WO2007074896A1 - Composite scaffold for tissue regeneration - Google Patents

Composite scaffold for tissue regeneration Download PDF

Info

Publication number
WO2007074896A1
WO2007074896A1 PCT/JP2006/326212 JP2006326212W WO2007074896A1 WO 2007074896 A1 WO2007074896 A1 WO 2007074896A1 JP 2006326212 W JP2006326212 W JP 2006326212W WO 2007074896 A1 WO2007074896 A1 WO 2007074896A1
Authority
WO
WIPO (PCT)
Prior art keywords
scaffold
fiber
copolymer
lactic acid
tissue regeneration
Prior art date
Application number
PCT/JP2006/326212
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Hojo
Taiji Adachi
Chiaki Hiwa
Shunsuke Baba
Takeomi Inoue
Toshiyuki Imoto
Original Assignee
Japan Science And Technology Agency
National University Corporation Kyoto University
National University Corporation Kobe University
Arblast Co., Ltd.
Imoto Machinery Co., Ltd.
The New Industry Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, National University Corporation Kyoto University, National University Corporation Kobe University, Arblast Co., Ltd., Imoto Machinery Co., Ltd., The New Industry Research Organization filed Critical Japan Science And Technology Agency
Priority to JP2007552022A priority Critical patent/JPWO2007074896A1/en
Publication of WO2007074896A1 publication Critical patent/WO2007074896A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/129Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing macromolecular fillers

Definitions

  • the present invention relates to a scaffold for tissue regeneration for medical use, and more particularly, to a scaffold made of a composite material composed of biodegradable greaves. Bone tissue and nerve tissue are regenerated by injecting stem cells, osteoblasts, etc. into the scaffold structure, and performing treatment on the tissue defect.
  • biodegradable coagulation degrades itself in the living body or in a normal environment, it has recently been in the limelight! / Occupies an important position in regenerative medicine!
  • biodegradable resin used for medical purposes include polylactic acid (PLA) resin and polycaprolacton (PCL) resin.
  • PLA resin is excellent in biodegradability and bioabsorbability, and is expected to be a new medical material that combines high strength, biocompatibility, and self-degradability.
  • Scafold has moderate rigidity and sufficient strength, which can prevent the invasion of neighboring tissues such as granulation, etc., in which cells and so on can be easily seeded while its application range is widened. Therefore, functions such as biodegradability control are required, and new materials having these functions are demanded.
  • tissue regeneration scaffolds include porous hydroxyapatite for bone regeneration, collagen gel for cartilage regeneration (Non-patent Document 1), or a structure made of poly-force prolataton fibers (Non-patent Document) 2) etc. are being studied, and clinical trials are being conducted for each.
  • a noble hybrid type apatite-collagen composite As a scaffold for biomaterials, a noble hybrid type apatite-collagen composite has been proposed. This is because carbonate apatite has a composition close to that of living bone tissue and crystallinity, and is a material having an excellent affinity for living tissue. By making the sponge into a sponge, high porosity and porous biopatient apatite 'collagen complex is to be used for regenerative medical materials (Patent Document 1).
  • stainless steel, titanium alloy, ceramics, and the like have conventionally been used as auxiliary aggregates for fractures of the human body, such as when bone defects are caused by bone diseases or trauma.
  • the defective hard tissue such as artificial bones or artificial roots
  • what is transplanted to the defect is a metal that is difficult to break down and does not rust.
  • the skin Although there is no adverse effect on the skin, it is better to remove it if the bones heal.
  • the risk of surgery is high, such as the elderly.
  • materials that have sufficient strength and rigidity, and that self-decompose and bioabsorbable as the defect is healed.
  • GTR Guard Tissue Regeneration
  • a shielding membrane (GTR membrane) is inserted between the root surface and the gingival flap.
  • GTR membrane a shielding membrane
  • the GTR method has a limited ability to regenerate large alveolar bone defects, and the defect is large and cannot be repaired with natural healing power.
  • a tissue regeneration scaffold sinaffold
  • a material to be a scaffold it is important for a material to be a scaffold to have a so-called biodegradation (bioabsorption) property that becomes a scaffold for cell growth and differentiation for a certain period of time and decomposes and disappears over time.
  • the role of the scaffold is to serve as a substrate for cell sorting and proliferation, to secure space for regeneration, to prevent the invasion of other tissues into the regeneration field, to provide patterns for regenerated tissues, The supply of oxygen and nutrients to the vesicles, storage of cell growth factors, and avoidance of immune defense reactions from the host.
  • the present inventors have already developed a scuffold made of a composite material composed of biodegradable rosin (Patent Document 2, Non-Patent Document 3).
  • the powerful scaffold has a structural opening, so that it can be seeded by injection during clinical practice, and it has excellent rigidity due to the combination of high-strength PLA fibers and PCL resin used as a binder. It is possible to support the load by the activity of
  • a structure that prevents epithelial entry into the defect and accumulation of bacterial plaque is provided, or a structure that immediately biodegrades at the interface with the defect after the operation is provided to quickly circulate body fluid in the scaffold. It has many functions such as creating a better environment for organizational regeneration.
  • the internal structure and external shape of bones are changed by remodeling, which is a force that looks like a static tissue, and that dynamically absorbs and forms.
  • Osteoblasts responsible for bone formation are coupled with bone resorption by osteoclasts responsible for bone resorption and secrete bone matrix components such as collagen to form osteoids.
  • the bone matrix is then formed by calcification of the osteoid.
  • early studies on bone remodeling mainly focused on in vivo experiments using animals.
  • in vitro Experiments in vitro have been actively conducted.
  • a bioabsorbable material is indispensable for designing an in vivo environment in which the surrounding environment of cells and tissues is designed to reconstruct a function that has been lost in the living body. Establishing a technology that can control the speed of the biomaterial absorbed in the body so as to match the speed of regeneration of the living tissue is an important issue in this field.
  • the relationship between the regenerated new bone and the resorbed scaffold function is representative of the stress of the entire bone.
  • the scaffold is initially stressed. Over time, the scaffold will decompose, and the stress will decrease as the rigidity decreases. However, since bone regeneration proceeds simultaneously, the stress burden on the bone increases. The ideal regeneration process is to keep the bone and scuffold combined stresses until they are completely cured.
  • biodegradable resin can be optimized. It is important to build scaffold variations, such as optimizing the cuffold geometry.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-169845
  • Patent Document 2 International Publication Gazette WO2005Z089828
  • Non-Patent Document 2 Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. J Bio med Mater Res. 2001 May; 55 (2): 203-16
  • Non-Patent Document 3 Development of biodegradable sallow composite scaffold for alveolar bone regeneration, Chiaki Niwa, Yasumasa Okizoe, Taiji Adachi, Zenichi Nakai, Biomedical Engineering Symposium 2005 2005.9.27-28
  • the problem to be solved by the present invention is that the biodegradation speed and rigidity need to be adjusted depending on the application site of the scaffold. Therefore, the optimization of the biodegradable resin is optimized the shape structure of the scaffold It is to build a scuff old noriage. As described above, a technology is established that can control the speed of biological material absorbed into the body so as to match the speed of regeneration of living tissue. With this technology, we aim to keep the vital functions such as strength necessary for the regeneration part almost constant during the tissue regeneration process. This makes it possible for the patient to have a normal life from surgery to complete cure.
  • the biodegradation speed is controlled by selecting biodegradable resin in the composite scaffold, and the structure is optimized so that it can be received from external scaffolds even during biodegradation. It is possible to maintain rigidity that can withstand load support.
  • the present inventors have abundant knowledge of biodegradable materials, technology for producing actual prototypes, and knowledge of dentists with abundant clinical experience.
  • the composite scaffold for tissue regeneration according to the present invention has been completed by repeatedly examining the conformity to the defect.
  • the first aspect of the composite scaffold for tissue regeneration according to the present invention is a tubular woven structure having a space inside and made of biodegradable resin fibers. And a spiral structure composed of biodegradable resin fibers arranged in a spiral shape in the longitudinal direction of the woven structure and entangled with an intersection of the woven structure; and an intersection of fibers of the woven structure
  • a scaffold comprising biodegradable resin that joins the parts and a scaffold composed of; is provided.
  • the inventors of the present invention are directed to the bone defect portion of the composite scaffold comprising the biodegradable resin previously invented (a structure composed of PLA resin fibers and a scaffold using PCL resin as a binder). As a result of studying the conformity condition, it was found that it was necessary to increase the rigidity and strength in the radial direction of the scaffold structure.
  • the tissue regeneration speed differs depending on the application site of the scaffold, and it is necessary to adjust the biodegradation speed and rigidity accordingly.
  • the scaffold structure is less rigid.
  • the space for regeneration at the defect part is secured (space 'making), and the place for supporting cell proliferation is lost.
  • the original function of Scaffolding that is made in the department cannot be secured.
  • a mechanism that can control the rigidity is incorporated into the scaffold, facilitating the control of the biodegradation rate of the biodegradable resin, and expanding the application area of the scaffold.
  • the original function of Scaffold is to secure a space for regeneration in the defective part in advance (space 'making), and to create a place for supporting cell proliferation in the defective part.
  • the porosity inside the scaffold structure should be kept high so that it does not interfere.
  • the biodegradable resin fibers are arranged in a spiral shape in the longitudinal direction in a tubular woven structure having a space inside the biodegradable resin fibers so that they are intertwined with the intersections of the structures.
  • a woven spiral structure was provided, and the intersections of the woven structure were joined using a binder made of biodegradable resin.
  • the biodegradable rosin fiber constituting the woven fabric structure and the spiral structure is a fiber composed of any one selected from the group consisting of polylactic acid resin, polydalicolic acid, and copolymer power of lactic acid and glycolic acid. It is preferable that the biodegradable resin constituting the binder is any one selected from a copolymer of lactic acid and glycolic acid, poly-force prolatatone resin, and polyglycol-acid power.
  • biodegradable resin fiber constituting the structure and the biodegradable resin fiber woven so as to be intertwined with the intersection of the structure may be the same type or different types.
  • a biocompatible resin such as polyvinyl alcohol, polyethersulfone, or polycyanate acrylate may be applied.
  • All the binder materials that can be produced are biodegradable. Since this biodegradation rate varies depending on the material, it is necessary to select a material with a decomposition rate and strength suitable for the target of the defect site. For example, polylactic acid coagulation has a biodegradation rate (half-life) of 24 months or longer and is used for sites with long bone regeneration times. Polyglycolic acid has a biodegradation rate (half-life) power of up to 12 months.
  • the biodegradation rate (half-life) is as short as 1 to 6 months, and it is a suitable material as a binder for sites where the bone regeneration rate is fast.
  • a suitable binder for the scaffold structure is a copolymer of lactic acid and dallicolic acid, and the copolymerization ratio of lactic acid in the copolymer is preferably 10 to 90%. 15-25% or 75-85%.
  • the aim is to match the biodegradation rate (half-life) characteristics of the copolymer of lactic acid and glycolic acid with the bone regeneration speed characteristics of the alveolar bone.
  • the biodegradable coconut resin constituting the binder that has a slow biodegradability of the biodegradable cocoon fiber constituting the woven structure and the spiral structure is faster in biodegradability.
  • the biodegradable resin fibers constituting the woven structure and the spiral structure are fibers made of polylactic acid resin, and the biodegradable resin constituting the binder is composed of lactic acid and glycolic acid. It is a combination of these copolymers.
  • the biodegradable resin fiber constituting the woven structure and the spiral structure is a fiber having the first copolymer power of lactic acid and glycolic acid, and the raw material constituting the binder.
  • the degradable resin is a second copolymer of lactic acid and glycolic acid, and the copolymerization power of lactic acid of the first copolymer is smaller than the copolymerization ratio of lactic acid of the second copolymer Is mentioned.
  • the lactic acid copolymerization ratio of the first copolymer is preferably 10 to 20%
  • the lactic acid copolymerization ratio of the second copolymer is preferably 50 to 70%. 1st copolymer and 2nd This is because it is necessary to provide a difference in the copolymerization ratio of lactic acid in these copolymers, and if the ratios are similar, they will dissolve each other and no longer function as a binder.
  • the structure woven with biodegradable resin fibers was woven so as to be intertwined with the intersections of the structures so that the biodegradable resin fibers are spirally arranged in the longitudinal direction.
  • a tubular woven fabric structure made by using Lilac knitting with polylactic acid resin fiber is hooked at the intersection of the surface fibers and fibers forming the structure shape, and the tubular structure This refers to weaving polylactic acid resin fibers spirally at a predetermined pitch interval along the longitudinal direction.
  • both ends of the tubular woven structure can be closed, even if a culture solution or the like is injected into the woven structure, it can be held inside the woven structure.
  • the structure which can close both ends is realizable by binding both ends with a biodegradable resin fiber, for example.
  • the tubular woven structure is not deformed so as to be crushed in the radial direction. , It does not occur that the cells inside are destroyed.
  • the rigidity and strength in the radial direction of the tubular woven fabric structure are improved, it is excellent in moldability of the bent shape and can be easily molded in accordance with the shape of the defect affected part.
  • a tubular woven structure having a space inside and made of biodegradable cocoon fiber; and the woven structure A spiral structure composed of biodegradable resin fibers arranged in a spiral shape in the longitudinal direction of the fabric structure and bonded to the intersection of the inner surface or the outer surface of the fabric structure; and joining the intersection of the fabric structure
  • a scaffold comprising a biodegradable resin and a scaffold comprising;
  • Veg biodegradable rosin fiber that enhances the productivity of the composite scaffold for tissue regeneration of the present invention is arranged in a spiral shape in the longitudinal direction and woven so as to be entangled with the intersecting portion of the structure.
  • Pre-degradable biodegradable resin fibers spiral in the longitudinal direction outside or inside the structure And attached to the intersection of the structures by heat treatment or the like. And it is made to adhere to the crossing part of a structure with a binder. Others are the same as in the first viewpoint, and the explanation is omitted.
  • the scaffold structure is preferably a braided braid formed by Lilian knitting or a tubular structure having a saddle shape.
