WO2007074042A2 - Beizmittel-formulierungen enthaltend ein biologisch abbaubaren teilaromatischen polyester - Google Patents

Beizmittel-formulierungen enthaltend ein biologisch abbaubaren teilaromatischen polyester Download PDF

Info

Publication number
WO2007074042A2
WO2007074042A2 PCT/EP2006/069523 EP2006069523W WO2007074042A2 WO 2007074042 A2 WO2007074042 A2 WO 2007074042A2 EP 2006069523 W EP2006069523 W EP 2006069523W WO 2007074042 A2 WO2007074042 A2 WO 2007074042A2
Authority
WO
WIPO (PCT)
Prior art keywords
mixtures
integer
seed
group
acid
Prior art date
Application number
PCT/EP2006/069523
Other languages
English (en)
French (fr)
Other versions
WO2007074042A3 (de
Inventor
Ingrid Martin
Helmut Auweter
Rafel Israels
Peter Dombo
Jürgen JAKOB
Diego Lopez Casanello
Heribert Bohn
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to CA2631449A priority Critical patent/CA2631449C/en
Priority to PL06847027T priority patent/PL1965636T3/pl
Priority to BRPI0620442-2A priority patent/BRPI0620442A2/pt
Priority to DE502006005554T priority patent/DE502006005554D1/de
Priority to AT06847027T priority patent/ATE450146T1/de
Priority to EP06847027A priority patent/EP1965636B1/de
Priority to US12/158,179 priority patent/US20080274885A1/en
Publication of WO2007074042A2 publication Critical patent/WO2007074042A2/de
Publication of WO2007074042A3 publication Critical patent/WO2007074042A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to the use of partially aromatic biodegradable polyesters for dressing seed, seed dressing formulations comprising partially aromatic biodegradable polyesters, a process for their preparation and their use for pickling seeds.
  • Controlled-release formulations circumvent this problem by releasing certain amounts of active ingredient over a certain period of time.
  • stained seeds may cause abrasion to develop pesticide-containing dusts. This is disadvantageous in the handling of the seed.
  • Another problem with the seed dressing is that the direct contact of the active ingredient with the seed can adversely affect the germination rate of the seed.
  • the seed has good fluidity (i.e., easy application of the seed).
  • the object of the present invention was therefore to provide a mordant formulation which causes the least possible abrasion, ie reduced dust formation of the pickled seed; and or the positively influenced by the use of active ingredients germination rate of the seed and / or influenced by the use of active ingredients possibly adversely affected growth of plants from treated seeds and / or gives a controlled drug effect and / or good fluidity exhibit.
  • biodegradability means that the polyesters disintegrate in a reasonable and detectable time.
  • the degradation can be carried out hydrolytically and / or oxidatively and be effected for the most part by the action of microorganisms such as bacteria, yeasts, fungi and algae.
  • the biodegradability can be e.g. determine that polyesters are mixed with compost and stored for a certain time. For example, according to ASTM D 5338, ASTM D 6400 and DIN V 54900, CO2-free air is allowed to flow through matured compost during composting and is subjected to a defined temperature program.
  • the biodegradability is defined by the ratio of the net CO2 release of the sample (after deduction of the CO2 release by the compost without sample) to the maximum CO2 release of the sample (calculated from the carbon content of the sample).
  • Plastics are completely biodegradable (according to DIN V 54 900, Part 2), if at least 60% of the organic carbon of the material has been converted to CO2 in a test period of a maximum of 180 days.
  • Biodegradable polyester usually show after a few days of composting significant degradation phenomena such as fungal growth, crack and hole formation.
  • chain-growth polymers with C-C backbone e.g. Polyethylene only very little or not biodegradable.
  • step-growth polymers e.g. According to previous scientific findings, polyesters (W. Tänzer, Biodegradable polymers, Deutscher Verlag für Grundstoffindustrie, Stuttgart 2000) depend on the following factors:
  • Morphology amorphous polymers degrade faster than crystalline ones
  • the task was solved by the use of a biodegradable partly aromatic polyester in the seed dressing.
  • the present invention also encompasses the use of a biodegradable, degradable polyester for the preparation of seed dressing formulations.
  • stain includes all seed treatment techniques known to those skilled in the art (e.g., “seed dressing”, “seed coating” and “pelleting”).
  • biodegradable partially aromatic polyesters is intended to include all partially aromatic polyesters which meet at least the definition of biodegradability given in DIN V 54900, in particular compostable partially aromatic polyesters, i. which are more than 60% biodegradable according to DIN V 54900.
  • partially aromatic biodegradable polyesters also refers to polyester derivatives such as polyether esters, polyester amides or polyetheresteramides.
  • Suitable biodegradable partially aromatic polyesters include linear non-chain-extended polyesters (WO 92/09654) Preference is given to chain-extended and / or branched polyesters The latter are known from the documents WO 96/15173 to 15176, 21689 to 21692, 25446, 25448 or WO 98/12242, which are expressly incorporated by reference
  • Mixtures of different partially aromatic polyesters are also suitable, as are blends of partially aromatic polyesters with biopolymers such as, for example, starch or with modified biodegradable biopolymers, such as, for example, modified starch, cellulose esters (for example cellulose acetate, cellulose acetate butyrate) or with biodegradable, artificial polymers, such as polylactide (for example as EcoPLA® (Cargill ) available) ,
  • Preferred partially aromatic polyesters include polyesters, hereinafter also referred to as TA polyesters, which are composed of:
  • n 2, 3 or 4 and m is an integer from 2 to 250,
  • G is a radical selected from the group consisting of phenylene, - (CH 2) q -, where q is a integer from 1 to 5 means -C (R) H- and -C (R) HCH2 where R is methyl or ethyl
  • At least one aminocarboxylic acid selected from the group consisting of the natural amino acids, polyamides having a molecular weight of at most 18000 g / mol, obtainable by polycondensation of a dicarboxylic acid having 4 to 6 C atoms and a diamine having 4 to 10 C atoms, compounds of formulas IV a and IVb
  • T is a radical selected from the group consisting of phenylene, - (CHb) U-, where u is a an integer from 1 to 12, -C (R 2 ) H and - C (R 2 ) HCH 2 , where R 2 is methyl or ethyl,
  • R 3 is hydrogen, C 1 -C 6 -alkyl, C 5 -C -cycloalkyl, unsubstituted or phenyl substituted by C 1 -C 4 -alkyl groups or is tetrahydrofuryl,
  • the acid component A of the preferred partially aromatic polyesters contains from 30 to 70, in particular from 40 to 60, mol% of a1 and from 30 to 70, in particular from 40 to 60, mol% a2.
  • Suitable aliphatic or cycloaliphatic acids and the corresponding derivatives a1 are the following compounds.
  • Aliphatic dicarboxylic acids which are suitable according to the invention generally have 2 to 10 carbon atoms, preferably 4 to 6 carbon atoms. They can be both linear and branched.
  • the cycloaliphatic dicarboxylic acids which can be used in the context of the present invention are as a rule those having 7 to 10 carbon atoms and in particular those having 8 carbon atoms. In principle, however, it is also possible to use dicarboxylic acids having a larger number of carbon atoms, for example having up to 30 carbon atoms.
  • Examples include malonic acid, succinic acid, glutaric acid, 2-
  • ester-forming derivatives of the abovementioned aliphatic or cycloaliphatic dicarboxylic acids which are likewise usable are the di-C 1 - to C 6 -alkyl esters, such as dimethyl-, diethyl-, di-n-propyl, di-isopropyl, di-n-butyl To mention di-iso-butyl, di-t-butyl, di-n-pentyl, di-iso-pentyl or di-n-hexyl ester.
  • Anhydrides of dicarboxylic acids can also be used.
  • adipic acid or sebacic acid whose respective ester-forming derivatives or mixtures thereof.
  • adipic acid or its ester-forming derivatives such as their alkyl esters or mixtures thereof.
  • aromatic dicarboxylic acid a2 there are generally mentioned those having 8 to 12 carbon atoms, and preferably those having 8 carbon atoms. Examples include terephthalic acid, isophthalic acid, 2,6-naphthoic acid and 1, 5-naphthoic acid and ester-forming derivatives thereof.
  • di-C1-C6-alkyl esters for example dimethyl, diethyl, di-n-propyl, di-iso-propyl, di-n-butyl, diisobutyl, di-t-butyl
  • di-n-pentyl, di-iso-pentyl or di-n-hexyl ester di-n-pentyl or di-n-hexyl ester.
  • the anhydrides of dicarboxylic acids a2 are also suitable ester-forming derivatives.
  • aromatic dicarboxylic acids a2 having a greater number of carbon atoms, for example up to 20 carbon atoms.
  • aromatic dicarboxylic acids or their ester-forming derivatives a2 may be used singly or as a mixture of two or more thereof. Particularly preferred is terephthalic acid or its ester-forming derivatives such as dimethyl terephthalate used.
  • the sulfonate group-containing compound is usually an alkali metal or alkaline earth metal salt of a sulfonate-containing dicarboxylic acid or its ester-forming derivatives, preferably alkali metal salts of 5-sulfoisophthalic acid or mixtures thereof, particularly preferably the sodium salt.
  • the acid component A contains from 40 to 60 mol% a1, from 40 to 60 mol% a2 and from 0 to 2 mol% a3. According to a further preferred embodiment, the acid component A contains from 40 to 59.9 mol% a1, from 40 to 59.9 mol% a2 and from 0.1 to 1 mol% a3, in particular from 40 to 59.8 mol -% a1, from 40 to 59.8 ⁇ mol-% a2 and from 0.2 to 0.5 mol% a3.
  • the diols B are selected from branched or linear alkanediols having 2 to 12 carbon atoms, preferably 4 to 6 carbon atoms, or cycloalkanediols having 5 to 10 carbon atoms.
  • alkanediols examples include ethylene glycol, 1, 2-propanediol, 1, 3-propanediol, 1, 2-butanediol, 1, 4-butanediol, 1, 5-pentanediol, 2,4-dimethyl-2-ethylhexane-1, 3 diol, 2,2-dimethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propanediol, 2,2,4-trimethyl- 1, 6-hexanediol, in particular ethylene glycol, 1, 3-propanediol, 1, 4-butanediol and 2,2-dimethyl-1, 3-propanediol (neopentyl glycol); Cyclopentanediol, 1,4-cyclohexanediol, 1,2-cyclohexan
  • the molar ratio of the components A used to B in the range of 0.4: 1 to 1, 5: 1, preferably in the range of 0.6: 1 to 1, 1: 1.
  • the TA polyesters may contain other components.
  • Preferred dihydroxy compounds d are diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol and polytetrahydrofuran (polyTHF), particularly preferably diethylene glycol, triethylene glycol and polyethylene glycol, mixtures of which or compounds having different variables n (see formula I),
  • the molecular weight (Mn) of the polyethylene glycol is usually selected in the range from 250 to 8000, preferably from 600 to 3000 g / mol.
  • the diols B and 0.2 to 85 for example, from 15 to 98, preferably 60 to 99.5 mol% of the diols B and 0.2 to 85, preferably 0.5 to 30 mol% of the dihydroxy compounds d, based on the molar amount of B and d, used for the preparation of the TA polyester.
  • the hydroxycarboxylic acid c2) used is: glycolic acid, D-, L-, D, L-lactic acid, 6-hydroxyhexanoic acid, whose cyclic derivatives such as glycolide (1,4-dioxane-2,5-dione) , D-, L-dilactide (3,6-dimethyl-1,4-dioxane-2,5-dione), p-hydroxybenzoic acid and their oligomers and polymers such as
  • the hydroxycarboxylic acids can be used, for example, in amounts of from 0.01 to 50, preferably from 0.1 to 40,% by weight, based on the amount of A and B.
  • amino-C2-C12-alkanol or amino-C5-C10-cyloalkanol (component c3) which should also include 4-aminomethylcyclohexanemethanol
  • amino-C2-C6-alkanols such as 2-aminoethanol, 3-aminopropanol, 4 -Aminobutanol, 5 Aminopentanol, 6-aminohexanol and amino-C ⁇ -C ⁇ -cyloalkanols such as aminocyclopentanol and aminocyclohexanol or mixtures thereof.
  • diamino-C 1 -C 8 -alkane preference is given to using diamino-C 4 -C 6 -alkanes, such as 1,4-diminobutane, 1,5-diaminopentane and 1,6-diaminohexane (hexamethylenediamine, "HMD”) ,
  • from 0.5 to 99.5 mol%, preferably 0.5 to 50 mol%, of c3, based on the molar amount of B, and from 0 to 50, preferably from 0 to 35 mol% , c4, based on the molar amount of B, are used for the preparation of TA polyesters.
  • the 2,2'-bisoxazolines c5 of general formula IM are generally obtainable by the method of Angew. Chem. Int. Edit, Vol. 1 1 (1972), pp. 287-288.
  • bisoxazolines are 2,2'-bis (2-oxazoline), bis (2-oxazolinyl) methane, 1, 2-bis (2-oxazolinyl) ethane, 1, 3-bis (2-oxazolinyl) propane or 1 , 4-bis (2-oxazolinyl) butane, in particular 1, 4-bis (2-oxazolinyl) benzene, 1, 2-bis (2-oxazolinyl) benzene or 1, 3-bis (2-oxazolinyl) benzene ,
  • the TA polyesters for example, from 70 to 98 mol% B, to 30 mol% c3 and 0.5 to 30 mol% c4 and 0.5 to 30 mol% c5, in each case based on the sum of the molar amounts components B, c3, c4 and c5.
  • natural aminocarboxylic acids can be used. These include VaNn, leucine, isoleucine, threonine, methionine, phenylalanine, tryptophan, lysine, alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, proline, serine, tyrosine, asparagine or glutamine.
  • Preferred aminocarboxylic acids of the general formulas IVa and IVb are those in which s is an integer from 1 to 1000 and t is an integer from 1 to 4, preferably 1 or 2, and T is selected from the group phenylene and - (CH 2) u where u is 1, 5 or 12.
  • c6 can also be a polyoxazoline of the general formula V.
  • C6 can also be a mixture of different aminocarboxylic acids and / or polyoxazolines. According to a preferred embodiment, c6 can be used in amounts of from 0.01 to 50, preferably from 0.1 to 40,% by weight, based on the total amount of components A and B.
  • TA polyesters include compounds d1 which contain at least three groups which are capable of ester formation.
  • the compounds d1 preferably contain from three to ten functional groups which are capable of forming ester bonds. Particularly preferred compounds d1 have three to six functional groups of this kind in the molecule, in particular three to six hydroxyl groups and / or carboxyl groups. Examples include:
  • Tartaric acid citric acid, malic acid; Trimethylolpropane, trimethylolethane; pentaerythritol; polyether triols; glycerol; trimesic; Trimellitic acid, anhydride; Pyromellitic acid, dianhydride and hydroxyisophthalic acid.
  • the compounds d1 are generally used in amounts of from 0.01 to 15, preferably from 0.05 to 10, particularly preferably from 0.1 to 4, mol%, based on the component A.
  • component d2 one or a mixture of different isocyanates are used. It is possible to use aromatic or aliphatic diisocyanates. However, it is also possible to use higher functional isocyanates.
  • an aromatic diisocyanate d2 is in particular toluylene 2,4-diisocyanate, tolylene 2,6-diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, Naphthylene-1, 5-diisocyanate or xylylene diisocyanate understood.
  • 2,2'-, 2,4'- and 4,4'-diphenylmethane diisocyanate as component d2 are particularly preferred. In general, the latter diisocyanates are used as a mixture.
  • trinuclear isocyanate d2 is also tri (4-isocyanophenyl) methane into consideration.
  • the polynuclear aromatic diisocyanates are obtained, for example, in the preparation of mono- or binuclear diisocyanates.
  • component d2 may also contain urethione groups, for example for capping the isocyanate groups.
  • an aliphatic diisocyanate d2 is in particular linear or branched alkylene diisocyanates or cycloalkylene diisocyanates having 2 to 20 carbon atoms, preferably 3 to 12 carbon atoms, for example 1, 6-hexamethylene diisocyanate, isophorone diisocyanate or methylene bis (4-isocyanatocyclohexane) , Understood.
  • Particularly preferred aliphatic diisocyanates d2 are 1,6-hexamethylene diisocyanate and isophorone diisocyanate.
  • Preferred isocyanurates include the aliphatic isocyanurates derived from alkylene diisocyanates or cycloalkylene diisocyanates having 2 to 20 carbon atoms, preferably 3 to 12 carbon atoms, e.g. Isophorone diisocyanate or methylene bis (4-isocyanatocyclohexane), derived.
  • the alkylene diisocyanates can be both linear and branched. Particular preference is given to isocyanurates based on n-hexamethylene diisocyanate, for example cyclic trimers, pentamers or higher oligomers of n-hexamethylene diisocyanate.
  • the component d2 is used in amounts of 0.01 to 5, preferably 0.05 to 4 mol%, particularly preferably 0.1 to 4 mol%, based on the sum of the molar amounts of A and B.
  • divinyl ether d3 all conventional and commercially available divinyl ethers can be used as the divinyl ether d3. Preference is given to using 1,4-butanediol divinyl ether, 1,6-hexanediol divinyl ether or 1,4-cyclohexanedimethanol divinyl ether or mixtures thereof.
  • the divinyl ethers are preferably used in amounts of from 0.01 to 5, in particular from 0.2 to 4,% by weight, based on the total weight of A and B.
  • Examples of preferred TA polyesters are based on the following components
  • TA polyesters based on A, B, d1 or A, B, d2 or on A, B, d1, d2 are particularly preferred.
  • the partially aromatic polyesters are based on A, B, c3, c4, c5 or A, B, d1, c3, c5.
  • TA polyesters are known per se, for example, from WO96 / 15173 and WO 04/67632 or can be carried out by methods known per se.
  • the preferred TA polyesters are characterized by a molecular weight (Mn) in the range of 1000 to 100,000, in particular in the range of 9000 to 75,000 g / mol, preferably in the range of 10,000 to 50,000 g / mol and a melting point in the range of 60 to 170, preferably in the range of 80 to 150 ° C.
  • Mn molecular weight
  • the said aliphatic and partially aromatic polyesters may have hydroxyl and / or carboxyl end groups in any ratio.
  • the stated aliphatic and / or partially aromatic polyesters can also be end-group-modified.
  • OH end groups can be acid-modified by reaction with phthalic acid, phthalic anhydride, trimellitic acid, trimellitic anhydride, pyromellitic acid or pyromellitic anhydride.
  • TA polyesters a1 a2B according to the abovementioned definitions, in which adipic acid is used as component a1, terephthalic acid as component a2 and 1,4-butanediol as component B (polybutylene adipate terephthalates, for example commercially available as Ecoflex® (US Pat. BASF))
  • mixtures of TA polyesters with biopolymers such as e.g. Starch or with modified biodegradable biopolymers, e.g. modified starch, cellulose esters (e.g., cellulose acetate, cellulose acetate butyrate) or biobegatable artificial polymers such as polylactide (available, for example, as EcoPLA® (from Cargill)).
  • biopolymers such as e.g. Starch or with modified biodegradable biopolymers, e.g. modified starch, cellulose esters (e.g., cellulose acetate, cellulose acetate butyrate) or biobegatable artificial polymers such as polylactide (available, for example, as EcoPLA® (from Cargill)).
  • biodegradable partially aromatic polyester preferably TA polyester and mixtures of TA polyester with biopolymers such as starch or with modified biodegradable biopolymers such as modified starch, cellulose esters (eg cellulose acetate, cellulose acetate butyrate) or with biodegradable artificial polymers such as polylactide (polylactic acid) (obtainable, for example, as EcoPLA® (from Cargill)) by the term "polyester according to the invention.”
  • the term “polyester according to the invention” preferably describes TA polyester, mixtures of TA polyesters with polylactic acid, particularly preferably TA polyester, where for the TA polyester, the preferences listed under the definition of the TA polyester apply.
  • the polyester according to the invention can be used according to the invention in the form of a dispersion, preferably an aqueous dispersion.
  • the polyester dispersions according to the invention may optionally contain one or more protective colloids and / or one or more emulsifiers for stabilization. Suitable emulsifiers and protective colloids are listed below.
  • Preparation processes for aqueous polymer dispersions are e.g. in D. Distler "aqueous polymer dispersions", Wiley-VCH, Weinheim 1999.
  • aqueous polymer dispersions can be obtained directly via emulsion polymerization, but it is also possible to dissolve any soluble polymers in solvents, emulsify the solutions in water and then remove the solvent to give In this case, one speaks of secondary dispersions, since the polymer was previously prepared in a separate step.
  • the process for producing the secondary dehydration of polyesters according to the invention is characterized in that
  • the mixing process described in step (b) can be carried out batchwise or, preferably, continuously.
  • a high mechanical energy input during mixing is recommended.
  • Such energy input can be done for example by vigorous stirring or shaking in a suitable device.
  • the mixing process described in step (b) is carried out by injecting the corresponding solutions into a mixing chamber.
  • Such mixing is known to those skilled in the art and e.g. in WO 00/33820.
  • step (b) an aqueous solution of one or more protective colloids and / or one or more emulsifiers is used instead of water. It is likewise possible to use mixtures of water with water-miscible excipients such as glycols and glycerol instead of water in step (b) of the abovementioned process. Preference is given to the use of water.
  • Suitable organic solvents are both water-miscible and water-immiscible solvents.
  • water immiscible organic solvents describes organic solvents which have a solubility in water of less than 10%, in a preferred embodiment less than 5%.
  • the boiling point is 0-100 ° C under normal conditions (1 bar pressure, 20 ° C).
  • water-miscible organic solvents describes organic, water-miscible solvents which are volatile and thermally stable and contain only carbon, hydrogen, oxygen, nitrogen and sulfur. Conveniently, they are miscible under normal conditions (1 bar pressure, 20 ° C) to at least 10 wt .-% with water and have a boiling point below 200 ° C, preferably below 100 ° C and / or have less than 10 carbon atoms. Preferred are corresponding alcohols, esters, ketones, ethers and acetals.
  • ethanol n-propanol, isopropanol, butyl acetate, ethyl acetate, tetrahydrofuran, acetone, 1, 2-propanediol-1-n-propyl ether or 1, 2-butanediol 1 methyl ether.
  • isopropanol isopropanol, tetrahydrofuran and acetone.
  • step (b) When mixed with water-miscible solvents, the mixing with the aqueous phase in step (b) leads to a deterioration of the solvent quality, as a result of which the polyester particles are precipitated.
  • step (b) If water-immiscible solvents such as e.g. When methylene chloride, cyclohexane or ethyl acetate is used, mixing in step (b) produces an emulsion from which the polyester particles are precipitated in the subsequent evaporation of the solvent by supersaturation of the solution.
  • water-immiscible solvents such as e.g. When methylene chloride, cyclohexane or ethyl acetate is used, mixing in step (b) produces an emulsion from which the polyester particles are precipitated in the subsequent evaporation of the solvent by supersaturation of the solution.
  • step c) of the above process can be carried out by methods known to those skilled in the art, e.g. Distillation, if necessary under reduced pressure, carried out.
  • the aqueous dispersions of a polyester according to the invention obtained by the above-mentioned process have a solids content of 1-70%, preferably 10-30%.
  • the average particle sizes of the polyester particles according to the invention, which can be determined by quasi-elastic light scattering, in the aqueous dispersions obtained by the above-mentioned methods are 10 nm to 5000 nm, preferably 50 nm to 500 nm.
  • the present invention also claims aqueous dispersion of a polyester according to the invention preparable by the abovementioned process.
  • the present invention encompasses mordant formulations
  • agrochemical active substance here means at least one active ingredient selected from the group of insecticides, fungicides, herbicides and / or safeners, growth regulators (see Pesticide Manual, 13th Ed. (2003)).
  • insecticides fungicides, herbicides and / or safeners, growth regulators (see Pesticide Manual, 13th Ed. (2003)).
  • the following list of insecticides shows, but is not limited to, possible drugs:
