with a spin coater, and the porous layer 33 was impregnated. By irradiating UV light with UV lamp # 2 to the parts other than the part where the separation flow path 3 and the extraction flow path 43 are to be formed through a photomask, the porous material in the irradiated part is awaited (non- The DNA (NO) was fixed to the porous layer 33 that had been made porous and was not targeted. Then, holes were drilled using drills at both ends of the groove to be the separation channel 3 to form the inlet 5 and the first outlet 6.
[0136] 上述した第 1内部層 23aと同様にして、 DNA(Nl)が固定された多孔質層 34を持 つ第 2内部層 23bを作製した。そして、第 1内部層 23aの多孔質層 33の表面と第 2内 部層 23bの多孔質体 34の表面とを密着させ、紫外線ランプ Aにより紫外線を照射す ることにより、両プレートを完全に固着した。これにより、第 1保持部 1の多孔質層 33と 第 2保持部 2の多孔質体 34との間隙が 0となり、両者によって厚さ約 60 mの分離用 流路 3が形成された。  [0136] In the same manner as the first inner layer 23a described above, a second inner layer 23b having a porous layer 34 to which DNA (Nl) was immobilized was produced. Then, the surface of the porous layer 33 of the first inner layer 23a and the surface of the porous body 34 of the second inner layer 23b are brought into close contact with each other, and ultraviolet rays are irradiated by the ultraviolet lamp A, so that both plates are completely attached. Stuck. As a result, the gap between the porous layer 33 of the first holding unit 1 and the porous body 34 of the second holding unit 2 became 0, and the separation channel 3 having a thickness of about 60 m was formed by both.
[0137] なお、多孔質 33、 34の平均孔径は約 8 μ mと大きく形成されて 、るので、流体の流 通を妨げることはない。  [0137] It should be noted that the average pore diameter of the porous bodies 33 and 34 is formed as large as about 8 µm, and therefore does not hinder the flow of fluid.
実施例 5  Example 5
[0138] 「物質分離デバイスの作成」 [0138] "Creating a substance separation device"
前記カバー層側部材の第 2外部層 24の表面にも多孔質層 34を形成し、前記分離 用流路 3の前記第 1保持部 1の対向面に、図 1に示されたものと同様の第 2保持部 2 を形成したこと、及び、該第 2保持部には、第 1保持部に固定した DNA (プローブ NO )とは 1塩基だけ配列の異なる DNA (プローブ Nl、配列 5'-amine-ACGTCATTGTC TCGATCTCG-3')を固定したこと、以外は実施例 1と同様の物質分離デバイスを作 製した。 A porous layer 34 is also formed on the surface of the second outer layer 24 of the cover layer side member, and the separation A second holding part 2 similar to that shown in FIG. 1 is formed on the surface of the first flow path 3 facing the first holding part 1, and the second holding part includes a first holding part The same substance separation device as in Example 1 except that DNA (probe Nl, sequence 5'-amine-ACGTCATTGTC TCGATCTCG-3 ') that differs in sequence by one base from the DNA immobilized on (probe NO) was immobilized. Produced.
[0139] 「物質分離方法」  [0139] "Method of substance separation"
分離実験用の原溶液として、前記蛍光色素 Cy3で標識された 1本鎖 DNA (FO)、 及び、前記プローブ N1と相補的な塩基配列を有し、蛍光色素 Cy5 (アマシャムバイ ォサイエンス社製)で標識された 20塩基 1本鎖 DNA(F1、配列 3' - TGCAGTAACA GAGCTAGAGC- Cy5- 5,)の各 1 M混合緩衝液溶液を使用したこと以外は、実施 例 1と同様にして温度変化法で分離実験を行つた。  As a stock solution for separation experiments, the fluorescent dye Cy5 (manufactured by Amersham Biosciences) has a single-stranded DNA (FO) labeled with the fluorescent dye Cy3 and a base sequence complementary to the probe N1. Temperature change method in the same manner as in Example 1 except that each 1 M mixed buffer solution of 20-base single-stranded DNA (F1, sequence 3 '-TGCAGTAACA GAGCTAGAGC-Cy5-5) labeled with A separation experiment was conducted.
