WO2007074603A1 - Aromatic polycarbonate resin composition and molded resin - Google Patents

Aromatic polycarbonate resin composition and molded resin Download PDF

Info

Publication number
WO2007074603A1
WO2007074603A1 PCT/JP2006/323787 JP2006323787W WO2007074603A1 WO 2007074603 A1 WO2007074603 A1 WO 2007074603A1 JP 2006323787 W JP2006323787 W JP 2006323787W WO 2007074603 A1 WO2007074603 A1 WO 2007074603A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
aromatic polycarbonate
polybutylene terephthalate
polycarbonate resin
weight
Prior art date
Application number
PCT/JP2006/323787
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Nakamura
Hiroshi Nakano
Kouji Iwaki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005373704A external-priority patent/JP2007176969A/en
Priority claimed from JP2005373705A external-priority patent/JP2007176970A/en
Priority claimed from JP2005373706A external-priority patent/JP2007176971A/en
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to CN2006800491384A priority Critical patent/CN101346430B/en
Publication of WO2007074603A1 publication Critical patent/WO2007074603A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • Aromatic polycarbonate resin composition and resin molded article Aromatic polycarbonate resin composition and resin molded article
  • the present invention relates to an aromatic polycarbonate resin composition mainly composed of an aromatic polycarbonate resin and a polybutylene terephthalate resin, and more specifically, fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics,
  • the present invention relates to an aromatic polycarbonate resin composition excellent in various properties such as heat resistance and residence heat stability, and at the same time excellent in recycling characteristics, and a resin molded product formed by molding the same.
  • Aromatic polycarbonate resin is a general-purpose engineering plastic with excellent transparency, impact resistance, heat resistance, dimensional stability, etc., and its excellent characteristics make it suitable for electrical, electronic, electronic device parts, machine parts, and vehicles. It is used in a wide range of parts and other fields. Furthermore, the polymer alloy composed of aromatic polycarbonate resin and polybutylene terephthalate resin, while utilizing the above-mentioned excellent features of aromatic polycarbonate resin, chemical resistance and molding, which are disadvantages of aromatic polycarbonate resin. It is a material with improved processability, and is used in a wide range of fields such as vehicle interior / exterior parts, various housing members.
  • An aromatic polycarbonate resin composition (polymer alloy) mainly composed of aromatic polycarbonate resin and polybutylene terephthalate ( ⁇ ) resin is a polymer alloy having a micro-structure of sea-island structure. Depending on whether it constitutes the sea phase (continuous layer), its characteristics vary greatly. In the case where the aromatic polycarbonate resin constitutes a continuous layer (the content power of the aromatic polycarbonate resin is larger than that of the polybutylene terephthalate resin), the resistance is higher than that of the polymer alloy having a high content of polybutylene terephthalate resin. Although it has excellent impact properties and dimensional characteristics, it has problems such as low fluidity and low chemical resistance and low fatigue properties and heat resistance (thermal deformation temperature). When such a resin composition is used for vehicle parts, a material having higher fatigue characteristics and heat resistance has been demanded.
  • a rubber polymer is blended in a polymer alloy mainly composed of aromatic polycarbonate resin and polybutylene terephthalate resin.
  • a resin composition having improved impact resistance has been proposed.
  • the impact resistance is improved by including the rubbery polymer in this way, there is a problem that the rigidity, heat resistance, and fatigue characteristics are lowered with the increase in the content thereof.
  • a polymer alloy having a good impact resistance in which the amount of polymer added is minimized.
  • the impact resistance is improved by increasing the molecular weight of a resin component such as an aromatic polycarbonate resin, the fluidity of the polymer alloy is reduced, so that there are limitations on the use.
  • materials that are excellent in rigidity and dimensional stability are required for fields that are expected to be greased from steel sheets, such as vehicle exterior parts, and parts that require thinning.
  • an inorganic filler is blended into a polymer alloy composed of an aromatic polycarbonate resin and a polybutylene terephthalate resin.
  • silicate-based inorganic pulverized products and synthetic whiskers are used as inorganic fillers.
  • the content of the aromatic polycarbonate resin is high, and the polymer alloy with polybutylene terephthalate resin has fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, retention time.
  • the polymer alloy with polybutylene terephthalate resin has fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, retention time.
  • thermoplastic resin composition characterized in that it is a polymer alloy comprising a polycarbonate resin and a polybutylene terephthalate resin and has a melt viscosity stability index of 2.5% or less (See Patent Document 9).
  • a technique in which a branched component of polycarbonate resin, a terminal carboxy concentration of polybutylene terephthalate resin, and a specific stabilizer is disclosed.
  • Patent Document 9 the technique disclosed in Patent Document 9 and the concretely exemplified composition have no impact resistance, fatigue characteristics, heat resistance, residence heat stability, and recycling characteristics. It was always a satisfying force. Furthermore, the titanium content of the polybutylene terephthalate resin is only described in general terms, and a specific amount of titanium content. And the importance of a polybutylene terephthalate resin having a specific amount of terminal carboxy concentration was not disclosed.
  • thermoplastic resin composition excellent in mechanical properties comprising a polybutylene terephthalate resin and a polycarbonate resin containing an impact strength improver and having a specific end group concentration
  • a thermoplastic resin composition excellent in mechanical properties comprising a polybutylene terephthalate resin and a polycarbonate resin containing an impact strength improver and having a specific end group concentration
  • Patent Document 10 a thermoplastic resin composition excellent in mechanical properties
  • the content of aromatic polycarbonate resin is not necessarily satisfactory in terms of impact resistance, fatigue characteristics, heat resistance, residence heat stability, and recycling characteristics. It was not a technology that was excellent in fluidity, impact resistance, rigidity, chemical resistance, fatigue resistance, heat resistance, residence heat stability, and recycling characteristics in polymer alloys with many polybutylene terephthalate resins.
  • the polybutylene terephthalate resin specifically exemplified as a thread and composition has a high titanium content, a high content of aromatic polycarbonate resin, and a polybutylene terephthalate resin.
  • the polymer alloy has the problem of poor residence heat stability and recycling characteristics.
  • Patent Document 1 Japanese Patent Laid-Open No. 49 41442
  • Patent Document 2 JP-A-58-117247
  • Patent Document 3 Japanese Patent Laid-Open No. 3-97752
  • Patent Document 4 Japanese Patent Laid-Open No. 63-265949
  • Patent Document 5 JP-A-5-222283
  • Patent Document 6 JP-A-6-49343
  • Patent Document 7 JP-A-9-12846
  • Patent Document 8 JP-A-8-127711
  • Patent Document 9 Japanese Patent Laid-Open No. 2002-294060
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2004-18558
  • Patent Document 11 Japanese Patent Laid-Open No. 7-138354
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2004-307794
  • the purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to be excellent in fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, heat resistance and residence heat stability, and also in recycling characteristics.
  • Another object of the present invention is to provide an aromatic polycarbonate resin composition excellent in the above.
  • aromatic polycarbonate resin is high, and aromatic polycarbonate resin and polybutylene terephthalate resin have In polymer alloy, polybutylene terephthalate resin contains a specific amount of titanium compound and has a specific terminal carboxyl group concentration, and if necessary, a specific amount of rubbery polymer and Z or inorganic filler is blended.
  • Aromatic polycarbonate with improved physical properties such as fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, heat resistance, residence heat stability and recycling characteristics, and excellent physical property balance
  • the present invention was completed by discovering that it was a fat composition (hereinafter, sometimes simply referred to as “wax composition”).
  • a first gist of the present invention is an aromatic polycarbonate resin composition
  • an aromatic polycarbonate resin composition comprising an aromatic polycarbonate resin (component A) and a polybutylene terephthalate resin (component B), which is an aromatic polycarbonate resin.
  • Aromatics characterized in that, in polybutylene terephthalate resin (component B), the titanium compound content is greater than 1 ppm and less than or equal to 75 ppm, and the terminal carboxyl group is less than or equal to 39 eqZg It resides in a polycarbonate resin composition.
  • a second aspect of the present invention is the aromatic polycarbonate resin composition according to the first aspect, further comprising an aromatic polycarbonate resin (component A) and a polybutylene terephthalate resin (component B).
  • the third aspect of the present invention is the aromatic polycarbonate resin composition according to the first aspect, further comprising an aromatic polycarbonate resin (component A) and a polybutylene terephthalate resin (component B).
  • the aromatic polycarbonate resin composition contains 1 to 50 parts by weight of inorganic filler (component D) with respect to 50 to 99 parts by weight in total.
  • the aromatic polycarbonate resin composition of the present invention satisfies the physical properties of fluidity, rigidity, impact resistance, chemical resistance, fatigue properties, heat resistance, residence heat stability, and recycling properties at the same time. It is a rosin composition excellent in balance.
  • the aromatic polycarbonate resin composition of the present invention having such a feature can be used in a wide range of fields, and is used in electrical and electronic equipment parts, OA equipment, machine parts, vehicle parts, and architecture. It is useful for various applications such as parts, various containers, leisure goods and miscellaneous goods, and can be expected to be applied especially to vehicle exterior / skin components and vehicle interior components.
  • Vehicle exterior parts include outer door handles, bumpers, fenders, door panels, trunk lids, front panels, rear panels, roof panels, bonnets, pillars, side moldings, garches, wheel caps, hood bulges, Examples include fuel lids, various types of boilers, and cowlings for motorbikes.
  • vehicle interior parts Examples include display doors such as inner door hand handles, center panel boards, instrument panel panels, console boxes, luggage floor boards, and car navigation systems.
  • FIG. 1 is an explanatory diagram of an example of an esterification reaction step or a transesterification reaction step employed in the present invention.
  • FIG. 2 is an explanatory diagram of an example of a polycondensation process employed in the present invention.
  • FIG. 3 is an explanatory diagram of an example of a polycondensation process employed in the present invention.
  • the aromatic polycarbonate resin (component A) used in the present invention includes, for example, an aromatic dihydroxy compound and a carbonate precursor, or In addition, it is a linear or branched thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting a small amount of a polyhydroxy compound.
  • aromatic polycarbonate resin (component A) used in the present invention those obtained by any conventionally known production method can be used. Specific examples include an interfacial polymerization method, a melt ester exchange method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Among them, it is advantageous in the chemical industry to use an interfacial polymerization method or a melt transesterification method. Hereafter, how to produce aromatic polycarbonate resin As a method, these two methods will be described as examples.
  • Dihydroxydiarylsulfides exemplified by 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxy-3,3'dimethyldiphenylsulfide, and the like; 4,4'dihydroxydiphenylsulfoxide 4,4'-dihydroxy 3,3'-dimethyldiphenyl sulfoxide, and the like; 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxysulfone, 4,4'-dihydroxy-1,3'-dimethyldiphenyl -Examples with lusulfone And dihydroxydiaryl sulfones shown; noduloquinone, resorcin, 4, 4 'dihydroxydiphenyl and the like.
  • Carbonate precursors, carbonate esters, haloformates and the like are used as the carbonate precursor to be reacted with the aromatic dihydroxy compound, specifically, phosgene; diphenyl carbonate, ditolyl carbonate and the like.
  • These carbonate precursors can also be used alone or in combination of two or more.
  • the aromatic polycarbonate resin (component A) used in the present invention may be a branched aromatic polycarbonate resin obtained by copolymerizing a trifunctional or more multifunctional aromatic compound.
  • 1, 1, 1-tri (4-hydroxyphenyl) ethane is preferable.
  • the polyfunctional aromatic compound can be used by substituting a part of the aromatic dihydroxy compound, and the amount used is preferably 0.01 to 10 mol% with respect to the aromatic dihydroxy compound. Among them, 0.1 to 2 mol% is preferable.
  • the pH is usually kept at 9 or higher, and the aromatic dihydroxy compound is separated as necessary.
  • Phosgene with quantity regulator end stopper
  • antioxidant of aromatic dihydroxy compound React with a method of obtaining a polycarbonate by adding a polymerization catalyst such as tertiary amine or quaternary ammonium salt and performing interfacial polymerization can be mentioned.
  • the temperature of the phosgenation reaction is usually 0 to 40 ° C., and the reaction time is several minutes (for example, 10 minutes) to several hours (for example, 6 hours). Also, the timing of addition of the molecular weight regulator may be appropriately selected and determined after the phosgene reaction until the start of the polymerization reaction.
  • the organic solvent inert to the reaction includes chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, black mouth form, monochrome mouth benzene and dichlorobenzene, and aromatics such as benzene, toluene and xylene.
  • chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, black mouth form, monochrome mouth benzene and dichlorobenzene
  • aromatics such as benzene, toluene and xylene.
  • alkaline compound used in the alkaline aqueous solution include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • Examples of the molecular weight regulator include compounds having a monovalent phenolic hydroxyl group.
  • Examples of the compound having a monovalent phenolic hydroxyl group include m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol and p-long chain alkyl-substituted phenol. It is done.
  • the amount of the molecular weight regulator used is preferably 0.5 to 50 mol, more preferably 1 to 30 mol, per 100 mol of the aromatic dihydroxy compound.
  • Polymerization catalysts include tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, pyridine; trimethylbenzyl ammonium chloride, tetramethyl ammonium chloride, triethylbenzyl. Quaternary ammonia salts such as ammonium chloride.
  • the reaction by the melt transesterification method is carried out, for example, by an ester exchange reaction between a carbonic acid diester and an aromatic dihydroxy compound.
  • the carbonic acid diester include dialkyl carbonates such as dimethyl carbonate, jetyl carbonate, and di-tert-butyl carbonate, and substituted diphenyl carbonates such as diphenyl carbonate and ditolyl carbonate. Of these, diphenyl carbonate and substituted diphenol carbonate are preferred. Particularly preferred is diphenyl carbonate!
  • the amount of terminal hydroxyl groups greatly affects the thermal stability, hydrolysis stability, color tone, etc. of the product polycarbonate. It may be appropriately adjusted by any known method.
  • an aromatic polycarbonate having a desired molecular weight and terminal hydroxyl group amount adjusted by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound and the degree of vacuum during the transesterification reaction. Can be obtained.
  • carbonic acid diester is used in an equimolar amount or more relative to 1 mol of aromatic dihydroxy compound, among which 1.01-: L is preferably used in an amount of 30 mol. .
  • terminal terminator in this case include monovalent phenols, monovalent carboxylic acids, carbonic acid diesterskind.
  • a transesterification catalyst is usually used.
  • the transesterification catalyst is not particularly limited, but alkali metal compounds and Z or alkaline earth metal compounds are preferred.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound may be used in combination.
  • the transesterification reaction using the above raw materials is 100
  • the reaction may be performed at a temperature of ⁇ 320 ° C., and finally, a melt polycondensation reaction may be performed under reduced pressure of 2 mmHg or less while removing by-products such as aromatic hydroxy compounds.
  • the melt polycondensation can be carried out by either a batch method or a continuous method. Among these, in consideration of the aromatic polycarbonate resin used in the present invention and the stability of the resin composition of the present invention, it is preferable to carry out the process continuously.
  • the catalyst deactivator used in the melt transesterification method it is preferable to use a compound that neutralizes the transesterification reaction catalyst, for example, a thio-containing acidic compound or a derivative formed therefrom.
  • the compound neutralizing such a catalyst is preferably added in an amount of 0.5 to 10 equivalents, more preferably 1 to 5 equivalents, relative to the alkali metal contained in the catalyst.
  • the compound neutralizing such a catalyst is added to the polycarbonate in an amount of preferably 1 to: LOO ppm, more preferably 1 to 20 ppm.
  • the molecular weight of the aromatic polycarbonate resin (component A) used in the present invention may be appropriately selected and determined, but the viscosity average molecular weight [Mv] converted from the solution viscosity is in the range of 10,000 to 50,000. Those are preferred.
  • the viscosity average molecular weight of aromatic polycarbonate is 10000 or more By setting it as above, the mechanical strength tends to be further improved, and it is more preferable when used for applications requiring high mechanical strength. On the other hand, when the viscosity average molecular weight is 50000 or less, there is a tendency that flowability can be further reduced, and the viewpoint power of ease of molding processability is more preferable.
  • the viscosity average molecular weight is more preferably 12000 to 40000, and still more preferably 1400 to 30000. Also, two or more types of aromatic polycarbonate resin having different viscosity average molecular weights may be mixed. Of course, aromatic polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
  • the viscosity average molecular weight [Mv] refers to the intrinsic viscosity [ ⁇ ] (unit: dlZg) at a temperature of 20 ° C using a Ubbelohde viscometer using methylene chloride as a solvent.
  • the degree formula, that is, r? 1. 23 ⁇ 10 _4 ⁇ ° ⁇ 83 , which means the force is calculated.
  • the intrinsic viscosity [r?] Is the specific viscosity [7?] Measured at each solution concentration [C] (gZdl) and calculated by the following formula.
  • the terminal hydroxyl group concentration of the aromatic polycarbonate resin used in the present invention is usually ⁇ m or less, preferably 700 ppm or less, more preferably 400 ppm or less, and particularly preferably 300 ppm or less.
  • the lower limit is preferably 10 ppm or more, more preferably 20 ppm or more, more preferably 30 ppm or more, and particularly preferably 40 ppm or more.
  • terminal hydroxyl group concentration By setting the terminal hydroxyl group concentration to 10 ppm or more, a decrease in molecular weight can be suppressed, and the mechanical properties and fatigue properties of the resin composition tend to be further improved.
  • the terminal group hydroxyl group concentration is 1 OOOppm or less because the heat resistance, residence heat stability, color tone, and recycling characteristics of the resin composition tend to be improved.
  • the terminal hydroxyl group unit is the weight of the terminal hydroxyl group expressed in ppm with respect to the weight of the aromatic polycarbonate resin, and the measuring method is a colorimetric determination (Macromol by the titanium tetrachloride Z acetic acid method). Chem. 88 215 (1965)).
  • Carbonate resin (component A) may contain an aromatic polycarbonate oligomer.
  • the viscosity average molecular weight [Mv] of the aromatic polycarbonate oligomer is preferably 1500 to 9500, more preferably ⁇ 2000 to 9000. It is preferable to use the aromatic positive carbon sesame digoma in a range of 30% by weight or less of the cocoon component.
  • the aromatic polycarbonate resin (component A) used in the present invention is a used product power that is not limited to virgin raw materials.
  • Recycled aromatic polycarbonate resin so-called material-recycled aromatic polycarbonate resin.
  • Fats may be used.
  • Used products include optical recording media such as optical discs, light guide plates, automobile window glass, automotive transparent parts such as automotive headlamp lenses' windshields, containers such as water bottles, eyeglass lenses, and sound barriers.
  • a building member such as a corrugated sheet is preferably mentioned. It is also possible to use non-conforming products, pulverized products with sprue, runner strength, etc., or pellets obtained by melting them.
  • the regenerated aromatic polycarbonate resin is preferably 80% by weight or less of the component A, more preferably 50% by weight or less.
  • the polybutylene terephthalate resin used in the present invention (hereinafter sometimes abbreviated as “component B”) is a polyester having a structure in which terephthalic acid units and 1,4 butanediol units are ester-bonded.
  • least 50 mol% of acid units composed of terephthalic acid units indicates a polymer 50 mole 0/0 or more diol units consists of 1, 4-butanediol unit, a lppm content of Chitani ⁇ product as a titanium atom
  • the proportion of terephthalic acid units in all dicarboxylic acid units is preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 95 mol% or more.
  • the proportion of butanediol units is preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 95 mol% or more.
  • dicarbonate other than terephthalic acid is used.
  • Any conventionally known rubonic acid component with no particular limitation can be used.
  • dicarboxylic acid components can be introduced into the polymer skeleton as a dicarboxylic acid, or using a dicarboxylic acid derivative such as a dicarboxylic acid ester or a dicarboxylic acid halide as a raw material.
  • any conventionally known diol component other than 1,4 butanediol can be used without any particular limitation.
  • polybutylene terephthalate resin (component B) used in the present invention lactic acid, glycolic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthalenecarboxylic acid, ⁇ - ⁇ -hydroxy Monofunctional components such as hydroxycarboxylic acid such as ethoxybenzoic acid, alkoxycarboxylic acid, stearyl alcohol, benzyl alcohol, stearic acid, benzoic acid, t-butylbenzoic acid, benzoylbenzoic acid, tri-force valeric acid, trimellitic acid, trimesic acid , Pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane, glycerol, pentaerythritol, etc.
  • An active ingredient or the like can be used as a copolymerization component.
  • the polybutylene terephthalate resin (component B) used in the present invention is obtained by polycondensing, for example, 1,4-butanediol and terephthalic acid (or dialkyl terephthalate) in the presence of a catalyst such as a titanium compound. can get.
  • the feature of the polybutylene terephthalate resin (B) used in the present invention is that the titanium content is more than 1 ppm and less than 75 ppm as titanium atoms. This value is the weight ratio of titanium atoms to polybutylene terephthalate resin.
  • the titanium atom content can be measured by recovering the metal in the polymer by a method such as wet ashing and using a method such as atomic emission, atomic absorption, or inductively coupled plasma (ICP). .
  • the lower limit of the titanium content is preferably 1 ppm as titanium atoms, especially 10 ppm, more preferably 20 ppm, particularly 25 ppm, and the upper limit is 75 ppm as titanium atoms, especially 50 ppm, especially 45 ppm. preferable.
  • the titanium content is less than 1 ppm as titanium atom, the polymerization reaction rate of the polybutylene terephthalate resin decreases, so the polymerization reaction has to proceed at a high temperature for a long time, and the color tone of the polybutylene terephthalate resin is poor. This is not preferable because the reaction does not proceed during kneading with an aromatic polycarbonate which only promotes the heat deterioration reaction, and the mechanical properties and fatigue characteristics of the polymer alloy are lowered.
  • the titanium content exceeds 75 ppm as titanium atoms, it becomes difficult to control the transesterification reaction, which only causes the generation of gas during kneading and molding and the poor thermal stability. Further, it is preferable because the polymer alloy with the aromatic polycarbonate deteriorates the heat resistance, the residence heat stability and the recycling characteristics, and further deteriorates the mechanical properties and color tone.
  • the polybutylene terephthalate resin (component B) used in the present invention contains a titanium compound as described above, and this titanium compound is preferably a polycondensation catalyst for a polybutylene terephthalate resin.
  • the titanium compound used as the polycondensation catalyst include, but are not limited to, inorganic titanium compounds such as titanium oxide and tetrasalt titanium; tetramethyl titanate, tetraisopropyl titanate, tetra And titan alcoholates such as butyl titanate; titanium phenolates such as tetraphenol titanate; and the like.
  • the polybutylene terephthalate resin (component B) used in the present invention preferably contains a group 1 metal compound and a Z or group 2 metal compound in addition to the titanium compound.
  • the content of the Group 1 metal compound and the Z or Group 2 metal compound in the polybutylene terephthalate resin (component B) is preferably more than 1 ppm and 50 ppm or less in terms of metal atoms.
  • the metal atom content can be measured in the same manner as the above-described titanium measurement method.
  • the lower limit of the content of the Group 1 metal compound and the Z or Group 2 metal compound is preferably 3 ppm, particularly 5 ppm, in terms of metal atoms.
  • the upper limit is preferably 50 ppm, in particular 30 ppm, particularly 20 ppm in terms of metal atoms.
  • the polybutylene terephthalate resin (component B) used in the present invention preferably contains a Group 1 metal compound and Z or a Group 2 metal compound titanium compound as described above.
  • the compound is preferably a polycondensation catalyst for polybutylene terephthalate resin (component B) or a co-catalyst for a titanium compound catalyst.
  • the Group 1 metal compound and the Z or Group 2 metal compound used as the polycondensation catalyst include lithium, sodium, potassium, rubidium, and cesium hydroxides.
  • various organic compounds such as acetates, phosphates, carbonates, and the like.
  • Group 2 metal compounds include beryllium, magnesium, calcium, strontium and barium hydroxides; oxides; alcoholates; various organic acid salts such as acetates, phosphates and carbonates; ⁇ composites.
  • magnesium compounds include magnesium acetate and magnesium hydroxide.
  • examples include shim, magnesium carbonate, magnesium oxide, magnesium alkoxide, magnesium hydrogen phosphate, and the like. Of these, organic acid salts are preferred, and in particular, magnesium acetate is preferred.
  • the terminal carboxyl group concentration of the polybutylene terephthalate resin (component B) used in the present invention is 39 ⁇ eqZg or less, preferably 5 to 35 ⁇ eqZg, particularly preferably 10 to 30 ⁇ eqZg.
  • the terminal carboxyl group concentration is 39 eq / g or less, the mechanical properties and fatigue properties of the resin composition tend to improve, and by setting the terminal carboxyl group concentration to 5 eqZg or more, the resin composition
  • the heat resistance, residence heat stability and recyclability of the product tend to be improved, which is preferable.
  • the terminal carboxyl group concentration of the polybutylene terephthalate resin was determined by dissolving 0.5 g of polybutylene terephthalate resin in 25 mL of benzyl alcohol and titrating with 0.01 mol ZL benzyl alcohol solution of sodium hydroxide. You can ask for it.
  • the end of the polybutylene terephthalate resin there may be a hydroxyl group or a bur group in addition to the carboxyl group, and a methoxy carbo yl group derived from the raw material may remain.
  • dimethyl terephthalate is used as the raw material. In many cases, it may remain.
  • the terminal methoxycarbonyl group in polybutylene terephthalate resin causes toxic methanol, formaldehyde, formic acid, etc. to be generated due to the heat generated during molding, such as formic acid. This may affect other molding equipment and vacuum related equipment. Therefore, in the polybutylene terephthalate resin (component B) used in the present invention, it is preferable that the terminal methoxycarbol group concentration is 0.5 eqZg or less, 0.3 / z eqZg or less, 2 / z eqZg or less, particularly 0.1 eqZg or less is preferable.
  • the terminal bur group concentration of the polybutylene terephthalate resin (component B) used in the present invention is usually 0.1 lS / z eq / g, and more preferably 0.5 to: LO eq / g Especially preferred is 1-8 eq / g. If the terminal vinyl group concentration is too high, it may cause a deterioration in the color tone of the resin composition, and the terminal vinyl group concentration tends to further increase due to the heat history during molding. In the case of the manufacturing method, the color tone May decrease.
  • the inherent viscosity of the polybutylene terephthalate resin (component B) used in the present invention is appropriately selected from 0.5 to 2 dL / g, and more preferably 0.6 to 1.5 dL / g, further ⁇ 0.8 to 1.3 dL / g, especially 0.95 to L 25 dL / g
  • the above intrinsic viscosity is a value measured at 30 ° C. using a mixed solvent of phenol Z tetratalrethane (weight ratio 1Z1).
  • the polybutylene terephthalate resin (component B) used in the present invention is a polybutylene terephthalate resin regenerated from a used product made only of virgin raw materials, so-called material-recycled polybutylene terephthalate resin.
  • Used products include containers, films, sheets, fibers, non-conforming products, sprues, runners, etc., and pulverized products obtained from them or pellets obtained by melting them are also used. Is possible.
  • polybutylene terephthalate resin (component B) used in the present invention will be described.
  • the production method of polybutylene terephthalate resin is roughly divided into a direct polymerization method using dicarboxylic acid as a main raw material and a transesterification method using dialkyl dicarboxylate as a main raw material.
  • water is generated in the initial esterification reaction
  • alcohol is generated in the initial transesterification reaction.
  • the method for producing the polybutylene terephthalate resin is roughly divided into a batch method and a continuous method depending on the raw material supply or the polymer discharge form. Perform the initial esterification reaction or ester exchange reaction in a continuous operation, then perform the polycondensation performed in a batch operation, or conversely perform the initial esterification reaction or ester exchange reaction in a batch operation. Degeneracy There is also a method of performing the combination by continuous operation.
  • the polybutylene terephthalate resin (component B) used in the present invention has a direct weight from the viewpoint of the availability of raw materials, the ease of processing of distillate, the superiority of raw material units, and the effects of the present invention. It is preferable to use polybutylene terephthalate resin manufactured by a legal method. In the present invention, from the viewpoint of productivity, stability of product quality, and the effect of the present invention, it is preferable to use a method in which raw materials are continuously supplied and an esterich reaction or transesterification reaction is continuously performed. In particular, it is preferable to produce polybutylene terephthalate resin by a so-called continuous method in which the polycondensation reaction following the esterification reaction or transesterification reaction is also carried out continuously.
  • polybutylene terephthalate resin (component B) used in the present invention at least a portion of 1,4 butanediol is terephthalic acid in an esterification reaction tank in the presence of a titanium catalyst.
  • Or dialkyl terephthalate is supplied to the ester reaction tank (or transesterification reaction tank) independently, and terephthalic acid (or dialkyl terephthalate) and 1,4 butanediol are continuously added to ester ester (or A process of transesterification is preferably employed.
  • polybutylene terephthalate resin (component B) used in the present invention haze and foreign matters derived from the catalyst are reduced and the catalytic activity is not lowered.
  • 1,4 butanediol supplied with dialkyl terephthalate it is also possible to supply 1,4 butanediol to the esterification tank or transesterification tank independently of terephthalic acid or dialkyl terephthalate. preferable.
  • the 1,4 butanediol is sometimes referred to as “separately supplied 1,4 butanediol”.
  • the above-mentioned "separately supplied 1,4 butanediol” can be filled with fresh 1,4 butanediol independent of the process.
  • “Separately supplied 1,4 butanediol” collects 1,4-butanediol distilled in the ester tank or transesterification tank with a condenser and holds it as it is or in a temporary tank. It can be supplied to 1,4 butanediol, which is refluxed to the reaction vessel or purified by separating and purifying impurities. After that, 1,4 butanediol force collected by condensers etc. is also configured.
  • “Supply 1,4 butanediol” is sometimes referred to as “recycled 1,4 butanediol”. From the viewpoint of effective utilization of resources and simplicity of equipment, it is preferable to allocate “recycled 1,4 butanediol” to “separately supplied 1,4 butanediol”.
  • 1,4-butanediol distilled from the esterification tank or transesterification reaction tank usually contains components such as water, alcohol, tetrahydrofuran (THF) and dihydrofuran in addition to the 1,4 butanediol component. Contains. Therefore, the 1,4-butanediol distilled above can be separated and purified from components such as water, alcohol, THF, etc. while being collected by a condenser or the like, and returned to the reaction vessel. preferable.
  • the reaction liquid phase part refers to the liquid phase side of the gas-liquid interface in the esterification reaction tank or transesterification reaction tank.
  • the ratio of returning directly to the liquid phase of the reaction liquid is preferably 30% by weight or more, more preferably 50% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more. If the amount of “separately supplied 1,4 butanediol” returned directly to the reaction liquid phase is small, the titanium catalyst tends to be deactivated.
  • the temperature of "separately supplied 1,4 butanediol" when returning to the reactor is usually 50 to 220. C, preferably 100 to 200 ° C, more preferably 150 to 190 ° C. If the temperature of “separately supplied 1, 4 butanediol” is too high, the amount of THF by-product tends to increase, and if it is too low, the heat load tends to increase, leading to energy loss.
  • the polycondensation catalyst for producing the polybutylene terephthalate resin (component B) used in the present invention the above-mentioned titanium compounds, Group 1 metal compounds and Z or Group 2 metal compounds (hereinafter referred to as "Both") are used. These may be referred to as “titanium catalyst”, “Group 1 metal catalyst” and “Group 2 metal catalyst”, respectively), and for example, tin and compounds thereof.
  • Tin is usually used as a tin compound, specifically, for example, dibutyltin oxide, methylphenol tin oxide, tetraethyltin, hexethyldistinoxide, cyclohexahexyldis.
  • Zuoxide didodecyltin oxide, triethyltin hydride oxide, trifruzuzuno, idooxide, triisobutyltin acetate , Dibutinoles diacetate, diphenyltin dilaurate, monobutyltin trichloride, tributyltin chloride, dibutyltin sulfide, butylhydroxytin oxide, methylstannic acid, ethylstannic acid, and butylstannic acid.
  • tin-tin compounds have a poor color tone of the polybutylene terephthalate resin, so the content of tin compounds in the polybutylene terephthalate resin used in the present invention is lower. However, it is preferable not to contain it.
  • the content power of the tin compound is usually 200 ppm or less in terms of tin atom, preferably 10 ppm or less, more preferably 10 ppm or less.
  • another catalyst can be used as a catalyst.
  • an antimony compound such as antimony trioxide
  • a germanium compound such as germanium dioxide and germanium tetroxide
  • a manganese compound such as zinc compound; a zirconium compound; a cobalt compound
  • reaction aids such as phosphorus compounds such as esters and metal salts thereof.
  • 10% by weight or more of the titanium catalyst used in the esterification reaction is a reaction liquid independent of terephthalic acid (or dialkyl terephthalate). It is preferable to supply directly to the phase part.
  • the reaction liquid phase part means the liquid phase side of the gas-liquid interface in the esterification reaction tank or transesterification reaction tank.
  • To supply directly to the reaction liquid phase part use piping or the like. This means that the titanium catalyst is supplied directly to the liquid phase part without going through the gas phase part of the reactor.
  • the proportion of the titanium catalyst added directly to the reaction liquid phase is preferably 30% by weight or more, more preferably 50% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the titanium catalyst described above can be supplied directly to the reaction liquid phase part of the esterification reaction tank or the transesterification reaction tank with or without being dissolved in a solvent or the like, but the supply amount is stabilized. In order to reduce adverse effects such as heat denaturation due to the heat medium jacket of the reactor, it is preferable to dilute with a solvent such as 1,4 butanediol.
  • concentration at this time as the concentration of the titanium catalyst to the total solution, usually 0.01 to 20 wt%, from 0.05 to 10 weight 0/0 Among, in particular 0.08 to 8 wt 0/0 Is preferred.
  • the water concentration in the solution is usually 0.05 to: L 0% by weight, and the temperature during the preparation of the solution is usually 20 to 20 from the viewpoint of preventing deactivation and aggregation. It is preferably 150 ° C, particularly 30 to 100 ° C, particularly 40 to 80 ° C.
  • the catalyst solution is preferably mixed with separately supplied 1,4 butanediol through a pipe or the like and supplied to the esterification reaction tank or transesterification reaction tank from the viewpoint of preventing deterioration, preventing precipitation, and deactivation.
  • the Group 1 metal catalyst and the Z or Group 2 metal catalyst can be supplied to the esterification reaction tank or the transesterification reaction tank, but the supply position is not particularly limited.
  • the reaction solution may be supplied to the upper surface of the reaction solution or directly to the reaction solution liquid phase portion. At this time, it may be supplied together with the raw material terephthalic acid or the titanium catalyst, or may be supplied independently.
  • the reaction solution from the gas phase part to the upper surface of the reaction solution independently from the terephthalic acid or titanium catalyst.
  • a method for supplying the Group 2 metal catalyst for example, when the Group 2 catalyst is solid at room temperature, it can be supplied to the reaction solution as a solid, but the supply amount is stabilized, and adverse effects such as heat denaturation are caused. To reduce this, it is preferable to dissolve in water or a solvent such as 1,4 butanediol and supply it as a solution.
  • the concentration of the Group 2 metal catalyst in this solution is usually 0.01% by weight or more, preferably 0.05% by weight or more, and particularly preferably 0.08% by weight or more. Of these, the content is preferably 10% by weight or less, particularly preferably 8% by weight or less.
  • the Group 1 metal catalyst and the Z or Group 2 metal catalyst may be added to a polycondensation reaction tank following the esterification reaction tank or the ester exchange reaction tank, or an oligomer piping attached thereto.
  • the addition method in this case is also dissolved in a solvent such as water or 1,4 butanediol or a copolymer component such as polytetramethylene ether glycol in order to stabilize the supply amount and reduce adverse effects such as heat denaturation.