  • Organo (thio) phosphates such as acephates, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyriphos-methyl, chlorfenvinphos, diazinon, dichlorophos, dicrotophos, dimethoate, disulfotone, ethion, fenitrothion, fenthione, isoxathione, malathion, methamidophos, methidathion, methyl- Parathion, mevinphos, monocrotophos, oxydemeton-methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidone, phorates, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, triazophos, trichlorophone;
  • Carbamates such as alanycarb, benfuracarb, bendiocarb, carbaryl, carbosulfan, fenoxycarb, furathiocarb, indoxacarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodicarb, triazamates; Pyrethroids such as allethrin, bifenthrin, cyfluthrin, cyphenothrin, cypermethrin and the alpha-, beta-, theta- and zeta-isomers, deltamethrin, esfenvalerates, ethofenprox, fenpropathrin, fenvalerates, cyhalothrin, lambda-cyhalothrin, imiprothrin, permethrin, prallethrin, pyrethrin I , Pyrethrin II, sila
  • B. benzoylureas such as chlorofluorazuron, cyromacin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; Buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists such as halofenozides, methoxyfenozides, tebufenozides; c) juvenoids such as pyriproxyfen, methoprene, fenoxycarb; d) lipid biosynthesis inhibitors such as spirodiclofen;
  • Neonicothinoids such as flonicamid, clothianidin, dinotefuran, imidacloprid, thiamethoxam, nitenpyram, nithiazine, acetamiprid, thiacloprid; Pyrazole insecticides such as acetoprole, ethiprole, fipronil, tebufenpyrad, tolfenpyrad, and vaniliprole, as well as abamectin, acequinocyl, amitraz, azadirachtin, bifenazates, car tap, chlorfenapyr, chlordimeform, cyromazine, diafenthiuron, diofenolan, emamectin, endosulfan, fenazaquin, formetanate, formetanate Hydrochloride, hydramethylnone indoxacarb, piperonyl butoxide, pyridaben,
  • Azoxystrobin dimoxystrobin, enestroburine, fluoxastrobin, kresoxim-methyl, metominostrobin, picoxystrobin, pyraclostrobin, trifloxystrobin, orysastrobin, (2-chloro-5- [1- (3-methyl-benzyloxyimino) -ethyl] -benzyl) -carbamic acid methyl ester, (2-Chloro-5- [1- (6-methylpyridin-2-ylmethoxyimino) ethyl] benzyl) -carbamic acid methyl ester, 2- (ortho ((2,5-dimethylphenyl-oxymethylene) phenyl) -3 methoxy-methyl acrylate;
  • Carboxylic acid amides as Carboxylic acid anilides: benalaxyl, benodanil, boscalid, carboxin, mepronil, fenfuram, fenhexamide, flutolanil, furametpyr, metalaxyl, ofurace, oxadixyl, oxycarboxin, penthiopyrad, thifluzamide, tiadinil, 4-difluoromethyl-2-methyl-thiazole-5-carboxylic acid (4'-bromo-biphenyl-2-yl) -amide, 4-difluoromethyl-2-methyl-thiazole-5-carboxylic acid- (4'-trifluoromethyl-biphenyl-2-yl) -amide, 4-difluoromethyl- 2-ethyl-thiazole-5-carboxylic acid (4'-chloro-3'-fluorobiphenyl-2-yl) -amide, 3-difluor
  • carboxylic acid amides carpropamide, diclocymet, mandipropamide, N- (2- (4- [3- (4-chloro-phenyl-1-propoxy) -synyloxy-S-methoxy-phenyl-1-ethyl-1-methanesulfonylamino-S-methyl-butyramide, N - (2- (4- [3- (4-Chloro-phenyl) -prop-2-ynyloxy] -3-methoxy-phenyl) -ethyl) -2-ethanesulfonylamino-3-methylbutyramide;
  • Triazoles bitertanol, bromuconazoles, cyproconazole, difenoconazole, diniconazole,
  • Imidazoles cyazofamide, imazalil, pefurazoate, prochloraz, triflumizole;
  • Benzimidazoles Benomyl, Carbendazim, Fuberidazole, Thiabendazole;
  • Nitrogen-containing heterocyclyl compounds such as
  • Pyridines fluazinam, pyrifenox, 3- [5- (4-chloro-phenyl) -2,3-dimethyl-isoxazolidin-3-yl] -pyridine;
  • Pyrimidines bupirimate, cyprodinil, ferimzone, fenarimol, mepanipyrim, nuarimol, pyrimethanil;
  • Morpholine aldimorph, dodemorph, fenpropimorph, tridemorph
  • Dicarboximides iprodione, procymidone, vinclozolin; other: acibenzolar-S-methyl, anilazine, captan, captafol, dazomet, diclomezine,
  • Guanidines dodine, iminoctadine, guazatine; Antibiotics: Kasugamycin, Polyoxins, Streptomycin, Validamycin A;
  • Organometallic compounds fentin salts
  • Sulfur-containing heterocyclyl compounds isoprothiolanes, dithianone;
  • Organophosphorus compounds edifenphos, fosetyl, fosetyl-aluminum, Iprobenfos,
  • Organochlorine compounds thiophanates methyl, chlorothalonil, dichlofluanid, toIyIfIu- anid, Flusulfamide, phthalides, Hexachlorbenzene, Pencycuron, Quintozene;
  • Nitrophenyl derivatives binapacryl, dinocap, dinobuton;
  • Inorganic active substances Bordeaux broth, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur; Other: Spiroxamine, Cyflufenamid, Cymoxanil, Metrafenone.
  • a herbicide is used as the active ingredient, then the seed of transgenic or obtained by conventional breeding methods plants can be used.
  • seed can be used which is tolerant to herbicides, e.g. plants susceptible to sulfonylureas, imidazolinones or glufonate or glyphosate (see, for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Patent No. 5,013,659).
  • herbicides e.g. plants susceptible to sulfonylureas, imidazolinones or glufonate or glyphosate
  • EP-A-0242236, EP-A-242246 WO 92/0037
  • EP-A-0257993 U.S. Patent No. 5,013,659
  • the agrochemical active ingredient is selected from the group of fungicides and / or insecticides.
  • Preferred fungicides are
  • Strobilurins preferably kresoxime methyl, pyraclostrobin, oryzastrobin carboxylic acid anilides, preferably boscalid, and azoles, preferably epoxiconazole, prothiocinazole, tebuconazole, and triticonazole, fluquinconazole and spiroxamine.
  • Besone's preferred are triticonazole and fluquinconazole.
  • Preferred insecticides are pyrazole insecticides, preferably fipronil, pyrethroids, preferably alpha-cypermethrin, neonicotinoids, such as flonicamide, clothianidin, dinotefuran, imidacloprid, thiamethoxam, nitenpyram, nithiazine, acetamiprid and thiacopride, preferred neonicotinoid is imidacloprid.
  • a particularly preferred insecticide is fipronil.
  • the seed dressing formulations according to the invention contain 1 to 30% by weight, preferably 5 to 20% by weight of polyester and 1 to 60% by weight, preferably 1 to 30% by weight, of agrochemical active ingredient.
  • the corresponding formulations with high active ingredient concentration can also be diluted 2 to 10 times.
  • the seed dressing formulations of the invention may contain further formulation auxiliaries.
  • auxiliaries can usually be present in 0.1 to 40% by weight, preferably 5 to 20% by weight, in the seed dressing formulations according to the invention
  • formulation aid describes surface-active substances (such as wetting agents, emulsifiers, adhesives or dispersants or protective colloids), antifoaming agents, thickeners, antifreeze agents, adhesives and also bactericides.
  • Suitable surface-active substances which may be present in the seed dressing formulations according to the invention are all surfactants customary for the formulation of agrochemical active compounds, i. in the present case all water-soluble polymers of amphiphilic character known to the person skilled in the art, for example proteins, denatured proteins, polysaccharides, hydrophobically modified starches, and synthetic polymers, preferably polyvinyl alcohol, polycarboxylates, polyalkoxylates, polyvinylamine, polyethyleneimine, polyvinylpyrrolidone and the like copolymers. This compound is particularly suitable as a protective colloid.
  • surfactants which may be present in the formulations according to the invention are customary nonionic, anionic and / or cationic dispersants / wetting agents such as alkali, alkaline earth, ammonium salts of lignin sulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalenesulfonic acid, alkylarylsulfonates, alkylphenyl ether sulfonates, Alkyl sulfates, alkyl sulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensation products of naphthalene or Naphtalinsulfonklare with Phe- nol and formaldehyde, polyoxyethylene octylphenol ether, ethoxyethylene
  • Suitable thickeners which may be present in the formulations according to the invention are all thickeners customary for the formulation of agrochemical active compounds.
  • thickeners ie compounds which impart a pseudoplastic flow behavior to the formulation, ie high viscosity at rest and low viscosity in the agitated state
  • thickeners are, for example, polysaccharides or organic layer minerals such as xanthan gum (Kelzan® from Kelco), Rhodopol® 23 (US Pat. Rhone Poulenc) or Veegum® (RT Vanderbilt) or Attaclay® (Engelhardt).
  • Suitable antifoams which may be present in the formulations according to the invention are all antifoams customary for the formulation of agrochemical active compounds.
  • antifoam agents are silicone emulsions (such as, for example, Silikon® SRE, Wacker or Rhodorsil® from Rhodia), long-chain alcohols, fatty acids, organofluorine compounds and mixtures thereof.
  • Bactericides may be added to stabilize the aqueous fungicide formulation.
  • Suitable bactericides which may be present in the formulations according to the invention are all bactericides which are customary for the formulation of agrochemical active compounds, for example bactericides based on diclorophene and benzyl alcohol hemiformal. Examples of bactericides are Proxel® from the company ICI or Acticide® RS from Thor Chemie and Kathon® MK from Rohm & Haas.
  • Suitable antifreeze agents which may be present in the formulations according to the invention are all antifreeze agents customary for the formulation of agrochemical active compounds. Suitable antifreeze agents are e.g. Ethylene glycol, propylene glycol or glycerol, preferably propylene glycol and glycerol.
  • Suitable solvents are water and mixtures of water with water-miscible excipients such as glycols and glycerol into consideration.
  • Preferred solvent is water.
  • Suitable adhesives which may be present in the seed dressing formulations according to the invention are all customary binders which can be used in pickling agents.
  • binders which can be used in pickling agents.
  • front- preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and TyI ose.
  • dyes may also optionally be added to the seed dressing formulations according to the invention. All dyes customary for such purposes are suitable here. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, Cl. Pigment Red 1 12 and Cl.
  • Solvent Red 1 known dyes, as well as pigment blue 15: 4, pigment blue 15: 3, pigment blue 15: 2, pigment blue 15: 1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 1 12, pigment red 48: 2, pigment red 48: 1, pigment red 57: 1, pigment red 53: 1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108
  • formulations according to the invention can be prepared by methods known to those skilled in the art (see US 3,060,084, EP-A 707,445 (for liquid concentrates), Browning, "Agglomeration”, Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pp. 8-57 and et seq. WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US
  • the mordant formulation by mixing a suspension of an agrochemical active substance suitable for seed dressing, in which the active substance is present in solid particles having a size between 0.1 ⁇ m and 10 ⁇ m, with an aqueous dispersion of a biodegradable polyester.
  • the active substance suspension can be prepared, for example, by comminuting the corresponding active substance (s) with the addition of surface-active substances (dispersants and wetting agents) and, if appropriate, further auxiliaries and water or an organic solvent in a stirred ball mill to give a fine suspension of active substance.
  • the active substance suspension may also be a commercially available suspension formulation of one (or more) agrochemical active ingredient (for example p.SC, OD, FS), where the active substance must have the above-mentioned particle sizes.
  • the active substance suspension can also be prepared from a (optionally also commercially available) solid formulation of an active ingredient by dispersing in a solvent, preferably water, (eg from a powder formulation (eg WP, SP, SS, WS) or granules).
  • Formulation for example WG, SG
  • comminution for example grinding
  • the preparation of granulate formulations is known to the person skilled in the art and can be carried out by known methods (cf. US 3,060,084, Browning, "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pp. 8-57 and et seq. WO 91 / 13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US
  • adhesives and pigments can be added to these suspension formulations.
  • the present invention comprises a method for pickling seeds based on the use of a polyester according to the invention.
  • the method for pickling seeds is characterized in that
  • step (b) optionally drying the seed obtained in step (a)
  • the seed dressing formulation according to the invention can be diluted before application to the seed with a solvent, preferably water.
  • the method for pickling seed is characterized in that seed is treated with a dispersion of a partially aromatic polyester according to the invention.
  • This seed pretreated in this way can subsequently be treated with an agrochemical suspension formulation comprising at least one agrochemical active ingredient suitable for dressing seed, the active ingredient being present in solid particles having a size between 0.1 ⁇ m and 10 ⁇ m.
  • agrochemical formulations are suspension formulations of one (or more) agrochemical active (eg, SC, OD, FS), which must have the above particle sizes.
  • SC, OD, FS agrochemical active
  • the active substance suspension can also be prepared from a (optionally also commercially available) solid formulation of an active ingredient by dispersing in a solvent, preferably water (see above).
  • seed includes seeds of all kinds, e.g. Grains, seeds, fruits, tubers, cuttings and similar forms.
  • seed preferably describes grains and seeds here.
  • Suitable seeds are cereals seed crops, root crops, oilseeds, vegetable seeds, spice seed, ornamental plant seed, e.g. Seeds of durum wheat, wheat, barley, oats, rye, maize (fodder maize and sweetcorn), soya, oilseed, cruciferous vegetables, cotton, sunflower, bananas, rice, rape, beet,, sugarbeet, fodder beet, eggplant, potatoes, grass, (Ornamental) turf, forage grass, tomatoes, leeks, squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, brassica species, melons, beans, peas, garlic, onions, carrots, sugarcane, tobacco, grapes, petunia and geraniums , Pansy, bob.
  • the term seed here describes cereals and soybeans.
  • the seed dressing formulations according to the invention can be used for pickling seeds by conventional cultivation methods of plants obtained and for pickling seeds of transgenic plants.
  • seed can be used that is tolerant to herbicides, e.g. plants resistant to sulfonylureas, imidazolinones or glufonate or glyphosate (see, e.g., EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat No. 5,013,659) or transgenic plant seeds, e.g. Cotton producing Bacillus thuringiensis toxin (Bt toxins) and thereby resistant to certain harmful organisms (EP-A-0142924, EP-A-0193259).
  • herbicides e.g. plants resistant to sulfonylureas, imidazolinones or glufonate or glyphosate
  • EP-A-0242236, EP-A-242246 WO 92/0037
  • transgenic plant seeds e.g. Cotton producing Bacillus thuringiensis toxin (Bt toxins)
  • seed of plants can be used which have modified properties in comparison with conventional plants.
  • modified starch synthesis for example WO 92/1 1376, WO 92/14827, WO 91/19806) or fatty acid compositions (WO 91/13972).
  • seed is also claimed, which is treated with a polyester according to the invention. Furthermore, seed is claimed which is treated with a polyester according to the invention, and was treated in a second step as described above with a conventional suspension formulation.
  • seed is claimed, which is treated with a seed dressing formulation according to the invention.
  • the application rates are generally between 0.1 g-10 kg of active ingredient per 100 kg of seed, preferably 1 g to 5 kg, more preferably from 1 g to 2.5 kg. For special seeds such as salad, the application rates may be higher. For soya, an amount of 0.1-10 kg is used.
  • Seed treatment may be carried out by spraying the seed with the formulation or mixing of the seed with the formulation, optionally followed by drying the seed before sowing and germination by methods known to those skilled in the art.
  • the present invention comprises a method for regulating the growth of plants and / or for controlling undesired plant growth and / or for controlling undesirable insect or mite infestation on plants and / or for controlling phytopathogenic fungi, characterized in that seed of Treated crops with a seed dressing formulation of the invention.
  • the invention preferably comprises methods for controlling undesirable insect or mite infestation on plants and / or for controlling phytopathogenic fungi, which comprises treating seed of crop plants with a seed dressing formulation according to the invention.
  • Controlling undesired plant growth means controlling / destroying plants which grow in places where they are undesirable, e.g. from
  • Ants for example. Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Monomorium pharaonis, Solenopsis minina, Solenopsis invicta, Pogonomyrmex species and Pheidole megacephala,
  • Beetles such as Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus and other Agriotes species, Amphimallus solstitialis, Anisandrus dispar, Anthomonomus grandis, Anthonomus pomorum, Aracanthus morei, Atomaria linearis, Blapstinus species, Blastophagus piniperda , Blitophaga undata, Bothynoderes punciventris, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus and other Conoderus species, Conorhynchus mendicus, Crioceris asparagi , Cy
  • Flies such as Agromyza oryzea, Chrysomya bezziana, Chrysomya hominivorax, Chrysomia macellaria, Contarina sorghicola, Cordylobia anthropophaga, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, DeNa antique, DeNa coarctata, DeNa platura, DeNa radicum, Fannia canicularis, Gasterophilus intestinalis, Geomyza tripunctata, Glossina morsitans, Haematobia irritans, Haplodiplosis equestris, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Luci-sericata, Lycoria pectoralis, Mayetiola destructor, Muscina stabulans, Oestrus ovis, Opomy
  • Heteropterans such as, for example, Acrosternum hilare, Blissus leucopterus, Cicadellidae such as Empoasca fabae, Chrysomelidae, Cyrtopeltis notatus, Delpahcidae, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integrces, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nephotettix species, Nezara viridula, Pentatomidae, Piesma quadrata, Solubea insularis and Thyanta perditor,
  • Heteroptera such as, for example, Acrosternum hilare, Blissus leucopterus, Cicadellidae such as Empoasca fabae, Chrysomelidae, Cyrtopeltis notatus, Delpahcida
  • Aphids and other homopterans e.g. Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis glycines, Aphis gossypii, Aphis grossulariae, Aphis pomi, Aphis cut, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capophore horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyf
  • Lepidoptera for example Agrotis ypsilon, Agrotis segetum and other Agrotis species, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Chilo suppresalis and other Chilo species, Choristoneura fumiferana, Choristoneura occidentalis Cirphis unipuncta, Cnaphlocrocis medinalis, Cydia pomonella, Dendrolimini pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Euxoa species, Evetria bouliana, Feltia subterranea, Galleria mellon
  • Orthoptera such as Acrididae, Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynorus;
  • Termites such as Calotermes flavicollis, Coptotermes species, Dalbullus maidis, Leucotermes flavipes, Macrotermes gilvus, Reticulitermes lucifugus and Termes natalensis;
  • Thrips such as Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici and other Frankliniella species, Scirtothrips citri, Thrips oryzae, Thrips palmi, Thrips simplex and Thrips tabaci,
  • Arachnids such as Acarina, for example, e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicocundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eri- ophyidae species such as Aculus badendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae species such as A
  • Nematodes especially plant-borne nematodes such as, for example, root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Star and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema species, Cri
  • phytopathogenic fungi describes but is not limited to the following species:
  • phytopathogenic fungi describes but is not limited to the following species: Alternaria spp. on rice, vegetables, soya beans, oilseed rape, sugarbeet and fruits, Aphanomyces spp. on sugar beet and vegetables, Bipolaris and Drechslera spp. Corn, cereals, rice and ornamental grass, Blumeria graminis (powdery mildew) on cereals, Botrytis cinerea (gray mold) on strawberries, vegetables, ornamentals, grapes, Bremia lactucae on lettuce, Cercospora spp. on corn, soybean, and sugar beet, Cochliobolus spp.
  • Example 1 Preparation of an aqueous dispersion of a TA polyester
  • the tetrahydrofuran and a portion of the water were removed in a rotary evaporator at a temperature of 65 ° C and at a pressure of 200 mbar.
  • the dispersion thus obtained had a particle size of 17 ⁇ m at a solids content of 17.9%.
  • Example 2 Preparation of an aqueous dispersion of a TA polyester
  • the crude emulsion thus obtained had a droplet size of 466 nm at a solids content of 2.8% and a pH of 7.5.
  • This crude emulsion was then further homogenized in three passes in a high pressure homogenizer at a pressure of 700 bar.
  • the droplet size was then 339 nm.
  • 2 g of Na dodecyl sulfate was dissolved in 150 g of deionized water and added to the emulsion. Thereafter, the emulsion was again three times among the same conditions as previously treated in the high pressure homogenizer. The droplet size was thereby reduced to 1 16 nm.
  • the methylene chloride and so much water were then removed in a rotary evaporator until the solids content of the dispersion was 29.3%.
  • the particle size was determined to be 108 nm by means of dynamic light scattering and the viscosity of the dispersion to 6 mPas at a shear rate of 50 sec-1.
  • Example 3 Pickling of the Seed with a Commercially Available Mordant Formulation
  • the mordant used was Premis 025 FS® from BASF, a commercially available formulation of the crop protection agent triticonazole.
  • the pickling device MiniRotostat from Satec
  • 10 ml Premis 025 FS® were placed on the turntable.
  • After the addition was 20 seconds submerged and then removed the treated seed and dried in air.
  • the aqueous dispersion obtained according to Example 2 was mixed in equal proportions with Premis 025 FS® from BASF.
  • the pickling device MiniRotostat from Satec
  • the pickling device was filled with 2 kg of untreated soybean seed. After switching on the bowl and the turntable 20 ml of the resulting mixture were added to the turntable. After the addition was 20 seconds submerged and then removed the treated seed and dried in air.
  • Example 3 With the obtained according to Example 3 and Example 4 pickled seed, a dust test was performed. For this purpose, 250 g of seed were weighed into a 500 ml glass surface and this rotated on a roll mill at 60 U / min for 10 minutes. After this treatment, a dust content of 1.0 mg of dust per 100 kg of soybean seed was found for the seed produced according to Example 3. For the soybean seed prepared according to Example 4 based on the seed dressing formulation of the invention, a lower dust content of 0.4 mg of dust per 100 kg of soybean seed was found.
  • Example 6 Investigation of the influence on the germination rate To study the effect of dressing on the germination rate of treated soybeans, the germination rate of untreated soybeans was compared to the germination rate of treated soybeans.
  • Soybean seed treated with the commercial (BASF) available seed dressing formulation REAL 200 FS application rate: 12.5 g per 100 kg of seed.
  • Soybean seed treated with the aqueous Ecoflex® dispersion prepared according to Example 2 (application rate: 50 g per 100 kg seed) and subsequently treated with the REAL 200 FS seed dressing formulation commercially available (BASF) (application rate: 12, 5 g per 100 kg of seed).
  • BASF commercially available
  • stature heights of soybean plants from treated seeds were compared with the stature heights of plants from untreated seeds.
  • the vigor of soya plants from the following seed samples was compared:
  • Soybean seed treated with the aqueous dispersion prepared according to Example 2 (application rate: 50 g per 100 kg seed)
  • Soya seeds treated with the commercial (BASF) available seed dressing formulation REAL 200 FS application rate: 25 g per 100 kg seed, active ingredient triticonazole.
  • Soybean seed treated with the aqueous Ecoflex® dispersion prepared according to Example 2 (application rate: 50 g per 100 kg seed) and subsequently treated with the commercial (BASF) available pickling agent formulation REAL 200 FS (application rate: 25 g per 100 kg of seed).

