WO2007073240A1 - Catalyst, a method for the production thereof and a dihydroxyalkane production method - Google Patents

Catalyst, a method for the production thereof and a dihydroxyalkane production method Download PDF

Info

Publication number
WO2007073240A1
WO2007073240A1 PCT/RU2006/000602 RU2006000602W WO2007073240A1 WO 2007073240 A1 WO2007073240 A1 WO 2007073240A1 RU 2006000602 W RU2006000602 W RU 2006000602W WO 2007073240 A1 WO2007073240 A1 WO 2007073240A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
copper
production
lactic acid
dihydroxyalkanes
Prior art date
Application number
PCT/RU2006/000602
Other languages
French (fr)
Russian (ru)
Inventor
Irina Leonidovna Simakova
Mikhail Nikolaevich Simonov
Margarita Petrovna Demeshkina
Tatyana Petrovna Minyukova
Alexandr Alexandrovich Khasin
Tamara Mihailovna Yuryeva
Valentin Nikolaevich Parmon
Original Assignee
Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk filed Critical Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Publication of WO2007073240A1 publication Critical patent/WO2007073240A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the catalyst method for its preparation and method for producing dihydroxyalkanes
  • the invention relates to the field of production of dihydroxyalkanes by catalytic hydrogenation, in particular by catalytic hydrogenation of carboxylic groups of hydroxycarboxylic acids.
  • Dihydroxyalkanes such as ethylene glycol and propylene glycol
  • ethylene glycol and propylene glycol are used in the manufacture of polyester resins, as part of anti-icing solutions, and in the manufacture of food, cosmetic and medicinal products.
  • Propylene glycol in contrast to ethylene glycol, is less toxic.
  • propylene glycol is based on organic compounds contained in oil.
  • Propylene glycol is obtained by hydration of propylene oxide, the hydrolysis stage of which requires high pressure and high temperature.
  • the production of propylene oxide is a complex multi-stage process, characterized by the formation of a large number of by-products and low yield of the target product, which leads to environmental problems.
  • a known catalyst for the process of direct reduction of hydroxycarboxylic acids to dihydroxyalkanes consisting of copper deposited in an amount of from 9 to 22 wt.% On silicon dioxide, the surface hydroxyl groups of which can be closed by silanol and / or alkyl groups.
  • the catalyst is prepared by the method of impregnation in terms of moisture capacity as follows: silica gel (Sab-O-Sil® BH-5, Sabot® Corroratiop) is dried at a temperature of 12 0 0 C, impregnated with an ethanol solution of copper nitrate hydrate, then the catalyst is restored in a stream of hydrogen at a temperature of 300 ° C for 8 hours
  • Hydrogenation of the carboxyl group of the hydroxycarboxylic acid is carried out in the vapor phase at a hydrogen pressure of from less than 0.9 atm to 27.5 atm and a temperature of from 112.5 to 275 ° C.
  • a hydrogen pressure of 1 atm under optimal conditions the conversion of lactic acid reaches 7.3% with a selectivity of 75% [US 6455742, C07C29 / 141, 09.24.2002].
  • a disadvantage of the known catalyst is the low productivity of the target product.
  • the invention solves the problem of increasing the productivity of the process.
  • EFFECT increased activity and selectivity of the catalyst
  • the problem is solved by the composition of the catalyst for the production of dihydroxyalkanes by catalytic hydrogenation of the carboxyl groups of hydroxycarboxylic acids based on copper and silicon oxide, which contains 22.5-53.1 wt.% Copper.
  • the problem is also solved by the method of preparation of the catalyst, which is prepared by reductive thermal decomposition of copper silicate, and a catalyst is obtained which contains 22.5-53.0 wt.% Copper.
  • the catalyst is prepared by reductive thermal decomposition in a stream of hydrogen at a temperature of 380-450 0 C for a period of at least 2 hours.
  • Natural and synthetic silicates with a given copper content can be used as copper silicate.
  • the problem is also solved by the method of producing dihydroxyalkanes by catalytic hydrogenation of the carboxyl groups of hydroxycarboxylic acids at a temperature of 180-200 0 C in the presence of a copper-silicon catalyst, where the catalyst described above is used as a catalyst.
  • Example 1 The invention is illustrated by the following examples.
  • Example 1 The invention is illustrated by the following examples.
  • a catalyst containing 22.5 wt.% Copper is prepared by thermal decomposition of copper silicate in a stream of hydrogen at a temperature of 400 0 C for 2 hours
  • the catalyst is used in the hydrogenation reaction of lactic acid.
  • a glass / quartz tubular U-shaped thermostatically controlled reactor 0.5 g of a 0.25-0.5 mm fraction catalyst mixed with 0.63 to 1.6 mm fraction quartz glass is placed.
  • Set the operating temperature to 200 ° C in the reactor, the flow of hydrogen 10 l / h and meter the aqueous solution of lactic acid (16 wt.%) At a speed of 0.3 ml / h.
  • liquid products are collected in a trap and analyzed by gas chromatography.
  • the composition of the reaction products 36.8% - propionic acid, 43.7% - propylene glycol, 16.3% - lactic acid.
  • composition of the reaction products 29.1% - propionic acid, 66.3% - propylene glycol, 3.4% - lactic acid.
  • composition of the reaction products 2.1% - acetic acid, 46.2% - ethylene glycol,
  • the use of the proposed catalyst in the process of catalytic hydrogenation of the carboxyl groups of hydroxycarboxylic acids allows to increase the productivity of the target product by increasing the activity and selectivity of the catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The intention relates to producing dihydroxialkanes by catalytic hydration, in particular by catalytically hydrating carboxylic groups of hydroxy carboxylic acids. A copper- and silicon oxide-based catalyst whose copper content ranges from 22.5 to 53.0 mass % is also disclosed. The inventive catalyst is produced by a copper silicate reducing thermal decomposition and is used for producing dihydroxialkanes. Said invention makes it possible to increase the catalyst activity and selectivity.