  • the concentration at this time which is preferably supplied as a solution, is the same as the above-mentioned solution concentration.
  • the dicarboxylic acid component having terephthalic acid as a main component and the diol component having 1,4 butanediol as a main component are mixed in a raw material mixing tank to form a slurry.
  • titanium catalyst Always 180-260. C, preferably 200-245. C, more preferably 210-235.
  • C temperature usually 10 to 133 kPa, preferably 13 to: L01 kPa, more preferably 60 to 90 kPa (absolute pressure, the same shall apply hereinafter), usually 0.5 to 10 hours, preferably 1 In -6 hours, oligomers are obtained by continuous esterification reaction.
  • this oligomer is transferred to a polycondensation reaction tank and polycondensed in the presence of a polycondensation catalyst in one or a plurality of polycondensation reaction tanks.
  • a polycondensation catalyst in one or a plurality of polycondensation reaction tanks.
  • it is preferably continuously, usually 210 to 280.
  • C preferably 220-260.
  • C more preferably 230-250.
  • At least one polycondensation reaction tank at a temperature of C is usually 20 kPa or less, preferably 10 kPa or less, more preferably 5 kPa or less, with stirring, usually 2 to 15 hours, preferably 3 to : Perform polycondensation reaction in LO time.
  • the polymer obtained by the polycondensation reaction is usually transferred to the bottom force polymer extraction die of the polycondensation reaction tank and extracted in the form of strands. After the water cooling or water cooling, it is cut with a cutter, pellets, chips It is made into granular bodies, such as a shape.
  • the molar ratio of terephthalic acid to 1,4 butanediol preferably satisfies the following formula.
  • B is the number of moles of 1,4 butanediol supplied to the esterification reaction tank per unit time
  • TPA is the terephthalate supplied from the outside to the esterification reaction tank per unit time. The number of moles of acid.
  • 1,4 butanediol supplied from the outside to the esterification reaction tank is a raw slurry or solution, in addition to 1,4 butanediol supplied together with terephthalic acid or dialkyl terephthalate, These are the total of 1,4 butanediol that enters the reaction tank from outside the reaction tank, such as 1,4 butanediol supplied independently and 1,4 butanediol used as the solvent for the catalyst.
  • BZTPA value is less than 1.1, the conversion rate will be reduced and the catalyst will be deactivated. If it is greater than 5.0, the thermal efficiency will decrease and the by-products such as THF will increase. It tends to be.
  • the value of B / TPA is preferably ⁇ , preferably ⁇ 1.5 to 4.5, and further to ⁇ 2. 0 to 4.0, particularly 3.1 to 3.8.
  • An example of a continuous process employing the transesterification process is as follows. First, single or multiple The number of transesterification reaction vessel, in the presence of a titanium catalyst, usually 110 to 260 ° C, preferably rather ⁇ or one hundred forty to two hundred and forty-five o C, further [this temperature [trowel preferably ⁇ or 180 to 220 o C 10 to 133 kPa, preferably 13 to 120 kPa, more preferably 60 to: The transesterification reaction is carried out continuously under a pressure of LOlkPa, usually 0.5 to 5 hours, preferably 1 to 3 hours. An oligomer is obtained.
  • the oligomer is transferred to a polycondensation reaction tank, and preferably continuously in the presence of a polycondensation reaction catalyst in one or a plurality of polycondensation reaction tanks, usually at 210 to 280 ° C. Is at a temperature of 220 to 260 ° C, more preferably 230 to 250 ° C, and at least one polycondensation reaction tank is usually stirred at a reduced pressure of 20 kPa or less, preferably 10 kPa or less, more preferably 5 kPa or less.
  • the polycondensation reaction is usually carried out for 2 to 15 hours, preferably 3 to 10 hours.
  • the molar ratio of dialkyl terephthalate to 1,4 butanediol preferably satisfies the following formula.
  • B is the number of moles of 1,4 butanediol supplied to the esterification reaction tank per unit time
  • DAT is the external capacity of the esterification reaction tank per unit time. The number of moles of dialkyl terephthalate supplied by the company.
  • BZDAT is preferably 1.1 to 1.8, more preferably 1.2 to 1.5.
  • the esterification reaction or transesterification reaction is preferably performed at a temperature equal to or higher than the boiling point of 1,4 butanediol in order to shorten the reaction time.
  • the boiling point of 1,4 butanediol depends on the reaction pressure, but it is 230 ° C at 101. lkPa (atmospheric pressure) and 205 ° C at 50 kPa.
  • any conventionally known one can be used.
  • the model of Also, a single tank may be a plurality of tanks in which the same or different tanks are connected in series or in parallel.
  • a reaction vessel having a stirring device is preferred.
  • the type of agitation device may be a high-speed rotating type such as a turbine stator type high-speed rotary agitator, disk mill type agitator, or rotor mill type agitator. I can do it.
  • the form of stirring is not particularly limited. In addition to a normal stirring method in which the reaction solution in the reaction tank is directly stirred at the top, bottom, side, etc. It is also possible to circulate the reaction liquid by taking the part out of the reactor and stirring it with a line mixer.
  • stirring blades can be selected, and specific examples include propeller blades, screw single blades, turbine blades, fan turbine blades, disk turbine blades, fiddler blades, full zone blades, and Max blend blades.
  • a multi-stage reaction vessel is used, preferably 2 to 5 reaction vessels, and the molecular weight is increased sequentially.
  • a polycondensation reaction is performed following the initial esterification reaction or transesterification reaction.
  • a single reaction tank or a plurality of reaction tanks may be used, but a plurality of reaction tanks are preferably used.
  • the form of the reaction tank may be any type such as a vertical stirring complete mixing tank, a vertical heat convection mixing tank, a tower type continuous reaction tank, or the like, and these may be combined.
  • a stirring device that is preferably a reaction tank having a stirring device, a turbine stator type high-speed rotating stirrer, a disk mill type stirrer, a rotor mill, in addition to a normal type including a power unit, a bearing, a shaft, and a stirring blade.
  • a high-speed rotating type such as a mold stirrer can also be used.
  • the form of stirring is not particularly limited, and in addition to the normal stirring method in which the reaction solution in the reaction vessel is directly stirred from the top, bottom, side, etc. of the reaction vessel, It is also possible to circulate the reaction liquid by taking the part out of the reactor and stirring it with a line mixer. In particular, it is recommended that at least one of the polycondensation reactors use a horizontal reactor that has a horizontal axis of rotation and excellent surface renewal and self-cleaning properties.
  • reaction temperature is usually 225 to 255 ° C, especially 230 to 250 ° C, especially 233 to 245 ° C. / ⁇ .
  • the polycondensation reaction step of the polybutylene terephthalate resin is a process in which a polybutylene terephthalate resin having a relatively low molecular weight, for example, an intrinsic viscosity of about 0.1 to 1.0 is obtained by melt polycondensation. After the production, it can be subsequently subjected to solid phase polycondensation (solid phase polymerization) at a temperature below the melting point of polybutylene terephthalate resin.
  • FIG. 1 is an explanatory diagram of an example of an esterification reaction step or transesterification reaction step employed in the present invention
  • FIGS. 2 and 3 are explanatory diagrams of an example of a polycondensation step employed in the present invention.
  • the raw material terephthalic acid is usually mixed with 1,4-butanediol in a raw material mixing tank (not shown), and is transferred from the raw material supply line (1) to the reaction tank (A) in the form of slurry. If the raw material is dialkyl terephthalate, it is usually fed to the reaction tank (A) in a molten state.
  • the titanium catalyst is preferably made into a solution of 1,4 butanediol in a catalyst adjusting tank (not shown) and then supplied from the catalyst supply line (3).
  • Fig. 1 shows a mode in which the catalyst supply line (3) is connected to the recycle line for 1,4 butanediol (2) and mixed, and then supplied to the liquid phase part of the reaction tank (A). It was.
  • Gas that also distills from the reaction tank (A) is separated into a high-boiling component and a low-boiling component in the rectification column (C) via the distillation line (5).
  • the main component of the high boiling point component is 1,4 butanediol
  • the main component of the low boiling point component is water and THF in the case of the direct polymerization method, and in the case of the transesterification method, ananolone, THF and water.
  • the high-boiling components separated in the rectification column (C) are extracted from the extraction line (6), passed through the pump (D), and partly from the recirculation line (2) to the reaction tank (A) Part of it is returned to the rectifying tower (C) from the circulation line (7).
  • the surplus is extracted from the extraction line (8).
  • the light boiling components separated in the rectification column (C) are extracted from the gas extraction line (9), condensed in the capacitor (G), and passed through the condensate line (10) and then into the tank (F). Is temporarily stored.
  • [0123] Tank A part of the collected light boiling components is returned to the rectification tower (C) via the extraction line (11), the pump (E) and the circulation line (12). It is extracted outside through the extraction line (13).
  • the condenser (G) is connected to an exhaust device (not shown) via a vent line (14).
  • the oligomer produced in the reaction tank (A) is removed from the extraction pump (B) and the extraction line (4 ) Is extracted.
  • the catalyst supply line (3) is connected to the recirculation line (2) in the process shown in FIG. 1, both may be independent.
  • the raw material supply line (1) may be connected to the liquid phase part of the reaction tank (A).
  • the oligomer supplied from the extraction line (4) shown in FIG. 1 is polycondensed under reduced pressure in the first polycondensation reaction tank (a) to become a prepolymer, and then extracted. It is supplied to the second polycondensation reaction tank (d) via the output gear pump (c) and the extraction line (L1).
  • polycondensation proceeds at a lower pressure than that of the first polycondensation reactor (a) to become a polymer.
  • the obtained polymer is extracted in the form of a melted strand from the die head (g) through the extraction gear pump (e) and the extraction line (L3), cooled with water, etc., and then a rotary cutter ( Cut into pellets in h).
  • the polymer obtained in the second polycondensation reactor (d) is passed through the extraction gear pump (e) and the extraction line (L3), and then passed through the third polycondensation reaction tank ( k).
  • the third polycondensation reaction tank (k) is a horizontal reaction tank composed of a plurality of stirring blade blocks and equipped with a biaxial self-cleaning type stirring blade.
  • polycondensation proceeds at a lower pressure than in the first polycondensation reaction tank (a), and polycondensation occurs in the third polycondensation reaction tank (k). Going further, it becomes a polymer.
  • the polymer obtained in the third condensation reactor (k) is extracted in the form of a strand in which the die head (g) force is also melted through the extraction gear pump (m) and the extraction line (L5). After cooling with water, etc., it is cut into pellets by a rotary cutter (h).
  • Reference numerals (L2), (L4), and (L6) in FIGS. 2 and 3 are vent lines of the respective polycondensation reaction tanks (a), (d), and (k). [0132] “3 ⁇ Rubber ⁇ ⁇ (C5 ⁇ ):
  • the rubbery polymer used in the present invention has a glass transition temperature of 0 ° C or lower, particularly 20 ° C or lower, and is a polymer obtained by copolymerizing a rubbery polymer with a monomer component copolymerizable therewith. Including body.
  • the component C used in the present invention any conventionally known component that can be generally combined with a polycarbonate resin composition or the like to improve its mechanical properties can be used.
  • component C examples include polybutadiene, polyisoprene, gen-based copolymers (styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, acrylic butadiene rubbers, etc.), ethylene and ⁇ - olefin. Polymers (ethylene / propylene copolymer, ethylene / butene copolymer, ethylene / otaten copolymer, etc.), ethylene / unsaturated carboxylic acid ester copolymer (ethylene / metatalylate copolymer, ethylene.
  • gen-based copolymers styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, acrylic butadiene rubbers, etc.
  • ethylene and ⁇ - olefin Polymers (ethylene / propylene copolymer, ethylene / butene copolymer, ethylene / otaten copo
  • Butyl phthalate copolymer copolymer of ethylene and aliphatic vinyl compound, terpolymer of ethylene, propylene and non-conjugated gen, acrylic rubber (polybutyl acrylate, poly (2-ethylhexyl) Acrylate), butyl acrylate, 2-ethylhexyl acrylate copolymer), silico And rubbers (polyorganosiloxane rubber, polyorganosiloxane rubber and polyalkyl (meth) acrylate rubber and vertical composite rubber that also has power).
  • (meth) acrylate means “attalate” and “methacrylate”
  • (meth) acrylic acid” described later means “acrylic acid” and “methacrylic acid”.
  • a copolymer obtained by polymerizing a monomer component to a rubber polymer may be used.
  • this monomer include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds.
  • other monomer components include epoxy group-containing (meth) acrylic acid ester compounds such as glycidyl (meth) atalylate; maleimide compounds such as maleimide, ⁇ -methylmaleimide, ⁇ -malemaleimide; maleic acid, Examples thereof include ⁇ , ⁇ -unsaturated carboxylic acid compounds such as phthalic acid and itaconic acid, and anhydrides thereof (for example, maleic anhydride).
  • These monomer components may be used alone or in combination of two or more.
  • the C component used in the present invention has a high impact resistance and a core-seal type graft copolymer tie.
  • a core-seal type graft copolymer tie are preferred.
  • at least one selected from butadiene-containing rubber, butyl acrylate-containing rubber, and silicone rubber strength is used as a rubber polymer core layer, and acrylic acid ester, methacrylic acid ester, aromatic belief around it.
  • a core Z shell type graft copolymer comprising a shell layer formed by copolymerizing at least one monomer component selected from a composite product is particularly preferred.
  • methyl methacrylate-butadiene styrene polymer MMS
  • methyl methacrylate-acrylonitrile-butadiene styrene polymer MABS
  • methyl methacrylate-butadiene polymer MB
  • methyl methacrylate-acrylic Rubber polymer (MA), Methyl methacrylate-acrylic rubber Styrene polymer (MAS), Methyl methacrylate Acrylate / Butadiene rubber copolymer, Methyl methacrylate Acrylate / Butadiene rubber Styrene copolymer, Methyl methacrylate (Acrylic Examples include silicone IPN (interpenetrating polymer network) rubber. Such rubbery polymers may be used alone or in combination of two or more.
  • Rubbery polymers include polybutadiene rubber, styrene-butadiene copolymer (SBR), styrene butadiene styrene block copolymer (SBS), styrene ethylene Z butylene styrene block copolymer Polymer (SEBS), Styrene Ethylene Z Propylene / Styrene Block Copolymer (SEPS), Acrylonitrile / Butadiene / Styrene Polymer (ABS), Acrylonitrile-Styrene-Acrylic Rubber Polymer (ASA), Acrylonitrile-Tolyl / Ethylene Propylene Examples thereof include rubber-styrene polymer (AES).
  • SBR styrene-butadiene copolymer
  • SBS styrene butadiene styrene block copolymer
  • SEBS Styrene Ethylene Z Propylene / St
  • the content ratio of the component A and the component B is preferably 51 to 99 parts by weight of the component A out of a total of 100 parts by weight of the component A and the component B. Is 55 to 90 parts by weight, more preferably 60 to 85 parts by weight, and component B is 1 to 49 parts by weight, preferably 10 to 45 parts by weight, more preferably 15 to 40 parts by weight.
  • a component is 51 parts by weight or more, impact resistance tends to be improved, and when it is less than 99 parts by weight, fluidity tends to improve chemical resistance.
  • the component C is preferably 0.5 to 40 parts by weight, more preferably 2 to 30 parts by weight, and particularly preferably 3 to 25 parts by weight with respect to 100 parts by weight of the total of the components A and B.
  • the C component is 0.5 parts by weight or more, impact resistance is improved, and when it is 40 parts by weight or less, rigidity, heat resistance, Fatigue properties tend to improve.
  • the inorganic filler which is the D component of the present invention (hereinafter sometimes abbreviated as “D component”) is a solid inorganic compound.
  • the form (shape) of the solid is arbitrary. For example, it may be spherical, plate-like, needle-like, fiber-like, amorphous, etc.
  • the finally obtained resin composition has dimensional stability and rigidity. In order to improve this, a plate shape, needle shape, or fiber shape is preferable.
  • the shape of the inorganic filler used in the present invention is distinguished from spherical, plate-like, needle-like and fiber-like as follows.
  • a spherical shape includes a shape having an elliptical cross section or a substantially oval shape to a certain extent that is not limited to a true spherical shape, and preferably has an aspect ratio close to 1, with a specific aspect ratio exceeding 0.5. Indicates less than.
  • the plate shape indicates a plate shape and an aspect ratio (the length of the longest side of the plate-like surface of the plate-like powder, the thickness of the Z-plate body) in the range of 2 to: LOO. Needle-shaped refers to those with a length of 100 ⁇ m or less and an aspect ratio (particle length Z particle diameter) in the range of 2 to 20, and fibrous refers to those with a length exceeding 100 m . These shapes can be easily identified by an electron micrograph or the like.
  • inorganic filler (D component) used in the present invention include, for example, magnesium silicate such as talc, kaolinite, clay, my strength, graphite, sericite, montmorillonite, and the like as a plate-like inorganic filler.
  • magnesium silicate such as talc, kaolinite, clay, my strength, graphite, sericite, montmorillonite, and the like as a plate-like inorganic filler.
  • examples include plate-like calcium carbonate, plate-like alumina, and glass flakes.
  • acicular inorganic fillers include calcium silicates such as wollastonite, moss heidi, zonotrite, calcium titanate, aluminum borate, acicular calcium carbonate, acicular titanium oxide, and tetrapot type acid zinc oxide.
  • fibrous inorganic filler include glass fiber and carbon fiber.
  • the average particle diameter may be appropriately selected and determined, but is 0.1 to 25 ⁇ m. Is preferred. If the average particle size is too small, the reinforcing effect is insufficient, and if it is too large, the product appearance may be adversely affected and the impact resistance may be further insufficient. Therefore, the average particle size is preferably 0.3 to 15 / ⁇ ⁇ , particularly 0.5 to LO / zm.
  • the average particle diameter means D measured by a liquid phase precipitation method by X-ray transmission. this
  • a device that can perform such measurements is the Sedigraph particle size analyzer (Micromeritics Instr).
  • the average fiber diameter may be appropriately selected and determined, but may be 1 to 20 / ⁇ ⁇ . More preferably, it is 2 to 17 ⁇ m, particularly 3 to 15 ⁇ m. If the fiber diameter is less than 1 ⁇ m, the reinforcing effect is insufficient, and if it exceeds 15 m, the appearance of the product tends to be adversely affected.
  • the fiber diameter of the fibrous filler can be easily measured with an electron micrograph.
  • inorganic fillers used in the present invention there are glass-based fillers selected from silicate compounds, Z, glass fibers, and glass flakes in terms of the balance of rigidity, fluidity, and impact resistance.
  • a silicate compound is more preferable in terms of a preferable product appearance.
  • a silicate compound is composed of at least a metal oxide component and an SiO component.
  • the silicate compound used as the component D in the present invention is a silicate compound represented by the following formula.
  • ⁇ and y represent natural numbers
  • z represents an integer of 0 or more
  • MO represents a metal oxide component
  • MO may include a plurality of metal oxides.
  • the metal M in the metal oxide MO is potassium, sodium, lithium, barium, force russium, zinc, manganese, iron, connolto, magnesium, zirconium, aluminum, Examples include titanium.
  • the metal oxide MO those substantially containing either CaO or MgO are preferable.
  • silicate compound used as the D component in the present invention include wollastonite, talc, my strength, zonotolite, sepiolite, attabalgite, kaolinite, montmorillonite, bentonite, smectite and the like. I can do it. Of these, wollastonite, talc, and my strength are preferred in terms of rigidity, impact resistance, and appearance.
  • wollastonite used as the D component is a natural white mineral having needle-like crystals, and the chemical formula is represented by CaO′SiO.
  • SiO is about 50% by weight
  • CaO is about 46
  • Talc used as component D Te Contact ⁇ the present invention is a hydrous Kei acid magnesium ⁇ beam having a layered structure, chemical formula 4SiO - indicated by 3MgO-HO, the normal SiO 58 to 66 weight 0/0
  • the average particle diameter of talc is preferably 0.3 to 15 m, and more preferably 0.5 to LO / z m.
  • the my strength used as the D component is a pulverized silicate salt containing aluminum, potassium, magnesium, sodium, iron and the like.
  • muscovite mass derived silicate salt containing aluminum, potassium, magnesium, sodium, iron and the like.
  • any conventionally known My force can be used, but among these, muscovite is preferably used.
  • a pulverization method for My power either the dry pulverization method or the wet pulverization method is used, but the wet pulverization method is more effective for pulverizing the My power more thinly and finely. And, as a result, the reinforcing effect of the resin composition is higher, which is preferable.
  • the component D is 1 to 50 parts by weight, particularly 3 to 45 parts by weight, and particularly 5 to 40 parts by weight, with respect to the total 50 to 99 parts by weight of the components A and B. Preferred (the total of components A to D is 100 parts by weight).
  • B component strength ⁇ If less than parts by weight, the rigidity is insufficient. On the other hand, if it exceeds 50 parts by weight, impact resistance and stagnant heat stability deteriorate.
  • the polycarbonate resin composition of the present invention preferably contains a phosphorus compound in order to improve heat resistance and residence heat stability within a range not impairing the effects of the present invention.
  • a phosphorus compound any conventionally known compound can be used. Specifically, phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, phosphorous oxo acid such as phosphoric acid, acidic pyrophosphoric acid metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, acidic calcium pyrophosphate, phosphoric acid Examples include Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate, organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds.
  • R is an alkyl group or an aryl group, which may be the same or different.
  • m is an integer of 0-2.
  • R ′ is an alkyl group or an aryl group, which may be the same or different.
  • R is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, more preferably 2 to 25 carbon atoms. It is an alkyl group.
  • M is preferably 1 and Z or 2.
  • R ' is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • phosphite ester represented by the above general formula ( ⁇ ) include distearyl pentaerythritol diphosphite, bis (2,4-di-tertbutylphenol) pentaerythritol diphosphite, bis Mention may be made of (2, 6 di-tert-butyl-4-methylphenol) pentaerythritol diphosphite.
  • the content of these phosphorus compounds is preferably from 0.001 to 1 wt.%, Preferably from 0.005 to 0.5 wt. ⁇ Particularly preferred is 0.01 to 0.3 parts by weight.
  • polyester resins other than polybutylene terephthalate resins such as polyethylene terephthalate resin and polytrimethylene terephthalate resin, Atari mouth nitrile styrene copolymer, acrylonitrile butadiene styrene.
  • Polystyrene resin Polystyrene resin such as Polystyrene resin, Polyolefin resin, Polypropylene resin such as Polypropylene resin, Polyamide resin, Polyimide resin, Polyetherimide resin, Polyurethane resin, Polyolefin resin
  • Examples include lenether resin, polyphenylene sulfide resin, polysulfone resin, polymetatalylate resin, phenol resin, and epoxy resin.
  • resin additives include antioxidants, mold release agents, dyes and pigments, heat stabilizers, reinforcing agents, flame retardants, impact resistance improvers, weather resistance improvers, antistatic agents, antistatic agents.
  • examples include clouding agents, lubricants, anti-blocking agents, fluidity improvers, plasticizers, dispersants, and antibacterial agents. These can be used alone or in combination of two or more.
  • the resin composition of the present invention can employ any of conventionally known methods, such as resin additives, as appropriate.
  • the components A and B and additive components blended as necessary are mixed in advance using various mixers such as a tumbler and a Henschel mixer, and then mixed with a Banbury mixer, roll,
  • a resin composition can be produced by melt-kneading with a lavender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader or the like.
  • the resin composition can be produced without mixing each component in advance, or by mixing only some components in advance and supplying them to an extruder using a feeder and melt-kneading them.
  • the present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
  • the blending amount means parts by weight.
  • PC—1 Bisphenol A-type aromatic polycarbonate produced by interfacial polymerization (Mitsubishi ("Iupilon S-3000FN” manufactured by Engineering Plastics, Mv22500, terminal hydroxyl group concentration 150 ppm)
  • PC-2 Bisphenol A-type aromatic polycarbonate produced by interfacial polymerization (“Iupilon E-2000FN” manufactured by Mitsubishi Engineering Plastics, Mv28000, terminal hydroxyl group concentration 150 ppm)
  • polybutylene terephthalate resin was produced in the following manner. First, a 60 ° C slurry mixed at a ratio of 1.80 moles of 1,4 butanediol to 1.00 moles of terephthalic acid is passed through the raw material supply line (1) from the slurry preparation tank in advance. In a reaction vessel (A) for ester cake having a screw type stirrer charged with 1% polybutylene terephthalate oligomer,
  • the internal temperature of the reaction vessel (A) is 230 ° C, the pressure is 78 kPa, and the produced water, THF and excess 1,4 butanediol are distilled from the distillation line (5), In (C), a high-boiling component and a low-boiling component were separated.
  • the high-boiling component at the bottom of the tower after the system is stabilized is 98% by weight or more of 1,4 butanediol, so that the liquid level in the rectification tower (C) is constant, through the extraction line (8). Part of it was extracted outside.
  • low-boiling components were extracted from the top of the column in the form of gas, condensed by the condenser (G), and extracted from the extraction line (13) to the outside so that the liquid level in the tank (F) was constant.
  • the internal temperature of the first polycondensation reaction tank (a) was 240 ° C, the pressure was 2.7 kPa, and the liquid level was controlled so that the residence time was 120 minutes.
  • An initial polycondensation reaction was performed while extracting water, THF, and 1,4 butanediol from a vent line (L2) connected to a decompressor (not shown). The extracted reaction liquid was continuously supplied to the second polycondensation reaction tank (d).
  • the internal temperature of the second polycondensation reaction tank (d) was 245 ° C, the pressure was 140 Pa, the liquid level was controlled so that the residence time was 60 minutes, and connected to a decompressor (not shown).
  • the polycondensation reaction was further carried out while extracting water, THF, and 1,4 butanediol from the vent line (L4).
  • the obtained polymer was continuously supplied to the third polycondensation reaction tank (k) via the extraction line (L3) by the extraction gear pump (e).
  • the internal temperature of the third polycondensation reaction tank (k) was 239 ° C, the pressure was 600 Pa, the residence time was 80 minutes, and the polycondensation reaction was advanced.
  • the obtained polymer was continuously extracted in a strand form from the die head (g) and cut with a rotary cutter (h).
  • Table 1 summarizes the analytical values of the resulting polybutylene terephthalate.
  • the polybutylene terephthalate resin obtained in Production Example 1 is referred to as PBT-1.
  • the acid value and Keny rating power were calculated by the following formula.
  • the acid value was determined by titration using a 0.1 N KOHZ methanol solution after dissolving the oligomer in dimethylformamide.
  • the saponification value was obtained by subjecting the oligomer to brine decomposition with 0.5N KOHZ ethanol solution and titrating with 0.5N hydrochloric acid.
  • Esterification Rate ((Saponification Value—Acid Value) Z Saponification Value) X 100
  • the esterification process in the reactor (A) was performed in the same manner as PBT-1, and the polycondensation process was performed using the process shown in FIG.
  • the reaction conditions in the first polycondensation reaction tank (a) were the same as in PBT-1
  • the second polycondensation reaction tank (d) had an internal temperature of 241 ° C, a pressure of 150 Pa, and a residence time of 70 minutes. Obtained. 50 kg of this PBT pellet was subjected to solid-phase polymerization at 195 ° C under reduced pressure (0.133 kPa or less) in a double-coal blender (100 L capacity), and taken out over time while checking its viscosity Then, the polymerization was stopped by cooling at a predetermined intrinsic viscosity.
  • the analytical values of the obtained PBT are summarized in Table 1.
  • the poly (ethylene terephthalate) resin obtained in Production Example 2 is referred to as PBT-2.
  • the slurry is supplied to 41 kgZh, the bottom component of the rectifying column (C) is supplied from the recirculation line (2) at 17.2 kgZh, and the catalyst is supplied from the catalyst supply line (3).
  • the esterification reaction was carried out in the same manner as PBT-1, except that the yield was 30 ppm with respect to the theoretical polymer yield.
  • the pressure of the first polycondensation reaction tank (a) is 2. lkPa
  • the pressure of the second polycondensation reaction tank (d) is 130 Pa
  • the residence time is 90 minutes
  • the third polycondensation reaction tank (k) The procedure was the same as PBT-1, except that the internal temperature was 240 ° C, the pressure was 130 Pa, and the residence time was 60 minutes.
  • the analytical values of the obtained PBT are summarized in Table 1.
  • the polybutylene terephthalate resin obtained in Production Example 3 is referred to as PBT-3.
  • the polycondensation process was carried out in the process shown in Fig. 2, and was performed in the same manner as PBT-3 except that the third polycondensation reaction tank (k) was used.
  • the analytical values of the obtained PBT are summarized in Table 1.
  • the polybutylene terephthalate resin obtained in Production Example 4 is referred to as PBT-4.
  • the esterification process in the reactor (A) was performed in the same manner as PBT-1. After magnesium acetate tetrahydrate is dissolved in pure water, 1, 4 butanediol is added, and magnesium acetate tetrahydrate, pure water, and 1,4 butanediol are 5% by weight and 20% by weight, respectively. And 75% by weight in a preparation tank (not shown). The temperature at this time was 25 ° C. This solution was supplied to the 1,4 butanediol line (L8) through the supply line (L7), and a predetermined amount was supplied to the oligomer extraction line (4) as a low-concentration solution.
  • the internal temperature of the first polycondensation reactor (a) is 246 ° C
  • the pressure is 2.4 kPa
  • the residence time is 120 minutes
  • the internal temperature of the second polycondensation reactor (d) is 239 ° C
  • the pressure is 150 Pa
  • the residence time was 130 minutes
  • the internal temperature of the third polycondensation reactor (k) was 238 ° C
  • the pressure was 130 Pa
  • the residence time was 70 minutes.
  • the analytical values of the obtained PBT are summarized in Table 1.
  • the polybutylene terephthalate resin obtained in Production Example 5 is referred to as PBT-5.
  • the esterification process in the reactor (A) was performed in the same manner as PBT-1, and the polycondensation process was performed using the process shown in FIG.
  • the addition method of magnesium acetate tetrahydrate and the reaction conditions in the first polycondensation reaction tank (a) are the same as in PBT-5, the internal temperature of the second polycondensation reaction tank (d) is 238 ° C, the pressure is 200 Pa, Pellets were obtained with a residence time of 140 minutes.
  • the analysis value of the obtained PBT is This is shown in Table 1.
  • the polybutylene terephthalate resin obtained in Production Example 6 is referred to as PBT 6.
  • the esterification process in the reactor (A) was carried out in the same manner as PBT-1.
  • PBT-1 magnesium acetate tetrahydrate of PBT-5
  • lithium acetate dihydrate, pure water, and 1,4 butanediol are 2.5%, 20%, and 77.5% by weight, respectively.
  • the solution is prepared in a preparation tank (not shown), and this solution is supplied to the 1, 4 butanediol line (L8) through the supply line (L7).
  • a predetermined amount was supplied to (4).
  • the conditions for the first polycondensation reactor (a) were the same as for PBT-5
  • the internal temperature of the second polycondensation reactor (d) was 241 ° C
  • the internal temperature of the third polycondensation reactor (k) the internal temperature of the third polycondensation reactor (k).
  • the polycondensation reaction was performed in the same way as PBT-5, except that the temperature was 242 ° C.
  • the analytical values of the obtained PBT are summarized in Table 1.
  • the polybutylene terephthalate resin obtained in Production Example 7 is referred to as PBT-7.
  • the esterification process in the reactor (A) and the initial polycondensation process in the first polycondensation reaction tank (a) were carried out in the same manner as PBT-1, and the pressure in the second polycondensation reactor (d) was 200 Pa, The procedure was the same as PBT-1, except that the pressure in the third polycondensation reactor (k) was 650 Pa and the residence time was 70 minutes.
  • the analytical values of the obtained PBT are summarized in Table 1.
  • the polybutylene terephthalate resin obtained in Production Example 8 is referred to as PBT-8.
  • the internal temperature of the first polycondensation reactor (a) is 247 ° C
  • the pressure is 6. OkPa
  • the pressure of the second polycondensation reactor (d) is 250 Pa
  • the internal temperature of the third polycondensation reactor (k) is The procedure was the same as PBT-1, except that the residence time was 245 ° C and 70 minutes.
  • the analytical values of the obtained PBT are summarized in Table 1.
  • the polybutylene terephthalate resin obtained in Production Example 9 is referred to as PBT-9.
  • dimethyl terephthalate (DMT) 272.9 mol, 1,4 butanediol 327.5 mol, tetrabutyl titanate 0.126 mol (as the amount of titanium per theoretical yield polymer) lOOppm) was charged and the atmosphere was sufficiently replaced with nitrogen. Subsequently, the system was heated up, and after 60 minutes, the temperature was 210 ° C and atmospheric pressure under nitrogen. The resulting methanol, 1,4 butanediol, and THF were subjected to ester exchange reaction for 2 hours while distilling out of the system (the reaction start time was the time when the predetermined temperature was reached).
  • C1 Polybutadiene (core) Z Core alkyl acrylate 'alkyl methacrylate copolymer (shell) Z shell type graft copolymer (Rohm and Haas Japan)
  • C-2 Polyalkyl acrylate (core) Z alkyl acrylate 'alkyl methacrylate copolymer (shell) core Z-shell type graft copolymer (Rohm and Haas Japan made by Japan “ EXL2315 ”)
  • D component inorganic filler>
  • D—l Wollastonite (Nyda Minerals “Nidaros 4”, average particle size 3.4 / zm)
  • D—2 Talc (Hayashi Kasei “UPN HSTO. 5”, primary average particle Diameter 2 / zm, deaeration compression
  • Equation 0 P (OH) (OC H) (n
  • a component, B component, C component, D component and other components were uniformly mixed in a tumbler mixer in the ratios shown in Tables 2 to 9, and then a twin screw extruder (manufactured by Nippon Steel Works, TEX30XCT, L
  • pellets of the resin composition by feeding to the extruder from barrel 1 at a cylinder temperature of 270 ° C and a screw speed of 200 rpm and melt-kneading. Produced.
  • pellets of the resin composition were prepared by further feeding the B component from the barrel 7 to the extruder at a ratio shown in Table 9 and melt-kneading it.
  • the stagnant molding was performed in 2.5 cycles for 1 cycle, and the stagnated molded products after the fifth shot were evaluated. Further, 30 parts by weight of ASTM test pieces obtained by continuous molding in the above molding cycle of 55 seconds (recycled raw material) and 70 parts by weight of pellets of rosin composition (virgin raw material) were tumbled. Mix evenly with a mixer and dry at 110 ° C for 4 hours or more. Then, using a ⁇ 150 ⁇ —SJ type injection molding machine manufactured by Meiki Seisakusho, the cylinder temperature is 270 ° C and the mold temperature is 80 ° C. ASTM specimens were prepared under a cycle of 55 seconds. This operation was repeated twice to produce a recycled molded product (ASTM test piece).
  • the flow rate Q value (unit: mlZs) of the composition per unit time was measured under the conditions of 280 ° C and a load of 160 kgfZcm 2 to evaluate the fluidity.
  • the orifice used was lmm in diameter x 10mm in length. The higher the Q value, the better the fluidity.
  • Izod impact strength (unit: j / m) was measured at 23 ° C using a notched specimen having a thickness of 3.2 mm.
  • a tensile test (unit:%) was performed by performing a tensile test (speed: 20 mmZmin.) At 23 ° C. using a specimen having a thickness of 3.2 mm.
  • ASTM test specimen thickness: 3.2 mm
  • test product with a deformation rate of 1%, and the retention of elongation at break after 48 hours (compared to that without test chemical) Rate).
  • test chemical di (2-ethylhexyl) phthalate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • the chemical resistance was evaluated as 0 when the elongation at break was 75% or more, and X when the elongation at break was less than 75%.
  • the retained molded product was evaluated as ⁇ when there was no or almost no hue change, and X when the hue change was observed.
  • the thermal deformation temperature of the recycled molded product was measured at 0.45 MPa and evaluated.
  • the aromatic polycarbonate resin composition described in Example 17 of the present invention has an excellent balance of fluidity, impact resistance, chemical resistance, heat resistance, residence heat stability, and recycling characteristics.
  • the composition in Comparative Example 1 has a titanium atom content of B component outside the scope of this patent, and compared with the compositions of Examples, fatigue properties, heat resistance, residence heat stability, recycling Inferior in characteristics.
  • the composition of Comparative Example 2 has a terminal component carboxy concentration outside the range prescribed in this patent, and is inferior in impact resistance and fatigue properties as compared to the compositions of Examples.
  • the titanium atom content of the B component and the terminal carboxy concentration are within the scope of this patent specification. It is outside the range, and is inferior in impact resistance, fatigue characteristics, residence heat stability, and recycling characteristics as compared with the compositions of the examples.
  • Fluidity Q value 14 14 12 13 12 13 11 ml / s
  • the aromatic polycarbonate resin composition described in Examples 8 to 18 of the present invention has an excellent balance of fluidity, rigidity, impact resistance, heat resistance, chemical resistance, and fatigue characteristics.
  • the composition in Comparative Example 4 has a titanium atom content of component B that is outside the range specified in this patent, and is inferior in heat resistance and chemical resistance as compared to the compositions in Examples.
  • the terminal carboxy concentration of component B is outside the range specified in this patent. Yes, it is inferior in impact resistance and fatigue properties as compared with the compositions of the examples.
  • the composition of Comparative Example 6 is inferior in impact resistance and fatigue properties as compared with the compositions of Examples, in which the content of titanium atom of the B component and the terminal carboxy concentration are outside the ranges specified in this patent.
  • Fluidity Q value 6.7 10.3 35 12 12 12 ml / s
  • compositions of Comparative Examples 8 and 11 have a terminal component carboxy concentration outside the range specified in this patent, and are inferior in impact resistance and fatigue properties as compared to the compositions of Examples.
  • the titanium atom content of the B component and the terminal carboxy concentration are outside the scope of this patent, and compared with the compositions of the Examples, the impact resistance, fatigue characteristics, residence heat Inferior in stability.