Abstract

Die vorliegende Erfindung betrifft die Verwendung von teilaromatischen biologisch abbaubaren Polyestern zur Beizung von Saatgut, Beizmittel-Formulierungen umfassend teilaromatische biologisch abbaubaren Polyester, ein Verfahren zu deren Herstellung und deren Verwendung zum Beizen von Saatgut.

Description

Biologisch abbaubare Beizmittel-Formulierungen
Die vorliegende Erfindung betrifft die Verwendung von teilaromatischen biologisch abbaubaren Polyestern zur Beizung von Saatgut, Beizmittel-Formulierungen umfassend teilaromatische biologisch abbaubare Polyester, ein Verfahren zu deren Herstellung und deren Verwendung zum Beizen von Saatgut.
Umwelteinflüsse wie Wind, Sonne, Regen aber auch Grundwasser können eine unerwünschte Verteilung von Pflanzenschutzwirkstoffen bewirken. Hierdurch kann die Menge an Wirkstoff so reduziert werden, dass später auftretender Befall an Schadorganismen oder späteres Wachstum unerwünschter Pflanzen nicht verhindert werden kann.
Formulierungen mit kontrollierter Wirkstoffabgabe umgehen diese Problematik da- durch, dass über einen gewissen Zeitraum bestimmte Wirkstoffmengen verzögert abgegeben werden.
Hierbei ist es wünschenswert, eine möglichst effiziente Freisetzungsrate zu erzielen.
Des weiteren kann es bei gebeiztem Saatgut durch Abrieb zur Entwicklung von Pestizid enthaltenen Stäuben kommen. Dies ist nachteilig bei der Handhabung des Saatgutes.
Auch kommt es bei herkömmlichen Beizformulierungen oft zu einer zu schnellen Wirk- stoffabgabe.
Ein Nachteil zahlreicher im Stand der Technik beschriebener Formulierungen ist zudem, dass die dort beschriebenen Polymere nicht vollständig biologisch abbaubar sind.
Ein weiteres Problem bei der Saatgutbeize ist, dass der direkte Kontakt des Wirkstoffes mit dem Saatgut die Keimungsrate des Saatgutes negativ beeinflussen kann.
Zudem können bei der Saatgutbeize abhängig vom Wirkstoff Beeinträchtigungen des Wachstums der Pflanzen auftreten.
Des weiteren ist es vorteilhaft, wenn das Saatgut eine gute Fliessfähigkeit (d.h. einfache Applikation des Saatgutes) aufweist.
Aufgabe der vorliegenden Erfindung war daher die Bereitstellung einer Beizmittel- Formulierung, welche einen möglichst geringen Abrieb, d.h. verminderte Staubbildung des gebeizten Saatgut bewirkt; und/oder die durch den Einsatz von Wirkstoffen ggf. nachteilig beeinflusste Keimungsrate des Saatgutes positiv beeinflusst und/oder das durch den Einsatz von Wirkstoffen ggf. nachteilig beeinflusste Wachstum von Pflanzen aus behandelten Saatgutes positiv beeinflusst und/oder eine kontrollierte Wirkstoff abgäbe bewirkt und/oder eine gute Fliessfähigkeit aufweisen.
Ein weiteres Problem kann eine unzureichende biologische Abbaubarkeit darstellen. Im Allgemeinen bedeutet die biologische Abbaubarkeit, daß die Polyester in einer angemessenen und nachweisbaren Zeitspanne zerfallen. Der Abbau kann hydrolytisch und/oder oxidativ erfolgen und zum überwiegenden Teil durch die Einwirkung von Mikroorganismen wie Bakterien, Hefen, Pilzen und Algen bewirkt werden. Die biologische Abbaubarkeit lässt sich z.B. dadurch bestimmen, daß Polyester mit Kompost gemischt und für eine bestimmte Zeit gelagert werden. Gemäß ASTM D 5338, ASTM D 6400 und DIN V 54900 wird CO2-freie Luft beispielsweise durch gereiften Kompost während des Kompostierens strömen gelassen und dieser einem definierten Temperaturprogramm unterworfen. Hierbei wird die biologische Abbaubarkeit über das Verhältnis der Netto-CO2-Freisetzung der Probe (nach Abzug der CO2-Freisetzung durch den Kompost ohne Probe) zur maximalen CO2-Freisetzung der Probe (berechnet aus dem Kohlenstoffgehalt der Probe) definiert. Kunststoffe sind vollständig biologisch abbaubar (nach DIN V 54 900, Teil 2), wenn mindestens 60 % des organischen Kohlenstoffs des Materials in einem Prüfzeitraum von maximal 180 Tagen zu CO2 umgesetzt worden sind. Biologisch abbaubare Polyester zeigen in der Regel schon nach wenigen Tagen der Kompostierung deutliche Abbauerscheinungen wie Pilzbewuchs, Riss- und Lochbildung. Dem hingegen sind Kettenwachstumspolymere mit C-C-Hauptkette wie z.B. Polyethylen nur sehr wenig bis gar nicht bioabbaubar.
Die Bioabbaubarkeit von Stufenwachstumspolymeren wie z.B. Polyestern hängt nach bisherigen wissenschaftlichen Erkenntnissen (W. Tänzer, Biologisch abbaubare Polymere, Deutscher Verlag für Grundstoffindustrie, Stuttgart 2000) von folgenden Faktoren ab:
• Den chemischen Bindungen (Ester>Ether>Amide>Urethane)
• Der Molmasse (je niedriger desto schneller der Abbau)
• Der Morphologie (amorphe Polymere bauen schneller ab als kristalline)
• Der Härte und der Glasübergangstemperatur Tg (weiche bauen schneller ab als harte) • Der Hydrophilie (hydrophile bauen schneller ab als hydrophobe) Da diese Faktoren auch Polymereigenschaften (wie z.Bsp. gute Filmbildung) beeinflussen, die für die Anwendbarkeit in den Beizmittelformulierungen wichtig sind, war es weiterhin Aufgabe der vorliegenden Erfindung, Saatgutformulierungen bereitzustellen, die eine möglichst hohe, d.h. nahezu vollständige Bioabbaubarkeit aufweisen.
Die Aufgabe wurde durch die Verwendung eines biologisch abbaubaren teilaromatischen Polyesters in der Saatgutbeize gelöst.
Die vorliegende Erfindung umfasst auch die Verwendung eines biologisch teilaromati- sehen abbaubaren Polyesters für die Herstellung von Beizmittel-Formulierungen.
Unter dem Begriff Beize werden alle dem Fachmann bekannten Saatgutbehandlungstechniken umfasst (z.B. "seed dressing", "seed coating" und "pelleting").
Die Angabe "biologisch abbaubare teilaromatische Polyester" soll alle teilaromatischen Polyester umfassen, welche mindestens die in DIN V 54900 gegebene Definition der Bioabbaubarkeit erfüllen, insbesondere kompostierbare teilaromatische Polyester, d.h. die zu mehr als 60% gemäß DIN V 54900 biologisch abbaubar sind.
Unter dem Begriff „teilaromatische biologisch abbaubare Polyester" sind erfindungsgemäß auch Polyesterderivate zu verstehen wie Polyetherester, Polyesteramide oder Polyetheresteramide. Zu den geeigneten biologisch abbaubaren teilaromatischen Po- lyestern gehören lineare nicht kettenverlängerte Polyester (WO 92/09654). Bevorzugt werden kettenverlängerte und/oder verzweigte teilaromatische Polyester. Letztere sind aus den Schriften , WO 96/15173 bis 15176, 21689 bis 21692, 25446, 25448 oder der WO 98/12242, bekannt, auf die ausdrücklich Bezug genommen wird. Mischungen unterschiedlicher teilaromatischer Polyester kommen ebenso in Betracht wie Blends von teilaromatischen Polyestern mit Biopolymeren wie z.Bsp. Stärke oder mit modifizierten biobabbaubaren Biopolymeren, wie z.Bsp. modifizierter Stärke, Celluloseestern (z.Bsp. Celluloseacetat, Celluloseacetatbutyrat) oder mit biobabbaubaren artifiziellen Polymeren wie Polylactid (beispielsweise als EcoPLA® (Fa. Cargill) erhältlich).
Zu den bevorzugten teilaromatischen Polyestern zählen Polyester, im folgenden auch als TA-Polyester bezeichnet, welche aufgebaut sind aus:
A) einer Säurekomponente aus
a1 ) 30 bis 95 ιmol-% mindestens einer aliphatischen oder mindestens einer cycloa- liphatischen Dicarbonsäure oder deren esterbildende Derivate oder Mischungen davon a2) 5 bis 70 mol-% mindestens einer aromatischen Dicarbonsäure oder deren esterbildendem Derivat oder Mischungen davon und
a3) 0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,
wobei die Molprozente der Komponenten a1) bis a3) zusammen 100% ergeben und
B) einer Diolkomponente aus mindestens einem C2-bis Ci2-Alkandiol oder einem Cs- bis Cio-Cycloalkandiol oder Mischungen davon
und gewünschtenfalls darüber hinaus eine oder mehrere Komponenten ausgewählt aus
C) einer Komponente ausgewählt aus
d ) mindestens einer Etherfunktionen enthaltenden Dihydroxyverbindung der Formel I
Figure imgf000005_0001
in der n für 2, 3 oder 4 und m für eine ganze Zahl von 2 bis 250 stehen,
c2) mindestens einer Hydroxycarbonsäure der Formel IIa oder IIb
Figure imgf000005_0002
(Ma) (IIb)
in der p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Pheny- len, -(CH2)q-, wobei q eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und -C(R)HCH2, wobei R für Methyl oder Ethyl steht
c3) mindestens einem Amino-C2- bis Ci2-alkanol oder mindestens einem Amino-C5- bis C10-cycloalkanol oder Mischungen davon
c4) mindestens einem Diamino-Ci- bis Cβ-Alkan
c5) mindestens einem 2,2'-Bisoxazolins der allgemeinen Formel IM
Figure imgf000006_0001
(IM)
wobei R1 eine Einfachbindung, eine (CH2)z-Alkylengruppe, mit z = 2, 3 oder 4, oder eine Phenylengruppe bedeutet
c6) mindestens einer Aminocarbonsäure ausgewählt aus der Gruppe, bestehend aus den natürlichen Aminosäuren, Polyamiden mit einem Molekulargewicht von höchstens 18000g/mol, erhältlich durch Polykondensation einer Dicarbonsäure mit 4 bis 6 C- Atomen und einem Diamin mit 4 bis 10 C-Atomen, Verbindungen der Formeln IV a und IVb
Figure imgf000006_0002
(IVa) (IVb)
in der s eine ganze Zahl von 1 bis 1500 und t eine ganze Zahl von 1 bis 4 bedeuten, und T für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Pheny- len, -(CHb)U-, wobei u eine ganze Zahl von 1 bis 12 bedeutet, -C(R2)H- und - C(R2)HCH2, wobei R2 für Methyl oder Ethyl steht,
und Polyoxazolinen mit der wiederkehrenden Einheit V
Figure imgf000006_0003
(V)
in der R3 für Wasserstoff, Ci-Cβ-Alkyl, Cs-Cs-Cycloalkyl, unsubstituierten oder mit Cr C4-Alkylgruppen bis zu dreifach substituiertes Phenyl oder für Tetra hydrofuryl steht,
oder Mischungen aus d ) bis c6)
und
D) einer Komponente ausgewählt aus α"l ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen,
d2) mindestens eines Isocyanates
d3) mindestens eines Divinylethers
oder Mischungen aus d1 ) bis d3).
Die Säurekomponente A der bevorzugten teilaromatischen Polyester enthält von 30 bis 70, insbesondere von 40 bis 60 mol-% a1 und von 30 bis 70, insbesondere von 40 bis 60 ιmol-% a2.
Als aliphatische, bzw. cycloaliphatische Säuren und die entsprechenden Derivate a1 kommen die folgenden Verbindungen in Betracht.
Erfindungsgemäß geeignete aliphatische Dicarbonsäuren haben im allgemeinen 2 bis 10 Kohlenstoffatome, vorzugsweise 4 bis 6 Kohlenstoffatome. Sie können sowohl linear als auch verzweigt sein. Die im Rahmen der vorliegenden Erfindung verwendbaren cycloaliphatischen Dicarbonsäuren sind in der Regel solche mit 7 bis 10 Kohlenstoffatomen und insbesondere solche mit 8 Kohlenstoffatomen. Prinzipiell können jedoch auch Dicarbonsäuren mit einer größeren Anzahl an Kohlenstoffatomen, beispielsweise mit bis zu 30 Kohlenstoffatomen, eingesetzt werden.
Beispielhaft zu nennen sind: Malonsäure, Bernsteinsäure, Glutarsäure, 2-
Methylglutarsäure, 3-Methylglutarsäure, Adipinsäure, Pimelinsäure, Acelainsäure, Se- bacinsäure, Fumarsäure, 2,2-Dimethylglutarsäure, Suberinsäure, 1 ,3- Cyclopentandicarbonsäure, 1 ,4-Cyclohexandicarbonsäure, 1 ,3- Cyclohexandicarbonsäure, Diglykolsäure, Itaconsäure, Maleinsäure und 2,5- Norbornandicarbonsäure.
Als esterbildende Derivate der oben genannten aliphatischen oder cycloaliphatischen Dicarbonsäuren, die ebenso verwendbar sind, sind insbesondere die Di-CI- bis C6- Alkylester, wie Dimethyl-, Diethyl-, Di-n-propyl, Di-isopropyl, Di-n-butyl, Di-iso-butyl, Di-t-butyl, Di-n-pentyl-, Di-iso-pentyl oder Di-n-hexylester zu nennen. Anhydride der Dicarbonsäuren können ebenfalls eingesetzt werden.
Besonders bevorzugt wird Adipinsäure oder Sebacinsäure deren jeweiligen esterbildenden Derivate oder Mischungen davon eingesetzt. Besonders bevorzugt wird Adi- pinsäure oder deren esterbildende Derivate, wie deren Alkylester oder deren Mischungen eingesetzt. Als aromatische Dicarbonsäure a2 sind im allgemeinen solche mit 8 bis 12 Kohlenstoffatomen und vorzugsweise solche mit 8 Kohlenstoffatomen zu nennen. Beispielhaft erwähnt seien Terephthalsäure, Isophthalsäure, 2,6-Naphthoesäure und 1 ,5- Naphthoesäure sowie esterbildende Derivate davon. Dabei sind insbesondere die Di- C1-C6-Alkylester, z.B. Dimethyl-, Diethyl-, Di-n-propyl-, Di-iso-propyl, Di-n-butyl-, Di- iso-butyl, Di-t-butyl, Di-n-pentyl-, Di-iso-pentyl oder Di-n-hexylester zu nennen. Die Anhydride der Dicarbonsäuren a2 sind ebenso geeignete esterbildende Derivate.
Prinzipiell können jedoch auch aromatische Dicarbonsäuren a2 mit einer größeren An- zahl an Kohlenstoffatomen, beispielsweise bis zu 20 Kohlenstoffatomen, eingesetzt werden.
Die aromatischen Dicarbonsäuren oder deren esterbildende Derivate a2 können einzeln oder als Gemisch aus zwei oder mehr davon eingesetzt werden. Besonders be- vorzugt wird Terephthalsäure oder deren esterbildende Derivate wie Dimethylte- rephthalat, verwendet.
Als sulfonatgruppenhaltige Verbindung setzt man üblicherweise ein Alkali- oder Erdalkalimetallsalz einer sulfonatgruppenhaltigen Dicarbonsäure oder deren esterbildende Derivate ein, bevorzugt Alkalimetallsalze der 5-Sulphoisophthalsäure oder deren Mischungen, besonders bevorzugt das Natriumsalz.
Nach einer der bevorzugten Ausführungsformen enthält die Säurekomponente A von 40 bis 60 ιmol-% a1 , von 40 bis 60 ιmol-% a2 und von 0 bis 2 ιmol-% a3. Nach einer weiteren bevorzugten Ausführungsform enthält die Säurekomponente A von 40 bis 59,9 mol-% a1 , von 40 bis 59,9 mol-% a2 und von 0,1 bis 1 mol-% a3, insbesondere von 40 bis 59,8 ιmol-% a1 , von 40 bis 59,8 ιmol-% a2 und von 0,2 bis 0,5 ιmol-% a3.
Im allgemeinen werden die Diole B unter verzweigten oder linearen Alkandiolen mit 2 bis 12 Kohlenstoffatomen, bevorzugt 4 bis 6 Kohlenstoffatomen, oder Cycloalkandiolen mit 5 bis 10 Kohlenstoffatomen ausgewählt.
Beispiele geeigneter Alkandiole sind Ethylenglykol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,2- Butandiol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 2,4-Dimethyl-2-ethylhexan-1 ,3-diol, 2,2- Dimethyl- 1 ,3-propandiol, 2-Ethyl-2-butyl-1 ,3-propandiol, 2-Ethyl-2-isobutyl- 1 ,3- propandiol, 2,2,4-Trimethyl-1 ,6-hexandiol, insbesondere Ethylenglykol, 1 ,3-Propandiol, 1 ,4-Butandiol und 2,2-Dimethyl- 1 ,3-propandiol (Neopentylglykol); Cyclopentandiol, 1 ,4-Cyclohexandiol, 1 ,2-Cyclohexandimethanol, 1 ,3-Cyclohexandimethanol, 1 ,4- Cyclohexandimethanol oder 2,2,4,4-Tetramethyl-1 ,3-cyclobutandiol. Es können auch Mischungen unterschiedlicher Alkandiole verwendet werden. Abhängig davon ob ein Überschuß an Säure- oder OH-Endgruppen gewünscht wird, kann entweder die Komponente A oder die Komponente B im Überschuß eingesetzt werden. Nach einer bevorzugten Ausführungsform kann das Molverhältnis der eingesetzten Komponenten A zu B im Bereich von 0,4:1 bis 1 ,5:1 , bevorzugt im Bereich von 0,6:1 bis 1 ,1 :1 liegen.
Neben den Komponenten A und B können die TA Polyester weitere Komponenten enthalten.
Als Dihydroxyverbindungen d setzt man bevorzugt Diethylenglykol, Triethylenglykol, Polyethylenglykol, Polypropylenglykol und Polytetrahydrofuran (PoIy-THF), besonders bevorzugt Diethylenglykol, Triethylenglykol und Polyethylenglykol, ein, wobei man auch Mischungen davon oder Verbindungen, die unterschiedliche Variablen n aufweisen (siehe Formel I), beispielsweise Polyethylenglykol, das Propyleneinheiten (n = 3) ent- hält, beispielsweise erhältlich durch Polymerisation nach an sich bekannten Methoden von zuerst Ethylenoxid und anschließend mit Propylenoxid, besonders bevorzugt ein Polymer auf Basis von Polyethylenglykol, mit unterschiedlichen Variablen n, wobei Einheiten gebildet aus Ethylenoxid überwiegen. Das Molekulargewicht (Mn) des PoIy- ethylenglykols wählt man in der Regel im Bereich von 250 bis 8000, bevorzugt von 600 bis 3000 g/mol.
Nach einer der bevorzugten Ausführungsformen können beispielsweise von 15 bis 98, bevorzugt 60 bis 99,5 ιmol-% der Diole B und 0,2 bis 85, bevorzugt 0,5 bis 30 ιmol-% der Dihydroxyverbindungen d , bezogen auf die molare Menge von B und d , für die Herstellung der TA Polyester verwendet werden.
In einer bevorzugten Ausführungsform setzt man als Hydroxycarbonsäure c2) ein: GIy- kolsäure, D-, L-, D,L-Milchsäure, 6-Hydroxyhexansäure, deren cyclische Derivate wie Glycolid (1 ,4-Dioxan-2,5-dion), D-, L-Dilactid (3,6-dimethyl-1 ,4- dioxan-2,5-dion), p- Hydroxybenzoesäure sowie deren Oligomere und Polymere wie 3-
Polyhydroxybuttersäure, Polyhydroxyvaleriansäure, Polylactid (beispielsweise als E- coPLA® (Fa. Cargill) erhältlich) sowie eine Mischung aus 3-Polyhydroxybuttersäure und Polyhydroxyvaleriansäure (letzteres ist unter dem Namen Biopol® von Zeneca erhältlich), besonders bevorzugt für die Herstellung von TA Polyester die niedermolekularen und cyclischen Derivate davon.
Die Hydroxycarbonsäuren können beispielsweise in Mengen von 0,01 bis 50, bevorzugt von 0,1 bis 40 Gew.-% bezogen auf die Menge an A und B verwendet werden.
Als Amino-C2-C12-alkanol oder Amino-C5-C10-cyloalkanol (Komponente c3), wobei hierunter auch 4-Aminomethylcyclohexanmethanol fallen soll, setzt man bevorzugt Amino-C2-C6-alkanole wie 2-Aminoethanol, 3-Aminopropanol, 4-Aminobutanol, 5- Aminopentanol, 6-Aminohexanol sowie Amino-Cδ-Cδ-cyloalkanole wie Aminocyclopen- tanol und Aminocyclohexanol oder Mischungen davon ein.
Als Diamino-C1-C8-alkan (Komponente c4) setzt man bevorzugt Diamino-C4-C6- alkane ein wie 1 ,4-Diminobutan, 1 ,5-Diaminopentan und 1 ,6-Diaminohexan (Hexa- methylendiamin, "HMD").
Nach einer bevorzugten Ausführungsform kann von 0,5 bis 99,5 mol-%, bevorzugt 0,5 bis 50 mol-%, c3, bezogen auf die Molmenge von B, und von 0 bis 50, bevorzugt von 0 bis 35 mol-%, c4, bezogen auf die Molmenge von B, für die Herstellung der TA Polyester eingesetzt werden.
Die 2,2'-Bisoxazoline c5 der allgemeinen Formel IM sind im allgemeinen erhältlich durch das Verfahren aus Angew. Chem. Int. Edit, Vol. 1 1 (1972), S. 287-288. Beson- ders bevorzugte Bisoxazoline sind solche, in denen R1 eine Einfachbindung, eine (CH2)z-Alkylengruppe, mit z = 2,3 oder 4 wie Methylen, Ethan— 1 ,2— diyl, Propan-1 ,3- diyl, Propan-1 ,2-diyl, oder eine Phenylengruppe bedeutet. Als besonders bevorzugte Bisoxazoline seien 2,2'-Bis(2-oxazolin), Bis(2-oxazolinyl)methan, 1 ,2-Bis(2- oxazolinyl)ethan, 1 ,3-Bis(2-oxazolinyl)propan oder 1 ,4-Bis(2-oxazolinyl)butan, insbe- sondere 1 ,4-Bis(2-oxazolinyl)benzol, 1 ,2-Bis(2-oxazolinyl)benzol oder 1 ,3-Bis(2- oxazolinyl)benzol genannt.
Zur Herstellung der TA Polyester können beispielsweise von 70 bis 98 mol-% B, bis 30 mol-% c3 und 0,5 bis 30 mol-% c4 und 0,5 bis 30 mol-% c5, jeweils bezogen auf die Summe der Molmengen der Komponenten B, c3, c4 und c5, verwendet werden. Nach einer anderen bevorzugten Ausführungsform ist es möglich von 0,1 bis 5, bevorzugt 0,2 bis 4 Gew.-% c5, bezogen auf das Gesamtgewicht von A und B, einzusetzen.