  • a tubular structure By using a tubular structure, it is possible to freely bend and deform the tubular shape while maintaining the strength and rigidity required for the scaffold.
  • the composite scaffold for tissue regeneration according to the present invention controls the tubular structure by controlling the pitch interval of the polylactic acid resin fibers spirally arranged in the longitudinal direction of the tubular structure. Can control the stiffness and strength of the body in the radial direction.
  • the pitch interval of the helical polylactic acid resin fibers hooked and woven at the intersection of the scaffold structure is 0.5 to 2 mm, and the diameter of the polylactic acid resin fibers used is 0.05. It is preferably ⁇ 0.5 mm.
  • the scaffold of the present invention When the scaffold of the present invention is inserted into a bone defect using an instrument (for example, tweezers), if the spiral interval inside the scaffold is wide, the scaffold in the longitudinal direction of the scaffold It is difficult to grip the scuffold with the instrument so that the rigidity is uneven and the extreme deformation does not occur (for example, it is bent). On the other hand, if the spiral interval is too narrow, the rigidity becomes too high and the bending property is deteriorated, so that it is inappropriate for adapting to a bone defect portion. Thus, there is an optimal helical spacing in the scaffold of the present invention.
  • an instrument for example, tweezers
  • the method for producing a composite scaffold for tissue regeneration according to the present invention includes the following steps (1) to (4).
  • Step of applying biodegradable resin as a binder to the intersection of the woven structure It includes the steps 1) to (5).
  • the tissue regeneration speed varies depending on the application site of the scaffold. Therefore, it is necessary to adjust the biodegradation speed and rigidity according to this! / ⁇ ⁇ It has the effect of being able to provide a scaffold that can satisfy the requirements and can select a biodegradable resin having an optimized biodegradation rate.
  • the rigidity and strength in the radial direction perpendicular to the longitudinal direction of the scaffold structure can be increased independently of the longitudinal direction, and grasped with an instrument during a therapeutic operation such as implantation. In this case, even when the load of the external tissue force is large, the cell is deformed so as to be crushed in the radial direction, and the cells inside the scaffold are not destroyed.
  • the scaffolding is caused by human activity.
  • the scaffolding is caused by human activity.
  • the biodegradable resin fiber Compared to the case where the biodegradable resin fiber simply formed in a spiral shape is placed inside the scaffold, the biodegradable resin fiber is coiled inside the scaffold by being woven or bonded to the intersection. Can be fixed, has excellent flexibility and has excellent moldability, can construct a scaffold with an optimal shape at the bone defect site of the affected area, and can stably seed cells. .
  • a tubular woven structure having a space inside and made of biodegradable resin fibers is referred to as a coilless scaffold.
  • Fig. 1 shows a photograph of the appearance of a coiled scaffold according to the present invention.
  • the scaffold shown in Fig. 1 has a structure in which PLA fibers are spirally hooked at the intersection of structures woven with polylactic acid resin (PLA) fibers.
  • PLA polylactic acid resin
  • Fig. 2 shows a conventional scaffold appearance photograph.
  • the scaffold in Fig. 2 has a structure that is simply woven with polylactic acid resin fiber.
  • the scaffold structure shown in Fig. 1 and Fig. 2 is made by weaving with PLA fibers with a diameter of 0.1 mm, and has a cross-sectional area of about 2 mm in diameter and a length of 15 mm (adjustable) ) The porosity of this woven structure is over 90%.
  • the coiled scuff old in Figure 1 Hooked at the intersection of structures, spirally (coiled) PLA fibers with a diameter of 0.1 mm are woven at a pitch of 1 mm.
  • the intertwined portions 11 and 12 with the crossing portion of the structure in FIG. 1 schematically show a state of being hooked into the crossing portion of the structural body and woven in a spiral shape.
  • the rigidity and strength in the radial direction can be controlled by hooking the PLA fibers at a predetermined pitch by hooking them at the intersections of the structures.
  • the porosity is calculated by calculating the volume of the PLA structure used for the woven structure, assuming the woven structure as a circular tube with a constant cross-section, and determining the volume of the woven structure manufactured to a certain length. Calculated.
  • Fig. 3 shows the relationship between the displacement in the radial direction and the compressive force of the scaffold with coil (structure with PLA fibers hooked in a coil shape at the lmm pitch at the intersection) and the coiled scaffold.
  • the graph which compared the result of having measured) is shown.
  • the radial stiffness characteristic is a measurement of the compressive force required for the unit compression distance (displacement) in the radial direction perpendicular to the longitudinal axis direction of the scaffold structure.
  • the horizontal axis of the graph in FIG. 3 represents displacement, and the vertical axis of the graph represents the force required for compression.
  • the dotted line is a scaffold without a coil, and is a scaffold with a solid line force S coil.
  • the coiled scaffold used for the measurement was woven with PLA fiber having a diameter of 0.1 mm, and crossed into a structure with a cross-sectional area of about 2 mm in diameter and a length of about 15 mm.
  • PLA fiber with a diameter of 0.1 mm is hooked at a pitch of 1 mm and woven in a coil shape.
  • the compressive force required for lmm displacement in the radial direction is about 0.1N in the case of the coilless scaffold, whereas it is about 1N in the case of the coiled scaffold. From the measurement results in Fig. 3, it can be understood that the coiled scaffold has an approximately 10-fold improvement in compressive force (lateral stiffness characteristics) for the same radial displacement compared to the coilless scaffold.
  • FIG. 4 shows a graph in which the lateral stiffness is measured when the diameter and pitch of the PLA fibers that are hooked and woven into the coil shape are changed in the coiled scaffold.
  • the horizontal axis is woven by hooking PLA fibers to the intersection of the scaffold structures.
  • the pitch of the coil is shown, and the vertical axis represents the lateral rigidity.
  • the vertical axis is the value obtained by dividing the lateral stiffness of the scaffold with coil (the load required to deform lmm in the direction of the arrow in Fig. 8) by the lateral stiffness of the scaffold without coil.
  • the lateral stiffness on the vertical axis is expressed as the ratio of coiled and uncoiled.
  • Figure 4 shows two samples of three cases with a coil pitch of lmm, 2mm, and 3mm when the diameter of the PLA fiber woven into a coil is 0.1mm and 0.07mm. It was prepared and measured one by one. The solid line indicates the case where the PLA fiber diameter is 0.1 mm, and the dotted line indicates the case where the PLA fiber diameter is 0.07 mm. The measured data values of the two samples measured are second-order approximations. It is a curve.
  • Fig. 5 shows a graph in which the lateral stiffness of a scaffold using poly force prolataton (PCL) resin as a binder is measured in the structure of a scaffold without a coil and a scaffold with a coil.
  • the compression force required for the displacement lmm is 0.3N when the coilless scaffold (PCL resin as binder) is used, and the coiled scuffold (diameter is 0.07mm). In the case of 0. lmm), it is 1.5N.
  • coiled scaffold (PCL resin as a binder) exhibits excellent lateral stiffness characteristics.
  • the scaffold using PCL resin as a binder does not use a binder! / ⁇
  • the strength of lateral rigidity can be improved by about 5 times.
  • FIG. 6 shows a structure of a non-coiled scaffold and a coiled scaffold with a copolymer (PLGA) of polylactic acid resin (PLA) and polyglycolic acid (PGA) as a binder.
  • PLGA copolymer of polylactic acid resin
  • PGA polyglycolic acid
  • coiled scaffold (PLGA resin as a binder) shows excellent lateral stiffness characteristics.
  • PLGA resin as a binder can improve the strength of lateral rigidity by about 5 times compared to the coilless scaffold (PLGA resin as a binder). Can do it.
  • 75/25 PLGA 75PLA + 25PGA
  • the binder used was 5% by weight of PLGA resin relative to the solvent (acetone).
  • Fig. 7 shows a graph in which the rigidity and strength in the longitudinal direction are compared and measured for the PLA fiber structure and the structure using PLGA as a binder.
  • the coil insertion process of another method of the coiled scaffold will be described with reference to FIG.
  • the coil insertion procedure is as follows (1) to (6).
  • a polylactic acid resin fiber is spirally wound around a fluorine resin coating rod. At this time, the coil pitch is controlled.
  • a scaffold structure for example, a Lilian knitted saddle-shaped tubular structure. insert.
  • the spiral diameter of the polylactic acid resin fibers wound spirally around the surface of the fluorine resin coding rod is expanded, and the fluorine resin coding rod The surface force of can be peeled off.
  • Example 3 a woven fabric structure and a spiral structure were prepared from PLA greave fiber (coated scaffold was produced), and the mechanical properties were determined using scafold using PCL greave as a binder. The result evaluated about the proliferation property of a cell is shown.
  • Biodegradable polymers for pharmaceuticals manufactured by API, USA
  • cGMP Current Good Manufacturing Practice
  • FDA Food and Drug Administration
  • PLA resin is made into a fiber having a diameter of 0.lm by heat drawing in a clean room melt extrusion apparatus, and then a tubular woven structure is produced by Lilian knitting.
  • the PLA fibers are knitted in a spiral while being caught at the intersection of the woven structure.
  • the number of fiber intersections can be increased and the number of cell growth points can be increased, and the radial stiffness of the tubular woven structure can be increased to maintain biodegradation strength. become able to.
  • the solvent is removed by vacuum drying to produce a composite scaffold having a diameter of 2.8 mm as shown in FIG.
  • the pitch of the scaffold spiral shown in Fig. 10 is about 2 mm.
  • the above work is performed in a clean bench, and sterilization with gamma rays (25KGy) is performed after preparation.
  • mouse osteoblast-like cells (MC3T3-E1, RIKEN BRC) were used.
  • the culture was supplemented with ⁇ -MEM supplemented with 10% urine fetal serum, 2 mM L-glutamine, and 100 gZmL antibiotics.
  • 50 gZmL of ascorbic acid and 10 mM of j8-glyceport phosphate were added.
  • the culture period is 1, 2, 4, 6 and And 8 weeks.
  • the number of cells was measured from the fluorescence using a DNA quantification method with Hoechst33258 solution.
  • the ALP activity was obtained by dividing the same extraction solution from the cells of the scaffold or culture dish to obtain the ALP activity value per DNA. Absorbance was measured with an ALP activity measurement kit (Wako Lab Assay (registered trademark) ALP, manufactured by Wako Pure Chemical Industries, Ltd.), and calcium content was also measured with an assay kit (Force Lucium C-Test Saiko Co., manufactured by Wako Pure Chemical Industries, Ltd.). .
  • Figure 11 (a) shows the relationship between tensile force and axial displacement. From Fig. 11 (a), the fabric structure without binder (Fabric in the figure) has a large yield until breakage after the yield point occurs in the fabric structure with binder (Composite in the figure). V indicates that the strength has increased, and it is awkward. This is presumably because the fiber structure was not easily deformed by bonding at the fiber intersection because the breaking elongation of the fabric structure (Fabric) was about 15 mm without using a binder.
  • the stiffness and yield stress of the woven fabric structure (coiled composite in the figure) to which the spiral structure was added increased about 4 times that of the woven fabric structure using the binder (Composite). Power.
  • Fig. 11 (b) shows a graph of the relationship between radial compression force and displacement.
  • the woven structure with a spiral structure shows a compressive force 4.5 times that of the woven structure (Composite) using a binder when lmm deformation occurs. I can tell you. These results are thought to be due to the increase in the number of crossing points between the fibers due to the addition of the helical structure, that is, the addition of the helical fibers, and the increased number of adhesion points, and the rigidity in the radial direction increased due to the coil shape. It is done.
  • FIG. 14 shows a micrograph of a Coiled scaffold to which a spiral structure in which cells are growing is added.
  • Fig. 14 (a) 5 days after seeding, it can be seen that many cells adhered to the fiber intersections.
  • Fig. 14 (b) it can be seen that the cells are proliferating in vacancies between the fibers and are becoming opaque due to the deposition of calcium and the like. This is probably because the addition of a spiral structure to the scaffold fabric structure increased the amount of cells due to an increase in the number of crossing points between the fibers that became the starting point of growth, resulting in an increase in the amount of calcium.
  • Figure 16 shows the stiffness change in the compression direction as a mechanical function of the regeneration process.
  • the composite scaffold which is also composed of a woven fabric structure and a binder force
  • the rigidity increases more quickly due to the binding of calcium, which has a larger initial value. I understand that.
  • the tissue regeneration rate differs depending on the application site of the scaffold, and it is necessary to adjust the biodegradation rate and rigidity accordingly.
  • biodegradable resin optimization and structure optimization that would build scaffold variations, such as optimizing the shape and structure of Nycafold.
  • the biodegradation rate is controlled by the selection of biodegradable coagulant, and even when the biodegradation rate is increased, the structure is optimized to improve the biodegradation rate.
  • it must be rigid enough to withstand the support of the load applied to the external force of the Scaffold. It will be understood that characteristics that can be achieved are obtained.
  • FIG. 17 shows how doctors and others use the present scaffold in a medical field.
  • FIG. 17 shows a state where gel-like cultured bone is injected using a syringe in the scaffold.
  • the diameter of the scaffold is about 2mm and the length is about 10mm.
  • the needle is about lmm in diameter.
  • the present invention is expected to be used as a scaffold material for tissue regeneration used for medical and academic research experiments.
  • stem cells and osteoblasts are injected into the structure according to the present invention, and the defect of the tissue is treated, so that bone tissue and nerve tissue can be treated. It can be used as a material that can be recycled.
  • FIG. 1 Photograph of the appearance of the scaffold according to the present invention (with a structure in which a polylactic acid resin fiber is hooked in a coil shape at the intersection of a structure body woven with a polylactic acid resin fiber; including a coil Scaffold)
  • FIG.2 Photo of appearance of conventional scuffold (structure just woven with PLA fiber; no scuffold without coil)
  • FIG.3 Graph comparing the results of measuring the radial stiffness characteristics (lateral stiffness) of a coiled scaffold (with a structure in which PLA fibers are hooked into a coil at lmm pitch) and a coilless scaffold
  • FIG. 4 Graph of measured lateral stiffness when changing the diameter and pitch of PLA fibers that are hooked into a coil and woven into a coiled scaffold
  • FIG.5 Graph showing the lateral stiffness of a scaffold using PCL as a binder in a PLA fiber structure
  • FIG. 6 Graph showing the lateral stiffness of a scaffold using PLGA as a binder in a PLA fiber structure
  • FIG. 7 A graph comparing the rigidity (tensile strength) in the longitudinal direction between a PLA fiber structure and a structure using PLGA as a binder.
  • a graph showing the mechanical properties of the scaffold (a) is a graph showing the relationship between tensile force and axial displacement, and (b) is a graph showing the relationship between compressive force and displacement in the radial direction.
  • FIG. 12 A graph of DMA amount showing the proliferation of scaffold cells
  • FIG. 17 Photograph showing the appearance of injecting cultured bone into the scaffold with a syringe
  • FIG. 18 is a graph showing the relationship between the function of regenerated new bone and resorbed scaffold.