Abstract

An aromatic polycarbonate resin composition which comprises an aromatic polycarbonate resin (ingredient (A)) and a polybutylene terephthalate resin (ingredient (B)) and optionally further contains a rubbery polymer and/or an inorganic filler, characterized in that the amounts of the aromatic polycarbonate resin (ingredient (A)) and the polybutylene terephthalate resin (ingredient (B)) are 51-99 parts by weight and 1-49 parts by weight, respectively, per 100 parts by weight of the sum of the aromatic polycarbonate resin (ingredient (A)) and the polybutylene terephthalate resin (ingredient (B)) and that the polybutylene terephthalate resin (ingredient (B)) has a titanium compound content of 1-75 ppm, excluding 1 ppm, in terms of titanium atom amount and a terminal carboxy group content of 39 µeq/g or lower. This aromatic polycarbonate resin composition has an excellent balance among various properties, i.e., is satisfactory in all of flowability, rigidity, impact resistance, chemical resistance, fatigue characteristics, heat resistance, thermal stability in residence, and suitability for recycling.

Description

明 細 書  Specification
芳香族ポリカーボネート樹脂組成物および樹脂成形品  Aromatic polycarbonate resin composition and resin molded article
技術分野  Technical field
[0001] 本発明は、主として芳香族ポリカーボネート榭脂とポリブチレンテレフタレート樹脂と 力も成る芳香族ポリカーボネート榭脂組成物に関し、詳しくは、流動性、剛性、耐衝 撃性、耐薬品性、疲労特性、耐熱性、滞留熱安定性などの諸性質に優れ、同時にリ サイクル特性にも優れた、芳香族ポリカーボネート榭脂組成物、およびこれを成形し てなる榭脂成形品に関する。  [0001] The present invention relates to an aromatic polycarbonate resin composition mainly composed of an aromatic polycarbonate resin and a polybutylene terephthalate resin, and more specifically, fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, The present invention relates to an aromatic polycarbonate resin composition excellent in various properties such as heat resistance and residence heat stability, and at the same time excellent in recycling characteristics, and a resin molded product formed by molding the same.
背景技術  Background art
[0002] 芳香族ポリカーボネート榭脂は、汎用エンジニアリングプラスチックとして透明性、 耐衝撃性、耐熱性、寸法安定性などに優れ、その優れた特性から、電気 ·電子 ·ΟΑ 機器部品、機械部品、車輛用部品などの幅広い分野で使用されている。更に芳香族 ポリカーボネート榭脂とポリブチレンテレフタレート榭脂から成るポリマーァロイは、芳 香族ポリカーボネート榭脂の上記の優れた特長を活力しつつ、芳香族ポリカーボネ ート榭脂の欠点である耐薬品性や成形加工性が改良された材料であり、車輛内装' 外装部品、各種ハウジング部材やその他幅広い分野で使用されている。  [0002] Aromatic polycarbonate resin is a general-purpose engineering plastic with excellent transparency, impact resistance, heat resistance, dimensional stability, etc., and its excellent characteristics make it suitable for electrical, electronic, electronic device parts, machine parts, and vehicles. It is used in a wide range of parts and other fields. Furthermore, the polymer alloy composed of aromatic polycarbonate resin and polybutylene terephthalate resin, while utilizing the above-mentioned excellent features of aromatic polycarbonate resin, chemical resistance and molding, which are disadvantages of aromatic polycarbonate resin. It is a material with improved processability, and is used in a wide range of fields such as vehicle interior / exterior parts, various housing members.
[0003] 主として芳香族ポリカーボネート榭脂とポリブチレンテレフタレート (ΡΒΤ)榭脂から 成る芳香族ポリカーボネート榭脂組成物(ポリマーァロイ)は、海-島構造のミクロ形 態を有するポリマーァロイであり、何れの榭脂が海相(連続層)を構成するかによって 、その特性も大きく異なる。芳香族ポリカーボネート榭脂が連続層を構成する (芳香 族ポリカーボネート榭脂の含有量力 ポリブチレンテレフタレート榭脂に比べて多い) 場合には、ポリブチレンテレフタレート樹脂の含有量の多いポリマーァロイと比較して 、耐衝撃性や寸法特性に優れる反面、流動性ゃ耐薬品性が低ぐ更には疲労特性 や耐熱性 (熱変形温度)も低 、と 、う問題があった。そしてこの様な榭脂組成物を車 輛部品などに用いる際には、より疲労特性や耐熱性の高い材料が求められていた。  [0003] An aromatic polycarbonate resin composition (polymer alloy) mainly composed of aromatic polycarbonate resin and polybutylene terephthalate (ΡΒΤ) resin is a polymer alloy having a micro-structure of sea-island structure. Depending on whether it constitutes the sea phase (continuous layer), its characteristics vary greatly. In the case where the aromatic polycarbonate resin constitutes a continuous layer (the content power of the aromatic polycarbonate resin is larger than that of the polybutylene terephthalate resin), the resistance is higher than that of the polymer alloy having a high content of polybutylene terephthalate resin. Although it has excellent impact properties and dimensional characteristics, it has problems such as low fluidity and low chemical resistance and low fatigue properties and heat resistance (thermal deformation temperature). When such a resin composition is used for vehicle parts, a material having higher fatigue characteristics and heat resistance has been demanded.
[0004] 更に、芳香族ポリカーボネート榭脂の含有量が多いポリマーァロイでは、押出機に よる溶融混練時や射出成形機内で滞留中に過度の加熱によりエステル交換反応が 過剰に進行し、榭脂組成物の耐熱性が低下するという問題があった。 [0004] Furthermore, in a polymer alloy having a high content of aromatic polycarbonate resin, transesterification reaction is caused by excessive heating during melt kneading by an extruder or during residence in an injection molding machine. There was a problem that it progressed excessively and the heat resistance of the resin composition decreased.
[0005] また車輛部品などにぉ 、ては、意匠性や着色のために塗装が行われており、塗装 温度に耐え得る耐熱性のより高い材料が望まれていた。また近年、使用済み製品や 製品不適合品'スプル一などの榭脂製品を粉砕して、バージン原料に戻して溶融成 形工程を経て榭脂製品に加工するマテリアルリサイクルが不可欠となっており、マテリ アルリサイクルによる熱履歴を受けても耐熱性の低下が少な ヽ材料が、大変重要とな つてきている。  [0005] In addition, vehicle parts and the like have been painted for design and coloration, and a material having higher heat resistance that can withstand the coating temperature has been desired. In recent years, it has become essential to recycle materials used to grind used products and non-conforming products such as sprue, return them to virgin raw materials, and process them into resin products through a melt-forming process. Materials with low heat resistance deterioration even after receiving heat history from Al recycling are becoming very important.
[0006] さらに、車輛外装部品など、より高い耐衝撃性が求められる部品においては、主とし て芳香族ポリカーボネート榭脂とポリブチレンテレフタレート榭脂からなるポリマーァロ ィに、ゴム性重合体を配合して耐衝撃性を向上させた、榭脂組成物が提案されてい る。(例えば特許文献 1、 2参照)。但しこの様にゴム性重合体を含有させることによつ て耐衝撃性は向上するものの、その含有量の増加に伴い、剛性や耐熱性、疲労特 性が低下するという問題があり、ゴム性重合体の添加量を極力抑えた、良好な耐衝 撃性を有するポリマーァロイが求められていた。また、芳香族ポリカーボネート榭脂な どの榭脂成分の分子量を上げることで耐衝撃性を向上させると、ポリマーァロイの流 動性が低下するため使用される用途に制限があった。  [0006] Furthermore, in parts that require higher impact resistance, such as vehicle exterior parts, a rubber polymer is blended in a polymer alloy mainly composed of aromatic polycarbonate resin and polybutylene terephthalate resin. A resin composition having improved impact resistance has been proposed. (For example, see Patent Documents 1 and 2). However, although the impact resistance is improved by including the rubbery polymer in this way, there is a problem that the rigidity, heat resistance, and fatigue characteristics are lowered with the increase in the content thereof. There has been a demand for a polymer alloy having a good impact resistance, in which the amount of polymer added is minimized. In addition, if the impact resistance is improved by increasing the molecular weight of a resin component such as an aromatic polycarbonate resin, the fluidity of the polymer alloy is reduced, so that there are limitations on the use.
[0007] さらに、車輛外装部品など、鋼板からの榭脂化が期待される分野や薄肉化が必要 な部品では、剛性や寸法安定性 (熱膨張性)に優れた材料が求められており、芳香 族ポリカーボネート榭脂とポリブチレンテレフタレート榭脂からなるポリマーァロイに、 無機フィラーを配合させることが広く一般に行われている。また、車輛外装部品など 良外観が要求される分野にぉ ヽては、無機フイラ一として珪酸塩系無機物の粉砕物 や合成ウイスカ一等が使用されている。  [0007] Furthermore, materials that are excellent in rigidity and dimensional stability (thermal expansibility) are required for fields that are expected to be greased from steel sheets, such as vehicle exterior parts, and parts that require thinning. In general, an inorganic filler is blended into a polymer alloy composed of an aromatic polycarbonate resin and a polybutylene terephthalate resin. Also, in fields where good appearance is required, such as vehicle exterior parts, silicate-based inorganic pulverized products and synthetic whiskers are used as inorganic fillers.
[0008] これら無機フィラーを配合することで、剛性や寸法安定性が改良されるが、一方で 耐衝撃性や成形加工性 (流動性)が低下するという問題があった。特に車輛外装部 品においては、歪速度との関係でアイゾッド衝撃強度よりも破断伸度や面衝撃強度と V、つた耐衝撃性が重視され、無機フィラーを配合してこれらの耐衝撃性を改良した材 料が必要とされている。 [0008] By blending these inorganic fillers, rigidity and dimensional stability are improved, but there is a problem that impact resistance and molding processability (fluidity) are lowered. Especially in vehicle exterior parts, the elongation at break, surface impact strength, V, and impact resistance are more important than the Izod impact strength in relation to the strain rate, and inorganic fillers are added to improve these impact resistance. Materials are needed.
[0009] 更に無機フィラーの中でも良外観が得られる、珪酸塩系無機物の粉砕物などの殆 どは、塩基性であり、配合する榭脂が芳香族ポリカーボネート榭脂の際には、榭脂の 分解やエステル交換反応に伴う分解に起因した、滞留熱安定性の低下が生ずるとい う問題があった。 [0009] Further, among the inorganic fillers, most of crushed products of silicate-based inorganic substances that can obtain a good appearance. However, when the blended resin is an aromatic polycarbonate resin, there is a problem that the thermal stability of the resin deteriorates due to decomposition of the resin or decomposition accompanying the transesterification reaction. there were.
[0010] この様に、芳香族ポリカーボネート榭脂の含有量が多 、、ポリブチレンテレフタレー ト榭脂とのポリマーァロイには、流動性、剛性、耐衝撃性、耐薬品性、疲労特性、滞 留熱安定性に優れ、更にはリサイクル特性にも優れているといった、諸物性のバラン スが優れたものが求められていた。  [0010] As described above, the content of the aromatic polycarbonate resin is high, and the polymer alloy with polybutylene terephthalate resin has fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, retention time. There has been a demand for a material having an excellent balance of physical properties, such as excellent thermal stability and recyclability.
[0011] これに対しては、例えば上記滞留熱安定性の問題点を解決する手段として、芳香 族ポリカーボネート榭脂とポリエステル榭脂とのポリマーァロイにリン系化合物を配合 する技術が知られている (例えば、特許文献 3、 4参照)。し力しながら、単にリン系化 合物を配合するだけでは、耐衝撃性、疲労特性、耐熱性、滞留熱安定性、リサイクル 特性のバランスにおいて必ずしも満足できるものではな力つた。  [0011] In response to this, for example, as a means for solving the problem of the above-mentioned residence heat stability, a technique of blending a phosphorus compound into a polymer alloy of an aromatic polycarbonate resin and a polyester resin is known ( For example, see Patent Documents 3 and 4). However, simply adding a phosphorus compound does not always satisfy the balance of impact resistance, fatigue characteristics, heat resistance, residence heat stability, and recycling characteristics.
[0012] 上記の耐衝撃性や滞留熱安定性などの問題点を解決する手段として、特定のホス ファイトィ匕合物やホスフェートィ匕合物を用いた榭脂組成物(例えば、特許文献 5、 6参 照)や、酸変性ォレフィンワックスを用いた榭脂組成物 (例えば、特許文献 7参照)、そ して表面処理タルク及び Z又は表面処理マイ力を用いた榭脂組成物(例えば、特許 文献 8参照)などが提案されている。し力 これらの従来技術では、流動性、剛性、耐 衝撃性、耐熱性、疲労特性、滞留熱安定性の諸物性におけるバランスが優れ、化学 産業上の要求特性使用に耐え得るという要求に対し、満足できるものではなかった。  [0012] As means for solving the problems such as impact resistance and residence heat stability, a specific phosphite compound or a resin composition using a phosphate compound (for example, Patent Document 5, 6), a resin composition using acid-modified olefin wax (see, for example, Patent Document 7), and a resin composition using surface treatment talc and Z or surface treatment My power (eg, Patent Document 8) has been proposed. These conventional technologies have an excellent balance in physical properties such as fluidity, rigidity, impact resistance, heat resistance, fatigue characteristics, and stagnant heat stability. It was not satisfactory.
[0013] さらに、ポリカーボネート榭脂とポリブチレンテレフタレート榭脂とから成るポリマーァ ロイで溶融粘度安定性指数が 2. 5%以下であることを特徴とする熱可塑性榭脂組成 物が開示されている (特許文献 9参照)。具体的には、ポリカーボネート榭脂の分岐 成分、ポリブチレンテレフタレート樹脂の末端カルボキシ濃度、特定の安定剤とを組 み合わせた技術が開示されて 、る。  [0013] Further, a thermoplastic resin composition characterized in that it is a polymer alloy comprising a polycarbonate resin and a polybutylene terephthalate resin and has a melt viscosity stability index of 2.5% or less ( (See Patent Document 9). Specifically, a technique in which a branched component of polycarbonate resin, a terminal carboxy concentration of polybutylene terephthalate resin, and a specific stabilizer is disclosed.
[0014] しカゝしながら、特許文献 9に開示されている技術や具体的に例示されている組成物 は、耐衝撃性、疲労特性、耐熱性、滞留熱安定性、リサイクル特性のノ ランスにおい て必ずしも満足できるものな力つた。さらに、ポリブチレンテレフタレート榭脂のチタン 含有量については、ごく一般的に記載されているに過ぎず、特定量のチタン含有量 と特定量の末端カルボキシ濃度を有するポリブチレンテレフタレート樹脂の重要性を 開示するものではなかった。 [0014] However, the technique disclosed in Patent Document 9 and the concretely exemplified composition have no impact resistance, fatigue characteristics, heat resistance, residence heat stability, and recycling characteristics. It was always a satisfying force. Furthermore, the titanium content of the polybutylene terephthalate resin is only described in general terms, and a specific amount of titanium content. And the importance of a polybutylene terephthalate resin having a specific amount of terminal carboxy concentration was not disclosed.
[0015] 一方、衝撃強度改良剤を含有し、特定の末端基濃度を有するポリブチレンテレフタ レート榭脂とポリカーボネート榭脂とから成る機械的特性に優れた熱可塑性榭脂組 成物が提案されている (特許文献 10参照)。しかし、単に末端基濃度を調整するだけ では、耐衝撃性、疲労特性、耐熱性、滞留熱安定性、リサイクル特性のノ ランスにお いて必ずしも満足できるものではなぐ芳香族ポリカーボネート榭脂の含有量が多い ポリブチレンテレフタレート樹脂とのポリマーァロイにおける流動性、耐衝撃性、剛性 、耐薬品性、疲労特性、耐熱性、滞留熱安定性、リサイクル特性に優れた技術を開 示するものではなかつた。  [0015] On the other hand, a thermoplastic resin composition excellent in mechanical properties comprising a polybutylene terephthalate resin and a polycarbonate resin containing an impact strength improver and having a specific end group concentration has been proposed. (See Patent Document 10). However, by simply adjusting the terminal group concentration, the content of aromatic polycarbonate resin is not necessarily satisfactory in terms of impact resistance, fatigue characteristics, heat resistance, residence heat stability, and recycling characteristics. It was not a technology that was excellent in fluidity, impact resistance, rigidity, chemical resistance, fatigue resistance, heat resistance, residence heat stability, and recycling characteristics in polymer alloys with many polybutylene terephthalate resins.
[0016] また、具体的に糸且成物として例示されているポリブチレンテレフタレート榭脂は、チ タン含有量が多く、芳香族ポリカーボネート榭脂の含有量が多 、ポリブチレンテレフ タレート榭脂とのポリマーァロイにおいては滞留熱安定性やリサイクル特性に劣ると いう問題があった。  [0016] In addition, the polybutylene terephthalate resin specifically exemplified as a thread and composition has a high titanium content, a high content of aromatic polycarbonate resin, and a polybutylene terephthalate resin. The polymer alloy has the problem of poor residence heat stability and recycling characteristics.
[0017] 他方、燐成分およびチタン成分を含有する重縮合触媒を用いて製造されたポリブ チレンテレフタレート樹脂とポリカーボネート榭脂とのエステル交換反応が抑制された 組成物が提案されて!ヽる (特許文献 11参照)。しかし単に燐成分およびチタン成分を 重縮合触媒として用いるだけでは十分ではなぐ具体的に組成物として例示されて 、 るポリブチレンテレフタレート榭脂は、チタン含有量が多ぐ芳香族ポリカーボネート 榭脂との榭脂組成物にすると耐衝撃性、流動性、剛性、耐薬品性、疲労特性、耐熱 性、滞留熱安定性、リサイクル特性などのバランスにおいて十分満足できるものでは なかった。  [0017] On the other hand, a composition in which a transesterification reaction between a polybutylene terephthalate resin produced using a polycondensation catalyst containing a phosphorus component and a titanium component and polycarbonate resin is suppressed has been proposed (patent) (Ref. 11). However, the polybutylene terephthalate resin is exemplified as a composition which is not sufficient to simply use the phosphorus component and the titanium component as the polycondensation catalyst. The polybutylene terephthalate resin has a high titanium content. When the oil composition was used, the balance of impact resistance, fluidity, rigidity, chemical resistance, fatigue characteristics, heat resistance, residence heat stability, recycling characteristics, etc. was not satisfactory.
[0018] さらにチタン含有量がチタン原子として 33ppm以下のポリブチレンテレフタレート榭 脂 100重量部に対し、ポリカーボネート榭脂 5〜: LOO重量部およびその他成分を含 有してなる機械的特性、結晶化速度、耐加水分解性を改善した榭脂組成物が提案さ れている(特許文献 12参照)。しかしこの技術は、ポリブチレンテレフタレート樹脂の 含有量が多い、ポリカーボネート榭脂とのポリマーァロイ技術を開示しているに過ぎ ず、芳香族ポリカーボネート榭脂含有量の多いポリマーァロイを適用する分野とは異 なる技術しか開示して 、なかった。 [0018] Furthermore, for 100 parts by weight of a polybutylene terephthalate resin having a titanium content of 33 ppm or less as titanium atoms, the mechanical properties and crystallization rate of polycarbonate resin 5 to: LOO parts by weight and other components are included. In addition, a resin composition with improved hydrolysis resistance has been proposed (see Patent Document 12). However, this technology only discloses a polymer alloy technology with a polycarbonate resin having a high content of polybutylene terephthalate resin, which is different from a field in which a polymer alloy having a high content of aromatic polycarbonate resin is applied. There was only a technology that disclosed.
[0019] 特許文献 1 :特開昭 49 41442号公報  Patent Document 1: Japanese Patent Laid-Open No. 49 41442
特許文献 2:特開昭 58 - 117247号公報  Patent Document 2: JP-A-58-117247
特許文献 3:特開平 3— 97752号公報  Patent Document 3: Japanese Patent Laid-Open No. 3-97752
特許文献 4:特開昭 63 - 265949号公報  Patent Document 4: Japanese Patent Laid-Open No. 63-265949
特許文献 5:特開平 5 - 222283号公報  Patent Document 5: JP-A-5-222283
特許文献 6:特開平 6—49343号公報  Patent Document 6: JP-A-6-49343
特許文献 7:特開平 9 - 12846号公報  Patent Document 7: JP-A-9-12846
特許文献 8:特開平 8— 127711号公報  Patent Document 8: JP-A-8-127711
特許文献 9:特開 2002— 294060号公報  Patent Document 9: Japanese Patent Laid-Open No. 2002-294060
特許文献 10:特開 2004— 18558号公報  Patent Document 10: Japanese Patent Application Laid-Open No. 2004-18558
特許文献 11:特開平 7— 138354号公報  Patent Document 11: Japanese Patent Laid-Open No. 7-138354
特許文献 12:特開 2004— 307794号公報  Patent Document 12: Japanese Unexamined Patent Application Publication No. 2004-307794
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0020] 本発明の目的は、上記した従来技術の諸欠点を解消し、流動性、剛性、耐衝撃性 、耐薬品性、疲労特性、耐熱性、滞留熱安定性に優れ、更にはリサイクル特性にも優 れた芳香族ポリカーボネート榭脂組成物を提供することにある。 [0020] The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to be excellent in fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, heat resistance and residence heat stability, and also in recycling characteristics. Another object of the present invention is to provide an aromatic polycarbonate resin composition excellent in the above.
課題を解決するための手段  Means for solving the problem
[0021] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、芳香族ポリカーボ ネート榭脂の含有量が多 、、芳香族ポリカーボネート榭脂とポリブチレンテレフタレー ト榭脂とのポリマーァロイにおいて、ポリブチレンテレフタレート榭脂として、特定量の チタン化合物を含有し、且つ末端カルボキシル基濃度が特定のものを用い、必要に 応じてゴム性重合体および Zまたは無機フィラーを特定量配合することにより、流動 性、剛性、耐衝撃性、耐薬品性、疲労特性、耐熱性、滞留熱安定性およびリサイクル 特性などの諸榭脂物性が同時に向上し、物性バランスに優れた芳香族ポリカーボネ ート榭脂組成物(以下、単に「榭脂組成物」ということがある。)となることを見出し、本 発明を完成させた。 [0022] 本発明の第 1の要旨は、芳香族ポリカーボネート榭脂 (A成分)とポリブチレンテレフ タレート榭脂 (B成分)とから成る芳香族ポリカーボネート榭脂組成物であって、芳香 族ポリカーボネート榭脂 (A成分)とポリブチレンテレフタレート榭脂 (B成分)の合計 1 00重量部中、芳香族ポリカーボネート榭脂 (A成分)が 51〜99重量部、ポリプチレン テレフタレート樹脂(B成分)が 1〜49重量部であり、ポリブチレンテレフタレート榭脂( B成分)において、チタン化合物含有量が、チタン原子として lppmを超えて 75ppm 以下で且つ、末端カルボキシル基が 39 eqZg以下であることを特徴とする芳香族 ポリカーボネート榭脂組成物に存する。 [0021] As a result of intensive studies to achieve the above object, the present inventors have found that the content of aromatic polycarbonate resin is high, and aromatic polycarbonate resin and polybutylene terephthalate resin have In polymer alloy, polybutylene terephthalate resin contains a specific amount of titanium compound and has a specific terminal carboxyl group concentration, and if necessary, a specific amount of rubbery polymer and Z or inorganic filler is blended. Aromatic polycarbonate with improved physical properties such as fluidity, rigidity, impact resistance, chemical resistance, fatigue characteristics, heat resistance, residence heat stability and recycling characteristics, and excellent physical property balance The present invention was completed by discovering that it was a fat composition (hereinafter, sometimes simply referred to as “wax composition”). [0022] A first gist of the present invention is an aromatic polycarbonate resin composition comprising an aromatic polycarbonate resin (component A) and a polybutylene terephthalate resin (component B), which is an aromatic polycarbonate resin. A total of 100 parts by weight of fat (component A) and polybutylene terephthalate resin (component B), 51 to 99 parts by weight of aromatic polycarbonate resin (component A), 1 to 49 parts of polybutylene terephthalate resin (component B) Aromatics characterized in that, in polybutylene terephthalate resin (component B), the titanium compound content is greater than 1 ppm and less than or equal to 75 ppm, and the terminal carboxyl group is less than or equal to 39 eqZg It resides in a polycarbonate resin composition.
[0023] 本発明の第 2の要旨は、第 1の要旨に記載の芳香族ポリカーボネート榭脂組成物 に、更に、芳香族ポリカーボネート榭脂 (A成分)とポリブチレンテレフタレート榭脂(B 成分)の合計 100重量部に対して、ゴム性重合体 (C成分)を 0. 5〜40重量部含有 する芳香族ポリカーボネート榭脂組成物に存する。  [0023] A second aspect of the present invention is the aromatic polycarbonate resin composition according to the first aspect, further comprising an aromatic polycarbonate resin (component A) and a polybutylene terephthalate resin (component B). An aromatic polycarbonate resin composition containing 0.5 to 40 parts by weight of a rubbery polymer (component C) with respect to 100 parts by weight in total.
[0024] 本発明の第 3の要旨は、第 1の要旨に記載の芳香族ポリカーボネート榭脂組成物 に、更に、芳香族ポリカーボネート榭脂 (A成分)とポリブチレンテレフタレート榭脂(B 成分)の合計 50〜99重量部に対して、無機フィラー(D成分)を 1〜50重量部含有 する芳香族ポリカーボネート榭脂組成物に存する。  [0024] The third aspect of the present invention is the aromatic polycarbonate resin composition according to the first aspect, further comprising an aromatic polycarbonate resin (component A) and a polybutylene terephthalate resin (component B). The aromatic polycarbonate resin composition contains 1 to 50 parts by weight of inorganic filler (component D) with respect to 50 to 99 parts by weight in total.
発明の効果  The invention's effect
[0025] 本発明の芳香族ポリカーボネート榭脂組成物は、流動性、剛性、耐衝撃性、耐薬 品性、疲労特性、耐熱性、滞留熱安定性、およびリサイクル特性の諸物性を同時に 満たす、物性バランスに優れた榭脂組成物である。  [0025] The aromatic polycarbonate resin composition of the present invention satisfies the physical properties of fluidity, rigidity, impact resistance, chemical resistance, fatigue properties, heat resistance, residence heat stability, and recycling properties at the same time. It is a rosin composition excellent in balance.
[0026] この様な特長を有する本発明の芳香族ポリカーボネート榭脂組成物は、幅広い分 野に使用することが可能であり、電気'電子機器部品、 OA機器、機械部品、車輛部 品、建築部材、各種容器、レジャー用品'雑貨類などの各種用途に有用であり、特に 車輛外装 ·外板部品、車輛内装部品への適用が期待できる。  [0026] The aromatic polycarbonate resin composition of the present invention having such a feature can be used in a wide range of fields, and is used in electrical and electronic equipment parts, OA equipment, machine parts, vehicle parts, and architecture. It is useful for various applications such as parts, various containers, leisure goods and miscellaneous goods, and can be expected to be applied especially to vehicle exterior / skin components and vehicle interior components.
[0027] 車輛外装'外板部品としては、アウタードアハンドル、バンパー、フェンダー、ドアパ ネル、トランクリツド、フロントパネル、リアパネル、ルーフパネル、ボンネット、ピラー、 サイドモール、ガー-ッシュ、ホイールキャップ、フードバルジ、フューエルリッド、各種 スボイラー、モーターバイクのカウルなどが挙げられる。また車輛内装部品としては、 インナードアハンドノレ、センターパネノレ、インストノレメンタノレパネル、コンソ一ノレボック ス、ラゲッジフロアボード、カーナビゲーシヨンなどのディスプレイハウジング等が挙げ られる。 [0027] Vehicle exterior parts include outer door handles, bumpers, fenders, door panels, trunk lids, front panels, rear panels, roof panels, bonnets, pillars, side moldings, garches, wheel caps, hood bulges, Examples include fuel lids, various types of boilers, and cowlings for motorbikes. As vehicle interior parts, Examples include display doors such as inner door hand handles, center panel boards, instrument panel panels, console boxes, luggage floor boards, and car navigation systems.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明で採用するエステルィヒ反応工程またはエステル交換反応工程の一例の 説明図  [0028] FIG. 1 is an explanatory diagram of an example of an esterification reaction step or a transesterification reaction step employed in the present invention.
[図 2]本発明で採用する重縮合工程の一例の説明図  FIG. 2 is an explanatory diagram of an example of a polycondensation process employed in the present invention.
[図 3]本発明で採用する重縮合工程の一例の説明図  FIG. 3 is an explanatory diagram of an example of a polycondensation process employed in the present invention.
符号の説明  Explanation of symbols
[0029] 1:原料供給ライン [0029] 1: Raw material supply line
2:再循環ライン  2: Recirculation line
3:触媒供給ライン  3: Catalyst supply line
4:抜出ライン  4: Extraction line
5:留出ライン  5: Distillation line
6:抜出ライン  6: Extraction line
7:循環ライン  7: Circulation line
8:抜出ライン  8: Extraction line
9:ガス抜出ライン  9: Gas extraction line
10:凝縮液ライン  10: Condensate line
11:抜出ライン  11: Extraction line
12:循環ライン  12: Circulation line
13:抜出ライン  13: Extraction line
14:ベントライン  14: Vent line
A:反応槽  A: Reaction tank
B:抜出ポンプ  B: Extraction pump
C:精留塔  C: Rectifying tower
D:ポンプ  D: Pump
E:ポンプ F:タンク E: Pump F: Tank
G :コンデンサ  G: Capacitor
LI :抜出ライン  LI: Extraction line
L3、L5 :抜出ライン  L3, L5: Extraction line
L2、 L4、 L6 :ベントライン  L2, L4, L6: Vent line
L7 : 1族 Z2族金属化合物触媒供給ライン  L7: Group 1 Z2 metal compound catalyst supply line
L8: 1 , 4—ブタンジオール供給ライン  L8: 1,4-Butanediol supply line
a:第 1重縮合反応槽  a: First polycondensation reactor
d :第 2重縮合反応槽  d: Second polycondensation reactor
k:第 3重縮合反応槽  k: Third polycondensation reactor
c、e、m:抜出用ギヤポンプ  c, e, m: gear pump for extraction
g :ダづスヘッド、  g: Dusshead,
h:回転式カッター  h: Rotary cutter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明について詳細に説明する。尚、本願明細書において「〜」とは、その 前後に記載される数値を下限値および上限値として含む意味で使用する。また本明 細書においては、各種化合物が有する「基」は、本発明の趣旨を逸脱しない範囲内 で、置換基を有していてもよい。  [0030] Hereinafter, the present invention will be described in detail. In the specification of the present application, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the present specification, the “group” of various compounds may have a substituent without departing from the gist of the present invention.
[0031] 「1Ί ¾^ポリカーボネート鋼旨 (A5¾分):  [0031] “1Ί ¾ ^ polycarbonate steel (A5¾ min):
本発明に用いる A成分である芳香族ポリカーボネート榭脂(以下、「A成分」と略記 することがある。)は、例えば、芳香族ジヒドロキシィ匕合物とカーボネート前駆体とを、 又は、これらに併せて少量のポリヒドロキシィ匕合物などを反応させてなる、直鎖または 分岐の熱可塑性の芳香族ポリカーボネート重合体または共重合体である。  The aromatic polycarbonate resin (component A) used in the present invention (hereinafter sometimes abbreviated as “component A”) includes, for example, an aromatic dihydroxy compound and a carbonate precursor, or In addition, it is a linear or branched thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting a small amount of a polyhydroxy compound.
[0032] 本発明に用いる芳香族ポリカーボネート榭脂 (A成分)は、従来公知の任意の製造 方法により得られるものを使用できる。具体的には例えば、界面重合法、溶融エステ ル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレボリマーの固相 エステル交換法などが挙げられる。中でも、界面重合法または溶融エステル交換法 を用いることが化学産業上有利である。以下、芳香族ポリカーボネート榭脂の製造方 法として、この二つの方法を例に挙げて説明する。 [0032] As the aromatic polycarbonate resin (component A) used in the present invention, those obtained by any conventionally known production method can be used. Specific examples include an interfacial polymerization method, a melt ester exchange method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer. Among them, it is advantageous in the chemical industry to use an interfacial polymerization method or a melt transesterification method. Hereafter, how to produce aromatic polycarbonate resin As a method, these two methods will be described as examples.
[0033] 原料として使用される芳香族ジヒドロキシィ匕合物としては、具体的には例えば、 2, 2 —ビス(4 ヒドロキシフエ-ル)プロパン(=ビスフエノール A)、 2, 2 ビス(3, 5 ジ ブロモ 4—ヒドロキシフエ-ル)プロパン(=テトラブロモビスフエノール A)、ビス(4 —ヒドロキシフエ-ル)メタン、 1, 1—ビス(4 ヒドロキシフエ-ル)ェタン、 2, 2 ビス (4 ヒドロキシフエ-ル)ブタン、 2, 2 ビス(4 ヒドロキシフエ-ル)オクタン、 2, 2— ビス(4 ヒドロキシ— 3—メチルフエ-ル)プロパン、 1, 1—ビス(3— tert—ブチルー 4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス(4 ヒドロキシ一 3, 5 ジメチルフエ- ル)プロパン、 2, 2 ビス(3 ブロモ 4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス (3, 5 ジクロロ一 4 ヒドロキシフエ-ル)プロパン、 2, 2 ビス(3—フエ-ルー 4— ヒドロキシフエ-ル)プロパン、 2, 2 ビス(3 シクロへキシル 4 ヒドロキシフエ- ル)プロノ ン、 1, 1 ビス(4 -ヒドロキシフエ-ル) 1 フエ-ルェタン、ビス(4 -ヒド ロキシフエ-ル)ジフエ-ルメタン、 2, 2 ビス(4 ヒドロキシフエ-ル)一 1, 1, 1ート リクロロプロパン、 2, 2 ビス(4 ヒドロキシフエ-ル)一 1, 1, 1, 3, 3, 3 へキサク ロロプロノ ン、 2, 2 ビス(4 ヒドロキシフエ-ル)一 1, 1, 1, 3, 3, 3 へキサフノレ ォロプロパン等で例示されるビス(ヒドロキシァリール)アルカン類;  [0033] Specific examples of the aromatic dihydroxy compound used as a raw material include 2,2-bis (4 hydroxyphenol) propane (= bisphenol A), 2,2bis (3 , 5 Dibromo 4-hydroxyphenol) propane (= tetrabromobisphenol A), bis (4-hydroxyphenol) methane, 1,1-bis (4hydroxyphenol) ethane, 2,2bis (4 hydroxyphenol) butane, 2,2 bis (4 hydroxyphenol) octane, 2,2-bis (4 hydroxy-3-methylphenol) propane, 1,1-bis (3-tert-butyl-) 4-hydroxyphenol) propane, 2,2-bis (4-hydroxy-1,3,5-dimethylphenol) propane, 2,2-bis (3-bromo-4-hydroxyphenol) propane, 2,2-bis (3,5-dichloro-one) 4 Hydroxyphenol) propane, 2, 2 Bis (3-Fuel loop 4 — Hydroxyphenol) propane, 2,2 bis (3 cyclohexyl 4 hydroxyphenol) pronone, 1,1 bis (4-hydroxyphenol) 1 ferroethane, bis (4-hydroxyphenol) 1) Diphenylmethane, 2, 2 bis (4 hydroxyphenyl) 1, 1, 1 to 1 Trichloropropane, 2, 2 bis (4 hydroxyphenyl) 1, 1, 1, 3, 3, 3 hexachloropronone, 2,2 bis (4 hydroxyphenol) -1,1,1,3,3,3 bis (hydroxyaryl) alkanes exemplified by hexafluoropropanol, etc .;
[0034] 1, 1 ビス(4 -ヒドロキシフエ-ル)シクロペンタン、 1, 1 ビス(4 -ヒドロキシフエ -ル)シクロへキサン、 1, 1—ビス(4 ヒドロキシフエ-ル)一 3, 3, 5 トリメチルシク 口へキサン等で例示されるビス(ヒドロキシァリール)シクロアルカン類;  [0034] 1,1 bis (4-hydroxyphenol) cyclopentane, 1,1 bis (4-hydroxyphenol) cyclohexane, 1,1-bis (4-hydroxyphenol) 1, 3, 3 , 5 Trimethyl bis Bis (hydroxyaryl) cycloalkanes exemplified by hexane and the like;
[0035] 9, 9 ビス(4 ヒドロキシフエ-ル)フルオレン、 9, 9 ビス(4 ヒドロキシ一 3—メ チルフエ-ル)フルオレン等で例示される力ルド構造含有ビスフエノール類; 4, 4' ジヒドロキシジフエニルエーテル、 4, 4'ージヒドロキシー 3, 3'—ジメチルジフエニルェ 一テル等で例示されるジヒドロキシジァリールエーテル類;  [0035] Forced structure-containing bisphenols exemplified by 9, 9bis (4hydroxyphenol) fluorene, 9,9bis (4hydroxy-1-methylphenol) fluorene; 4, 4 'dihydroxy Diphenyl ethers such as diphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc .;
[0036] 4, 4'ージヒドロキシジフエ-ルスルフイド、 4, 4'ージヒドロキシー 3, 3' ジメチルジ フエ-ルスルフイド等で例示されるジヒドロキシジァリールスルフイド類; 4, 4' ジヒド 口キシジフエ-ルスルホキシド、 4, 4'ージヒドロキシ 3, 3'—ジメチルジフエ-ルスル ホキシド等で例示されるジヒドロキシジァリールスルホキシド類; 4, 4' ジヒドロキシジ フエニルスルホン、 4, 4'—ジヒドロキシ一 3, 3'—ジメチルジフエ-ルスルホン等で例 示されるジヒドロキシジァリールスルホン類;ノヽイドロキノン、レゾルシン、 4, 4' ジヒド 口キシジフエ-ル等が挙げられる。 [0036] Dihydroxydiarylsulfides exemplified by 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxy-3,3'dimethyldiphenylsulfide, and the like; 4,4'dihydroxydiphenylsulfoxide 4,4'-dihydroxy 3,3'-dimethyldiphenyl sulfoxide, and the like; 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxysulfone, 4,4'-dihydroxy-1,3'-dimethyldiphenyl -Examples with lusulfone And dihydroxydiaryl sulfones shown; noduloquinone, resorcin, 4, 4 'dihydroxydiphenyl and the like.
[0037] これらの中で好ましくは、ビス(4ーヒドロキシフエ-ル)アルカン類であり、特に耐衝 撃性の点から好ましくは、 2, 2 ビス(4ーヒドロキシフエ-ル)プロパン [=ビスフエノ ール A]である。これらの芳香族ジヒドロキシィ匕合物は、 1種類単独でも 2種類以上を 組み合わせて用いてもよ!、。  [0037] Among these, bis (4-hydroxyphenol) alkanes are preferable, and 2,2bis (4-hydroxyphenol) propane [= bisphenol A is particularly preferable from the viewpoint of impact resistance. ]. These aromatic dihydroxy compounds may be used alone or in combination of two or more!
[0038] 芳香族ジヒドロキシィ匕合物と反応させるカーボネート前駆体としては、カルボ二ルノヽ ライド、カーボネートエステル、ハロホルメート等が使用され、具体的にはホスゲン;ジ フエ-ルカーボネート、ジトリルカーボネート等のジァリールカーボネート類;ジメチル カーボネート、ジェチルカーボネート等のジアルキルカーボネート類;二価フエノール のジノヽ口ホルメート等が挙げられる。これらのカーボネート前駆体もまた 1種類単独で も 2種類以上を組み合わせて用いてもょ 、。  [0038] Carbonate precursors, carbonate esters, haloformates and the like are used as the carbonate precursor to be reacted with the aromatic dihydroxy compound, specifically, phosgene; diphenyl carbonate, ditolyl carbonate and the like. Diaryl carbonates; Dialkyl carbonates such as dimethyl carbonate and jetyl carbonate; and dino-mouth formate of divalent phenol. These carbonate precursors can also be used alone or in combination of two or more.
[0039] また本発明に用いる芳香族ポリカーボネート榭脂 (A成分)は、三官能以上の多官 能性芳香族化合物を共重合した、分岐芳香族ポリカーボネート榭脂であってもよ 、。 三官能以上の多官能性芳香族化合物としては、フロロダルシン、 4, 6 ジメチルー 2 , 4, 6 トリ(4 ヒドロキシフエ-ル)ヘプテン— 2、 4, 6 ジメチル— 2, 4, 6 トリ(4 —ヒドロキシフエ-ル)ヘプタン、 2, 6 ジメチル一 2, 4, 6 トリ(4 ヒドロキシフエ- ル)ヘプテン一 3、 1, 3, 5 トリ(4 ヒドロキシフエニル)ベンゼン、 1, 1, 1—トリ(4— ヒドロキシフエ-ル)ェタン等で例示されるポリヒドロキシィ匕合物類、または 3, 3—ビス( 4—ヒドロキシァリール)ォキシインドール(=ィサチンビスフエノール)、 5—クロロイサ チン、 5, 7 ジクロロイサチン、 5 ブロムィサチン等が挙げられる。中でも、 1, 1, 1 —トリ(4—ヒドロキシフヱニル)ェタンが好ましい。多官能性芳香族化合物は、前記芳 香族ジヒドロキシィ匕合物の一部を置換して用いることが出来、その使用量は芳香族ジ ヒドロキシ化合物に対して 0. 01〜10モル%が好ましぐ中でも 0. 1〜2モル%が好 ましい。  [0039] The aromatic polycarbonate resin (component A) used in the present invention may be a branched aromatic polycarbonate resin obtained by copolymerizing a trifunctional or more multifunctional aromatic compound. Trifunctional or higher polyfunctional aromatic compounds include fluorodalcine, 4,6 dimethyl-2, 4,6 tri (4 hydroxyphenol) heptene-2, 4,6 dimethyl-2, 4, 6 tri (4 — Hydroxyphenyl) heptane, 2,6 dimethyl-1,2,4,6 tri (4hydroxyphenyl) heptene-1,3,1,3,5 tri (4hydroxyphenyl) benzene, 1,1,1-tri (4-Hydroxyphenol) polyhydroxy compounds such as ethane, etc., or 3,3-bis (4-hydroxyaryl) oxyindole (= isatin bisphenol), 5-chloroisatin 5, 7 dichloroisatin, 5 bromysatin and the like. Of these, 1, 1, 1-tri (4-hydroxyphenyl) ethane is preferable. The polyfunctional aromatic compound can be used by substituting a part of the aromatic dihydroxy compound, and the amount used is preferably 0.01 to 10 mol% with respect to the aromatic dihydroxy compound. Among them, 0.1 to 2 mol% is preferable.
[0040] 界面重合法による反応は、例えば、反応に不活性な有機溶媒とアルカリ水溶液の 存在下で、通常 pHを 9以上に保ち、芳香族ジヒドロキシィ匕合物を、必要に応じて分 子量調整剤 (末端停止剤)、芳香族ジヒドロキシ化合物の酸化防止剤と共にホスゲン と反応させる。次いで、第三級ァミン又は第四級アンモ-ゥム塩などの重合触媒を添 加し、界面重合を行うことによってポリカーボネートを得る方法が挙げられる。ホスゲ ン化反応の温度は通常、 0〜40°C、反応時間は数分 (例えば 10分)〜数時間(例え ば 6時間)である。また分子量調節剤の添加タイミングはホスゲンィ匕反応以降、重合 反応開始時迄の間にお 、て、適宜選択して決定すればょ 、。 [0040] In the reaction by the interfacial polymerization method, for example, in the presence of an organic solvent inert to the reaction and an aqueous alkali solution, the pH is usually kept at 9 or higher, and the aromatic dihydroxy compound is separated as necessary. Phosgene with quantity regulator (end stopper), antioxidant of aromatic dihydroxy compound React with. Next, a method of obtaining a polycarbonate by adding a polymerization catalyst such as tertiary amine or quaternary ammonium salt and performing interfacial polymerization can be mentioned. The temperature of the phosgenation reaction is usually 0 to 40 ° C., and the reaction time is several minutes (for example, 10 minutes) to several hours (for example, 6 hours). Also, the timing of addition of the molecular weight regulator may be appropriately selected and determined after the phosgene reaction until the start of the polymerization reaction.
[0041] ここで、反応に不活性な有機溶媒としては、ジクロロメタン、 1, 2—ジクロロエタン、 クロ口ホルム、モノクロ口ベンゼン、ジクロロベンゼン等の塩素化炭化水素、ベンゼン、 トルエン、キシレン等の芳香族炭化水素などが挙げられる。またアルカリ水溶液に用 いられるアルカリィ匕合物としては、水酸化ナトリウム、水酸ィ匕カリウム等のアルカリ金属 の水酸化物が挙げられる。  [0041] Here, the organic solvent inert to the reaction includes chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, black mouth form, monochrome mouth benzene and dichlorobenzene, and aromatics such as benzene, toluene and xylene. A hydrocarbon etc. are mentioned. Examples of the alkaline compound used in the alkaline aqueous solution include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
分子量調節剤としては、一価のフエノール性水酸基を有する化合物が挙げられる。 一価のフエノール性水酸基を有する化合物としては、 m—メチルフエノール、 p—メチ ルフエノール、 m—プロピルフエノール、 p—プロピルフエノール、 p— tert—ブチルフ ェノール及び p—長鎖アルキル置換フ ノール等が挙げられる。  Examples of the molecular weight regulator include compounds having a monovalent phenolic hydroxyl group. Examples of the compound having a monovalent phenolic hydroxyl group include m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol and p-long chain alkyl-substituted phenol. It is done.