Als Komponente c6 können natürliche Aminocarbonsäuren verwendet werden. Zu die- sen zählen VaNn, Leucin, Isoleucin, Threonin, Methionin, Phenylalanin, Tryptophan, Lysin, Alanin, Arginin, Aspartamsäure, Cystein, Glutaminsäure, Glycin, Histidin, Prolin, Serin, Tryosin, Asparagin oder Glutamin.
Bevorzugte Aminocarbonsäuren der allgemeinen Formeln IVa und IVb sind die, worin s eine ganze Zahl von 1 bis 1000 und t eine ganze Zahl von 1 bis 4, bevorzugt 1 oder 2 bedeuten und T ausgewählt ist aus der Gruppe Phenylen und -(CH2)u-, wobei u 1 , 5 oder 12 bedeutet.
Ferner kann c6 auch ein Polyoxazolin der allgemeinen Formel V sein. C6 kann aber auch eine Mischung unterschiedlicher Aminocarbonsäuren und/oder Polyoxazoline sein. Nach einer bevorzugten Ausführungsform kann c6 in Mengen von 0,01 bis 50, bevorzugt von 0,1 bis 40 Gew.-%, bezogen auf die Gesamtmenge der Komponenten A und B, eingesetzt werden.
Als weitere Komponenten, die optional zur Herstellung der TA Polyester eingesetzt werden können, zählen Verbindungen d1 , die mindestens drei zur Esterbildung befähigte Gruppen enthalten.
Die Verbindungen d1 enthalten bevorzugt drei bis zehn funktionelle Gruppen, welche zur Ausbildung von Esterbindungen fähig sind. Besonders bevorzugte Verbindungen d1 haben drei bis sechs funktionelle Gruppen dieser Art im Molekül, insbesondere drei bis sechs Hydroxylgruppen und/oder Carboxylgruppen. Beispielhaft seien genannt:
Weinsäure, Zitronensäure, Äpfelsäure; Trimethylolpropan, Trimethylolethan; Pentaerythrit; Polyethertriole; Glycerin; Trimesinsäure; Trimellitsäure, -anhydrid; Pyromellitsäure, -dianhydrid und Hydroxyisophthalsäure.
Die Verbindungen d1 werden in der Regel in Mengen von 0,01 bis 15, bevorzugt 0,05 bis 10, besonders bevorzugt 0,1 bis 4 ιmol-%, bezogen auf die Komponente A einge- setzt.
Als Komponente d2 werden ein oder eine Mischung unterschiedlicher Isocyanate eingesetzt. Es können aromatische oder aliphatische Diisocyanate eingesetzt werden. Es können aber auch höher funktionelle Isocyanate verwendet werden.
Unter einem aromatischen Diisocyanat d2 werden im Rahmen der vorliegenden Erfindung vor allem Toluylen-2,4-diisocyanat, Toluylen-2,6-diisocyanat, 2,2'- Diphenylmethandiisocyanat, 2,4'-Diphenylmethandiisocyanat, 4,4'- Diphenylmethandiisocyanat, Naphthylen-1 ,5-diisocyanat oder Xylylen-diisocyanat ver- standen. Darunter werden 2,2'-, 2,4'- sowie 4,4'-Diphenylmethandiisocyanat als Komponente d2 besonders bevorzugt. Im Allgemeinen werden letztere Diisocyanate als Mischung eingesetzt.
Als dreikerniges Isocyanat d2 kommt auch Tri(4-isocyanophenyl)methan in Betracht. Die mehrkernigen aromatischen Diisocyanate fallen beispielsweise bei der Herstellung von ein- oder zweikernigen Diisocyanaten an.
In untergeordneten Mengen, z.B. bis zu 5 Gew.-%, bezogen auf das Gesamtgewicht der Komponente d2, kann die Komponente d2 auch Urethiongruppen, beispielsweise zum Verkappen der Isocyanatgruppen, enthalten. Unter einem aliphatischen Diisocyanat d2 werden im Rahmen der vorliegenden Erfindung vor allem lineare oder verzweigte Alkylendiisocyanate oder Cycloalkylendiisocya- nate mit 2 bis 20 Kohlenstoffatomen, bevorzugt 3 bis 12 Kohlenstoffatomen, z.B. 1 ,6- Hexamethylendiisocyanat, Isophorondiisocyanat oder Methylen-bis(4- isocyanatocyclohexan), verstanden. Besonders bevorzugte aliphatische Diisocyanate d2 sind 1 ,6-Hexamethylendiisocyanat und Isophorondiisocyanat.
Zu den bevorzugten Isocyanuraten zählen die aliphatischen Isocyanurate, die sich von Alkylendiisocyanaten oder Cycloalkylendiisocyanaten mit 2 bis 20 Kohlenstoffatomen, bevorzugt 3 bis 12 Kohlenstoffatomen, z.B. Isophorondiisocyanat oder Methylen-bis(4- isocyanatocyclohexan), ableiten. Dabei können die Alkylendiisocyanate sowohl linear als auch verzweigt sein. Besonders bevorzugt werden Isocyanurate, die auf n- Hexamethylendiisocyanat basieren, beispielsweise cyclische Trimere, Pentamere oder höhere Oligomere des n-Hexamethylendiisocyanats.
Im allgemeinen wird die Komponente d2 in Mengen von 0,01 bis 5, bevorzugt 0,05 bis 4 mol-%, besonders bevorzugt 0,1 bis 4 mol-% bezogen auf die Summe der Molmengen von A und B verwendet.
Als Divinylether d3 kann man im allgemeinen alle üblichen und kommerziell erhältlichen Divinylether einsetzen. Bevorzugt verwendet werden 1 ,4-Butandiol-divinylether, 1 ,6-Hexandiol-divinylether oder 1 ,4-Cyclohexandimethanol-divinylether oder Mischungen davon.
Bevorzugt werden die Divinylether in Mengen von 0,01 bis 5, insbesondere von 0,2 bis 4 Gew.-%, bezogen auf das Gesamtgewicht von A und B, eingesetzt.
Beispiele bevorzugter TA Polyester basieren auf den folgenden Komponenten
A, B, d1
A, B, d2
A, B, d1 , d2
A, B, d3
A, B, d A, B, d , d3
A, B, c3, c4
A, B, c3, c4, c5
A, B, d1 , c3, c5
A, B, c3, d3 A, B, c3, d1
A, B, d , c3, d3 A, B, c2
Darunter sind TA Polyester, die auf A, B, d1 oder A, B, d2 oder auf A, B, d1 , d2 basieren besonders bevorzugt. Nach einer anderen bevorzugten Ausführungsform basieren die teilaromatischen Polyester auf A, B, c3, c4, c5 oder A, B, d1 , c3, c5.
Die Herstellung der TA Polyester ist an sich zum Beispiel aus der WO96/15173 und WO 04/67632 bekannt oder kann nach an sich bekannten Methoden erfolgen.
Die bevorzugten TA Polyester sind charakterisiert durch ein Molekulargewicht (Mn) im Bereich von 1000 bis 100000, insbesondere im Bereich von 9000 bis 75000 g/mol, bevorzugt im Bereich von 10000 bis 50000 g/mol und einem Schmelzpunkt im Bereich von 60 bis 170, bevorzugt im Bereich von 80 bis 150°C.
Die genannten aliphatischen und teilaromatischen Polyester, vozugsweise TA Polyester, können Hydroxy- und/oder Carboxylendgruppen in jedem beliebigen Verhältnis aufweisen. Die genannten aliphatischen und/oder teilaromatischen Polyester können auch endgruppenmodifiziert werden. So können beispielsweise OH-Endgruppen durch Umsetzung mit Phthalsäure, Phthalsäureanhydrid, Trimellithsäure, Trimellithsäurean- hydrid, Pyromellithsäure oder Pyromellithsäureanhydrid säuremodifiziert werden.
Ganz besonders bevorzugt sind TA Polyester a1 a2B gemäß der oben stehenden Definitionen, in welchen als Komponente a1 Adipinsäure, als Komponente a2 Terephthal- säure und als Komponente B 1 ,4-Butandiol eingesetzt wird (Polybutylenadipatte- rephthalate, z.B. kommerziell erhältlich als Ecoflex® (BASF))
In einer Ausführungsform der vorliegenden Erfindung können auch Mischugen von TA Polyestern mit Biopolymeren wie z.Bsp. Stärke oder mit modifizierten biobabbaubaren Biopolymeren, wie z.B. modifizierter Stärke, Celluloseestern (z.B. Celluloseacetat, CeI- luloseacetatbutyrat) oder biobabbaubaren artifiziellen Polymeren wie Polylactid (beispielsweise als EcoPLA® (Fa. Cargill) erhältlich) eingesetzt werden.
Im nachfolgenden wird der Begriff "biologisch abbaubarer teilaromatischer Polyester, vorzugsweise TA Polyester sowie Mischungen von TA Polyester mit Biopolymeren wie z.Bsp. Stärke oder mit modifizierten biobabbaubaren Biopolymeren, wie z.B. modifizierter Stärke, Celluloseestern (z.B. Celluloseacetat, Celluloseacetatbutyrat) oder mit biobabbaubaren artifiziellen Polymeren wie Polylactid (Polymilchsäure) (beispielsweise als EcoPLA® (Fa. Cargill) erhältlich) durch den Begriff "erfindungsgemäßer Polyester" ersetzt. Bevorzugt beschreibt der Begriff "erfindungsgemäßer Polyester" TA Polyester, Mischungen von TA Polyester mit Polymilchsäure, besonders bevorzugt TA Polyester, wobei für den TA Polyester die unter der Definition des TA Polyesters aufgeführten Bevorzugungen gelten. Der erfindungsgemäße Polyester kann erfindungsgemäß in Form einer Dispersion, vorzugsweise einer wässrigen Dispersion eingesetzt werden.
Die erfindungsgemäßen Polyester Dispersionen können optional mit einem oder mehreren Schutzkolloide und/oder einem oder mehreren Emulgatoren zur Stabilisierung enthalten. Geeignete Emulgatoren sowie Schutzkolloide sind unten aufgeführt. Herstellverfahren für wässrige Polymerdispersionen sind z.B. in D. Distler „wässrige Polymerdispersionen", Wiley-VCH, Weinheim 1999 beschrieben. Prinzipiell können wässrige Polymerdispersionen direkt über Emulsionspolymerisation erhalten werden. Man kann aber auch beliebige lösliche Polymere in Lösungsmitteln lösen, die Lösungen in Wasser emulgieren und das Lösungsmittel anschließend abziehen, um wässrige Dispersionen zu erhalten. In diesem Falle spricht man von Sekundärdispersionen, da das Polymer in einem separatem Schritt vorher hergestellt wurde.
Derartige Verfahren sind dem Fachmann bekannt.
So sind z.Bsp. Verfahren zur Herstellung entsprechender wässriger Dispersionen von erfindungsgemäßen Polyestern aus der WO 98/12245 bekannt.
In einer bevorzugten Ausführungsform ist das Verfahren zur Herstellung der Sekun- därdisperion von erfindungsgemäßen Polyestern dadurch gekennzeichnet, dass man
(a) den erfindungsgemäßen Polyester in einem organischen Lösungsmittel löst, und
(b) die aus (a) resultierende Lösung mit Wasser in Kontakt bringt und
(c) das organische Lösungsmittel nach dem Mischen entfernt.
Der in Schritt (b) beschriebene Mischvorgang kann diskontinuierlich oder, bevorzugt, kontinuierlich erfolgen. Um beim Mischvorgang möglichst kleine Teilchen-, bzw. Tröp- chengrößen zu erzielen, empfiehlt sich ein hoher mechanischer Energieeintrag beim Vermischen. Ein solcher Energieeintrag kann beispielsweise durch starkes Rühren oder Schütteln in einer geeigneten Vorrichtung erfolgen. In einer bevorzugten Ausfüh- rungsform des oben genannten Verfahrens wird der in Schritt (b) beschriebene Mischvorgang durch Einspritzen der entsprechenden Lösungen in eine Mischkammer durchgeführt. Ein derartiger Mischvorgang ist dem Fachmann bekannt und z.B. in der WO 00/33820 beschrieben.
In einer bevorzugten Ausführungsform des oben genannten Verfahrens wird in Schritt (b) anstelle von Wasser eine wässrige Lösung eines oder mehrerer Schutzkolloide und/oder eines oder mehrerer Emulgatoren verwendet. Ebenso ist es möglich, in Schritt (b) des oben genannten Verfahrens anstelle von Wasser Mischungen von Wasser mit wassermischbaren Hilfsstoffen wie Glykolen und GIy- cerin zu verwenden. Bevorzugt ist die Verwendung von Wasser.
Als organische Lösungsmittel kommen sowohl mit Wasser mischbare als auch mit Wasser nicht mischbare Lösungsmittel infrage.
Der Begriff "nicht mit Wasser mischbare organische Lösungsmittel" beschreibt organi- sehe Lösungsmittel, die in Wasser eine Löslichkeit von weniger als 10% haben, in einer bevorzugten Ausführungsform weniger als 5%. Vorzugsweise liegt der Siedepunkt bei 0-100 °C unter Normalbedingungen (1 bar Druck, 20°C).
Folgende Lösungsmittel seien beispielhaft genannt, ohne jedoch einschränkend zu sein: Cyclohexan, Cyclopentan, Pentan, Hexan, Heptan, 2-Methylpentan, 3-
Methylpentan, 2-Methylhexan, 3-Methylhexan, 2-Methylbutan, 2,3-Dimethylbutan, Me- thylcyclopentan, Methylcyclohexan, 2,3-Dimethylpentan, 2,4-Dimethylpentan, Benzol, 1-Penten, 2-Penten, 1 -Hexen, 1-Hepten, Cyclohexen, 1-Butanol, Ethylvinylether, Pro- pylether, Isopropylether, Butylvinylether, Butylethylether, 1 ,2-Epoxybutan, Furan, Tetrahydropyran, 1-Butanal, 2-Methylpropanal, 2-Pentanon, 3-Pentanon,
Cyclohexanon, Fluorbenzol, Hexafluorbenzol, Ethylformiat, Propylformiat, Isopropyl- formiat, Ethylacetat, Vinylacetat, Isopropylacetat, Ethylpropionat, Methylacrylat, Ethylacrylat, Methylmethacrylat, Chlorethan, 1-Chlorpropan, 2-Chlorpropan, 1- Chlorbutan, 2-Chlorbutan, 1-Chlor-2-methylpropan, 2-Chlor-2-methylpropan, 1-Chlor-3- methylbutan, 3-Chlorpropen, Dichlormethan, Trichlormethan, Tetrachlormethan, 1 ,1- Dichlorethan, 1 ,2-Dichlorethan, 1 ,2-Dichlorpropan, 1 ,1 ,1-Trichlorethan, 1 ,1- Dichlorethylen, 1 ,2-Dichlorethylen, Trichlorethylen, Brommethan, 1-Brompropan, 2- Brompropan, 1 -Brombutan, 2-Brombutan, 2-Brom-2-methylpropan, Brommethylen, lodmethan, lodethan, 2-lodpropan, Trichlorfluormethan, Dichlorfluormethan, Dibromflu- ormethan, Bromchlormethan, Bromchlorfluormethan, 1 ,1 ,2-Trichlor-1 ,2,2-trifluorethan, 1 ,1 ,2,2-Tetrachlordifluorethan, 1 ,2-Dibromtetrafluorethan, 1 ,2-Dibrom-1 ,1-Diflourethan, 1 ,1-Dichlor-2,2-Difluorethylen, Propionitril, Acrylonitril, Methacrylonitril, Triethylamin, Schwefelkohlenstoff, 1-Butanthiol, Methylsulfid, Ethylsulfid und Tetramethylsilan.
Der Begriff " mit Wasser mischbare organische Lösungsmittel" beschreibt organische, mit Wasser mischbare Lösungsmittel, welche flüchtig und thermisch stabil sind und nur Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff und Schwefel enthalten. Zweckmäßigerweise sind sie unter Normalbedingungen (1 bar Druck, 20°C) zu mindestens 10 Gew.-% mit Wasser mischbar und weisen einen Siedepunkt unter 200 °C, bevorzugt unter 100°C auf und/oder haben weniger als 10 Kohlenstoffatome. Bevorzugt sind entsprechende Alkohole, Ester, Ketone, Ether und Acetale. Insbesondere verwendet man man Ethanol, n-Propanol, Isopropanol, Buthylacetat, Ethylacetat, Tetrahydrofuran, Aceton, 1 ,2-Propandiol-1-n-propylether oder 1 ,2-Butandiol- 1 methylether. Ganz besonders bevorzugt sind Ethanol, Isopropanol, Tetrahydrofuran und Aceton.
Bei Verwendung mit Wasser mischbarer Lösungsmittel kommt es bei der der Durchmischung mit der wässrigen Phase in Schritt (b) zu einer Verschlechterung der Lösemittelqualität wodurch die Polyesterteilchen präzipitiert werden.
Werden nicht Wasser mischbare Lösungsmittel wie z.B. Methylenchlorid, Cyclohexan oder Ethylacetat verwendet, entsteht beim Durchmischen in Schritt (b) eine Emulsion, aus der die Polyesterteilchen bei der anschließenden Evaporation des Lösemittels durch Übersättigung der Lösung präzipitiert werden.
Die Entfernung des Lösemittels in Schritt c) des oben genannten Verfahrens kann nach dem Fachmann bekannten Methoden wie z.B. Destillation, ggf. unter vermindertem Druck, erfolgen.
Die nach dem oben genannten Verfahren erhaltenen wässrigen Dispersionen eines erfindungsgemäßen Polyesters weisen einen Feststoffgehalt von 1-70% auf, bevorzugt von 10-30%. Die durch quasi-elastische Lichtstreuung bestimmbaren mittleren Teilchengrößen der erfindungsgemäßen Polyesterpartikel in den nach oben genannten Verfahren erhaltenen wässrigen Dispersionen beträgt 10 nm - 5000 nm, bevorzugt 50 nm - 500 nm.
Die vorliegende Erfindung beansprucht auch wässrige Dispersion eines erfindungsgemäßen Polyesters herstellbar nach dem oben genannten Verfahren.
Des weiteren umfasst die vorliegende Erfindung Beizmittel-Formulierungen umfassend
(1 ) einen erfindungsgemäßen Polyester,
(2) mindestens einen, zur Beizung von Saatgut geeigneten agrochemischen Wirk- stoff, wobei der Wirkstoff in festen Partikeln vorliegt, welche eine Größe zwischen
0,1 μm und 10μm haben; und
(3) ein Lösungsmittel;
Der Begriff "agrochemischer Wirkstoff" (2) bedeutet hier mindestens ein Wirkstoff ausgewählt aus der Gruppe der Insektizide, Fungizide, Herbizide und/oder Safener, Wachstumsregulatoren (s. Pesticide Manual, 13th Ed. (2003)) verwendet wird. Die folgende Liste von Insektiziden zeigt mögliche Wirkstoffe auf, soll aber nicht auf diese beschränkt sein:
Organo(thio)phosphate wie Acephate, Azamethiphos, Azinphos-methyl, Chlorpyrifos, Chlorpyriphos-methyl, Chlorfenvinphos, Diazinon, Dichlorphos, Dicrotophos, Dimethoa- te, Disulfoton, Ethion, Fenitrothion, Fenthion, Isoxathion, Malathion, Methamidophos, Methidathion, Methyl-Parathion, Mevinphos, Monocrotophos, Oxydemeton-methyl, Paraoxon, Parathion, Phenthoate, Phosalone, Phosmet, Phosphamidon, Phorate, Phoxim, Pirimiphos-methyl, Profenofos, Prothiofos, Sulprophos, Triazophos, Trichlor- fon;
Carbamate wie Alanycarb, Benfuracarb, Bendiocarb, Carbaryl, Carbosulfan, Fenoxy- carb, Furathiocarb, Indoxacarb, Methiocarb, Methomyl, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Triazamate; Pyrethroide wie Allethrin, Bifenthrin, Cyfluthrin, Cyphenothrin, Cypermethrin sowie die alpha-, beta-, theta- und zeta-lsomere, Deltamethrin, Esfenvalerate, Ethofenprox, Fenpropathrin, Fenvalerate, Cyhalothrin, Lambda-Cyhalothrin, Imiprothrin, Permethrin, Prallethrin, Pyrethrin I, Pyrethrin II, Silafluofen, Tau- Fluvalinate, Tefluthrin, Tetramethrin, Tralomethrin, Transfluthrin, Zeta-Cypermethrin; Arthropode Wachstumsregulatoren wie a) Chitinsyntheseinhibitoren; z. B. Benzoylharnstoffe wie Chlorfluazuron, Cyromacin, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Teflubenzuron, Triflumuron; Buprofezin, Diofenolan, Hexythiazox, Etoxazole, Clofenta- zine; b) Ecdysone Antagonisten wie Halofenozide, Methoxyfenozide, Tebufenozide; c) Juvenoide wie Pyriproxyfen, Methoprene, Fenoxycarb; d) Lipidbiosynthese-Inhibitoren wie Spirodiclofen;
Neonicothinoide wie Flonicamid, Clothianidin, Dinotefuran, Imidacloprid, Thiametho- xam, Nitenpyram, Nithiazin, Acetamiprid, Thiacloprid; Pyrazol-Insektizide wie Acetoprole, Ethiprole, Fipronil, Tebufenpyrad, Tolfenpyrad und Vaniliprole;Weiterhin Abamectin, Acequinocyl, Amitraz, Azadirachtin, Bifenazate, Car- tap, Chlorfenapyr, Chlordimeform, Cyromazine, Diafenthiuron, Diofenolan, Emamectin, Endosulfan, Fenazaquin, Formetanate, Formetanate-Hydrochlorid, Hydramethylnon Indoxacarb, Piperonylbutoxid, Pyridaben, Pymetrozine, Spinosad, Thiamethoxam, Thi- ocyclam, Pyridalyl, Pyridalyl, Flonicamid, Fluacypyrim, Milbemectin, Spiromesifen, FIu- pyrazofos, NC 512, Tolfenpyrad, Flubendiamide, Bistrifluron, Benclothiaz, Pyrafluprole, Pyriprole, Amidoflumet, Flufenerim, Cyflumetofen, Acequinocyl, Lepimectin, Profluthrin, Dimefluthrin, Metaflumizone, N-R'-2,2-dihalo-1 -R"cyclo-propanecarboxamide-2-(2,6- dichloro- α,α,α,α -tri-fluoro-p-tolyl)hydrazone oder N-R'-2,2-di(R"')propionamide-2-(2,6- dichloro- α,α,α,α -trifluoro-p-tolyl)-hydrazone, wobei R' methyl oder ethyl ist, halo für chlor oder brom, R" Wasserstoff oder Methyl und R'" für methyl oder ethyl steht, Carbonsäurediester der folgenden Formel —
Figure imgf000018_0001
Carbonic acid 3-(2,5-dimethyl-phenyl)-8-methoxy-2-oxo-1 -aza-spiro[4.5]dec-3-en-4-yl ester ethyl ester
Aminoiso-thiazol der Formel
Figure imgf000018_0002
worin R = -CH2OCH3 oder H und R' = -CF2CF2CF3;
Anthranilamide der Formel
Figure imgf000018_0003
5-Bromo-2-(3-chloro-pyridin-2-yl)-2H-pyrazole-3-carboxylic acid (4-chloro-2-isopropyl- carbamoyl-6-methyl-phenyl)-amide
Die folgende Liste von Fungiziden zeigt mögliche Wirkstoffe auf, soll aber nicht auf diese beschränkt sein:
1. Strobilurine wie
Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Metomi- nostrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, Orysastrobin, (2-Chlor-5-[1-(3- methyl-benzyloxyimino)-ethyl]-benzyl)-carbaminsäuremethylester, (2-Chlor-5-[1-(6- methyl-pyridin-2-ylmethoxyimino)-ethyl]-benzyl)-carbaminsäuremethyl ester, 2-(ortho- ((2,5-Dimethylphenyl-oxymethylen)phenyl)-3-methoxy-acrylsäuremethylester;
2. Carbonsäureamide wie Carbonsäureanilide: Benalaxyl, Benodanil, Boscalid, Carboxin, Mepronil, Fenfuram, Fenhexamid, Flutolanil, Furametpyr, Metalaxyl, Ofurace, Oxadixyl, Oxycarboxin, Pen- thiopyrad, Thifluzamide, Tiadinil, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure-(4'- brom-biphenyl-2-yl)-amid, 4-Difluormethyl-2-methyl-thiazol-5-carbonsäure-(4'-trifluor- methyl-biphenyl-2-yl)-amid, 4-Difluormethyl-2-inethyl-thiazol-5-carbonsäure-(4'-chlor-3'- fluor-biphenyl-2-yl)-amid, 3-Difluormethyl-1-methyl-pyrazol-4-carbonsäure-(3',4'-di- chlor-4-fluor-biphenyl-2-yl)-amid, 3,4-Dichlor-isothiazol-5-carbonsäure (2-cyano-phenyl) amid; Carbonsäuremorpholide: Dimethomorph, Flumorph; Benzoesäureamide: Flumetover, Fluopicolide (Picobenzamid), Zoxamide;
Sonstige Carbonsäureamide: Carpropamid, Diclocymet, Mandipropamid, N-(2-(4-[3-(4- Chlor-phenylJ-prop^-inyloxyl-S-methoxy-phenylJ-ethyl^-methansulfonylamino-S- methyl-butyramid, N-(2-(4-[3-(4-Chlor-phenyl)-prop-2-inyloxy]-3-methoxy-phenyl)- ethyl)-2-ethansulfonylamino-3-methyl-butyramid;
3. Azole wie
Triazole: Bitertanol, Bromuconazole, Cyproconazole, Difenoconazole, Diniconazole,
Enilconazole, Epoxiconazole, Fenbuconazole, Flusilazole, e, Flutriafol, Hexaconazol,
Imibenconazole, Ipconazole, Metconazol, MyclobuFluquinconazoltanil, Penconazole, Propiconazole, Prothioconazole, Simeconazole, Tebuconazole, Tetraconazole, Triadi- menol, Triadimefon, Triticonazole;
Imidazole: Cyazofamid, Imazalil, Pefurazoate, Prochloraz, Triflumizole;
Benzimidazole: Benomyl, Carbendazim, Fuberidazole, Thiabendazole;
Sonstige: Ethaboxam, Etridiazole, Hymexazole;
4. Stickstoffhaltige Heterocyclylverbindungen wie
Pyridine: Fluazinam, Pyrifenox, 3-[5-(4-Chlor-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]- pyridin;
Pyrimidine: Bupirimate, Cyprodinil, Ferimzone, Fenarimol, Mepanipyrim, Nuarimol, Py- rimethanil;
Piperazine: Triforine;
Pyrrole: Fludioxonil, Fenpiclonil;
Morpholine: Aldimorph, Dodemorph, Fenpropimorph, Tridemorph;
Dicarboximide: Iprodione, Procymidone, Vinclozolin; sonstige: Acibenzolar-S-methyl, Anilazin, Captan, Captafol, Dazomet, Diclomezine,
Fenoxanil, Folpet, Fenpropidin, Famoxadone, Fenamidone, Octhilinone, Probenazole,
Proquinazid, Pyroquilon, Quinoxyfen, Tricyclazole, 5-Chlor-7-(4-methyl-piperidin-1-yl)-
6-(2,4,6-tιϊfluor-phenyl)-[1 ,2,4]triazolo[1 ,5-a]pyτimidin, 2-Butoxy-6-iodo-3-propyl- chromen-4-on, 3-(3-Brom-6-fluoro-2-methyl-indol-1 -sulfonyl)-[1 ,2,4]triazol-1 -sulfon- säuredimethylamid;
5. Carbamate und Dithiocarbamate wie Dithiocarbamate: Ferbam, Mancozeb, Maneb, Metiram, Metam, Propineb, Thiram, Zineb, Ziram;
Carbamate: Diethofencarb, Flubenthiavalicarb, Iprovalicarb, Propamocarb, 3-(4-Chlor- phenyl)-3-(2-isopropoxycarbonylamino-3-methyl-butyrylamino)-propionsäure- methylester, N-(1-(1-(4-cyanophenyl)ethansulfonyl)-but-2-yl) carbaminsäure-(4-fluor- phenyl)ester;
6. Sonstige Fungizide wie
Guanidine: Dodine, Iminoctadine, Guazatine; Antibiotika: Kasugamycin, Polyoxine, Streptomycin, Validamycin A;
Organometallverbindungen: Fentin Salze;
Schwefelhaltige Heterocyclylverbindungen: Isoprothiolane, Dithianon;
Organophosphorverbindungen: Edifenphos, Fosetyl, Fosetyl-aluminium, Iprobenfos,
Pyrazophos, Tolclofos-methyl, Phosphorige Säure und ihre Salze; Organochlorverbindungen: Thiophanate Methyl, Chlorothalonil, Dichlofluanid, ToIyIfIu- anid, Flusulfamide, Phthalide, Hexachlorbenzene, Pencycuron, Quintozene;
Nitrophenylderivate: Binapacryl, Dinocap, Dinobuton;
Anorganische Wirkstoffe: Bordeaux Brühe, Kupferacetat, Kupferhydroxid, Kupfer- oxychlorid, basisches Kupfersulfat, Schwefel; Sonstige: Spiroxamine, Cyflufenamid, Cymoxanil, Metrafenone.
Wird als Wirkstoff ein Herbizid eingesetzt, so kann auch das Saatgut transgener oder durch herkömmliche Züchtungsmethoden erhaltener Pflanzen eingesetzt werden.
So kann Saatgut eingesetzt werden, das gegenüber Herbiziden tolerant ist, z.B. gegenüber Sulfonylharnstoffen, Imidazolinonen oder Glufonsinat oder Glyphosate re- sistenen Pflanzen (s. z.B. EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A- 0257993, U.S. Pat. No. 5,013,659).
In einer bevorzugten Ausführungsform wird der agrochemische Wirkstoff aus der Gruppe der Fungizide und/oder Insektizide ausgewählt.
Bevorzugte Fungizide sind
Strobilurine, vorzugsweise Kresoxim-methyl, Pyraclostrobin, Oryzastrobin Carbonsäu- reanilide, vorzugsweise Boscalid, und Azole, vorzugsweise Epoxiconazol, Prothioco- nazol, Tebuconazol, und Triticonazol, Fluquinconazol sowie Spiroxamin.
Besonsers bevorzugt sind Triticonazol und Fluquinconazol.
Ganz besonders bevorzugt ist Triticonazol. Bevorzugte Insektizide sind Pyrazol-Insektizide, vorzugsweise Fipronil, Pyrethroide vorzugsweise Alpha-Cypermethrin, Neonicotinoide wie Flonicamid, Clothianidin, Dino- tefuran, Imidacloprid, Thiamethoxam, Nitenpyram, Nithiazin, Acetamiprid und Thiac- loprid, bevorzugtes Neonicotinoid is Imidacloprid. Ganz besonders bevorzugtes Insekti- zid ist Fipronil.
Die erfindungsgemäßen Beizmittel-Formulierungen enthalten 1 - 30 Gew.-%, bevorzugt 5 - 20 Gew.-% Polyester und 1 - 60 Gew.-%, bevorzugt 1 - 30 Gew.-% agrochemischen Wirkstoff.
Für die Saatgutbehandlung können die entsprechenden Formulierungen mit hoher Wirkstoffkonzentration auch 2 bis 10fach verdünnt werden.
Des weiteren können die erfindungsgemäßen Beizmittel-Formulierungen weitere For- mulierungshilfsmittel enthalten. Diese Hilfsmittel können üblicherweise in 0,1 bis 40 Gew.-%, bevorzugt 5 bis 20 Gew.-% in den erfindungsgemäßen Beizmittel- Formulierungen enthalten sein
An 100% fehlende Prozent werden mit einem Lösungsmittel ergänzt.
Der Begriff Formulierungshilfsmittel beschreibt oberflächenaktive Stoffe (wie Netzmittel, Emulgatoren, Haftmittel oder Dispergiermittel oder Schutzkolloide), Antischäumungs- mittel, Verdicker, Frostschutzmittel, Kleber sowie Bakterizide.
Als oberflächenaktive Stoffe, die in den erfindungsgemäßen Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen oberflächenaktive Stoffe in Betracht, d.h. im vorliegenden Falle alle, dem Fachmann bekannte, wasserlöslichen Polymere mit amphiphi- lem Charakter wie zum Beispiel Proteine, denaturierte Proteine, Polysaccharide, hyd- rophob modifizierte Stärken, und synthetische Polymere, bevorzugt Polyvinylalkohol, Polycarboxylate, Polyalkoxylate, Polyvinylamin, Polyethylenimin, Polyvinylpyrrolidon und deren Copolymere. Diese Verbindung sind insbesondere als Schutzkollode geeignet.
Beispiele für weitere oberflächenaktive Stoffe, die in den erfindungsgemäßen Formulierungen enthalten sein können, sind übliche nichtionische, anionische und/oder kationische Dispergiermittel / Netzmittel wie Alkali-, Erdalkali-, Ammoniumsalze von Ligninsul- fonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylphenylethersulfonate, Alkylsulfate, Alkylsulfonate, Fettalkohol- sulfate, Fettsäuren und sulfatierte Fettalkoholglykolether, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phe- nol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkyl-arylpolyetheralkohole, Alkohol- und Fettalkohol- ethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxylier- tes Polyoxypropylen, Laurylalkoholpoly-glykoletheracetal, Saccharoseester, Sorbitester, Ligninsulfitablaugen und Methylcellulose.
Die Bedeutung und entsprechende Verwendung der oben genannten Mittel richtet sich nach der Natur des Wirkstoffes.
Als Verdicker, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Verdicker in Betracht. Beispiele für Verdicker (d.h. Verbindungen, die der Formulierung ein pseudoplastisches Fließverhalten verleihen, d.h. hohe Viskosität im Ruhezustand und niedrige Viskosität im bewegten Zustand) sind beispielsweise Polysaccharide bzw. organische Schichtmineralien wie Xanthan Gum (Kelzan® der Fa. Kelco), Rhodopol® 23 (Rhone Poulenc) oder Veegum® (Firma RT. Vanderbilt) oder Attaclay® (Firma Engelhardt).
Als Antischaummittel, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Antischaummittel in Betracht. Beispiele für Antischaummittel sind Silikonemulsionen (wie z.Bsp. Silikon® SRE, Firma Wacker oder Rhodorsil® der Firma Rhodia), langkettige Alkohole, Fettsäuren, fluororganische Verbindungen und deren Gemische.
Bakterizide können zur Stabilisierung der wäßrigen Fungizid-Formulierung zugesetzt werden. Als Bakterizide, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Bakterizide in Betracht wie zum Beispiel Bakterizide basierend auf Diclorophen und Benzy- lalkoholhemiformal. Beispiele für Bakterizide sind Proxel® der Fa. ICI oder Acticide® RS der Fa. Thor Chemie und Kathon® MK der Firma Rohm & Haas.
Als Frostschutzmittel, die in den erfindungsgemäßen Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen Frostschutzmittel in Betracht. Geeignete Frostschutzmittel sind z.B. Ethylenglycol, Pro- pylenglycol oder Glycerin, vorzugsweise Propylenglycol und Glycerin.
Als Lösemittel kommt Wasser und Mischungen von Wasser mit wassermischbaren Hilfsstoffen wie Glycolen und Glyzerin in Betracht. Bevorzugtes Lösemittel ist Wasser.
Als Kleber, die in den erfindungsgemäßen Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vor- zugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und TyI ose.
Des weiteren können den erfindungsgemäßen Beizmittel-Formulierungen optional auch Farbstoffe zugesetzt werden. Hierbei kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, Cl. Pigment Red 1 12 und Cl. Solvent Red 1 bekannten Farbstoffe, sowie pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 1 12, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108
Die Herstellung der erfindungsgemäßen Formulierungen kann nach dem Fachmann bekannten Methoden erfolgen (vgl. US 3,060,084, EP-A 707 445 (für flüssige Konzentrate), Browning, "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, S. 8-57 und ff. WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US
5,232,701 , US 5,208,030, GB 2,095,558, US 3,299,566, Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961 , Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989 und Mollet, H., Grubemann, A., Formulation technology, Wiley VCH Verlag GmbH, Weinheim (Federal Republic of Germany), 2001 ).
Hierbei ist es möglich, die Beizmittel-Formulierung dadurch herzustellen, dass man eine Suspension eines zur Beizung von Saatgut geeigneten agrochemischen Wirkstoffes, in welcher der Wirkstoff in festen Partikeln vorliegt, die eine Größe zwischen 0,1 μm und 10μm haben, mit einer wässrigen Dispersion eines biologisch abbaubaren Polyesters vermischt.
Hierbei kann man die Wirkstoffsuspension beispielsweise dadurch herstellen, dass man den/die entsprechenden Wirkstoff(e) unter Zusatz von oberflächenaktiven Stoffen (Dispergier- und Netzmitteln) und ggf. weiteren Hilfsmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert.
Hierbei kann die Wirkstoffsuspension auch eine kommerziell erhältliche Suspensions Formulierungen eines (oder mehrerer) agrochemischen Wirkstoffes sein (zBsp. SC, OD, FS), wobei der Wirkstoff die oben angeführten Teilchengrößen aufweisen muß. Alternativ kann die Wirkstoffsuspension auch aus einer (ggf. auch kommerziell erhältlichen) Festformulierung eines Wirkstoffes durch Dispergieren in einem Lösungsmittel, vorzugsweise Wasser, hergestellt werden, (z.B. aus einer Pulverformulierung (z.Bsp. WP, SP, SS, WS) oder Granulat-Formulierung (z.Bsp. WG, SG) wobei, falls erforder- lieh, die entsprechenden Teilchengrössen durch Zerkleinerung (z.Bsp. Vermählen) erhalten werden können. Die Herstellung von Granulatformulierungen ist dem Fachmann bekannt und kann nach bekannten Methoden erfolgen (vgl. US 3,060,084, Browning, "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, S. 8-57 und ff. WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US
5,232,701 , US 5,208,030, GB 2,095,558, US 3,299,566, Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961 , Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989 und Mollet, H., Grubemann, A., Formulation technology, Wiley VCH Verlag GmbH, Weinheim (Federal Republic of Germany), 2001).
Diesen Suspensionsformulierungen können optional, falls erforderlich, Kleber und Pigmente hinzugefügt werden.
Des weiteren umfasst die vorliegende Erfindung ein Verfahren zum Beizen von Saatgut basierend auf der Verwendung eines erfindungsgemäßen Polyesters.
In einer Ausführungsform der vorliegenden Erfindung ist das Verfahren zum Beizen von Saatgut dadurch gekennzeichnet, dass man
(a) Saatgut mit einer erfindungsgemäßen Beizmittel-Formulierung behandelt; und
(b) das in Schritt (a) erhaltene Saatgut gegebenenfalls trocknet
Hierbei kann -falls gewünscht- die erfindungsgemäße Beizmittel-Formulierung vor Applikation auf das Saatgut mit einem Lösungsmittel, vorzugsweise Wasser verdünnt werden.
In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Verfahren zum Beizen von Saatgut dadurch gekennzeichnet, dass man Saatgut mit einer Dispersion eines erfindungsgemäßen teilaromatischen Polyesters behandelt.
Dieses so vorbehandelte Saatgut kann anschliessend mit einer agrochemischen Suspensionsformulierung enthaltend mindestens einen, zur Beizung von Saatgut geeigne- ten agrochemischen Wirkstoff, wobei der Wirkstoff in festen Partikeln vorliegt, welche eine Größe zwischen 0,1 μm und 10μm haben, behandelt werden. Diese agrochemischen Formulierungen sind Suspensionsformulierungen eines (oder mehrerer) agrochemischen Wirkstoffes sein (zBsp. SC, OD, FS), wobei der Wirkstoff die oben angeführten Teilchengrößen aufweisen muß. Die Herstellung von Suspensionsformulierungen ist dem Fachmann bekannt, und ist weiter oben erläutert.
Alternativ kann die Wirkstoffsuspension auch aus einer (ggf. auch kommerziell erhältlichen) Festformulierung eines Wirkstoffes durch Dispergieren in einem Lösungsmittel, vorzugsweise Wasser, hergestellt werden (s.o.).
Der Begriff Saatgut umfasst Saatgut aller Arten, wie z.B. Körner, Samen, Früchte, Knollen, Stecklinge und ähnliche Formen. Bevorzugt beschreibt der Begriff Saatgut hier Körner und Samen.
Geeignetes Saatgut sind Getreidesaaten Halmfruchtsaaten, Hackfruchtsaaten, Ölsaa- ten, Gemüsesaaten, Gewürzsaatgut, Zierpflanzensaatgut, z.B. Saatgut von Hartweizen, Weizen, Gerste, Hafer, Roggen, Mais (Futtermais und Zuckermais), Soja , Ölsaa- ten, Kreuzblütler, Baumwolle, Sonnenblumen, Bananen, Reis, Raps, Rüben, , Zuckerrüben, Futterrüben, Eierpflanzen, Kartoffeln, Gras, (Zier-)Rasen, Futtergras, Tomaten, Lauch, Kürbis, Kohl, Eisbergsalat, Pfeffer, Gurken, Melonen, Brassica species, MeIo- nen, Bohnen, Erbsen, Knoblauch, Zwiebeln, Karotten, Zuckerrohr, Tabak, Weintrauben, Petunien und Geranien, Stiefmütterchen, Springkraut. Bevorzugt beschreibt der Begriff Saatgut hier Getreide und Soja.
Die erfindungsgemäßen Beizmittel-Formulierungen können zum Beizen von Saatgut durch herkömmliche Züchtungsmethoden erhaltener Pflanzen sowie zum Beizen von Saatgut transgener Pflanzen eingesetzt werden.
Wie bereits erwähnt kann Saatgut eingesetzt werden, das gegenüber Herbiziden tolerant ist, z.B. gegenüber Sulfonylharnstoffen, Imidazolinonen oder Glufonsinat oder Glyphosate resistenen Pflanzen (s. z.B. EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat. No. 5,013,659) oder Saatgut transgener Pflanzen, z.B. Baumwolle, die Bacillus thuringiensis toxin (Bt toxins) produzieren und dadurch gegenüber bestimmten Schadorganismen gegenüber resistent sind (EP-A-0142924, EP-A- 0193259).
Weiterhin kann auch Saatgut von Pflanzen eingesetzt werden, die im Vergleich mit herkömmlichen Pflanzen modifizierte Eigenschaften aufweisen. Beispiele hierfür sind geänderte Stärkesynthese (e.g. WO 92/1 1376, WO 92/14827, WO 91/19806) oder Fettsäurezusammensetzungen (WO 91/13972).
Im Rahmen der vorliegenden Erfindung wird auch Saatgut beansprucht, das mit einem erfindungsgemäßen Polyester behandelt ist. Des weiteren wird Saatgut beansprucht, welches mit einem erfindungsgemäßen Polyester behandelt ist, und in einem zweiten Schritt wie oben beschrieben mit einer herkömmlichen Suspensionsformulierung behandelt wurde.
Des weiteren wird Saatgut beansprucht, welches mit einer erfindungsgemäßen Beizmittel-Formulierung behandelt ist.
Die Aufwandmengen liegen im allgemeinen zwischen 0,1 g-10kg Wirkstoff pro 100kg Saatgut, vorzugsweise 1 g bis 5kg, besonders bevorzugt von 1 g - 2,5kg. Für spezielles Saatgut wie Salat können die Aufwandmengen auch höher sein. Für Soja werden Au- wandmengen von 0,1 - 10 kg verwendet.
Die Saatgutbehandlung kann durch Besprühung des Saatgutes mit der Formulierung oder Vermischen des Saatgutes mit der Formulierung ggf. gefolgt von Trocknen des Saatgutes vor dem Säen und vor Keimung nach dem Fachmann bekannten Methoden durchgeführt werden.
Des weiteren umfasst die vorliegende Erfindung ein Verfahren zur Regulation des Wachstums von Pflanzen und/oder zur Bekämpfung unerwünschten Pflanzenwuchses und /oder zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen, dadurch gekennzeichnet, dass man Saatgüter von Nutzpflanzen mit einer erfindungsgemäßen Beizmittel- Formulierung behandelt.
Vorzugsweise umfasst die Erfindung Verfahren zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen, dadurch gekennzeichnet, dass man Saatgüter von Nutzpflanzen mit einer erfindungsgemäßen Beizmittel-Formulierung behandelt.
Bekämpfung unerwünschten Pflanzenwuchses bedeutet die Bekämpfung/Zerstörung von Pflanzen, welche an Orten wachsen, an welchen sie unerwünscht sind, z.B. von
Dicotyledonen Pflanzen der Arten: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xan- thium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.
Monocotyledonen Pflanzen der Arten: Echinochloa, Setaria, Panicum, Digitaria,
Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorg- hum, Agropyron, Cynodon, Monochoria, Fimbristyslis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera
Der Begriff unerwünschte Insekten- oder Milben beschreibt ist aber nicht beschränkt auf folgende Gattungen:
Doppel-bzw. Tausendfüssler wie zum Beispiel Blaniulus Arten