Abstract

It is intended to provide a composite scaffold for tissue regeneration which has a high rigidity and strength in the radial direction as well as in the longitudinal direction of a tubular fabric structure, and in which in the case of therapeutic surgery such as implanting, it is difficult to be deformed in the radial direction and inside cells are not destroyed. At crossing parts of a structure comprising polylactic acid resin (PLA) fiber, PLA fiber is hung and interwoven spirally (in a coil-like shape). Here, it is preferable to use a polycaprolactone resin (PCL) or a copolymer of lactic acid and glycolic acid (PLGA) as a binder. By interweaving the coil-shaped PLA fiber while hanging it at the crossing parts of the structure, it becomes possible to control a coil pitch easily and to significantly improve the rigidity and strength in the radial direction by 2- to 10-fold.

Description

明 細 書  Specification
組織再生用複合化スカフオールド  Combined Scaffold for tissue regeneration
技術分野  Technical field
[0001] 本発明は、医療用の組織再生用のスカフオールド (Scaffold)に関するものであり、 特に、生分解性の榭脂からなる複合材によるスカフォールドに関するものである。スカ フォールドの構造体内部に幹細胞や骨芽細胞などを注入して、組織の欠損部に施 術することで骨組織や神経組織の再生を図るものである。  [0001] The present invention relates to a scaffold for tissue regeneration for medical use, and more particularly, to a scaffold made of a composite material composed of biodegradable greaves. Bone tissue and nerve tissue are regenerated by injecting stem cells, osteoblasts, etc. into the scaffold structure, and performing treatment on the tissue defect.
背景技術  Background art
[0002] 人体に何らかの欠損が生じた場合、自然治癒される場合が多!、。しかし、欠損が大 きくなると自然治癒力では修復できな 、場合がでてくる。このような時に未分化細胞 である幹細胞などで組織を再生する再生医療技術は、人体のあらゆる場所にその適 用を広げつつある。その際、必要となるものは組織再生を誘導するためのスカフォー ルドであり、このスカフォールドには、組織再生に従い体内で分解する生分解性榭脂 が用いられている。  [0002] When a defect occurs in the human body, it is often healed naturally! However, when the defect becomes large, there are cases where it cannot be repaired by natural healing power. Regenerative medicine technology that regenerates tissue with stem cells that are undifferentiated cells at such times is expanding its application to all parts of the human body. In this case, what is required is a scaffold for inducing tissue regeneration, and biodegradable fat that is degraded in the body according to tissue regeneration is used for this scaffold.
[0003] 生分解性榭脂は,生体内または通常の環境下で自ら分解していくため、近年脚光 を浴びて!/ヽる再生医療にお!ヽて重要な位置を占めて!/ヽる。医療用に使用されて!ヽる 生分解性榭脂としては、ポリ乳酸(PLA; Polylactic acid)榭脂ゃポリ力プロラタトン (P CL; Polycaprolacton)榭脂などがある。生分解性プラスチックのなかでも PLA榭脂は 生体内分解吸収性に優れており,高強度と生体適合性,さらに自己分解性を兼ね備 えた新し 、医療用材料として期待されて ヽる。  [0003] Since biodegradable coagulation degrades itself in the living body or in a normal environment, it has recently been in the limelight! / Occupies an important position in regenerative medicine! The Examples of biodegradable resin used for medical purposes include polylactic acid (PLA) resin and polycaprolacton (PCL) resin. Among biodegradable plastics, PLA resin is excellent in biodegradability and bioabsorbability, and is expected to be a new medical material that combines high strength, biocompatibility, and self-degradability.
[0004] ところで、生体内に大きな欠損空間が生じると、一般的にその部位は瘢痕性のコラ 一ゲン組織によって補填される。瘢痕組織により占有された組織の欠損部では、本 来の生体組織の再生を期待することは不可能である。組織を再生する 1つの方法は [0004] By the way, when a large defect space is generated in a living body, the site is generally compensated by scar-like collagen tissue. In the tissue defect occupied by scar tissue, it is impossible to expect the regeneration of the actual living tissue. One way to regenerate an organization
、再生部位を占拠している瘢痕組織を除くことであり、もう一つの方法は、欠損部を瘢 痕組織に占有されな 、ように、あら力じめ欠損部での再生のスペースを確保 (スぺ一 ス 'メイキング)し、細胞の分ィ匕ゃ増殖を支援するための場を欠損部に作ることが必要 である。この場を作るためには、細胞の足場材料となるスカフォールドが必要なので ある。 It is to remove the scar tissue that occupies the regeneration site, and another method is to secure the space for regeneration in the defect portion so that the defect portion is not occupied by the scar tissue. It is necessary to create a space in the defect area to support the cell division and proliferation. In order to make this place, it is necessary to have a scaffold as a scaffold for cells. is there.
[0005] スカフオールドは、その適用範囲が広がる中で、細胞などの播種が容易である、肉 芽などの近隣組織の浸入を防止できる、適度な剛性と十分な強度を持っている、及 び場所により生分解性が制御できるなどの機能が必要とされており、これらの機能を 具備する新し 、材料が求められて 、る。  [0005] Scafold has moderate rigidity and sufficient strength, which can prevent the invasion of neighboring tissues such as granulation, etc., in which cells and so on can be easily seeded while its application range is widened. Therefore, functions such as biodegradability control are required, and new materials having these functions are demanded.
[0006] 従来、組織再生用スカフオールドには,骨再生には多孔質のヒドロキシアパタイトや 、軟骨再生にコラーゲンゲルによるもの(非特許文献 1)、若しくは、ポリ力プロラタトン 繊維による構造体 (非特許文献 2)などが研究されておりそれぞれに臨床試験が行わ れつつある。  [0006] Conventionally, tissue regeneration scaffolds include porous hydroxyapatite for bone regeneration, collagen gel for cartilage regeneration (Non-patent Document 1), or a structure made of poly-force prolataton fibers (Non-patent Document) 2) etc. are being studied, and clinical trials are being conducted for each.
[0007] また、生体材料用スカフオールドとして、ノ、イブリツド型アパタイト 'コラーゲン複合体 が提案されている。これは、炭酸アパタイトが生体骨組織に近い組成と結晶性とを有 すること、生体組織に対して親和性に優れた材料であることから、このアパタイトをコラ 一ゲンにより複合ィ匕し、これをスポンジ状にすることで、高気孔率、多孔質の生体再 生医用アパタイト 'コラーゲン複合体を再生医療材料に用いようとするものである (特 許文献 1)。  [0007] Further, as a scaffold for biomaterials, a noble hybrid type apatite-collagen composite has been proposed. This is because carbonate apatite has a composition close to that of living bone tissue and crystallinity, and is a material having an excellent affinity for living tissue. By making the sponge into a sponge, high porosity and porous biopatient apatite 'collagen complex is to be used for regenerative medical materials (Patent Document 1).
[0008] また、骨の疾患または外傷によって骨に欠損を生じた場合など、例えば、人体の骨 折に対する補助骨材としてはステンレス鋼やチタン合金あるいはセラミックス等が従 来力も用いられてきた。このような人工骨或いは人工歯根のように、欠損を生じた生 体硬組織の機能を修復するために、該欠損部に移植されるものは、分解し難ぐまた 鲭びない金属でほとんど健康に悪影響がないものの、骨が癒合すれば摘出したほう がよい。しかし、高齢者など手術によるリスクが大きい場合には摘出しない場合もある 。力かる事情があり、十分な強度や剛性に持ち、欠損部が治癒するに従い、自己分 解して生体吸収性があるような材料が求められている。  [0008] For example, stainless steel, titanium alloy, ceramics, and the like have conventionally been used as auxiliary aggregates for fractures of the human body, such as when bone defects are caused by bone diseases or trauma. In order to repair the function of the defective hard tissue, such as artificial bones or artificial roots, what is transplanted to the defect is a metal that is difficult to break down and does not rust. Although there is no adverse effect on the skin, it is better to remove it if the bones heal. However, it may not be removed if the risk of surgery is high, such as the elderly. There is a demand for materials that have sufficient strength and rigidity, and that self-decompose and bioabsorbable as the defect is healed.
[0009] 現在、日本の厚生労働省や日本歯科医師会は、高齢者の QOL(Quality Of Life)を 高める目的のために 2000年より「八〇ニ〇運動」を提唱しており、「80歳で自分の歯 を 20本以上保とう」と呼び力けている。し力し、 60歳で 11. 5本, 70歳では 7. 8本, 7 5歳では 5. 5本, 80歳で 4. 0本というのが現状である。歯を失うのは、虫歯,歯茎のト ラブル,歯周病などが原因である。そして、 35〜45歳では 80%, 45〜55歳では 88 %が歯周病に力かっていると言われている。歯周病に力かると歯肉が腫脹し、歯肉と 歯との隙間が深くなり、炎症が深部へと拡がっていき骨が喪失し、結果として歯が脱 落する。歯槽骨を再生することができれば歯の脱落は防げると言われている。 [0009] At present, the Ministry of Health, Labor and Welfare and the Japan Dental Association have been advocating the “80 Ni O Movement” since 2000 for the purpose of improving the quality of life (QOL) of the elderly. So keep your teeth at least 20 ". However, the current situation is 11.5 at 60, 7.8 at 70, 5.5 at 75, and 4.0 at 80. Loss of teeth is caused by tooth decay, gum problems, and periodontal disease. And 80% for 35-45 years old, 88 for 45-55 years old It is said that% is strong in periodontal disease. When it is effective against periodontal disease, the gingiva swells, the gap between the gingiva and the tooth deepens, the inflammation spreads deeper and bones are lost, resulting in loss of the tooth. It is said that if the alveolar bone can be regenerated, teeth can be prevented from falling off.
[0010] 組織工学的技法による歯槽骨組織の再生法としてすでに広く臨床応用されている 唯一の方法は、組織再生誘導法 (GTR; Guided Tissue Regeneration)と呼ばれる歯 周組織再生法である。この方法は、歯周炎により吸収された歯槽部に存在する炎症 巣を除去し歯周組織の再生を計ると、周囲から結合組織や上皮がすばやく進入し歯 根膜組織や歯槽骨が十分に再生されないというものである。そこで、重要なことは、 再生させた 、組織に適した細胞に場を与え、望ましくな ヽ細胞の侵入を遮断すること である。  [0010] The only method that has already been widely applied clinically as a method for regenerating alveolar bone tissue by tissue engineering techniques is a periodontal tissue regeneration method called GTR (Guided Tissue Regeneration). In this method, when the inflammatory lesions present in the alveolar part absorbed by periodontitis are removed and the periodontal tissue is regenerated, connective tissue and epithelium enter quickly from the surroundings, and the periodontal ligament tissue and alveolar bone are sufficient. It is not played back. Thus, what is important is to provide a field for the regenerated cells suitable for the tissue and block the desired sputum cell invasion.
具体的には、手術によって歯肉弁を展開し炎症組織を除去した後、歯根面と歯肉 弁の間に遮蔽膜 (GTR膜)を挿入するものである。しかし、 GTR法は大きな歯槽骨の 欠損に対してはその再生能力に限界があり、欠損が大きくて自然治癒力では修復で きな 、場合には、未分ィ匕細胞である幹細胞などで組織を再生する再生医療技術が ある。その際に最初に必要となるものは、組織再生を誘導するための組織再生用足 場 (スカフオールド)である。  Specifically, after removing the inflamed tissue by deploying the gingival flap by surgery, a shielding membrane (GTR membrane) is inserted between the root surface and the gingival flap. However, the GTR method has a limited ability to regenerate large alveolar bone defects, and the defect is large and cannot be repaired with natural healing power. There is regenerative medical technology to regenerate In this case, a tissue regeneration scaffold (scaffold) for inducing tissue regeneration is first required.
[0011] このように組織再生のためのスカフォールドの適用は、人体の様々な部位に対して 適用が試されている。本明細書では、歯科領域における組織再生のためのスカフォ 一ルドの適用につ 、て示すこととして!/、るが、これは以下の理由がある。 [0011] As described above, application of the scaffold for tissue regeneration has been tried on various parts of the human body. In this specification, the application of scaffolds for tissue regeneration in the dental field will be shown for the following reasons.
1)口の中は、雑菌が最も多い場所といわれており、この部位で組織再生が可能なら 、他の部位への適用は十分可能であることが言える。  1) The mouth is said to be the place with the most bacteria, and if tissue regeneration is possible at this site, it can be said that it can be applied to other sites.
2)損傷部が比較的小さぐ組織再生期間が短いため評価が速く行える。  2) Evaluation is quick because the damaged part is relatively small and the tissue regeneration period is short.
[0012] スカフオールド (足場)となる材料には、一定時間は細胞成長、分化の足場となると ともに、時間が経過すると分解消失するいわゆる生分解 (生体吸収)性を有することが 重要である。  [0012] It is important for a material to be a scaffold to have a so-called biodegradation (bioabsorption) property that becomes a scaffold for cell growth and differentiation for a certain period of time and decomposes and disappears over time.
現状では、コラーゲンスポンジによる足場が実用化されているが、生分解性は十分 なものの剛性や柔軟性が小さいために応力負荷のないケースなどに適用範囲が限ら れている。また原料として牛由来のものがあり、狂牛病などの問題を抱えている。さら に医療の現場での加工性 (欠損部の形状に応じて医師自らが医療現場で形状ゃサ ィズ調整などの加工が可能なこと)などにぉ ヽても 、ろ 、ろと課題が存在する。 Currently, collagen sponge scaffolds are in practical use, but their biodegradability is sufficient, but their rigidity and flexibility are small, so the scope of application is limited to cases where there is no stress load. Some of the ingredients are derived from cattle and have problems such as mad cow disease. More In addition, there are problems in the process of medical treatment (the doctor must be able to process the shape by adjusting the shape in the medical field according to the shape of the defect). To do.
[0013] また、近年では骨組織のリモデリング (組織の再構築)についての研究が盛んになつ てきており、荷重負担部,すなわちスカフォールドの外側から、骨芽細胞による骨生 成とその酵素の働きで複合材料の生分解が同時に進行し、応力負担が増すと骨生 成がさらに促進されると言われている。  [0013] In recent years, research on bone remodeling (tissue remodeling) has been actively conducted. From the outside of the load bearing part, that is, the scaffold, the bone formation by osteoblasts and the enzyme are It is said that the biodegradation of the composite material proceeds at the same time, and the bone formation is further promoted when the stress burden increases.
[0014] このように、スカフォールドの役割は、細胞の分ィ匕と増殖のための基質、再生のため にスペース確保、再生の場への他の組織の侵入阻止、再生組織のパターン付与、細 胞への酸素と栄養素の供給、細胞増殖因子の貯蔵、宿主からの免疫防御反応の回 避である。  [0014] Thus, the role of the scaffold is to serve as a substrate for cell sorting and proliferation, to secure space for regeneration, to prevent the invasion of other tissues into the regeneration field, to provide patterns for regenerated tissues, The supply of oxygen and nutrients to the vesicles, storage of cell growth factors, and avoidance of immune defense reactions from the host.
そのために必要となるスカフォールドの特性としては、主に以下の点が挙げられる。 The following points are mainly mentioned as the characteristics of the scaffold required for that purpose.
1)細胞の成長のため高 、空孔率を有して 、ること 1) Having high porosity for cell growth
2)生体適合性に優れて!/ヽること  2) Excellent biocompatibility!
3)生分解とその吸収速度が生体に合うように制御できること  3) Biodegradation and absorption rate can be controlled to fit the living body
4)細胞の着床,増殖に適した化学的性質を有して!/ヽること  4) Having chemical properties suitable for cell implantation and growth!
5)剛性などの機械的特性に優れて!/、ること  5) Excellent mechanical properties such as rigidity!
[0015] 既に本発明者らは、生分解性の榭脂からなる複合材によるスカフオールドを開発し た (特許文献 2,非特許文献 3)。力かるスカフオールドは構造的に開口部を有し、臨 床時に注射による播種が可能であるとともに、高強度 PLA繊維とバインダーとして用 いる PCL榭脂の複合ィ匕により、剛性に優れており、人体の活動による荷重の支持が 可能であるものである。  [0015] The present inventors have already developed a scuffold made of a composite material composed of biodegradable rosin (Patent Document 2, Non-Patent Document 3). The powerful scaffold has a structural opening, so that it can be seeded by injection during clinical practice, and it has excellent rigidity due to the combination of high-strength PLA fibers and PCL resin used as a binder. It is possible to support the load by the activity of
また、欠損部への上皮進入や細菌性プラークの堆積を防ぐ構造を設けたり、施術 後に欠損部との界面でただちに生分解させる構造を設けて、速やかにスカフォール ド内に体液を循環させて、組織再生によりよい環境を整えることができるなど多くの機 能を有している。  In addition, a structure that prevents epithelial entry into the defect and accumulation of bacterial plaque is provided, or a structure that immediately biodegrades at the interface with the defect after the operation is provided to quickly circulate body fluid in the scaffold. It has many functions such as creating a better environment for organizational regeneration.
[0016] し力し、上述の複合化スカフオールドにお 、て、バインダーとして用いた PCL榭脂 の効能によって、管状の構造体にした場合に、長手方向の強度(引っ張り強度)があ るものの、半径方向の剛性と強度が小さぐ内部に細胞を入れて埋植等の治療手術 をする場合に、折れ曲がりが生じて、半径方向につぶれるように変形 (坐屈等)が生じ 、中の細胞が破壊されてしまうという問題があった。 [0016] In the above-mentioned composite scaffold, there is a strength in the longitudinal direction (tensile strength) when the tubular structure is formed by the effect of the PCL resin used as a binder. Therapeutic surgery such as implantation by placing cells in the inside where the rigidity and strength in the radial direction are small In the case of the bending, there is a problem that bending occurs and deformation (buckling or the like) occurs so as to collapse in the radial direction, and the cells inside are destroyed.