Description

Катализатор, способ его приготовления и способ получения дигидроксиалканов The catalyst, method for its preparation and method for producing dihydroxyalkanes
Изобретение относится к области получения дигидроксиалканов каталитическим гидрированием, в частности каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот. Дигидроксиалканы, такие как этиленгликоль и пропиленгликоль, находят применение в производстве полиэфирных смол, в составе антиобледеняющих растворов, в производстве пищевых, косметических и лекарственных продуктов. Пропиленгликоль в отличие от этиленгликоля менее токсичен.The invention relates to the field of production of dihydroxyalkanes by catalytic hydrogenation, in particular by catalytic hydrogenation of carboxylic groups of hydroxycarboxylic acids. Dihydroxyalkanes, such as ethylene glycol and propylene glycol, are used in the manufacture of polyester resins, as part of anti-icing solutions, and in the manufacture of food, cosmetic and medicinal products. Propylene glycol, in contrast to ethylene glycol, is less toxic.
Традиционно производство пропиленгликоля базируется на органических соединениях, содержащихся в нефти. Пропиленгликоль получают путем гидратации пропиленоксида, стадия гидролиза которого требует высокого давления и высокой температуры. Производство пропиленоксида представляет собой сложный многостадийный процесс, отличающийся образованием большого количества побочных продуктов и низким выходом целевого продукта, что приводит к возникновению экологических проблем. [ShmапtTraditionally, the production of propylene glycol is based on organic compounds contained in oil. Propylene glycol is obtained by hydration of propylene oxide, the hydrolysis stage of which requires high pressure and high temperature. The production of propylene oxide is a complex multi-stage process, characterized by the formation of a large number of by-products and low yield of the target product, which leads to environmental problems. [Shmapt
Н.Н. Оrgапiс Вuildiпg Вlосs оf thе Сhеmiсаl iпdustrу, Wilеу, Nеw Yоrk, Nеw Yоrk pp.281-283 (1989)].N.N. Orgapis Вuildiпg Вlосs оf thе Chemisal Industrial, Wеlе, New York, New York pp. 281-283 (1989)].
В связи с необходимостью разработки более дешевого и экологически безопасного способа получения пропиленгликоля особый интерес представляет его производство из возобновляемых источников сырья, таких как растения. Хорошо известно, что растения в процессе переработки атмосферного диоксида углерода производят глюкозу, ферментация которой приводит к образованию молочной кислоты.Due to the need to develop a cheaper and environmentally friendly method for producing propylene glycol, of particular interest is its production from renewable sources of raw materials, such as plants. It is well known that plants in the process of processing atmospheric carbon dioxide produce glucose, the fermentation of which leads to the formation of lactic acid.
Количество природных ресурсов далеко не безгранично, цена продуктов переработки природных ресурсов несомненно будет возрастать. С другой стороны, очевиден прогресс в технологиях ферментации и сепарации, поэтому цена продуктов ферментации будет снижаться. Более того, тогда как производство глюкозы и молочной кислоты будет увеличиваться, цена молочной кислоты должна упасть из-за растущей конкуренции и снижения средних затрат по мере увеличения объема выпуска.The amount of natural resources is far from unlimited, the price of natural resources processing products will undoubtedly increase. On the other hand, progress in fermentation and separation technologies is obvious, so the price of fermentation products will decrease. Moreover, whereas glucose and lactic acid production will increase, the price of lactic acid should fall due to increasing competition and lower average costs as output increases.