Ameisen (Hymenoptera) wie zum Beispeil. Atta capiguara, Atta cephalotes, Atta laevi- gata, Atta robusta, Atta sexdens, Atta texana, Monomorium pharaonis, Solenopsis ge- minata, Solenopsis invicta, Pogonomyrmex Arten und Pheidole megacephala,
Käfer (Coleoptera), wie zum Beispiel Agrilus sinuatus, Agriotes lineatus, Agriotes obs- curus und andere Agriotes Arten, Amphimallus solstitialis, Anisandrus dispar, Antho- nomus grandis, Anthonomus pomorum, Aracanthus morei, Atomaria linearis, Blapsti- nus Arten, Blastophagus piniperda, Blitophaga undata, Bothynoderes punciventris, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebu- losa, Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetoc- nema tibialis, Conoderus vespertinus und andere Conoderus Arten, Conorhynchus mendicus, Crioceris asparagi, Cylindrocopturus adspersus, Diabrotica (longicornis) barberi, Diabrotica semi-punctata, Diabrotica speciosa, Diabrotica undecimpunctata, Diabrotica virgifera und andere Diabrotica Arten, Eleodes Arten, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa de- cemlineata, Limonius californicus und andere Limonius Arten, Lissorhoptrus oryzophi- lus, Listronotus bonariensis, Melanotus communis und andere Melanotus Arten, MeIi- gethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Orti- orrhynchus sulcatus, Oryzophagus oryzae, Otiorrhynchus ovatus, Oulema oryzae, Phaedon cochleariae, Phyllotreta chrysocephala, Phyllophaga cuyabana und andere Phyllophaga Arten, Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, und andere Phyllotreta Arten, Popillia japonica, Promecops carinicollis, Premnotrypes voraz, Psylliodes Arten, Sitona lineatus, Sitophilus granaria, Sternechus pinguis, Ster- nechus subsignatus, und Tanymechus palliatus und andere Tanymechus Arten,
Flies (Diptera) wie zum Beispiel Agromyza oryzea, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Contarinia sorghicola, Cordylobia anthropophaga, Dacus Cucurbitae, Dacus oleae, Dasineura brassicae, DeNa antique, DeNa coarctata, DeNa platura, DeNa radicum, Fannia canicularis, Gasterophilus intestinalis, Geomyza Tripunctata, Glossina morsitans, Haematobia irritans, Haplodiplosis equestris, Hypo- derma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Luci- Na sericata, Lycoria pectoralis, Mayetiola destructor, Muscina stabulans, Oestrus ovis, Opomyza florum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassi- cae, Phorbia coarctata, Progonya leyoscianii, Psila rosae, Rhagoletis cerasi, Rhagole- tis pomonella, Tabanus bovinus, Tetanops myopaeformis, Tipula oleracea und Tipula paludosa,
Heteropterans (Heteroptera), wie zum Beispiel Acrosternum hilare, Blissus leucopte- rus, Cicadellidae wie zum Beispiel Empoasca fabae, Chrysomelidae, Cyrtopeltis nota- tus, Delpahcidae, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integri- ceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nephotettix Arten, Nezara viridula, Pentatomidae, Piesma quadrata, Solubea insularis und Thyanta perditor,
Aphids und andere homopterans (Homoptera), e.g. Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis glycines, Aphis gossypii, Aphis grossulariae, Aphis pomi, Aphis schneiden, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus cardui, Brachycaudus helich- rysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capi- tophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Drey- fusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudoso- lani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hype- romyzus lactucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius, Metopolophium dirhodum, Myzodes (My- zus) persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Pemphigus populivenae, und andere Pemphigus Arten, Perkinsiella saccharicida, Phorodon humuli, Psyllidae wie zum Bei- spiel Psylla mali, Psylla piri und andere Psylla Arten, Rhopalomyzus ascalonicus, Rho- palosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Tria- leurodes vaporariorum, Toxoptera aurantiiand, und Viteus vitifolii;
Lepidoptera, zum Beispiel Agrotis ypsilon, Agrotis segetum und andere Agrotis Arten, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Chilo suppresalis und andere Chilo Arten, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cnaphlocrocis medinalis, Cydia pomonella, Dendroli- mus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Euxoa Arten, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, HeIIuIa undalis, Hibernia defoliaria, Hyphantria cu- nea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Lerodea eufala, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancar- della, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Momphidae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Pe- ridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pie- ris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacio- nia frustrana, Scrobipalpula absoluta.Sesamia nonagrioides und andere Sesamia Ar- ten, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni und Zeiraphera canadensis,
Orthoptera, wie zum Beispiel Acrididae, Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus und Tachycines asyna- morus ;
Termiten (Isoptera), wie zum Beispiel Calotermes flavicollis, Coptotermes Arten, Dalbu- lus maidis, Leucotermes flavipes, Macrotermes gilvus, Reticulitermes lucifugus und Termes natalensis;
thrips (Thysanoptera) wie zum Beispiel Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici und andere Frankliniella Arten, Scirtothrips citri, Thrips oryzae, Thrips palmi, Thrips simplex und Thrips tabaci,
Spinnentiere, wie zum Beispiel Acarina, zum Beispiel e.g. of the families Argasidae, Ixodidae und Sarcoptidae, wie zum Beispiel Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubi- cundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, und Eri- ophyidae Arten wie zum Beispiel Aculus schlechtendali, Phyllocoptrata oleivora und Eriophyes sheldoni; Tarsonemidae Arten wie zum Beispiel Phytonemus pallidus und Polyphagotarsonemus latus; Tenuipalpidae Arten wie zum Beispiel Brevipalpus phoe- nicis; Tetranychidae Arten wie zum Beispiel Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius und Tetranychus urticae, Pano- nychus ulmi, Panonychus citri, und Oligonychus pratensis;
Nematoden, besonders Planzen befallende Nematoden wie zum Beispiel root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, und andere Meloidogyne Arten; cyst-forming nematodes, Globodera rostochiensis und an- dere Globodera Arten; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, und andere Heterodera Arten; Seed gall nematodes, Anguina Arten; Stern und foliar nematodes, Aphelenchoides Arten; Sting nematodes, Belonolaimus longicaudatus und andere Belonolaimus Arten; Pine nematodes, Bursaphelenchus xylophilus und andere Bursaphelenchus Arten; Ring nematodes, Criconema Arten, Criconemella Arten, Criconemoides Arten, Mesocriconema Arten; Stern und bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci und andere Ditylenchus Arten; AwI nematodes, Dolichodorus Arten; Spiral nematodes, Heliocotylenchus multicinctus und andere Helicotylenchus Arten; Sheath und sheathoid nematodes, Hemicycliophora Arten und Hemicriconemoides Arten; Hirshmanniella Arten; Lance nematodes, Hoplo- aimus Arten; false rootknot nematodes, Nacobbus Arten; Needle nematodes, Longido- rus elongatus und andere Longidorus Arten; Lesion nematodes, Pratylenchus neglec- tus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi und andere Pratylenchus Arten; Burrowing nematodes, Radopholus similis und andere Ra- dopholus Arten; Reniform nematodes, Rotylenchus robustus und andere Rotylenchus Arten; Scutellonema Arten; Stubby root nematodes, Trichodorus primitivus und andere Trichodorus Arten, Paratrichodorus Arten; Stunt nematodes, Tylenchorhynchus clayto- ni, Tylenchorhynchus dubius und andere Tylenchorhynchus Arten; Citrus nematodes, Tylenchulus Arten; Dagger nematodes, Xiphinema Arten; und andere plant parasitic nematode Arten.
Der Begriff phytopathogene Pilze beschreibt ist aber nicht beschränkt auf folgende Spezies:
Der Begriff phytopathogene Pilze beschreibt ist aber nicht beschränkt auf folgende Spezies: Alternaria spp. an Reis, Gemüse, Sojabohnen, Raps, Zuckerrübe und Frü- chen, Aphanomyces spp. an Zuckerrübe und Gemüse, Bipolaris and Drechslera spp. Mais, Getreide, Reis und Zierrasen, Blumeria graminis (powdery mildew) an Getreide, Botrytis cinerea (gray mold) an Erdbeeren, Gemüse, Zierblumen, Weintrauben, Bremia lactucae an Salat, Cercospora spp. an Mais, Soja, und Zuckerrübe, Cochliobolus spp. an Mais, Getreide, Reis (e.g. Cochliobolus sativus an Getreide, Cochliobolus miyabea- nus an Reis), Colletotrichum spp. an Soja und Baumwolle, Drechslera spp. an Getreide und Korn / Mais, Exserohilum spp. an Mais, Erysiphe cichoracearum und Sphaerothe- ca fuliginea an Gurken, Erysiphe necator an Weintrauben, Fusarium and Verticillium spp. an unterschiedlichen Pflanzen, Gaeumannomyces graminis an Getreide, Gibbe- rella spp. an Getreide und Reis (e.g. Gibberella fujikuroi an Reis, Gibberella zeae an Getreide), Grainstaining complex an Reis, Microdochium nivale an Getreide, My- cosphaerella spp. an Getreide, bananas and peanuts, Phakopsora pachyrhizi und Phakopsora meibomiae on soybeans, Phomopsis spp. an Soja und Sonnenblumen sunflower, Phytophthora infestans an Kartoffeln und Tomante, Plasmopara viticola an Weintrauben, Podosphaera leucotricha an Äpfeln, Pseudocercosporella herpotrichoi- des an Weizen und Gerste, Pseudoperonospora spp. an Hopfen und Gurke, Puccinia spp. an Getreide und Mais, Pyrenophora spp. an Getreide, Pyricularia oryzae an Reis,, Cochliobolus miyabeanus and Corticium sasakii (Rhizoctonia solani), Fusarium semi- tectum (and/or moniliforme), Cercospora oryzae, Sarocladium oryzae, S attenuatum, Entyloma oryzae, Gibberella fujikuroi (bakanae), Grainstaining complex (various pa- thogens), Bipolaris spp., Drechslera spp. und Pythium and Rhizoctonia spp. an Reis, Mais, Baumwolle, Sonnenblume, Raps, Raps (canola, oilseed rape), Gemüse, Zierrasen, Nüsse und weitere Pflanzen, Rhizoctonia solani an Kartoffel, Sclerotinia spp. an Rapsarten (canola/oilseed rape) und Sonnenblume, Septoria tritici and Stagonospora nodorum an Weizen, Uncinula necator an Weintrauben, Sphacelotheca reiliana an Mais, Thievaliopsis spp. an Soja und Baumwolle, Tilletia spp. an Getreiden, Ustilago spp. an Getreide, Mais, Zuckerrohr und, Venturia spp. (scab) an Äpfeln und Birnen;
Beispiele:
Beispiel 1 : Herstellung einer wässrigen Dispersion eines TA Polyesters
9,0 g Polybutylenadipatterephthalat (Ecoflex®, BASF AG) wurden in 1000 g Tetra- hydrofuran bei Raumtemperatur gelöst (Lösemittelphase).
In einem separatem Gefäß wurden 3,3 g Na-Caseinat und 2,0 g Na- Alkylphenolethersulfat (Lutensit A-ES®, BASF AG) in 10 Liter deionisiertem Wasser gelöst (wässrige Phase). Zur Ausfällung des Polybutylenadipatterephthalat.es wurden die Lösemittelphase mit einer Pumprate von 3,19 kg/h und einer Temperatur von 95,9°C und die wässrige Phase mit einer Pumprate von 29,9 kg/h und bei Raumtemperatur kontinuierlich in einer Mischkammer bei einem Systemdruck von ca. 24 bar vermischt. Anschließend wurden das Tetra hydrofuran und ein Teil des Wassers in einem Rotationsverdampfer bei einer Temperatur von 65°C und bei einem Druck von 200 mbar abgezogen. Die so erhaltene Dispersion wies bei einem Feststoffgehalt von 17,9 % eine Teilchengröße von 1 17 nm auf.
Beispiel 2: Herstellung einer wässrigen Dispersion eines TA Polyesters
17,5 g Polybutylenadipatterephthalat (Ecoflex®, BASF AG) werden in 250 g Methylenchlorid bei Raumtemperatur gelöst (Lösemittelphase). In einem separatem Gefäß wurden 2 g Saccharoseester (Ryoto® S-1670S) in 350 g deionisiertem Wasser bei 70°C gelöst (wässrige Phase). Anschließend wurde die Lösemittelphase mittels eines Dispergiergerätes (Ultra- Turrax®) in die wässrige Phase eingerührt. Danach wurden 100 ml Isopropanol dazugegeben. Anschließend wurde unter Kühlung 10 min. mit dem Dispergiergerät (Ultra- Turrax®) emulgiert. Die so erhaltene Rohemulsion wies bei einem Feststoffgehalt von 2,8 % und einem pH-Wert von 7,5 eine Tröpfchengröße von 466 nm auf. Diese Rohemulsion wurde dann in drei Passagen in einem Hochdruck-Homogenisator bei einem Druck von 700 bar weiter homogenisiert. Die Tröpfchengröße betrug dann 339 nm. Dann wurden 2 g Na-Dodecylsulfat in 150 g deionisiertem Wasser gelöst und zur Emulsion dazugegeben. Danach wurde die Emulsion nochmals dreimal unter den gleichen Bedingungen wie zuvor im Hochdruckhomogenisator behandelt. Die Tröpfchengröße wurde dadurch auf 1 16 nm reduziert.
In einem Rotationsverdampfer wurden anschließend das Methylenchlorid und so viel Wasser abgezogen, bis der Feststoffgehalt der Dispersion 29,3 % betrug. Die TeN- chengröße wurde mittels dynamischer Lichtstreuung zu 108 nm und die Viskosität der Dispersion zu 6 mPas bei einer Scherrate von 50 sec-1 bestimmt.
Beispiel 3: Beizen des Saatgutes mit einer kommerziell erhältlichen Beizmittel- Formulierung Als Beizmittel wurde Premis 025 FS® der Firma BASF verwendet, eine kommerziell erhältliche Formulierung des Pflanzenschutzmittels Triticonazol. Zum Beizen wurde das Beizgerät (MiniRotostat der Firma Satec) mit 2 kg unbehandeltem Soja-Saatgut befüllt. Nach Einschalten der Schüssel und des Drehtellers wurden 10 ml Premis 025 FS® auf den Drehteller gegeben. Nach erfolgter Zugabe wurde 20 Sekunden nachgemischt und anschließend das behandelte Saatgut entnommen und an der Luft getrocknet.
Beispiel 4: Beizen des Saatgutes mit einer erfindungsgemäßen Beizmittel- Formulierung enthaltend eine wässrige Dispersion eines TA Polyester
Zum Herstellen der erfindungsgemäßen Beizmittel-Formulierung wurde die nach Beispiel 2 erhaltene wässrige Dispersion mit Premis 025 FS® der Firma BASF zu gleichen Teilen gemischt. Zum Beizen wurde das Beizgerät (MiniRotostat der Firma Satec) mit 2 kg unbehandel- tem Soja-Saatgut befüllt. Nach Einschalten der Schüssel und des Drehtellers wurden 20 ml der erhaltenen Abmischung auf den Drehteller gegeben. Nach erfolgter Zugabe wurde 20 Sekunden nachgemischt und anschließend das behandelte Saatgut entnommen und an der Luft getrocknet.
Beispiel 5: Untersuchung des Staubverhaltens
Mit dem gemäß Beispiel 3 und Beispiel 4 erhaltenem gebeiztem Saatgut wurde ein Staubtest durchgeführt. Hierzu wurden 250 g Saatgut in eine 500 ml Glasflache eingewogen und diese auf einem Walzenstuhl bei 60 U/min 10 Minuten lang gedreht. Nach dieser Behandlung wurde für das nach Beispiel 3 hergestellte Saatgut ein Staubanteil von 1 ,0 mg Staub pro 100 kg Soja-Saatgut gefunden. Für das nach Beispiel 4 hergestellte Soja-Saatgut basierend auf der erfindungsgemäßen Beizmittel-Formulierung wurde ein niedrigerer Staubanteil von 0,4 mg Staub pro 100 kg Soja-Saatgut gefunden.
Beispiel 6: Untersuchung des Einflusses auf die Keimungsrate Zur Untersuchung des Einflusses der Beizung auf die Keimungsrate der behandelten Sojabohnen wurde die Keimungsrate unbehandelter Sojabohnen mit der Keimungsrate behandelter Sojabohnen verglichen.
Die Keimungsrate folgender Saatgutproben wurde verglichen:
Soja-Saatgut unbehandelt
Soja-Saatgut behandelt mit der nach Beispiel 2 hergestellten wässrigen Dispersion
(Aufwandmenge: 50 g pro 100 kg Saatgut)
Soja-Saatgut behandelt mit der kommerziell (BASF) erhältlichen Beizmittel- Formulierung REAL 200 FS (Aufwandmenge: 12,5 g pro 100 kg Saatgut).
(erfindungsgemäße Vorgehensweise) Soja-Saatgut behandelt mit der nach Beispiel 2 hergestellten wässrigen Ecoflex®-Dispersion (Aufwandmenge: 50 g pro 100 kg Saatgut) und anschließend behandelt mit der kommerziell (BASF) erhältlichen BeizmittelF- ormulierung REAL 200 FS (Aufwandmenge: 12,5 g pro 100 kg Saatgut).
Im Falle des mit der wässrigen Ecoflex®-Dispersion behandelten Soja-Saatgutes (b) wurde eine Keimungsrate ähnlich der des unbehandelten Saatgutes gefunden. Bei Behandlung mit der kommerziellen Beizmittel-Formulierung (c) wurde hingegen eine deutlich verlangsamte Keimungsrate beobachtet. Bei erfindungsgemäßer zusätzlicher Behandlung mit der wässrigen Ecoflex®-Dispersion (d) wurde eine deutlich verbesserte Keimungsrate beobachtet.
Beispiel 7: Untersuchung des Einflusses auf die Wüchsigkeit von Sojapflanzen
Zur Untersuchung des Einflusses der Beizung auf die Wüchsigkeit wurden die Wuchshöhen der Sojapflanzen aus behandeltem Saatgut mit den Wuchshöhen von Pflanzen aus unbehandeltem Saatgut verglichen. Die Wüchsigkeit von Sojapflanzen aus folgenden Saatgutproben wurde verglichen:
Soja-Saatgut unbehandelt
Soja-Saatgut behandelt mit der nach Beispiel 2 hergestellten wässrigen Dispersion (Aufwandmenge: 50 g pro 100 kg Saatgut)
Soja-Saatgut behandelt mit der kommerziell (BASF) erhältlichen Beizmittel- Formulierung REAL 200 FS (Aufwandmenge: 25 g pro 100 kg Saatgut, Wirkstoff Triti- conazol).
(erfindungsgemäße Vorgehensweise) Soja-Saatgut behandelt mit der nach Beispiel 2 hergestellten wässrigen Ecoflex®-Dispersion (Aufwandmenge: 50 g pro 100 kg Saatgut) und anschließend behandelt mit der kommerziell (BASF) erhältlichen BeizmittelF- ormulierung REAL 200 FS (Aufwandmenge: 25 g pro 100 kg Saatgut).
Es zeigte sich, dass der Pflanzenwuchs der Sojapflanzen durch die Behandlung des Saatgutes mit wässriger Ecoflex®-Dispersion nicht wesentlich beeinflusst wurde. Bei Behandlung mit der kommerziellen Beizmittel-Formulierung (g) wurde hingegen eine deutlich verlangsamter Pflanzenwuchs bei 20 -29 Tage alten Pflanzen beobachtet. Dieser Effekt ist bei der zusätzlichen Behandlung des Saatgutes mit der wässrigen Ecoflex®-Dispersion (h) (erfindungsgemäß) deutlich weniger stark ausgeprägt. Bei älteren Pflanzen (60 Tag alt) wurde hingegen ein verbesserter Pflanzenwuchs der Pflanzen aus behandeltem Saatgut beobachtet. Diese Verbesserung war besonders stark ausgeprägt für die Pflanzen aus dem zusätzlich mit Ecoflex® behandeltem Saatgut.
Beispiel 8: Fungizide Wirkung
Bei der Untersuchung von mit Sojarost (Phakopsora pachirisi) befallenen Sojapflanzen aus behandeltem und unbehandeltem Saatgut zeigte sich, dass der Befall mit Sojarost durch die Behandlung des Saatgutes deutlich verringert werden kann. Durch zusätzli- che erfindungsgemäße Behandlung des Saatgutes mit wässriger Ecoflex®-Dispersion (Aufwandmenge 12,5 g /100 kg Saatgut) wurde bei niedrigen Aufwandmengen des Wirkstoffes ein geringer Befall beobachtet.
Bei höheren Aufwandmengen wurde durch die erfindungsgemäße Formulierung keine Beeinträchtigung der fungiziden Wirkung beobachtet.