また、患部の欠損部位の形状によっては、歯の周囲に巻きつけるように埋植するこ とが多ぐあら力じめ屈曲した形状に成形するというニーズが存在する。かかる場合に 患部の欠損部位の形状に合わせて、上述の複合化スカフオールドを屈曲した形状に 成形しょうとしても、半径方向の剛性と強度が小さいために、形状を維持することが難 しぐ屈曲した形状に成形することが非常に困難であった。  In addition, depending on the shape of the defect site of the affected area, there is a need to form a bent shape that is often embedded around the teeth. In such a case, even when trying to mold the above-mentioned composite scaffold into a bent shape in accordance with the shape of the defect site of the affected area, it is difficult to maintain the shape because the rigidity and strength in the radial direction are small. It was very difficult to form into a shape.
一方、骨は静的な組織に見える力 つねに動的に吸収 ·形成力もなるリモデリング によって内部構造や外部形状を変化させている。骨形成を担う骨芽細胞は、骨吸収 を担う破骨細胞による骨吸収とカップリングして、コラーゲンなどの骨基質成分を分泌 することによって類骨を形成する。その後、この類骨の石灰化によって、骨基質が形 成される。また、骨のリモデリングに関する初期の研究においては,動物を用いた in V ivo (生体内)における実験的な検討が主であつたが、細胞培養技術の進歩によって、 細胞を用いた in vitro (生体外)における実験が盛んに行われるようになつている。 細胞や組織の周囲環境を設計して生体内に欠損した機能を再建させる生体内環 境設計を行う上にぉ ヽて、生体吸収性材料は欠くことのできな 、重要な材料である。 そして、生体の組織の再生する速度に合致するように、体内に吸収される生体材料 の速度がコントロールできる技術を確立することがこの分野において重要な課題とな つている。  On the other hand, the internal structure and external shape of bones are changed by remodeling, which is a force that looks like a static tissue, and that dynamically absorbs and forms. Osteoblasts responsible for bone formation are coupled with bone resorption by osteoclasts responsible for bone resorption and secrete bone matrix components such as collagen to form osteoids. The bone matrix is then formed by calcification of the osteoid. In addition, early studies on bone remodeling mainly focused on in vivo experiments using animals. However, due to advances in cell culture technology, in vitro ( Experiments in vitro have been actively conducted. A bioabsorbable material is indispensable for designing an in vivo environment in which the surrounding environment of cells and tissues is designed to reconstruct a function that has been lost in the living body. Establishing a technology that can control the speed of the biomaterial absorbed in the body so as to match the speed of regeneration of the living tissue is an important issue in this field.
再生される新生骨と吸収されるスカフオールドの機能の関係は、図 18に示されるよ うに、代表的な機能として骨全体の応力に関しては、欠損部にスカフオールドを入れ ると、初期はスカフオールドが応力を負担する力 やがてスカフオールドは分解してい き剛性低下により負担する応力は低下して行くことになる。しかし、骨の再生が同時 に進むため骨の応力負担は増加する。この骨とスカフオールドを併せた応力が完治 するまでほぼ一定に保たれることが理想的な再生過程なのである。  As shown in Fig. 18, the relationship between the regenerated new bone and the resorbed scaffold function is representative of the stress of the entire bone. As a typical function, when the scaffold is inserted into the defect, the scaffold is initially stressed. Over time, the scaffold will decompose, and the stress will decrease as the rigidity decreases. However, since bone regeneration proceeds simultaneously, the stress burden on the bone increases. The ideal regeneration process is to keep the bone and scuffold combined stresses until they are completely cured.
組織再生のためのスカフォールドの適用は今後広がっていくと予想され、適用部位 によって、組織再生速度が異なるために、これに合わせて、生分解速度や剛性を調 整する必要がある。そのために、上記の問題を克服し、生分解性榭脂の最適化ゃス カフオールドの形状構造の最適化など、スカフォールドのバリエーションを構築するこ とが重要である。 The application of scaffolds for tissue regeneration is expected to expand in the future, and since the tissue regeneration rate varies depending on the application site, it is necessary to adjust the biodegradation rate and stiffness accordingly. To overcome this problem, the biodegradable resin can be optimized. It is important to build scaffold variations, such as optimizing the cuffold geometry.
[0018] 特許文献 1 :特開 2003— 169845号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-169845
特許文献 2:国際公開公報 WO2005Z089828  Patent Document 2: International Publication Gazette WO2005Z089828
非特許文献 l : S.Wakitani,T.Goto,R.G.Young,J.M.Mansour,V.M.Goldberg and A.I. C apian, Tissue Engineering, 4, 429(1998))  (Non-patent literature l: S. Wakitani, T. Goto, R. G. Young, J. M. Mansour, V. M. Goldberg and A. I. C apian, Tissue Engineering, 4, 429 (1998))
非特許文献 2 : Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. J Bio med Mater Res. 2001 May; 55(2): 203-16  Non-Patent Document 2: Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. J Bio med Mater Res. 2001 May; 55 (2): 203-16
非特許文献 3 :歯槽骨再生のための生分解性榭脂複合材スカフオールドの開発、日 和千秋 ·沖添晃政 ·安達泰治 ·中井善一、 日本生体医工学会関西支部生体医工学 シンポジウム 2005、 2005.9.27-28  Non-Patent Document 3: Development of biodegradable sallow composite scaffold for alveolar bone regeneration, Chiaki Niwa, Yasumasa Okizoe, Taiji Adachi, Zenichi Nakai, Biomedical Engineering Symposium 2005 2005.9.27-28
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0019] 本発明が解決しょうとする課題は、スカフォールドの適用部位によって、生分解速 度や剛性を調整する必要があるために、生分解性榭脂の最適化ゃスカフオールドの 形状構造の最適化など、スカフオールドのノ リエーシヨンを構築することである。上述 したように、生体の組織の再生する速度に合致するように、体内に吸収される生体材 料の速度がコントロールできる技術を確立するのである。この技術により再生部分に ぉ 、て必要な、強度をはじめとする生体的機能が組織再生過程でほぼ一定に保てる ことをめざすものである。このことによって患者は手術後から完治にいたるまで,ほぼ 通常の生活をすることが可能となる。 [0019] The problem to be solved by the present invention is that the biodegradation speed and rigidity need to be adjusted depending on the application site of the scaffold. Therefore, the optimization of the biodegradable resin is optimized the shape structure of the scaffold It is to build a scuff old noriage. As described above, a technology is established that can control the speed of biological material absorbed into the body so as to match the speed of regeneration of living tissue. With this technology, we aim to keep the vital functions such as strength necessary for the regeneration part almost constant during the tissue regeneration process. This makes it possible for the patient to have a normal life from surgery to complete cure.
生分解性榭脂の最適化に対しては、複合化スカフオールドにおける生分解性榭脂 の選択により生分解速度を制御するとともに、構造の最適化により生分解途中にお いてもスカフオールド外部組織からうける荷重の支持に耐えうる剛性を保つことを実 現するものである。  For optimization of biodegradable resin, the biodegradation speed is controlled by selecting biodegradable resin in the composite scaffold, and the structure is optimized so that it can be received from external scaffolds even during biodegradation. It is possible to maintain rigidity that can withstand load support.
[0020] 具体的には、生分解性の速度が速い榭脂を採用したものや、曲げ強度を要求され る部位に適用するものにおいて、スカフオールド構造体の長手方向のみならず、半 径方向の剛性と強度が大きぐ半径方向につぶれるような変形が生じず、中の細胞 が破壊されてしまうことのな 、組織再生用複合化スカフオールドを提供することを目 的とする。また、欠損患部の形状にあった成形が容易に行える、屈曲形状の成形性 に優れたスカフオールドを提供することを目的とする。 [0020] Specifically, in the case of using a resin having a high biodegradability rate or applied to a site where bending strength is required, not only in the longitudinal direction of the scaffold structure but also in the radial direction. The cells inside are not deformed to collapse in the radial direction due to their large rigidity and strength. The objective is to provide a composite scaffold for tissue regeneration without destroying the tissue. It is another object of the present invention to provide a scaffold with excellent bending formability, which can be easily molded according to the shape of the affected area.
課題を解決するための手段  Means for solving the problem
[0021] 本発明者らは、生分解材料の豊富な知見と、実際の試作品を作製する技術と、臨 床経験の豊富な歯科医師の知見を有し、歯槽骨の骨欠損モデルで骨欠損部への適 合状態の検討を重ねて、本発明に係る組織再生用複合化スカフオールドを完成した ものである。  [0021] The present inventors have abundant knowledge of biodegradable materials, technology for producing actual prototypes, and knowledge of dentists with abundant clinical experience. The composite scaffold for tissue regeneration according to the present invention has been completed by repeatedly examining the conformity to the defect.
[0022] 上記目的を達成するため、本発明に係る組織再生用複合化スカフオールドの第 1 の観点カゝらは、内部に空間を有し、生分解性榭脂繊維から成る管状の織物構造体と ;前記織物構造体の長手方向に螺旋状に配され、前記織物構造体の交差部に絡接 された、生分解性榭脂繊維から成る螺旋構造体と;前記織物構造体の繊維の交差部 を接合する、生分解性榭脂から成るバインダーと;から構成されるスカフオールドが提 供される。  [0022] In order to achieve the above object, the first aspect of the composite scaffold for tissue regeneration according to the present invention is a tubular woven structure having a space inside and made of biodegradable resin fibers. And a spiral structure composed of biodegradable resin fibers arranged in a spiral shape in the longitudinal direction of the woven structure and entangled with an intersection of the woven structure; and an intersection of fibers of the woven structure A scaffold comprising biodegradable resin that joins the parts and a scaffold composed of; is provided.
[0023] 本発明者らは、先に発明した生分解性の樹脂からなる複合化スカフオールド (PLA 榭脂繊維で構成された構造体とバインダーとして PCL榭脂を用いたスカフォールド) の骨欠損部への適合状態の検討を行った結果、スカフォールドの構造体の半径方 向の剛性と強度を高める必要性があるとの知見を得た。  [0023] The inventors of the present invention are directed to the bone defect portion of the composite scaffold comprising the biodegradable resin previously invented (a structure composed of PLA resin fibers and a scaffold using PCL resin as a binder). As a result of studying the conformity condition, it was found that it was necessary to increase the rigidity and strength in the radial direction of the scaffold structure.
これは、スカフォールドの適用部位によって、組織再生速度が異なるために、これ に合わせて、生分解速度や剛性を調整する必要があり、これに対応させるベく生分 解の早い榭脂を用いた場合には、スカフォールドの構造体の剛性が弱くなる。この場 合、欠損部を瘢痕組織に占有されないように、あら力じめ欠損部での再生のスペース を確保 (スペース 'メイキング)し、細胞の分ィ匕ゃ増殖を支援するための場を欠損部に 作るというスカフオールド本来の機能が担保できないこととなる。このため、剛性を制 御できる仕組みをスカフオールドに取り入れ、生分解性榭脂の生分解速度の制御を 容易にし、スカフォールドの適用部位を広げる。  This is because the tissue regeneration speed differs depending on the application site of the scaffold, and it is necessary to adjust the biodegradation speed and rigidity accordingly. In some cases, the scaffold structure is less rigid. In this case, in order to prevent the defect part from being occupied by the scar tissue, the space for regeneration at the defect part is secured (space 'making), and the place for supporting cell proliferation is lost. The original function of Scaffolding that is made in the department cannot be secured. For this reason, a mechanism that can control the rigidity is incorporated into the scaffold, facilitating the control of the biodegradation rate of the biodegradable resin, and expanding the application area of the scaffold.
[0024] また、複合化スカフオールドを実際に骨欠損部の患部に埋入する際に、ピンセット などの器具を用いるのであるが、器具で掴む際に半径方向につぶれるように変形 (坐 屈等)が生じたり、欠損部位の形状に合せる際に折れ曲がりが生じたりし、中の細胞 が破壊されてしまうという問題を回避すベぐスカフォールドの構造体の半径方向の 剛性と強度を更に高める。 [0024] When the composite scaffold is actually inserted into the affected part of the bone defect, an instrument such as tweezers is used. However, when it is grasped by the instrument, it is deformed so as to be crushed in the radial direction. To improve the radial rigidity and strength of the veg scaffold structure, which avoids problems such as bending and bending when conforming to the shape of the defect site and destroying the cells inside. .
また、患部の欠損部位の形状によっては、歯の周囲に巻きつけるように埋植するこ とが多ぐあら力じめ屈曲した形状に成形するというニーズがあり、力かる場合に患部 の欠損部位の形状に合わせて、上述の複合化スカフオールドを屈曲した形状に成形 すべぐスカフォールドの構造体の半径方向の剛性と強度を更に高める。  In addition, depending on the shape of the defect site in the affected area, there is a need to form a bent shape that is often embedded around the teeth. In accordance with the shape, the rigidity and strength in the radial direction of the structure of the sliding scaffold that is formed by bending the above-described composite scaffold into a bent shape is further increased.
[0025] 一方で、スカフオールド本来の機能である、あらかじめ欠損部での再生のスペース を確保 (スペース 'メイキング)し、細胞の分ィ匕ゃ増殖を支援するための場を欠損部に 作る機能を阻害しな 、ように、スカフォールドの構造体内部の空孔率は高く維持させ る必要がある。  [0025] On the other hand, the original function of Scaffold is to secure a space for regeneration in the defective part in advance (space 'making), and to create a place for supporting cell proliferation in the defective part. The porosity inside the scaffold structure should be kept high so that it does not interfere.
そこで、生分解性榭脂繊維から成る内部に空間を有する管状の織物構造体に、生 分解性榭脂繊維を長手方向に螺旋状に配して、構造体の交差部に絡接させるように 織り込んだ螺旋構造体を設け、生分解性榭脂から成るバインダーを用いて織物構造 体の交差部を接合したのである。  Therefore, the biodegradable resin fibers are arranged in a spiral shape in the longitudinal direction in a tubular woven structure having a space inside the biodegradable resin fibers so that they are intertwined with the intersections of the structures. A woven spiral structure was provided, and the intersections of the woven structure were joined using a binder made of biodegradable resin.
[0026] ここで、織物構造体および螺旋構造体を構成する生分解性榭脂繊維が、ポリ乳酸 榭脂、ポリダリコール酸、乳酸とグリコール酸の共重合体力 選択されたいずれかの ものから成る繊維であり、バインダーを構成する生分解性榭脂が、乳酸とグリコール 酸の共重合体,ポリ力プロラタトン榭脂,ポリグリコール酸力 選択されたいずれかの 榭脂であることが好ましい。 [0026] Here, the biodegradable rosin fiber constituting the woven fabric structure and the spiral structure is a fiber composed of any one selected from the group consisting of polylactic acid resin, polydalicolic acid, and copolymer power of lactic acid and glycolic acid. It is preferable that the biodegradable resin constituting the binder is any one selected from a copolymer of lactic acid and glycolic acid, poly-force prolatatone resin, and polyglycol-acid power.
また、構造体を構成する生分解性榭脂繊維と、構造体の交差部に絡接させるように 織り込む生分解性榭脂繊維が同一種類のものでも、異なる種類のものでも構わない また、バインダーとして、ポリビニールアルコール、ポリエーテルサルホン、ポリシァノ アタリレートなどの生体適合性樹脂を塗布してもよい。  In addition, the biodegradable resin fiber constituting the structure and the biodegradable resin fiber woven so as to be intertwined with the intersection of the structure may be the same type or different types. Alternatively, a biocompatible resin such as polyvinyl alcohol, polyethersulfone, or polycyanate acrylate may be applied.
[0027] カゝかるバインダーの材料はいずれも生分解性を持っている。この生分解速度は材 料によって異なることから、欠損部位の対象に合った分解速度と強度を持つ材料が 選択される必要がある。 例えば、ポリ乳酸榭脂は、生分解速度 (半減期)が 24ヶ月以上と長期間であり、骨 再生時間が長い部位に用いられる。また、ポリグリコール酸は、生分解速度(半減期) 力 〜 12ヶ月である。 [0027] All the binder materials that can be produced are biodegradable. Since this biodegradation rate varies depending on the material, it is necessary to select a material with a decomposition rate and strength suitable for the target of the defect site. For example, polylactic acid coagulation has a biodegradation rate (half-life) of 24 months or longer and is used for sites with long bone regeneration times. Polyglycolic acid has a biodegradation rate (half-life) power of up to 12 months.
乳酸とグリコール酸の共重合体の場合は、生分解速度(半減期)が 1〜6ヶ月と短く 、骨再生速度が速い部位に関しては、バインダーとして適切な材料である。  In the case of a copolymer of lactic acid and glycolic acid, the biodegradation rate (half-life) is as short as 1 to 6 months, and it is a suitable material as a binder for sites where the bone regeneration rate is fast.
[0028] 本発明者らは、先に発明した生分解性の樹脂からなる複合化スカフオールドの骨 欠損部への適合状態の検討を行う中で、歯槽骨の骨再生速度が約 8週間であるとの 知見を得ている。この場合の適したスカフオールド構造体のバインダーとしては、乳 酸とダリコール酸の共重合体で、共重合体の乳酸の共重合比率が 10〜90%である ことが好ましぐさら〖こ好ましくは、 15〜25%若しくは 75〜85%である。  [0028] While investigating the state of adaptation of the composite scaffold made of the biodegradable resin previously invented to the bone defect, the present inventors have a bone regeneration rate of alveolar bone of about 8 weeks. The knowledge that In this case, a suitable binder for the scaffold structure is a copolymer of lactic acid and dallicolic acid, and the copolymerization ratio of lactic acid in the copolymer is preferably 10 to 90%. 15-25% or 75-85%.
乳酸とグリコール酸の共重合体の生分解速度(半減期)特性と歯槽骨の骨再生速 度特'性とのマッチングを図るものである。  The aim is to match the biodegradation rate (half-life) characteristics of the copolymer of lactic acid and glycolic acid with the bone regeneration speed characteristics of the alveolar bone.
[0029] また、ポリ力プロラタトン榭脂と比べて、ポリグリコール酸を用いたバインダーでは、ス カフオールドの長手方向の伸びが小さいものの、バインダーとしての接着性能、生分 解性能が実用に耐えうるものであり、強度が特に要求される骨欠損部位においては 有用であると考えている。  [0029] In addition, in the binder using polyglycolic acid compared with polystrength prolatatone rosin, although the longitudinal extension of the scaffold is small, the adhesive performance and biodegradation performance as a binder can withstand practical use. Therefore, it is considered useful for bone defects where strength is particularly required.