Конверсия карбоксильной группы молочной кислоты в гидроксильную группу приводит к 1,2-пpoпaндиoлy. Таким образом, если найти экономически оправданный метод восстановления карбоксильной группы гидроксикарбоновой кислоты до гидроксильной группы, был бы найден путь производства 1 ,2-пpoпaндиoлa из возобновляемого ресурса.The conversion of the carboxyl group of lactic acid to the hydroxyl group leads to 1,2-propanediol. Thus, if an economically viable method of reducing the carboxyl group of a hydroxycarboxylic acid to a hydroxyl group is found, a way to produce 1, 2-propanediol from a renewable resource would be found.
Хорошо известно, что каталитическое гидрирование карбоновых кислот - это трудноосуществимый процесс, поэтому на практике его осуществляют в две стадии, когда карбоновую кислоту сначала превращают в производное, например эфир или ангидрид. Методы прямого восстановления карбоновых кислот также описаны в литературе [US 4613707, C07C29/136, 23.09.76], но требуют высокого давления водорода и обычно ведутся в жидкой фазе. Процесс прямого восстановления гидроксикарбоновых кислот до дигидроксиалканов, в частности процесс, проходящий при низких давлениях водорода мог бы снизить затраты, связанные с превращением карбоксильной группы в ее производное и затраты на закупку и использование дорогостоящего оборудования для создания и поддержания высокого давления. Известен катализатор для процесса прямого восстановления гидроксикарбоновых кислот до дигидроксиалканов, состоящий из меди, нанесенной в количестве от 9 до 22 мac.% на диоксид кремния, поверхностные гидроксильные группы которого могут быть закрыты силанольными и/или алкильными группами. Катализатор готовят методом пропитки по влагоемкости следующим образом: силикагель (Саb-О-Sil® BH-5, Саbоt® Соrроrаtiоп) высушивают при температуре 12O0C, пропитывают этанольным раствором гидрата нитрата меди, затем проводят восстановление катализатора в токе водорода при температуре 300°C в течение 8 ч.It is well known that the catalytic hydrogenation of carboxylic acids is a difficult process, therefore, in practice it is carried out in two stages, when the carboxylic acid is first converted to a derivative, for example, ether or anhydride. Direct reduction methods for carboxylic acids are also described in the literature [US 4613707, C07C29 / 136, 09.23.76], but require high hydrogen pressure and are usually carried out in the liquid phase. The process of direct reduction of hydroxycarboxylic acids to dihydroxyalkanes, in particular, the process taking place at low hydrogen pressures, could reduce the costs associated with the conversion of the carboxyl group to its derivative and the purchase and use of expensive equipment to create and maintain high pressure. A known catalyst for the process of direct reduction of hydroxycarboxylic acids to dihydroxyalkanes, consisting of copper deposited in an amount of from 9 to 22 wt.% On silicon dioxide, the surface hydroxyl groups of which can be closed by silanol and / or alkyl groups. The catalyst is prepared by the method of impregnation in terms of moisture capacity as follows: silica gel (Sab-O-Sil® BH-5, Sabot® Corroratiop) is dried at a temperature of 12 0 0 C, impregnated with an ethanol solution of copper nitrate hydrate, then the catalyst is restored in a stream of hydrogen at a temperature of 300 ° C for 8 hours
Гидрирование карбоксильной группы гидроксикарбоновой кислоты проводят в паровой фазе при давлении водорода от менее чем 0,9 атм до 27,5 атм и температуре от 112,5 до 275°C. При давлении водорода 1 атм в оптимальных условиях конверсия молочной кислоты достигает 7,3% с селективностью 75% [US 6455742, C07C29/141, 24.09.2002]. Недостатком известного катализатора является невысокая производительность по целевому продукту.Hydrogenation of the carboxyl group of the hydroxycarboxylic acid is carried out in the vapor phase at a hydrogen pressure of from less than 0.9 atm to 27.5 atm and a temperature of from 112.5 to 275 ° C. At a hydrogen pressure of 1 atm under optimal conditions, the conversion of lactic acid reaches 7.3% with a selectivity of 75% [US 6455742, C07C29 / 141, 09.24.2002]. A disadvantage of the known catalyst is the low productivity of the target product.