Claims

Patentansprüche
1. Verwendung eines biologisch abbaubaren, teilaromatischen Polyesters für die Beizung von Saatgut.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass der biologisch abbaubare Polyester aufgebaut ist aus:
A) einer Säurekomponente aus
a1 ) 30 bis 95 mol-% mindestens einer aliphatischen oder mindestens einer cycloaliphatischen Dicarbonsäure oder deren esterbildende Derivate oder Mischungen davon
a2) 5 bis 70 mol-% mindestens einer aromatischen Dicarbonsäure oder deren esterbildendem Derivat oder Mischungen davon und
a3) 0 bis 5 ιmol-% einer sulfonatgruppenhaltigen Verbindung,
wobei die Molprozente der Komponenten a1 ) bis a3) zusammen 100% ergeben und
B) einer Diolkomponente aus mindestens einem C2-bis Ci2-Alkandiol oder einem C5- bis do-Cycloalkandiol oder Mischungen davon
und gewünschtenfalls darüber hinaus eine oder mehrere Komponenten ausgewählt aus
C) einer Komponente ausgewählt aus
d ) mindestens einer Etherfunktionen enthaltenden Dihydroxyverbindung der Formel I
HO-[(CH2)n-O]m-H (I)
in der n für 2, 3 oder 4 und m für eine ganze Zahl von 2 bis 250 stehen,
c2) mindestens einer Hydroxycarbonsäure der Formel IIa oder IIb
Figure imgf000036_0001
(Ha) (IIb)
in der p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)q-, wobei q eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und -C(R)HCH2, wobei R für Methyl oder Ethyl steht
c3) mindestens einem Amino-C2- bis Ci2-alkanol oder mindestens einem Amino-C5-bis Cio-cycloalkanol oder Mischungen davon
c4) mindestens einem Diamino-Cr bis Cβ-Alkan
c5) mindestens einem 2,2'-Bisoxazolins der allgemeinen Formel IM
Figure imgf000036_0002
(IM)
wobei R1 eine Einfachbindung, eine (CH2)Z-Alkylengruppe, mit z = 2, 3 oder 4, oder eine Phenylengruppe bedeutet
c6) mindestens einer Aminocarbonsäure ausgewählt aus der Gruppe, bestehend aus den natürlichen Aminosäuren, Polyamiden mit einem Molekulargewicht von höchstens 18000g/mol, erhältlich durch Polykondensation einer Dicarbonsäure mit 4 bis 6 C-Atomen und einem Diamin mit 4 bis 10 C-Atomen, Verbindungen der Formeln IV a und IVb
Figure imgf000036_0003
(IVa) (IVb)
in der s eine ganze Zahl von 1 bis 1500 und t eine ganze Zahl von 1 bis 4 bedeuten, und T für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)U-, wobei u eine ganze Zahl von 1 bis 12 bedeutet, -C(R2)H- und -C(R2)HCH2, wobei R2 für Methyl oder Ethyl steht,
und Polyoxazolinen mit der wiederkehrenden Einheit V
Figure imgf000037_0001
(V)
in der R3 für Wasserstoff, Ci-C6-Alkyl, C5-C8-Cycloalkyl, unsubstituierten oder mit Ci-C4-Alkylgruppen bis zu dreifach substituiertes Phenyl oder für Tetrahydrofuryl steht,
oder Mischungen aus c1 ) bis c6)
und
D) einer Komponente ausgewählt aus
d1 ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen,
d2) mindestens eines Isocyanates
d3) mindestens eines Divinylethers
oder Mischungen aus d1 ) bis d3).
3. Flüssige Beizmittel-Formulierung umfassend
(1 ) einen biologisch abbaubaren teilaromatischen Polyester;
(2) mindestens einen, zur Beizung von Saatgut geeigneten agrochemischen
Wirkstoff, wobei der Wirkstoff in festen Partikeln vorliegt, welche eine Größe zwischen 0,1 μm und 10μm haben
(3) ein Lösungsmittel.
4. Beizmittel-Formulierung gemäß Anspruch 3, dadurch gekennzeichnet, dass der biologisch abbaubare teilaromatische Polyester aufgebaut ist aus: A) einer Säurekomponente aus
a1 ) 30 bis 95 mol-% mindestens einer aliphatischen oder mindestens einer cycloaliphatischen Dicarbonsäure oder deren esterbildende Deri- vate oder Mischungen davon
a2) 5 bis 70 mol-% mindestens einer aromatischen Dicarbonsäure oder deren esterbildendem Derivat oder Mischungen davon und
a3) 0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,
wobei die Molprozente der Komponenten a1 ) bis a3) zusammen 100% ergeben und
B) einer Diolkomponente aus mindestens einem C2-bis Ci2-Alkandiol oder einem C5- bis Cio-Cycloalkandiol oder Mischungen davon
und gewünschtenfalls darüber hinaus eine oder mehrere Komponenten ausgewählt aus
C) einer Komponente ausgewählt aus
d ) mindestens einer Etherfunktionen enthaltenden Dihydroxyverbindung der Formel I
HO-[(CH2)n-O]m-H (I)
in der n für 2, 3 oder 4 und m für eine ganze Zahl von 2 bis 250 stehen,
c2) mindestens einer Hydroxycarbonsäure der Formel IIa oder IIb
Figure imgf000038_0001
(IIa) (IIb)
in der p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)q-, wobei q eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und -C(R)HCH2, wobei R für Me- thyl oder Ethyl steht
c3) mindestens einem Amino-C2- bis C12-alkanol oder mindestens einem Amino-C5-bis C10-cycloalkanol oder Mischungen davon
c4) mindestens einem Diamino-C1- bis C8-Alkan
c5) mindestens einem 2,2'-Bisoxazolins der allgemeinen Formel IM
Figure imgf000039_0001
C")
wobei R1 eine Einfachbindung, eine (CH2)Z-Alkylengruppe, mit z = 2, 3 oder 4, oder eine Phenylengruppe bedeutet
c6) mindestens einer Aminocarbonsäure ausgewählt aus der Gruppe, bestehend aus den natürlichen Aminosäuren, Polyamiden mit einem Molekulargewicht von höchstens 18000g/mol, erhältlich durch PoIy- kondensation einer Dicarbonsäure mit 4 bis 6 C-Atomen und einem Diamin mit 4 bis 10 C-Atomen, Verbindungen der Formeln IV a und IVb
Figure imgf000039_0002
(IVa) (IVb)
in der s eine ganze Zahl von 1 bis 1500 und t eine ganze Zahl von 1 bis 4 bedeuten, und T für einen Rest steht, der ausgewählt ist aus der
Gruppe bestehend aus Phenylen, -(CH2)u-, wobei u eine ganze Zahl von 1 bis 12 bedeutet, -C(R2)H- und -C(R2)HCH2, wobei R2 für Methyl oder Ethyl steht,
und Polyoxazolinen mit der wiederkehrenden Einheit V
Figure imgf000040_0001
(V)
in der R3 für Wasserstoff, C1-C6-Alkyl, C5-C8-Cycloalkyl, unsubsti- tuierten oder mit C1-C4-Alkylgruppen bis zu dreifach substituiertes Phenyl oder für Tetrahydrofuryl steht,
oder Mischungen aus c1 ) bis c6)
und
D) einer Komponente ausgewählt aus
d1 ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen,
d2) mindestens eines Isocyanates
d3) mindestens eines Divinylethers
oder Mischungen aus d1 ) bis d3).
5. Beizmitel-Formulierung gemäß Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Formulierung als weitere Komponente Polymilchsäure enthält.
6. Beizmittel Formulierung gemäß einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der agrochemische Wirkstoff aus der Gruppe bestehend aus Herbiziden und/oder Safenern, Fungiziden und Insektiziden ausgewählt wird.
7. Beizmittel-Formulierung gemäß Anspruch 6, dadurch gekennzeichnet, dass der agrochemische Wirkstoff aus der Gruppe der Fungizide und Insektizide verwendet wird.
8 Beizmittel-Formulierung gemäß einem der Ansprüche 3 bis 7 enthaltend weitere
Formulierungshilfsmittel.
9. Verfahren zur Herstellung einer Beizmittel-Formulierung gemäß einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass man eine Suspension eines zur Beizung von Saatgut geeigneten agrochemischen Wirkstoffes, in welcher der Wirkstoff in festen Partikeln vorliegt, die eine Größe zwischen 0,1 μm und 10μm haben; mit einer Dispersion eines biologisch abbaubareren teilaromatischen Polyesters vermischt
10. Verfahren zum Beizen von Saatgut, dadurch gekennzeichnet, dass man
(a) Saatgut mit einer Formulierung gemäß einem der Ansprüchen 3 bis 8 behandelt; und
(b) das in Schritt (a) erhaltene Saatgut gegebenenfalls trocknet
1 1. Verfahren zum Beizen von Saatgut, dadurch gekennzeichnet, dass man Saatgut mit einer Dispersion eines biologisch abbaubaren teilaromatischen Polyester Polyesters behandelt.
12. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, dass der biologisch abbaubaren teilaromatischen Polyester aufgebaut ist aus
A) einer Säurekomponente aus
a1 ) 30 bis 95 ιmol-% mindestens einer aliphatischen oder mindestens einer cycloaliphatischen Dicarbonsäure oder deren esterbildende Derivate oder Mischungen davon
a2) 5 bis 70 ιmol-% mindestens einer aromatischen Dicarbonsäure oder deren esterbildendem Derivat oder Mischungen davon und
a3) 0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,
wobei die Molprozente der Komponenten a1 ) bis a3) zusammen 100% ergeben und
B) einer Diolkomponente aus mindestens einem C2-bis Ci2-Alkandiol oder einem C5- bis Cio-Cycloalkandiol oder Mischungen davon
und gewünschtenfalls darüber hinaus eine oder mehrere Komponenten ausgewählt aus
C) einer Komponente ausgewählt aus c1 ) mindestens einer Etherfunktionen enthaltenden Dihydroxyverbindung der Formel I
HO-[(CH2)n-O]m-H (I)
in der n für 2, 3 oder 4 und m für eine ganze Zahl von 2 bis 250 stehen,
c2) mindestens einer Hydroxycarbonsäure der Formel IIa oder IIb
Figure imgf000042_0001
(IIa) (IIb)
in der p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)q-, wobei q eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und -C(R)HCH2, wobei R für Methyl oder Ethyl steht
c3) mindestens einem Amino-C2- bis Ci2-alkanol oder mindestens einem Amino-C5-bis Cio-cycloalkanol oder Mischungen davon
c4) mindestens einem Diamino-d- bis C8-Alkan
c5) mindestens einem 2,2'-Bisoxazolins der allgemeinen Formel IM
Figure imgf000042_0002
(IM)
wobei R1 eine Einfachbindung, eine (CH2)Z-Alkylengruppe, mit z = 2, 3 oder 4, oder eine Phenylengruppe bedeutet
c6) mindestens einer Aminocarbonsäure ausgewählt aus der Gruppe, bestehend aus den natürlichen Aminosäuren, Polyamiden mit einem Molekulargewicht von höchstens 18000g/mol, erhältlich durch Polykondensation einer Dicarbonsäure mit 4 bis 6 C-Atomen und einem Diamin mit 4 bis 10 C-Atomen, Verbindungen der Formeln IV a und IVb
Figure imgf000043_0001
(IVa) (IVb)
in der s eine ganze Zahl von 1 bis 1500 und t eine ganze Zahl von 1 bis 4 bedeuten, und T für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)U-, wobei u eine ganze Zahl von 1 bis 12 bedeutet, -C(R2)H- und -C(R2)HCH2, wobei R2 für Methyl oder Ethyl steht,
und Polyoxazolinen mit der wiederkehrenden Einheit V
Figure imgf000043_0002
(V)
in der R3 für Wasserstoff, Ci-C6-Alkyl, C5-C8-Cycloalkyl, unsubstituierten oder mit Ci-C4-Alkylgruppen bis zu dreifach substituiertes Phenyl oder für
Tetrahydrofuryl steht,
oder Mischungen aus d ) bis c6)
und
D) einer Komponente ausgewählt aus
d1 ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen,
d2) mindestens eines Isocyanates
d3) mindestens eines Divinylethers
oder Mischungen aus d1 ) bis d3).
13. Verfahren gemäß Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass die Dispersion des biologisch abbaubaren Polyesters zusätzlich Polymilchsäure enthält.
14. Verfahren gemäß einem der Ansprüche 1 1 bis 13, dadurch gekennzeichnet, dass man das behandelte Saatgut in einem zweiten Schritt mit einer herkömmlichen Beizmittelformulierung enthaltend mindestens einen, zur Beizung von Saatgut geeigneten agrochemischen Wirkstoff, wobei der Wirkstoff in festen Partikeln vorliegt, welche eine Größe zwischen 0,1 μm und 10μm haben, behandelt.
15. Verfahren gemäß einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass es sich bei dem Saatgut um Soja handelt.
16. Saatgut, gebeizt mit einer mit einer Dispersion eines biologisch abbaubaren teilaromatischen Polyesters.
17. Saatgut nach Anspruch 16, dadurch gekennzeichnet, dass der biologisch abbau- bare Polyester aufgebaut ist aus:
A) einer Säurekomponente aus
a1 ) 30 bis 95 mol-% mindestens einer aliphatischen oder mindestens ei- ner cycloaliphatischen Dicarbonsäure oder deren esterbildende Derivate oder Mischungen davon
a2) 5 bis 70 mol-% mindestens einer aromatischen Dicarbonsäure oder deren esterbildendem Derivat oder Mischungen davon und
a3) 0 bis 5 ιmol-% einer sulfonatgruppenhaltigen Verbindung,
wobei die Molprozente der Komponenten a1 ) bis a3) zusammen 100% ergeben und
B) einer Diolkomponente aus mindestens einem C2-bis Ci2-Alkandiol oder einem C5- bis do-Cycloalkandiol oder Mischungen davon
und gewünschtenfalls darüber hinaus eine oder mehrere Komponenten ausge- wählt aus
C) einer Komponente ausgewählt aus
d ) mindestens einer Etherfunktionen enthaltenden Dihydroxyverbindung der Formel I HO-[(CH2)n-O]m-H (I)
in der n für 2, 3 oder 4 und m für eine ganze Zahl von 2 bis 250 stehen,
c2) mindestens einer Hydroxycarbonsäure der Formel IIa oder IIb
Figure imgf000045_0001
(Ma) (IIb)
in der p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)q-, wobei q eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und -C(R)HCH2, wobei R für Methyl oder Ethyl steht
c3) mindestens einem Amino-C2- bis Ci2-alkanol oder mindestens einem Amino-C5-bis Cio-cycloalkanol oder Mischungen davon
c4) mindestens einem Diamino-Cr bis Cβ-Alkan
c5) mindestens einem 2,2'-Bisoxazolins der allgemeinen Formel IM
Figure imgf000045_0002
(Ml)
wobei R1 eine Einfachbindung, eine (CH2)Z-Alkylengruppe, mit z = 2, 3 oder
4, oder eine Phenylengruppe bedeutet
c6) mindestens einer Aminocarbonsäure ausgewählt aus der Gruppe, bestehend aus den natürlichen Aminosäuren, Polyamiden mit einem MoIe- kulargewicht von höchstens 18000g/mol, erhältlich durch Polykondensation einer Dicarbonsäure mit 4 bis 6 C-Atomen und einem Diamin mit 4 bis 10 C-Atomen, Verbindungen der Formeln IV a und IVb
Figure imgf000046_0001
(IVa) (IVb)
in der s eine ganze Zahl von 1 bis 1500 und t eine ganze Zahl von 1 bis 4 bedeuten, und T für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)U-, wobei u eine ganze Zahl von 1 bis 12 bedeutet, -C(R2)H- und -C(R2)HCH2, wobei R2 für Methyl oder Ethyl steht,
und Polyoxazolinen mit der wiederkehrenden Einheit V
Figure imgf000046_0002
(V)
in der R3 für Wasserstoff, Ci-Cβ-Alkyl, Cs-Cβ-Cycloalkyl, unsubstituierten oder mit Ci-C4-Alkylgruppen bis zu dreifach substituiertes Phenyl oder für Tetrahydrofuryl steht,
oder Mischungen aus d ) bis c6)
und
D) einer Komponente ausgewählt aus
d1 ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen,
d2) mindestens eines Isocyanates
d3) mindestens eines Divinylethers
oder Mischungen aus d1 ) bis d3).
18. Saatgut gebeizt mit einer mit einer Dispersion eines biologisch abbaubaren Polyesters nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Dispersion des biologische abbaubaren Polyesters zusätzlich Polylmilchsäure enthält.
19. Saatgut nach Anspruch 16, 17 oder 18 gebeizt mit einer herkömmlichen Beizmittelformulierung enthaltend mindestens einen, zur Beizung von Saatgut geeigneten agrochemischen Wirkstoff, wobei der Wirkstoff in festen Partikeln vorliegt, welche eine Größe zwischen 0,1 μm und 10μm haben.
20. Saatgut, gebeizt mit einer Formulierung gemäß einem der Ansprüche 3 bis 8.
21. Verfahren zur Regulation des Wachstums von Pflanzen und/oder zur Bekämpfung unerwünschten Pflanzenwuchses und /oder zur Bekämpfung von uner- wünschtem Insekten- oder M üben befall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen, dadurch gekennzeichnet, dass man Saatgüter von Nutzpflanzen mit einer Formulierung gemäß einem der Ansprüche 3 bis 8 behandelt oder Saatgut gemäß Anspruch 19 verwendet.
22. Verfahren zur Herstellung einer Dispersion eines biologisch abbaubaren teilaromatischen Polyesters, dadurch gekennzeichnet, dass man den Polyester
(a) in einem organischen Lösungsmittel löst, und
(b) die aus (a) resultierende Lösung mit Wasser in Kontakt bringt und
(c) das organische Lösungsmittel nach dem Mischen entfernt.
23. Verfahren nach Anspruch 22, wobei der biologisch abbaubare Polyester aufge- baut ist aus:
A) einer Säurekomponente aus
a1 ) 30 bis 95 ιmol-% mindestens einer aliphatischen oder mindestens ei- ner cycloaliphatischen Dicarbonsäure oder deren esterbildende Derivate oder Mischungen davon
a2) 5 bis 70 ιmol-% mindestens einer aromatischen Dicarbonsäure oder deren esterbildendem Derivat oder Mischungen davon und
a3) 0 bis 5 mol-% einer sulfonatgruppenhaltigen Verbindung,
wobei die Molprozente der Komponenten a1 ) bis a3) zusammen 100% ergeben und B) einer Diolkomponente aus mindestens einem C2-bis Ci2-Alkandiol oder einem C5- bis Cio-Cycloalkandiol oder Mischungen davon
und gewünschtenfalls darüber hinaus eine oder mehrere Komponenten ausge- wählt aus
C) einer Komponente ausgewählt aus
d ) mindestens einer Etherfunktionen enthaltenden Dihydroxyverbindung der Formel I
HO-[(CH2)n-O]m-H (I)
in der n für 2, 3 oder 4 und m für eine ganze Zahl von 2 bis 250 stehen,
c2) mindestens einer Hydroxycarbonsäure der Formel IIa oder IIb
Figure imgf000048_0001
(Ma) (IIb)
in der p eine ganze Zahl von 1 bis 1500 und r eine ganze Zahl von 1 bis 4 bedeuten, und G für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)q-, wobei q eine ganze Zahl von 1 bis 5 bedeutet, -C(R)H- und -C(R)HCH2, wobei R für Methyl oder Ethyl steht
c3) mindestens einem Amino-C2- bis Ci2-alkanol oder mindestens einem Amino-C5-bis Cio-cycloalkanol oder Mischungen davon
c4) mindestens einem Diamino-Cr bis Cβ-Alkan
c5) mindestens einem 2,2'-Bisoxazolins der allgemeinen Formel IM
Figure imgf000048_0002
(IM) wobei R1 eine Einfachbindung, eine (CH2)Z-Alkylengruppe, mit z = 2, 3 oder 4, oder eine Phenylengruppe bedeutet
c6) mindestens einer Aminocarbonsäure ausgewählt aus der Gruppe, bestehend aus den natürlichen Aminosäuren, Polyamiden mit einem Molekulargewicht von höchstens 18000g/mol, erhältlich durch Polykondensation einer Dicarbonsäure mit 4 bis 6 C-Atomen und einem Diamin mit 4 bis 10 C-Atomen, Verbindungen der Formeln IV a und IVb
Figure imgf000049_0001
(IVa) (IVb)
in der s eine ganze Zahl von 1 bis 1500 und t eine ganze Zahl von 1 bis 4 bedeuten, und T für einen Rest steht, der ausgewählt ist aus der Gruppe bestehend aus Phenylen, -(CH2)U-, wobei u eine ganze Zahl von 1 bis 12 bedeutet, -C(R2)H- und -C(R2)HCH2, wobei R2 für Methyl oder Ethyl steht,
und Polyoxazolinen mit der wiederkehrenden Einheit V
Figure imgf000049_0002
(V)
in der R3 für Wasserstoff, Ci-Cβ-Alkyl, Cs-Cβ-Cycloalkyl, unsubstituierten oder mit Ci-C4-Alkylgruppen bis zu dreifach substituiertes Phenyl oder für Tetrahydrofuryl steht,
oder Mischungen aus d ) bis c6)
und
einer Komponente ausgewählt aus
d1 ) mindestens einer Verbindung mit mindestens drei zur Esterbildung befähigten Gruppen, d2) mindestens eines lsocyanates
d3) mindestens eines Divinylethers
oder Mischungen aus d1 ) bis d3).
24. Verfahren nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass in dem Verfahren der in Schritt (b) beschriebene Mischvorgang durch Einspritzen der entsprechenden Lösungen in eine Mischkammer erfolgt.
25. Verfahren nach einem der Ansprüche 22-24 dadurch gekennzeichnet, dass in dem Verfahren die in Schritt (a) beschriebene Lösung zusätzlich Polymilchsäure enthält.
26. Wässrige Dispersion eines biologisch abbaubaren Polyesters herstellbar nach einem Verfahren nach einem der Ansprüche 22 bis 25.
PCT/EP2006/069523 2005-12-22 2006-12-11 Beizmittel-formulierungen enthaltend ein biologisch abbaubaren teilaromatischen polyester WO2007074042A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2631449A CA2631449C (en) 2005-12-22 2006-12-11 Biodegradable seed dressing formulations
PL06847027T PL1965636T3 (pl) 2005-12-22 2006-12-11 Preparat do zaprawiania zawierający biodegradowalny częściowo aromatyczny poliester
BRPI0620442-2A BRPI0620442A2 (pt) 2005-12-22 2006-12-11 uso de um poliéster biodegradável, formulação lìquida para preparação da semente, processos para preparar formulação para tratamento de sementes, e para tratar sementes, semente, e, processo para regular o crescimento de plantas e/ou para combater vegetação indesejada e/ou para combater infestação indesejada por insetos ou ácaros em plantas e/ou para combater fungos fitopatogênicos
DE502006005554T DE502006005554D1 (de) 2005-12-22 2006-12-11 Beizmittel-formulierungen enthaltend einen biologisch abbaubaren teilaromatischen polyester
AT06847027T ATE450146T1 (de) 2005-12-22 2006-12-11 Beizmittel-formulierungen enthaltend einen biologisch abbaubaren teilaromatischen polyester
EP06847027A EP1965636B1 (de) 2005-12-22 2006-12-11 Beizmittel-formulierungen enthaltend einen biologisch abbaubaren teilaromatischen polyester
US12/158,179 US20080274885A1 (en) 2005-12-22 2006-12-11 Biodegradable Seed Dressing Formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05028144 2005-12-22
EP05028144.3 2005-12-22