[0030] 但し、織物構造体および螺旋構造体を構成する生分解性榭脂繊維の生分解性が 遅ぐバインダーを構成する生分解性榭脂の生分解性が早い方が好適である。具体 例としては、織物構造体および螺旋構造体を構成する生分解性榭脂繊維が、ポリ乳 酸榭脂から成る繊維であり、バインダーを構成する生分解性榭脂が、乳酸とグリコー ル酸の共重合体の組合せである。  [0030] However, it is preferable that the biodegradable coconut resin constituting the binder that has a slow biodegradability of the biodegradable cocoon fiber constituting the woven structure and the spiral structure is faster in biodegradability. As a specific example, the biodegradable resin fibers constituting the woven structure and the spiral structure are fibers made of polylactic acid resin, and the biodegradable resin constituting the binder is composed of lactic acid and glycolic acid. It is a combination of these copolymers.
[0031] また、他の組合せとして、織物構造体および螺旋構造体を構成する生分解性榭脂 繊維が、乳酸とグリコール酸の第 1の共重合体力 成る繊維であり、バインダーを構 成する生分解性榭脂が、乳酸とグリコール酸の第 2の共重合体であり、第 1の共重合 体の乳酸の共重合比率力 第 2の共重合体の乳酸の共重合比率よりも小さ 、ものが 挙げられる。  [0031] Further, as another combination, the biodegradable resin fiber constituting the woven structure and the spiral structure is a fiber having the first copolymer power of lactic acid and glycolic acid, and the raw material constituting the binder. The degradable resin is a second copolymer of lactic acid and glycolic acid, and the copolymerization power of lactic acid of the first copolymer is smaller than the copolymerization ratio of lactic acid of the second copolymer Is mentioned.
この場合は、第 1の共重合体の乳酸の共重合比率が 10〜20%であり、第 2の共重 合体の乳酸の共重合比率が 50〜70%であることが好ましい。第 1の共重合体と第 2 の共重合体の乳酸の共重合比率には差を設けることが必要であり、仮に同じような比 率であれば、互いに溶け合い、バインダーとしての機能を有しなくなるからである。 In this case, the lactic acid copolymerization ratio of the first copolymer is preferably 10 to 20%, and the lactic acid copolymerization ratio of the second copolymer is preferably 50 to 70%. 1st copolymer and 2nd This is because it is necessary to provide a difference in the copolymerization ratio of lactic acid in these copolymers, and if the ratios are similar, they will dissolve each other and no longer function as a binder.
[0032] また、生分解性榭脂繊維で織り込んだ構造体に、生分解性榭脂繊維が長手方向 に螺旋状に配されるように、構造体の交差部に絡接させるように織り込んだとは、例 えば、ポリ乳酸榭脂繊維を用いてリリアン編みで作製した管状の織物構造体に対し、 その構造体形状を形成する表面の繊維と繊維の交差部に引っ掛けて、管状構造体 の長手方向に沿って所定のピッチ間隔で螺旋状にポリ乳酸榭脂繊維を織り込むこと をいう。  [0032] In addition, the structure woven with biodegradable resin fibers was woven so as to be intertwined with the intersections of the structures so that the biodegradable resin fibers are spirally arranged in the longitudinal direction. For example, a tubular woven fabric structure made by using Lilac knitting with polylactic acid resin fiber is hooked at the intersection of the surface fibers and fibers forming the structure shape, and the tubular structure This refers to weaving polylactic acid resin fibers spirally at a predetermined pitch interval along the longitudinal direction.
また、管状の織物構造体において、両端を閉鎖し得る構成とすることで、織物構造 体に培養液等を注入しても織物構造体内部に保持できることとなる。ここで、両端を 閉鎖し得る構成は、例えば、生分解性榭脂繊維で両端を縛ることで実現できる。  In addition, by adopting a configuration in which both ends of the tubular woven structure can be closed, even if a culture solution or the like is injected into the woven structure, it can be held inside the woven structure. Here, the structure which can close both ends is realizable by binding both ends with a biodegradable resin fiber, for example.
[0033] 上述の管状の織物構造体の繊維と繊維の交差部に引っ掛けて、螺旋状にポリ乳酸 榭脂繊維を織り込むことにより、スカフォールドの管状の織物構造体の半径方向の剛 性と強度を 10倍程度まで向上させることに成功した。 [0033] By hooking polylactic acid resin fibers in a spiral manner by hooking the fibers in the tubular woven fabric structure described above, the rigidity and strength in the radial direction of the tubular woven fabric structure of the scaffold are increased. We succeeded in improving to about 10 times.
これにより、管状の織物構造体のスカフオールドを用いて、スカフオールド内部に細 胞を入れて埋植等の治療手術をする場合に、管状の織物構造体の半径方向につぶ れるような変形が生じず、中の細胞が破壊されてしまうことが生じない。また、管状の 織物構造体の半径方向の剛性と強度が向上したことから、屈曲形状の成形性に優れ 、欠損患部の形状にあった成形が容易に行えることとなる。  As a result, when a surgical operation such as implantation is performed using a scaffold of a tubular woven structure with cells inside the scaffold, the tubular woven structure is not deformed so as to be crushed in the radial direction. , It does not occur that the cells inside are destroyed. In addition, since the rigidity and strength in the radial direction of the tubular woven fabric structure are improved, it is excellent in moldability of the bent shape and can be easily molded in accordance with the shape of the defect affected part.
[0034] 次に、本発明に係る組織再生用複合化スカフオールドの第 2の観点からは、内部に 空間を有し、生分解性榭脂繊維から成る管状の織物構造体と;前記織物構造体の長 手方向に螺旋状に配され、前記織物構造体の内面若しくは外面の交差部に接着さ れた、生分解性榭脂繊維から成る螺旋構造体と;前記織物構造体の交差部を接合 する、生分解性榭脂から成るバインダーと;から構成されるスカフオールドが提供され る。  [0034] Next, from a second aspect of the composite scaffold for tissue regeneration according to the present invention, a tubular woven structure having a space inside and made of biodegradable cocoon fiber; and the woven structure A spiral structure composed of biodegradable resin fibers arranged in a spiral shape in the longitudinal direction of the fabric structure and bonded to the intersection of the inner surface or the outer surface of the fabric structure; and joining the intersection of the fabric structure There is provided a scaffold comprising a biodegradable resin and a scaffold comprising;
[0035] 本発明の組織再生用複合化スカフオールドの生産性を高めるベぐ生分解性榭脂 繊維を長手方向に螺旋状に配して、構造体の交差部に絡接させるように織り込むの ではなぐ予め生分解性榭脂繊維を構造体の外側もしくは内側に長手方向に螺旋状 に配し、熱処理等により構造体の交差部に付けるのである。そして、バインダーにより 構造体の交差部に接着させるようにするのである。その他、第 1の観点と同様であり、 説明は割愛する。 [0035] Veg biodegradable rosin fiber that enhances the productivity of the composite scaffold for tissue regeneration of the present invention is arranged in a spiral shape in the longitudinal direction and woven so as to be entangled with the intersecting portion of the structure. Pre-degradable biodegradable resin fibers spiral in the longitudinal direction outside or inside the structure And attached to the intersection of the structures by heat treatment or the like. And it is made to adhere to the crossing part of a structure with a binder. Others are the same as in the first viewpoint, and the explanation is omitted.
[0036] また、スカフォールドの構造体としては、リリアン編みで形成された組み紐形状、若 しくは籠型形状の管状構造体であることが好ましい。管状構造体とすることで、スカフ オールドに必要な強度や剛性を保ちながらも管状形状を自由に屈曲'変形させること が可能である。  [0036] The scaffold structure is preferably a braided braid formed by Lilian knitting or a tubular structure having a saddle shape. By using a tubular structure, it is possible to freely bend and deform the tubular shape while maintaining the strength and rigidity required for the scaffold.
[0037] また、本発明に係る組織再生用複合化スカフオールドは、上述の管状構造体の長 手方向に螺旋状に配されたポリ乳酸榭脂繊維のピッチ間隔を制御することにより、該 管状構造体の半径方向の剛性と強度を制御できる。  [0037] Further, the composite scaffold for tissue regeneration according to the present invention controls the tubular structure by controlling the pitch interval of the polylactic acid resin fibers spirally arranged in the longitudinal direction of the tubular structure. Can control the stiffness and strength of the body in the radial direction.
ここで、スカフオールド構造体の交差部に引っ掛けて織り込む螺旋状のポリ乳酸榭 脂繊維のピッチ間隔が、 0. 5〜2mmであり、かつ、使用するポリ乳酸榭脂繊維の直 径が 0. 05〜0. 5mmであることが好ましい。  Here, the pitch interval of the helical polylactic acid resin fibers hooked and woven at the intersection of the scaffold structure is 0.5 to 2 mm, and the diameter of the polylactic acid resin fibers used is 0.05. It is preferably ~ 0.5 mm.
[0038] 本発明のスカフオールドを、骨欠損部にインスツルメント(例えば、ピンセット)を用い て把持し挿入する際に、スカフオールド内部の螺旋状の間隔が広い場合は、スカフォ 一ルドの長手方向における剛性にむらができてしま、、極端な変形が生じな 、ように (例えば、折れ曲がってしまう等)、スカフオールドをインスツルメントで把持することが 困難である。また一方、螺旋状の間隔が狭すぎると、剛性が高くなりすぎてしまい屈 曲性が悪くなるため、骨欠損部に適合させるうえで不適当である。従って、本発明の スカフォールドには最適な螺旋状の間隔が存在するのである。  [0038] When the scaffold of the present invention is inserted into a bone defect using an instrument (for example, tweezers), if the spiral interval inside the scaffold is wide, the scaffold in the longitudinal direction of the scaffold It is difficult to grip the scuffold with the instrument so that the rigidity is uneven and the extreme deformation does not occur (for example, it is bent). On the other hand, if the spiral interval is too narrow, the rigidity becomes too high and the bending property is deteriorated, so that it is inappropriate for adapting to a bone defect portion. Thus, there is an optimal helical spacing in the scaffold of the present invention.
[0039] 上述したこれらの本発明のスカフオールドは、歯槽骨欠損部に挿入または埋入され る歯槽骨再生用スカフオールドとして用いられる。  [0039] These scuffolds of the present invention described above are used as a scaffold for regenerating alveolar bone inserted or embedded in an alveolar bone defect.
本発明のスカフォールドの構造体内部に、培養増殖を行った細胞を注入し、歯槽 骨欠損部に挿入または埋入を行うことで、歯槽骨形成、歯周組織再生を図ることがで きるものである。  By injecting cultured cells into the scaffold structure of the present invention and inserting or embedding them in the alveolar bone defect, alveolar bone formation and periodontal tissue regeneration can be achieved. is there.
[0040] また、本発明に係る組織再生用複合化スカフオールドの作製方法は、下記(1)〜( 4)の工程を含むことを特徴とする。  [0040] The method for producing a composite scaffold for tissue regeneration according to the present invention includes the following steps (1) to (4).
(1)生分解性榭脂繊維で織り込んだ内部に空間を有する織物構造体に棒体を挿入 する工程 (1) Insert a rod into a woven fabric structure with a space inside woven with biodegradable resin fiber Process
(2)前記生分解性榭脂繊維の一端を前記棒体に固定し、他端を挟み、前記織物構 造体の交差部に端の部分から引っ掛けて編み込んで 、く工程  (2) A step of fixing one end of the biodegradable resin fiber to the rod, sandwiching the other end, hooking from the end portion to the intersection of the fabric structure, and knitting.
(3)前記生分解性榭脂繊維を、前記織物構造体に、所定の間隔をおいて、 1Z4周 〜1Z2周ごとに引っ掛けながら編み込んでいく工程  (3) A step of knitting the biodegradable resin fiber while being hooked to the woven structure at a predetermined interval every 1Z4 to 1Z2
(4)前記織物構造体の交差部に対し、バインダーとなる生分解性榭脂の塗布工程 [0041] また、本発明に係る組織再生用複合化スカフオールドの他の作製方法としては、下 記(1)〜(5)工程を含むことを特徴とする。  (4) Step of applying biodegradable resin as a binder to the intersection of the woven structure [0041] As another method for producing the composite scaffold for tissue regeneration according to the present invention, It includes the steps 1) to (5).
(1)棒体に生分解性榭脂繊維を螺旋状に巻きつける工程  (1) A process of spirally winding biodegradable rosin fiber around a rod
(2)生分解性榭脂繊維で織り込んだ内部に空間を有する織物構造体に前記棒体を 挿入する工程  (2) A step of inserting the rod into a woven structure having a space inside which is woven with biodegradable resin fiber.
(3)前記織物構造体を加熱する工程  (3) Heating the woven structure
(4)前記棒体を前記織物構造体から抜き出す工程  (4) Step of extracting the rod from the woven structure
(5)前記織物構造体の交差部に対し、バインダーとなる生分解性榭脂の塗布工程 [0042] ここで、上記の作製方法における棒体には、例えば、フッ素榭脂コーディング棒を 用!/、ることができる。  (5) Step of applying biodegradable resin as a binder to the intersection of the woven structure [0042] Here, for example, a fluorine resin coding rod is used as the rod in the above production method! / I can.
なお、具体的な作製手順については、後述する実施例で説明することとする。 発明の効果  Note that a specific manufacturing procedure will be described in Examples described later. The invention's effect
[0043] 本発明の組織再生用複合化スカフオールドによると、スカフォールドの適用部位に より組織再生速度が異なるために、これに合わせた生分解速度や剛性を調整する必 要があると!/ヽぅ要求を満足でき、最適化な生分解速度を有する生分解性榭脂を選択 できるスカフオールドを提供することができるといった効果を有する。  [0043] According to the composite scaffold for tissue regeneration of the present invention, the tissue regeneration speed varies depending on the application site of the scaffold. Therefore, it is necessary to adjust the biodegradation speed and rigidity according to this! / ヽ ぅIt has the effect of being able to provide a scaffold that can satisfy the requirements and can select a biodegradable resin having an optimized biodegradation rate.
[0044] 具体的には、スカフオールド構造体の長手方向に垂直な半径方向の剛性と強度を 長手方向と独立に大きくすることができ、埋植等の治療手術をする際にインスツルメ ントで把持した場合や、外部組織力ゝらの荷重がカゝかった場合でも、半径方向につぶ れるように変形が生じて、スカフオールド内部の細胞が破壊されることはないという効 果を有する。  [0044] Specifically, the rigidity and strength in the radial direction perpendicular to the longitudinal direction of the scaffold structure can be increased independently of the longitudinal direction, and grasped with an instrument during a therapeutic operation such as implantation. In this case, even when the load of the external tissue force is large, the cell is deformed so as to be crushed in the radial direction, and the cells inside the scaffold are not destroyed.
[0045] また、半径方向の剛性と強度が大きくなることから、人体の活動によってスカフォー ルド構造体が崩れることがなくなり、骨欠損部を瘢痕組織に占有されることがなぐ骨 欠損部での再生のスペースを確保 (スペース 'メイキング)し、細胞の分化や増殖を支 援するための場を欠損部に作ることが確実にできるといった効果も有する。 [0045] In addition, since the rigidity and strength in the radial direction are increased, the scaffolding is caused by human activity. In order to support the differentiation and proliferation of cells by securing a space for regeneration in the bone defect where the bone structure does not collapse and the bone defect is not occupied by scar tissue (space 'making') There is also an effect that the field can be surely made in the defect portion.
[0046] 単に螺旋状に形成した生分解性榭脂繊維をスカフオールド内部に入れる場合と比 ベて、交差部にひっかけて織り込む若しくは接着することにより、スカフオールド内部 でコイル状の生分解性榭脂繊維を固定することができ、屈曲性が良ぐ成形性が優 れており、患部の骨欠損部位に最適な形状を有するスカフオールドを構築することが でき、安定に細胞を播種することができるのである。  [0046] Compared to the case where the biodegradable resin fiber simply formed in a spiral shape is placed inside the scaffold, the biodegradable resin fiber is coiled inside the scaffold by being woven or bonded to the intersection. Can be fixed, has excellent flexibility and has excellent moldability, can construct a scaffold with an optimal shape at the bone defect site of the affected area, and can stably seed cells. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0047] 以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。特に 、従来の管状構造体のスカフォールドに対して、長手方向に螺旋状のなるように生分 解性榭脂繊維をスカフオールドの交差部にひっかけて織り込んだ場合の剛性変化に ついて具体的にデータを示しながら説明する。以下明細書では、内部に空間を有し 、生分解性榭脂繊維から成る管状の織物構造体と、織物構造体の長手方向に螺旋 状に配され、織物構造体の交差部に絡接された、生分解性榭脂繊維から成る螺旋 構造体とから構成されるスカフオールドを、コイル入りスカフォールドと称することとす る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In particular, specific data on changes in stiffness when a biodegradable resin fiber is woven in a crossing portion of the scaffold so as to be spiral in the longitudinal direction compared to a conventional tubular structure scaffold. It will be explained while showing. In the following description, a tubular woven structure having a space inside and made of biodegradable resin fibers, and arranged in a spiral shape in the longitudinal direction of the woven structure, are intertwined at the intersection of the woven structure. In addition, a scaffold composed of a spiral structure made of biodegradable resin fibers is referred to as a coiled scaffold.
また、内部に空間を有し、生分解性榭脂繊維から成る管状の織物構造体を、コイル 無しスカフォールドと称することとする。  Further, a tubular woven structure having a space inside and made of biodegradable resin fibers is referred to as a coilless scaffold.
実施例 1  Example 1
[0048] 図 1に、本発明に係るコイル入りスカフオールド外観写真を示す。図 1に示されるス カフオールドは、ポリ乳酸榭脂 (PLA)繊維で織り込んだ構造体の交差部に、 PLA繊 維を螺旋状に引っ掛けて織り込んだ構造のものである。  [0048] Fig. 1 shows a photograph of the appearance of a coiled scaffold according to the present invention. The scaffold shown in Fig. 1 has a structure in which PLA fibers are spirally hooked at the intersection of structures woven with polylactic acid resin (PLA) fibers.
