WO2007072988A1 - Secondary cell degradation judging device and degradation judging method - Google Patents
Secondary cell degradation judging device and degradation judging method Download PDFInfo
- Publication number
- WO2007072988A1 WO2007072988A1 PCT/JP2006/325997 JP2006325997W WO2007072988A1 WO 2007072988 A1 WO2007072988 A1 WO 2007072988A1 JP 2006325997 W JP2006325997 W JP 2006325997W WO 2007072988 A1 WO2007072988 A1 WO 2007072988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- deterioration
- voltage
- determining
- degree
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
Definitions
- the present invention relates to a deterioration determination device and a deterioration determination method for determining the degree of deterioration of a secondary battery, and more particularly to determination of the degree of deterioration with high accuracy.
- the secondary battery undergoes deterioration in battery performance, represented by full charge capacity (battery capacity after full charge) in the course of its use, and its performance changes in a time-series manner.
- full charge capacity battery capacity after full charge
- deterioration will be accelerated rapidly, and if it is significant, it may lead to failure.
- a technique for quantitatively grasping the degree of deterioration at the present time and detecting the limit amount of the performance of the secondary battery is known.
- Japanese Patent Application Laid-Open No. 5_2 8 1 3 0 9 discloses a deterioration determination device that accurately determines the deterioration of a sealed lead-acid battery in a very short time.
- This deterioration judgment device consists of a switch unit and a load circuit unit for discharging a constant current to a lead storage battery to be tested for a short time, a voltage detection unit or a voltage detection unit for detecting the battery voltage of the lead storage battery, and a lead.
- a current detector for detecting the current flowing in the storage battery, and a voltage or difference of a difference between the detected battery voltage after the lapse of lmsec or less from the start of discharge and the detected battery voltage before the start of discharge.
- a memory calculation unit that estimates the current battery capacity, a display unit that displays the differential voltage or internal resistance, or the estimated battery capacity, at least the switch unit, Parts, comprising a, an operation unit for operating orderly storage operation unit.
- the test is completed in a very short time, so the burden on the maintenance person is extremely reduced and the test time is less than lmsec. Therefore, even if the connection between the deterioration judgment device and the battery is disconnected due to a mistake by the maintenance personnel, the discharge is terminated at that time, and there is no risk of sparks. Deterioration determination with extremely high accuracy can be realized.
- An object of the present invention is to provide a secondary battery deterioration determination device and a deterioration determination method that accurately determine the degree of deterioration of a secondary battery while suppressing an increase in cost.
- a secondary battery deterioration determination device determines a degree of deterioration of a secondary battery.
- the deterioration determination device includes a detection unit that detects a voltage of the secondary battery, a discharge unit that discharges the secondary battery until a predetermined time elapses, and an arithmetic unit connected to the detection unit and the discharge unit. Including.
- the arithmetic unit determines the degree of deterioration based on the determination time until the detected voltage change converges after the secondary battery is discharged.
- the arithmetic unit determines the degree of deterioration based on the determination time until the detected voltage change converges after the secondary battery is discharged.
- the voltage drops, and after the discharge is finished, the voltage rises to approach the voltage before discharge.
- the time until the voltage changes below the predetermined change and converges is a time that depends on the degree of deterioration. The longer it takes to converge, the greater the degree of degradation. Therefore, the degree of deterioration can be determined by measuring the determination time until convergence. If you do this, It is only necessary to improve the resolution for changes around the converging voltage, and it is not necessary to accurately measure the absolute values of the voltage, current and temperature of the secondary battery. Therefore, it is possible to provide a secondary battery deterioration determination device that accurately determines the degree of secondary battery deterioration while suppressing an increase in cost.
- the arithmetic unit determines that the degree of deterioration of the secondary battery is greater as the determination time is longer.
- the arithmetic unit determines that the degree of deterioration of the secondary battery is greater as the determination time is longer. As the secondary battery deteriorates, the voltage decreases more rapidly, and the time from when discharging ends until the voltage converges tends to be longer. Therefore, it can be determined that the longer the determination time, the greater the degree of deterioration of the secondary battery. More preferably, the arithmetic unit determines that the voltage change has converged when the detected voltage change amount is equal to or less than a predetermined change amount after the secondary battery is discharged.
- the arithmetic unit determines that the voltage change has converged when the detected voltage change amount is equal to or less than a predetermined change amount after the secondary battery is discharged. This makes it possible to accurately measure the determination time until the voltage converges to a substantially constant state from the end of discharge.
- the secondary battery deterioration determination device is mounted on a vehicle.
- the degree of deterioration of the secondary battery mounted on the vehicle can be accurately determined.
- FIG. 1 is a diagram showing a configuration of a secondary battery deterioration determination device according to the present embodiment.
- FIG. 2A and 2B are timing charts showing the voltage change during discharge.
- Fig. 3 is a timing chart showing the change in voltage according to the degree of deterioration.
- FIG. 4 is a flowchart showing a control structure of a program executed by ECU which is a secondary battery deterioration determining apparatus according to the present embodiment.
- FIG. 5A to FIG. 5C are timing charts showing the operation of the ECU, which is the secondary battery deterioration determining apparatus according to the present embodiment.
- a vehicle equipped with the secondary battery deterioration determination device includes an electronic control unit (ECU) 10 0 0, a battery 2 0 0, a load
- the secondary battery deterioration determination device according to the present embodiment is realized by E C U 100.
- the vehicle on which the secondary battery deterioration determination device according to the present embodiment is mounted is, for example, an electric vehicle using a rotating electrical machine as a drive source, but is particularly limited as long as the vehicle is mounted with a battery. Instead, for example, it may be a hybrid vehicle that uses an engine and a rotating electric machine as drive sources, or a vehicle that uses an engine equipped with an auxiliary battery as a drive source.
- the load 300 is, for example, a rotating electrical machine connected via a converter and an inverter.
- the battery 200 is not particularly limited as long as it is a secondary battery, and is, for example, a nickel metal hydride battery or a lithium ion battery.
- the discharging resistance device 400 is configured by, for example, a relay switch (hereinafter simply referred to as a relay) and a resistor connected in series.
- the discharging resistance device 400 is connected to the power supply line 20 02 connected to the + terminal of the battery 20 0 and the power supply line 204 connected to the ⁇ terminal.
- the discharging resistance device 400 is configured to switch the relay in accordance with the discharge control signal received from the ECU 100, thereby interposing the power line 2 0 2 and the power line 2 0 4 with a resistor. Set it to electrical connection or shut off. At this time, the power lines 2 0 2 and 2 0 4
- the discharging resistance device 400 is electrically connected to or disconnected from the power supply line 20 2 and the power supply line 20 4 via a resistor in accordance with a control signal from the ECU 1 0 0. If the device is in a state
- the configuration is not limited to the configuration in which the relay switch and the resistor are connected in series.
- Current sensor 500 is connected in series with battery 200. Current sensor
- the current sensor 500 detects the current value of the current flowing through the power supply line 204.
- the current sensor 500 transmits a signal representing the detected current value to the ECU 100.
- Voltage sensor 600 is connected in parallel to battery 200. Voltage sensor
- Voltage sensor 600 detects the voltage value of the battery 200. Voltage sensor 600 transmits a signal representing the detected voltage value to ECU 100.
- the ECU 100 includes a CPU and a memory.
- the ECU 100 is provided with a force filter unit 102.
- the counter unit 102 measures time by increasing the count value every calculation cycle.
- the counter unit 102 may be realized by hardware, or may be realized by a program (software) executed by the ECU 100.