[0140] その結果、原溶液の Cy3と Cy5の蛍光強度を基準として、第 1取出口から取り出さ れた溶液の Cy3の蛍光強度比 [即ち DNA(FO)の濃度比]は 1. 08、 Cy5の蛍光強 度比 [即ち DNA(Fl)の濃度比]は 0. 93、第 2取出口 17から取り出された溶液の Cy 3の蛍光強度比は 0. 93、Cy5の蛍光強度比は 1. 08であった。  [0140] As a result, based on the fluorescence intensity of Cy3 and Cy5 in the original solution, the fluorescence intensity ratio of Cy3 in the solution taken out from the first outlet (ie, the concentration ratio of DNA (FO)) is 1. 08, Cy5 The fluorescence intensity ratio [ie, the concentration ratio of DNA (Fl)] is 0.93, the Cy 3 fluorescence intensity ratio of the solution taken out from the second outlet 17 is 0.93, and the Cy5 fluorescence intensity ratio is 1. 08.
実施例 6  Example 6
[0141] 「物質分離デバイスの作製」 [0141] "Production of substance separation device"
段数が 3であること、及び、分離用流路 3の寸法が下記のようであること以外は実施 例 3と同様の物質分離デバイスを作製した。分離用流路の寸法は、第 1段が、高さ 10 m、幅 1500 μ m、長さ 3cm、第 2段力 高さ 100 μ m、幅 750 μ m、長さ 3cm、第 3段が、高さ 100 μ m、幅 500 μ m、長さ 3cmとした。  A material separation device similar to that of Example 3 was produced, except that the number of stages was 3 and the dimensions of the separation channel 3 were as follows. The size of the separation channel is 10 m high, 1500 μm wide, 3 cm long, 2nd stage, 100 μm high, 750 μm wide, 3 cm long, and 3rd high. The height was 100 μm, the width was 500 μm, and the length was 3 cm.
[0142] 「物質分離方法」 [0142] "Material separation method"
分離実験用の原溶液として、実施例 5と同様の DNA混合溶液を使用し、ポンプか らの 1回の送液時間を 15秒としたこと以外は実施例 1と同様にして温度変化法で分 離実験を行った。  As a stock solution for the separation experiment, the same DNA mixed solution as in Example 5 was used, and the temperature change method was the same as in Example 1 except that the time for one liquid delivery from the pump was 15 seconds. A separation experiment was performed.
[0143] その結果、原溶液の Cy3と Cy5の蛍光強度を基準として、第 1取出口から取り出さ れた溶液の Cy3の蛍光強度比 [即ち DNA(FO)の濃度比]は 1. 25、 Cy5の蛍光強 度比 [即ち DNA(Fl)の濃度比]は 0. 75、第 2取出口 17から取り出された溶液の Cy 3の蛍光強度比は 0. 75、Cy5の蛍光強度比は 1. 25であった。 [0143] As a result, based on the fluorescence intensity of Cy3 and Cy5 in the original solution, the fluorescence intensity ratio of Cy3 in the solution taken out from the first outlet (ie, the concentration ratio of DNA (FO)) is 1.25, Cy5 The fluorescence intensity ratio of [the concentration ratio of DNA (Fl)] is 0.75, and the solution of Cy taken out from the second outlet 17 is Cy. The fluorescence intensity ratio of 3 was 0.75, and the fluorescence intensity ratio of Cy5 was 1.25.