Изобретение решает задачу увеличения производительности процесса. Технический результат - повышение активности и селективности катализатораThe invention solves the problem of increasing the productivity of the process. EFFECT: increased activity and selectivity of the catalyst
Задача решается составом катализатора получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот на основе меди и оксида кремния, который содержит 22.5-53.1 мac.% меди. Задача решается также способом приготовления катализатора, который готовят восстановительным терморазложением силиката меди, при этом получают катализатор, который содержит 22.5-53.0 мac.% меди.The problem is solved by the composition of the catalyst for the production of dihydroxyalkanes by catalytic hydrogenation of the carboxyl groups of hydroxycarboxylic acids based on copper and silicon oxide, which contains 22.5-53.1 wt.% Copper. The problem is also solved by the method of preparation of the catalyst, which is prepared by reductive thermal decomposition of copper silicate, and a catalyst is obtained which contains 22.5-53.0 wt.% Copper.
Катализатор готовят восстановительным терморазложением в токе водорода при температуре 380-4500C в течение времени не менее 2 ч. В качестве силиката меди можно использовать природные и синтетические силикаты с заданным содержанием меди.The catalyst is prepared by reductive thermal decomposition in a stream of hydrogen at a temperature of 380-450 0 C for a period of at least 2 hours. Natural and synthetic silicates with a given copper content can be used as copper silicate.
Задача решается также способом получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот при температуре 180-2000C в присутствие медно-кремниевого катализатора, где в качестве катализатора используют катализатор, описанный выше.The problem is also solved by the method of producing dihydroxyalkanes by catalytic hydrogenation of the carboxyl groups of hydroxycarboxylic acids at a temperature of 180-200 0 C in the presence of a copper-silicon catalyst, where the catalyst described above is used as a catalyst.
Сущность изобретения иллюстрируется следующими примерами. Пример 1.The invention is illustrated by the following examples. Example 1
Катализатор, содержащий 22,5 мac.% меди, готовят методом терморазложения силиката меди в токе водорода при температуре 4000C в течение 2 ч.A catalyst containing 22.5 wt.% Copper is prepared by thermal decomposition of copper silicate in a stream of hydrogen at a temperature of 400 0 C for 2 hours
Катализатор применяют в реакции гидрирования молочной кислоты. В стеклянный/кварцевый трубчатый U-образный термостатируемый реактор помещают 0,5 г катализатора фракции 0.25-0.5 мм, смешанного с кварцевым стеклом фракции от 0,63 до 1,6 мм. Устанавливают рабочую температуру 200°C в реакторе, поток водорода 10 л/ч и дозируют водный раствор молочной кислоты (16 мac.%) со скоростью 0,3 мл/ч. На выходе из реактора жидкие продукты собирают в ловушку и анализируют газохроматографически. Состав продуктов реакции: 36,8% - пропионовая кислота, 43,7% - пропиленгликоль, 16,3% - молочная кислота.The catalyst is used in the hydrogenation reaction of lactic acid. In a glass / quartz tubular U-shaped thermostatically controlled reactor, 0.5 g of a 0.25-0.5 mm fraction catalyst mixed with 0.63 to 1.6 mm fraction quartz glass is placed. Set the operating temperature to 200 ° C in the reactor, the flow of hydrogen 10 l / h and meter the aqueous solution of lactic acid (16 wt.%) At a speed of 0.3 ml / h. At the outlet of the reactor, liquid products are collected in a trap and analyzed by gas chromatography. The composition of the reaction products: 36.8% - propionic acid, 43.7% - propylene glycol, 16.3% - lactic acid.
Пример 2.Example 2
Аналогичен примеру 1, с тем отличием, что используют катализаторы с содержанием меди 45,5 мac.%.Similar to example 1, with the difference that they use catalysts with a copper content of 45.5 wt.%.
Состав продуктов реакции: 29,1% - пропионовая кислота, 66,3% - пропиленгликоль, 3,4% - молочная кислота.The composition of the reaction products: 29.1% - propionic acid, 66.3% - propylene glycol, 3.4% - lactic acid.
Пример 3.Example 3