- the ECU 100 controls the discharging resistance device 400 by executing a program stored in the memory based on the count value in the counter unit 102 and the signals received from the current sensor 500 and the voltage sensor 600. To do.
- the ECU 100 transmits a discharge control signal to the discharge resistance device 400 when a predetermined standby time has elapsed after the vehicle is turned off, and starts the deterioration determination process.
- the deterioration determination process is the end of the discharge of the battery 200 by switching the relay of the discharge resistance device 400 to the electrically connected state of the power supply lines 202 and 204 until a predetermined time elapses. This is a process for determining the degree of deterioration of the battery 200 based on the subsequent voltage change.
- Figure 2A shows the change in discharge current when the horizontal axis is time and the vertical axis is discharge current.
- the counter 102 measures the time. Based on the discharge control signal received by the discharge resistance device 400 from the ECU 100 at time T (1) when a predetermined standby time elapses from time T (0), the power supply lines 202 and 204 are electrically connected. When this state is reached, the discharge current A (0) flows, and the battery 200 starts to be discharged. At this time, the counter unit 102 is reset, and the elapsed time after time (1) is measured.
- Figure 2B shows the change in the voltage of battery 200 when the horizontal axis is time and the vertical axis is voltage.
- the voltage value detected by voltage sensor 600 decreases from V (0) when discharge is started.
- the measured time reaches time T (2) when a predetermined discharge time elapses from time T (1), power supply lines 202 and 204 are electrically connected based on the discharge control signal received from ECU 100. So that it will be in the shut-off state. At this time, the discharge current detected by the current sensor 500 is zero.
- the present invention is characterized in that the ECU 100 which is a secondary battery deterioration determination device determines the degree of deterioration of the battery 200 based on the voltage change waveform after the battery 200 is discharged.
- the ECU 100 determines the degree of deterioration of the battery 200 based on the voltage change waveform after the battery 200 is discharged.
- information on the voltage change corresponding to the degree of deterioration is stored in advance in the memory of the ECU 100, and the degree of deterioration of the battery 200 is determined by comparison with the voltage change after discharge detected by the voltage sensor 600.
- the ECU 100 determines the degree of deterioration of the battery 200 based on the determination time until the detected voltage change converges after the battery 200 is discharged.
- FIG. 4 a control structure of a program executed by the ECU 100 which is the secondary battery deterioration determination apparatus according to the present embodiment will be described.
- step (hereinafter, step is referred to as S) 100 ECU 100 determines whether or not the ignition key is turned off. When the ignition key is turned off (YES in S100), the process proceeds to S102. If not (NO at S100), the process returns to S100.
- step S102 the ECU 100 starts counting up the standby time using the counter unit 102. “Counting up” is performed by adding a predetermined force value for each calculation cycle to a predetermined initial value.
- ECU 100 determines whether or not a predetermined standby time has elapsed since the ignition key was turned off. ECU 100 has a count value It is determined whether or not the count value is greater than or equal to a predetermined standby time.
- the “predetermined waiting time” is a waiting time until an environment with little temperature change is obtained, and is not particularly limited, and is adapted by experimentation. If a predetermined waiting time has elapsed (YES in S 104), the process proceeds to S106. If not (NO in S104), the process returns to S102.
- discharge treatment means that the relays of the discharge resistance device 400 are switched to electrically connect the power lines 202 and 204 until a predetermined discharge time elapses after the standby time elapses.
- discharge treatment means that the relays of the discharge resistance device 400 are switched to electrically connect the power lines 202 and 204 until a predetermined discharge time elapses after the standby time elapses.
- the ECU 100 controls the discharge resistance device 400 to electrically connect the power supply lines 202 and 2 4 and starts counting up the discharge time in the counter unit 102.
- the counter unit 102 resets the count value to a predetermined initial value, adds a predetermined count value for each calculation cycle, and counts up.
- the ECU 100 determines that the predetermined discharge time has elapsed when the count value reaches the count value corresponding to the predetermined discharge time.
- the ECU 100 switches the relay of the discharge resistance device 400 to electrically cut off the power supply lines 202 and 204.
- the predetermined discharge time is a time that is adapted from experiments and is not particularly limited, but is preferably a short time that does not deteriorate the determination accuracy.
- step S108 the ECU 100 starts counting up the determination time using the counter unit 102. Specifically, the ECU 100 causes the counter unit 102 to reset the count value to an initial value and add a predetermined count value for each calculation cycle.
- ECU 100 determines whether or not the voltage of battery 200 has settled. In the present embodiment, the ECU 100 determines whether or not the voltage change has converged based on the voltage change amount input from the voltage sensor 600. The ECU 100 determines that the voltage has settled when the temporal change amount of the voltage input from the voltage sensor 600 is equal to or less than a predetermined change amount.
- the “predetermined amount of change” is a value that can be determined that the voltage change is in a substantially constant state, and is not particularly limited. It is not adapted and is adapted by experiment. If it is determined that the voltage of battery 200 has settled (YES in S 1 10), the process proceeds to S 1 1 2. If not (NO in S100), the process returns to S108.
- ECU 100 stores the count value corresponding to the measured determination time in the memory, assuming that the voltage polarization characteristics of battery 200 have been acquired.
- the ECU 100 may store the measured determination time in a memory.
- ECU 100 estimates the degree of deterioration (deterioration degree) of battery 200 based on the stored count value.
- the ECU 100 may store a map indicating the relationship between the count value and the deterioration degree in advance in the memory, and estimate the deterioration degree from the stored force value and the map.
- a table or a function expression indicating the relationship between the count value and the degree of deterioration may be stored in advance, and the degree of deterioration may be estimated from the stored count value and the table or expression.
- the ECU 100 may estimate the degree of deterioration from the determination time measured instead of the count value and a map, table, or function expression.
- the operation of the ECU 100 which is the secondary battery deterioration determination device according to the present embodiment based on the above-described structure and flowchart, will be described with reference to FIGS. 5A to 5C.
- the time until the voltage changes below a predetermined amount of change after the discharge is completed is converged.
- the time depends on the degree of deterioration. The longer it takes to converge, the greater the degree of degradation. Therefore, the degree of deterioration can be determined by measuring the determination time. In this way, it is sufficient to improve the resolution for changes around the converging voltage, and it is not necessary to accurately measure the absolute values of the voltage, current, and temperature of the secondary battery. Therefore, it is possible to provide a secondary battery deterioration determination device and a deterioration determination method that accurately determine the degree of secondary battery deterioration while suppressing an increase in cost.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
An ECU executes a program including: a step (S102) counting up until a predetermined wait time elapses when an ignition key is turned off (Yes in S100); a step (S106) for executing discharge process; a step (S108) for counting up the judging time until a voltage change is stabled; a step (S112) for storing the judging time; and a step (S114) for estimating the degradation degree.
Description
明細書 二次電池の劣化判定装置および劣化判定方法 技術分野 Technical field
本発明は、 二次電池の劣化の度合を判定する劣化判定装置および劣化判定方法 に関し、 特に、 精度高い劣化の度合の判定に関する。 背景技術 The present invention relates to a deterioration determination device and a deterioration determination method for determining the degree of deterioration of a secondary battery, and more particularly to determination of the degree of deterioration with high accuracy. Background art
二次電池は、 その使用過程において入出力可能電力ゃ満充電容量 (完全充電後 の電池容量) に代表される電池性能の劣化が進行するので、 その性能は時系列的 'に変化する。 特に、 電池性能を越えた電力の入出力を行なうと、 劣化が急激に促 進され、 著しい場合には故障に至る可能性がある。 このような問題に対して、 現 時点での劣化の度合を定量的に把握して、 二次電池の性能の限界量を検知する技 術が公知である。 The secondary battery undergoes deterioration in battery performance, represented by full charge capacity (battery capacity after full charge) in the course of its use, and its performance changes in a time-series manner. In particular, if the input / output of electric power exceeds the battery performance, deterioration will be accelerated rapidly, and if it is significant, it may lead to failure. In order to deal with such problems, a technique for quantitatively grasping the degree of deterioration at the present time and detecting the limit amount of the performance of the secondary battery is known.