実施例 7  Example 7
[0144] 「物質分離デバイスの作製」  [0144] "Production of substance separation device"
実施例 1において、(1)第 1外部層 22の形成工程に先立ち、基材 21の表面に組成 物 XIを塗布し、全体に紫外線を 10秒間照射して半硬化させ、接着層(図示略)とし たこと、(2)第 1外部層 22の形成後、多孔質層 33を形成する代わりに、平均粒径約 1 0 μ mの疎水化シリカゲル粉末(フエニルプロビルシラン処理シリカゲル:和光純薬製 )を接触させ、接着層に粘着力で付いた分を残して除去し、分離用流路部部分に紫 外線を照射して接着層を硬化させて前記シリカゲルを分離用流路の底面に固着させ 、分離用流路以外の部分の、固着していないシリカゲルはエタノールで洗浄除去し たこと、以外は実施例 1と同様にして、多孔質層 33の代わりに、シリカゲル層 33を有 する物質分離デバイスを作製した。  In Example 1, (1) Prior to the step of forming the first outer layer 22, the composition XI was applied to the surface of the substrate 21, and the entire surface was irradiated with ultraviolet rays for 10 seconds to be semi-cured, and an adhesive layer (not shown) (2) After forming the first outer layer 22, instead of forming the porous layer 33, hydrophobized silica gel powder having an average particle size of about 10 μm (phenylpropylsilane-treated silica gel: (Made by Kokuyo Pure Chemical Co., Ltd.), leaving the adhesive layer attached to the adhesive layer, leaving it removed, and irradiating the separation channel part with ultraviolet rays to cure the adhesive layer, so that the silica gel is removed from the separation channel. The silica gel layer 33 was used instead of the porous layer 33 in the same manner as in Example 1 except that the silica gel that was fixed to the bottom surface and the non-fixed silica gel other than the separation channel was washed away with ethanol. A material separation device was created.
[0145] 「物質分離方法」  [0145] "Method of substance separation"
分離実験用の原溶液として、 2,3-ジヒドロキシナフタレン (DHN :和光純薬製)の 1 M水溶液を使用したこと、吸着温度が 25°Cであること、以外は、実施例 1と同様に して温度変化法で分離実験を行った。但し、流出液中の DHNの濃度は 342nmに おける紫外線吸光度で測定した。  As in Example 1, except that a 1 M aqueous solution of 2,3-dihydroxynaphthalene (DHN: Wako Pure Chemical Industries) was used as the stock solution for the separation experiment, and the adsorption temperature was 25 ° C. Then, a separation experiment was conducted by the temperature change method. However, the concentration of DHN in the effluent was measured by UV absorbance at 342 nm.
[0146] その結果、第 1取出口から取り出された溶液の濃度と第 2取出口力 取り出された 溶液の濃度との比は 1. 80であった。  [0146] As a result, the ratio of the concentration of the solution taken out from the first outlet and the concentration of the solution taken out from the second outlet force was 1.80.
実施例 8  Example 8
[0147] 「物質分離デバイスの作製」  [0147] "Production of substance separation device"
多孔質層 33の代わりに、実施例 7出作製したと同様のシリカゲル層 33が形成され ていること以外は実施例 6と同じ寸法の物質分離デバイスを作製した。  Instead of the porous layer 33, a material separation device having the same dimensions as in Example 6 was produced, except that the same silica gel layer 33 as produced in Example 7 was formed.
[0148] 「物質分離方法」  [0148] "Method of substance separation"
分離実験用の原溶液として、実施例 7と同じ 2,3-ジヒドロキシナフタレン (DHN :和 光純薬製)の: L M水溶液を使用したこと、吸着温度が 25°Cであること以外は実施例 6と同様にして温度変化法で分離実験を行った。  Example 6 except that the same solution of 2,3-dihydroxynaphthalene (DHN: manufactured by Wako Pure Chemical Industries, Ltd.): LM aqueous solution was used as the stock solution for the separation experiment, and the adsorption temperature was 25 ° C. The separation experiment was conducted by the temperature change method in the same manner as described above.
[0149] その結果、第 1取出口から取り出された溶液濃度と第 2取出口から取り出された溶 液濃度との比は 4. 83であった。 [0149] As a result, the concentration of the solution taken out from the first outlet and the solution taken out from the second outlet are shown. The ratio to the liquid concentration was 4.83.