[0042] 分子量調節剤の使用量は、芳香族ジヒドロキシィ匕合物 100モルに対して、好ましく は 0. 5〜50モル、より好ましくは 1〜30モルである。重合触媒としては、トリメチルアミ ン、トリエチルァミン、トリブチルァミン、トリプロピルァミン、トリへキシルァミン、ピリジン 等の第三級ァミン類;トリメチルベンジルアンモ -ゥムクロライド、テトラメチルアンモ- ゥムクロライド、トリェチルベンジルアンモ -ゥムクロライド等の第四級アンモ-ゥム塩 などが挙げられる。  [0042] The amount of the molecular weight regulator used is preferably 0.5 to 50 mol, more preferably 1 to 30 mol, per 100 mol of the aromatic dihydroxy compound. Polymerization catalysts include tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, pyridine; trimethylbenzyl ammonium chloride, tetramethyl ammonium chloride, triethylbenzyl. Quaternary ammonia salts such as ammonium chloride.
[0043] 溶融エステル交換法による反応は、例えば、炭酸ジエステルと芳香族ジヒドロキシ 化合物とのエステル交換反応により行う。炭酸ジエステルとしては、ジメチルカーボネ ート、ジェチルカーボネート、ジー tert—ブチルカーボネート等の炭酸ジアルキル化 合物、ジフエ-ルカーボネート及びジトリルカーボネート等の置換ジフエ-ルカーボネ ート等が挙げられる。中でもジフエ-ルカーボネート、置換ジフエ-ルカーボネートが 好ましぐ特にジフエ二ルカーボネートが好まし!/、。  [0043] The reaction by the melt transesterification method is carried out, for example, by an ester exchange reaction between a carbonic acid diester and an aromatic dihydroxy compound. Examples of the carbonic acid diester include dialkyl carbonates such as dimethyl carbonate, jetyl carbonate, and di-tert-butyl carbonate, and substituted diphenyl carbonates such as diphenyl carbonate and ditolyl carbonate. Of these, diphenyl carbonate and substituted diphenol carbonate are preferred. Particularly preferred is diphenyl carbonate!
[0044] また芳香族ポリカーボネート榭脂においては、その末端水酸基量が製品ポリカーボ ネートの熱安定性、加水分解安定性、色調などに大きな影響を及ぼすので、従来公 知の任意の方法によって、適宜調整してもよい。溶融エステル交換反応においては 、通常、炭酸ジエステルと芳香族ジヒドロキシィ匕合物との混合比率や、エステル交換 反応時の減圧度を調整して、所望の分子量および末端水酸基量を調整した芳香族 ポリカーボネートを得ることが出来る。通常、溶融エステル交換反応においては、芳 香族ジヒドロキシィ匕合物 1モルに対して、炭酸ジエステルを等モル量以上用い、中で も 1. 01〜: L 30モルの量で用いることが好ましい。 [0044] In the case of aromatic polycarbonate resin, the amount of terminal hydroxyl groups greatly affects the thermal stability, hydrolysis stability, color tone, etc. of the product polycarbonate. It may be appropriately adjusted by any known method. In the melt transesterification reaction, usually, an aromatic polycarbonate having a desired molecular weight and terminal hydroxyl group amount adjusted by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound and the degree of vacuum during the transesterification reaction. Can be obtained. Usually, in the melt transesterification reaction, carbonic acid diester is used in an equimolar amount or more relative to 1 mol of aromatic dihydroxy compound, among which 1.01-: L is preferably used in an amount of 30 mol. .
[0045] また、より積極的な調整方法としては、反応時に別途、末端停止剤を添加する方法 が挙げられ、この際の末端停止剤としては、一価フエノール類、一価カルボン酸類、 炭酸ジエステル類が挙げられる。 [0045] Further, as a more aggressive adjustment method, there is a method of adding a terminal terminator separately at the time of the reaction, and examples of the terminal terminator in this case include monovalent phenols, monovalent carboxylic acids, carbonic acid diesters Kind.
[0046] 溶融エステル交換法によりポリカーボネートを製造する際には、通常エステル交換 触媒が使用される。エステル交換触媒は、特に制限はないが、アルカリ金属化合物 および Zまたはアルカリ土類金属化合物が好ましい。また補助的に、塩基性ホウ素 化合物、塩基性リン化合物、塩基性アンモニゥム化合物またはアミン系化合物などの 塩基性ィ匕合物を併用してもよい。上記原料を用いたエステル交換反応としては、 100 [0046] When a polycarbonate is produced by a melt transesterification method, a transesterification catalyst is usually used. The transesterification catalyst is not particularly limited, but alkali metal compounds and Z or alkaline earth metal compounds are preferred. In addition, a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound may be used in combination. The transesterification reaction using the above raw materials is 100
〜320°Cの温度で反応を行い、最終的には 2mmHg以下の減圧下、芳香族ヒドロキ シ化合物などの副生成物を除去しながら溶融重縮合反応を行えばよい。 The reaction may be performed at a temperature of ˜320 ° C., and finally, a melt polycondensation reaction may be performed under reduced pressure of 2 mmHg or less while removing by-products such as aromatic hydroxy compounds.
[0047] 溶融重縮合は、バッチ式、連続式の何れの方法でも行うことが出来る。中でも、本 発明に用いる芳香族ポリカーボネート榭脂や、本発明の榭脂組成物の安定性などを 考慮すると、連続式で行うことが好ましい。溶融エステル交換法に用いる触媒失活剤 としては、当該エステル交換反応触媒を中和する化合物、例えばィォゥ含有酸性ィ匕 合物またはそれより形成される誘導体を使用することが好ましい。このような触媒を中 和する化合物は、当該触媒が含有するアルカリ金属に対して、好ましくは 0. 5〜10 当量、より好ましくは 1〜5当量の範囲で添加する。さらに加えて、このような触媒を中 和する化合物は、ポリカーボネートに対して、好ましくは 1〜: LOOppm、より好ましくは l〜20ppmの範囲で添カ卩する。  [0047] The melt polycondensation can be carried out by either a batch method or a continuous method. Among these, in consideration of the aromatic polycarbonate resin used in the present invention and the stability of the resin composition of the present invention, it is preferable to carry out the process continuously. As the catalyst deactivator used in the melt transesterification method, it is preferable to use a compound that neutralizes the transesterification reaction catalyst, for example, a thio-containing acidic compound or a derivative formed therefrom. The compound neutralizing such a catalyst is preferably added in an amount of 0.5 to 10 equivalents, more preferably 1 to 5 equivalents, relative to the alkali metal contained in the catalyst. In addition, the compound neutralizing such a catalyst is added to the polycarbonate in an amount of preferably 1 to: LOO ppm, more preferably 1 to 20 ppm.
[0048] 本発明に用いる芳香族ポリカーボネート榭脂 (A成分)の分子量は適宜選択して決 定すればよいが、溶液粘度から換算した粘度平均分子量 [Mv]で、 10000〜5000 0の範囲のものが好ましい。芳香族ポリカーボネートの粘度平均分子量を 10000以 上とすることにより、機械的強度がより向上する傾向にあり、機械的強度の要求の高 い用途に用いる場合により好ましいものとなる。一方、粘度平均分子量を、 50000以 下とすることにより、流動性が低下するのをより改善できる傾向にあり、成形加工性容 易の観点力もより好ましい。 [0048] The molecular weight of the aromatic polycarbonate resin (component A) used in the present invention may be appropriately selected and determined, but the viscosity average molecular weight [Mv] converted from the solution viscosity is in the range of 10,000 to 50,000. Those are preferred. The viscosity average molecular weight of aromatic polycarbonate is 10000 or more By setting it as above, the mechanical strength tends to be further improved, and it is more preferable when used for applications requiring high mechanical strength. On the other hand, when the viscosity average molecular weight is 50000 or less, there is a tendency that flowability can be further reduced, and the viewpoint power of ease of molding processability is more preferable.
[0049] 粘度平均分子量は、より好ましくは 12000〜40000であり、さらに好ましくは 1400 0〜30000である。また、粘度平均分子量の異なる 2種類以上の芳香族ポリカーボネ 一ト榭脂を混合してもよい。もちろん、粘度平均分子量が上記好適範囲外である芳 香族ポリカーボネート榭脂を混合してもよ 、。  [0049] The viscosity average molecular weight is more preferably 12000 to 40000, and still more preferably 1400 to 30000. Also, two or more types of aromatic polycarbonate resin having different viscosity average molecular weights may be mixed. Of course, aromatic polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
[0050] ここで粘度平均分子量 [Mv]とは、溶媒としてメチレンクロライドを使用し、ウベロー デ粘度計を用いて温度 20°Cでの極限粘度 [ η ] (単位 dlZg)を求め、 Schnellの粘 度式、すなわち、 r? = 1. 23 Χ 10_4Μ°· 83、力も算出される値を意味する。ここで極限 粘度 [ r? ]とは各溶液濃度 [C] (gZdl)での比粘度 [ 7? ]を測定し、下記式により算 sp [0050] Here, the viscosity average molecular weight [Mv] refers to the intrinsic viscosity [η] (unit: dlZg) at a temperature of 20 ° C using a Ubbelohde viscometer using methylene chloride as a solvent. The degree formula, that is, r? = 1. 23 Χ 10 _4 · ° · 83 , which means the force is calculated. Here, the intrinsic viscosity [r?] Is the specific viscosity [7?] Measured at each solution concentration [C] (gZdl) and calculated by the following formula.
出した値である。  It is the value that was issued.
[0051] [数 1]
Figure imgf000014_0001
[0051] [Equation 1]
Figure imgf000014_0001
[0052] 本発明に用いる芳香族ポリカーボネート榭脂の末端水酸基濃度は、通常 ΙΟΟΟρρ m以下であり、中でも 700ppm以下、更には 400ppm以下、特に 300ppm以下であ ることが好ましい。またその下限は、 lOppm以上、中でも 20ppm以上、更には 30pp m以上、特に 40ppm以上であることが好ましい。  [0052] The terminal hydroxyl group concentration of the aromatic polycarbonate resin used in the present invention is usually ΙΟΟΟρρm or less, preferably 700 ppm or less, more preferably 400 ppm or less, and particularly preferably 300 ppm or less. The lower limit is preferably 10 ppm or more, more preferably 20 ppm or more, more preferably 30 ppm or more, and particularly preferably 40 ppm or more.
[0053] 末端水酸基濃度を lOppm以上とすることで、分子量の低下が抑制でき、榭脂組成 物の機械的特性や疲労特性がより向上する傾向にある。また末端基水酸基濃度を 1 OOOppm以下にすることで、榭脂組成物の耐熱性、滞留熱安定性、色調、やリサイク ル特性がより向上する傾向にあるので好ま 、。  [0053] By setting the terminal hydroxyl group concentration to 10 ppm or more, a decrease in molecular weight can be suppressed, and the mechanical properties and fatigue properties of the resin composition tend to be further improved. In addition, it is preferable that the terminal group hydroxyl group concentration is 1 OOOppm or less because the heat resistance, residence heat stability, color tone, and recycling characteristics of the resin composition tend to be improved.
[0054] なお、末端水酸基濃度の単位は、芳香族ポリカーボネート榭脂重量に対する、末 端水酸基の重量を ppmで表示したものであり、測定方法は、四塩化チタン Z酢酸法 による比色定量(Macromol. Chem. 88 215 (1965)に記載の方法)である。  [0054] The terminal hydroxyl group unit is the weight of the terminal hydroxyl group expressed in ppm with respect to the weight of the aromatic polycarbonate resin, and the measuring method is a colorimetric determination (Macromol by the titanium tetrachloride Z acetic acid method). Chem. 88 215 (1965)).
[0055] また、成形品外観の向上や流動性の向上を図るため、本発明に用いる芳香族ポリ カーボネート榭脂 (A成分)は、芳香族ポリカーボネートオリゴマーを含有していてもよ い。この芳香族ポリカーボネートオリゴマーの粘度平均分子量 [Mv]は、好ましくは 1 500〜9500であり、より好まし <は 2000〜9000である。芳香族ポジカーボ ー卜才ジ ゴマ一は、 Α成分の 30重量%以下の範囲で使用するのが好ましい。 [0055] Further, in order to improve the appearance of the molded article and the fluidity, the aromatic polymer used in the present invention is used. Carbonate resin (component A) may contain an aromatic polycarbonate oligomer. The viscosity average molecular weight [Mv] of the aromatic polycarbonate oligomer is preferably 1500 to 9500, more preferably <2000 to 9000. It is preferable to use the aromatic positive carbon sesame digoma in a range of 30% by weight or less of the cocoon component.
[0056] さらに、本発明に用いる芳香族ポリカーボネート榭脂 (A成分)は、バージン原料だ けでなぐ使用済みの製品力 再生された芳香族ポリカーボネート榭脂、いわゆるマ テリアルリサイクルされた芳香族ポリカーボネート榭脂を使用してもよい。使用済みの 製品としては、光学ディスク等の光記録媒体、導光板、自動車窓ガラス,自動車へッ ドランプレンズ'風防などの車両透明部材、水ボトル等の容器、メガネレンズ、防音壁 •ガラス窓 ·波板などの建築部材などが好ましく挙げられる。また、製品の不適合品、 スプルー、ランナー等力も得られた粉砕品またはそれらを溶融して得たペレット等も 使用可能である。再生された芳香族ポリカーボネート榭脂は、 A成分の 80重量%以 下であることが好ましぐより好ましくは 50重量%以下である。  [0056] Further, the aromatic polycarbonate resin (component A) used in the present invention is a used product power that is not limited to virgin raw materials. Recycled aromatic polycarbonate resin, so-called material-recycled aromatic polycarbonate resin. Fats may be used. Used products include optical recording media such as optical discs, light guide plates, automobile window glass, automotive transparent parts such as automotive headlamp lenses' windshields, containers such as water bottles, eyeglass lenses, and sound barriers. A building member such as a corrugated sheet is preferably mentioned. It is also possible to use non-conforming products, pulverized products with sprue, runner strength, etc., or pellets obtained by melting them. The regenerated aromatic polycarbonate resin is preferably 80% by weight or less of the component A, more preferably 50% by weight or less.
[0057] 「2Ίポリブチレンテレフタレート榭脂 (B成分):  [0057] "2Ί polybutylene terephthalate oil (component B):
本発明に用いるポリブチレンテレフタレート榭脂(以下、「B成分」と略記することがあ る。)とは、テレフタル酸単位および 1, 4 ブタンジオール単位がエステル結合した 構造を有するポリエステルであり、ジカルボン酸単位の 50モル%以上がテレフタル酸 単位から成り、ジオール単位の 50モル0 /0以上が 1, 4 ブタンジオール単位から成る 高分子を示し、チタンィ匕合物の含有量がチタン原子として lppmを超えて 75ppm以 下であり、且つ末端カルボキシル基が 39 μ eqZg以下である、ポリブチレンテレフタ レート榭脂である。 The polybutylene terephthalate resin used in the present invention (hereinafter sometimes abbreviated as “component B”) is a polyester having a structure in which terephthalic acid units and 1,4 butanediol units are ester-bonded. least 50 mol% of acid units composed of terephthalic acid units, indicates a polymer 50 mole 0/0 or more diol units consists of 1, 4-butanediol unit, a lppm content of Chitani匕合product as a titanium atom It is a polybutylene terephthalate resin having a concentration of 75 ppm or less and a terminal carboxyl group of 39 μeqZg or less.
[0058] 全ジカルボン酸単位中のテレフタル酸単位の割合は、好ましくは 70モル%以上、 更に好ましくは 80モル%以上、特に好ましくは 95モル%以上であり、全ジオール単 位中の 1, 4 ブタンジオール単位の割合は、好ましくは 70モル%以上、更に好まし くは 80モル%以上、特に好ましくは 95モル%以上である。テレフタル酸単位または 1 , 4 ブタンジオール単位を 50モル%以上とすることによって、 B成分の結晶化速度 の低下を抑制し、また成形性を良好なものとすることが出来る。  [0058] The proportion of terephthalic acid units in all dicarboxylic acid units is preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 95 mol% or more. The proportion of butanediol units is preferably 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 95 mol% or more. By setting the terephthalic acid unit or 1,4 butanediol unit to 50 mol% or more, the decrease in the crystallization rate of the B component can be suppressed and the moldability can be improved.
[0059] 本発明に用いるポリブチレンテレフタレート榭脂において、テレフタル酸以外のジカ ルボン酸成分には特に制限はなぐ従来公知の任意のものを使用できる。具体的に は例えば、フタル酸、イソフタル酸、 4, 4'ージフエ-ルジカルボン酸、 4, 4'ージフエ ニノレエーテノレジ力ノレボン酸、 4, 4'一べンゾフエノンジカノレボン酸、 4, 4'ージフエノキ シエタンジカルボン酸、 4, 4'ージフエ-ルスルホンジカルボン酸、 2, 6 ナフタレン ジカルボン酸などの芳香族ジカルボン酸、 1, 2 シクロへキサンジカルボン酸、 1, 3 ーシクロへキサンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸などの脂環式ジ カルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、ァ ゼライン酸、セバシン酸などの脂肪族ジカルボン酸などを挙げることが出来る。これら のジカルボン酸成分は、ジカルボン酸として、又は、ジカルボン酸エステル、ジカルボ ン酸ハライド等のジカルボン酸誘導体を原料として、ポリマー骨格に導入できる。 [0059] In the polybutylene terephthalate resin used in the present invention, dicarbonate other than terephthalic acid is used. Any conventionally known rubonic acid component with no particular limitation can be used. Specifically, for example, phthalic acid, isophthalic acid, 4,4′-diphenoldicarboxylic acid, 4,4′-diphenole noetreo-resisting norevonic acid, 4,4′monobenzophenone dicanolevonic acid, 4 , 4'-diphenoxyethaneethane dicarboxylic acid, 4, 4'-diphenylsulfone dicarboxylic acid, 2,6 naphthalene dicarboxylic acid and other aromatic dicarboxylic acids, 1, 2 cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid Alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc. I can list them. These dicarboxylic acid components can be introduced into the polymer skeleton as a dicarboxylic acid, or using a dicarboxylic acid derivative such as a dicarboxylic acid ester or a dicarboxylic acid halide as a raw material.
[0060] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)において、 1, 4 ブタンジ オール以外のジオール成分には特に制限はなぐ従来公知の任意のものを使用でき る。具体的には例えば、エチレングリコール、ジエチレングリコール、ポリエチレンダリ コーノレ、 1, 2 プロパンジオール、 1, 3 プロパンジオール、ポリプロピレングリコー ル、ポリテトラメチレングリコール、ジブチレングリコール、 1, 5 ペンタンジオール、ネ ォペンチルグリコール、 1, 6 へキサンジオール、 1, 8 オクタンジオール等の脂肪 族ジオール、 1, 2 シクロへキサンジオール、 1, 4ーシクロへキサンジオール、 1, 1 ーシクロへキサンジメチロール、 1, 4ーシクロへキサンジメチロール等の脂環式ジォ ール、キシリレングリコール、 4, 4'ージヒドロキシビフエ-ル、 2, 2 ビス(4ーヒドロキ シフエ-ル)プロパン、ビス(4 ヒドロキシフエ-ル)スルホン等の芳香族ジオール等 を挙げることが出来る。 [0060] In the polybutylene terephthalate resin (component B) used in the present invention, any conventionally known diol component other than 1,4 butanediol can be used without any particular limitation. Specifically, for example, ethylene glycol, diethylene glycol, polyethylene darconol, 1,2 propanediol, 1,3 propanediol, polypropylene glycol, polytetramethylene glycol, dibutylene glycol, 1,5 pentanediol, neopentyl glycol 1, 6 hexanediol, 1,8 octanediol and other aliphatic diol, 1,2 cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol, 1,4-cyclohexane Cycloaliphatic diols such as sanjimethylol, xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2 bis (4-hydroxyphenyl) propane, bis (4 hydroxyphenol) sulfone, etc. And aromatic diols.
[0061] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)においては、更に、乳酸、 グリコール酸、 m—ヒドロキシ安息香酸、 p ヒドロキシ安息香酸、 6 ヒドロキシ 2— ナフタレンカルボン酸、 ρ- β—ヒドロキシエトキシ安息香酸などのヒドロキシカルボン 酸、アルコキシカルボン酸、ステアリルアルコール、ベンジルアルコール、ステアリン 酸、安息香酸、 t ブチル安息香酸、ベンゾィル安息香酸などの単官能成分、トリ力 ルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールェタン 、トリメチロールプロパン、グリセロール、ペンタエリスリトール等の三官能以上の多官 能成分などを共重合成分として使用することが出来る。 [0061] In the polybutylene terephthalate resin (component B) used in the present invention, lactic acid, glycolic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthalenecarboxylic acid, ρ-β-hydroxy Monofunctional components such as hydroxycarboxylic acid such as ethoxybenzoic acid, alkoxycarboxylic acid, stearyl alcohol, benzyl alcohol, stearic acid, benzoic acid, t-butylbenzoic acid, benzoylbenzoic acid, tri-force valeric acid, trimellitic acid, trimesic acid , Pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane, glycerol, pentaerythritol, etc. An active ingredient or the like can be used as a copolymerization component.
[0062] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)は、例えば 1, 4—ブタンジ オールとテレフタル酸(またはテレフタル酸ジアルキル)を、チタン化合物などの触媒 存在下にて重縮合することにより得られる。本発明に用いるポリブチレンテレフタレー ト榭脂(B)成分の特徴は、チタン含量がチタン原子として lppmを超えて 75ppm以 下である点に存する。この値はポリブチレンテレフタレート榭脂に対するチタン原子の 重量比である。なおチタン原子の含有量は、湿式灰化などの方法でポリマー中の金 属を回収し、原子発光、原子吸光、 Inductively Coupled Pla— sma (ICP)等の 方法を使用して測定することが出来る。  [0062] The polybutylene terephthalate resin (component B) used in the present invention is obtained by polycondensing, for example, 1,4-butanediol and terephthalic acid (or dialkyl terephthalate) in the presence of a catalyst such as a titanium compound. can get. The feature of the polybutylene terephthalate resin (B) used in the present invention is that the titanium content is more than 1 ppm and less than 75 ppm as titanium atoms. This value is the weight ratio of titanium atoms to polybutylene terephthalate resin. The titanium atom content can be measured by recovering the metal in the polymer by a method such as wet ashing and using a method such as atomic emission, atomic absorption, or inductively coupled plasma (ICP). .
[0063] チタン含有量の下限は、チタン原子として lppm、中でも 10ppm、更には 20ppm、 特に 25ppmであることが好ましぐまた上限は、チタン原子として 75ppm、中でも 50p pm、特に 45ppmであることが好ましい。チタンの含有量がチタン原子として lppm未 満では、ポリブチレンテレフタレート樹脂の重合反応速度が低下するため、高温、長 時間で重合反応を進めざるを得なくなり、ポリブチレンテレフタレート樹脂の色調悪ィ匕 や熱劣化反応が助長されるだけでなぐ芳香族ポリカーボネートとの混練の際に反応 が進行せずポリマーァロイの機械的物性や疲労特性の低下を招くので好ましくない。  [0063] The lower limit of the titanium content is preferably 1 ppm as titanium atoms, especially 10 ppm, more preferably 20 ppm, particularly 25 ppm, and the upper limit is 75 ppm as titanium atoms, especially 50 ppm, especially 45 ppm. preferable. When the titanium content is less than 1 ppm as titanium atom, the polymerization reaction rate of the polybutylene terephthalate resin decreases, so the polymerization reaction has to proceed at a high temperature for a long time, and the color tone of the polybutylene terephthalate resin is poor. This is not preferable because the reaction does not proceed during kneading with an aromatic polycarbonate which only promotes the heat deterioration reaction, and the mechanical properties and fatigue characteristics of the polymer alloy are lowered.
[0064] 一方、チタンの含有量がチタン原子として 75ppmを超えると混練時や成形時のガ スの発生や熱安定性の悪ィ匕を招くだけでなぐエステル交換反応の制御が困難とな り、芳香族ポリカーボネートとのポリマーァロイの耐熱性、滞留熱安定性やリサイクル 特性の悪化、更には機械的物性や色調の低下を招くので好ましくな 、。  [0064] On the other hand, if the titanium content exceeds 75 ppm as titanium atoms, it becomes difficult to control the transesterification reaction, which only causes the generation of gas during kneading and molding and the poor thermal stability. Further, it is preferable because the polymer alloy with the aromatic polycarbonate deteriorates the heat resistance, the residence heat stability and the recycling characteristics, and further deteriorates the mechanical properties and color tone.
[0065] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)は、先述の通りチタン化合 物を含有するが、このチタンィ匕合物はポリブチレンテレフタレート樹脂の重縮合触媒 であることが好ましい。この重縮合触媒として用いるチタンィ匕合物としては、特に制限 はなぐ具体的には例えば、酸化チタン、四塩ィ匕チタン等の無機チタンィ匕合物類;テ トラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタ ンアルコラート類;テトラフエ-ルチタネート等のチタンフエノラート類;などが挙げられ る。中でもチタンアルコラート類が好ましぐ更にはテトラアルキルチタネート類が好ま しぐ特にテトラブチルチタネートが好ましい。 [0066] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)は、チタン化合物以外に、 1族金属化合物および Zまたは 2族金属化合物を含有して 、ることが好ま 、。ポリ ブチレンテレフタレート榭脂(B成分)における 1族金属化合物および Zまたは 2族金 属化合物の含有量は、その金属原子換算で、好ましくは lppmを超えて 50ppm以下 である。なお、金属原子の含有量は、上述のチタンの測定法と同様に測定することが 出来る。 [0065] The polybutylene terephthalate resin (component B) used in the present invention contains a titanium compound as described above, and this titanium compound is preferably a polycondensation catalyst for a polybutylene terephthalate resin. Specific examples of the titanium compound used as the polycondensation catalyst include, but are not limited to, inorganic titanium compounds such as titanium oxide and tetrasalt titanium; tetramethyl titanate, tetraisopropyl titanate, tetra And titan alcoholates such as butyl titanate; titanium phenolates such as tetraphenol titanate; and the like. Of these, titanium alcoholates are preferred, and tetraalkyl titanates are preferred, and tetrabutyl titanate is particularly preferred. [0066] The polybutylene terephthalate resin (component B) used in the present invention preferably contains a group 1 metal compound and a Z or group 2 metal compound in addition to the titanium compound. The content of the Group 1 metal compound and the Z or Group 2 metal compound in the polybutylene terephthalate resin (component B) is preferably more than 1 ppm and 50 ppm or less in terms of metal atoms. The metal atom content can be measured in the same manner as the above-described titanium measurement method.
[0067] 1族金属化合物および Zまたは 2族金属化合物の含有量の下限は、その金属原子 換算で中でも 3ppm、特に 5ppmであることが好ましい。またその上限は、その金属原 子換算で 50ppm、中でも 30ppm、特に 20ppmであることが好ましい。 1族金属化合 物および Zまたは 2族金属化合物の含有量を lppm以上とすることで、榭脂組成物 の機械的特性や疲労特性が向上する傾向にあり、 1族金属化合物および Zまたは 2 族金属化合物の含有量を 50ppm未満とすることで榭脂組成物の耐熱性、滞留熱安 定性ゃリサイクル特性が向上する傾向にある。  [0067] The lower limit of the content of the Group 1 metal compound and the Z or Group 2 metal compound is preferably 3 ppm, particularly 5 ppm, in terms of metal atoms. The upper limit is preferably 50 ppm, in particular 30 ppm, particularly 20 ppm in terms of metal atoms. By setting the content of the Group 1 metal compound and the Z or Group 2 metal compound to 1 ppm or more, the mechanical properties and fatigue characteristics of the resin composition tend to be improved. When the content of the metal compound is less than 50 ppm, the heat resistance and residence heat stability of the resin composition tend to improve the recycling characteristics.
[0068] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)は、先述の通り 1族金属化 合物および Zまたは 2族金属化合物チタンィ匕合物を含有することが好まし 、が、これ らの化合物はポリブチレンテレフタレート榭脂(B成分)の重縮合触媒や、チタンィ匕合 物触媒の助触媒であることが好まし ヽ。この重縮合触媒として用いる 1族金属化合物 および Zまたは 2族金属化合物としては特に制限はなぐ具体的には例えば、 1族金 属化合物としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウムの、水酸化物類 ;酸ィ匕物類;アルコラート類;酢酸塩、リン酸塩、炭酸塩などの各種有機酸塩類;など の各種ィ匕合物が挙げられる。また 2族金属化合物としては、ベリリウム、マグネシウム、 カルシウム、ストロンチウム、バリウムの、水酸化物類;酸化物類;アルコラート類;酢酸 塩、リン酸塩、炭酸塩などの各種有機酸塩類;などの各種ィ匕合物が挙げられる。  [0068] The polybutylene terephthalate resin (component B) used in the present invention preferably contains a Group 1 metal compound and Z or a Group 2 metal compound titanium compound as described above. The compound is preferably a polycondensation catalyst for polybutylene terephthalate resin (component B) or a co-catalyst for a titanium compound catalyst. There are no particular restrictions on the Group 1 metal compound and the Z or Group 2 metal compound used as the polycondensation catalyst. Specifically, examples of the Group 1 metal compound include lithium, sodium, potassium, rubidium, and cesium hydroxides. And various organic compounds such as acetates, phosphates, carbonates, and the like. In addition, Group 2 metal compounds include beryllium, magnesium, calcium, strontium and barium hydroxides; oxides; alcoholates; various organic acid salts such as acetates, phosphates and carbonates;匕 composites.
[0069] これらは単独で使用しても、また併用してもよい。中でも、取り扱いや入手の容易さ 、触媒効果の点から、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム等の化 合物が好ましぐ更には触媒効果と色調に優れる、リチウム又はマグネシウムの化合 物が好ましぐ特にマグネシウム化合物が好ま U、。  [0069] These may be used alone or in combination. Among these, from the viewpoint of easy handling and availability, and a catalyst effect, compounds such as lithium, sodium, potassium, magnesium, and calcium are preferable, and a compound of lithium or magnesium that is excellent in catalytic effect and color tone is preferable. M, especially preferred are magnesium compounds.
[0070] マグネシウム化合物としては、具体的には例えば酢酸マグネシウム、水酸化マグネ シゥム、炭酸マグネシウム、酸化マグネシウム、マグネシウムアルコキサイド、燐酸水 素マグネシウム等が挙げられる。中でも有機酸塩類が好ましぐ特に酢酸マグネシゥ ムが好ましい。 [0070] Specific examples of magnesium compounds include magnesium acetate and magnesium hydroxide. Examples include shim, magnesium carbonate, magnesium oxide, magnesium alkoxide, magnesium hydrogen phosphate, and the like. Of these, organic acid salts are preferred, and in particular, magnesium acetate is preferred.
[0071] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)の末端カルボキシル基濃 度は、 39 μ eqZg以下であり、中でも 5〜35 μ eqZg、特に 10〜30 μ eqZgである ことが好ましい。末端カルボキシル基濃度を 39 eq/g以下とすることで、榭脂組成 物の機械的特性や疲労特性が向上する傾向にあり、また末端カルボキシル基濃度を 5 eqZg以上とすることで、榭脂組成物の耐熱性、滞留熱安定性やリサイクル性が 向上する傾向にあり、好ましい。  [0071] The terminal carboxyl group concentration of the polybutylene terephthalate resin (component B) used in the present invention is 39 μeqZg or less, preferably 5 to 35 μeqZg, particularly preferably 10 to 30 μeqZg. By setting the terminal carboxyl group concentration to 39 eq / g or less, the mechanical properties and fatigue properties of the resin composition tend to improve, and by setting the terminal carboxyl group concentration to 5 eqZg or more, the resin composition The heat resistance, residence heat stability and recyclability of the product tend to be improved, which is preferable.
[0072] なお、ポリブチレンテレフタレート樹脂の末端カルボキシル基濃度は、ベンジルアル コール 25mLにポリブチレンテレフタレート榭脂 0. 5gを溶解し、水酸化ナトリウムの 0 . 01モル ZLベンジルアルコール溶液を使用して滴定することにより求めることが出 来る。  [0072] The terminal carboxyl group concentration of the polybutylene terephthalate resin was determined by dissolving 0.5 g of polybutylene terephthalate resin in 25 mL of benzyl alcohol and titrating with 0.01 mol ZL benzyl alcohol solution of sodium hydroxide. You can ask for it.
[0073] ポリブチレンテレフタレート樹脂の末端には、上記カルボキシル基以外に水酸基、 ビュル基があり、その他として原料由来のメトキシカルボ-ル基が残存していることが あり、特に、テレフタル酸ジメチルを原料とする場合には多く残存することがある。  [0073] At the end of the polybutylene terephthalate resin, there may be a hydroxyl group or a bur group in addition to the carboxyl group, and a methoxy carbo yl group derived from the raw material may remain. In particular, dimethyl terephthalate is used as the raw material. In many cases, it may remain.
[0074] またポリブチレンテレフタレート榭脂における末端メトキシカルボニル基は、榭脂成 形時などにおいて、成型時に係る熱により、毒性のメタノール、ホルムアルデヒド、蟻 酸などが発生する原因となり、例えば蟻酸は金属製の成形機器やこれに付随する真 空関連機器などに影響を及ぼす恐れがある。よって本発明に用いるポリブチレンテレ フタレート榭脂(B成分)においては、末端メトキシカルボ-ル基濃度が 0. 5 eqZg 以下であることが好ましぐ中でも 0. 3 /z eqZg以下、更には 0. 2 /z eqZg以下、特 に 0. 1 eqZg以下であることが好ましい。  [0074] In addition, the terminal methoxycarbonyl group in polybutylene terephthalate resin causes toxic methanol, formaldehyde, formic acid, etc. to be generated due to the heat generated during molding, such as formic acid. This may affect other molding equipment and vacuum related equipment. Therefore, in the polybutylene terephthalate resin (component B) used in the present invention, it is preferable that the terminal methoxycarbol group concentration is 0.5 eqZg or less, 0.3 / z eqZg or less, 2 / z eqZg or less, particularly 0.1 eqZg or less is preferable.
[0075] また、本発明に用いるポリブチレンテレフタレート榭脂 (B成分)の末端ビュル基濃 度 ίま、通常 0. l lS /z eq/gであり、中でも 0. 5〜: LO eq/g、特に 1〜8 eq/g であることが好ま ヽ。末端ビニル基濃度が高すぎると榭脂組成物の色調悪化の原 因となり、成形時の熱履歴により、末端ビニル基濃度は更に上昇する傾向にあるため 、成形温度が高い場合、リサイクル工程を有する製造方法の場合には、更に色調が 低下する場合がある。 [0075] Further, the terminal bur group concentration of the polybutylene terephthalate resin (component B) used in the present invention is usually 0.1 lS / z eq / g, and more preferably 0.5 to: LO eq / g Especially preferred is 1-8 eq / g. If the terminal vinyl group concentration is too high, it may cause a deterioration in the color tone of the resin composition, and the terminal vinyl group concentration tends to further increase due to the heat history during molding. In the case of the manufacturing method, the color tone May decrease.
[0076] 上記の各末端基濃度は、重クロ口ホルム Zへキサフルォロイソプロパノール =7Z3  [0076] The concentration of each end group is as follows: deuterated form Z-hexafluoroisopropanol = 7Z3
(体積比)の混合溶媒にポリブチレンテレフタレート榭脂を溶解させ、 1H— NMRを 測定することによって定量することが出来る。この際、溶媒シグナルとの重なりを防ぐ ため、重ピリジン等の塩基性成分などを極少量添加してもよ 、。  It can be quantified by dissolving polybutylene terephthalate resin in a (volume ratio) mixed solvent and measuring 1H-NMR. At this time, in order to prevent overlap with the solvent signal, a very small amount of a basic component such as heavy pyridine may be added.
[0077] 本発明に用いるポリブチレンテレフタレート榭脂 (B成分)の固有粘度は、適宜選択 して決定すれば、ょ ヽ力 通常 0. 5〜2dL/g、中でも 0. 6〜1. 5dL/g、更に ίま 0. 8 〜1. 3dL/g、特に 0. 95〜: L 25dL/gであること力 子まし!/、。固有粘度を 0. 5dL Zg以上とすることで、本発明の榭脂組成物における機械的特性や疲労特性、滞留 熱安定性が向上する傾向にある。逆に固有粘度を 2dLZg未満とすることで榭脂組 成物の流動性が向上する傾向にある。なお上記の固有粘度は、フエノール Zテトラタ ロルェタン (重量比 1Z1)の混合溶媒を使用し、 30°Cで測定した値である。  [0077] The inherent viscosity of the polybutylene terephthalate resin (component B) used in the present invention is appropriately selected from 0.5 to 2 dL / g, and more preferably 0.6 to 1.5 dL / g, further ί 0.8 to 1.3 dL / g, especially 0.95 to L 25 dL / g By setting the intrinsic viscosity to 0.5 dL Zg or more, the mechanical properties, fatigue properties, and residence heat stability of the resin composition of the present invention tend to be improved. Conversely, by setting the intrinsic viscosity to less than 2 dLZg, the fluidity of the resin composition tends to be improved. The above intrinsic viscosity is a value measured at 30 ° C. using a mixed solvent of phenol Z tetratalrethane (weight ratio 1Z1).
[0078] 更に、本発明に用いるポリブチレンテレフタレート榭脂(B成分)は、バージン原料だ けでなぐ使用済みの製品から再生されたポリブチレンテレフタレート榭脂、いわゆる マテリアルリサイクルされたポリブチレンテレフタレート樹脂の使用も可能である。使用 済みの製品としては、容器、フィルム、シート、繊維、製品の不適合品、スプルー、ラ ンナ一等が挙げられ、これらから得られた粉砕品またはそれらを溶融して得たペレツ ト等も使用可能である。  [0078] Further, the polybutylene terephthalate resin (component B) used in the present invention is a polybutylene terephthalate resin regenerated from a used product made only of virgin raw materials, so-called material-recycled polybutylene terephthalate resin. Use is also possible. Used products include containers, films, sheets, fibers, non-conforming products, sprues, runners, etc., and pulverized products obtained from them or pellets obtained by melting them are also used. Is possible.
[0079] 次に、本発明に用いるポリブチレンテレフタレート榭脂(B成分)の製造方法につい て説明する。ポリブチレンテレフタレート樹脂の製造方法は、原料面から、ジカルボン 酸を主原料として使用する 、わゆる直接重合法と、ジカルボン酸ジアルキルを主原 料として使用するエステル交換法とに大別される。前者は初期のエステル化反応で 水が生成し、後者は初期のエステル交換反応でアルコールが生成すると 、う違 、が ある。  [0079] Next, a method for producing polybutylene terephthalate resin (component B) used in the present invention will be described. The production method of polybutylene terephthalate resin is roughly divided into a direct polymerization method using dicarboxylic acid as a main raw material and a transesterification method using dialkyl dicarboxylate as a main raw material. In the former, water is generated in the initial esterification reaction, and in the latter, alcohol is generated in the initial transesterification reaction.
[0080] また、ポリブチレンテレフタレート樹脂の製造方法は、原料供給またはポリマーの払 い出し形態により、回分法と連続法に大別される。初期のエステルイ匕反応またはエス テル交換反応を連続操作で行い、次いで行う重縮合を回分操作で行う方法や、逆に 初期のエステルイ匕反応またはエステル交換反応を回分操作で行 ヽ、次 ヽで行う重縮 合を連続操作で行う方法もある。 [0080] The method for producing the polybutylene terephthalate resin is roughly divided into a batch method and a continuous method depending on the raw material supply or the polymer discharge form. Perform the initial esterification reaction or ester exchange reaction in a continuous operation, then perform the polycondensation performed in a batch operation, or conversely perform the initial esterification reaction or ester exchange reaction in a batch operation. Degeneracy There is also a method of performing the combination by continuous operation.
[0081] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)は、原料の入手安定性、 留出物の処理の容易さ、原料原単位の優位性、本発明の効果の観点から、直接重 合法により製造したポリブチレンテレフタレート榭脂を用いることが好ましい。また本発 明においては、生産性や製品品質の安定性、本発明の効果の観点から、連続的に 原料を供給し、連続的にエステルィヒ反応またはエステル交換反応を行う方法を採用 することが好ましぐ中でもエステルイ匕反応またはエステル交換反応に続く重縮合反 応も連続的に行う、いわゆる連続法により、ポリブチレンテレフタレート榭脂を製造す ることが好ましい。  [0081] The polybutylene terephthalate resin (component B) used in the present invention has a direct weight from the viewpoint of the availability of raw materials, the ease of processing of distillate, the superiority of raw material units, and the effects of the present invention. It is preferable to use polybutylene terephthalate resin manufactured by a legal method. In the present invention, from the viewpoint of productivity, stability of product quality, and the effect of the present invention, it is preferable to use a method in which raw materials are continuously supplied and an esterich reaction or transesterification reaction is continuously performed. In particular, it is preferable to produce polybutylene terephthalate resin by a so-called continuous method in which the polycondensation reaction following the esterification reaction or transesterification reaction is also carried out continuously.
[0082] 本発明に用いるポリブチレンテレフタレート榭脂(B成分)の製造方法にぉ 、ては、 エステル化反応槽にて、チタン触媒の存在下、少なくとも一部の 1, 4 ブタンジォー ルをテレフタル酸 (またはテレフタル酸ジアルキル)とは独立にエステルイ匕反応槽 (ま たはエステル交換反応槽)に供給し、テレフタル酸 (またはテレフタル酸ジアルキル) と 1, 4 ブタンジオールとを連続的にエステルイ匕 (又はエステル交換)する工程が好 ましく採用される。  [0082] In the method for producing polybutylene terephthalate resin (component B) used in the present invention, at least a portion of 1,4 butanediol is terephthalic acid in an esterification reaction tank in the presence of a titanium catalyst. (Or dialkyl terephthalate) is supplied to the ester reaction tank (or transesterification reaction tank) independently, and terephthalic acid (or dialkyl terephthalate) and 1,4 butanediol are continuously added to ester ester (or A process of transesterification is preferably employed.
[0083] 即ち本発明に用いるポリブチレンテレフタレート榭脂(B成分)の製造方法としては、 触媒に由来するヘイズや異物を低減し、触媒活性を低下させないため、原料スラリー 又は溶液として、テレフタル酸またはテレフタル酸ジアルキルと共に供給される 1, 4 ブタンジオールとは別に、し力も、テレフタル酸またはテレフタル酸ジアルキルとは 独立に 1 , 4 ブタンジオールをエステルイ匕反応槽またはエステル交換反応槽に供 給することが好ましい。以後、当該 1, 4 ブタンジオールを「別供給 1, 4 ブタンジ オール」と称することがある。  That is, as a method for producing polybutylene terephthalate resin (component B) used in the present invention, haze and foreign matters derived from the catalyst are reduced and the catalytic activity is not lowered. In addition to 1,4 butanediol supplied with dialkyl terephthalate, it is also possible to supply 1,4 butanediol to the esterification tank or transesterification tank independently of terephthalic acid or dialkyl terephthalate. preferable. Hereinafter, the 1,4 butanediol is sometimes referred to as “separately supplied 1,4 butanediol”.
[0084] 上記の「別供給 1, 4 ブタンジオール」には、プロセスとは無関係の新鮮な 1, 4 ブタンジオールを充てることが出来る。また「別供給 1, 4 ブタンジオール」は、エス テルィ匕反応槽またはエステル交換反応槽力 留出した 1 , 4 -ブタンジオールをコン デンサ等で捕集し、そのまま、又は一時タンク等へ保持して反応槽に還流させたり、 不純物を分離、精製して純度を高めた 1, 4 ブタンジオールとして供給することも出 来る。以後、コンデンサ等で捕集された 1, 4 ブタンジオール力も構成される「別供 給 1, 4 ブタンジオール」を「再循環 1, 4 ブタンジオール」と称することがある。資 源の有効活用、設備の単純さの観点からは、「再循環 1, 4 ブタンジオール」を「別 供給 1, 4 ブタンジオール」に充てることが好ましい。 [0084] The above-mentioned "separately supplied 1,4 butanediol" can be filled with fresh 1,4 butanediol independent of the process. “Separately supplied 1,4 butanediol” collects 1,4-butanediol distilled in the ester tank or transesterification tank with a condenser and holds it as it is or in a temporary tank. It can be supplied to 1,4 butanediol, which is refluxed to the reaction vessel or purified by separating and purifying impurities. After that, 1,4 butanediol force collected by condensers etc. is also configured. “Supply 1,4 butanediol” is sometimes referred to as “recycled 1,4 butanediol”. From the viewpoint of effective utilization of resources and simplicity of equipment, it is preferable to allocate “recycled 1,4 butanediol” to “separately supplied 1,4 butanediol”.