特開平 5 _ 2 8 1 3 0 9号公報は、 シール鉛蓄電池の劣化の判定を、 安全に極 めて短時間で正確に行なう劣化判定器を開示する。 この劣化判定器は、 試験対象 の鉛蓄電池に一定電流を短時間放電するためのスイツチ部および負荷回路部と、 鉛蓄電池の電池電圧を検出するための電圧検出部もしくは電圧検出部およぴ鉛蓄 電池に流れる電流を検出するための電流検出部と、 放電を開始してから l m s e c以下の時間経過後の検出した電池電圧と放電開始前の検出した電池電圧との差 分の電圧あるいは差分の電圧と検出した鉛蓄電池に流れる電流から内部抵抗を計 算してあらかじめ求めておいた差分の電圧と電池容量との回帰式あるいは内部抵 抗と電池容量との回帰式に差分の電圧あるいは内部抵抗を代入して現在の電池容 量を推定する記憶演算部と、 差分の電圧あるいは内部抵抗あるいは推定した電池 容量を表示するための表示部と、 少なくともスィッチ部、 電圧検出部、 記憶演算 部を順序立てて操作する操作部と、 を具備する。 Japanese Patent Application Laid-Open No. 5_2 8 1 3 0 9 discloses a deterioration determination device that accurately determines the deterioration of a sealed lead-acid battery in a very short time. This deterioration judgment device consists of a switch unit and a load circuit unit for discharging a constant current to a lead storage battery to be tested for a short time, a voltage detection unit or a voltage detection unit for detecting the battery voltage of the lead storage battery, and a lead. A current detector for detecting the current flowing in the storage battery, and a voltage or difference of a difference between the detected battery voltage after the lapse of lmsec or less from the start of discharge and the detected battery voltage before the start of discharge. Calculate the internal resistance from the voltage and the detected current flowing in the lead-acid battery, and then calculate the difference voltage or internal resistance in the regression equation of the difference voltage and battery capacity obtained in advance or the regression equation of the internal resistance and battery capacity. , A memory calculation unit that estimates the current battery capacity, a display unit that displays the differential voltage or internal resistance, or the estimated battery capacity, at least the switch unit, Parts, comprising a, an operation unit for operating orderly storage operation unit.
上述した公報に開示された劣化判定器によると、 極めて短時間に試験が終了す るために保守者の負担が極めて少なくなるとともに、 試験時間が l m s e c以下
であるので、 万一、 劣化判定器と電池の接続が保守者のミスによって外れても、 そのときには放電が終了しており、 火花が発生する恐れもなく極めて安全性が高 く、 しかも従来より極めて精度の高い劣化判定が実現できる。 According to the deterioration judging device disclosed in the above-mentioned publication, the test is completed in a very short time, so the burden on the maintenance person is extremely reduced and the test time is less than lmsec. Therefore, even if the connection between the deterioration judgment device and the battery is disconnected due to a mistake by the maintenance personnel, the discharge is terminated at that time, and there is no risk of sparks. Deterioration determination with extremely high accuracy can be realized.
しかしながら、 上述した公報に開示された劣化判定器のように、 二次電池の電 圧分極特性に基づいて劣化判定を行なう場合においては、 計測器の精度に依存す るため適切な劣化判定を行なえない可能性がある。 二次電池の電圧分極特性は、 電流および温度に依存しており、 充放電履歴の影響を受ける。 そのため、 正確な 電圧分極特性を取得するためには電圧だけでなく、 電流および温度の絶対値を精 度よく取得する必要がある。 電圧、 電流および温度を検知する各計測器の精度を 向上させるようとすると、 コストが上昇するという問題がある。 However, in the case where the deterioration determination is performed based on the voltage polarization characteristics of the secondary battery, as in the deterioration determination device disclosed in the above-mentioned publication, an appropriate deterioration determination can be performed because it depends on the accuracy of the measuring instrument. There is no possibility. The voltage polarization characteristics of secondary batteries depend on the current and temperature and are affected by the charge / discharge history. Therefore, in order to obtain accurate voltage polarization characteristics, it is necessary to accurately acquire not only the voltage but also the absolute values of current and temperature. There is a problem that the cost increases when trying to improve the accuracy of each measuring instrument for detecting voltage, current and temperature.
上述した公報に開示された劣化判定器においては、 二次電池の電圧分極特性の 取得の際の計測精度については何ら考慮されていないため、 上述した問題を解決 することはできない。 発明の開示 In the deterioration determination device disclosed in the above-mentioned publication, since the measurement accuracy at the time of obtaining the voltage polarization characteristic of the secondary battery is not considered at all, the above-described problem cannot be solved. Disclosure of the invention
本発明の目的は、 コス トの上昇を抑制しつつ、 精度よく二次電池の劣化の度合 を判定する二次電池の劣化判定装置および劣化判定方法を提供することである。 この発明のある局面に係る二次電池の劣化判定装置は、 二次電池の劣化の度合 を判定する。 この劣化判定装置は、 二次電池の電圧を検知する検知部と、 予め定 められた時間が経過するまで二次電池を放電する放電部と、 検知部と放電部とに 接続された演算ユニットとを含む。 演算ユニットは、 二次電池の放電後、 検知さ れた電圧の変化が収束するまでの判定時間に基づいて劣化の度合を判定する。 この発明によると、 演算ュニッ トは、 二次電池の放電後、 検知された電圧の変 化が収束するまでの判定時間に基づいて劣化の度合を判定する。 二次電池の放電 時において電圧は降下し、 放電の終了後において電圧は放電前の電圧に近づくよ うに上昇する。 放電の終了後において電圧の変化が予め定められた変化量以下に なって収束するまでの時間は、 劣化の度合に依存した時間となる。 収束するまで の時間が長いほど、 劣化の度合が大きい。 そのため、 収束するまでの判定時間を 計測することにより、 劣化の度合を判定することができる。 このようにすると、
収束する電圧周辺の変化に対する分解能を向上させれば足り、 二次電池の電圧、 電流および温度の絶対値を精度よく計測する必要がない。 したがって、 コストの 上昇を抑制しつつ、 精度よく二次電池の劣化の度合を判定する二次電池の劣化判 定装置を提供することができる。 An object of the present invention is to provide a secondary battery deterioration determination device and a deterioration determination method that accurately determine the degree of deterioration of a secondary battery while suppressing an increase in cost. A secondary battery deterioration determination device according to an aspect of the present invention determines a degree of deterioration of a secondary battery. The deterioration determination device includes a detection unit that detects a voltage of the secondary battery, a discharge unit that discharges the secondary battery until a predetermined time elapses, and an arithmetic unit connected to the detection unit and the discharge unit. Including. The arithmetic unit determines the degree of deterioration based on the determination time until the detected voltage change converges after the secondary battery is discharged. According to the present invention, the arithmetic unit determines the degree of deterioration based on the determination time until the detected voltage change converges after the secondary battery is discharged. When the secondary battery is discharged, the voltage drops, and after the discharge is finished, the voltage rises to approach the voltage before discharge. After the discharge is completed, the time until the voltage changes below the predetermined change and converges is a time that depends on the degree of deterioration. The longer it takes to converge, the greater the degree of degradation. Therefore, the degree of deterioration can be determined by measuring the determination time until convergence. If you do this, It is only necessary to improve the resolution for changes around the converging voltage, and it is not necessary to accurately measure the absolute values of the voltage, current and temperature of the secondary battery. Therefore, it is possible to provide a secondary battery deterioration determination device that accurately determines the degree of secondary battery deterioration while suppressing an increase in cost.