本発明は、流体に溶解した状態で含有される 2種以上の物質、例えば、均一に混 合した 2種以上の流体、溶質と溶媒、溶液中の 2種以上の溶質を、濃縮、精製、回収 、除去、分析などの目的で互いに分離することが可能な物質分離デバイスおよび物 質分離方法を提供する。また、流路切り替えやバルブ操作が必要な回分法でなぐ 連続的に分離することが可能な物質分離デバイスおよび物質分離方法を提供するこ とができる。従って、クロマトグラフィーなどのように、時間制御プログラムでサンプルを 採取する操作は必要なぐカラム式吸着分離のように、流路切替バルブを切り替える 必要もない。また、本発明の物質分離デバイスは、単に多段に接続するだけで高濃 度の分離液を得ることが出来るため、従来の膜分離デバイスをスタックして使用する 場合のように、各段毎にポンプを必要とすることもないため、ポンプをマイクロ流体デ バイス中に組み込み、一つのマイクロ 'トータル 'アナリシス 'システム TAS)とす ることち容易である。  The present invention concentrates, purifies, and purifies two or more substances contained in a fluid dissolved state, for example, two or more uniformly mixed fluids, solutes and solvents, and two or more solutes in a solution. Provided are a substance separation device and a substance separation method that can be separated from each other for the purpose of recovery, removal, analysis, and the like. In addition, it is possible to provide a substance separation device and a substance separation method that can be separated continuously by a batch method that requires flow path switching and valve operation. Therefore, the operation of collecting a sample with a time control program such as chromatography does not need to switch the flow path switching valve as in the case of column-type adsorption separation. In addition, since the substance separation device of the present invention can obtain a high-concentration separation liquid simply by connecting it in multiple stages, it can be used for each stage as in the case of stacking conventional membrane separation devices. Since a pump is not required, it is easy to incorporate the pump into a microfluidic device and create a single micro 'total' analysis 'TAS'.

Claims

請求の範囲 The scope of the claims
[1] 流体中の第 1物質および第 2物質を相互に分離するマイクロデバイスであって、 前記流体を流通させる分離用流路と、  [1] A microdevice that separates a first substance and a second substance in a fluid from each other, and a separation channel for circulating the fluid;
前記分離用流路の下流端に形成された第 1流出口および第 2流出口と、 前記分離用流路の前記第 1流出口側の壁面の一部に設けられた、前記第 1物質を 保持できる第 1保持部と、  A first outlet and a second outlet formed at a downstream end of the separation channel; and the first substance provided on a part of a wall surface on the first outlet side of the separation channel. A first holding part capable of holding;
を有することを特徴とする物質分離デバイス。  A material separation device comprising:
[2] 前記分離用流路が、さらに前記分離用流路の前記第 2流出口側の壁面の一部に 設けられた、前記第 2物質を保持できる第 2保持部を有する請求項 1に記載の物質 分離デバイス。 [2] In the first aspect, the separation channel further includes a second holding portion that is provided on a part of the wall surface on the second outlet side of the separation channel and can hold the second substance. The substance separation device described.
[3] 上流力 下流にかけて前記分離用流路が複数段にわたって配置され、該複数段の うちの任意の連続した 2段において、  [3] Upstream force The separation channel is arranged in a plurality of stages downstream, and in any two consecutive stages of the plurality of stages,
上流段における第 1の分離用流路の第 1流出口が、下流段における第 2の分離用 流路の流入口に接続され、  The first outlet of the first separation channel in the upstream stage is connected to the inlet of the second separation channel in the downstream stage,
前記第 1の分離用流路の第 2流出口が、下流段における第 3の分離用流路の流入 口に接続されている請求項 1または 2に記載の物質分離デバイス。  3. The substance separation device according to claim 1, wherein the second outlet of the first separation channel is connected to the inlet of the third separation channel in the downstream stage.
[4] 上流力 下流にかけて前記分離用流路が複数段にわたって配置され、該複数段の うちの任意の連続した 3段において、 [4] Upstream force The separation channel is arranged in a plurality of stages downstream, and in any three consecutive stages of the plurality of stages,
上流段における第 1の分離用流路の第 1流出口が、中流段における第 2の分離用 流路の流入口に接続されるとともに、前記第 1の分離用流路の第 2流出口が、中流段 における第 3の分離用流路の流入口に接続され、  The first outlet of the first separation channel in the upstream stage is connected to the inlet of the second separation channel in the middle stage, and the second outlet of the first separation channel is Connected to the inlet of the third separation channel in the middle stage,
中流段における前記第 2の分離用流路の第 1流出口が、下流段における第 4の分 離用流路の流入口に接続されるとともに、前記第 2の分離用流路の第 2流出口が、中 流段における第 5の分離用流路の流入口に接続され、  The first outlet of the second separation channel in the middle stage is connected to the inlet of the fourth separation channel in the downstream stage, and the second outlet of the second separation channel. The outlet is connected to the inlet of the fifth separation channel in the middle stage,
中流段における前記第 3の分離用流路の第 2流出口が、下流段における第 6の分 離用流路の流入口に接続されるとともに、前記第 3の分離用流路の第 1流出口が、前 記第 5の分離用流路の流入口に接続されている請求項 1または 2に記載の物質分離 デバイス。 The second outlet of the third separation channel in the middle flow stage is connected to the inlet of the sixth separation channel in the downstream stage, and the first flow of the third separation channel. 3. The substance separation device according to claim 1, wherein the outlet is connected to the inlet of the fifth separation channel.