[0085] また通常、エステルイ匕反応槽またはエステル交換反応槽より留出した 1, 4 ブタン ジオールは、 1, 4 ブタンジオール成分以外に、水、アルコール、テトラヒドロフラン( THF)、ジヒドロフラン等の成分を含んでいる。従って、上記の留出物した 1, 4ーブタ ンジオールは、コンデンサ等で捕集した後、または、捕集しながら、水、アルコール、 THF等の成分と分離、精製し、反応槽に戻すことが好ましい。  [0085] In addition, 1,4-butanediol distilled from the esterification tank or transesterification reaction tank usually contains components such as water, alcohol, tetrahydrofuran (THF) and dihydrofuran in addition to the 1,4 butanediol component. Contains. Therefore, the 1,4-butanediol distilled above can be separated and purified from components such as water, alcohol, THF, etc. while being collected by a condenser or the like, and returned to the reaction vessel. preferable.
[0086] そして本発明においては、「別供給 1, 4 ブタンジオール」の内、 10重量%以上を 反応液液相部に直接戻すことが好ましい。ここで反応液液相部とは、エステル化反 応槽またはエステル交換反応槽中の気液界面の液相側を示し、反応液液相部に直 接戻すとは、配管などを使用して「別供給 1, 4 ブタンジオール」が気相部を経由せ ずに直接液相部分に供給されることを表す。反応液液相部に直接戻す割合は、好ま しくは 30重量%以上、更に好ましくは 50重量%以上、特に好ましくは 80重量%以上 、最も好ましくは 90重量%以上である。反応液液相部に直接戻す「別供給 1, 4 ブ タンジオール」が少な ヽ場合は、チタン触媒が失活する傾向にある。  In the present invention, it is preferable that 10% by weight or more of “separately supplied 1,4 butanediol” is directly returned to the reaction liquid phase part. Here, the reaction liquid phase part refers to the liquid phase side of the gas-liquid interface in the esterification reaction tank or transesterification reaction tank. To return directly to the reaction liquid phase part, use piping or the like. This means that “separately supplied 1, 4 butanediol” is supplied directly to the liquid phase part without going through the gas phase part. The ratio of returning directly to the liquid phase of the reaction liquid is preferably 30% by weight or more, more preferably 50% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more. If the amount of “separately supplied 1,4 butanediol” returned directly to the reaction liquid phase is small, the titanium catalyst tends to be deactivated.
[0087] また反応器に戻す際の「別供給 1, 4 ブタンジオール」の温度は、通常 50〜220 。C、好ましくは 100〜200°C、更に好ましくは 150〜190°Cである。「別供給 1, 4 ブ タンジォール」の温度が高過ぎる場合は THFの副生量が多くなる傾向にあり、低過 ぎると場合は熱負荷が増すためエネルギーロスを招く傾向がある。  [0087] The temperature of "separately supplied 1,4 butanediol" when returning to the reactor is usually 50 to 220. C, preferably 100 to 200 ° C, more preferably 150 to 190 ° C. If the temperature of “separately supplied 1, 4 butanediol” is too high, the amount of THF by-product tends to increase, and if it is too low, the heat load tends to increase, leading to energy loss.
[0088] 本発明に用いるポリブチレンテレフタレート榭脂 (B成分)を製造する際の重縮合触 媒としては、上述したチタンィ匕合物や、 1族金属化合物および Zまたは 2族金属化合 物(以下、これらを各々、「チタン触媒」「1属金属触媒」「2族金属触媒」ということがあ る。)の他に、例えばスズやその化合物が挙げられる。  [0088] As the polycondensation catalyst for producing the polybutylene terephthalate resin (component B) used in the present invention, the above-mentioned titanium compounds, Group 1 metal compounds and Z or Group 2 metal compounds (hereinafter referred to as "Both") are used. These may be referred to as “titanium catalyst”, “Group 1 metal catalyst” and “Group 2 metal catalyst”, respectively), and for example, tin and compounds thereof.
[0089] スズは通常、スズィ匕合物として使用され、具体的には例えば、ジブチルスズォキサ イド、メチルフエ-ルスズオキサイド、テトラエチルスズ、へキサェチルジスズォキサイ ド、シクロへキサへキシルジスズオキサイド、ジドデシルスズオキサイド、トリェチルスズ ハイド口オキサイド、トリフ -ルスズノ、イド口オキサイド、トリイソブチルスズアセテート 、ジブチノレスズジアセテート、ジフエニルスズジラウレート、モノブチルスズトリクロライ ド、トリブチルスズクロライド、ジブチルスズサルファイド、ブチルヒドロキシスズォキサイ ド、メチルスタンノン酸、ェチルスタンノン酸、ブチルスタンノン酸などが挙げられる。 [0089] Tin is usually used as a tin compound, specifically, for example, dibutyltin oxide, methylphenol tin oxide, tetraethyltin, hexethyldistinoxide, cyclohexahexyldis. Zuoxide, didodecyltin oxide, triethyltin hydride oxide, trifruzuzuno, idooxide, triisobutyltin acetate , Dibutinoles diacetate, diphenyltin dilaurate, monobutyltin trichloride, tributyltin chloride, dibutyltin sulfide, butylhydroxytin oxide, methylstannic acid, ethylstannic acid, and butylstannic acid.
[0090] 但し、一般的にスズゃスズィ匕合物はポリブチレンテレフタレート樹脂の色調を悪ィ匕さ せるため、本発明に用いるポリブチレンテレフタレート榭脂中におけるスズィ匕合物の 含有量は低い方が好ましぐ中でも、含有しないことが好ましい。具体的には、通常、 スズ化合物の含有量力 スズ原子換算で 200ppm以下、中でも lOOppm以下、更に は lOppm以下であることが好ましい。  [0090] However, in general, tin-tin compounds have a poor color tone of the polybutylene terephthalate resin, so the content of tin compounds in the polybutylene terephthalate resin used in the present invention is lower. However, it is preferable not to contain it. Specifically, the content power of the tin compound is usually 200 ppm or less in terms of tin atom, preferably 10 ppm or less, more preferably 10 ppm or less.
[0091] また本発明に用いるポリブチレンテレフタレート榭脂(B成分)の製造に際しては、触 媒として更に他の触媒を用いることも出来る。具体的には例えば、三酸化アンチモン 等のアンチモン化合物;二酸化ゲルマニウム、四酸化ゲルマニウム等のゲルマニウム 化合物;マンガン化合物;亜鉛化合物;ジルコニウム化合物;コバルト化合物;正燐酸 、亜燐酸、次亜燐酸、ポリ燐酸などやこれらのエステルや金属塩などの燐ィ匕合物;な どの反応助剤が挙げられる。  [0091] In the production of the polybutylene terephthalate resin (component B) used in the present invention, another catalyst can be used as a catalyst. Specifically, for example, an antimony compound such as antimony trioxide; a germanium compound such as germanium dioxide and germanium tetroxide; a manganese compound; a zinc compound; a zirconium compound; a cobalt compound; And reaction aids such as phosphorus compounds such as esters and metal salts thereof.
[0092] また触媒の失活を防ぐため、エステルイ匕反応 (またはエステル交換反応)に使用さ れるチタン触媒の内、 10重量%以上をテレフタル酸(またはテレフタル酸ジアルキル )とは独立に反応液液相部に直接供給することが好ましい。ここで、反応液液相部と は、エステルイ匕反応槽またはエステル交換反応槽中の気液界面の液相側を示し、反 応液液相部に直接供給するとは、配管などを使用し、チタン触媒が反応器の気相部 を経由せずに直接液相部分に供給されることを表す。反応液液相部に直接添加す るチタン触媒の割合は、好ましくは 30重量%以上、更に好ましくは 50重量%以上、 特に好ましくは 80重量%以上、最も好ましくは 90重量%以上である。  [0092] Further, in order to prevent deactivation of the catalyst, 10% by weight or more of the titanium catalyst used in the esterification reaction (or transesterification reaction) is a reaction liquid independent of terephthalic acid (or dialkyl terephthalate). It is preferable to supply directly to the phase part. Here, the reaction liquid phase part means the liquid phase side of the gas-liquid interface in the esterification reaction tank or transesterification reaction tank. To supply directly to the reaction liquid phase part, use piping or the like. This means that the titanium catalyst is supplied directly to the liquid phase part without going through the gas phase part of the reactor. The proportion of the titanium catalyst added directly to the reaction liquid phase is preferably 30% by weight or more, more preferably 50% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
[0093] 上述のチタン触媒は、溶媒などに溶解させたり又は溶解させずに直接エステルイ匕 反応槽またはエステル交換反応槽の反応液液相部に供給することも出来るが、供給 量を安定化させ、反応器の熱媒ジャケット等力もの熱による変性などの悪影響を軽減 するためには、 1, 4 ブタンジオール等の溶媒で希釈することが好ましい。この際の 濃度は、溶液全体に対するチタン触媒の濃度として、通常 0. 01〜20重量%、中で も 0. 05〜10重量0 /0、特に 0. 08〜8重量0 /0であることが好ましい。 [0094] また異物低減の観点から、溶液中の水分濃度は、通常 0. 05〜: L 0重量%とし、溶 液調製の際の温度は、失活ゃ凝集を防ぐ観点から、通常 20〜150°C、中でも 30〜1 00°C、特に 40〜80°Cであることが好ましい。また触媒溶液は、劣化防止、析出防止 、失活防止の点から、別供給 1, 4 ブタンジオールと配管などで混合して、エステル 化反応槽またはエステル交換反応槽に供給することが好ましい。 [0093] The titanium catalyst described above can be supplied directly to the reaction liquid phase part of the esterification reaction tank or the transesterification reaction tank with or without being dissolved in a solvent or the like, but the supply amount is stabilized. In order to reduce adverse effects such as heat denaturation due to the heat medium jacket of the reactor, it is preferable to dilute with a solvent such as 1,4 butanediol. The concentration at this time, as the concentration of the titanium catalyst to the total solution, usually 0.01 to 20 wt%, from 0.05 to 10 weight 0/0 Among, in particular 0.08 to 8 wt 0/0 Is preferred. [0094] From the viewpoint of reducing foreign matter, the water concentration in the solution is usually 0.05 to: L 0% by weight, and the temperature during the preparation of the solution is usually 20 to 20 from the viewpoint of preventing deactivation and aggregation. It is preferably 150 ° C, particularly 30 to 100 ° C, particularly 40 to 80 ° C. In addition, the catalyst solution is preferably mixed with separately supplied 1,4 butanediol through a pipe or the like and supplied to the esterification reaction tank or transesterification reaction tank from the viewpoint of preventing deterioration, preventing precipitation, and deactivation.
[0095] 1族金属触媒および Zまたは 2族金属触媒は、エステルイ匕反応槽またはエステル 交換反応槽に供給することが出来るが、その供給位置に特に制限はなぐこれら反 応槽の反応液気相部から反応液上面へ供給してもよ!ヽし、反応液液相部に直接供 給してもよい。この際、原料であるテレフタル酸や、チタン触媒と共に供給しても、また 独立して供給してもよい。  [0095] The Group 1 metal catalyst and the Z or Group 2 metal catalyst can be supplied to the esterification reaction tank or the transesterification reaction tank, but the supply position is not particularly limited. The reaction solution may be supplied to the upper surface of the reaction solution or directly to the reaction solution liquid phase portion. At this time, it may be supplied together with the raw material terephthalic acid or the titanium catalyst, or may be supplied independently.
[0096] 中でも触媒の安定性の観点から、テレフタル酸やチタン触媒とは独立して、且つ、 反応液気相部から反応液上面に供給することが好ま U、。 2族金属触媒の供給方法 としては、例えば 2族触媒が常温で固体の場合には、固体のまま反応液へ供給する ことも出来るが、供給量を安定化させ、熱による変性などの悪影響を軽減するために は、水、 1, 4 ブタンジオール等の溶媒に溶解し、溶液として供給することが好まし い。この溶液中の 2属金属触媒の濃度は、通常 0. 01重量%以上、中でも 0. 05重量 %以上、特に 0. 08重量%以上であることが好ましぐその上限は 20重量%以下、中 でも 10重量%以下、特に 8重量%以下であることが好ましい。  [0096] Among these, from the viewpoint of catalyst stability, it is preferable to supply the reaction solution from the gas phase part to the upper surface of the reaction solution independently from the terephthalic acid or titanium catalyst. As a method for supplying the Group 2 metal catalyst, for example, when the Group 2 catalyst is solid at room temperature, it can be supplied to the reaction solution as a solid, but the supply amount is stabilized, and adverse effects such as heat denaturation are caused. To reduce this, it is preferable to dissolve in water or a solvent such as 1,4 butanediol and supply it as a solution. The concentration of the Group 2 metal catalyst in this solution is usually 0.01% by weight or more, preferably 0.05% by weight or more, and particularly preferably 0.08% by weight or more. Of these, the content is preferably 10% by weight or less, particularly preferably 8% by weight or less.
[0097] また、 1族金属触媒および Zまたは 2族金属触媒は、エステルイ匕反応槽またはエス テル交換反応槽に続く重縮合反応槽ゃ、それに付帯したオリゴマー配管に添加して もよい。この場合の添加方法も、供給量を安定化させ、熱による変性などの悪影響を 軽減するために、水、 1, 4 ブタンジォール等の溶媒や、ポリテトラメチレンエーテル グリコール等の共重合成分に溶解し、溶液として供給することが好ましぐこの際の濃 度は、上述の溶液濃度と同様である。  [0097] Further, the Group 1 metal catalyst and the Z or Group 2 metal catalyst may be added to a polycondensation reaction tank following the esterification reaction tank or the ester exchange reaction tank, or an oligomer piping attached thereto. The addition method in this case is also dissolved in a solvent such as water or 1,4 butanediol or a copolymer component such as polytetramethylene ether glycol in order to stabilize the supply amount and reduce adverse effects such as heat denaturation. The concentration at this time, which is preferably supplied as a solution, is the same as the above-mentioned solution concentration.
[0098] 次にポリブチレンテレフタレート樹脂の製造方法として、直接重合法を採用した連 続法の一例を説明する。先ずテレフタル酸を主成分とする前記ジカルボン酸成分と、 1 , 4 ブタンジオールを主成分とする前記ジオール成分とを原料混合槽で混合して スラリーとし、単数または複数のエステルイ匕反応槽内で、チタン触媒の存在下に、通 常 180〜260。C、好ましくは 200〜245。C、更に好ましくは 210〜235。Cの温度、ま た、通常 10〜133kPa、好ましくは 13〜: L01kPa、更に好ましくは 60〜90kPaの圧 力下 (絶対圧力、以下同じ。)で、通常 0. 5〜10時間、好ましくは 1〜6時間で、連続 的にエステルイ匕反応させてオリゴマー得る。 Next, an example of a continuous method employing a direct polymerization method will be described as a method for producing a polybutylene terephthalate resin. First, the dicarboxylic acid component having terephthalic acid as a main component and the diol component having 1,4 butanediol as a main component are mixed in a raw material mixing tank to form a slurry. In the presence of titanium catalyst, Always 180-260. C, preferably 200-245. C, more preferably 210-235. C temperature, usually 10 to 133 kPa, preferably 13 to: L01 kPa, more preferably 60 to 90 kPa (absolute pressure, the same shall apply hereinafter), usually 0.5 to 10 hours, preferably 1 In -6 hours, oligomers are obtained by continuous esterification reaction.
[0099] 次いでこのオリゴマーを重縮合反応槽に移送し、単数または複数の重縮合反応槽 内で、重縮合触媒の存在下に重縮合させる。この際、好ましくは連続的に、通常 210 〜280。C、好ましくは 220〜260。C、更に好ましくは 230〜250。Cの温度で、少なくと も 1つの重縮合反応槽においては、通常 20kPa以下、好ましくは lOkPa以下、更に 好ましくは 5kPa以下の減圧下で、攪拌下に、通常 2〜15時間、好ましくは 3〜: LO時 間で重縮合反応させる。重縮合反応により得られたポリマーは、通常、重縮合反応槽 の底部力 ポリマー抜き出しダイに移送されてストランド状に抜き出され、水冷されな 力 又は水冷後、カッターで切断され、ペレット状、チップ状などの粒状体とされる。  Next, this oligomer is transferred to a polycondensation reaction tank and polycondensed in the presence of a polycondensation catalyst in one or a plurality of polycondensation reaction tanks. In this case, it is preferably continuously, usually 210 to 280. C, preferably 220-260. C, more preferably 230-250. At least one polycondensation reaction tank at a temperature of C is usually 20 kPa or less, preferably 10 kPa or less, more preferably 5 kPa or less, with stirring, usually 2 to 15 hours, preferably 3 to : Perform polycondensation reaction in LO time. The polymer obtained by the polycondensation reaction is usually transferred to the bottom force polymer extraction die of the polycondensation reaction tank and extracted in the form of strands. After the water cooling or water cooling, it is cut with a cutter, pellets, chips It is made into granular bodies, such as a shape.
[0100] 直接重合法の場合は、テレフタル酸と 1, 4 ブタンジオールとのモル比は、下記式 を満たすことが好ましい。  [0100] In the case of the direct polymerization method, the molar ratio of terephthalic acid to 1,4 butanediol preferably satisfies the following formula.
[0101] B/TPA= 1. 1〜5. 0 (mol/mol)  [0101] B / TPA = 1.1 to 5.0 (mol / mol)
[0102] 但し上記式において、 Bは単位時間当たりのエステルイ匕反応槽に外部力 供給さ れる 1, 4 ブタンジオールのモル数、 TPAは単位時間当たりにエステル化反応槽に 外部から供給されるテレフタル酸のモル数である。  [0102] However, in the above formula, B is the number of moles of 1,4 butanediol supplied to the esterification reaction tank per unit time, and TPA is the terephthalate supplied from the outside to the esterification reaction tank per unit time. The number of moles of acid.
[0103] 上記の「エステル化反応槽に外部から供給される 1, 4 ブタンジオール」とは、原 料スラリー又は溶液として、テレフタル酸またはテレフタル酸ジアルキルと共に供給さ れる 1, 4 ブタンジオールの他、これらとは独立に供給する 1, 4 ブタンジオール、 触媒の溶媒として使用される 1, 4 ブタンジオール等、反応槽外部から反応槽内に 入る 1, 4 ブタンジオールの総和である。  [0103] The above "1,4 butanediol supplied from the outside to the esterification reaction tank" is a raw slurry or solution, in addition to 1,4 butanediol supplied together with terephthalic acid or dialkyl terephthalate, These are the total of 1,4 butanediol that enters the reaction tank from outside the reaction tank, such as 1,4 butanediol supplied independently and 1,4 butanediol used as the solvent for the catalyst.
[0104] 上記の BZTPAの値が 1. 1より小さい場合は、転化率の低下や触媒失活を招き、 5. 0より大きい場合は、熱効率が低下するだけでなぐ THF等の副生物が増大する 傾向にある。 B/TPAの値 ίま、好ましく ίま 1. 5〜4. 5、更に ίま 2. 0〜4. 0、特に 3. 1 〜3. 8であることが好ましい。  [0104] If the above BZTPA value is less than 1.1, the conversion rate will be reduced and the catalyst will be deactivated. If it is greater than 5.0, the thermal efficiency will decrease and the by-products such as THF will increase. It tends to be. The value of B / TPA is preferably ί, preferably ί 1.5 to 4.5, and further to ί 2. 0 to 4.0, particularly 3.1 to 3.8.
[0105] エステル交換法を採用した連続法の一例は、次の通りである。まず、単数または複 数のエステル交換反応槽内で、チタン触媒の存在下に、通常 110〜260°C、好まし く ίま 140〜245oC、更【こ好ましく ίま 180〜220oCの温度【こて、通常 10〜133kPa、好 ましくは 13〜120kPa、更に好ましくは 60〜: LOlkPaの圧力下で、通常 0. 5〜5時間 、好ましくは 1〜3時間で、連続的にエステル交換反応させてオリゴマーを得る。 [0105] An example of a continuous process employing the transesterification process is as follows. First, single or multiple The number of transesterification reaction vessel, in the presence of a titanium catalyst, usually 110 to 260 ° C, preferably rather ί or one hundred forty to two hundred and forty-five o C, further [this temperature [trowel preferably ί or 180 to 220 o C 10 to 133 kPa, preferably 13 to 120 kPa, more preferably 60 to: The transesterification reaction is carried out continuously under a pressure of LOlkPa, usually 0.5 to 5 hours, preferably 1 to 3 hours. An oligomer is obtained.
[0106] 次いでこのオリゴマーを重縮合反応槽に移送し、単数または複数の重縮合反応槽 内で、重縮合反応触媒の存在下に、好ましくは連続的に、通常 210〜280°C、好ま しくは 220〜260°C、更に好ましくは 230〜250°Cの温度で、少なくとも 1つの重縮合 反応槽においは、通常 20kPa以下、好ましくは lOkPa以下、更に好ましくは 5kPa以 下の減圧下で、攪拌下に、通常 2〜15時間、好ましくは 3〜 10時間で重縮合反応さ せる。 [0106] Next, the oligomer is transferred to a polycondensation reaction tank, and preferably continuously in the presence of a polycondensation reaction catalyst in one or a plurality of polycondensation reaction tanks, usually at 210 to 280 ° C. Is at a temperature of 220 to 260 ° C, more preferably 230 to 250 ° C, and at least one polycondensation reaction tank is usually stirred at a reduced pressure of 20 kPa or less, preferably 10 kPa or less, more preferably 5 kPa or less. The polycondensation reaction is usually carried out for 2 to 15 hours, preferably 3 to 10 hours.
[0107] エステル交換法の場合、テレフタル酸ジアルキルと 1, 4 ブタンジオールとのモル 比は、下記式を満たすことが好ましい。  [0107] In the transesterification method, the molar ratio of dialkyl terephthalate to 1,4 butanediol preferably satisfies the following formula.
[0108] B/DAT= 1. 1〜2. 5 (mol/mol) [0108] B / DAT = 1.1-2.5 (mol / mol)
[0109] 但し、上記式において、 Bは、単位時間当たりのエステルイ匕反応槽に外部力 供給 される 1, 4 ブタンジオールのモル数、 DATは、単位時間当たりにエステル化反応 槽に外部カゝら供給されるテレフタル酸ジアルキルのモル数である。  [0109] However, in the above equation, B is the number of moles of 1,4 butanediol supplied to the esterification reaction tank per unit time, and DAT is the external capacity of the esterification reaction tank per unit time. The number of moles of dialkyl terephthalate supplied by the company.
[0110] 上記の B/DATの値が 1. 1より小さい場合は、転ィ匕率の低下や触媒活性の低下 を招き、 2. 5より大きい場合は、熱効率が低下するだけでなぐ THF等の副生物が増 大する傾向にある。 BZDATの値は、好ましくは 1. 1〜1. 8、更に好ましくは 1. 2〜 1. 5である。  [0110] If the above B / DAT value is less than 1.1, the conversion rate and catalytic activity will decrease, and if it is greater than 2.5, the thermal efficiency will only decrease. There is a tendency for by-products to increase. The value of BZDAT is preferably 1.1 to 1.8, more preferably 1.2 to 1.5.
[0111] 本発明にお ヽて、エステルイ匕反応またはエステル交換反応は、反応時間短縮のた め、 1, 4 ブタンジオールの沸点以上の温度で行うことが好ましい。 1, 4 ブタンジ オールの沸点は反応の圧力に依存するが、 101. lkPa (大気圧)では 230°C、 50k Paでは 205°Cである。  [0111] In the present invention, the esterification reaction or transesterification reaction is preferably performed at a temperature equal to or higher than the boiling point of 1,4 butanediol in order to shorten the reaction time. The boiling point of 1,4 butanediol depends on the reaction pressure, but it is 230 ° C at 101. lkPa (atmospheric pressure) and 205 ° C at 50 kPa.
[0112] エステルイ匕反応槽またはエステル交換反応槽としては、従来公知の任意のものを 使用でき、例えば、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽 などの何れの型式であってもよい。また単数槽としても、同種もしくは異種の槽を直列 または並列させた複数槽としてもよい。中でも、攪拌装置を有する反応槽が好ましぐ 攪拌装置としては、動力部、軸受、軸、攪拌翼力 成る通常のタイプの他、タービンス テーター型高速回転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機などの 高速回転するタイプも使用することが出来る。 [0112] As the esterification reaction tank or the transesterification reaction tank, any conventionally known one can be used. For example, any of a vertical stirring complete mixing tank, a vertical heat convection mixing tank, a tower continuous reaction tank, etc. The model of Also, a single tank may be a plurality of tanks in which the same or different tanks are connected in series or in parallel. Of these, a reaction vessel having a stirring device is preferred. In addition to the normal type consisting of a power unit, bearing, shaft, and stirring blade force, the type of agitation device may be a high-speed rotating type such as a turbine stator type high-speed rotary agitator, disk mill type agitator, or rotor mill type agitator. I can do it.
[0113] 攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部 などカゝら直接攪拌する通常の攪拌方法の他、配管などで反応液の一部を反応器の 外部に持ち出してラインミキサ 等で攪拌し、反応液を循環させる方法も採ることが 出来る。攪拌翼の種類は、公知のものが選択でき、具体的には、プロペラ翼、スクリュ 一翼、タービン翼、ファンタービン翼、ディスクタービン翼、ファウドラー翼、フルゾー ン翼、マックスブレンド翼などが挙げられる。  [0113] The form of stirring is not particularly limited. In addition to a normal stirring method in which the reaction solution in the reaction tank is directly stirred at the top, bottom, side, etc. It is also possible to circulate the reaction liquid by taking the part out of the reactor and stirring it with a line mixer. Known types of stirring blades can be selected, and specific examples include propeller blades, screw single blades, turbine blades, fan turbine blades, disk turbine blades, fiddler blades, full zone blades, and Max blend blades.
[0114] ポリブチレンテレフタレート樹脂の製造においては、通常、複数段の反応槽を使用 し、好ましくは 2〜5の反応槽を使用し、順次に分子量を上昇させていく。通常、初期 のエステルイ匕反応またはエステル交換反応に引き続き、重縮合反応が行われる。  [0114] In the production of polybutylene terephthalate resin, usually, a multi-stage reaction vessel is used, preferably 2 to 5 reaction vessels, and the molecular weight is increased sequentially. Usually, a polycondensation reaction is performed following the initial esterification reaction or transesterification reaction.
[0115] ポリブチレンテレフタレート樹脂の重縮合反応工程は、単数の反応槽を使用しても 、複数の反応槽を使用してもよいが、好ましくは複数の反応槽を使用する。反応槽の 形態は、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽などの何れ の型式であってもよぐまた、これらを糸且み合わせることも出来る。中でも、攪拌装置を 有する反応槽が好ましぐ攪拌装置としては、動力部、軸受、軸、攪拌翼から成る通 常のタイプの他、タービンステーター型高速回転式攪拌機、ディスクミル型攪拌機、 ローターミル型攪拌機などの高速回転するタイプも使用することが出来る。  [0115] In the polycondensation reaction step of the polybutylene terephthalate resin, a single reaction tank or a plurality of reaction tanks may be used, but a plurality of reaction tanks are preferably used. The form of the reaction tank may be any type such as a vertical stirring complete mixing tank, a vertical heat convection mixing tank, a tower type continuous reaction tank, or the like, and these may be combined. Among them, as a stirring device that is preferably a reaction tank having a stirring device, a turbine stator type high-speed rotating stirrer, a disk mill type stirrer, a rotor mill, in addition to a normal type including a power unit, a bearing, a shaft, and a stirring blade. A high-speed rotating type such as a mold stirrer can also be used.
[0116] 攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部 などカゝら直接攪拌する通常の攪拌方法の他、配管などで反応液の一部を反応器の 外部に持ち出してラインミキサ 等で攪拌し、反応液を循環させる方法も採ることが 出来る。中でも、少なくとも重縮合反応槽の 1つは、水平方向に回転軸を有する表面 更新とセルフクリーニング性に優れた横型の反応器を使用することが推奨される。  [0116] The form of stirring is not particularly limited, and in addition to the normal stirring method in which the reaction solution in the reaction vessel is directly stirred from the top, bottom, side, etc. of the reaction vessel, It is also possible to circulate the reaction liquid by taking the part out of the reactor and stirring it with a line mixer. In particular, it is recommended that at least one of the polycondensation reactors use a horizontal reactor that has a horizontal axis of rotation and excellent surface renewal and self-cleaning properties.
[0117] また、着色や劣化を抑え、ビニル基などの末端の増加を抑制するため、少なくとも 1 つの反応槽において、通常 1. 3kPa以下、中でも 0. 5kPa以下、特に 0. 3kPa以下 の高真空下で行うことが好ましい。また反応温度は通常 225〜255°C、中でも 230〜 250°C、特に 233〜245°Cの範囲で行うこと力 子まし!/ヽ。 [0118] 更に、ポリブチレンテレフタレート樹脂の重縮合反応工程は、ー且、溶融重縮合で 比較的分子量の小さい、例えば、固有粘度 0. 1〜1. 0程度のポリブチレンテレフタ レート榭脂を製造した後、引き続き、ポリブチレンテレフタレート榭脂の融点以下の温 度で固相重縮合(固相重合)させることも出来る。 [0117] Further, in order to suppress coloring and deterioration, and to suppress the increase of the end of vinyl group or the like, in at least one reaction tank, it is usually a high vacuum of 1.3 kPa or less, particularly 0.5 kPa or less, particularly 0.3 kPa or less. It is preferable to carry out below. The reaction temperature is usually 225 to 255 ° C, especially 230 to 250 ° C, especially 233 to 245 ° C. / ヽ. [0118] In addition, the polycondensation reaction step of the polybutylene terephthalate resin is a process in which a polybutylene terephthalate resin having a relatively low molecular weight, for example, an intrinsic viscosity of about 0.1 to 1.0 is obtained by melt polycondensation. After the production, it can be subsequently subjected to solid phase polycondensation (solid phase polymerization) at a temperature below the melting point of polybutylene terephthalate resin.
[0119] 以下、添付図面に基づいて、本発明に用いるポリブチレンテレフタレート榭脂(B成 分)の製造方法の好ま U、実施態様を説明する。図 1は本発明で採用するエステル 化反応工程またはエステル交換ィ匕反応工程の一例の説明図、図 2、図 3は本発明で 採用する重縮合工程の一例の説明図である。  [0119] Hereinafter, preferred and preferred embodiments of the method for producing polybutylene terephthalate resin (B component) used in the present invention will be described with reference to the accompanying drawings. FIG. 1 is an explanatory diagram of an example of an esterification reaction step or transesterification reaction step employed in the present invention, and FIGS. 2 and 3 are explanatory diagrams of an example of a polycondensation step employed in the present invention.
[0120] 図 1において、原料のテレフタル酸は、通常、原料混合槽(図示せず)で 1, 4ーブタ ンジオールと混合され、原料供給ライン(1)からスラリーの形態で反応槽 (A)に供給 され、原料がテレフタル酸ジアルキルの場合は、通常溶融した状態で反応槽 (A)に 供給される。一方、チタン触媒は、好ましくは触媒調整槽 (図示せず)で 1, 4 ブタン ジオールの溶液とした後、触媒供給ライン (3)から供給される。図 1では再循環 1, 4 ブタンジオールの再循環ライン (2)に触媒供給ライン (3)を連結し、両者を混合し た後、反応槽 (A)の液相部に供給する態様を示した。  [0120] In FIG. 1, the raw material terephthalic acid is usually mixed with 1,4-butanediol in a raw material mixing tank (not shown), and is transferred from the raw material supply line (1) to the reaction tank (A) in the form of slurry. If the raw material is dialkyl terephthalate, it is usually fed to the reaction tank (A) in a molten state. On the other hand, the titanium catalyst is preferably made into a solution of 1,4 butanediol in a catalyst adjusting tank (not shown) and then supplied from the catalyst supply line (3). Fig. 1 shows a mode in which the catalyst supply line (3) is connected to the recycle line for 1,4 butanediol (2) and mixed, and then supplied to the liquid phase part of the reaction tank (A). It was.
[0121] 反応槽 (A)カも留出するガスは、留出ライン (5)を経て精留塔 (C)で高沸成分と低 沸成分とに分離される。通常、高沸成分の主成分は 1, 4 ブタンジオールであり、低 沸成分の主成分は、直接重合法の場合は水および THF、エステル交換法の場合は 、ァノレコーノレ、 THF、水である。 [0121] Gas that also distills from the reaction tank (A) is separated into a high-boiling component and a low-boiling component in the rectification column (C) via the distillation line (5). Usually, the main component of the high boiling point component is 1,4 butanediol, and the main component of the low boiling point component is water and THF in the case of the direct polymerization method, and in the case of the transesterification method, ananolone, THF and water.
[0122] 精留塔 (C)で分離された高沸成分は抜出ライン (6)力 抜き出され、ポンプ (D)を 経て、一部は再循環ライン(2)から反応槽 (A)に循環され、一部は循環ライン (7)力ゝ ら精留塔 (C)に戻される。また、余剰分は抜出ライン (8)から外部に抜き出される。一 方、精留塔 (C)で分離された軽沸成分はガス抜出ライン (9)から抜き出され、コンデ ンサ (G)で凝縮され、凝縮液ライン(10)を経てタンク (F)に一時溜められる。  [0122] The high-boiling components separated in the rectification column (C) are extracted from the extraction line (6), passed through the pump (D), and partly from the recirculation line (2) to the reaction tank (A) Part of it is returned to the rectifying tower (C) from the circulation line (7). The surplus is extracted from the extraction line (8). On the other hand, the light boiling components separated in the rectification column (C) are extracted from the gas extraction line (9), condensed in the capacitor (G), and passed through the condensate line (10) and then into the tank (F). Is temporarily stored.
[0123] タンク )〖こ集められた軽沸成分の一部は、抜出ライン(11)、ポンプ (E)及び循環 ライン( 12)を経て精留塔 (C)に戻され、残部は、抜出ライン( 13)を経て外部に抜き 出される。コンデンサ (G)はベントライン(14)を経て排気装置(図示せず)に接続さ れている。反応槽 (A)内で生成したオリゴマーは、抜出ポンプ (B)及び抜出ライン (4 )を経て抜き出される。 [0123] Tank) A part of the collected light boiling components is returned to the rectification tower (C) via the extraction line (11), the pump (E) and the circulation line (12). It is extracted outside through the extraction line (13). The condenser (G) is connected to an exhaust device (not shown) via a vent line (14). The oligomer produced in the reaction tank (A) is removed from the extraction pump (B) and the extraction line (4 ) Is extracted.
[0124] 図 1に示す工程にぉ 、ては、再循環ライン (2)に触媒供給ライン (3)が連結されて いるが、両者は独立していてもよい。また、原料供給ライン(1)は反応槽 (A)の液相 部に接続されていてもよい。  [0124] Although the catalyst supply line (3) is connected to the recirculation line (2) in the process shown in FIG. 1, both may be independent. The raw material supply line (1) may be connected to the liquid phase part of the reaction tank (A).
[0125] 図 2において、前述の図 1に示す抜出ライン (4)から供給されたオリゴマーは、第 1 重縮合反応槽 (a)で減圧下に重縮合されてプレボリマーとなった後、抜出用ギヤボン プ (c)及び抜出ライン (L1)を経て第 2重縮合反応槽 (d)に供給される。  [0125] In FIG. 2, the oligomer supplied from the extraction line (4) shown in FIG. 1 is polycondensed under reduced pressure in the first polycondensation reaction tank (a) to become a prepolymer, and then extracted. It is supplied to the second polycondensation reaction tank (d) via the output gear pump (c) and the extraction line (L1).
[0126] 1族、および Zまたは 2族金属触媒の添加が必要な場合は、調製槽(図示せず)で これらの触媒を 1, 4 ブタンジオール等の溶媒で希釈し所定濃度に調製した後、ラ イン (L7)を経て、 1, 4 ブタンジオールの供給ライン (L8)に連結し、 1, 4 ブタン ジオールでさらに希釈した後、オリゴマーの抜出ライン (4)に供給する。これは、図 3 においても同様である。  [0126] When addition of Group 1 and Z or Group 2 metal catalysts is necessary, after diluting these catalysts with a solvent such as 1, 4 butanediol in a preparation tank (not shown) Then, it is connected to the 1,4 butanediol supply line (L8) via the line (L7), further diluted with 1,4 butanediol, and then supplied to the oligomer extraction line (4). The same applies to Fig. 3.
[0127] 第 2重縮合反応器 (d)では、通常、第 1重縮合反応器 (a)よりも低い圧力で更に重 縮合が進みポリマーとなる。得られたポリマーは、抜出用ギヤポンプ (e)及び抜出ライ ン (L3)を経て、ダイスヘッド (g)から溶融したストランドの形態で抜き出し、水などで 冷却された後、回転式カッター (h)で切断してペレットとする。  [0127] In the second polycondensation reactor (d), usually, polycondensation proceeds at a lower pressure than that of the first polycondensation reactor (a) to become a polymer. The obtained polymer is extracted in the form of a melted strand from the die head (g) through the extraction gear pump (e) and the extraction line (L3), cooled with water, etc., and then a rotary cutter ( Cut into pellets in h).
[0128] 更に図 3においては、第 2重縮合反応器 (d)で得られたポリマーを、抜出用ギヤポ ンプ (e)及び抜出ライン (L3)を経て、第 3重縮合反応槽 (k)に供給する。第 3重縮合 反応槽 (k)は、複数個の攪拌翼ブロックで構成され、 2軸のセルフクリーニングタイプ の攪拌翼を具備した横型の反応槽である。  Further, in FIG. 3, the polymer obtained in the second polycondensation reactor (d) is passed through the extraction gear pump (e) and the extraction line (L3), and then passed through the third polycondensation reaction tank ( k). The third polycondensation reaction tank (k) is a horizontal reaction tank composed of a plurality of stirring blade blocks and equipped with a biaxial self-cleaning type stirring blade.
[0129] 通常、第 2重縮合反応槽 (d)においては、第 1重縮合反応槽 (a)よりも低い圧力で 重縮合が進み、そして第 3重縮合反応槽 (k)において重縮合が更に進み、ポリマーと なる。  [0129] Usually, in the second polycondensation reaction tank (d), polycondensation proceeds at a lower pressure than in the first polycondensation reaction tank (a), and polycondensation occurs in the third polycondensation reaction tank (k). Going further, it becomes a polymer.
[0130] 第 3縮合反応器 (k)で得られたポリマーは、抜出用ギヤポンプ (m)及び抜出ライン( L5)を経てダイスヘッド (g)力も溶融したストランドの形態で抜き出され、水などで冷 却された後、回転式カッター (h)で切断してペレットとなる。  [0130] The polymer obtained in the third condensation reactor (k) is extracted in the form of a strand in which the die head (g) force is also melted through the extraction gear pump (m) and the extraction line (L5). After cooling with water, etc., it is cut into pellets by a rotary cutter (h).
[0131] 尚、図 2、 3における符号 (L2)、(L4)、(L6)は、各重縮合反応槽 (a)、(d)、(k)の ベントラインである。 [0132] 「3Ίゴム ί本 (C5^ ) : [0131] Reference numerals (L2), (L4), and (L6) in FIGS. 2 and 3 are vent lines of the respective polycondensation reaction tanks (a), (d), and (k). [0132] “3Ί Rubber ί 本 (C5 ^):
本発明に用いるゴム性重合体は、ガラス転移温度が 0°C以下、中でも 20°C以下 のものを示し、ゴム性重合体にこれと共重合可能な単量体成分とを共重合した重合 体をも含む。本発明に用いる C成分は、一般にポリカーボネート榭脂組成物などに配 合されて、その機械的特性を改良し得る、従来公知の任意のものを使用できる。  The rubbery polymer used in the present invention has a glass transition temperature of 0 ° C or lower, particularly 20 ° C or lower, and is a polymer obtained by copolymerizing a rubbery polymer with a monomer component copolymerizable therewith. Including body. As the component C used in the present invention, any conventionally known component that can be generally combined with a polycarbonate resin composition or the like to improve its mechanical properties can be used.
[0133] C成分としては例えば、ポリブタジエン、ポリイソプレン、ジェン系共重合体 (スチレ ン.ブタジエン共重合体、アクリロニトリル.ブタジエン共重合体、アクリル.ブタジエン ゴム等)、エチレンと α—ォレフィンとの共重合体(エチレン.プロピレン共重合体、ェ チレン .ブテン共重合体、エチレン'オタテン共重合体など)、エチレンと不飽和カル ボン酸エステルとの共重合体(エチレン.メタタリレート共重合体、エチレン .ブチルァ タリレート共重合体など)、エチレンと脂肪族ビニルイ匕合物との共重合体、エチレンと プロピレンと非共役ジェンとのターポリマー、アクリルゴム(ポリブチルアタリレート、ポ リ(2—ェチルへキシルアタリレート)、ブチルアタリレート · 2—ェチルへキシルアタリレ ート共重合体など)、シリコーン系ゴム(ポリオルガノシロキサンゴム、ポリオルガノシロ キサンゴムとポリアルキル (メタ)アタリレートゴムと力もなる ΙΡΝ型複合ゴム)等が挙げ られる。 [0133] Examples of component C include polybutadiene, polyisoprene, gen-based copolymers (styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, acrylic butadiene rubbers, etc.), ethylene and α- olefin. Polymers (ethylene / propylene copolymer, ethylene / butene copolymer, ethylene / otaten copolymer, etc.), ethylene / unsaturated carboxylic acid ester copolymer (ethylene / metatalylate copolymer, ethylene. Butyl phthalate copolymer), copolymer of ethylene and aliphatic vinyl compound, terpolymer of ethylene, propylene and non-conjugated gen, acrylic rubber (polybutyl acrylate, poly (2-ethylhexyl) Acrylate), butyl acrylate, 2-ethylhexyl acrylate copolymer), silico And rubbers (polyorganosiloxane rubber, polyorganosiloxane rubber and polyalkyl (meth) acrylate rubber and vertical composite rubber that also has power).
[0134] これらは 1種を単独で用いても 2種以上を併用してもよい。なお「(メタ)アタリレート」 は「アタリレート」と「メタタリレート」を意味し、後述の「 (メタ)アクリル酸」は「アクリル酸」 と「メタクリル酸」を意味する。  [0134] These may be used alone or in combination of two or more. Note that “(meth) acrylate” means “attalate” and “methacrylate”, and “(meth) acrylic acid” described later means “acrylic acid” and “methacrylic acid”.
[0135] また本発明に用いる C成分としては、ゴム性重合体に単量体成分重合した、共重合 体を用いてもよい。この単量体としては例えば、芳香族ビニル化合物、シアン化ビ- ル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸ィ匕合物などが好適に 挙げられる。その他の単量体成分としては、グリシジル (メタ)アタリレート等のェポキ シ基含有 (メタ)アクリル酸エステルイ匕合物;マレイミド、 Ν—メチルマレイミド、 Ν フエ -ルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、ィタコン酸などの α , β ~ 不飽和カルボン酸ィ匕合物やそれらの無水物(例えば無水マレイン酸など)が挙げら れる。これらの単量体成分は 1種を単独で用いても 2種以上を併用してもよい。  [0135] As the C component used in the present invention, a copolymer obtained by polymerizing a monomer component to a rubber polymer may be used. Preferred examples of this monomer include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds, and (meth) acrylic acid compounds. Examples of other monomer components include epoxy group-containing (meth) acrylic acid ester compounds such as glycidyl (meth) atalylate; maleimide compounds such as maleimide, Ν-methylmaleimide, Ν-malemaleimide; maleic acid, Examples thereof include α, β-unsaturated carboxylic acid compounds such as phthalic acid and itaconic acid, and anhydrides thereof (for example, maleic anhydride). These monomer components may be used alone or in combination of two or more.