Аналогичен примеру 1, с тем отличием, что используют катализатор с содержанием меди 53,1 мac.% процесс ведут при температуре 180°C, скоростью подачи раствора молочной кислоты 0,3 мл/ч с концентрацией 16% мае.Similar to example 1, with the difference that they use a catalyst with a copper content of 53.1 wt.% The process is carried out at a temperature of 180 ° C, the feed rate of a solution of lactic acid 0.3 ml / h with a concentration of 16% in May.
Состав продуктов реакции: 23,8% - пропанол, 54,2% - пропионовая кислота, 2,4% - пропиленгликоль, 0,8% - молочная кислота. Пример 4.The composition of the reaction products: 23.8% - propanol, 54.2% - propionic acid, 2.4% - propylene glycol, 0.8% - lactic acid. Example 4
Аналогичен примеру 2, с тем отличием, что процесс ведут при температуре 1800C со скоростью подачи раствора молочной кислоты 0,2 мл/ч.Similar to example 2, with the difference that the process is carried out at a temperature of 180 0 C with a feed rate of a lactic acid solution of 0.2 ml / h.
Состав продуктов реакции: 17,1% - пропионовая кислота, 71,6% - пропиленгликоль, 12,3% - молочная кислота. Пример 5.The composition of the reaction products: 17.1% - propionic acid, 71.6% - propylene glycol, 12.3% - lactic acid. Example 5
Аналогичен примеру 4, с тем отличием, что процесс ведут со скоростью подачи раствора молочной кислоты 0,3 мл/ч.Similar to example 4, with the difference that the process is conducted with a feed rate of a solution of lactic acid of 0.3 ml / h
Состав продуктов реакции: 13,5% пропионовая кислота, 36,4% пропиленгликоль, 51,1% молочная кислота. Пример 6.The composition of the reaction products: 13.5% propionic acid, 36.4% propylene glycol, 51.1% lactic acid. Example 6
Аналогичен примеру 4, с тем отличием, что процесс ведут со скоростью подачи раствора молочной кислоты 0,4 мл/ч.Similar to example 4, with the difference that the process is conducted with a feed rate of a lactic acid solution of 0.4 ml / h.
Состав продуктов реакции: 9,4% - пропионовая кислота, 32,2% пропиленгликоль, 59,4% молочная кислота. Пример 7.The composition of the reaction products: 9.4% - propionic acid, 32.2% propylene glycol, 59.4% lactic acid. Example 7
Аналогичен примеру 4, с тем отличием, что процесс ведут со скоростью подачи раствора молочной кислоты 0,9 мл/ч. Состав продуктов реакции: 5,1% пропионовая кислота, 11,3% пропиленгликоль, 84,6% - молочная кислота.Similar to example 4, with the difference that the process is conducted with a feed rate of a lactic acid solution of 0.9 ml / h. The composition of the reaction products: 5.1% propionic acid, 11.3% propylene glycol, 84.6% - lactic acid.
Результаты тестирования катализаторов обобщены в таблице.The test results of the catalysts are summarized in the table.
ТаблицаTable
Figure imgf000007_0001
Figure imgf000007_0001
Пример 8.Example 8
Аналогичен примеру 1, с тем отличием, что используют катализатор с содержанием меди 45,5 мac.%, и процесс ведут при температуре 200°C, в качестве субстрата используют гликолевую кислоту с концентрацией 19 мac.%.Similar to example 1, with the difference that they use a catalyst with a copper content of 45.5 wt.%, And the process is carried out at a temperature of 200 ° C, glycolic acid with a concentration of 19 wt.% Is used as a substrate.
Состав продуктов реакции: 2,1% - уксусная кислота, 46,2% - этиленгликоль,The composition of the reaction products: 2.1% - acetic acid, 46.2% - ethylene glycol,
6,4% - 2-мeтил-l,3-диoкcaлaн, 45,2% - гликолевая кислота.6.4% - 2-methyl-l, 3-dioxalane, 45.2% - glycolic acid.
Как видно из приведенных примеров и таблицы использование предлагаемого катализатора в процессе каталитического гидрирования карбоксильных групп гидроксикарбоновых кислот позволяет увеличить производительность по целевому продукту за счет повышения активности и селективности катализатора. As can be seen from the above examples and the table, the use of the proposed catalyst in the process of catalytic hydrogenation of the carboxyl groups of hydroxycarboxylic acids allows to increase the productivity of the target product by increasing the activity and selectivity of the catalyst.