好ましくは、 演算ユニットは、 判定時間が長いほど二次電池の劣化の度合が大 きいことを判定する。 Preferably, the arithmetic unit determines that the degree of deterioration of the secondary battery is greater as the determination time is longer.
この発明によると、 演算ュニッ トは、 判定時間が長いほど二次電池の劣化の度 合が大きいことを判定する。 二次電池は劣化するほど電圧の下降幅が大きく、 放 電が終了してから電圧が収束するまでの時間が長い傾向にある。 したがって、 判 定時間が長いほど二次電池の劣化の度合が大きいことを判定することができる。 さらに好ましくは、 演算ュニッ トは、 二次電池の放電後、 検知された電圧の変 化量が予め定められた変化量以下になると、 電圧の変化が収束したことを判定す る。 According to the present invention, the arithmetic unit determines that the degree of deterioration of the secondary battery is greater as the determination time is longer. As the secondary battery deteriorates, the voltage decreases more rapidly, and the time from when discharging ends until the voltage converges tends to be longer. Therefore, it can be determined that the longer the determination time, the greater the degree of deterioration of the secondary battery. More preferably, the arithmetic unit determines that the voltage change has converged when the detected voltage change amount is equal to or less than a predetermined change amount after the secondary battery is discharged.
この発明によると、 演算ュニッ トは、 二次電池の放電後、 検知された電圧の変 化量が予め定められた変化量以下になると、 電圧の変化が収束したことを判定す る。 これにより、 電圧が放電終了から略一定の状態に収束するまでの判定時間を 精度よく計測することができる。 According to the present invention, the arithmetic unit determines that the voltage change has converged when the detected voltage change amount is equal to or less than a predetermined change amount after the secondary battery is discharged. This makes it possible to accurately measure the determination time until the voltage converges to a substantially constant state from the end of discharge.
さらに好ましくは、 二次電池の劣化判定装置は、 車両に搭載される。 More preferably, the secondary battery deterioration determination device is mounted on a vehicle.
この発明によると、 車両に劣化判定装置を搭載することにより、 車両に搭載さ れた二次電池の劣化の度合を精度よく判定することができる。 図面の簡単な説明 According to the present invention, by mounting the deterioration determination device on the vehicle, the degree of deterioration of the secondary battery mounted on the vehicle can be accurately determined. Brief Description of Drawings
図 1は、 本実施例に係る二次電池の劣化判定装置の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a secondary battery deterioration determination device according to the present embodiment.
図 2 Aおよび図 2 Bは、 放電時の電圧の変化を示すタイミングチヤ一トである。 図 3は、 劣化の度合に応じた電圧の変化を示すタイミングチャートである。 図 4は、 本実施例に係る二次電池の劣化判定装置である E C Uで実行されるプ ログラムの制御構造を示すフローチヤ一トである。 Figures 2A and 2B are timing charts showing the voltage change during discharge. Fig. 3 is a timing chart showing the change in voltage according to the degree of deterioration. FIG. 4 is a flowchart showing a control structure of a program executed by ECU which is a secondary battery deterioration determining apparatus according to the present embodiment.
図 5 A—図 5 Cは、 本実施例に係る二次電池の劣化判定装置である E C Uの動 作を示すタイミングチヤ一トである。
発明を実施するための最良の形態 FIG. 5A to FIG. 5C are timing charts showing the operation of the ECU, which is the secondary battery deterioration determining apparatus according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しつつ、 本発明の実施例について説明する。 以下の説明では、 同一の部品には同一の符号を付してある。 それらの名称および機能も同じである。 したがってそれらについての詳細な説明は繰返さない。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
図 1に示すように、 本実施例に係る二次電池の劣化判定装置が搭載される車両 には、 E C U (Electronic Control Unit) 1 0 0と、 バッテリ 2 0 0と、 負荷 As shown in FIG. 1, a vehicle equipped with the secondary battery deterioration determination device according to the present embodiment includes an electronic control unit (ECU) 10 0 0, a battery 2 0 0, a load
3 0 0と、 放電用抵抗装置 4 0 0と、 電流センサ 5 0 0と、 電圧センサ 6 0 0と が設けられる。 本実施例に係る二次電池の劣化判定装置は、 E C U 1 0 0により 実現される。 本実施例に係る二次電池の劣化判定装置が搭載される車両は、 たと えば、 回転電機を駆動源とする電気自動車であるが、 バッテリが搭載される車両 であれば、 特に限定されるものではなく、 たとえば、 エンジンと回転電機とを駆 動源とするハイプリッド車両であってもよいし、 補機バッテリが搭載されるェン ジンを駆動源とする車両であってもよいものとする。 3, a discharge resistance device 4 0 0, a current sensor 5 0 0, and a voltage sensor 6 0 0 are provided. The secondary battery deterioration determination device according to the present embodiment is realized by E C U 100. The vehicle on which the secondary battery deterioration determination device according to the present embodiment is mounted is, for example, an electric vehicle using a rotating electrical machine as a drive source, but is particularly limited as long as the vehicle is mounted with a battery. Instead, for example, it may be a hybrid vehicle that uses an engine and a rotating electric machine as drive sources, or a vehicle that uses an engine equipped with an auxiliary battery as a drive source.
負荷 3 0 0は、 たとえばコンバータおよびインバータを介在させて接続される 回転電機である。 本実施例において、 バッテリ 2 0 0は、 二次電池あれば、 特に 限定されるものではなく、 たとえば、 ニッケル水素電池あるいはリチウムイオン 電池等である。 The load 300 is, for example, a rotating electrical machine connected via a converter and an inverter. In the present embodiment, the battery 200 is not particularly limited as long as it is a secondary battery, and is, for example, a nickel metal hydride battery or a lithium ion battery.
放電用抵抗装置 4 0 0は、 たとえば、 リ レースィッチ (以下、 単にリ レーとレヽ う) と抵抗体とが直列に接続されて構成される。 放電用抵抗装置 4 0 0には、 バ ッテリ 2 0 0の +端子に接続される電源ライン 2 0 2および—端子に接続される 電源ライン 2 0 4に接続される。 放電用抵抗装置 4 0 0は、 E C U 1 0 0から受 信される放電制御信号に応じて、 リ レーを切り換えることにより、 電源ライン 2 0 2および電源ライン 2 0 4を抵抗体を介在させて電気的に接続状態としたり、 遮断状態としたりする。 このとき、 電源ライン 2 0 2, 2 0 4、 放電用抵抗装置 The discharging resistance device 400 is configured by, for example, a relay switch (hereinafter simply referred to as a relay) and a resistor connected in series. The discharging resistance device 400 is connected to the power supply line 20 02 connected to the + terminal of the battery 20 0 and the power supply line 204 connected to the − terminal. The discharging resistance device 400 is configured to switch the relay in accordance with the discharge control signal received from the ECU 100, thereby interposing the power line 2 0 2 and the power line 2 0 4 with a resistor. Set it to electrical connection or shut off. At this time, the power lines 2 0 2 and 2 0 4
4 0 0およびバッテリ 2 0 .0とを含む回路が閉じるため、 電流が流れてバッテリ 2 0 0の放電が行なわれる。 なお、 放電用抵抗装置 4 0 0は、 E C U 1 0 0から の制御信号に応じて、 電源ライン 2 0 2および電源ライン 2 0 4を抵抗体を介在 させて電気的に接続状態としたり、 遮断状態としたりする装置であれば、 特にリ
レースイッチと抵抗体とを直列に接続する構成に限定されるものではない。 Since the circuit including 4 0 0 and battery 2 0.0 is closed, a current flows and battery 2 0 0 is discharged. Note that the discharging resistance device 400 is electrically connected to or disconnected from the power supply line 20 2 and the power supply line 20 4 via a resistor in accordance with a control signal from the ECU 1 0 0. If the device is in a state The configuration is not limited to the configuration in which the relay switch and the resistor are connected in series.