[0136] 本発明に用いる C成分は、耐衝撃性の点力もコア Ζシヱル型グラフト共重合体タイ プのものが好ましい。中でもブタジエン含有ゴム、ブチルアタリレート含有ゴム、シリコ ーン系ゴム力 選ばれる少なくとも 1種をゴム性重合体のコア層とし、その周囲にァク リル酸エステル、メタクリル酸エステル、芳香族ビ-ルイ匕合物カゝら選ばれる少なくとも 1 種の単量体成分を共重合して形成されたシェル層からなる、コア Zシェル型グラフト 共重合体が特に好ましい。 [0136] The C component used in the present invention has a high impact resistance and a core-seal type graft copolymer tie. Are preferred. Among them, at least one selected from butadiene-containing rubber, butyl acrylate-containing rubber, and silicone rubber strength is used as a rubber polymer core layer, and acrylic acid ester, methacrylic acid ester, aromatic belief around it. A core Z shell type graft copolymer comprising a shell layer formed by copolymerizing at least one monomer component selected from a composite product is particularly preferred.
[0137] より具体的には、メチルメタクリレートーブタジエン スチレン重合体 (MBS)、メチ ルメタクリレートーアクリロニトリル一ブタジエン一スチレン重合体(MABS)、メチルメ タクリレートーブタジエン重合体(MB)、メチルメタクリレートーアクリルゴム重合体(M A)、メチルメタクリレートーアクリルゴム スチレン重合体(MAS)、メチルメタクリレー ト アクリル ·ブタジエンゴム共重合体、メチルメタタリレート アクリル ·ブタジエンゴム スチレン共重合体、メチルメタクリレートー(アクリル 'シリコーン IPN (interpenetra ting polymer network)ゴム)重合体などが挙げられる。この様なゴム性重合体は 、 1種を単独で用いても 2種以上を併用してもよい。  [0137] More specifically, methyl methacrylate-butadiene styrene polymer (MBS), methyl methacrylate-acrylonitrile-butadiene styrene polymer (MABS), methyl methacrylate-butadiene polymer (MB), methyl methacrylate-acrylic. Rubber polymer (MA), Methyl methacrylate-acrylic rubber Styrene polymer (MAS), Methyl methacrylate Acrylate / Butadiene rubber copolymer, Methyl methacrylate Acrylate / Butadiene rubber Styrene copolymer, Methyl methacrylate (Acrylic Examples include silicone IPN (interpenetrating polymer network) rubber. Such rubbery polymers may be used alone or in combination of two or more.
[0138] その他のゴム性重合体の具体例としては、ポリブタジエンゴム、スチレンーブタジェ ン共重合体(SBR)、スチレン ブタジエン スチレンブロック共重合体(SBS)、スチ レン エチレン Zブチレン スチレンブロック共重合体 (SEBS)、スチレン ェチレ ン Zプロピレン一スチレンブロック共重合体(SEPS)、アクリロニトリル一ブタジエン一 スチレン重合体 (ABS)、アクリロニトリル—スチレン—アクリルゴム重合体 (ASA)、ァ クリロ-トリル一エチレンプロピレンゴム一スチレン重合体 (AES)等が挙げられる。  [0138] Specific examples of other rubbery polymers include polybutadiene rubber, styrene-butadiene copolymer (SBR), styrene butadiene styrene block copolymer (SBS), styrene ethylene Z butylene styrene block copolymer Polymer (SEBS), Styrene Ethylene Z Propylene / Styrene Block Copolymer (SEPS), Acrylonitrile / Butadiene / Styrene Polymer (ABS), Acrylonitrile-Styrene-Acrylic Rubber Polymer (ASA), Acrylonitrile-Tolyl / Ethylene Propylene Examples thereof include rubber-styrene polymer (AES).
[0139] 本発明の芳香族ポリカーボネート榭脂組成物においては、 A成分と B成分の含有 比率は、 A成分および B成分の合計 100重量部中、 A成分は 51〜99重量部、好まし くは 55〜90重量部、より好ましくは 60〜85重量部であり、 B成分は 1〜49重量部、 好ましくは 10〜45重量部、より好ましくは 15〜40重量部である。  [0139] In the aromatic polycarbonate resin composition of the present invention, the content ratio of the component A and the component B is preferably 51 to 99 parts by weight of the component A out of a total of 100 parts by weight of the component A and the component B. Is 55 to 90 parts by weight, more preferably 60 to 85 parts by weight, and component B is 1 to 49 parts by weight, preferably 10 to 45 parts by weight, more preferably 15 to 40 parts by weight.
[0140] A成分を 51重量部以上とすることで耐衝撃性が向上する傾向にあり、 99重量部未 満にすることで流動性ゃ耐薬品性が向上する傾向にある。  [0140] When the A component is 51 parts by weight or more, impact resistance tends to be improved, and when it is less than 99 parts by weight, fluidity tends to improve chemical resistance.
[0141] C成分は、 A成分と B成分の合計 100重量部に対して、 0. 5〜40重量部、中でも 2 〜30重量部、特に 3〜25重量部であることが好ましい。 C成分を 0. 5重量部以上と することで、耐衝撃性が良好になり、また 40重量部以下とすることで剛性や耐熱性、 疲労特性が向上する傾向にある。 [0141] The component C is preferably 0.5 to 40 parts by weight, more preferably 2 to 30 parts by weight, and particularly preferably 3 to 25 parts by weight with respect to 100 parts by weight of the total of the components A and B. When the C component is 0.5 parts by weight or more, impact resistance is improved, and when it is 40 parts by weight or less, rigidity, heat resistance, Fatigue properties tend to improve.
[0142] 「41無機フィラー (D成分):  [0142] "41 inorganic filler (component D):
本発明の D成分である無機フィラー(以下、「D成分」と略記することがある。)は、固 形の無機化合物である。固体の形態 (形状)は任意であって、例えば球状、板状、針 状、繊維状、不定形などの何れであってもよぐ最終的に得られる榭脂組成物の寸法 安定性、剛性を向上させるためには、中でも板状、針状、繊維状のものが好ましい。  The inorganic filler which is the D component of the present invention (hereinafter sometimes abbreviated as “D component”) is a solid inorganic compound. The form (shape) of the solid is arbitrary. For example, it may be spherical, plate-like, needle-like, fiber-like, amorphous, etc. The finally obtained resin composition has dimensional stability and rigidity. In order to improve this, a plate shape, needle shape, or fiber shape is preferable.
[0143] 尚、本発明に用いる無機フィラーの形状においては、以下の様に球状、板状、針状 、繊維状を区別する。球状とは、真球状だけでなぐある程度断面楕円状や略長円 状のものも含み、好ましくはアスペクト比が 1に近いものであり、具体的なアスペクト比 としては、 0. 5を超えて 2未満のものを示す。  [0143] The shape of the inorganic filler used in the present invention is distinguished from spherical, plate-like, needle-like and fiber-like as follows. A spherical shape includes a shape having an elliptical cross section or a substantially oval shape to a certain extent that is not limited to a true spherical shape, and preferably has an aspect ratio close to 1, with a specific aspect ratio exceeding 0.5. Indicates less than.
[0144] 板状とは、板状の形状を呈してアスペクト比 (板状粉の板状面における最長辺の長 さ Z板状体の厚み)が 2〜: LOOの範囲のものを示す。針状とは、長さが 100 μ m以下 でアスペクト比 (粒子長さ Z粒子径)が 2〜20の範囲のものを示し、そして繊維状とは 、長さが 100 mを超えるものを示す。そしてこれらの形状は電子顕微鏡写真などに より、容易に判別することが出来る。  [0144] The plate shape indicates a plate shape and an aspect ratio (the length of the longest side of the plate-like surface of the plate-like powder, the thickness of the Z-plate body) in the range of 2 to: LOO. Needle-shaped refers to those with a length of 100 μm or less and an aspect ratio (particle length Z particle diameter) in the range of 2 to 20, and fibrous refers to those with a length exceeding 100 m . These shapes can be easily identified by an electron micrograph or the like.
[0145] 本発明に用いる無機フィラー (D成分)としては、具体的には例えば、板状無機フィ ラーとしてはタルク等の珪酸マグネシウム、カオリナイト、クレー、マイ力、黒鉛、セリサ イト、モンモリロナイト、板状炭酸カルシウム、板状アルミナ、ガラスフレーク等が挙げ られる。  [0145] Specific examples of the inorganic filler (D component) used in the present invention include, for example, magnesium silicate such as talc, kaolinite, clay, my strength, graphite, sericite, montmorillonite, and the like as a plate-like inorganic filler. Examples include plate-like calcium carbonate, plate-like alumina, and glass flakes.
[0146] 針状無機フイラ一としてはゥオラストナイト等の珪酸カルシウム、モスハイジ、ゾノトラ イト、チタン酸カルシウム、硼酸アルミニウム、針状炭酸カルシウム、針状酸化チタン、 テトラポット型酸ィ匕亜鉛などが挙げられ、また繊維状無機フイラ一としてはガラス繊維 、炭素繊維などが挙げられる。  [0146] Examples of acicular inorganic fillers include calcium silicates such as wollastonite, moss heidi, zonotrite, calcium titanate, aluminum borate, acicular calcium carbonate, acicular titanium oxide, and tetrapot type acid zinc oxide. Examples of the fibrous inorganic filler include glass fiber and carbon fiber.
[0147] 本発明に用いる無機フィラー (D成分)が板状、針状無機フィラーの場合、その平均 粒子径は、適宜選択して決定すればよいが、 0. 1〜25 μ mであることが好ましい。平 均粒子径が小さすぎると補強効果が不充分となり易ぐ逆に大きすぎても製品外観に 悪影響を与えやすぐ更に耐衝撃性も不十分となる場合がある。よって平均粒子径 は、中でも 0. 3〜15 /ζ πι、特に 0. 5〜: LO /z mであることが好ましい。 [0148] ここで平均粒子径とは、 X線透過による液相沈降方式で測定された D をいう。この [0147] When the inorganic filler (component D) used in the present invention is a plate-like or needle-like inorganic filler, the average particle diameter may be appropriately selected and determined, but is 0.1 to 25 µm. Is preferred. If the average particle size is too small, the reinforcing effect is insufficient, and if it is too large, the product appearance may be adversely affected and the impact resistance may be further insufficient. Therefore, the average particle size is preferably 0.3 to 15 / ζ πι, particularly 0.5 to LO / zm. Here, the average particle diameter means D measured by a liquid phase precipitation method by X-ray transmission. this
50  50
ような測定が出来る装置としては、 Sedigraph粒子径分析器(Micromeritics Instr A device that can perform such measurements is the Sedigraph particle size analyzer (Micromeritics Instr
1111161^5社製「モデル5100」)が挙げられる。 1111161 ^ 5 "Model 5100").
[0149] また、本発明に用いる無機フィラー (D成分)が繊維状無機フィラーの場合、その平 均繊維径は、適宜選択して決定すればよいが、 1〜20 /ζ πιであることが好ましぐ更 には 2〜17 μ m、特に 3〜15 μ mであることが好ましい。繊維径が 1 μ m未満では補 強効果が不充分となり易ぐ 15 mを超えると製品外観に悪影響を与えやすいので 何れも好ましくない。なお、繊維状フイラ一の繊維径は、電子顕微鏡写真により容易 に測定することが出来る。  [0149] When the inorganic filler (component D) used in the present invention is a fibrous inorganic filler, the average fiber diameter may be appropriately selected and determined, but may be 1 to 20 / ζ πι. More preferably, it is 2 to 17 μm, particularly 3 to 15 μm. If the fiber diameter is less than 1 μm, the reinforcing effect is insufficient, and if it exceeds 15 m, the appearance of the product tends to be adversely affected. The fiber diameter of the fibrous filler can be easily measured with an electron micrograph.
[0150] 本発明に用いる無機フィラーの中でも、剛性、流動性、耐衝撃性のバランスの点で 、珪酸塩ィ匕合物および Zまたはガラス繊維、ガラスフレークカゝら選ばれるガラス系フィ ラーが好ましぐ製品外観の点でより好ましいものは、珪酸塩化合物である。珪酸塩 化合物とは、少なくとも金属酸化物成分と SiO成分とからなるものであり、オルトシリ  [0150] Among the inorganic fillers used in the present invention, there are glass-based fillers selected from silicate compounds, Z, glass fibers, and glass flakes in terms of the balance of rigidity, fluidity, and impact resistance. A silicate compound is more preferable in terms of a preferable product appearance. A silicate compound is composed of at least a metal oxide component and an SiO component.
2  2
ケート、ジシリケート、環状シリケート、鎖状シリケート、層状シリケート等の何れの形態 であってもよい。また本発明に用いる珪酸塩ィ匕合物は、結晶状態を取るものであり、 当該珪酸塩ィヒ合物が取り得る何れの形態であってもよぐ結晶形状についても、繊 維状、板状など、各種の形状から適宜選択して決定すればよい。更に本発明に用い る珪酸塩化合物は、天然鉱物および人工合成物の何れも使用することが出来、人工 合成物としては、従来公知の各種の方法力も得られた珪酸塩ィ匕合物が利用できる。 また前記珪酸塩化合物は、粉砕および分級により、所望の粒径、繊維長にして使用 することが出来る。  Any form such as a karate, disilicate, cyclic silicate, chain silicate, layered silicate, etc. may be used. In addition, the silicate composite used in the present invention is in a crystalline state, and any crystal form that the silicate composite can take may be a fiber, a plate What is necessary is just to select and determine suitably from various shapes, such as a shape. Furthermore, as the silicate compound used in the present invention, any of natural minerals and artificial synthetics can be used, and as the artificial synthetics, silicate compounds obtained with various conventionally known method powers are used. it can. The silicate compound can be used in a desired particle size and fiber length by pulverization and classification.
[0151] 本発明において D成分として用いる珪酸塩ィ匕合物は、下記式で表される珪酸塩ィ匕 合物である。
Figure imgf000033_0001
[0151] The silicate compound used as the component D in the present invention is a silicate compound represented by the following formula.
Figure imgf000033_0001
[0153] ここで χ及び yは自然数を示し、 zは 0以上の整数を示し、また MOは金属酸化物成 分を示し、 MOは複数の金属酸ィ匕物を含んでいてもよい。  [0153] Here, χ and y represent natural numbers, z represents an integer of 0 or more, MO represents a metal oxide component, and MO may include a plurality of metal oxides.
[0154] 上記金属酸化物 MOにおける金属 Mは、カリウム、ナトリウム、リチウム、バリウム、力 ルシゥム、亜鉛、マンガン、鉄、コノルト、マグネシウム、ジルコニウム、アルミニウム、 チタン等が挙げられる。金属酸化物 MOとしては、 CaO又は MgOの何れかを実質的 に含むものが好ましい。 [0154] The metal M in the metal oxide MO is potassium, sodium, lithium, barium, force russium, zinc, manganese, iron, connolto, magnesium, zirconium, aluminum, Examples include titanium. As the metal oxide MO, those substantially containing either CaO or MgO are preferable.
[0155] 本発明において D成分として用いる珪酸塩ィ匕合物の具体例としては、ウォラストナイ ト、タルク、マイ力、ゾノトライト、セピオライト、ァタバルジャイト、カオリナイト、モンモリ ロナイト、ベントナイト、スメクタイト等を挙げることが出来る。中でも、剛性、耐衝撃性、 外観の点から、ウォラストナイト、タルク、マイ力が好ましい。  [0155] Specific examples of the silicate compound used as the D component in the present invention include wollastonite, talc, my strength, zonotolite, sepiolite, attabalgite, kaolinite, montmorillonite, bentonite, smectite and the like. I can do it. Of these, wollastonite, talc, and my strength are preferred in terms of rigidity, impact resistance, and appearance.
[0156] ウォラストナイト:  [0156] Wollastonite:
本発明にお 、て D成分として用いるウォラストナイトは、針状結晶をもつ天然白色鉱 物であり、化学式は CaO ' SiOで表される。通常 SiOが約 50重量%、 CaOが約 46  In the present invention, wollastonite used as the D component is a natural white mineral having needle-like crystals, and the chemical formula is represented by CaO′SiO. Usually, SiO is about 50% by weight, CaO is about 46
2 2  twenty two
重量%、その他 Fe O、 Al O等を含有しており、比重は 2. 9である。また平均ァス  It contains wt%, Fe O, Al 2 O, etc., and the specific gravity is 2.9. Also average
2 3 2 3  2 3 2 3
ぺクト比は 3以上のものが好ましい。この様なウォラストナイトとしては例えば、川鉄鉱 業社製 PH330、 PH450、ナイコミネラルズ社製ナイグロス 4、ナイダロス 5、キンセィ マテック社製 SH1250、 SH1800力挙げられる。  A pect ratio of 3 or more is preferred. Examples of such wollastonite include PH330 and PH450 manufactured by Kawatetsu Mining Co., Ltd., Nigros 4 and Niidaros 5 manufactured by Nyco Minerals, and SH1250 and SH1800 manufactured by Kinsey Matech.
[0157] タノレク: [0157] Tanorek:
本発明にお!ヽて D成分として用いるタルクは、層状構造を持つ含水ケィ酸マグネシ ゥムであって、化学式は 4SiO - 3MgO-H Oで示され、通常 SiOを 58〜66重量0 /0 ! Talc used as component D Te Contactヽthe present invention is a hydrous Kei acid magnesium © beam having a layered structure, chemical formula 4SiO - indicated by 3MgO-HO, the normal SiO 58 to 66 weight 0/0
2 2 2  2 2 2
、 MgOを 28〜35重量%、 H Oを約 5重量%含み、その他少量成分として Fe O力 ^  , MgO 28-35% by weight, H 2 O about 5% by weight, Fe O force as other minor components ^
2 2 3 2 2 3
. 03〜: L 2重量0 /0、 Al O力 0. 05〜: L 5重量0 /0、 CaO力 0. 05〜: L 2重量0 /0、 K . 03~: L 2 Weight 0/0, Al O forces 0. 05~: L 5 weight 0/0, CaO force 0. 05~: L 2 Weight 0/0, K
2 3 2 2 3 2
Oが 0. 2重量%以下、 Na Oが 0. 2重量%以下など、含有しており比重は約 2. 7で O is 0.2% by weight or less, Na O is 0.2% by weight or less, and the specific gravity is about 2.7.
2  2
ある。タルクの平均粒子径は 0. 3〜 15 mであることが好ましぐ中でも 0. 5〜: LO /z mであることが好ましい。  is there. The average particle diameter of talc is preferably 0.3 to 15 m, and more preferably 0.5 to LO / z m.
[0158] マイ力: [0158] My strength:
本発明において D成分として用いるマイ力は、アルミニウム、カリウム、マグネシウム 、ナトリウム、鉄などを含んだケィ酸塩鉱物の粉砕物である。具体的には例えば、白 雲母(マスコバイト、化学式: K(AlSi O ) (OH) Al (OH) (AlSi O )K)、金雲母  In the present invention, the my strength used as the D component is a pulverized silicate salt containing aluminum, potassium, magnesium, sodium, iron and the like. Specifically, for example, muscovite (mascobite, chemical formula: K (AlSi O) (OH) Al (OH) (AlSi O) K), phlogopite
3 10 2 4 2 3 10  3 10 2 4 2 3 10
(フロゴバイト、化学式: K (AlSi O ) (OH) Mg (OH) (AlSi O )K)、黒雲母 (バ  (Phlogopite, chemical formula: K (AlSi O) (OH) Mg (OH) (AlSi O) K), biotite (bar
3 10 2 6 2 3 10  3 10 2 6 2 3 10
ィォタイト、化学式: K (AlSi O ) (OH) (Mg, Fe) (OH) (AlSi O )K)、人造雲  Geotite, chemical formula: K (AlSi O) (OH) (Mg, Fe) (OH) (AlSi O) K), artificial clouds
3 10 2 6 2 3 10  3 10 2 6 2 3 10
母(フッ素金雲母、化学式: K(AlSi O ) (OH) F Mg F (AlSi O )K)等が挙げ  Mother (fluorine phlogopite, chemical formula: K (AlSi O) (OH) F Mg F (AlSi O) K)
3 10 2 2 6 2 3 10 られる。本発明においては、従来公知の任意のマイ力を使用できるが、中でも白雲母 を用いることが好まし ヽ。またマイ力の粉砕法としては乾式粉砕法および湿式粉砕法 の何れで製造されたものであってもょ ヽが、湿式粉砕法の方がマイ力をより薄く細力べ 粉砕するのに有効であり、その結果榭脂組成物の補強効果がより高くなるので好まし い。 3 10 2 2 6 2 3 10 It is done. In the present invention, any conventionally known My force can be used, but among these, muscovite is preferably used. In addition, as a pulverization method for My power, either the dry pulverization method or the wet pulverization method is used, but the wet pulverization method is more effective for pulverizing the My power more thinly and finely. And, as a result, the reinforcing effect of the resin composition is higher, which is preferable.
[0159] また D成分は、 A成分と B成分の合計 50〜99重量部に対して、 1〜50重量部であ り、中でも 3〜45重量部、特に 5〜40重量部であることが好ましい(A〜D成分の合 計は 100重量部)。 B成分力 ^重量部未満では剛性が十分でなぐ逆に 50重量部を 超えると耐衝撃性や滞留熱安定性が低下する。  [0159] The component D is 1 to 50 parts by weight, particularly 3 to 45 parts by weight, and particularly 5 to 40 parts by weight, with respect to the total 50 to 99 parts by weight of the components A and B. Preferred (the total of components A to D is 100 parts by weight). B component strength ^ If less than parts by weight, the rigidity is insufficient. On the other hand, if it exceeds 50 parts by weight, impact resistance and stagnant heat stability deteriorate.
[0160] 「51リン系化合物:  [0160] "51 Phosphorus compounds:
本発明のポリカーボネート榭脂組成物は、本発明の効果を損なわない範囲におい て耐熱性や滞留熱安定性を向上するためにリン系化合物を含有させることが好まし い。リン系化合物としては、従来公知の任意のものを使用できる。具体的には、リン酸 、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのォキソ酸、酸性ピロリン酸 ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金 属塩、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第 1族または 第 2B族金属のリン酸塩、有機ホスフェート化合物、有機ホスファイト化合物、有機ホ スホナイトイ匕合物などを挙げることが出来る。  The polycarbonate resin composition of the present invention preferably contains a phosphorus compound in order to improve heat resistance and residence heat stability within a range not impairing the effects of the present invention. As the phosphorus compound, any conventionally known compound can be used. Specifically, phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, phosphorous oxo acid such as phosphoric acid, acidic pyrophosphoric acid metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, acidic calcium pyrophosphate, phosphoric acid Examples include Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate, organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds.
[0161] これらの中で、下記一般式 (I)で表される有機ホスフ ートイヒ合物および Zまたは 下記一般式 (Π)で表される有機ホスファイトィ匕合物が好まし 、。  Of these, organic phosphite compounds represented by the following general formula (I) and Z or organic phosphite compounds represented by the following general formula (下 記) are preferred.
[0162] 0 = P (OH) (OR) …(I)  [0162] 0 = P (OH) (OR)… (I)
m 3— m  m 3— m
[0163] 一般式 (I)中、 Rはアルキル基またはァリール基であり、それぞれ同一であっても異 なっていてもよい。 mは 0〜2の整数である。  [0163] In general formula (I), R is an alkyl group or an aryl group, which may be the same or different. m is an integer of 0-2.
[0164] [化 1]
Figure imgf000035_0001
[0164] [Chemical 1]
Figure imgf000035_0001
[0165] 式中、 R'はアルキル基またはァリール基であり、それぞれ同一でも異なっていても よい。 [0166] 上記一般式 (I)中、 Rは、好ましくは、炭素原子数 1〜30のアルキル基または炭素 原子数 6〜30のァリール基であり、より好ましくは、炭素原子数 2〜25のアルキル基 である。また mは、好ましくは 1及び Z又は 2である。 In the formula, R ′ is an alkyl group or an aryl group, which may be the same or different. [0166] In the general formula (I), R is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, more preferably 2 to 25 carbon atoms. It is an alkyl group. M is preferably 1 and Z or 2.
[0167] また、上記一般式 (Π)中、 R'は、好ましくは、炭素原子数 1〜30のアルキル基また は炭素原子数 6〜30のァリール基である。上記一般式 (Π)で表される亜リン酸エステ ルの好ましい具体例としては、ジステアリルペンタエリスリトールジホスフアイト、ビス(2 , 4ージ—tert ブチルフエ-ル)ペンタエリスリトールジホスフアイト、ビス(2, 6 ジ —tert—ブチルー 4 メチルフエ-ル)ペンタエリスリトールジホスファイトを挙げること 出来る。  [0167] In the general formula (Π), R 'is preferably an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Preferable specific examples of the phosphite ester represented by the above general formula (ジ) include distearyl pentaerythritol diphosphite, bis (2,4-di-tertbutylphenol) pentaerythritol diphosphite, bis Mention may be made of (2, 6 di-tert-butyl-4-methylphenol) pentaerythritol diphosphite.
[0168] これらリン系化合物の含有量は、 A成分と B成分の合計 100重量部に対して 0. 00 1〜1重量咅であること力 S好ましく、中でも 0. 005〜0. 5重量咅^特に 0. 01〜0. 3 重量部であることが好まし 、。  [0168] The content of these phosphorus compounds is preferably from 0.001 to 1 wt.%, Preferably from 0.005 to 0.5 wt. ^ Particularly preferred is 0.01 to 0.3 parts by weight.
[0169] 本発明のポリカーボネート榭脂組成物は、必要に応じて本発明の目的を損なわな い範囲で上記 A、 B成分以外に、他の榭脂ゃ各種榭脂添加剤を含有していてもよい  [0169] The polycarbonate resin composition of the present invention contains various resin additives other than the above-mentioned components A and B within the range that does not impair the object of the present invention, if necessary. Good
[0170] 他の榭脂としては、例えば、ポリエチレンテレフタレート榭脂、ポリトリメチレンテレフ タレート榭脂などのポリブチレンテレフタレート榭脂以外のポリエステル榭脂、アタリ口 二トリルースチレン共重合体、アクリロニトリル ブタジエン スチレン共重合体、ポリ スチレン榭脂などのスチレン系榭脂、ポリエチレン榭脂、ポリプロピレン榭脂などのポ リオレフイン榭脂、ポリアミド榭脂、ポリイミド榭脂、ポリエーテルイミド榭脂、ポリウレタ ン榭脂、ポリフエ二レンエーテル榭脂、ポリフエ二レンスルフイド榭脂、ポリスルホン榭 脂、ポリメタタリレート榭脂、フエノール榭脂、エポキシ榭脂などが挙げられる。 [0170] Examples of other resins include polyester resins other than polybutylene terephthalate resins such as polyethylene terephthalate resin and polytrimethylene terephthalate resin, Atari mouth nitrile styrene copolymer, acrylonitrile butadiene styrene. Copolymer, Polystyrene resin, Polystyrene resin such as Polystyrene resin, Polyolefin resin, Polypropylene resin such as Polypropylene resin, Polyamide resin, Polyimide resin, Polyetherimide resin, Polyurethane resin, Polyolefin resin Examples include lenether resin, polyphenylene sulfide resin, polysulfone resin, polymetatalylate resin, phenol resin, and epoxy resin.
[0171] また、各種榭脂添加剤としては、酸化防止剤、離型剤、染顔料、熱安定剤、強化剤 、難燃剤、耐衝撃性改良剤、耐候性改良剤、帯電防止剤、防曇剤、滑剤,アンチプロ ッキング剤、流動性改良剤、可塑剤、分散剤、防菌剤などが挙げられる。これらは、 1 種類単独でも 2種類以上を組み合わせて用いてもょ ヽ。  [0171] In addition, various types of resin additives include antioxidants, mold release agents, dyes and pigments, heat stabilizers, reinforcing agents, flame retardants, impact resistance improvers, weather resistance improvers, antistatic agents, antistatic agents. Examples include clouding agents, lubricants, anti-blocking agents, fluidity improvers, plasticizers, dispersants, and antibacterial agents. These can be used alone or in combination of two or more.
[0172] 本発明の榭脂組成物は、前記 A、 B成分の他に、榭脂ゃ添加剤などを、従来公知 の任意のもの方法を適宜選択して採用することが出来る。 [0173] 具体的には例えば、前記 A、 B成分および必要に応じて配合される添加成分を、タ ンブラーやヘンシェルミキサー等の各種混合機を用い予め混合した後、バンバリーミ キサ一、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダ一等で 溶融混練し、榭脂組成物を製造することが出来る。また、各成分を予め混合せずに、 又は、一部の成分のみ予め混合してフイダーを用いて押出機に供給して溶融混練し て榭脂組成物を製造することも出来る。 [0172] In addition to the components A and B, the resin composition of the present invention can employ any of conventionally known methods, such as resin additives, as appropriate. [0173] Specifically, for example, the components A and B and additive components blended as necessary are mixed in advance using various mixers such as a tumbler and a Henschel mixer, and then mixed with a Banbury mixer, roll, A resin composition can be produced by melt-kneading with a lavender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader or the like. In addition, the resin composition can be produced without mixing each component in advance, or by mixing only some components in advance and supplying them to an extruder using a feeder and melt-kneading them.
[0174] 本発明の榭脂組成物力 成形品を製造する方法は、特に限定されるものではなぐ 熱可塑性榭脂について一般に採用されている成形法、すなわち一般的な射出成形 法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形 法、断熱金型を用いた成形法、急速加熱金型を用いた成形法、発泡成形 (超臨界流 体も含む)、インサート成形、 IMC (インモールドコーティング成形)成形法、押出成形 法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などを採用 することが出来る。また、ホットランナー方式を用いた成形法を選択することも出来る。  [0174] The power of the resin composition of the present invention The method for producing a molded product is not particularly limited. The molding method generally used for thermoplastic resin is a general injection molding method, an ultra-high speed injection molding method. Method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulation mold, molding method using rapid heating mold, foam molding (including supercritical fluid), Insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, etc. can be employed. A molding method using a hot runner method can also be selected.
[0175] また、本発明においては、廃棄物低減などの環境負荷低減やコスト低減の観点か ら、榭脂組成物から成形品を製造する際に、製品の不適合品、スプルー、ランナー、 使用済みの製品などのリサイクル原料をバージン材料と混合してリサイクル、 Vヽゎゅ るマテリアルリサイクルすることが出来る。この際、リサイクル原料は、粉砕して使用す ることが成形品を製造する際に不具合を少なく出来るので好ましい。  [0175] Further, in the present invention, from the viewpoint of reducing environmental burden such as waste reduction and cost reduction, when manufacturing a molded product from a resin composition, non-conforming product, sprue, runner, used Recycling materials such as these products can be mixed with virgin materials for recycling, and V materials can be recycled. In this case, it is preferable to use the recycled raw material because it can be used after being pulverized, since it can reduce problems in producing a molded product.
[0176] リサイクル原料の含有比率は、リサイクル原料とバージン原料の合計 100重量%中 、 70重量%以下であることが好ましぐより好ましくは 50重量%以下、さらに好ましく は 30重量%以下である。  [0176] The content ratio of the recycled material is preferably 70% by weight or less, more preferably 50% by weight or less, and even more preferably 30% by weight or less, out of the total 100% by weight of the recycled material and the virgin material. .
実施例  Example
[0177] 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はその要旨を超 えない限り、以下の実施例に限定されるものではない。なお、以下の実施例および比 較例において、配合量は重量部を意味する。  [0177] The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the following examples and comparative examples, the blending amount means parts by weight.
[0178] 実施例および比較例の各榭脂組成物を得るに当たり、次に示す原料を準備した。  [0178] In obtaining each of the resin compositions of Examples and Comparative Examples, the following raw materials were prepared.
[0179] <A成分 >  [0179] <A component>
PC— 1:界面重合法で製造されたビスフエノール A型芳香族ポリカーボネート(三菱 エンジニアリングプラスチックス社製「ユーピロン S— 3000FN」、 Mv22500、末端水 酸基濃度 150ppm) PC—1: Bisphenol A-type aromatic polycarbonate produced by interfacial polymerization (Mitsubishi ("Iupilon S-3000FN" manufactured by Engineering Plastics, Mv22500, terminal hydroxyl group concentration 150 ppm)
[0180] PC— 2:界面重合法で製造されたビスフエノール A型芳香族ポリカーボネート(三菱 エンジニアリングプラスチックス社製「ユーピロン E— 2000FN」、 Mv28000、末端水 酸基濃度 150ppm)  [0180] PC-2: Bisphenol A-type aromatic polycarbonate produced by interfacial polymerization (“Iupilon E-2000FN” manufactured by Mitsubishi Engineering Plastics, Mv28000, terminal hydroxyl group concentration 150 ppm)
[0181] PC— 3:界面重合法で製造されたビスフエノール A型芳香族ポリカーボネート(三菱 エンジニアリングプラスチックス社製「ユーピロン H—4000FN」、粘度平均分子量 15 500、末端水酸基濃度 = 150ppm)  [0181] PC-3: Bisphenol A-type aromatic polycarbonate produced by interfacial polymerization (“Iupilon H-4000FN” manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight 15 500, terminal hydroxyl group concentration = 150 ppm)
[0182] < B成分 >  [0182] <B component>
製造例 1 (PBT— 1の製造):  Production Example 1 (Production of PBT-1):
図 1に示すエステルイ匕工程と図 3に示す重縮合工程を通し、次の要領でポリブチレ ンテレフタレート樹脂の製造を行った。先ず、テレフタル酸 1. 00モルに対して、 1, 4 ブタンジオール 1. 80モルの割合で混合した 60°Cのスラリーをスラリー調製槽から 原料供給ライン(1)を通じ、予め、エステルイ匕率 99%のポリブチレンテレフタレートォ リゴマーを充填したスクリュー型攪拌機を有するエステルイ匕のための反応槽 (A)に、 Through the esterification step shown in FIG. 1 and the polycondensation step shown in FIG. 3, polybutylene terephthalate resin was produced in the following manner. First, a 60 ° C slurry mixed at a ratio of 1.80 moles of 1,4 butanediol to 1.00 moles of terephthalic acid is passed through the raw material supply line (1) from the slurry preparation tank in advance. In a reaction vessel (A) for ester cake having a screw type stirrer charged with 1% polybutylene terephthalate oligomer,
40. OkgZhとなる様に連続的に供給した。 40. It was continuously supplied so as to be OkgZh.
[0183] 同時に、再循環ライン(2)から 185°Cの精留塔 (C)の塔底成分を 18. 4kgZhで供 給し、触媒供給ライン (3)から触媒として 65°Cのテトラブチルチタネートの 6. 0重量 % 1 , 4 ブタンジオール溶液を 127g/hで供給した (理論ポリマー収量に対し 40pp m)。この溶液中の水分は 0. 20重量0 /。であった。 [0183] At the same time, the bottom component of the rectification column (C) at 185 ° C was supplied at 18.4 kgZh from the recirculation line (2), and 65 ° C tetrabutyl was used as the catalyst from the catalyst supply line (3). A 6.0 wt% 1,4 butanediol solution of titanate was fed at 127 g / h (40 ppm relative to the theoretical polymer yield). The water in this solution is 0.20 weight 0 /. Met.
[0184] 反応槽 (A)の内温は 230°C、圧力は 78kPaとし、生成する水と THF及び余剰の 1 , 4 ブタンジオールを、留出ライン (5)から留出させ、精留塔 (C)で高沸成分と低沸 成分とに分離した。系が安定した後の塔底の高沸成分は、 98重量%以上が 1, 4 ブタンジオールであり、精留塔 (C)の液面が一定になる様に、抜出ライン (8)を通じ てその一部を外部に抜き出した。一方、低沸成分は塔頂よりガスの形態で抜き出し、 コンデンサ(G)で凝縮させ、タンク (F)の液面が一定になる様に、抜出ライン(13)より 外部に抜き出した。  [0184] The internal temperature of the reaction vessel (A) is 230 ° C, the pressure is 78 kPa, and the produced water, THF and excess 1,4 butanediol are distilled from the distillation line (5), In (C), a high-boiling component and a low-boiling component were separated. The high-boiling component at the bottom of the tower after the system is stabilized is 98% by weight or more of 1,4 butanediol, so that the liquid level in the rectification tower (C) is constant, through the extraction line (8). Part of it was extracted outside. On the other hand, low-boiling components were extracted from the top of the column in the form of gas, condensed by the condenser (G), and extracted from the extraction line (13) to the outside so that the liquid level in the tank (F) was constant.
[0185] 反応槽 (A)で生成したオリゴマーの一定量は、ポンプ (B)を使用し、抜出ライン (4) から抜き出し、反応槽 (A)内液の平均滞留時間が 3. Ohrになる様に液面を制御した 。抜出ライン 4力 抜き出したオリゴマーは、第 1重縮合反応槽 (a)に連続的に供給し た。系が安定した後、反応槽 (A)の出口で採取したオリゴマーのエステルイ匕率は 97 . 4%であった。 [0185] A certain amount of the oligomer produced in the reaction tank (A) was removed using the pump (B) and the extraction line (4) The liquid level was controlled so that the average residence time of the liquid in the reaction tank (A) was 3. Ohr. Extraction line 4 forces The extracted oligomer was continuously supplied to the first polycondensation reaction tank (a). After the system was stabilized, the ester ratio of the oligomer collected at the outlet of the reaction vessel (A) was 97.4%.
[0186] 第 1重縮合反応槽 (a)の内温は 240°C、圧力 2. 7kPaとし、滞留時間が 120分にな る様に液面制御を行った。減圧機(図示せず)に接続されたベントライン (L2)から、 水、 THF、 1, 4 ブタンジオールを抜き出しながら、初期重縮合反応を行った。抜き 出した反応液は第 2重縮合反応槽 (d)に連続的に供給した。  [0186] The internal temperature of the first polycondensation reaction tank (a) was 240 ° C, the pressure was 2.7 kPa, and the liquid level was controlled so that the residence time was 120 minutes. An initial polycondensation reaction was performed while extracting water, THF, and 1,4 butanediol from a vent line (L2) connected to a decompressor (not shown). The extracted reaction liquid was continuously supplied to the second polycondensation reaction tank (d).
[0187] 第 2重縮合反応槽 (d)の内温は 245°C、圧力 140Paとし、滞留時間が 60分になる 様に液面制御を行い、減圧機(図示せず)に接続されたベントライン (L4)から、水、 T HF、 1, 4 ブタンジオールを抜き出しながら、更に重縮合反応を進めた。得られた ポリマーは、抜出用ギヤポンプ (e)により抜出ライン (L3)を経由し、第 3重縮合反応 槽 (k)に連続的に供給した。第 3重縮合反応槽 (k)の内温は 239°C、圧力は 600Pa 、滞留時間は 80分とし、更に、重縮合反応を進めた。得られたポリマーは、ダイスへ ッド (g)からストランド状に連続的に抜き出し、回転式カッター (h)でカッティングした。 得られたポリブチレンテレフタレートの分析値をまとめて表 1に示す。以下、製造例 1 で得られたポリブチレンテレフタレート榭脂を PBT— 1と記す。  [0187] The internal temperature of the second polycondensation reaction tank (d) was 245 ° C, the pressure was 140 Pa, the liquid level was controlled so that the residence time was 60 minutes, and connected to a decompressor (not shown). The polycondensation reaction was further carried out while extracting water, THF, and 1,4 butanediol from the vent line (L4). The obtained polymer was continuously supplied to the third polycondensation reaction tank (k) via the extraction line (L3) by the extraction gear pump (e). The internal temperature of the third polycondensation reaction tank (k) was 239 ° C, the pressure was 600 Pa, the residence time was 80 minutes, and the polycondensation reaction was advanced. The obtained polymer was continuously extracted in a strand form from the die head (g) and cut with a rotary cutter (h). Table 1 summarizes the analytical values of the resulting polybutylene terephthalate. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 1 is referred to as PBT-1.
[0188] なお、製造例 1における分析値は、以下の方法により測定したものである。  [0188] The analytical value in Production Example 1 was measured by the following method.
[0189] (1)エステル化率:  [0189] (1) Esterification rate:
下記式によって酸価およびケンィ匕価力 算出した。酸価は、ジメチルホルムアミドに オリゴマーを溶解させ、 0. 1Nの KOHZメタノール溶液を使用して滴定により求めた 。ケン化価は 0. 5Nの KOHZエタノール溶液でオリゴマーをカ卩水分解し、 0. 5Nの 塩酸で滴定し求めた。  The acid value and Keny rating power were calculated by the following formula. The acid value was determined by titration using a 0.1 N KOHZ methanol solution after dissolving the oligomer in dimethylformamide. The saponification value was obtained by subjecting the oligomer to brine decomposition with 0.5N KOHZ ethanol solution and titrating with 0.5N hydrochloric acid.
[0190] エステル化率 = ( (ケン化価—酸価) Zケン化価) X 100  [0190] Esterification Rate = ((Saponification Value—Acid Value) Z Saponification Value) X 100
[0191] (2)ポリブチレンテレフタレート榭脂中のチタン原子および 1族、 2族金属原子濃度: 電子工業用高純度硫酸および硝酸でポリブチレンテレフタレート榭脂を湿式分解し 、高分解能 ICP (Inductively Coupled Plasma)—MS (MassSpectrometer; サーモクエスト社製)を使用して測定した。 [0192] (3)ポリブチレンテレフタレート樹脂の固有粘度 (IV): [0191] (2) Concentration of titanium atom and group 1 and group 2 metal atoms in polybutylene terephthalate resin: High-resolution ICP (Inductively Coupled) Plasma) —Measured using MS (MassSpectrometer; manufactured by ThermoQuest). [0192] (3) Intrinsic viscosity of polybutylene terephthalate resin (IV):
ウベローデ型粘度計を使用し次の要領で求めた。すなわち、フエノール Zテトラクロ ロェタン (重量比 1Z1)の混合溶媒を使用し、 30°Cにおいて、濃度 1. OgZdLのポリ マー溶液および溶媒のみの落下秒数を測定し、下記式より求めた。  It calculated | required in the following way using the Ubbelohde type viscometer. That is, a mixed solvent of phenol Z tetrachloroethane (weight ratio 1Z1) was used, and at 30 ° C., the polymer solution having a concentration of 1. OgZdL and the falling seconds of the solvent alone were measured and obtained from the following formula.
[0193] IV= ( (1 +4K 7? ) °· 5- 1) / (2Κ C) [0193] IV = ((1 + 4K 7) ° · 5 -? 1) / (2Κ C)
H sp H  H sp H
[0194] 但し、 r? = n / n 1であり、 r?はポリマー溶液落下秒数、 r? は溶媒の落下秒 sp 0 0 数、 Cはポリマー溶液濃度 (gZdL)、Kはハギンズの定数であり 0. 33とした。  [0194] where r? = N / n 1, r? Is the polymer solution fall seconds, r? Is the solvent fall seconds sp 0 0 number, C is the polymer solution concentration (gZdL), and K is the Huggins constant It was 0.33.
H  H
[0195] (4)ポリブチレンテレフタレート樹脂の末端カルボキシル基濃度:  [0195] (4) Terminal carboxyl group concentration of polybutylene terephthalate resin:
ベンジルアルコール 25mLにポリブチレンテレフタレート榭脂 0. 5gを溶解し、水酸 化ナトリウムの 0. 01モル ZLベンジルアルコール溶液を使用して滴定した。  In 25 mL of benzyl alcohol, 0.5 g of polybutylene terephthalate resin was dissolved, and titrated using a 0.01 mol ZL benzyl alcohol solution of sodium hydroxide.
[0196] (5)ポリブチレンテレフタレート樹脂の末端メトキシカルボ-ル基濃度:  [0196] (5) Concentration of terminal methoxycarbol group of polybutylene terephthalate resin:
重クロ口ホルム Zへキサフルォロイソプロパノール = 7Z3 (体積比)の混合溶媒 lm Lにポリブチレンテレフタレート榭脂約 lOOmgを溶解させ、重ピリジン 36 Lを添カロし 、 50°Cで 1H— NMRを測定し求めた。 NMR装置には日本電子社製「 α— 400」又 は「AL— 400」を使用した。  Deuterated form Z Hexafluoroisopropanol = 7Z3 (volume ratio) Mixed solvent lm L About lOOmg of polybutylene terephthalate resin is dissolved, heavy pyridine 36 L is added, and 1H-NMR at 50 ° C Was measured and determined. As an NMR apparatus, “α-400” or “AL-400” manufactured by JEOL Ltd. was used.
[0197] 製造例 2 (PBT- 2の製造):  [0197] Production Example 2 (Production of PBT-2):
反応器 (A)でのエステルイ匕工程は PBT— 1と同様に行 、、重縮合工程は図 2に示 す工程を用いて行った。第 1重縮合反応槽 (a)での反応条件は PBT—1と同様とし、 第 2重縮合反応槽 (d)の内温は 241°C、圧力 150Pa、滞留時間が 70分としてペレツ トを得た。この PBTペレット 50kgをダブルコ-カル型ブレンダー(内容量 100L)にて 、 195°C、減圧下 (0. 133kPa以下)で固相重合処理を実施し、経時的に取り出し固 有粘度をチェックしながら、所定の固有粘度になったところで冷却して重合を停止さ せた。得られた PBTの分析値はまとめて表 1に示した。以下、製造例 2で得られたポ リブチレンテレフタレート榭脂を PBT— 2と記す。  The esterification process in the reactor (A) was performed in the same manner as PBT-1, and the polycondensation process was performed using the process shown in FIG. The reaction conditions in the first polycondensation reaction tank (a) were the same as in PBT-1, the second polycondensation reaction tank (d) had an internal temperature of 241 ° C, a pressure of 150 Pa, and a residence time of 70 minutes. Obtained. 50 kg of this PBT pellet was subjected to solid-phase polymerization at 195 ° C under reduced pressure (0.133 kPa or less) in a double-coal blender (100 L capacity), and taken out over time while checking its viscosity Then, the polymerization was stopped by cooling at a predetermined intrinsic viscosity. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the poly (ethylene terephthalate) resin obtained in Production Example 2 is referred to as PBT-2.