Claims

Формула изобретения Claim
1. Катализатор получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот на1. The catalyst for the production of dihydroxyalkanes by catalytic hydrogenation of carboxylic groups of hydroxycarboxylic acids on
5 основе меди и оксида кремния, отличающийся тем, что катализатор содержит 22.5-53.0 мае. % меди.5 based on copper and silicon oxide, characterized in that the catalyst contains May 22.5-53.0. % copper.
2. Способ приготовления катализатора получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот на основе меди и оксида кремния, отличающийся тем, что его2. A method of preparing a catalyst for the production of dihydroxyalkanes by catalytic hydrogenation of carboxyl groups of hydroxycarboxylic acids based on copper and silicon oxide, characterized in that it
Ю готовят восстановительным терморазложением силиката меди, при этом получают катализатор, содержащий 22.5-53.0 мае. % меди.Yu is prepared by reductive thermal decomposition of copper silicate, and a catalyst is obtained containing May 22.5–53.0. % copper.
3. Способ получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот в присутствие медно-кремниевого катализатора температуре 180-2000C,3. The method of producing dihydroxyalkanes by catalytic hydrogenation of carboxyl groups of hydroxycarboxylic acids in the presence of a copper-silicon catalyst at a temperature of 180-200 0 C,
15 отличающийся тем, что в качестве катализатора используют катализатор по п. 1 или катализатор, полученный по способу по п. 2. 15 characterized in that the catalyst according to claim 1 or the catalyst obtained by the method according to claim 2 is used as a catalyst.
PCT/RU2006/000602 2005-12-21 2006-11-15 Catalyst, a method for the production thereof and a dihydroxyalkane production method WO2007073240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005141791 2005-12-21
RU2005141791/04A RU2290994C1 (en) 2005-12-21 2005-12-21 Catalyst, method for preparation thereof, and dihydroxyalkane production process

Publications (1)

Publication Number Publication Date
WO2007073240A1 true WO2007073240A1 (en) 2007-06-28

Family

ID=37761132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000602 WO2007073240A1 (en) 2005-12-21 2006-11-15 Catalyst, a method for the production thereof and a dihydroxyalkane production method

Country Status (2)