電流センサ 500は、 バッテリ 200に対して直列に接続される。 電流センサ Current sensor 500 is connected in series with battery 200. Current sensor
500は、 電源ライン 204に流れる電流の電流値を検知する。 電流センサ 50 0は、 検知された電流値を表わす信号を ECU 100に送信する。 500 detects the current value of the current flowing through the power supply line 204. The current sensor 500 transmits a signal representing the detected current value to the ECU 100.
電圧センサ 600は、 バッテリ 200に対して並列に接続される。 電圧センサ Voltage sensor 600 is connected in parallel to battery 200. Voltage sensor
600は、 バッテリ 200の電圧値を検知する。 電圧センサ 600は、 検知され た電圧値を表わす信号を ECU 1 00に送信する。 600 detects the voltage value of the battery 200. Voltage sensor 600 transmits a signal representing the detected voltage value to ECU 100.
ECU 100には、 C PUとメモリとから構成される。 ECU 100には、 力 ゥンタ部 102が設けられる。 カウンタ部 102は、 計算サイクル毎にカウント 値を増加させることにより、 時間を計測する。 なお、 カウンタ部 102は、 ハー ドウユアにより実現されてもよいし、 ECU 100で実行されるプログラム (ソ フトウェア) により実現されてもよいものとする。 The ECU 100 includes a CPU and a memory. The ECU 100 is provided with a force filter unit 102. The counter unit 102 measures time by increasing the count value every calculation cycle. The counter unit 102 may be realized by hardware, or may be realized by a program (software) executed by the ECU 100.
本実施例において、 ECU 100は、 カウンタ部 102におけるカウント値と 電流センサ 500および電圧センサ 600から受信する信号とに基づいて、 メモ リに記憶されるプログラムを実行して放電用抵抗装置 400を制御する。 In the present embodiment, the ECU 100 controls the discharging resistance device 400 by executing a program stored in the memory based on the count value in the counter unit 102 and the signals received from the current sensor 500 and the voltage sensor 600. To do.
ECU 100は、 車両のイグニッションキーがオフされると、 オフされてから 予め定められた待機時間が経過すると、 放電用抵抗装置 400に放電制御信号を 送信して、 劣化判定処理を開始する。 劣化判定処理とは、 予め定められた時間が 経過するまで、 電源ライン 202, 204を放電用抵抗装置 400のリレーを切 り換えて電気的に接続状態にすることにより、 バッテリ 200の放電の終了後の 電圧変化に基づいてバッテリ 200の劣化の度合を判定する処理である。 When the ignition key of the vehicle is turned off, the ECU 100 transmits a discharge control signal to the discharge resistance device 400 when a predetermined standby time has elapsed after the vehicle is turned off, and starts the deterioration determination process. The deterioration determination process is the end of the discharge of the battery 200 by switching the relay of the discharge resistance device 400 to the electrically connected state of the power supply lines 202 and 204 until a predetermined time elapses. This is a process for determining the degree of deterioration of the battery 200 based on the subsequent voltage change.
図 2Aに横軸を時間とし、 縦軸を放電電流としたときの放電電流の変化を示す。 時間 T (0) にて、 イグニッションキーがオフされると、 ウンタ部 102によ り時間が計測される。 時間 T (0) から予め定められた待機時間が経過する時間 T (1) において、 放電用抵抗装置 400が ECU 100から受信する放電制御 信号に基づいて、 電源ライン 202, 204を電気的に接続状態になるようにす ると、 放電電流 A (0) が流れて、 バッテリ 200の放電が開始される。 このと き、 カウンタ部 102がリセットされて、 時間丁 (1) 以降の経過時間が計測さ れる。
図 2 Bに横軸を時間とし、 縦軸を電圧としたときのバッテリ 200の電圧の変 化を示す。 時間 T (1) 以降において、 電圧センサ 600により検知される電圧 値は、 放電が開始されると V (0) から下降する。 計測された時間が、 時間 T (1) から予め定められた放電時間が経過する時間 T (2) になると、 ECU 1 00から受信する放電制御信号に基づいて、 電源ライン 202, 204を電気的 に遮断状態になるようにする。 このとき、 電流センサ 500により検知される放 電電流は、 ゼロとなる。 Figure 2A shows the change in discharge current when the horizontal axis is time and the vertical axis is discharge current. When the ignition key is turned off at time T (0), the counter 102 measures the time. Based on the discharge control signal received by the discharge resistance device 400 from the ECU 100 at time T (1) when a predetermined standby time elapses from time T (0), the power supply lines 202 and 204 are electrically connected. When this state is reached, the discharge current A (0) flows, and the battery 200 starts to be discharged. At this time, the counter unit 102 is reset, and the elapsed time after time (1) is measured. Figure 2B shows the change in the voltage of battery 200 when the horizontal axis is time and the vertical axis is voltage. After time T (1), the voltage value detected by voltage sensor 600 decreases from V (0) when discharge is started. When the measured time reaches time T (2) when a predetermined discharge time elapses from time T (1), power supply lines 202 and 204 are electrically connected based on the discharge control signal received from ECU 100. So that it will be in the shut-off state. At this time, the discharge current detected by the current sensor 500 is zero.
時間 T (2) において、 V (1) まで下降していた電圧は、 時間 T. (2) 以降、 放電前の電圧 V (0) に近づくように増大する。 図 3に示すように、 電圧降下は、 劣化するほど大きくなる傾向にある。 そのため、 劣化するほど放電終了後に電圧 が収束するまでの時間が長い傾向にある。 The voltage that had dropped to V (1) at time T (2) increases from time T. (2) so that it approaches the voltage V (0) before discharge. As shown in Fig. 3, the voltage drop tends to increase with deterioration. Therefore, the longer it takes for the voltage to converge after the end of discharge, the more it deteriorates.
そこで、 本発明は、 二次電池の劣化判定装置である ECU 100が、 バッテリ 200の放電後の電圧変化の波形に基づいて、 バッテリ 200の劣化の度合を判 定する点に特徴を有する。 すなわち、 ECU 100のメモリに予め劣化の度合に 応じた電圧変化についての情報を記憶しておき、 電圧センサ 600により検知さ れる放電後の電圧変化と比較して、 バッテリ 200の劣化の度合を判定する。 よ り具体的には、 ECU 100は、 バッテリ 200の放電後、 検知された電圧の変 化が収束するまでの判定時間に基づいてバッテリ 200の劣化の度合を判定する。 以下、 図 4を参照して、 本実施例に係る二次電池の劣化判定装置である ECU 100で実行されるプログラムの制御構造について説明する。 Therefore, the present invention is characterized in that the ECU 100 which is a secondary battery deterioration determination device determines the degree of deterioration of the battery 200 based on the voltage change waveform after the battery 200 is discharged. In other words, information on the voltage change corresponding to the degree of deterioration is stored in advance in the memory of the ECU 100, and the degree of deterioration of the battery 200 is determined by comparison with the voltage change after discharge detected by the voltage sensor 600. To do. More specifically, the ECU 100 determines the degree of deterioration of the battery 200 based on the determination time until the detected voltage change converges after the battery 200 is discharged. Hereinafter, with reference to FIG. 4, a control structure of a program executed by the ECU 100 which is the secondary battery deterioration determination apparatus according to the present embodiment will be described.