比較として、図 2に、従来のスカフオールド外観写真を示す。図 2のスカフオールドは 、ポリ乳酸榭脂繊維で織り込んだだけの構造のものである。  For comparison, Fig. 2 shows a conventional scaffold appearance photograph. The scaffold in Fig. 2 has a structure that is simply woven with polylactic acid resin fiber.
[0049] 図 1と図 2に示されるスカフォールドの構造体は、直径が 0. 1mmの PLA繊維で織 り込んで作製したもので、直径約 2mmの断面積で、長さは 15mm (調整自由)である 。この織物構造の空孔率は 90%以上である。図 1のコイル入りスカフオールドは、この 構造体の交差部に引っ掛けて、螺旋状 (コイル状)に、直径が 0. 1mmの PLA繊維 を、 1mmのピッチで織り込んだものである。図 1の構造体の交差部との絡接箇所 11, 12は、構造体の交差部に引っ掛けて、螺旋状に織り込んだ様子を模式的に示して いる。 [0049] The scaffold structure shown in Fig. 1 and Fig. 2 is made by weaving with PLA fibers with a diameter of 0.1 mm, and has a cross-sectional area of about 2 mm in diameter and a length of 15 mm (adjustable) ) The porosity of this woven structure is over 90%. The coiled scuff old in Figure 1 Hooked at the intersection of structures, spirally (coiled) PLA fibers with a diameter of 0.1 mm are woven at a pitch of 1 mm. The intertwined portions 11 and 12 with the crossing portion of the structure in FIG. 1 schematically show a state of being hooked into the crossing portion of the structural body and woven in a spiral shape.
[0050] このように、構造体の交差部に引っ掛けてコイル状に PLA繊維を所定のピッチで織 り込むことで、半径方向の剛性と強度を制御できるのである。  [0050] In this way, the rigidity and strength in the radial direction can be controlled by hooking the PLA fibers at a predetermined pitch by hooking them at the intersections of the structures.
なお、空孔率は、織物構造を断面が一定な円管と仮定し、ある長さに作製した織物 構造体の体積を求め、その織物構造体に使用された PLA繊維の体積を求めること により算出している。  The porosity is calculated by calculating the volume of the PLA structure used for the woven structure, assuming the woven structure as a circular tube with a constant cross-section, and determining the volume of the woven structure manufactured to a certain length. Calculated.
[0051] 図 3は、コイル入りスカフオールド(交差部に、 PLA繊維を lmmピッチでコイル状に 引っ掛けて織り込んだ構造のもの)と、コイル無しスカフォールドの半径方向の変位と 圧縮力の関係 (横剛性)を測定した結果を比較したグラフを示している。ここで、半径 方向の剛性特性とは、図 8で示されるように、スカフオールド構造体の長手軸方向と 垂直な半径方向の単位圧縮距離 (変位)に必要な圧縮力を測定したものである。  [0051] Fig. 3 shows the relationship between the displacement in the radial direction and the compressive force of the scaffold with coil (structure with PLA fibers hooked in a coil shape at the lmm pitch at the intersection) and the coiled scaffold. The graph which compared the result of having measured) is shown. Here, as shown in FIG. 8, the radial stiffness characteristic is a measurement of the compressive force required for the unit compression distance (displacement) in the radial direction perpendicular to the longitudinal axis direction of the scaffold structure.
[0052] 図 3のグラフの横軸は変位を表しており、グラフの縦軸は圧縮に要した力を表して いる。点線はコイル無しスカフォールドで、実線力 Sコイル入りスカフォールドである。測 定に用いたコイル入りスカフオールドは、上述したように、直径が 0. lmmの PLA繊 維で織り込んで作製したもので、直径約 2mmの断面積で長さが約 15mmの構造体 に、交差部に、直径が 0. lmmの PLA繊維を、 lmmのピッチで引っ掛けて、コイル 状に織り込んだものである。  [0052] The horizontal axis of the graph in FIG. 3 represents displacement, and the vertical axis of the graph represents the force required for compression. The dotted line is a scaffold without a coil, and is a scaffold with a solid line force S coil. As described above, the coiled scaffold used for the measurement was woven with PLA fiber having a diameter of 0.1 mm, and crossed into a structure with a cross-sectional area of about 2 mm in diameter and a length of about 15 mm. In this section, PLA fiber with a diameter of 0.1 mm is hooked at a pitch of 1 mm and woven in a coil shape.
[0053] 例えば、半径方向に lmm変位させるのに要する圧縮力は、コイル無しスカフォー ルドの場合、約 0. 1Nであるのに対して、コイル入りスカフォールドの場合、約 1Nとな つている。図 3の測定結果から、コイル入りスカフオールドは、コイル無しスカフォール ドに比べて、半径方向の同一変位に対する圧縮力(横剛性の特性)が約 10倍向上し ていることが理解できる。  [0053] For example, the compressive force required for lmm displacement in the radial direction is about 0.1N in the case of the coilless scaffold, whereas it is about 1N in the case of the coiled scaffold. From the measurement results in Fig. 3, it can be understood that the coiled scaffold has an approximately 10-fold improvement in compressive force (lateral stiffness characteristics) for the same radial displacement compared to the coilless scaffold.
[0054] 次に、図 4は、コイル入りスカフォールドにおいて、コイル状に引っ掛けて織り込む P LA繊維の直径,ピッチを変化させた場合の横剛性を測定したグラフを示して ヽる。 図 4のグラフは、横軸が PLA繊維をスカフオールド構造体の交差部に引っ掛けて織り 込んでいくコイルのピッチを表しており、縦軸が横剛性を表している。ここで、コイル入 りスカフオールドの横剛性(図 8の矢印方向に lmm変形させるのに必要な荷重)を、 コイル無しスカフォールドの横剛性で割った値が縦軸である。縦軸の横剛性は、コィ ル入りとコイル無しの比で表して 、る。 Next, FIG. 4 shows a graph in which the lateral stiffness is measured when the diameter and pitch of the PLA fibers that are hooked and woven into the coil shape are changed in the coiled scaffold. In the graph of Fig. 4, the horizontal axis is woven by hooking PLA fibers to the intersection of the scaffold structures. The pitch of the coil is shown, and the vertical axis represents the lateral rigidity. Here, the vertical axis is the value obtained by dividing the lateral stiffness of the scaffold with coil (the load required to deform lmm in the direction of the arrow in Fig. 8) by the lateral stiffness of the scaffold without coil. The lateral stiffness on the vertical axis is expressed as the ratio of coiled and uncoiled.
[0055] 図 4は、コイル状に織り込む PLA繊維の直径が 0. lmmの場合と 0. 07mmの 2つ の場合で、コイルピッチを lmm, 2mm, 3mmの 3種のケースのサンプルを 2つずつ 用意し測定したものである。実線は PLA繊維の直径が 0. lmmの場合で、点線は P LA繊維の直径が 0. 07mmの場合を示しており、それぞれ測定した 2つずつのサン プルの測定データ値を 2次の近似曲線で表したものである。  [0055] Figure 4 shows two samples of three cases with a coil pitch of lmm, 2mm, and 3mm when the diameter of the PLA fiber woven into a coil is 0.1mm and 0.07mm. It was prepared and measured one by one. The solid line indicates the case where the PLA fiber diameter is 0.1 mm, and the dotted line indicates the case where the PLA fiber diameter is 0.07 mm. The measured data values of the two samples measured are second-order approximations. It is a curve.
[0056] 図 4のグラフから、コイルピッチが小さく、コイルの繊維の直径が大き 、ほど横剛性 は増大することがわかる。コイル入りスカフオールド力 横剛性の強度が 2〜10倍に 向上しており、この横剛性の強度が、コイル状に引っ掛けて織り込む PLA繊維の直 径,ピッチをパラメータとして制御できることが理解できょう。  [0056] From the graph of FIG. 4, it can be seen that the lateral stiffness increases as the coil pitch decreases and the coil fiber diameter increases. Scaffolding force with coil The strength of the lateral stiffness has been improved by 2 to 10 times, and it can be understood that the strength of this lateral stiffness can be controlled using the diameter and pitch of the PLA fiber that is hooked into the coil shape as a parameter.
実施例 2  Example 2
[0057] 次に、図 5は、コイル無しスカフォールドとコイル入りスカフォールドの構造体に、ポリ 力プロラタトン (PCL)榭脂をバインダーとして用いたスカフォールドの横剛性を測定し たグラフを示している。図 5のグラフでは、コイルピッチが lmmの場合で、変位 lmm に要する圧縮力がコイル無しスカフオールド (バインダーとして PCL榭脂)の場合で 0 . 3Nであり、コイル入りスカフオールド(直径が 0. 07mmと 0. lmm)の場合で 1. 5N である。  [0057] Next, Fig. 5 shows a graph in which the lateral stiffness of a scaffold using poly force prolataton (PCL) resin as a binder is measured in the structure of a scaffold without a coil and a scaffold with a coil. In the graph of Fig. 5, when the coil pitch is lmm, the compression force required for the displacement lmm is 0.3N when the coilless scaffold (PCL resin as binder) is used, and the coiled scuffold (diameter is 0.07mm). In the case of 0. lmm), it is 1.5N.
図 5のグラフからも、コイル入りスカフオールド (バインダーとして PCL榭脂)が優れた 横剛性の特性を示すことが理解できる。  From the graph in Fig. 5, it can be seen that coiled scaffold (PCL resin as a binder) exhibits excellent lateral stiffness characteristics.
[0058] また、 PCL榭脂をバインダーとして用いたスカフオールドは、バインダーを用いな!/ヽ ものに比べて、剛性が向上することが以前力 知られていた力 コイル入りスカフォー ルドと組み合わせることで、さらに、横剛性の強度を約 5倍に向上させることができる のである。 [0058] In addition, the scaffold using PCL resin as a binder does not use a binder! / ヽ When combined with a force coiled scaffold that was previously known to have improved rigidity, Furthermore, the strength of lateral rigidity can be improved by about 5 times.
[0059] 次に、図 6は、コイル無しスカフォールドとコイル入りスカフォールドの構造体に、ポリ 乳酸榭脂 (PLA)とポリグリコール酸 (PGA)の共重合体 (PLGA)をバインダーとして 用いたスカフォールドの横剛性を測定したグラフを示して 、る。 [0059] Next, FIG. 6 shows a structure of a non-coiled scaffold and a coiled scaffold with a copolymer (PLGA) of polylactic acid resin (PLA) and polyglycolic acid (PGA) as a binder. The graph which measured the lateral rigidity of the used scaffold is shown.
図 6のグラフでは、コイルピッチが lmmの場合で、変位 lmmに要する圧縮力がコィ ル無しスカフオールド(バインダーとして PLGA榭脂)の場合で 0. 5Nであり、コイル 入りスカフオールド(直径が 0. 07mm)の場合で 1. 8Nであり、コイル入りスカフォー ルド(直径が 0. lmm)の場合で 2. 5Nである。  In the graph of Fig. 6, when the coil pitch is lmm, the compression force required for the displacement lmm is 0.5N for the coilless scuffold (PLGA resin as the binder), and the coiled scuffold (diameter is 0.07mm). ) Is 1.8 N, and in the case of a coiled scaffold (diameter is 0.1 mm), it is 2.5 N.
図 6のグラフから、コイル入りスカフオールド(バインダーとして PLGA榭脂)が優れ た横剛性の特性を示すことが理解できょう。  From the graph in Fig. 6, it can be seen that coiled scaffold (PLGA resin as a binder) shows excellent lateral stiffness characteristics.
[0060] 図 6の結果から、 PLGA榭脂をバインダーとして用いたスカフオールド力 PCL榭脂 をバインダーとして用 、たものに比べても、横剛性がさらに向上すること理解できる。 直径が 0. lmmの PLA繊維を織り込んだコイル入りスカフオールド (バインダーとして PLGA榭脂)は、コイル無しスカフオールド (バインダーとして PLGA榭脂)と比較して 、横剛性の強度を約 5倍に向上させることができるのである。  [0060] From the results shown in Fig. 6, it can be understood that the lateral rigidity is further improved compared to the case where a scafold force PCL resin using PLGA resin as a binder is used as a binder. Coiled scaffold woven with PLA fibers with a diameter of 0.1 mm (PLGA resin as a binder) can improve the strength of lateral rigidity by about 5 times compared to the coilless scaffold (PLGA resin as a binder). Can do it.
[0061] ここで、 PLGA榭脂は、 75/25PLGA(75PLA+ 25PGA)を用いている。バイン ダ一は溶媒 (アセトン)に対して、 PLGA榭脂が 5重量%のものを使用した。  Here, 75/25 PLGA (75PLA + 25PGA) is used as PLGA resin. The binder used was 5% by weight of PLGA resin relative to the solvent (acetone).
[0062] 図 7は、 PLA繊維の構造体と、その構造体に PLGAをバインダーとして用いたもの とで、長手方向の剛性と強度を比較測定したグラフを示している。  [0062] Fig. 7 shows a graph in which the rigidity and strength in the longitudinal direction are compared and measured for the PLA fiber structure and the structure using PLGA as a binder.
図 7のグラフを解析すると、 PLA繊維による構造体の場合には、初期の剛性力 、さく 、ひずみが約 70%のときに最大強度を示している一方で、 PLGAを塗布したスカフ オールドでは剛性が大きぐひずみが約 6%のときに最大強度を示し、破断ひずみは 約 10%程度である。従って、 PLGAを塗布したスカフオールドは、剛性が高ぐ伸縮 性が小さ!/ヽことが理解できる。  Analysis of the graph in Fig. 7 shows that the structure with PLA fiber shows the maximum strength when the initial stiffness, strain and strain are about 70%, while the scaffold with PLGA is rigid. The maximum strength is exhibited when the strain is about 6%, and the breaking strain is about 10%. Therefore, it can be understood that the scaffold coated with PLGA has high rigidity and low stretchability.
実施例 3  Example 3
[0063] 次に、コイル入りスカフォールドのコイル挿入工程について説明する。コイル揷入手 川頁は下記(1)〜 (4)の通りである。  [0063] Next, the coil insertion process of the coiled scaffold will be described. Coil 揷 Obtaining Kawasaki is as follows (1) to (4).
(1)かご型に編んだ構造体にフッ素榭脂コーディング棒を挿入する工程  (1) The process of inserting a fluorocoating coding rod into the structure knitted into a cage shape
(2)コイル用 PLA繊維の一端をフッ素榭脂コーディング棒に固定し、コイル用 PLA 繊維の反対側の端をステンレス製ピンセットで挟み、かご型に編んだ構造体の端の 部分から編み目交差部に引っ掛けて編み込んでいく工程 (3)コイル用 PLA繊維をかご型に編んだ構造体に 1/2周ごとに引っ掛けながら編み 込んでいく工程 (本工程の際に、所定のコイルピッチ (例えば lmmピッチ)に制御する のである。 ) (2) One end of the PLA fiber for the coil is fixed to the fluoro-resin coding rod, the opposite end of the PLA fiber for the coil is sandwiched with stainless tweezers, and the stitch crossing is from the end of the structure knitted into a cage shape The process of hooking and knitting (3) The process of knitting the PLA fiber for coil to the structure knitted into a cage shape every 1/2 turn (the process is controlled to a predetermined coil pitch (for example, lmm pitch)) )
(4)かご型に編んだ構造体の交差部に対し、バインダーとなる生分解性榭脂の塗布 工程  (4) Application process of biodegradable resin as a binder to the intersection of the structure knitted into a cage shape
また、コイル入りスカフォールドの他の方法のコイル挿入工程について図 9を用いて 説明する。コイル挿入手順は下記(1)〜(6)の通りである。  The coil insertion process of another method of the coiled scaffold will be described with reference to FIG. The coil insertion procedure is as follows (1) to (6).
(1)フッ素榭脂コーディング棒にポリ乳酸榭脂繊維を螺旋状に巻きつける工程(図 9 の (a)を参照)  (1) A process of spirally winding polylactic acid resin fiber around a fluorine resin coating rod (see (a) in Fig. 9)
先ず、フッ素榭脂コーディング棒にポリ乳酸榭脂繊維を螺旋状に巻きつける。このと きに、コイルピッチを制御する。  First, a polylactic acid resin fiber is spirally wound around a fluorine resin coating rod. At this time, the coil pitch is controlled.
(2)ポリ乳酸榭脂繊維で織り込んだ構造体にフッ素榭脂コーディング棒を挿入する 工程 (図 9の (b)を参照)  (2) The process of inserting a fluorocoating cord into a structure woven with polylactic acid resin fiber (see (b) in Fig. 9)
別に作製したスカフォールドの構造体 (例えば、リリアン編みの籠型の管状構造体) の内部に、上記(1)のポリ乳酸榭脂繊維を螺旋状に巻きつけたフッ素榭脂コ一ディ ング棒を挿入する。  A fluorine-resin-coating rod in which the polylactic acid-resin fiber of (1) above is spirally wound inside a scaffold structure (for example, a Lilian knitted saddle-shaped tubular structure). insert.
(3)加熱工程 (図 9の (c)を参照)  (3) Heating process (See (c) in Fig. 9)
ホットプレートを用いて約 60°Cで加熱することで、フッ素榭脂コーディング棒の表面 に螺旋状に巻きつけて ヽたポリ乳酸榭脂繊維の螺旋状の直径を拡げ、フッ素榭脂コ ーデイング棒の表面力 剥すことができる。  By heating at about 60 ° C using a hot plate, the spiral diameter of the polylactic acid resin fibers wound spirally around the surface of the fluorine resin coding rod is expanded, and the fluorine resin coding rod The surface force of can be peeled off.
(4)前記フッ素榭脂コーディング棒を前記構造体力も抜き出す工程 (図 9の (d)を参 照)  (4) Step of extracting the structural force of the fluorocoating coding rod (see (d) in Fig. 9)
フッ素榭脂コーディング棒を構造体力も抜き取ることで、螺旋状のポリ乳酸榭脂繊 維のみを管状構造体の内部に残すことができる。  By pulling out the structural strength of the fluororesin coding rod, only the helical polylactic acid resin fiber can be left inside the tubular structure.
(5)加熱工程(図 9の (e)を参照)  (5) Heating process (See (e) in Fig. 9)
本工程の加熱により、螺旋状のポリ乳酸榭脂繊維の直径がさらに拡がり、管状構造 体の交差部に接触することになる。(図 9の (f)を参照)  By heating in this step, the diameter of the helical polylactic acid resin fiber further expands and comes into contact with the intersecting portion of the tubular structure. (See (f) in Figure 9)
(6)かご型に編んだ構造体の交差部に対し、バインダーの塗布工程 管状構造体の表面に、ポリ力プロラタトン榭脂、ポリダリコール酸、乳酸とグリコール
Figure imgf000020_0001
、ずれかが塗布されることで、螺旋状のポリ乳酸榭脂 繊維と、管状構造体を形成するポリ乳酸榭脂繊維の交差部が接合され、長手軸方向 と半径方向の剛性が飛躍的に向上したスカフォールドが作製できる。
(6) Binder application process at the intersection of the structure knitted into a cage shape On the surface of the tubular structure, poly force prolatatone rosin, polydaricholic acid, lactic acid and glycol
Figure imgf000020_0001
By applying the slip, the crossing part of the spiral polylactic acid resin fiber and the polylactic acid resin fiber forming the tubular structure is joined, and the rigidity in the longitudinal axis direction and the radial direction is dramatically improved. An improved scaffold can be made.
実施例 4  Example 4
[0065] 実施例 3では、 PLA榭脂繊維で織物構造体と螺旋構造体を作製 (コイル入りスカフ オールドを作製)し、バインダーとして PCL榭脂を用いたスカフオールドを用いて、力 学的特性と細胞の増殖性について評価した結果を示す。  [0065] In Example 3, a woven fabric structure and a spiral structure were prepared from PLA greave fiber (coated scaffold was produced), and the mechanical properties were determined using scafold using PCL greave as a binder. The result evaluated about the proliferation property of a cell is shown.
スカフォールドの作製方法  Scaffold fabrication method