[0198] 製造例 3 (PBT- 3の製造):  [0198] Production Example 3 (Production of PBT-3):
PBT- 1にお 、てスラリーを 41kgZhとなる様に供給し、再循環ライン(2)から精留 塔 (C)の塔底成分を 17. 2kgZhで供給し、触媒供給ライン (3)から触媒として 65°C のテトラブチルチタネートの 6. 0重量0 /01, 4 ブタンジオール溶液を 97gZhで供給 した(理論ポリマー収量に対し 30ppm)した他は、 PBT— 1と同様にしてエステルイ匕 反応を行った。 In PBT-1, the slurry is supplied to 41 kgZh, the bottom component of the rectifying column (C) is supplied from the recirculation line (2) at 17.2 kgZh, and the catalyst is supplied from the catalyst supply line (3). as feed 65 ° 6. 0 weight 0/0 1 tetrabutyl titanate C, 4-butanediol solution in 97gZh The esterification reaction was carried out in the same manner as PBT-1, except that the yield was 30 ppm with respect to the theoretical polymer yield.
[0199] さらに第 1重縮合反応槽 (a)の圧力を 2. lkPaとし、第 2重縮合反応槽 (d)の圧力を 130Pa、滞留時間を 90分、第 3重縮合反応槽 (k)の内温を 240°C、圧力を 130Pa、 滞留時間を 60分とした以外は PBT— 1と同様に行った。得られた PBTの分析値はま とめて表 1に示した。以下、製造例 3で得られたポリブチレンテレフタレート榭脂を PB T—3と記す。  [0199] Further, the pressure of the first polycondensation reaction tank (a) is 2. lkPa, the pressure of the second polycondensation reaction tank (d) is 130 Pa, the residence time is 90 minutes, the third polycondensation reaction tank (k) The procedure was the same as PBT-1, except that the internal temperature was 240 ° C, the pressure was 130 Pa, and the residence time was 60 minutes. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 3 is referred to as PBT-3.
[0200] 製造例 4 (PBT— 4の製造):  [0200] Production Example 4 (Production of PBT-4):
重縮合工程を図 2に示す工程で実施し、第 3重縮合反応槽 (k)を用いなカゝつた他 は PBT— 3と同様に行った。得られた PBTの分析値はまとめて表 1に示した。以下、 製造例 4で得られたポリブチレンテレフタレート榭脂を PBT— 4と記す。  The polycondensation process was carried out in the process shown in Fig. 2, and was performed in the same manner as PBT-3 except that the third polycondensation reaction tank (k) was used. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 4 is referred to as PBT-4.
[0201] 製造例 5 (PBT- 5の製造):  [0201] Production Example 5 (Production of PBT-5):
反応器 (A)でのエステルイ匕工程は PBT— 1と同様に行った。酢酸マグネシウム 4水 塩を、純水に溶解させた後、 1, 4 ブタンジオールを添カ卩し、酢酸マグネシウム 4水 塩、純水、 1, 4 ブタンジオールがそれぞれ、 5重量%、 20重量%、 75重量%にな るように、調製槽(図示せず)で調製した。この時の温度は、 25°Cであった。この溶液 を、供給ライン (L7)を通じて、 1, 4 ブタンジオールのライン (L8)に供給し、さらに 濃度の低い溶液としてオリゴマーの抜出ライン (4)に所定量を供給した。  The esterification process in the reactor (A) was performed in the same manner as PBT-1. After magnesium acetate tetrahydrate is dissolved in pure water, 1, 4 butanediol is added, and magnesium acetate tetrahydrate, pure water, and 1,4 butanediol are 5% by weight and 20% by weight, respectively. And 75% by weight in a preparation tank (not shown). The temperature at this time was 25 ° C. This solution was supplied to the 1,4 butanediol line (L8) through the supply line (L7), and a predetermined amount was supplied to the oligomer extraction line (4) as a low-concentration solution.
[0202] 第 1重縮合反応器 (a)の内温は 246°C、圧力 2. 4kPa、滞留時間 120分とし、第 2 重縮合反応器 (d)の内温は 239°C、圧力 150Pa、滞留時間 130分、第 3重縮合反応 器 (k)の内温は 238°C、圧力 130Pa、滞留時間は 70分とした。得られた PBTの分析 値はまとめて表 1に示した。以下、製造例 5で得られたポリブチレンテレフタレート榭 脂を PBT— 5と記す。  [0202] The internal temperature of the first polycondensation reactor (a) is 246 ° C, the pressure is 2.4 kPa, the residence time is 120 minutes, the internal temperature of the second polycondensation reactor (d) is 239 ° C, and the pressure is 150 Pa. The residence time was 130 minutes, the internal temperature of the third polycondensation reactor (k) was 238 ° C, the pressure was 130 Pa, and the residence time was 70 minutes. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 5 is referred to as PBT-5.
[0203] 製造例 6 (PBT— 6の製造):  [0203] Production Example 6 (Production of PBT-6):
反応器 (A)でのエステルイ匕工程は PBT— 1と同様に行 、、重縮合工程は図 2に示 す工程を用いて行った。酢酸マグネシウム 4水塩の添加方法および第 1重縮合反応 槽 (a)での反応条件は PBT— 5と同様とし、第 2重縮合反応槽 (d)の内温は 238°C、 圧力 200Pa、滞留時間が 140分としてペレットを得た。得られた PBTの分析値はまと めて表 1に示した。以下、製造例で 6得られたポリブチレンテレフタレート榭脂を PBT 6と記す。 The esterification process in the reactor (A) was performed in the same manner as PBT-1, and the polycondensation process was performed using the process shown in FIG. The addition method of magnesium acetate tetrahydrate and the reaction conditions in the first polycondensation reaction tank (a) are the same as in PBT-5, the internal temperature of the second polycondensation reaction tank (d) is 238 ° C, the pressure is 200 Pa, Pellets were obtained with a residence time of 140 minutes. The analysis value of the obtained PBT is This is shown in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 6 is referred to as PBT 6.
[0204] 製造例 7 (PBT- 7の製造):  [0204] Production Example 7 (PBT-7 production):
反応器 (A)でのエステル化工程は PBT—1と同様に行った。 PBT—5の酢酸マグ ネシゥム 4水塩に換えて、酢酸リチウム 2水塩、純水、 1, 4 ブタンジオールがそれぞ れ、 2. 5重量%、 20重量%、 77. 5重量%になるように、調製槽(図示せず)で調製 し、この溶液を、供給ライン (L7)を通じて、 1, 4 ブタンジォールのライン (L8)に供 給し、さらに濃度の低い溶液としてオリゴマーの抜出ライン (4)に所定量を供給した。 第 1重縮合反応器 (a)の条件は PBT— 5と同様に行 、、第 2重縮合反応器 (d)の内 温を 241°C、第 3重縮合反応器 (k)の内温を 242°Cにした他は PBT— 5と同様に重 縮合反応を行った。得られた PBTの分析値はまとめて表 1に示した。以下、製造例 7 で得られたポリブチレンテレフタレート榭脂を PBT— 7と記す。  The esterification process in the reactor (A) was carried out in the same manner as PBT-1. Instead of magnesium acetate tetrahydrate of PBT-5, lithium acetate dihydrate, pure water, and 1,4 butanediol are 2.5%, 20%, and 77.5% by weight, respectively. In this way, the solution is prepared in a preparation tank (not shown), and this solution is supplied to the 1, 4 butanediol line (L8) through the supply line (L7). A predetermined amount was supplied to (4). The conditions for the first polycondensation reactor (a) were the same as for PBT-5, the internal temperature of the second polycondensation reactor (d) was 241 ° C, and the internal temperature of the third polycondensation reactor (k). The polycondensation reaction was performed in the same way as PBT-5, except that the temperature was 242 ° C. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 7 is referred to as PBT-7.
[0205] 製造例 8 (PBT— 8の製造):  [0205] Production Example 8 (Production of PBT-8):
反応器 (A)でのエステルイ匕工程、第 1重縮合反応槽 (a)での初期重縮合工程は P BT— 1と同様に行い、第 2重縮合反応器 (d)の圧力を 200Pa、第 3重縮合反応器 (k )の圧力を 650Pa、滞留時間を 70分とした以外は、 PBT— 1と同様に行った。得られ た PBTの分析値はまとめて表 1に示した。以下、製造例 8で得られたポリブチレンテ レフタレート榭脂を PBT— 8と記す。  The esterification process in the reactor (A) and the initial polycondensation process in the first polycondensation reaction tank (a) were carried out in the same manner as PBT-1, and the pressure in the second polycondensation reactor (d) was 200 Pa, The procedure was the same as PBT-1, except that the pressure in the third polycondensation reactor (k) was 650 Pa and the residence time was 70 minutes. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 8 is referred to as PBT-8.
[0206] 製造例 9 (PBT- 9の製造):  [0206] Production Example 9 (Production of PBT-9):
第 1重縮合反応槽 (a)の内温を 247°C、圧力を 6. OkPa、第 2重縮合反応器 (d)の 圧力を 250Pa、第 3重縮合反応器 (k)の内温を 245°C、滞留時間を 70分とした以外 は、 PBT— 1と同様に行った。得られた PBTの分析値はまとめて表 1に示した。以下 、製造例 9で得られたポリブチレンテレフタレート榭脂を PBT— 9と記す。  The internal temperature of the first polycondensation reactor (a) is 247 ° C, the pressure is 6. OkPa, the pressure of the second polycondensation reactor (d) is 250 Pa, and the internal temperature of the third polycondensation reactor (k) is The procedure was the same as PBT-1, except that the residence time was 245 ° C and 70 minutes. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 9 is referred to as PBT-9.
[0207] 製造例 10 (PBT— 10の製造):  [0207] Production Example 10 (Production of PBT-10):
タービン型攪拌翼を具備した内容積 200Lのステンレス製反応容器に、テレフタル 酸ジメチル(DMT) 272. 9mol、 1, 4 ブタンジオール 327. 5mol、テトラブチルチ タネート 0. 126モル(チタン量として理論収量ポリマー当たり lOOppm)を仕込み十 分窒素置換させた。続いて系を昇温し、 60分後に温度 210°C、窒素下大気圧で、生 成するメタノール、 1, 4 ブタンジオール、 THFを系外に留出させながら、 2時間ェ ステル交換反応させた (反応開始時間は、所定温度に達した時点とした)。 In a 200-liter stainless steel reaction vessel equipped with a turbine-type stirring blade, dimethyl terephthalate (DMT) 272.9 mol, 1,4 butanediol 327.5 mol, tetrabutyl titanate 0.126 mol (as the amount of titanium per theoretical yield polymer) lOOppm) was charged and the atmosphere was sufficiently replaced with nitrogen. Subsequently, the system was heated up, and after 60 minutes, the temperature was 210 ° C and atmospheric pressure under nitrogen. The resulting methanol, 1,4 butanediol, and THF were subjected to ester exchange reaction for 2 hours while distilling out of the system (the reaction start time was the time when the predetermined temperature was reached).
[0208] ベント管およびダブルヘリカル型攪拌翼を有する内容積 200Lのステンレス製反応 器に、上記で得られたオリゴマーを移送した後、温度 245°C、圧力 lOOPaまで 60分 かけて到達させ、その状態のまま重縮合反応を行った。所定動力に達したところで反 応を終了し、ポリマーをストランド状に抜き出し、ペレット状に切断した。得られた PBT の分析値はまとめて表 1に示した。以下、製造例 10で得られたポリブチレンテレフタ レート樹脂を PBT— 10と記す。  [0208] After the oligomer obtained above was transferred to a stainless steel reactor with an internal volume of 200 L having a vent pipe and a double helical stirring blade, it was allowed to reach a temperature of 245 ° C and a pressure of lOOPa over 60 minutes. The polycondensation reaction was performed in the state. When the predetermined power was reached, the reaction was terminated, and the polymer was extracted in the form of strands and cut into pellets. The analytical values of the obtained PBT are summarized in Table 1. Hereinafter, the polybutylene terephthalate resin obtained in Production Example 10 is referred to as PBT-10.
[0209] [表 1]  [0209] [Table 1]
Figure imgf000043_0001
Figure imgf000043_0001
[0210] < C成分:ゴム性重合体 >  [0210] <C component: Rubber polymer>
[0211] C 1 :ポリブタジエン(コア) Zアクリル酸アルキル'メタクリル酸アルキル共重合物(シ エル)からなるコア Zシェル型グラフト共重合体(ローム'アンド 'ハース'ジャパン社製 [0211] C1: Polybutadiene (core) Z Core alkyl acrylate 'alkyl methacrylate copolymer (shell) Z shell type graft copolymer (Rohm and Haas Japan)
「EXL2603」) "EXL2603")
[0212] C- 2 :ポリアクリル酸アルキル(コア) Zアクリル酸アルキル'メタクリル酸アルキル共 重合物(シェル)力 なるコア Zシェル型グラフト共重合体(ローム ·アンド ·ハース ·ジ ャパン社製「EXL2315」)  [0212] C-2: Polyalkyl acrylate (core) Z alkyl acrylate 'alkyl methacrylate copolymer (shell) core Z-shell type graft copolymer (Rohm and Haas Japan made by Japan " EXL2315 ")
[0213] < D成分:無機フィラー > D—l :ウォラストナイト (ナイコミネラルズ社製「ナイダロス 4」、平均粒子径 3. 4 /z m) [0214] D— 2 :タルク(林化成社製「UPN HSTO. 5」、一次平均粒子径 2 /z m、脱気圧縮[0213] <D component: inorganic filler> D—l: Wollastonite (Nyda Minerals “Nidaros 4”, average particle size 3.4 / zm) [0214] D—2: Talc (Hayashi Kasei “UPN HSTO. 5”, primary average particle Diameter 2 / zm, deaeration compression
TO TO
[0215] <その他成分 >  [0215] <Other ingredients>
[0216] リン系化合物: [0216] Phosphorus compounds:
ィ匕学式 0 = P (OH) (OC H ) (n  Equation 0 = P (OH) (OC H) (n
3 , = 1及び 2の混合物)、旭電ィ匕工業社製「 18 37  3, = 1 and 2)), “18 37
アデカスタブ AX— 71」  ADK STAB AX—71 ”
[0217] [榭脂組成物の調製] [0217] [Preparation of rosin composition]
A成分、 B成分、 C成分、 D成分およびその他成分を表 2〜9に示す割合にてタンブ ラーミキサーで均一に混合した後、二軸押出機(日本製鋼所社製、 TEX30XCT、 L A component, B component, C component, D component and other components were uniformly mixed in a tumbler mixer in the ratios shown in Tables 2 to 9, and then a twin screw extruder (manufactured by Nippon Steel Works, TEX30XCT, L
/D=42、ノ レノレ数 12)を用!/、て、シリンダー温度 270oC、スクリュー回転数 200rp mにてバレル 1より押出機にフィードし溶融混練することにより榭脂組成物のペレット を作製した。なお、実施例 30及び 31においては、更にバレル 7より B成分を表 9に示 す割合にて押出機に途中フィードして溶融混練することにより、榭脂組成物のペレツ トを作製した。 / D = 42, Nonore number 12)! /, And feed the pellets of the resin composition by feeding to the extruder from barrel 1 at a cylinder temperature of 270 ° C and a screw speed of 200 rpm and melt-kneading. Produced. In Examples 30 and 31, pellets of the resin composition were prepared by further feeding the B component from the barrel 7 to the extruder at a ratio shown in Table 9 and melt-kneading it.
[0218] [試験片の作製]  [0218] [Preparation of specimen]
上記の方法で得られたペレットを、 110°Cで 4時間以上乾燥した後、名機製作所製 の M150AII— SJ型射出成形機を用いて、シリンダー温度 270°C、金型温度 80°C、 成形サイクル 55秒の条件で、 ASTM試験片 (通常成形品)を作成した。  After the pellets obtained by the above method were dried at 110 ° C for 4 hours or longer, using a M150AII-SJ type injection molding machine manufactured by Meiki Seisakusho, the cylinder temperature was 270 ° C, the mold temperature was 80 ° C, ASTM test specimens (normally molded products) were prepared under conditions of a molding cycle of 55 seconds.
[0219] また、滞留成形を 1サイクル 2. 5分で成形を行い、それぞれ 5ショット目以降の滞留 成形品について評価を行った。さらに、上記成形サイクル 55秒にて連続成形して得 られた ASTM試験片を粉砕したもの(リサイクル原料) 30重量部と榭脂組成物のペレ ット (バージン原料) 70重量部とをタンブラ一ミキサーにて均一に混合し、 110°Cで 4 時間以上乾燥した後、名機製作所社製の Μ150ΑΠ— SJ型射出成形機を用いて、 シリンダー温度 270°C、金型温度 80°C、成形サイクル 55秒の条件で、 ASTM試験 片を作成した。この作業を 2回繰り返して行い、リサイクル成形品 (ASTM試験片)を 作成した。  [0219] In addition, the stagnant molding was performed in 2.5 cycles for 1 cycle, and the stagnated molded products after the fifth shot were evaluated. Further, 30 parts by weight of ASTM test pieces obtained by continuous molding in the above molding cycle of 55 seconds (recycled raw material) and 70 parts by weight of pellets of rosin composition (virgin raw material) were tumbled. Mix evenly with a mixer and dry at 110 ° C for 4 hours or more. Then, using a Μ150ΑΠ—SJ type injection molding machine manufactured by Meiki Seisakusho, the cylinder temperature is 270 ° C and the mold temperature is 80 ° C. ASTM specimens were prepared under a cycle of 55 seconds. This operation was repeated twice to produce a recycled molded product (ASTM test piece).
[0220] [評価方法] (1)流動性 (Q値): [0220] [Evaluation method] (1) Fluidity (Q value):
高荷式フローテスターを用いて、 280°C、荷重 160kgfZcm2の条件下で組成物の 単位時間あたりの流出量 Q値 (単位: mlZs)を測定し、流動性を評価した。なお、オリ フィスは直径 lmm X長さ 10mmのものを使用した。 Q値が高いほど、流動性に優れ ていることを示す。 Using a high-load flow tester, the flow rate Q value (unit: mlZs) of the composition per unit time was measured under the conditions of 280 ° C and a load of 160 kgfZcm 2 to evaluate the fluidity. The orifice used was lmm in diameter x 10mm in length. The higher the Q value, the better the fluidity.
[0221] (2)剛性(曲げ弾性率) [0221] (2) Rigidity (flexural modulus)
ASTM D790〖こ準拠して、厚さ 6. 4mmの試験片を用いて、 23°Cにおいて測定 した。  In accordance with ASTM D790, measurement was performed at 23 ° C using a 6.4 mm thick test piece.
[0222] (3)耐衝撃性  [0222] (3) Impact resistance
[0223] a. Izod衝撃強度: [0223] a. Izod impact strength:
ASTM D256に準拠して、厚み 3. 2mmのノッチ付き試験片を用いて、 23°Cにお V、て Izod衝撃強度(単位: j/m)を測定した。  According to ASTM D256, Izod impact strength (unit: j / m) was measured at 23 ° C using a notched specimen having a thickness of 3.2 mm.
[0224] b.引張破断伸度 [0224] b. Tensile elongation at break
ASTM D638に準拠して、厚み 3. 2mmの試験片を用いて、 23°Cにおいて引張 試験 (速度 20mmZmin. )を行う、引張破断伸度 (単位:%)を測定した。  In accordance with ASTM D638, a tensile test (unit:%) was performed by performing a tensile test (speed: 20 mmZmin.) At 23 ° C. using a specimen having a thickness of 3.2 mm.
[0225] (4)耐薬品性 (破断伸び保持率): [0225] (4) Chemical resistance (breaking elongation retention):
ASTM引張試験片 (厚さ 3. 2mm)に変形率 1%の橈みを負荷した状態で、試験薬 品を塗布し、 48時間後の破断伸びの保持率 (試験薬品を塗布しないものに対する比 率)により評価した。試験薬品としてはフタル酸ジ(2—ェチルへキシル)(東京化成ェ 業社製)を使用した。耐薬品性の評価は、破断伸び保持率が 75%以上である場合を 〇、破断伸び保持率が 75%未満である場合を Xとして評価した。  ASTM test specimen (thickness: 3.2 mm) is loaded with a test product with a deformation rate of 1%, and the retention of elongation at break after 48 hours (compared to that without test chemical) Rate). As the test chemical, di (2-ethylhexyl) phthalate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. The chemical resistance was evaluated as 0 when the elongation at break was 75% or more, and X when the elongation at break was less than 75%.
[0226] (5)疲労特性 (曲げ疲労破壊): [0226] (5) Fatigue properties (bending fatigue failure):
ASTM D671に準拠して、 TypeA試験片を用い、 23°C、実応力 19MPaで試験 を行い、破壊に至る回数で評価した。  In accordance with ASTM D671, a Type A test piece was used and the test was performed at 23 ° C and an actual stress of 19 MPa.
[0227] (6)耐熱性 (熱変形温度: DTUL): [0227] (6) Heat resistance (thermal deformation temperature: DTUL):
ASTM D648に準拠して、 0. 45MPaで熱変形温度(単位:。 C)を測定した。  Based on ASTM D648, the heat distortion temperature (unit: C) was measured at 0.45 MPa.
[0228] (7)滞留熱安定性 (熱変形温度および色相): [0228] (7) Stability thermal stability (thermal deformation temperature and hue):
[0229] a.熱変形温度: ASTM D648に準拠し、 0. 45MPaで滞留成形品の熱変形温度を測定し、評価 した。 [0229] a. Thermal deformation temperature: In accordance with ASTM D648, the thermal deformation temperature of the retained molded product was measured at 0.45 MPa and evaluated.
[0230] b.色相: [0230] b. Hue:
前記通常成形品と比較して、目視にて滞留成形品の色相変化が無いか、殆ど無い ものを〇、色相変化が認められたものを Xとして評価した。  As compared with the above-mentioned normal molded product, the retained molded product was evaluated as ◯ when there was no or almost no hue change, and X when the hue change was observed.
[0231] c外観: [0231] c Appearance:
前記通常成形品と比較して、目視にて滞留成形品の色相変化およびシルバースト リークによる肌荒れのほとんどないものを〇、色相変化またはシルバーストリークによ る肌荒れのあるものを Xとして評価した。  As compared with the above-mentioned normal molded product, visually evaluated as ◯ that the retained molded product had almost no hue change and rough skin due to silver streak, and X had a hue change or silver streak rough skin.
[0232] (8)リサイクル特性 (熱変形温度および色相): [0232] (8) Recycling characteristics (thermal deformation temperature and hue):
[0233] a.熱変形温度: [0233] a. Thermal deformation temperature:
ASTM D648に準拠し、 0. 45MPaでリサイクル成形品の熱変形温度を測定し、 評価した。  In accordance with ASTM D648, the thermal deformation temperature of the recycled molded product was measured at 0.45 MPa and evaluated.
[0234] b.色相: [0234] b. Hue:
前記通常成形品と比較して、目視にてリサイクル成形品の色相変化がほとんどない ものを〇、色相変化のあるものを Xとして評価した。  As compared with the above-mentioned normal molded product, the recycle molded product with almost no hue change was evaluated as ◯, and the one with hue change was evaluated as X.
[0235] [実施例 1〜7、比較例 1〜3 (第 1の要旨に記載の芳香族ポリカーボネート榭脂組成 物に関する例)] [Examples 1 to 7 and Comparative Examples 1 to 3 (Examples regarding the aromatic polycarbonate resin composition described in the first aspect)]
表 2及び 3に記載の各々の榭脂組成物を製造し、上述の方法により評価した。結果 を表 2及び 3に示す。  Each of the resin compositions described in Tables 2 and 3 was produced and evaluated by the method described above. The results are shown in Tables 2 and 3.
[0236] [表 2] [0236] [Table 2]
実施例 Example
項目 単位  Item Unit
1 2 3 4 5 6 7 1 2 3 4 5 6 7
PC - 1 70 70 70 - 70 - 30PC-1 70 70 70-70-30
A成分 A component
PC- 2 ― - - 70 - 70 40 PC-2 ― ― ― 70 ― 70 40
PBT - 1 30 一 - ― - - 一PBT-1 30 1----1
PBT-2 - 30 - - 一 - -PBT-2-30--One--
PBT- 3 重 ― - 30 15 - ― 一 組 PBT-3 Triple--30 15--Pair
PBT-4 重  PBT-4 heavy
成 P B T 一 ― - 15 - - - 部 Adult P B T One ― ― 15 ― ― ― Part
PBT- 5 - ― ― - 30 15 一 PBT-5----30 15
PBT- 6 - - - - - 15 一PBT-6-----15
PBT- 7 一 - ― ― - 30 その他 リン系 PBT-7 1----30 Other Phosphorus
0.03 0.03 0.03 0.03 0.03 0.03 0.03 成分 化合物  0.03 0.03 0.03 0.03 0.03 0.03 0.03 Component Compound
X 10 - 2 X 10 - 2
流動性 Q値 20 19 15 10 15 10 13 ml/s  Fluidity Q value 20 19 15 10 15 10 13 ml / s
Izod  Izod
耐衝撃性 J/m 81 86 95 135 98 145 120 衝撃強度  Impact resistance J / m 81 86 95 135 98 145 120 Impact strength
破断伸び  Elongation at break
耐薬品性 - o o o 〇 o o o 評 保持率  Chemical resistance-o o o ○ o o o Rating Retention
Price
曲げ疲労  Bending fatigue
結 疲労特性 回 590000 640000 680000 720000 740000 770000 700000 破壊 Fatigue properties Time 590000 640000 680000 720000 740000 770000 700000 Fracture
Fruit
耐熱性 熱変形温度 °C 121 117 125 123 124 122 122 滞留 熱変形温度 °C 112 108 116 114 115 114 113 熱安定性 色相 目視 〇 o O 〇 O O O リサイク 熱変形温度 V, 116 112 119 118 119 118 116 ル特性 色相 目視 O O O 〇 O O O 3] Heat resistance Thermal deformation temperature ° C 121 117 125 123 124 122 122 Residence Thermal deformation temperature ° C 112 108 116 114 115 114 113 Thermal stability Hue Visual observation ○ o O ○ OOO Recycling Thermal deformation temperature V, 116 112 119 118 119 118 116 Characteristics Hue visual observation OOO 〇 OOO 3]
比較例 Comparative example
11目 単位  11th unit
1 2 3  one two Three
PC- 1 70 70 70  PC- 1 70 70 70
A成分  A component
PC - 2 - ― ―  PC-2---
PBT - 8 一 ―  PBT-8-
重 30  Heavy 30
 Pair
成 P B T PBT - 9 ― 30 - 部  PBT PBT-9 ― 30-part
PBT - 10 - - 30  PBT-10--30
その他 リン系  Other Phosphorus
0.03 0.03 0.03  0.03 0.03 0.03
成分 化合物  Component Compound
X 10 - 2 X 10 - 2
流動性 Q値 21 19 20  Fluidity Q value 21 19 20
ml/s  ml / s
Izod Izod
耐衝撃性 J/m 85 50 58  Impact resistance J / m 85 50 58
衝撃強度  Impact strength
破断伸び  Elongation at break
耐薬品性 - X 〇 〇  Chemical resistance-X ○ ○
評 保持率  Retention rate
 Price
曲げ疲労  Bending fatigue
結 疲労特性 回 640000 270000 330000  Fatigue property times 640000 270000 330000
破壊  Destruction
 Fruit
耐熱性 熱変形温度 106 125 123  Heat resistance Thermal deformation temperature 106 125 123
滞留 熱変形温度 c 95 116 113  Residence heat distortion temperature c 95 116 113
熱安定性 色相 目視 X 〇 X リサイク 熱変形温度 °c 99 118 1 17  Thermal stability Hue Visual X 〇 X Recycle Heat distortion temperature ° c 99 118 1 17
ル特性 色相 目視 X 〇 X  Characteristics Hue Visual X 〇 X
[0238] 表 2に示した結果から、以下のことが判る。本発明の、実施例 1 7に記載の芳香族 ポリカーボネート榭脂組成物は、流動性、耐衝撃性、耐薬品性、耐熱性、滞留熱安 定性およびリサイクル特性のバランスに優れている。逆に、比較例 1における組成物 は、 B成分のチタン原子含有量が本特許規定の範囲外であり、実施例の組成物と比 較して疲労特性、耐熱性、滞留熱安定性、リサイクル特性に劣る。 [0238] From the results shown in Table 2, the following can be understood. The aromatic polycarbonate resin composition described in Example 17 of the present invention has an excellent balance of fluidity, impact resistance, chemical resistance, heat resistance, residence heat stability, and recycling characteristics. On the contrary, the composition in Comparative Example 1 has a titanium atom content of B component outside the scope of this patent, and compared with the compositions of Examples, fatigue properties, heat resistance, residence heat stability, recycling Inferior in characteristics.
[0239] また比較例 2の組成物は、 B成分の末端カルボキシ濃度が本特許規定の範囲外で あり、実施例の組成物と比較して耐衝撃性、疲労特性に劣る。そして比較例 3での組 成物は、 B成分のチタン原子含有量および末端カルボキシ濃度が本特許規定の範 囲外であり、実施例の組成物と比較して耐衝撃性、疲労特性、滞留熱安定性、リサイ クル特性に劣る。 [0239] Further, the composition of Comparative Example 2 has a terminal component carboxy concentration outside the range prescribed in this patent, and is inferior in impact resistance and fatigue properties as compared to the compositions of Examples. In the composition of Comparative Example 3, the titanium atom content of the B component and the terminal carboxy concentration are within the scope of this patent specification. It is outside the range, and is inferior in impact resistance, fatigue characteristics, residence heat stability, and recycling characteristics as compared with the compositions of the examples.
[0240] [実施例 8〜18、比較例 4〜6 (第 2の要旨に記載の芳香族ポリカーボネート榭脂組 成物に関する例)]  [Examples 8 to 18 and Comparative Examples 4 to 6 (Examples relating to the aromatic polycarbonate resin composition described in the second aspect)]
表 4及び 5に記載の各々の榭脂組成物を製造し、上述の方法により評価した。結果 を表 4及び 5に示す。  Each grease composition described in Tables 4 and 5 was produced and evaluated by the method described above. The results are shown in Tables 4 and 5.
[0241] [表 4] [0241] [Table 4]
実施例 Example
項目 単位  Item Unit
8 9 10 11 12 13 14 8 9 10 11 12 13 14
PC- 1 65 65 50 65 50 65 65PC-1 65 65 50 65 50 65 65
A A
成 PC-2 ― - 15 - 15 一 - 分  PC-2 ― ― 15-15 1-Minute
PC- 3 - - ― - - - - PC-3-------
PBT 1 35 - - ― - - ―PBT 1 35------
PBT- 2 - 35 ― ― - 一 -PBT-2-35 ― ―-One-
PBT - 3 - 一 35 20 - - ―PBT-3-One 35 20---
PBT- 4 - - - 15 - 一 一PBT-4---15-
PBT- 5 ― ― ― - 35 20 - 重 PBT-5 ― ― ―-35 20-Heavy
組 P B T Pair P B T
PBT- 6 - - - 一 ― 15 - 成  PBT-6---One ― 15-
 Part
PBT 7 - 一 - - ― - 35 PBT 7-One----35
PBT- 8 - ― - - - - -PBT-8-------
PBT- 9 - - - - - - 一PBT-9------One
PBT 10 ― ― - - - -PBT 10 ― ―----
C-l 4 4 4 4 4 4 4C-l 4 4 4 4 4 4 4
C成分 C component
C- 2 ― - - - - ― - その他 リン系  C-2 ―----―-Other Phosphorus
0.03 0.03 0.03 0.03 0.03 0.03 0.03 成分 化合物  0.03 0.03 0.03 0.03 0.03 0.03 0.03 Component Compound
X 10 - 2 X 10 - 2
流動性 Q値 14 14 12 13 12 13 11 ml/s  Fluidity Q value 14 14 12 13 12 13 11 ml / s
剛性 曲げ弾性率 MPa 2420 2410 2430 2430 2440 2440 2430 評 Izod  Rigid Flexural modulus MPa 2420 2410 2430 2430 2440 2440 2430 Review Izod
耐衝撃性 J/m 680 700 740 730 760 750 750 価 衝撃強度  Impact resistance J / m 680 700 740 730 760 750 750 value Impact strength
結 耐熱性 熱変形温度 °C 117 111 120 119 119 118 118 果 Heat resistance Thermal deformation temperature ° C 117 111 120 119 119 118 118
破断伸び  Elongation at break
耐薬品性 ― O 〇 〇 O 〇 O 〇 保持率  Chemical resistance ― O ○ ○ O ○ O ○ Retention rate
曲げ疲労  Bending fatigue
疲労特性 回 480000 520000 550000 560000 550000 550000 560000 破壊 5] 実施例 比較例 項目 単位 Fatigue properties Time 480000 520000 550000 560000 550000 550000 560000 Fracture 5] Example Comparative example Item Unit
15 16 17 18 4 5 6 15 16 17 18 4 5 6
PC- 1 65 ― - - 65 65 6DPC-1 65 ―--65 65 6D
A A
成 PC- 2 - 70 30 30 - - 分  PC-2-70 30 30--Minute
PC- 3 - - 40 30 - - ― PC-3--40 30---
PBT- 1 - - - ― 一PBT-1---― One
PBT- 2 - 一 - - - ―PBT-2-One---―
PBT- 3 - 30 - - ― -PBT-3-30----
PBT- 4 一 PBT-4 4
。 \ ― ― ― - - - . \ ― ― ―----
PBT 5 20 - 30 40 - ― 重 PBT 5 20-30 40--Heavy
組 P B T  Pair P B T
PBT- 6 10 - ― ― ― - 成  PBT-6 10-----
 Part
PBT- 7 - 一 - - - ― PBT-7-One---―
PBT - 8 - - ― - 35 -PBT-8--―-35-
PBT 9 - - ― 35 -PBT 9---35-
PBT- 10 - - - - - 35PBT-10-----35
C-l 5 10 10 4 4 4C-l 5 10 10 4 4 4
C成分 C component
C-2 - - 10 ― ― その他 リン系  C-2--10 ― ― Others Phosphorus
0.03 0.03 0.03 0.03 0.03 0.03 0.03 成分 化合物  0.03 0.03 0.03 0.03 0.03 0.03 0.03 Component Compound
流動性 Q値 11 17 26 30 14 13 14 剛性 曲げ弾性率 MPa 2360 2050 2070 2130 2430 2410 2440 評 Izod  Fluidity Q value 11 17 26 30 14 13 14 Rigid Flexural modulus MPa 2360 2050 2070 2130 2430 2410 2440 Review Izod
耐衝撃性 J/m 780 720 690 680 690 200 260 価 衝撃強度  Impact resistance J / m 780 720 690 680 690 200 260
結 耐熱性 熱変形温度 。C 119 115 114 111 98 119 119 果  Heat resistance Heat distortion temperature C 119 115 114 111 98 119 119 Fruit
破断伸び  Elongation at break
耐薬品性 ― 〇 〇 〇 〇 X 〇 〇 保持率  Chemical resistance ― ○ ○ ○ ○ X ○ ○ Retention rate
曲げ疲労  Bending fatigue
疲労特性 回 550000 450000 430000 380000 500000 220000 240000 破壊  Fatigue properties Time 550000 450000 430000 380000 500000 220000 240000 Fracture
[0243] 表 4及び 5に示した結果から、以下のことが判る。本発明の実施例 8〜18に記載の 芳香族ポリカーボネート榭脂組成物は、流動性、剛性、耐衝撃性、耐熱性、耐薬品 性、疲労特性のバランスに優れている。逆に比較例 4における組成物は、 B成分のチ タン原子含有量が本特許規定の範囲外であり、実施例の組成物と比較して耐熱性、 耐薬品性に劣る。 [0243] From the results shown in Tables 4 and 5, the following can be seen. The aromatic polycarbonate resin composition described in Examples 8 to 18 of the present invention has an excellent balance of fluidity, rigidity, impact resistance, heat resistance, chemical resistance, and fatigue characteristics. Conversely, the composition in Comparative Example 4 has a titanium atom content of component B that is outside the range specified in this patent, and is inferior in heat resistance and chemical resistance as compared to the compositions in Examples.
[0244] また比較例 5の組成物は、 B成分の末端カルボキシ濃度が本特許規定の範囲外で あり、実施例の組成物と比較して耐衝撃性、疲労特性に劣る。そして比較例 6の組成 物は、 B成分のチタン原子含有量および末端カルボキシ濃度が本特許規定の範囲 外であり、実施例の組成物と比較して耐衝撃性、疲労特性に劣る。 [0244] In the composition of Comparative Example 5, the terminal carboxy concentration of component B is outside the range specified in this patent. Yes, it is inferior in impact resistance and fatigue properties as compared with the compositions of the examples. The composition of Comparative Example 6 is inferior in impact resistance and fatigue properties as compared with the compositions of Examples, in which the content of titanium atom of the B component and the terminal carboxy concentration are outside the ranges specified in this patent.
[0245] [実施例 19〜31、比較例 7〜12 (本発明の第 3の要旨に記載の芳香族ポリカーボネ ート榭脂組成物に関する例) ]  [Examples 19 to 31, Comparative Examples 7 to 12 (Examples of the aromatic polycarbonate resin composition described in the third aspect of the present invention)]
表 6〜8に記載の各々の榭脂組成物を製造し、上述の方法により評価した。結果を 表 6〜8に示す。  Each greave composition described in Tables 6-8 was produced and evaluated by the method described above. The results are shown in Tables 6-8.
[0246] [表 6] [0246] [Table 6]
実施例 比較例 項目 単位 Example Comparative example Item Unit
1 9 2 0 7 8 9 1 9 2 0 7 8 9
PC- 1 63 63 63 63 63PC- 1 63 63 63 63 63
A成分 PC- 2 - ― -Component A PC-2---
PC - 3 - ― 一 一 ―PC-3--One-
PBT-1 27 一 一PBT-1 27
PBT-2 - 27 - -PBT-2-27--
PBT-3 一PBT-3
PBT-4 - - -PBT-4---
PBT 5 - - - -PBT 5----
P B TP B T
PBT-6 a ― - 一 - 組 PBT-6 a ―-One-Pair
PBT- 7 一 - - 成  PBT-7 1--
 Part
PBT- 8 27 - PBT- 8 27-
PBT 9 一 一 - 27 PBT 9 1-27
PBT- 10 - 27 PBT-10-27
C-l -C-l-
C成分 C component
C 2 ― ― C 2 ― ―
D 1 10 10 10 10 10D 1 10 10 10 10 10
D成分 D component
D - 2 一 - ― リン系化合物 0.1 0.1 0.1 0.1 0.1 その他成分  D-2 1--Phosphorus compounds 0.1 0.1 0.1 0.1 0.1 Other components
PET - - ― 流動性 Q値 X 10- 2 ml/s 18 19 19 18 18 剛性 曲げ弾性率 MPa 3570 3540 3530 3550 3570 PET - - - flowability Q value X 10- 2 ml / s 18 19 19 18 18 flexural rigidity modulus MPa 3570 3540 3530 3550 3570
Izod衝撃強度 J/m 55 51 50 38 42 評 耐衝撃性  Izod impact strength J / m 55 51 50 38 42
価 引張破断強度 % 120 110 103 51 60 結 耐熱性 熱変形温度 C 127 122 104 128 128 果 Tensile strength at break% 120 110 103 51 60 Heat resistance Heat distortion temperature C 127 122 104 128 128
疲労特性 曲げ疲労特性 回 840000 860000 810000 390000 430000 外観 目視 〇 〇 X 〇 X 滞留熱安定性  Fatigue properties Bending fatigue properties Times 840000 860000 810000 390000 430000 Appearance Visual ○ ○ X ○ X Stability of heat retention
熱変形温度 °c 113 108 92 116 115 7] 実施例 Thermal deformation temperature ° c 113 108 92 116 115 7] Example
項目 単位  Item Unit
2 1 2 2 2 3 2 4 2 1 2 2 2 3 2 4
PC- 1 - - 14 59PC- 1--14 59
A成分 PC- 2 59 59 45 -Component A PC-2 59 59 45-
PC- 3 一 一 - -PC- 3-1--
PBT-1 31 - - ―PBT-1 31---
PBT-2 - 31 - 一PBT-2-31-One
PBT-3 - - 31 18PBT-3--31 18
PBT-4 ― - 13PBT-4 ―-13
PBT-5 - 一 - -PBT-5-One--
P B TP B T
PBT-6 一 - ― 一 重 PBT-6 Single--Single
Pair
PBT-7 - ― - 一 成  PBT-7---
 Part
PBT-8 - - ― ― PBT-8----
PBT-9 ― - - 一PBT-9 ―--One
PBT-10 ― ― 一 -PBT-10 ― ― One-
C-l 5 5 5 5C-l 5 5 5 5
C成分 C component
C-2 - - - ― C-2---―
D-l 10 10 10 10D-l 10 10 10 10
D成分 D component
D-2 ― - - ― リン系化合物 0.1 0.1 0.1 0.1 その他成分  D-2 ―--― Phosphorus compounds 0.1 0.1 0.1 0.1 Other components
PET ― 一 ― - 流動性 Q値 X 10_ 2 ml/s 12 12 11 10 剛性 曲げ弾性率 MPa 3420 3490 3430 3410 PET ― One ―-Fluidity Q value X 10_ 2 ml / s 12 12 11 10 Rigid Flexural modulus MPa 3420 3490 3430 3410
Izod衝撃強度 J/m 150 140 160 169 評 耐衝撃性  Izod impact strength J / m 150 140 160 169
価 引張破断強度 % 118 101 122 120 結 耐熱性 熱変形温度 °C 126 120 128 127 果 Tensile strength at break% 118 101 122 120 Heat resistance Heat distortion temperature ° C 126 120 128 127
疲労特性 曲げ疲労特性 回 780000 780000 820000 840000 外観 目視 〇 〇 〇 O 滞留熱安定性  Fatigue property Bending fatigue property Time 780000 780000 820000 840000 Appearance Visual ○ ○ ○ O Stability of heat retention
熱変形温度 °C 113 107 115 115 8] 実施例 Thermal deformation temperature ° C 113 107 115 115 8] Example
項目 単位  Item Unit
2 5 2 6 2 7 2 8 2 5 2 6 2 7 2 8
PC- 1 14 - ― PC- 1 14--
A成分 PC - 2 45 59 59 66  Component A PC-2 45 59 59 66
PC-3 一 一 一 - PC-3 one one one-
PBT - 1 - - ― ―PBT-1--― ―
PBT- 2 ― ―PBT-2 ― ―
PBT - 3 - ― ― PBT-3-― ―
PBT 4 - - - - PBT 4----
PBT- 5 31 18 15PBT- 5 31 18 15
P B TP B T
PBT- 6 £ ― 13 ― 8 組 PBT-6 £ ― 13 ― 8 pairs
PBT-7 ― ― 31 成  PBT-7 ― ― 31
 Part
PBT - 8 ― - 一  PBT-8--
PBT - 9 - - 一 ― PBT-9--One ―
PBT- 10 - - - - c-i 5 5 5 6PBT-10----c-i 5 5 5 6
C成分 C component
C-2 一 - ― C-2 One--
D-l 10 10 10 1 1D-l 10 10 10 1 1
D成分 D component
D- 2 一 ― - リン系化合物 0.1 0.1 0.1 0.1 その他成分  D-2 1 ―-Phosphorus compounds 0.1 0.1 0.1 0.1 Other components
PET ― 6 流動性 Q値 X 10~ 2 ml/s 11 10 9.2 8.5 剛性 曲げ弾性率 MPa 3440 3400 3420 3440 PET ― 6 Fluidity Q value X 10 ~ 2 ml / s 11 10 9.2 8.5 Rigidity Flexural modulus MPa 3440 3400 3420 3440
Izod衝撃強度 J/m 163 172 175 177 評 耐衝撃性  Izod impact strength J / m 163 172 175 177
価 引張破断強度 % 121 120 119 119 結 耐熱性 熱変形温度 °C 127 126 128 132 果 Tensile strength at break% 121 120 119 119 Resulting heat resistance Heat distortion temperature ° C 127 126 128 132
疲労特性 曲げ疲労特性 回 840000 860000 850000 870000 外観 目視 〇 〇 〇 〇 滞留熱安定性  Fatigue properties Bending fatigue properties Times 840000 860000 850000 870000 Appearance Visual ○ ○ ○ ○ Stability of stagnant heat
熱変形温度 °C 114 114 115 122 9] 実施例 比較例 項目 単位 Thermal deformation temperature ° C 114 114 115 122 9] Example Comparative example Item Unit
2 9 3 0 3 1 1 0 1 1 1 2 2 9 3 0 3 1 1 0 1 1 1 2
PC 1 - - 31 - - ―PC 1--31--―
A成分 PC- 2 52 65 一 59 59 59 Component A PC-2 52 65 One 59 59 59
PC- 3 - - 32 一 - - PC- 3--32 1--
PBT-1 - - - 一 - -PBT-1---One--
PBT-2 - - 一 - - 一PBT-2--One--One
PBT-3 - 24 ― - ― 一PBT-3-24---
PBT-4 - 一 ― - - ―PBT-4-One ―--―
PBT-5 28 ― 25 - ― -PBT-5 28 ― 25-―-
P B TP B T
PBT-6 - - - ― - - 組 PBT-6---―--Pair
PBT-7 - 一 31 - - 成  PBT-7-One 31--Growth
 Part
PBT-8 - - - 31 - - PBT-8---31--
PBT-9 - - 一 ― 31 一PBT-9--One ― 31 One
PBT-10 - - - ― 一 31PBT-10---― One 31
C 1 10 5 - 5 5 oC 1 10 5-5 5 o
C成分 C component
C-2 - ― 10 - - - C-2-― 10---
D-l 20 ― - 10 10 10D-l 20 ―-10 10 10
D成分 D component
D-2 - 11 8 ― - - その他 リン系化合物 0.1 0.1 0.1 0.1 0.1 0.1 成分 PET - 5 - - - - D-2-11 8 ―--Other Phosphorus compounds 0.1 0.1 0.1 0.1 0.1 0.1 Component PET-5----
X 10- 2 X 10- 2
流動性 Q値 6.7 10.3 35 12 12 12 ml/s  Fluidity Q value 6.7 10.3 35 12 12 12 ml / s
剛性 曲げ弾性率 MPa 4630 3490 2700 3430 3400 3440 評 Izod衝撃強度 J/m 101 175 110 135 90 98 価 耐衝撃性  Rigid Flexural modulus MPa 4630 3490 2700 3430 3400 3440 Rating Izod Impact strength J / m 101 175 110 135 90 98 Value Impact resistance
引張破断強度 % 35 135 100 102 52 58 結  Tensile strength at break% 35 135 100 102 52 58
果 耐熱性 熱変形温度 °C 128 131 121 104 127 126 疲労特性 曲げ疲労特性 回 920000 850000 610000 750000 400000 460000 滞留熱安 外観 目視 〇 〇 O X O X 定性 熱変形温度 C 114 120 109 92 115 115 表 6 8に示した結果から、以下のことが判る。本発明の、実施例 19 31に記載の 芳香族ポリカーボネート榭脂組成物は、流動性、剛性、耐衝撃性、耐熱性、疲労特 性、滞留熱安定性のバランスに優れている。 [0251] 逆に、比較例 7及び 10の組成物は、 B成分のチタン原子含有量が本特許規定の範 囲外であり、実施例の組成物と比較して耐熱性、滞留熱安定性に劣る。 Result Heat resistance Thermal deformation temperature ° C 128 131 121 104 127 126 Fatigue property Bending fatigue property Time 920000 850000 610000 750000 400000 460000 Retention heat appearance Appearance ○ ○ OXOX Qualitative heat deformation temperature C 114 120 109 92 115 115 Shown in Table 6 8 From the results, the following can be understood. The aromatic polycarbonate resin composition described in Example 1931 of the present invention has an excellent balance of fluidity, rigidity, impact resistance, heat resistance, fatigue characteristics, and residence heat stability. [0251] Conversely, in the compositions of Comparative Examples 7 and 10, the titanium atom content of the B component is outside the range specified in this patent, and compared with the compositions of the examples, heat resistance and residence heat stability Inferior to
[0252] また比較例 8及び 11の組成物は、 B成分の末端カルボキシ濃度が本特許規定の 範囲外であり、実施例の組成物と比較して耐衝撃性、疲労特性に劣る。そして比較 例 9及び 12の組成物は、 B成分のチタン原子含有量および末端カルボキシ濃度が 本特許規定の範囲外であり、実施例の組成物と比較して耐衝撃性、疲労特性、滞留 熱安定性に劣る。  [0252] In addition, the compositions of Comparative Examples 8 and 11 have a terminal component carboxy concentration outside the range specified in this patent, and are inferior in impact resistance and fatigue properties as compared to the compositions of Examples. In the compositions of Comparative Examples 9 and 12, the titanium atom content of the B component and the terminal carboxy concentration are outside the scope of this patent, and compared with the compositions of the Examples, the impact resistance, fatigue characteristics, residence heat Inferior in stability.