ステップ (以下、 ステップを Sと記載する) 100にて、 ECU 100は、 ィ ダニッションキーがオフされたか否かを判定する。 イグニッションキーがオフさ れると (S 100にて YE S) 、 処理は S 102に移される。 もしそうでないと (S 100にて NO) 、 処理は S 100に戻される。 In step (hereinafter, step is referred to as S) 100, ECU 100 determines whether or not the ignition key is turned off. When the ignition key is turned off (YES in S100), the process proceeds to S102. If not (NO at S100), the process returns to S100.
S 102にて、 ECU 100は、 カウンタ部 102により待機時間のカウント アップを開始する。 「カウントアップ」 は、 予め定められた初期値に計算サイク ル毎に予め定められた力ゥント値を加算することにより行なわれる。 In step S102, the ECU 100 starts counting up the standby time using the counter unit 102. “Counting up” is performed by adding a predetermined force value for each calculation cycle to a predetermined initial value.
S 104にて、 ECU 100は、 イグニッションキーがオフされてから予め定 められた待機時間が経過したか否かを判定する。 ECU 100は、 カウント値が
予め定められた待機時間に対応するカウント値以上であるか否かを判定する。 な お、 「予め定められた待機時間」 は、 温度変化の少ない環境となるまでの待機時 間であって特に限定されるものではなく、 実験等により適合される。 予め定めら れた待機時間が経過すると (S 1 04にて YES) 、 処理は S 106に移される。 もしそうでないと (S 104にて NO) 、 処理は S 102に戻される。 In S104, ECU 100 determines whether or not a predetermined standby time has elapsed since the ignition key was turned off. ECU 100 has a count value It is determined whether or not the count value is greater than or equal to a predetermined standby time. The “predetermined waiting time” is a waiting time until an environment with little temperature change is obtained, and is not particularly limited, and is adapted by experimentation. If a predetermined waiting time has elapsed (YES in S 104), the process proceeds to S106. If not (NO in S104), the process returns to S102.
S 1 06にて、 ECU 100は、 放電処理を実行する。 本寒施例において、 「放電処理」 とは、 待機時間が経過してから予め定められた放電時間が経過する まで放電用抵抗装置 400のリレーを切り換えて電源ライン 202, 204を電 気的に接続状態にする処理をいう。 具体的には、 ECU 100は、 放電用抵抗装 置 400を制御して電源ライン 202, 2◦ 4を電気的に接続状態とするととも に、 カウンタ部 102において放電時間のカウントアップを開始する。 このとき、 カウンタ部 102は、 カウント値を予め定められた初期値にリセットして計算サ ィクル毎に予め定められたカウント値を加算して、 カウントアップを行なう。 そ して、 ECU 100は、 カウント値が予め定められた放電時間に対応するカウン ト値になると、 予め定められた放電時間が経過したと判定する。 ECU 100は、 放電用抵抗装置 400のリレーを切り換えて、 電源ライン 202, 204を電気 的に遮断状態とする。 なお、 予め定められた放電時間は、 実験等より適合される 時間であって特に限定されるものではないが、 好ましくは、 判定精度が悪化しな い程度に短時間であることが望ましい。 In S 106, the ECU 100 executes a discharge process. In this cold example, “discharge treatment” means that the relays of the discharge resistance device 400 are switched to electrically connect the power lines 202 and 204 until a predetermined discharge time elapses after the standby time elapses. Refers to the process of making a connection state. Specifically, the ECU 100 controls the discharge resistance device 400 to electrically connect the power supply lines 202 and 2 4 and starts counting up the discharge time in the counter unit 102. At this time, the counter unit 102 resets the count value to a predetermined initial value, adds a predetermined count value for each calculation cycle, and counts up. Then, ECU 100 determines that the predetermined discharge time has elapsed when the count value reaches the count value corresponding to the predetermined discharge time. The ECU 100 switches the relay of the discharge resistance device 400 to electrically cut off the power supply lines 202 and 204. Note that the predetermined discharge time is a time that is adapted from experiments and is not particularly limited, but is preferably a short time that does not deteriorate the determination accuracy.
S 108にて、 ECU 100は、 カウンタ部 102により判定時間のカウント アップを開始する。 具体的には、 ECU 100は、 カウンタ部 102において、 カウント値を初期値にリセットして、 計算サイクル毎に予め定められたカウント 値を加算する。 In step S108, the ECU 100 starts counting up the determination time using the counter unit 102. Specifically, the ECU 100 causes the counter unit 102 to reset the count value to an initial value and add a predetermined count value for each calculation cycle.
S 1 10にて、 ECU 100は、 バッテリ 200の電圧が落ち着いたか否かを 判定する。 本実施例においては、 ECU 100は、 電圧センサ 600から入力さ れる電圧の変化量に基づいて電圧の変化が収束したか否かを判定する。 ECU 1 00は、 電圧センサ 600から入力される電圧の時間変化量が予め定められた変 化量以下であると、 電圧が落ち着いたことを判定する。 「予め定められた変化 量」 は、 電圧の変化が略一定の状態であると判定できる値であって、 特に限定さ
れるものではなく、 実験等により適合される。 バッテリ 200の電圧が落ち着い たことが判定されると (S 1 10にて YES) 、 処理は S 1 1 2に移される。 も しそうでないと (S 100にて NO) 、 処理は S 108に戻される。 In S 110, ECU 100 determines whether or not the voltage of battery 200 has settled. In the present embodiment, the ECU 100 determines whether or not the voltage change has converged based on the voltage change amount input from the voltage sensor 600. The ECU 100 determines that the voltage has settled when the temporal change amount of the voltage input from the voltage sensor 600 is equal to or less than a predetermined change amount. The “predetermined amount of change” is a value that can be determined that the voltage change is in a substantially constant state, and is not particularly limited. It is not adapted and is adapted by experiment. If it is determined that the voltage of battery 200 has settled (YES in S 1 10), the process proceeds to S 1 1 2. If not (NO in S100), the process returns to S108.
S 1 1 2にて、 ECU 100は、 バッテリ 200の電圧分極特性の取得を完了 したとして、 メモリに、 計測された判定時間に対応するカウント値を記憶させる。 なお、 ECU 100は、 計測された判定時間をメモリに記憶させるようにしても よい。 In S 1 1 2, ECU 100 stores the count value corresponding to the measured determination time in the memory, assuming that the voltage polarization characteristics of battery 200 have been acquired. The ECU 100 may store the measured determination time in a memory.