[5] 最下流段における複数の前記分離用流路の流出口のうち、前記各段における前 記分離用流路の前記第 1流出口の通過回数が最多となる前記流体の流出口が、前 記流体を取り出す第 1取出口に接続され、 [5] Out of the plurality of separation channel outlets in the most downstream stage, the fluid outlet having the largest number of passages of the first outlet in the separation channel in each stage, Connected to the first outlet from which the fluid is removed,
最下流段における複数の前記分離用流路の流出口のうち、前記各段における前 記分離用流路の前記第 2流出口の通過回数が最多となる前記流体の流出口が、前 記流体を取り出す第 2取出口に接続されている請求項 3または 4に記載の物質分離 デバイス。  Of the plurality of separation channel outlets in the most downstream stage, the fluid outlet having the largest number of passages through the second outlet of the separation channel in each stage is the fluid. The substance separation device according to claim 3, wherein the substance separation device is connected to a second outlet from which the gas is taken out.
[6] 上流段における複数の前記分離用流路の断面積の総和は、下流段における複数 の前記分離用流路の断面積の総和と略同一に形成されている請求項 3〜5のいず れか一項に記載の物質分離デバイス。  6. The sum of the cross-sectional areas of the plurality of separation channels in the upstream stage is formed substantially the same as the sum of the cross-sectional areas of the plurality of separation channels in the downstream stage. The substance separation device according to any one of the items.
[7] 最下流段における複数の前記分離用流路の流出口のうち、前記第 1取出口が接続 された流出口および前記第 2取出口が接続された流出口以外の流出口力 上流段 における前記分離用流路の流入口に接続されている請求項 5に記載の物質分離デ バイス。  [7] Outflow force other than the outflow port to which the first take-out port is connected and the outflow port to which the second take-out port is connected among the plurality of separation channel outflow ports in the most downstream stage upstream stage 6. The substance separation device according to claim 5, wherein the substance separation device is connected to an inlet of the separation flow path.
[8] 請求項 3又は 4に記載の物質分離デバイスにおいて、  [8] The substance separation device according to claim 3 or 4,
第 n段において前記分離用流路が i本配され、 n又は iの少なくともいずれかが 2以 上であり、  In the n-th stage, i separation channels are arranged, at least one of n or i is 2 or more,
第 n段にお 、て前記分離用流路の前記第 1流出口の通過回数が最多となる前記流 体の流出口が、前記流体を取り出す第 1取出口に接続され、前記第 2流出口の通過 回数が最多となる前記流体の流出口が、前記流体を取り出す第 2取出口に接続され てなり、  In the nth stage, the outlet of the fluid having the largest number of passages of the first outlet of the separation channel is connected to the first outlet for taking out the fluid, and the second outlet The fluid outlet where the number of passages of the fluid is the largest is connected to the second outlet from which the fluid is extracted,
第 n段以降の段における前記分離用流路が i本配された段の前記分離用流路の流 出口のうち、当該段より上流段において、前記流体が第 1流出口を通過する回数を 1 、前記流体が第 2流出口を通過する回数を mとした際に、 1 mが最も大きい流出口 力 前記第 1取出口に接続され、 m— 1が最も大きい流出口が、前記第 2取出口に接 続されて!ゝる物質分離デバイス。  The number of times the fluid passes through the first outlet in the upstream stage of the separation channel outflow outlet of the stage where i separation flow paths in the nth stage and subsequent stages are arranged. 1, where m is the number of times the fluid passes through the second outlet, 1 m is the largest outlet force, and the outlet having the largest m-1 connected to the first outlet is the second outlet. Connected to the outlet! Talking substance separation device.