PLA榭脂と PCL榭脂として、 FDA(Food and Drug Administration)認可の cGMP (Current Good Manufacturing Practice)適合製造施設で製造された医薬向け生分 解性ポリマー (米国, API社製)を使用する。  Biodegradable polymers for pharmaceuticals (manufactured by API, USA) manufactured at cGMP (Current Good Manufacturing Practice) -compliant manufacturing facilities approved by Food and Drug Administration (FDA) are used as PLA and PCL resins.
先ず、 PLA榭脂をクリーンルームの溶融押出装置で、加熱延伸により直径 0. lm mの繊維とした後に、リリアン編みで管状の織物構造体を作製する。  First, PLA resin is made into a fiber having a diameter of 0.lm by heat drawing in a clean room melt extrusion apparatus, and then a tubular woven structure is produced by Lilian knitting.
次に、織物構造体の交差部にひっかけながら、 PLA繊維を螺旋状に編み込む。こ れが螺旋構造体に相当する。螺旋構造体を設けることで、繊維の交点が増大され細 胞の成長点を増やすことができ、また、管状の織物構造体の半径方向の剛性を増大 して生分解による強度を維持することができるようになる。  Next, the PLA fibers are knitted in a spiral while being caught at the intersection of the woven structure. This corresponds to a spiral structure. By providing a spiral structure, the number of fiber intersections can be increased and the number of cell growth points can be increased, and the radial stiffness of the tubular woven structure can be increased to maintain biodegradation strength. become able to.
そして、この織物構造体に PCL榭脂を塗布した後、真空乾燥により溶媒を除去して 、図 10に示すような直径 2. 8mmの複合化スカフオールドを作製する。ここで、図 10 で示されるスカフォールドの螺旋のピッチは約 2mmとしている。また、以上の作業は クリーンベンチ内で行い、作成後は γ線 (25KGy)による滅菌処理を行っている。  Then, after applying PCL resin to this woven structure, the solvent is removed by vacuum drying to produce a composite scaffold having a diameter of 2.8 mm as shown in FIG. Here, the pitch of the scaffold spiral shown in Fig. 10 is about 2 mm. In addition, the above work is performed in a clean bench, and sterilization with gamma rays (25KGy) is performed after preparation.
[0066] 2)細胞の培養と分析について [0066] 2) Cell culture and analysis
次に、上述の作製方法で作成したスカフオールドを用いて、細胞の培養実験をおこ なった結果について説明する。実験にはマウスの骨芽細胞様細胞 (MC3T3— E1, 理研 BRC)を用いた。培養液は、 α—MEMに 10%のゥシ胎児血清, 2mMの Lーグ ルタミン, 100 gZmLの抗生物質を添カ卩した。また、分化誘導には 50 gZmLの ァスコルビン酸, 10mMの j8—グリセ口リン酸をカ卩えた。培養期間は、 1, 2, 4, 6およ び 8週とした。細胞数の測定は、 Hoechst33258溶液による DNA定量法を用いて 蛍光度より求めた。 ALP活性は、スカフオールドや培養皿の細胞から同一の抽出溶 液を分割することで DNA当りの ALP活性値を得た。 ALP活性測定キット (Wako Lab Assay (登録商標) ALP,和光純薬製)で吸光度を、またカルシウム量は、測定キット (力 ルシゥム C—テストヮコ一,和光純薬製)を用いて吸光度力も測定した。 Next, the results of cell culture experiments using the scaffold prepared by the above production method will be described. In the experiment, mouse osteoblast-like cells (MC3T3-E1, RIKEN BRC) were used. The culture was supplemented with α-MEM supplemented with 10% urine fetal serum, 2 mM L-glutamine, and 100 gZmL antibiotics. For differentiation induction, 50 gZmL of ascorbic acid and 10 mM of j8-glyceport phosphate were added. The culture period is 1, 2, 4, 6 and And 8 weeks. The number of cells was measured from the fluorescence using a DNA quantification method with Hoechst33258 solution. The ALP activity was obtained by dividing the same extraction solution from the cells of the scaffold or culture dish to obtain the ALP activity value per DNA. Absorbance was measured with an ALP activity measurement kit (Wako Lab Assay (registered trademark) ALP, manufactured by Wako Pure Chemical Industries, Ltd.), and calcium content was also measured with an assay kit (Force Lucium C-Test Saiko Co., manufactured by Wako Pure Chemical Industries, Ltd.). .
[0067] 3)スカフォーノレドの力学的特性試験について [0067] 3) Mechanical property test of Scaforenored
スカフォールドの生分解による機械的特性の変化は、小型試験機 (容量 50N,東栄 産業, MT-101)を用いて、ひずみ速度 3. 5%Zsで軸方向の引張り力 (ゲージ長 10m m)を、半径方向には変位速度 0. 35mmZsで直径が lmm減少するまで、圧縮力を 測定した。使用したスカフォールドの螺旋のピッチは約 lmmである。  Changes in the mechanical properties due to the biodegradation of the scaffolds were measured using a small tester (capacity 50N, Toei Sangyo, MT-101) with an axial tensile force (gauge length of 10 mm) at a strain rate of 3.5% Zs. In the radial direction, the compressive force was measured until the diameter decreased by lmm at a displacement speed of 0.35mmZs. The pitch of the used scaffold helix is about lmm.
図 11 (a)に、引張り力と軸方向の変位の関係を示す。図 11 (a)から、バインダーを 用いない織物構造体(図中では、 Fabric)に対して、バインダーを用いた織物構造体 (図中では、 Composite)では降伏点が生じた後、破断まで大きな強度上昇を示して V、ることがわ力る。これはバインダーを用いな 、織物構造体 (Fabric)の破断伸びが約 15mmであることから、繊維交差点の接着により繊維が変形し難くなつたためと考え られる。  Figure 11 (a) shows the relationship between tensile force and axial displacement. From Fig. 11 (a), the fabric structure without binder (Fabric in the figure) has a large yield until breakage after the yield point occurs in the fabric structure with binder (Composite in the figure). V indicates that the strength has increased, and it is awkward. This is presumably because the fiber structure was not easily deformed by bonding at the fiber intersection because the breaking elongation of the fabric structure (Fabric) was about 15 mm without using a binder.
[0068] 一方、螺旋構造体を追加した織物構造体(図中では、 Coiled composite)の剛性と 降伏応力は、バインダーを用いた織物構造体 (Composite)に対して約 4倍増大して いることがわ力る。  [0068] On the other hand, the stiffness and yield stress of the woven fabric structure (coiled composite in the figure) to which the spiral structure was added increased about 4 times that of the woven fabric structure using the binder (Composite). Power.
次に、図 11 (b)に半径方向の圧縮力と変位の関係グラフを示す。図 11 (b)から、螺 旋構造体を追加した織物構造体 (Coiled composite)では、 lmm変形時にバインダ 一を用いた織物構造体 (Composite)の 4. 5倍の圧縮力を示して 、ることがわ力る。 これらの結果は、螺旋構造体の追加、すなわち螺旋状繊維の追加によって、繊維 間の交差点が増大して接着箇所が増カロしたことと、コイル形状によって半径方向の 剛性が増加したためであると考えられる。  Next, Fig. 11 (b) shows a graph of the relationship between radial compression force and displacement. From Fig. 11 (b), the woven structure with a spiral structure (Coiled composite) shows a compressive force 4.5 times that of the woven structure (Composite) using a binder when lmm deformation occurs. I can tell you. These results are thought to be due to the increase in the number of crossing points between the fibers due to the addition of the helical structure, that is, the addition of the helical fibers, and the increased number of adhesion points, and the rigidity in the radial direction increased due to the coil shape. It is done.
[0069] 4)スカフォールドの細胞の増殖性につ!、て [0069] 4) About the cell proliferation of the scaffold!
ALP活性を測定したところ、織物構造体に対しての螺旋構造体の追カ卩によって活 性値に、特に顕著な変化はな力つた。一方、 DMA量を比較すると図 12に示されるよ うに、 4週までは螺旋構造体を追加したスカフオールド(Coiled scaffold)の値が大きか つた。また、カルシウム量を比較すると、図 13に示されるように、螺旋構造体を追加し たスカフオールド(Coiled scaffold)の方が 4週以後で値が大きくなつて!/、た。 When ALP activity was measured, there was no significant change in the activity value due to the addition of the spiral structure to the fabric structure. On the other hand, a comparison of the amount of DMA is shown in Figure 12. Thus, until 4 weeks, the value of Coiled scaffold with added spiral structure was large. In addition, when comparing the amount of calcium, as shown in FIG. 13, the value of the Soiled Scaffold with a spiral structure increased after 4 weeks! /.
図 14に、細胞が増殖中の螺旋構造体を追加したスカフオールド(Coiled scaffold) の顕微鏡写真を示す。図 14 (a)の播種後 5日では、細胞が繊維の交差部に多く接着 していることがわかる。また図 14 (b)の 4週経過を観察すると、細胞は繊維間の空孔 部に向力つて増殖しており、またカルシウム等の沈着により不透明化しつつあること がわかるであろう。これは、スカフォールドの織物構造体に螺旋構造体を追加するこ とで、成長の起点となる繊維間の交差点が増したため細胞量が増し、その結果カル シゥム量が増大したものと考えられる。  FIG. 14 shows a micrograph of a Coiled scaffold to which a spiral structure in which cells are growing is added. In Fig. 14 (a), 5 days after seeding, it can be seen that many cells adhered to the fiber intersections. Observing the passage of 4 weeks in Fig. 14 (b), it can be seen that the cells are proliferating in vacancies between the fibers and are becoming opaque due to the deposition of calcium and the like. This is probably because the addition of a spiral structure to the scaffold fabric structure increased the amount of cells due to an increase in the number of crossing points between the fibers that became the starting point of growth, resulting in an increase in the amount of calcium.
[0070] 5)スカフォールドの生分解特性について [0070] 5) Biodegradation characteristics of scaffolds
図 15に示されるように、織物構造体とバインダー力も構成される複合化スカフォー ルド(composite)も、それに螺旋構造体を追加したスカフオールド(Coiled composite) も、いずれの場合も時間経過と共に強度が減少していることがわかる。  As shown in Figure 15, both composite composites, which consist of a woven structure and a binder force, as well as a scaffolded composite with a spiral structure, the strength decreases over time. You can see that
しかし、図 15からわ力るように、 4週以後には逆に強度は増大しており、 6週では圧 縮強度が処女材を上回る値を示して 、る。これは 4週以後にカルシウムの沈着が始ま り、それが結合したために大きな強度が得られたものと考えられる。  However, as can be seen from FIG. 15, the strength increased conversely after 4 weeks, and the compressive strength exceeded that of the virgin material at 6 weeks. This is probably because calcium deposition started after 4 weeks, and the strength was increased because of the binding.
図 16に、再生過程の力学的機能として圧縮方向の剛性変化を示している。織物構 造体とバインダー力も構成される複合化スカフオールド (composite)に対して、螺旋構 造体を追加したスカフオールド(Coiled composite)では、初期値も大きぐカルシウム の結合によって剛性増加がより早く生じていることがわかる。  Figure 16 shows the stiffness change in the compression direction as a mechanical function of the regeneration process. In contrast to the composite scaffold, which is also composed of a woven fabric structure and a binder force, in a coiled composite with a spiral structure added, the rigidity increases more quickly due to the binding of calcium, which has a larger initial value. I understand that.
[0071] 本明細書では、スカフォールドの適用部位に応じて、組織再生速度が異なり、これ に合わせて、生分解速度や剛性を調整する必要があるために、生分解性榭脂の最 適化ゃスカフオールドの形状構造の最適化など、スカフォールドのバリエーションを 構築すベぐ生分解性榭脂の最適化と構造の最適化の実施例を紹介した。本明細 書で開示された複合化スカフオールドでは、生分解性榭脂の選択により生分解速度 を制御するとともに、生分解速度が速まった場合でも、構造の最適化により生分解途 中にお 、てもスカフオールド外部組織力 うける荷重の支持に耐えうる剛性を保つこ とができる特性を得られることが理解されよう。 [0071] In this specification, the tissue regeneration rate differs depending on the application site of the scaffold, and it is necessary to adjust the biodegradation rate and rigidity accordingly. We introduced examples of biodegradable resin optimization and structure optimization that would build scaffold variations, such as optimizing the shape and structure of Nycafold. In the composite scaffold disclosed herein, the biodegradation rate is controlled by the selection of biodegradable coagulant, and even when the biodegradation rate is increased, the structure is optimized to improve the biodegradation rate. However, it must be rigid enough to withstand the support of the load applied to the external force of the Scaffold. It will be understood that characteristics that can be achieved are obtained.
[0072] 最後に、図 17に、医師等が医療現場において本スカフオールドを用いる様子を示 す。図 17は、スカフォールドに注射器を用いて、ゲル状の培養骨を注入している様 子を示している。スカフォールドの直径は約 2mmであり、長さは約 10mm程度である 。注射針が直径 lmm程度である。ゲル状の培養骨を注入すると、スカフオールドは 膨張し、表面の隙間からゲルがはみ出している様子が伺える。  [0072] Finally, FIG. 17 shows how doctors and others use the present scaffold in a medical field. FIG. 17 shows a state where gel-like cultured bone is injected using a syringe in the scaffold. The diameter of the scaffold is about 2mm and the length is about 10mm. The needle is about lmm in diameter. When the gel-like cultured bone is injected, the scaffold expands, and it can be seen that the gel protrudes from the surface gap.
この後、骨欠損部分にスカフオールドを挿入または埋入するのである。 産業上の利用可能性  After this, the scaffold is inserted or embedded in the bone defect. Industrial applicability
[0073] 本発明は、医療用や学術研究実験用に用いる組織再生用足場 (スカフオールド) 材料としての利用が期待される。特に、歯槽骨や骨組織再生用足場に関して、幹細 胞ゃ骨芽細胞などを本発明に係る構造体の内部に注入し、組織の欠損部に施術す ることで、骨組織や神経組織の再生を図ることができる材料としての利用可能性が高 い。  [0073] The present invention is expected to be used as a scaffold material for tissue regeneration used for medical and academic research experiments. In particular, with regard to alveolar bone and bone tissue regeneration scaffolds, stem cells and osteoblasts are injected into the structure according to the present invention, and the defect of the tissue is treated, so that bone tissue and nerve tissue can be treated. It can be used as a material that can be recycled.
図面の簡単な説明  Brief Description of Drawings
[0074] [図 1]本発明に係るスカフオールド外観写真 (ポリ乳酸榭脂繊維で織り込んだ構造体 の交差部に、ポリ乳酸榭脂繊維をコイル状に引っ掛けて織り込んだ構造のもの;コィ ル入りスカフオールド)  [0074] [Fig. 1] Photograph of the appearance of the scaffold according to the present invention (with a structure in which a polylactic acid resin fiber is hooked in a coil shape at the intersection of a structure body woven with a polylactic acid resin fiber; including a coil Scaffold)
[図 2]従来のスカフオールド外観写真 (PLA繊維で織り込んだだけの構造のもの;コィ ル無しスカフオールド)  [Fig.2] Photo of appearance of conventional scuffold (structure just woven with PLA fiber; no scuffold without coil)
[図 3]コイル入りスカフオールド (PLA繊維を lmmピッチでコイル状に引っ掛けて織り 込んだ構造のもの)と、コイル無しスカフォールドとの半径方向の剛性特性 (横剛性) を測定した結果を比較したグラフ  [Fig.3] Graph comparing the results of measuring the radial stiffness characteristics (lateral stiffness) of a coiled scaffold (with a structure in which PLA fibers are hooked into a coil at lmm pitch) and a coilless scaffold
[図 4]コイル入りスカフォールドにおいて、コイル状に引っ掛けて織り込む PLA繊維の 直径,ピッチを変化させた場合の横剛性を測定したグラフ  [Fig. 4] Graph of measured lateral stiffness when changing the diameter and pitch of PLA fibers that are hooked into a coil and woven into a coiled scaffold
[図 5]PLA繊維の構造体に、 PCLをバインダーとして用いたスカフォールドの横剛性 を測定したグラフ  [Fig.5] Graph showing the lateral stiffness of a scaffold using PCL as a binder in a PLA fiber structure
[図 6]PLA繊維の構造体に、 PLGAをバインダーとして用いたスカフォールドの横剛 性を測定したグラフ [図 7]PLA繊維の構造体と、その構造体に PLGAをバインダーとして用いたものとで 、長手方向の剛性(引っ張り強度)を比較測定したグラフ [Fig. 6] Graph showing the lateral stiffness of a scaffold using PLGA as a binder in a PLA fiber structure [Fig. 7] A graph comparing the rigidity (tensile strength) in the longitudinal direction between a PLA fiber structure and a structure using PLGA as a binder.
圆 8]半径方向の剛性強度測定のための半径方向の圧縮の様子 (矢印が圧縮方向) [図 9]コイル入りスカフォールドのコイル挿入工程を示すフロー図 圆 8] Radial compression for radial stiffness measurement (arrow indicates compression direction) [Fig. 9] Flow diagram showing coil insertion process of a scaffold with coil
圆 10]実施例 3の作製されたスカフオールドの外観写真図 圆 10] External view of the scuff old produced in Example 3
圆 11]スカフォールドの力学的特性を示すグラフ。 (a)は引張り力と軸方向の変位の 関係グラフで、 (b)半径方向の圧縮力と変位の関係グラフである。 [11] A graph showing the mechanical properties of the scaffold. (a) is a graph showing the relationship between tensile force and axial displacement, and (b) is a graph showing the relationship between compressive force and displacement in the radial direction.
[図 12]スカフォールドの細胞の増殖性を示す DMA量のグラフ  [Fig. 12] A graph of DMA amount showing the proliferation of scaffold cells
[図 13]スカフォールドの細胞の増殖性を示すカルシウム量のグラフ  [Fig. 13] Graph of calcium content showing the proliferation of scaffold cells
圆 14]スカフォールドの細胞の増殖性を示す顕微鏡写真図 [14] Photomicrograph showing the proliferation of scaffold cells
[図 15]スカフォールドの生分解特性を示す時間—強度のグラフ  [Fig.15] Time-intensity graph showing the biodegradation characteristics of the scaffold
圆 16]スカフォールドの生分解特性を示す圧縮方向の剛性変化のグラフ [16] Graph of stiffness change in compression direction showing biodegradation characteristics of scaffold
[図 17]スカフォールドに培養骨を注射器で注入している様子を示す写真図  [Fig. 17] Photograph showing the appearance of injecting cultured bone into the scaffold with a syringe
[図 18]再生される新生骨と吸収されるスカフオールドの機能の関係を示すグラフ 符号の説明  FIG. 18 is a graph showing the relationship between the function of regenerated new bone and resorbed scaffold.
1 螺旋構造体を有するスカフオールド  1 Scaffold with a spiral structure
2 管状の織物構造体  2 Tubular woven structure
3 螺旋構造体  3 Spiral structure
4 交差部  4 Intersection
5 フッ素榭脂コーディング棒  5 Fluororesin coding rod
6 ポリ乳酸榭脂繊維  6 Polylactic acid resin fiber
11, 12 織物構造体の交差部との絡接箇所  11, 12 Intersections with the intersection of the fabric structure
20 注射針  20 needle