Claims

請求の範囲 The scope of the claims
[1] 芳香族ポリカーボネート榭脂 (A成分)とポリブチレンテレフタレート榭脂 (B成分)と 力も成る芳香族ポリカーボネート榭脂組成物であって、芳香族ポリカーボネート榭脂( A成分)とポリブチレンテレフタレート榭脂(B成分)の合計 100重量部中、芳香族ポリ カーボネート榭脂 (A成分)が 51〜99重量部、ポリブチレンテレフタレート榭脂(B成 分)が 1〜49重量部であり、ポリブチレンテレフタレート榭脂(B成分)において、チタ ン化合物含有量が、チタン原子として lppmを超えて 75ppm以下で且つ、末端カル ボキシル基が 39 μ eqZg以下であることを特徴とする芳香族ポリカーボネート榭脂組 成物。  [1] Aromatic polycarbonate resin composition comprising aromatic polycarbonate resin (component A) and polybutylene terephthalate resin (component B), and comprising aromatic polycarbonate resin (component A) and polybutylene terephthalate resin Of the total 100 parts by weight of fat (component B), 51 to 99 parts by weight of aromatic polycarbonate resin (component A) and 1 to 49 parts by weight of polybutylene terephthalate resin (B component) Aromatic polycarbonate resin composition characterized in that in terephthalate resin (component B), the titanium compound content is more than 1 ppm as titanium atom and 75 ppm or less and the terminal carboxyl group is 39 μeqZg or less. Adult.
[2] 更に、芳香族ポリカーボネート榭脂 (Α成分)とポリブチレンテレフタレート榭脂(Β成 分)の合計 100重量部に対して、ゴム性重合体 (C成分)を 0. 5〜40重量部含有する 請求項 1に記載の芳香族ポリカーボネート榭脂組成物。  [2] Further, 0.5 to 40 parts by weight of a rubbery polymer (component C) is added to 100 parts by weight of the total amount of aromatic polycarbonate resin (wax component) and polybutylene terephthalate resin (sulphur component). The aromatic polycarbonate resin composition according to claim 1.
[3] ゴム性重合体 (C成分)力 コア Ζシェル型グラフト共重合体である請求項 2に記載 の芳香族ポリカーボネート榭脂組成物。 [3] The aromatic polycarbonate resin composition according to claim 2, which is a rubber-based polymer (component C) force core-shell type graft copolymer.
[4] ゴム性重合体 (C成分)の含有量が、ポリカーボネート榭脂 (Α成分)とポリブチレン テレフタレート樹脂(Β成分)との合計 100重量部に対して、 2〜30重量部である請求 項 2又は 3に記載の芳香族ポリカーボネート榭脂組成物。 [4] The content of the rubber-like polymer (component C) is 2 to 30 parts by weight with respect to 100 parts by weight as a total of the polycarbonate rosin (component)) and the polybutylene terephthalate resin (component Β). 2. The aromatic polycarbonate resin composition according to 2 or 3.
[5] 更に、芳香族ポリカーボネート榭脂 (Α成分)とポリブチレンテレフタレート榭脂(Β成 分)の合計 50〜99重量部に対して、無機フィラー(D成分)を 1〜50重量部含有する 請求項 1〜4の何れかに記載の芳香族ポリカーボネート榭脂組成物。 [5] Furthermore, the inorganic filler (component D) is contained in an amount of 1 to 50 parts by weight with respect to a total of 50 to 99 parts by weight of the aromatic polycarbonate resin (a component) and polybutylene terephthalate resin (a component). The aromatic polycarbonate resin composition according to any one of claims 1 to 4.
[6] 無機フィラー (D成分)が、珪酸塩ィ匕合物および Ζまたはガラス系フイラ一である請 求項 5に記載の芳香族ポリカーボネート榭脂組成物。 [6] The aromatic polycarbonate resin composition according to claim 5, wherein the inorganic filler (component D) is a silicate compound and a glass or glass-based filler.
[7] 無機フィラー (D成分)が、ウォラストナイト、タルク、マイ力、カオリナイトから成る群よ り選択される少なくとも 1種である請求項 6に記載の芳香族ポリカーボネート榭脂組成 物。 7. The aromatic polycarbonate resin composition according to claim 6, wherein the inorganic filler (component D) is at least one selected from the group consisting of wollastonite, talc, my strength, and kaolinite.
[8] ポリブチレンテレフタレート榭脂 (B成分)が、更に 1族金属化合物および Zまたは 2 族金属化合物を含有し、 1族金属化合物および Zまたは 2族金属化合物の含有量が 、その金属原子換算で lppmを超えて 50ppm以下である請求項 1〜7の何れかに記 載の芳香族ポリカーボネート榭脂組成物。 [8] The polybutylene terephthalate resin (component B) further contains a Group 1 metal compound and a Z or Group 2 metal compound, and the content of the Group 1 metal compound and the Z or Group 2 metal compound is converted to its metal atom In any one of claims 1 to 7, wherein the concentration is more than lppm and not more than 50ppm. Aromatic polycarbonate resin composition.
ポリブチレンテレフタレート榭脂(B成分)の末端メトキシカルボニル基濃度が 0. 5 μ eqZg以下である請求項 1〜8の何れかに記載の芳香族ポリカーボネート榭脂組成 物。  The aromatic polycarbonate resin composition according to any one of claims 1 to 8, wherein the terminal methoxycarbonyl group concentration of polybutylene terephthalate resin (component B) is 0.5 µeqZg or less.
ポリブチレンテレフタレート榭脂(B成分)のチタン化合物の含有量力 チタン原子と して 20ppmを超えて 50ppm以下である請求項 1〜9の何れかに記載の芳香族ポリ力 ーボネート榭脂組成物。  10. The aromatic polycarbonate power resin composition according to claim 1, wherein the content power of the titanium compound of the polybutylene terephthalate resin (component B) is more than 20 ppm and not more than 50 ppm as a titanium atom.
ポリブチレンテレフタレート榭脂(B成分)の末端カルボキシル基が 10〜30 μ eq/g である請求項 1〜10の何れかに記載の芳香族ポリカーボネート榭脂組成物。  The aromatic polycarbonate resin composition according to any one of claims 1 to 10, wherein the terminal carboxyl group of polybutylene terephthalate resin (component B) is 10 to 30 µeq / g.
ポリブチレンテレフタレート榭脂(B成分)が 2族金属化合物としてマグネシウム化合 物を含有する請求項 8〜11の何れかに記載の芳香族ポリカーボネート榭脂組成物。 ポリカーボネート榭脂 (A成分) 55〜90重量部に対して、ポリブチレンテレフタレー ト榭脂 (B成分) 10〜45重量部を含有する請求項 1〜12の何れかに記載の芳香族 ポリカーボネート榭脂組成物。  12. The aromatic polycarbonate resin composition according to any one of claims 8 to 11, wherein the polybutylene terephthalate resin (component B) contains a magnesium compound as a group 2 metal compound. The aromatic polycarbonate bottle according to any one of claims 1 to 12, which contains 10 to 45 parts by weight of polybutylene terephthalate resin (component B) with respect to 55 to 90 parts by weight of polycarbonate resin (A component). Fat composition.
請求項 1〜13の何れか〖こ記載の芳香族ポリカーボネート榭脂組成物を成形してな る榭脂成形品。  A resin molded product obtained by molding the aromatic polycarbonate resin composition according to any one of claims 1 to 13.
成形材料の一部がリサイクル原料である請求項 14に記載の榭脂成形品。  15. The resin molded product according to claim 14, wherein a part of the molding material is a recycled material.
PCT/JP2006/323787 2005-12-27 2006-11-29 Aromatic polycarbonate resin composition and molded resin WO2007074603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800491384A CN101346430B (en) 2005-12-27 2006-11-29 Aromatic polycarbonate resin composition and molded resin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-373706 2005-12-27
JP2005373704A JP2007176969A (en) 2005-12-27 2005-12-27 Aromatic polycarbonate resin composition and resin molded product
JP2005373705A JP2007176970A (en) 2005-12-27 2005-12-27 Aromatic polycarbonate resin composition and resin molded product
JP2005373706A JP2007176971A (en) 2005-12-27 2005-12-27 Aromatic polycarbonate resin composition and resin molded product
JP2005-373704 2005-12-27
JP2005-373705 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007074603A1 true WO2007074603A1 (en) 2007-07-05

Family

ID=38217824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323787 WO2007074603A1 (en) 2005-12-27 2006-11-29 Aromatic polycarbonate resin composition and molded resin

Country Status (1)

Country Link
WO (1) WO2007074603A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104804396A (en) * 2015-04-21 2015-07-29 苏州市慧通塑胶有限公司 Novel PC (polycarbonate)/PBT (polybutylene terephthalate) plastic alloy and preparation method thereof
JP7451489B2 (en) 2018-08-09 2024-03-18 コベストロ・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・アンド・コー・カーゲー Mineral-filled polycarbonate-polyalkylene terephthalate compositions, molding compounds and molded bodies with good impact toughness

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149880A (en) * 1993-08-16 1995-06-13 General Electric Co <Ge> New polybutylene terephthalate, mixture comprising new polybutylene terephthalate and aromatic polycarbonate, and articles produced from these polymers
JP2001336027A (en) * 2000-05-29 2001-12-07 Toray Ind Inc Polyester fiber for reinforcing rubber
JP2002105295A (en) * 2000-10-02 2002-04-10 Teijin Chem Ltd Thermoplastic resin composition
JP2002265769A (en) * 2001-03-09 2002-09-18 Teijin Chem Ltd Aromatic polycarbonate resin composition
JP2003012949A (en) * 2001-06-26 2003-01-15 Yuka Denshi Co Ltd Molded member, endless belt, belt for image forming apparatus, and image forming apparatus
JP2003171564A (en) * 2001-12-07 2003-06-20 Teijin Chem Ltd Injection compression molded product
JP2004018558A (en) * 2002-06-12 2004-01-22 Mitsubishi Chemicals Corp Polybutylene terephthalate resin and thermoplastic resin composition
JP2004143210A (en) * 2002-10-22 2004-05-20 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition and molded product
JP2004359913A (en) * 2003-06-09 2004-12-24 Teijin Chem Ltd Polycarbonate resin composition and method for producing the same
JP2005314690A (en) * 2004-04-01 2005-11-10 Mitsubishi Chemicals Corp Polybutylene terephthalate film and sheet and method for producing them
WO2006001475A1 (en) * 2004-06-29 2006-01-05 Mitsubishi Engineering-Plastics Corporation Flame retardant polybutylene terephthalate composition and molded product
WO2006004005A1 (en) * 2004-07-02 2006-01-12 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition and molded object

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149880A (en) * 1993-08-16 1995-06-13 General Electric Co <Ge> New polybutylene terephthalate, mixture comprising new polybutylene terephthalate and aromatic polycarbonate, and articles produced from these polymers
JP2001336027A (en) * 2000-05-29 2001-12-07 Toray Ind Inc Polyester fiber for reinforcing rubber
JP2002105295A (en) * 2000-10-02 2002-04-10 Teijin Chem Ltd Thermoplastic resin composition
JP2002265769A (en) * 2001-03-09 2002-09-18 Teijin Chem Ltd Aromatic polycarbonate resin composition
JP2003012949A (en) * 2001-06-26 2003-01-15 Yuka Denshi Co Ltd Molded member, endless belt, belt for image forming apparatus, and image forming apparatus
JP2003171564A (en) * 2001-12-07 2003-06-20 Teijin Chem Ltd Injection compression molded product
JP2004018558A (en) * 2002-06-12 2004-01-22 Mitsubishi Chemicals Corp Polybutylene terephthalate resin and thermoplastic resin composition
JP2004143210A (en) * 2002-10-22 2004-05-20 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition and molded product
JP2004359913A (en) * 2003-06-09 2004-12-24 Teijin Chem Ltd Polycarbonate resin composition and method for producing the same
JP2005314690A (en) * 2004-04-01 2005-11-10 Mitsubishi Chemicals Corp Polybutylene terephthalate film and sheet and method for producing them
WO2006001475A1 (en) * 2004-06-29 2006-01-05 Mitsubishi Engineering-Plastics Corporation Flame retardant polybutylene terephthalate composition and molded product
WO2006004005A1 (en) * 2004-07-02 2006-01-12 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition and molded object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104804396A (en) * 2015-04-21 2015-07-29 苏州市慧通塑胶有限公司 Novel PC (polycarbonate)/PBT (polybutylene terephthalate) plastic alloy and preparation method thereof
JP7451489B2 (en) 2018-08-09 2024-03-18 コベストロ・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・アンド・コー・カーゲー Mineral-filled polycarbonate-polyalkylene terephthalate compositions, molding compounds and molded bodies with good impact toughness

Similar Documents

Publication Publication Date Title
JP4946620B2 (en) Resin composition for producing painted parts and painted parts
JP2009001619A (en) Aromatic polycarbonate resin composition and resin molded product
US10087323B2 (en) Hydrostability of polycarbonate polybutylene terephthalate composition
CN101346430B (en) Aromatic polycarbonate resin composition and molded resin
KR20150105350A (en) Polycarbonate blend compositions containing recycle for improvement in surface aesthetics
WO2006004005A1 (en) Thermoplastic resin composition and molded object
JP2008214558A (en) Inorganic-reinforced polyester-based resin composition and method for improving surface appearance of molded product using the same
JP2008280409A (en) Resin composition for manufacturing vehicle external component and vehicle exterior component
JP5258164B2 (en) Aromatic polycarbonate resin composition and resin molded article
JP2010106171A (en) Aromatic polycarbonate resin composition
JP2003026911A (en) Polycarbonate resin composition and molded article using the same
US20140031457A1 (en) Process for the preparation of poly(alkylene terephthalate) employing in situ titanium-containing catalyst and compositions derived therefrom
JP2007176971A (en) Aromatic polycarbonate resin composition and resin molded product
EP0945491B1 (en) Resin composition and molded products
JP2007204650A (en) Thermoplastic resin composition and molded resin article
JP2011052172A (en) Polyester resin composition and resin molding
WO2007074603A1 (en) Aromatic polycarbonate resin composition and molded resin
JP2011063812A (en) Polycarbonate resin composition and molded article using the same
JP5423835B2 (en) Aromatic polycarbonate resin composition and resin molded article
JP2007211112A (en) Thermoplastic resin composition and resin-molded article
JP2007161747A (en) Interior or exterior vehicle or aircraft furnishings
JP2007176970A (en) Aromatic polycarbonate resin composition and resin molded product
TWI290562B (en) Polybutylene terephthalate and polybutylene terephthalate composition
JP5428154B2 (en) Resin composition
JP5303847B2 (en) Method for purifying carbonic acid diester and method for producing polycarbonate resin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049138.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833591

Country of ref document: EP

Kind code of ref document: A1