[9] 前記分離用流路の壁面は、一対の平行面を含み、 [9] The wall surface of the separation channel includes a pair of parallel surfaces,
前記第 1保持部および前記第 2保持部は、前記一対の平行面に設けられている請 求項 2〜8のいずれか一項に記載の物質分離デバイス。 The first holding part and the second holding part are provided on the pair of parallel surfaces. The substance separation device according to any one of Claims 2 to 8.
[10] 前記物質分離デバイスは、内部層の両面に外部層を積層して構成され、 [10] The substance separation device is configured by laminating an outer layer on both sides of an inner layer,
前記分離用流路は、前記内部層の貫通溝によって構成され、  The separation channel is constituted by a through groove in the inner layer,
上流段の前記分離用流路における前記流出口と下流段の前記分離用流路におけ る前記流入口とを接続する連絡流路が、前記外部層に形成されて!、る請求項 3に記 載の物質分離デバイス。  The communication channel connecting the outlet in the separation channel in the upstream stage and the inlet in the separation channel in the downstream stage is formed in the outer layer! The substance separation device described.
[11] 前記第 1保持部および Zまたは前記第 2保持部は、前記外部層における前記内部 層側の表面に設けられている請求項 10に記載の物質分離デバイス。 11. The substance separation device according to claim 10, wherein the first holding part and Z or the second holding part are provided on a surface of the outer layer on the inner layer side.
[12] 前記分離用流路は、前記物質分離デバイスの内部層に形成され、 [12] The separation channel is formed in an inner layer of the substance separation device,
前記第 1保持部および前記第 2保持部並びに前記第 1流出口および前記第 2流出 口は、前記内部層における前記分離用流路の内壁に設けられている請求項 2〜9の 10. The first holding part, the second holding part, the first outlet, and the second outlet are provided on an inner wall of the separation channel in the inner layer.
V、ずれか一項に記載の物質分離デバイス。 V, a substance separation device according to any one of the above.
[13] 前記第 1保持部および Zまたは前記第 2保持部は、多孔質体で構成されて!ヽる請 求項 1〜12のいずれか一項に記載の物質分離デバイス。 [13] The substance separation device according to any one of [1] to [12], wherein the first holding unit and the Z or the second holding unit are made of a porous body.
[14] 前記第 1保持部の表面と前記第 2保持部の表面との間隙力 1 μ m以上 500 μ m 以下である請求項 2〜 12のいずれか一項に記載の物質分離デバイス。 14. The substance separation device according to any one of claims 2 to 12, wherein a gap force between the surface of the first holding part and the surface of the second holding part is 1 μm or more and 500 μm or less.
[15] 前記第 1保持部および前記第 2保持部が多孔質体で構成されており、 [15] The first holding part and the second holding part are made of a porous body,
前記第 1保持部の表面と前記第 2保持部の表面との間隙力 100 m以下である 請求項 2〜 12のいずれか一項に記載の物質分離デバイス。  The substance separation device according to any one of claims 2 to 12, wherein a gap force between the surface of the first holding unit and the surface of the second holding unit is 100 m or less.
[16] 流体中の第 1物質および第 2物質を相互に分離する方法であって、 [16] A method of separating a first substance and a second substance in a fluid from each other,
(I)前記第 1物質を保持できる第 1保持部を壁面の一部に備えた分離用流路に、前 記流体を流入させる工程と、  (I) a step of causing the fluid to flow into a separation channel provided with a first holding part capable of holding the first substance on a part of the wall surface;
(II)前記第 1保持部に前記第 1物質を取り込ませる工程と、  (II) incorporating the first substance into the first holding unit;
(III)前記第 1保持部から前記第 1物質を放出させ、前記第 1物質の濃縮溶液を前記 第 1保持部の下流側端部から取り出し、前記第 1物質の希釈溶液および Zまたは前 記第 2物質の濃縮溶液を前記第 1保持部の下流側端部の他端部から取り出す工程 と、  (III) The first substance is released from the first holding part, the concentrated solution of the first substance is taken out from the downstream end of the first holding part, the diluted solution of the first substance and Z or the above Removing the concentrated solution of the second substance from the other end of the downstream end of the first holding unit;
を有することを特徴とする物質分離方法。 A material separation method characterized by comprising:
[17] 前記 (II)の工程における前記保持部の温度と、前記 (III)の工程における前記保持 部の温度とが異なる温度である請求項 16に記載の物質分離方法。 17. The substance separation method according to claim 16, wherein the temperature of the holding part in the step (II) is different from the temperature of the holding part in the step (III).