Claims

請求の範囲 The scope of the claims
[1] 内部に空間を有し、生分解性榭脂繊維から成る管状の織物構造体と;  [1] a tubular woven structure having a space inside and made of biodegradable resin fibers;
前記織物構造体の長手方向に螺旋状に配され、前記織物構造体の繊維交差部に 絡接された、生分解性榭脂繊維から成る螺旋構造体と;  A spiral structure composed of biodegradable resin fibers arranged in a spiral shape in the longitudinal direction of the woven structure and entangled with a fiber intersection of the woven structure;
前記織物構造体の交差部を接合する、生分解性榭脂から成るバインダーと; カゝら構成されることを特徴とする組織再生用複合化スカフオールド。  A composite scaffold for tissue regeneration, comprising a binder made of biodegradable resin that joins the intersections of the fabric structure;
[2] 内部に空間を有し、生分解性榭脂繊維から成る管状の織物構造体と;  [2] a tubular woven structure having a space in the interior and made of biodegradable resin fibers;
前記織物構造体の長手方向に螺旋状に配され、前記織物構造体の内面若しくは 外面の繊維交差部に接着された、生分解性榭脂繊維から成る螺旋構造体と; 前記織物構造体の交差部を接合する、生分解性榭脂から成るバインダーと; カゝら構成されることを特徴とする組織再生用複合化スカフオールド。  A spiral structure composed of biodegradable resin fibers arranged in a spiral shape in the longitudinal direction of the woven structure and bonded to a fiber crossing portion on the inner surface or outer surface of the woven structure; A composite scaffold for tissue regeneration, comprising a binder composed of a biodegradable resin that joins the parts;
[3] 前記織物構造体および螺旋構造体を構成する生分解性榭脂繊維が、ポリ乳酸榭 脂、ポリダリコール酸、乳酸とグリコール酸の共重合体力 選択されたいずれかのもの から成る繊維であり、前記バインダーを構成する生分解性榭脂が、乳酸とグリコール 酸の共重合体,ポリ力プロラタトン榭脂,ポリグリコール酸力 選択されたいずれかの 榭脂であることを特徴とする請求項 1又は 2に記載の組織再生用複合化スカフオール ド、。  [3] The biodegradable coconut fiber constituting the woven fabric structure and the spiral structure is a fiber made of any one selected from polylactic acid resin, polydaricholic acid, and copolymer power of lactic acid and glycolic acid. The biodegradable resin constituting the binder is a copolymer selected from lactic acid and glycolic acid, poly-force prolatatone resin, and polyglycol-acid power. Or the composite scaffold for tissue regeneration as described in 2.
[4] 前記織物構造体および螺旋構造体を構成する生分解性榭脂繊維が、ポリ乳酸榭 脂から成る繊維であり、前記バインダーを構成する生分解性榭脂が、乳酸とグリコー ル酸の共重合体であることを特徴とする請求項 1又は 2に記載の組織再生用複合ィ匕 スカフオールド。  [4] The biodegradable resin fibers constituting the woven fabric structure and the spiral structure are fibers made of polylactic acid resin, and the biodegradable resin fibers constituting the binder are lactic acid and glycolic acid. 3. The composite tissue scaffold for tissue regeneration according to claim 1 or 2, which is a copolymer.
[5] 前記織物構造体および螺旋構造体を構成する生分解性榭脂繊維が、乳酸とグリコ ール酸の第 1の共重合体力 成る繊維であり、前記バインダーを構成する生分解性 榭脂が、乳酸とグリコール酸の第 2の共重合体であり、前記第 1の共重合体の乳酸の 共重合比率が、前記第 2の共重合体の乳酸の共重合比率よりも小さいことを特徴と する請求項 1又は 2に記載の組織再生用複合化スカフオールド。  [5] The biodegradable resin fiber constituting the woven fabric structure and the spiral structure is a fiber having a first copolymer power of lactic acid and glycolic acid, and the biodegradable resin resin constituting the binder. Is a second copolymer of lactic acid and glycolic acid, and the copolymerization ratio of lactic acid in the first copolymer is smaller than the copolymerization ratio of lactic acid in the second copolymer The composite scaffold for tissue regeneration according to claim 1 or 2.
[6] 前記共重合体の乳酸の共重合比率が 10〜90%であることを特徴とする請求項 3 又は 4に記載の組織再生用複合化スカフオールド。 6. The composite scaffold for tissue regeneration according to claim 3 or 4, wherein the copolymer has a lactic acid copolymerization ratio of 10 to 90%.
[7] 前記第 1の共重合体の乳酸の共重合比率が 10〜20%であり、前記第 2の共重合 体の乳酸の共重合比率が 50〜70%であることを特徴とする請求項 5に記載の組織 再生用複合化スカフオールド。 [7] The lactic acid copolymerization ratio of the first copolymer is 10 to 20%, and the lactic acid copolymerization ratio of the second copolymer is 50 to 70%. Item 6. The composite scaffold for tissue regeneration according to Item 5.
[8] 前記織物構造体が、リリアン編みで形成され、両端を閉鎖し得る織物構造体である ことを特徴とする請求項 1又は 2に記載の組織再生用複合化スカフオールド。 8. The composite scaffold for tissue regeneration according to claim 1, wherein the woven structure is a woven structure formed by Lilian knitting and capable of closing both ends.
[9] 前記螺旋構造体の螺旋のピッチ間隔を制御することにより、前記織物構造体の管 状の半径方向の剛性を独立に制御できることを特徴とする請求項 1又は 2に記載の 組織再生用複合化スカフオールド。 [9] The tissue regeneration device according to claim 1 or 2, wherein the tubular radial stiffness of the woven structure can be controlled independently by controlling the pitch interval of the spiral of the spiral structure. Combined Scaffold.
[10] 前記ピッチ間隔が 0. 5〜2mmであり、かつ、前記生分解性榭脂繊維の直径が 0. [10] The pitch interval is 0.5 to 2 mm, and the diameter of the biodegradable resin fiber is 0.
05-0. 5mmであることを特徴する請求項 9に記載の組織再生用複合化スカフォー ルド。  The composite scaffold for tissue regeneration according to claim 9, wherein the composite scaffold is 05-0. 5 mm.
[11] 請求項 1乃至 10のいずれか 1項に記載の組織再生用複合化スカフオールドが、歯 槽骨欠損部に挿入または埋入される歯槽骨再生用スカフオールドとして用いられるこ と。  [11] The composite scaffold for tissue regeneration according to any one of claims 1 to 10 may be used as a scaffold for regenerating alveolar bone inserted or embedded in an alveolar bone defect.
[12] 下記の工程を含むことを特徴とする組織再生用複合化スカフオールドの作製方法。  [12] A method for producing a composite scaffold for tissue regeneration, comprising the following steps.
(1)生分解性榭脂繊維で織り込んだ内部に空間を有する織物構造体に棒体を挿入 する工程  (1) The process of inserting a rod into a woven fabric structure that has a space inside that is woven with biodegradable resin fiber
(2)前記生分解性榭脂繊維の一端を前記棒体に固定し、他端を挟み、前記織物構 造体の交差部に端の部分から引っ掛けて編み込んで 、く工程  (2) A step of fixing one end of the biodegradable resin fiber to the rod, sandwiching the other end, hooking from the end portion to the intersection of the fabric structure, and knitting.
(3)前記生分解性榭脂繊維を、前記織物構造体に、所定の間隔をおいて、 1Z4周 〜1Z2周ごとに引っ掛けながら編み込んでいく工程  (3) A step of knitting the biodegradable resin fiber while being hooked to the woven structure at a predetermined interval every 1Z4 to 1Z2
(4)前記織物構造体の交差部に対し、バインダーとなる生分解性榭脂の塗布工程  (4) Application process of biodegradable resin used as a binder for the intersection of the woven structure
[13] 下記の工程を含むことを特徴とする組織再生用複合化スカフオールドの作製方法。 [13] A method for producing a composite scaffold for tissue regeneration, comprising the following steps.
(1)棒体に生分解性榭脂繊維を螺旋状に巻きつける工程  (1) A process of spirally winding biodegradable rosin fiber around a rod
(2)生分解性榭脂繊維で織り込んだ内部に空間を有する織物構造体に前記棒体を 挿入する工程  (2) A step of inserting the rod into a woven structure having a space inside which is woven with biodegradable resin fiber.
(3)前記織物構造体を加熱する工程  (3) Heating the woven structure
(4)前記棒体を前記織物構造体から抜き出す工程 (5)前記織物構造体の交差部に対し、バインダーとなる生分解性榭脂の塗布工程 (4) Step of extracting the rod from the woven structure (5) Application process of biodegradable resin used as a binder to the intersection of the woven structure
[14] 前記生分解性榭脂繊維が、ポリ乳酸榭脂、ポリダリコール酸、乳酸とグリコール酸の 共重合体から選択された 、ずれかのもの力も成る繊維であり、前記バインダーとなる 生分解性榭脂が、乳酸とグリコール酸の共重合体,ポリ力プロラタトン榭脂,ポリグリコ ール酸であることを特徴とする請求項 12又は 13に記載の組織再生用複合化スカフ オールドの作製方法。 [14] The biodegradable coconut fiber is a fiber selected from polylactic acid coconut resin, polydaricholic acid, and a copolymer of lactic acid and glycolic acid, which has a certain strength, and serves as the binder. 14. The method for producing a composite scaffold for tissue regeneration according to claim 12 or 13, wherein the coconut resin is a copolymer of lactic acid and glycolic acid, poly-force prolatatone rosin, or polyglycolic acid.
[15] 前記生分解性榭脂繊維が、ポリ乳酸樹脂から成る繊維であり、前記バインダーとな る生分解性榭脂が、乳酸とグリコール酸の共重合体であることを特徴とする請求項 1 2又は 13に記載の組織再生用複合化スカフオールドの作製方法。  [15] The biodegradable rosin fiber is a fiber made of polylactic acid resin, and the biodegradable rosin serving as the binder is a copolymer of lactic acid and glycolic acid. 12. A method for producing a composite scaffold for tissue regeneration according to 2 or 13.
[16] 前記生分解性榭脂繊維が、乳酸とグリコール酸の第 1の共重合体力 成る繊維で あり、前記バインダーを構成する生分解性榭脂が、乳酸とグリコール酸の第 2の共重 合体であり、前記第 1の共重合体の乳酸の共重合比率が、前記第 2の共重合体の乳 酸の共重合比率よりも小さいことを特徴とする請求項 12又は 13に記載の組織再生 用複合化スカフオールドの作製方法。  [16] The biodegradable resin fiber is a fiber having a first copolymer power of lactic acid and glycolic acid, and the biodegradable resin resin constituting the binder is a second copolymer of lactic acid and glycolic acid. 14. The tissue according to claim 12 or 13, wherein the lactic acid copolymerization ratio of the first copolymer is smaller than the lactic acid copolymerization ratio of the second copolymer. A method for producing a composite scaffold for recycling.
[17] 前記共重合体の乳酸の共重合比率が 10〜90%であることを特徴とする請求項 14 又は 15に記載の組織再生用複合化スカフオールドの作製方法。  [17] The method for producing a composite scaffold for tissue regeneration according to [14] or [15], wherein a copolymerization ratio of lactic acid in the copolymer is 10 to 90%.
[18] 前記第 1の共重合体の乳酸の共重合比率が 10〜20%であり、前記第 2の共重合 体の乳酸の共重合比率が 50〜70%であることを特徴とする請求項 16に記載の組織 再生用複合化スカフオールドの作製方法。  [18] The copolymerization ratio of lactic acid of the first copolymer is 10 to 20%, and the copolymerization ratio of lactic acid of the second copolymer is 50 to 70%. Item 17. A method for producing a composite scaffold for tissue regeneration according to Item 16.
PCT/JP2006/326212 2005-12-28 2006-12-28 Composite scaffold for tissue regeneration WO2007074896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007552022A JPWO2007074896A1 (en) 2005-12-28 2006-12-28 Composite scaffold for tissue regeneration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005378936A JP2009039139A (en) 2005-12-28 2005-12-28 Composite scaffold for tissue regeneration
JP2005-378936 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007074896A1 true WO2007074896A1 (en) 2007-07-05

Family

ID=38218118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326212 WO2007074896A1 (en) 2005-12-28 2006-12-28 Composite scaffold for tissue regeneration

Country Status (2)

Country Link
JP (2) JP2009039139A (en)
WO (1) WO2007074896A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053866A1 (en) * 2006-10-30 2008-05-08 National University Corporation Kyoto University Method of resin molding and resin molding apparatus
US20100310623A1 (en) * 2009-06-05 2010-12-09 Laurencin Cato T Synergetic functionalized spiral-in-tubular bone scaffolds
US9730817B2 (en) 2013-02-20 2017-08-15 Korea Institute Of Machinery & Materials Apparatus for manufacturing scaffold and scaffold manufactured by the same
CN107518962A (en) * 2017-08-23 2017-12-29 长沙雅康生物科技有限公司 A kind of carbon fibre composite artificial bone and preparation method thereof
WO2019037659A1 (en) * 2017-08-23 2019-02-28 湖南碳康生物科技有限公司 Integrated carbon fiber composite artificial bone and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2002742C2 (en) * 2009-04-09 2010-10-12 Univ Delft Tech Mechanical device for tissue regeneration.
US10034737B2 (en) 2011-02-22 2018-07-31 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nano-reservoirs technology for use in bone and/or cartilage regeneration
US20140163586A1 (en) * 2012-12-11 2014-06-12 Dolly Jeanne Holt Tissue repair devices and methods
JP6377079B2 (en) * 2013-02-19 2018-08-22 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Chemical gradient
EP3206727A1 (en) * 2014-10-14 2017-08-23 Antonio Sambusseti Absorbable device for bone regeneration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075652A (en) * 1983-10-03 1985-04-30 ユニチカ株式会社 Knitted string and its production
JPH07505327A (en) * 1992-09-14 1995-06-15 ミードックス メディカルズ インコーポレイテッド three-dimensional braided soft tissue prosthesis
JP2005124996A (en) * 2003-10-27 2005-05-19 Celagix:Kk Biomaterial
WO2005089828A1 (en) * 2004-03-22 2005-09-29 The New Industry Research Organization Scaffold for tissue regeneration made of biodegradable resin composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075652A (en) * 1983-10-03 1985-04-30 ユニチカ株式会社 Knitted string and its production
JPH07505327A (en) * 1992-09-14 1995-06-15 ミードックス メディカルズ インコーポレイテッド three-dimensional braided soft tissue prosthesis
JP2005124996A (en) * 2003-10-27 2005-05-19 Celagix:Kk Biomaterial
WO2005089828A1 (en) * 2004-03-22 2005-09-29 The New Industry Research Organization Scaffold for tissue regeneration made of biodegradable resin composite material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053866A1 (en) * 2006-10-30 2008-05-08 National University Corporation Kyoto University Method of resin molding and resin molding apparatus
JPWO2008053866A1 (en) * 2006-10-30 2010-02-25 株式会社井元製作所 Resin molding method and resin molding apparatus
US20100310623A1 (en) * 2009-06-05 2010-12-09 Laurencin Cato T Synergetic functionalized spiral-in-tubular bone scaffolds
US9730817B2 (en) 2013-02-20 2017-08-15 Korea Institute Of Machinery & Materials Apparatus for manufacturing scaffold and scaffold manufactured by the same
CN107518962A (en) * 2017-08-23 2017-12-29 长沙雅康生物科技有限公司 A kind of carbon fibre composite artificial bone and preparation method thereof
CN107518962B (en) * 2017-08-23 2019-01-08 湖南碳康生物科技有限公司 A kind of carbon fibre composite artificial bone and preparation method thereof
WO2019037657A1 (en) * 2017-08-23 2019-02-28 湖南碳康生物科技有限公司 Carbon fiber composite artificial bone and preparation method
WO2019037659A1 (en) * 2017-08-23 2019-02-28 湖南碳康生物科技有限公司 Integrated carbon fiber composite artificial bone and preparation method thereof

Also Published As

Publication number Publication date
JPWO2007074896A1 (en) 2009-06-04
JP2009039139A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2007074896A1 (en) Composite scaffold for tissue regeneration
Li et al. Design of biodegradable, implantable devices towards clinical translation
Ginjupalli et al. Poly (α-hydroxy acid) based polymers: A review on material and degradation aspects
Namvar et al. Potential use of plant fibres and their composites for biomedical applications
US11589961B2 (en) Implant made of fibre-reinforced plastic
JP2002500065A (en) Bioabsorbable fibers and reinforced composites made therefrom
EP0895762A2 (en) Bioabsorbable implantable endoprosthesis with reservoir and method of using same
KR20100130178A (en) Implant pellets and methods for performing bone augmentation and preservation
CN102247622A (en) Degradable fiber-enhanced polycaprolactone degradable bone nail and preparation method thereof through solution method
WO2015043496A1 (en) Bone injury repair and fixation instrument and method of manufacturing same
CN111001045B (en) Degradable ureteral stent and manufacturing method thereof
JP4915004B2 (en) Scaffold for tissue regeneration composed of biodegradable resin composite material
Demina et al. Biodegradable nanostructured composites for surgery and regenerative medicine
Wiśniewska et al. Bioresorbable polymeric materials–current state of knowledge
JP2013510650A (en) Bone distraction tool for bone growth
JP2005143979A (en) Tube for neuroregeneration
Bazlov et al. Modern materials in fabrication of scaffolds for bone defect replacement
JP2011512960A (en) Methods and apparatus for bone distraction plates
Higuchi et al. Recent Advances In GTR/GBR Barrier Membranes Design for Periodontal Regeneration
Dutta Applications of Polymeric Green Composites in the Biomedical Field: A Review
US9078954B2 (en) Multifunctional filler granule
US11779465B2 (en) Biocompatible medical device and method of making same
Khanna et al. Composite biomaterials in tissue engineering: retrospective and prospects
US20210128788A1 (en) Artificial blood vessel
Gkioni et al. Biodegradable polymeric/ceramic composite scaffolds to regenerate bone tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007552022

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843590

Country of ref document: EP

Kind code of ref document: A1