S 1 14にて、 ECU 100は、 記憶されたカウント値に基づいて、 バッテリ 200の劣化の度合 (劣化度) を推定する。 ECU 100は、 たとえば、 メモリ に予めカウント値と劣化度との関係を示すマップを記憶しておき、 記憶された力 ゥント値とマップとから劣化度を推定するようにしてもよいし、 あるいは、 カウ ント値と劣化度との関係を示す表あるいは関数式を予め記憶しておき、 記憶され たカウント値と表あるいは式とから劣化度を推定するようにしてもよい。 なお、 ECU100は、 カウント値に代えて計測された判定時間とマップ、 表あるいは 関数式とから劣化度を推定するようにしてもよい。 In S 114, ECU 100 estimates the degree of deterioration (deterioration degree) of battery 200 based on the stored count value. For example, the ECU 100 may store a map indicating the relationship between the count value and the deterioration degree in advance in the memory, and estimate the deterioration degree from the stored force value and the map. A table or a function expression indicating the relationship between the count value and the degree of deterioration may be stored in advance, and the degree of deterioration may be estimated from the stored count value and the table or expression. Note that the ECU 100 may estimate the degree of deterioration from the determination time measured instead of the count value and a map, table, or function expression.
以上のような構造およびフローチャートに基づく本実施例に係る二次電池の劣 化判定装置である ECU 100の動作について図 5 A—図 5 Cを参照しつつ説明 する。 The operation of the ECU 100, which is the secondary battery deterioration determination device according to the present embodiment based on the above-described structure and flowchart, will be described with reference to FIGS. 5A to 5C.
図 5 Aに示すように、 時間 T (3) にて、 イグニッションキーがオフされると (S 100にて YES) 、 カウントアップが実行される (S 102) 。 予め定め られた待機時間 T aに対応するカウント値 C aとなる時間 T (4) になると (S 104にて YES) 、 放電が実行される (S 106) 。 このとき、 図 5 Cに示す ように、 放電の開始とともに電圧が V (0) から下降する。 時間 T (4) にて、 カウント値が初期値にリセットされた後、 カウントアップが実行される。 予め定 められた放電時間 T bに対応するカウント値 C bとなる時間 T (5) になると、 電源ライン 202, 204とが遮断状態となるように放電用抵抗装置 400が制 御されて、 放電処理が終了する。 時間 T (5) にて、 カウント値が再び初期値に リセットされた後、 カウントアップが実行される。 As shown in FIG. 5A, when the ignition key is turned off at time T (3) (YES in S100), count-up is executed (S102). When the time T (4) at which the count value C a corresponding to the predetermined standby time Ta is reached (YES in S104), discharging is performed (S106). At this time, as shown in Fig. 5C, the voltage drops from V (0) as the discharge starts. At time T (4), after the count value is reset to the initial value, count-up is executed. When the time T (5) at which the count value C b corresponding to the predetermined discharge time T b is reached, the discharge resistance device 400 is controlled so that the power supply lines 202 and 204 are cut off, The discharge process ends. At time T (5), the count value is reset again to the initial value, and then counts up.
時間 T (5) にて、 図 5 Cに示すように、 電圧センサ 600により検知される
電圧値の時間変化量が予め定められた変化量以下になると、 電圧の変化が落ち着 いたと判定され (S 1 1 0にて Y E S ) 、 時間 T ( 5 ) の時点のカウント値が C cがメモリに記憶される。 そして、 記憶されたカウント値 C cあるいはカウント 値 C cに対応する判定時間 T cに基づいて、 バッテリ 2 0 0の劣化度がマップ等 から推定される (S 1 1 4 ) 。 At time T (5), detected by voltage sensor 600 as shown in Figure 5C When the time variation of the voltage value is less than or equal to the predetermined variation, it is determined that the voltage variation has settled (YES at S 110), and the count value at time T (5) is C c Is stored in the memory. Then, based on the stored count value Cc or the determination time Tc corresponding to the count value Cc, the deterioration degree of the battery 200 is estimated from a map or the like (S 1 14).
以上のようにして、 本実施例に係る二次電池の劣化判定装置によると、 放電終 了後において電圧の変化が予め定められた変化量以下になって収束するまでの時 間は、 バッテリの劣化の度合に依存した時間となる。 収束するまでの時間が長い ほど、 劣化の度合が大きい。 そのため、 判定時間を計測することにより、 劣化の 度合を判定することができる。 このようにすると、 収束する電圧周辺の変化に対 する分解能を向上させれば足り、 二次電池の電圧、 電流および温度の絶対値を精 度よく計測する必要がない。 したがって、 コストの上昇を抑制しつつ、 精度よく 二次電池の劣化の度合を判定する二次電池の劣化判定装置および劣化判定方法を 提供することができる。 As described above, according to the secondary battery deterioration determination device according to the present embodiment, the time until the voltage changes below a predetermined amount of change after the discharge is completed is converged. The time depends on the degree of deterioration. The longer it takes to converge, the greater the degree of degradation. Therefore, the degree of deterioration can be determined by measuring the determination time. In this way, it is sufficient to improve the resolution for changes around the converging voltage, and it is not necessary to accurately measure the absolute values of the voltage, current, and temperature of the secondary battery. Therefore, it is possible to provide a secondary battery deterioration determination device and a deterioration determination method that accurately determine the degree of secondary battery deterioration while suppressing an increase in cost.
今回開示された実施例はすべての点で例示であって制限的なものではないと考 えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲によつ て示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれるこ とが意図される。
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
Claims
1. 二次電池 (200) の劣化の度合を判定する劣化判定装置であって、 前記二次電池 (200) の電圧を検知する検知部 (600) と、 1. A deterioration determination device for determining the degree of deterioration of a secondary battery (200), comprising: a detection unit (600) for detecting a voltage of the secondary battery (200);
予め定められた時間が経過するまで前記二次電池 (200) を放電する放電部 Discharge unit that discharges the secondary battery (200) until a predetermined time elapses
. (400) と、 (400) and
前記検知部 (600) と前記放電部 (400) とに接続される演算ユニッ ト (100) とを含み、 An arithmetic unit (100) connected to the detection unit (600) and the discharge unit (400),
前記演算ュニット (100) は、 The arithmetic unit (100) is
前記二次電池 (200) の放電後、 前記検知された電圧の変化が収束するまで の判定時間に基づいて前記劣化の度合を判定する、 二次電池の劣化判定装置。 A secondary battery deterioration determination device that determines the degree of deterioration based on a determination time until the detected change in voltage converges after the secondary battery (200) is discharged.
2. 前記演算ユニット (100) は、 前記判定時間が長いほど前記二次電池 (200) の劣化の度合が大きいことを判定する、 請求の範囲第 1項に記載の二 次電池の劣化判定装置。 2. The secondary battery deterioration determination device according to claim 1, wherein the arithmetic unit (100) determines that the degree of deterioration of the secondary battery (200) is larger as the determination time is longer. .
3. 前記演算ユニット (100) は、 前記二次電池 (200) の放電後、 前 記検知された電圧の変化量が予め定められた変化量以下になると、 前記電圧の変 化が収束したことを判定する、 請求の範囲第 1項に記載の二次電池の劣化判定装 置。 3. After the secondary battery (200) is discharged, the arithmetic unit (100) determines that the change in voltage has converged when the detected change in voltage is less than or equal to a predetermined change. The apparatus for determining deterioration of a secondary battery according to claim 1, wherein:
4. 前記劣化判定装置は車両に搭載される、 請求の範囲第 1項に記載の二次 電池の劣化判定装置。 4. The secondary battery deterioration determination device according to claim 1, wherein the deterioration determination device is mounted on a vehicle.
5. 前記二次電池は、 リチウムイオン電池である、 請求の範囲第 1項〜第 4 項のいずれかに記載の二次電池の劣化判定装置。 5. The secondary battery deterioration determination device according to any one of claims 1 to 4, wherein the secondary battery is a lithium ion battery.