[18] 前記 (II)の工程が、前記 (III)の工程における前記保持部の温度とは異なる温度に おいて前記保持部を一定時間保持することにより、前記流体の流入および取り出し を実質的に停止させる工程である請求項 17に記載の物質分離方法。  [18] In the step (II), the inflow and the outflow of the fluid are substantially performed by holding the holding unit for a certain period of time at a temperature different from the temperature of the holding unit in the step (III). The substance separation method according to claim 17, which is a step of stopping the process.
[19] 流体に含まれる第 1物質および第 2物質を相互に分離する方法であって、流入口と 、第 1流出口および第 2流出口と、前記第 1流出口側の壁面の一部に設けられた、前 記第 1物質を保持できる第 1保持部を備えた分離用流路が、上流力も下流にかけて 複数段にわたって配置され、  [19] A method for separating a first substance and a second substance contained in a fluid from each other, the inlet, the first outlet and the second outlet, and a part of the wall on the first outlet side The separation channel provided with the first holding part capable of holding the first substance is arranged in a plurality of stages with the upstream force also downstream,
(i)上流段における第 1の分離用流路に、前記流体を流入させる工程と、  (i) flowing the fluid into the first separation channel in the upstream stage;
(ii)前記第 1の分離用流路の第 1保持部に前記第 1物質を取り込ませる工程と、 (ii) incorporating the first substance into the first holding part of the first separation channel;
(iii)前記第 1の分離用流路の第 1保持部から前記第 1物質を放出させ、前記第 1の 分離用流路の第 1流出口から流出した前記流体を、下流段における第 2の分離用流 路に流入させるとともに、前記第 1の分離用流路の第 2流出口から流出した前記流体 を、下流段における第 3の分離用流路に流入させる工程と、 (iii) The first substance is released from the first holding part of the first separation channel, and the fluid flowing out from the first outlet of the first separation channel is discharged into the second stage in the downstream stage. Injecting the fluid flowing out from the second outlet of the first separation channel into the third separation channel in the downstream stage;
(iv)最下流段における複数の前記分離用流路の流出口のうち、前記各段における 前記分離用流路の前記第 1流出口の通過回数が最多となる前記流体の流出口から 、前記第 1物質を含む流体を取り出すとともに、最下流段における複数の前記分離 用流路の流出口のうち、前記各段における前記分離用流路の前記第 2流出口の通 過回数が最多となる前記流体の流出口から、前記第 2物質を含む流体を取り出すェ 程と、  (iv) Among the plurality of separation channel outlets in the most downstream stage, from the fluid outlet having the largest number of passages of the first outlet of the separation channel in each stage, The fluid containing the first substance is taken out, and among the plurality of separation channel outlets in the most downstream stage, the number of times of passage of the second outlet of the separation channel in each stage is the largest. Removing the fluid containing the second substance from the fluid outlet;
を有する物質分離方法。  A material separation method having
[20] 前記複数段にわたって配置された前記分離用流路の各段において、前記 (ii)のェ 程の温度と前記 (iii )の工程の温度が、異なる温度である請求項 19に記載の物質分 離方法。 [20] The temperature according to (19), wherein the temperature in the step (ii) and the temperature in the step (iii) are different in each stage of the separation channel arranged over the plurality of stages. Material separation method.
[21] 前記分離用流路の前記他端部の側の壁面の一部に、前記第 2物質を保持できる第  [21] The second substance can be held on a part of the wall on the other end side of the separation channel.
2保持部が設けられている請求項 16〜20のいずれかに記載の物質分離方法。  The substance separation method according to any one of claims 16 to 20, wherein 2 holding parts are provided.