Country Link
RU (1) RU2290994C1 (en)
WO (1) WO2007073240A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036189A3 (en) * 2009-09-22 2012-02-23 Springhill S.A. The catalyst and method of catalytic hydrogenation of hydroxycarboxylic acid esters to glycols
CN110713433A (en) * 2018-07-12 2020-01-21 长春石油化学股份有限公司 Process for the hydrogenation of acids to alcohols
CN114345339A (en) * 2021-12-30 2022-04-15 厦门大学 Supported binary metal catalyst, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU442822A1 (en) * 1973-01-26 1974-09-15 Казанский химический комбинат им.Вахитова The method of preparation of the catalyst for the hydrogenation of liquid acids
US4780448A (en) * 1985-02-02 1988-10-25 Basf Aktiengesellschaft Preparation of a catalyst containing copper and silica
US20020087035A1 (en) * 1999-09-02 2002-07-04 Wisconsin Alumni Research Foundation. Method for catalyticallly reducing carboxylic acid groups to hydroxyl groups in hydroxycarboxylic acids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU442822A1 (en) * 1973-01-26 1974-09-15 Казанский химический комбинат им.Вахитова The method of preparation of the catalyst for the hydrogenation of liquid acids
US4780448A (en) * 1985-02-02 1988-10-25 Basf Aktiengesellschaft Preparation of a catalyst containing copper and silica
US20020087035A1 (en) * 1999-09-02 2002-07-04 Wisconsin Alumni Research Foundation. Method for catalyticallly reducing carboxylic acid groups to hydroxyl groups in hydroxycarboxylic acids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036189A3 (en) * 2009-09-22 2012-02-23 Springhill S.A. The catalyst and method of catalytic hydrogenation of hydroxycarboxylic acid esters to glycols
EA021350B1 (en) * 2009-09-22 2015-05-29 Спрингхилл С.А. Method of catalytic hydrogenation of hydroxycarboxylic acid esters to glycols
CN110713433A (en) * 2018-07-12 2020-01-21 长春石油化学股份有限公司 Process for the hydrogenation of acids to alcohols
CN110713433B (en) * 2018-07-12 2023-06-23 长春石油化学股份有限公司 Process for the preparation of alcohols by hydrogenation of acids
CN114345339A (en) * 2021-12-30 2022-04-15 厦门大学 Supported binary metal catalyst, preparation method and application thereof
CN114345339B (en) * 2021-12-30 2023-02-21 厦门大学 Supported binary metal catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
RU2290994C1 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
CN107721821B (en) Method for preparing 1, 3-propylene glycol
CN102757308B (en) Method of preparing high-purity ethanol
CN102126953A (en) Preparation method of nonanal and methyl formylcaprylate
EP3045444A1 (en) Method of preparing vanillin
CN105968149A (en) Preparation method of beta-arbutin
CN114605366B (en) Synthesis method and synthesis system for preparing hydroxypropyl pyrantriol by continuous flow
WO2007073240A1 (en) Catalyst, a method for the production thereof and a dihydroxyalkane production method
CN114522737A (en) Method for preparing 3-acetoxy propanol with high selectivity
KR101622236B1 (en) Heterogeneous Catalyst for Production of Acrylic Acid From Allyl Alcohol, and A Method for Preparation of Acrylic Acid From Allyl Alcohol Using Thereof
CN115896188B (en) Preparation method of high-purity (S) -5-chloro-2-methoxycarbonyl-2-hydroxy-1-indenone
CN108404919B (en) Copper-carbon catalyst for synthesizing fatty alcohol by ester liquid-phase hydrogenation and preparation method thereof
CN105732363A (en) Method for preparing gluconic acid by taking glucose as raw material under different working conditions
CN104744406A (en) Method for preparing epoxy caryophyllene from heavy turpentine oil and separating longifolene
CN111187146B (en) Process for producing 2-methyl-3-buten-2-ol
CN111499497B (en) Preparation method of thymol
CN110903185A (en) Production method of benzyl salicylate
CN112322676B (en) Method for preparing fluvastatin by enzyme catalysis
CN110835296B (en) Preparation process of 2,2, 4-trimethyl-3-hydroxypentanoic acid
CN106957323A (en) A kind of simple and easy method for synthesizing sesamin precursor
CN107119086B (en) Method for preparing isoquercitrin by catalyzing rutin hydrolysis based on aspergillus niger cells
CN105777507A (en) Method for synthesizing methoxy acetone
CN107163049B (en) A kind of preparation method of Entecavir
CN107032971B (en) Preparation method of 3, 7-dimethyl-6-carbonyl-2-octenal
CN117586111B (en) Method for preparing tetrahydrocurcumin through continuous catalytic hydrogenation
CN115850035B (en) Spice synthesized from 1, 8-terpene diol and process thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06835811

Country of ref document: EP

Kind code of ref document: A1