Publications (2)

Publication Number Publication Date
WO2007074042A2 true WO2007074042A2 (de) 2007-07-05
WO2007074042A3 WO2007074042A3 (de) 2007-12-06

Family

ID=36587117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/069523 WO2007074042A2 (de) 2005-12-22 2006-12-11 Beizmittel-formulierungen enthaltend ein biologisch abbaubaren teilaromatischen polyester

Country Status (10)

Country Link
US (1) US20080274885A1 (de)
EP (1) EP1965636B1 (de)
AT (1) ATE450146T1 (de)
BR (1) BRPI0620442A2 (de)
CA (1) CA2631449C (de)
DE (1) DE502006005554D1 (de)
ES (1) ES2336491T3 (de)
PL (1) PL1965636T3 (de)
RU (1) RU2413412C2 (de)
WO (1) WO2007074042A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029754A3 (en) * 2009-09-14 2011-12-22 Basf Se Dispenser comprising a polyester membrane for control of mites in bee hives
WO2012140181A1 (de) 2011-04-15 2012-10-18 Basf Se Verfahren zur herstellung wässriger dispersionen aliphatischer polycarbonate
WO2013068363A1 (en) 2011-11-09 2013-05-16 Basf Se Use in paper coatings of a mixture of a secondary polymeric dispersion and of a primary dispersion of an emulsion polymer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319590A1 (de) * 2003-05-02 2004-11-18 Bayer Cropscience Ag Wirkstoffkombinationen mit nematiziden und insektiziden Eigenschaften basierend auf Trifluorbutenyl-Verbindungen
WO2010006233A2 (en) * 2008-07-11 2010-01-14 Floratine Biosciences, Inc. Foliarly applicable silicon nutrition compositions & methods
DK2473034T3 (da) * 2009-09-03 2021-02-08 Fbsciences Holdings Inc Frøbehandlingssammensætninger og fremgangsmåde
EP2482638A4 (de) * 2009-09-28 2013-08-07 Fbsciences Holdings Inc Verfahren zur reduzierung von pflanzenstress
FR2962129B1 (fr) * 2010-07-05 2012-08-10 Enscr Materiau polymere biodegradable barriere et film contenant ce materiau
CA2805115A1 (en) 2010-07-15 2012-01-19 Fbsciences Holdings, Inc. Microorganism compositions and methods
AU2013207818B2 (en) 2012-01-12 2017-02-02 Fbsciences Holdings, Inc. Modulation of plant biology
RU2671536C1 (ru) * 2017-12-29 2018-11-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный аграрный университет" Композиция для предпосевной обработки семян озимой пшеницы

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300522A (ja) * 1994-05-09 1995-11-14 Agency Of Ind Science & Technol 新規な生分解性高吸水体およびその製造方法
WO1998012245A1 (de) * 1996-09-20 1998-03-26 Basf Aktiengesellschaft Wässrige dispersion eines biologisch abbaubaren polyesters sowie deren verwendung
WO1998014413A1 (de) * 1996-09-30 1998-04-09 Basf Aktiengesellschaft Verwendung einer wässrigen dispersion eines biologisch abbaubaren polyesters zur umhüllung von düngemittelgranulaten
WO2001017347A1 (de) * 1999-09-08 2001-03-15 Bayer Aktiengesellschaft Beizmittel-formulierungen
JP2002173535A (ja) * 2000-12-05 2002-06-21 Unitika Ltd 生分解性ポリエステル樹脂水分散体の製造方法
EP1227129A1 (de) * 2001-01-25 2002-07-31 NOVAMONT S.p.A. Ternäre Mischungen von bioabbaubaren Polyestern und daraus hergestellten Produkten
JP2002241629A (ja) * 2001-02-16 2002-08-28 Unitika Ltd 生分解性樹脂系水分散体及びこれを塗布してなる塗工物
WO2004067632A1 (de) * 2003-01-27 2004-08-12 Basf Aktiengesellschaft Biologisch abbaubare polyester mit verbessertem verarbeitungsverhalten
JP2004300284A (ja) * 2003-03-31 2004-10-28 Unitika Ltd 生分解性ポリエステル樹脂水性分散体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US303677A (en) * 1884-08-19 stebeb
US6046248A (en) * 1994-11-15 2000-04-04 Basf Aktiengesellschaft Biodegradable polymers, the preparation thereof and the use thereof for producing biodegradable moldings
DE4440858A1 (de) * 1994-11-15 1996-05-23 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19500756A1 (de) * 1995-01-13 1996-07-18 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19500757A1 (de) * 1995-01-13 1996-07-18 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DK0809666T4 (da) * 1995-02-16 2002-12-02 Basf Ag Biologisk nedbrydelige polymerer, fremgangsmåder til deres fremstilling samt deres anvendelse til fremstilling af bionedbrydelige formlegemer
DE19505185A1 (de) * 1995-02-16 1996-10-24 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
DE19638488A1 (de) * 1996-09-20 1998-03-26 Basf Ag Biologisch abbaubare Polyester
US20050054537A1 (en) * 2002-01-10 2005-03-10 Hanns-Peter Muller Powder formulations

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300522A (ja) * 1994-05-09 1995-11-14 Agency Of Ind Science & Technol 新規な生分解性高吸水体およびその製造方法
WO1998012245A1 (de) * 1996-09-20 1998-03-26 Basf Aktiengesellschaft Wässrige dispersion eines biologisch abbaubaren polyesters sowie deren verwendung
WO1998014413A1 (de) * 1996-09-30 1998-04-09 Basf Aktiengesellschaft Verwendung einer wässrigen dispersion eines biologisch abbaubaren polyesters zur umhüllung von düngemittelgranulaten
WO2001017347A1 (de) * 1999-09-08 2001-03-15 Bayer Aktiengesellschaft Beizmittel-formulierungen
JP2002173535A (ja) * 2000-12-05 2002-06-21 Unitika Ltd 生分解性ポリエステル樹脂水分散体の製造方法
EP1227129A1 (de) * 2001-01-25 2002-07-31 NOVAMONT S.p.A. Ternäre Mischungen von bioabbaubaren Polyestern und daraus hergestellten Produkten
JP2002241629A (ja) * 2001-02-16 2002-08-28 Unitika Ltd 生分解性樹脂系水分散体及びこれを塗布してなる塗工物
WO2004067632A1 (de) * 2003-01-27 2004-08-12 Basf Aktiengesellschaft Biologisch abbaubare polyester mit verbessertem verarbeitungsverhalten
JP2004300284A (ja) * 2003-03-31 2004-10-28 Unitika Ltd 生分解性ポリエステル樹脂水性分散体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARNAY, M.P. ET AL: "Influence of soil type and water content on release of triticonazole from coated maize seed" PEST MANAGEMENT SCIENCE, Bd. 53, Nr. 3, 25. Februar 2000 (2000-02-25), Seiten 249-256, XP002387017 *
PATENT ABSTRACTS OF JAPAN Bd. 1996, Nr. 03, 29. März 1996 (1996-03-29) & JP 07 300522 A (AGENCY OF IND SCIENCE & TECHNOL; others: 02), 14. November 1995 (1995-11-14) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029754A3 (en) * 2009-09-14 2011-12-22 Basf Se Dispenser comprising a polyester membrane for control of mites in bee hives
US9101132B2 (en) 2009-09-14 2015-08-11 Basf Se Dispenser comprising a polyester membrane for control of mites in bee hives
WO2012140181A1 (de) 2011-04-15 2012-10-18 Basf Se Verfahren zur herstellung wässriger dispersionen aliphatischer polycarbonate
WO2013068363A1 (en) 2011-11-09 2013-05-16 Basf Se Use in paper coatings of a mixture of a secondary polymeric dispersion and of a primary dispersion of an emulsion polymer

Also Published As

Publication number Publication date
CA2631449A1 (en) 2007-07-05
ATE450146T1 (de) 2009-12-15
EP1965636A2 (de) 2008-09-10
ES2336491T3 (es) 2010-04-13
US20080274885A1 (en) 2008-11-06
BRPI0620442A2 (pt) 2012-02-22
EP1965636B1 (de) 2009-12-02
RU2413412C2 (ru) 2011-03-10
DE502006005554D1 (de) 2010-01-14
PL1965636T3 (pl) 2010-05-31
RU2008129640A (ru) 2010-01-27
CA2631449C (en) 2013-09-03
WO2007074042A3 (de) 2007-12-06

Similar Documents

Publication Publication Date Title
EP1965636B1 (de) Beizmittel-formulierungen enthaltend einen biologisch abbaubaren teilaromatischen polyester
CN101460052B (zh) 包含二苯乙烯基酚乙氧基化物的液体非水性农业化学配制剂
RU2407288C2 (ru) Водная дисперсия для защиты растений, наночастичная композиция для защиты растений, агрохимическая композиция и способ ее получения, способ борьбы с нежелательным ростом растений, и/или борьбы с нежелательным поражением насекомыми или клещами растений, и/или борьбы с фитопатогенными грибами (варианты)
CN101132851B (zh) 快速释放微胶囊产品
EP1858320B1 (de) Verfahren zur herstellung von agrochemischen wässrigen polymerdispersionen und ihre verwendung
JP5260540B2 (ja) 液体水性農芸化学製剤
RU2406301C2 (ru) Наночастичные композиции действующего вещества
EP1928593B1 (de) Neue agrochemische formulierungen
EP2131652A2 (de) Insektizide als safener für fungizide mit phytotoxischer wirkung
JP2009523152A (ja) 分子インプリントされたアクリレートをベースとした農薬製剤
JP5260534B2 (ja) ビニルラクタム及び酢酸ビニルに基づくブロック共重合体の可溶化剤としての使用
ES2323503T3 (es) Mezclas de fungicidas con base en derivados de carbamato e insecticidas.
WO2007036494A2 (de) Agrochemische formulierung umfassend wirkstoffhaltige polymerteilchen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006847027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2631449

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12158179

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008129640

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006847027

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0620442

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080623