PCT/JP2006/300066 2006-01-06 2006-01-06 Substance separating device and method of substance separation WO2007077627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300066 WO2007077627A1 (en) 2006-01-06 2006-01-06 Substance separating device and method of substance separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300066 WO2007077627A1 (en) 2006-01-06 2006-01-06 Substance separating device and method of substance separation

Publications (1)

Publication Number Publication Date
WO2007077627A1 true WO2007077627A1 (en) 2007-07-12

Family

ID=38227991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300066 WO2007077627A1 (en) 2006-01-06 2006-01-06 Substance separating device and method of substance separation

Country Status (1)

Country Link
WO (1) WO2007077627A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218499A4 (en) * 2007-11-01 2015-07-22 Jfe Eng Corp Micro chip, micro chip device, and evaporation operation method using the micro chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528699A (en) * 1998-05-22 2002-09-03 カリフォルニア インスティチュート オブ テクノロジー Microfabricated cell sorter
JP2002282682A (en) * 2001-03-26 2002-10-02 National Institute Of Advanced Industrial & Technology Minute chemical reactor
JP2004144568A (en) * 2002-10-23 2004-05-20 Kawamura Inst Of Chem Res Liquid chromatography device and sample introduction method
JP2005274405A (en) * 2004-03-25 2005-10-06 Kawamura Inst Of Chem Res Micro fluid device, and method of introducing micro sample

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528699A (en) * 1998-05-22 2002-09-03 カリフォルニア インスティチュート オブ テクノロジー Microfabricated cell sorter
JP2002282682A (en) * 2001-03-26 2002-10-02 National Institute Of Advanced Industrial & Technology Minute chemical reactor
JP2004144568A (en) * 2002-10-23 2004-05-20 Kawamura Inst Of Chem Res Liquid chromatography device and sample introduction method
JP2005274405A (en) * 2004-03-25 2005-10-06 Kawamura Inst Of Chem Res Micro fluid device, and method of introducing micro sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218499A4 (en) * 2007-11-01 2015-07-22 Jfe Eng Corp Micro chip, micro chip device, and evaporation operation method using the micro chip
US9120032B2 (en) 2007-11-01 2015-09-01 Jfe Engineering Corporation Microchip, microchip device, and evaporation operation method using the microchip

Similar Documents

Publication Publication Date Title
US6887384B1 (en) Monolithic microfluidic concentrators and mixers
Zhao et al. Control and applications of immiscible liquids in microchannels
US6361958B1 (en) Biochannel assay for hybridization with biomaterial
EP2217344B1 (en) Method for purifying a nucleic acid from a sample
JP4123275B2 (en) Control structure, separation device and gradient forming device, and microchip using them
Priest Surface patterning of bonded microfluidic channels
CN101498630B (en) Sample pretreatment integrated chip
Dziomba et al. Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: A review
US9201069B2 (en) Microfluidic devices and methods including porous polymer monoliths
WO2006079007A2 (en) Microconcentrator/microfilter
US20050034990A1 (en) System and method for electrokinetic trapping and concentration enrichment of analytes in a microfluidic channel
WO2008072187A2 (en) Method for improving the bonding properties of microstructured substrates, and devices prepared with this method
JP2004061320A (en) Liquid sending method of micro fluid device
JP2006043696A (en) Material separation device and material separation method
JP2007218838A (en) Micro sample inlet method and microfluidic device
JP2000262871A (en) Microporous membrane separation device and its production
JP2001088096A (en) Micro chemical device with absorbing type liquid feeding mechanism
CN114717100B (en) Microfluidic chip for single-cell sequencing and application
US8741974B2 (en) Method of forming filter in fluid flow path in microfluidic device
Song et al. Polymers for microfluidic chips
WO2005016531A1 (en) Fabricating structures in micro-fluidic channels based on hydrodynamic focusing
WO2007077627A1 (en) Substance separating device and method of substance separation
JP2005274405A (en) Micro fluid device, and method of introducing micro sample
JP2008298598A (en) Micro fluid element, its usage, and its manufacturing method
US20200261912A1 (en) Method for generating micro samples and generation chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06702046

Country of ref document: EP

Kind code of ref document: A1