6. 二次電池 (200) の劣化の度合を判定する劣化判定装置であって、 前記二次電池 (200) の電圧を検知するための検知手段 (600) と、 予め定められた時間が経過するまで前記二次電池 (200) を放電するための 放電手段 (400) と、 6. A deterioration determination device for determining the degree of deterioration of the secondary battery (200), the detection means (600) for detecting the voltage of the secondary battery (200), and the elapse of a predetermined time Discharging means (400) for discharging the secondary battery (200) until
前記二次電池 (200) の放電後、 前記検知された電圧の変化が収束するまで の判定時間に基づいて前記劣化の度合を判定するための劣化判定手段 (100) とを含む、 二次電池の劣化判定装置。
A secondary battery (200) including a deterioration determination means (100) for determining the degree of deterioration based on a determination time until the change in the detected voltage converges after the discharge of the secondary battery (200). Degradation judgment device.
7. 前記劣化判定手段 (100) は、 前記判定時間が長いほど前記二次電池 (200) の劣化の度合が大きいことを判定するための手段を含む、 請求の範囲 第 6項に記載の二次電池の劣化判定装置。 7. The deterioration determining means (100) according to claim 6, further comprising means for determining that the degree of deterioration of the secondary battery (200) is larger as the determination time is longer. Secondary battery deterioration judgment device.
8. 前記劣化判定手段 (100) は、 前記二次電池 (200) の放電後、 前 記検知された電圧の変化量が予め定められた変化量以下になると、 前記電圧の変 化が収束したことを判定するための収束判定手段を含む、 請求の範囲第 6項に記 載の二次電池の劣化判定装置。 8. The deterioration determining means (100) converges the voltage change when the detected voltage change amount is equal to or less than a predetermined change amount after the secondary battery (200) is discharged. The deterioration determination device for a secondary battery according to claim 6, further comprising a convergence determination means for determining this.
9. 前記劣化判定装置は車両に搭載される、 請求の範囲第 6項に記載の二次 電池の劣化判定装置。 9. The deterioration determination device for a secondary battery according to claim 6, wherein the deterioration determination device is mounted on a vehicle.
10. 前記二次電池は、 リチウムイオン電池である、 請求の範囲第 6項〜第 9項のいずれかに記載の二次電池の劣化判定装置。 10. The secondary battery deterioration determination device according to any one of claims 6 to 9, wherein the secondary battery is a lithium ion battery.
1 1. 二次電池 (200) の劣化の度合を判定する劣化判定方法であって、 前記二次電池 (200) の電圧を検知するステップと、 1 1. A deterioration determination method for determining a degree of deterioration of a secondary battery (200), comprising: detecting a voltage of the secondary battery (200);
予め定められた時間が経過するまで前記二次電池 (200) を放電するステツ プと、 A step of discharging the secondary battery (200) until a predetermined time elapses;
前記二次電池 (200) の放電後、 前記検知された電圧の変化が収束するまで の判定時間に基づいて前記劣化の度合を判定する劣化判定ステップとを含む、 二 次電池の劣化判定方法。 A deterioration determination method for a secondary battery, comprising: a deterioration determination step for determining the degree of deterioration based on a determination time until the change in the detected voltage converges after the secondary battery (200) is discharged.
1 2. 前記劣化判定ステップは、 前記判定時間が長いほど前記二次電池 (2 00) の劣化の度合が大きいことを判定するステップを含む、 請求の範囲第 1 1 項に記載の二次電池の劣化判定方法。 1. The secondary battery according to claim 11, wherein the deterioration determining step includes a step of determining that the degree of deterioration of the secondary battery (200) is larger as the determination time is longer. Degradation judgment method.
13. 前記劣化判定ステップは、 前記二次電池 (200) の放電後、 前記検 知された電圧の変化量が予め定められた変化量以下になると、 前記電圧の変化が 収束したことを判定するステップを含む、 請求の範囲第 1 1項に記載の二次電池 の劣化判定方法。 13. The deterioration determining step determines that the voltage change has converged when the detected voltage change amount is equal to or less than a predetermined change amount after the secondary battery (200) is discharged. The method for determining deterioration of a secondary battery according to claim 11, comprising a step.
14. 前記劣化判定方法を実現する演算ュニット (100) は車両に搭載さ れる、 請求の範囲第 1 1項に記載の二次電池の劣化判定方法。 14. The method for determining deterioration of a secondary battery according to claim 11, wherein the arithmetic unit (100) for realizing the method for determining deterioration is mounted on a vehicle.
15. 前記二次電池は、 リチウムイオン電池である、 請求の範囲第 1 1項〜 第 14項のいずれかに記載の二次電池の劣化判定方法。
15. The method for determining deterioration of a secondary battery according to any one of claims 11 to 14, wherein the secondary battery is a lithium ion battery.
16. 二次電池 (200) の劣化の度合を判定する劣化判定装置であって、 前記二次電池 (200) の電圧を検知する電圧センサ (600) と、 予め定められた時間が経過するまで前記二次電池 (200) を放電するための 放電用抵抗装置 (400) と、 16. A deterioration determination device for determining a degree of deterioration of the secondary battery (200), the voltage sensor (600) detecting the voltage of the secondary battery (200), and a predetermined time A discharging resistance device (400) for discharging the secondary battery (200);
前記二次電池 (200) の放電後、 前記検知された電圧の変化が収束するまで の判定時間に基づいて前記劣化の度合を判定する電子制御ユニット (1 00) と を含む、 二次電池の劣化判定装置。
An electronic control unit (100) for determining the degree of deterioration based on a determination time until the change in the detected voltage converges after the secondary battery (200) is discharged. Degradation judgment device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-368217 | 2005-12-21 | ||
JP2005368217A JP2007170953A (en) | 2005-12-21 | 2005-12-21 | Deterioration determining device of secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007072988A1 true WO2007072988A1 (en) | 2007-06-28 |
Family
ID=38188747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325997 WO2007072988A1 (en) | 2005-12-21 | 2006-12-20 | Secondary cell degradation judging device and degradation judging method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007170953A (en) |
WO (1) | WO2007072988A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2404792B1 (en) * | 2009-03-06 | 2013-12-25 | Honda Motor Co., Ltd. | Abnormality detection and vehicle tracking device |
JP2013148452A (en) * | 2012-01-19 | 2013-08-01 | Toyota Industries Corp | Soh estimation device |
JP5596083B2 (en) * | 2012-06-26 | 2014-09-24 | Imv株式会社 | Lithium-ion secondary battery deterioration diagnosis device |
JP5888209B2 (en) * | 2012-11-19 | 2016-03-16 | トヨタ自動車株式会社 | Power storage device diagnosis system and power storage device diagnosis method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002365347A (en) * | 2001-06-04 | 2002-12-18 | Toyota Motor Corp | Battery capacity determining method and battery capacity determining device |
JP2005331482A (en) * | 2004-05-21 | 2005-12-02 | Fuji Heavy Ind Ltd | Remaining capacity operational equipment for electricity accumulation device |
-
2005
- 2005-12-21 JP JP2005368217A patent/JP2007170953A/en not_active Withdrawn
-
2006
- 2006-12-20 WO PCT/JP2006/325997 patent/WO2007072988A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002365347A (en) * | 2001-06-04 | 2002-12-18 | Toyota Motor Corp | Battery capacity determining method and battery capacity determining device |
JP2005331482A (en) * | 2004-05-21 | 2005-12-02 | Fuji Heavy Ind Ltd | Remaining capacity operational equipment for electricity accumulation device |
Also Published As
Publication number | Publication date |
---|---|
JP2007170953A (en) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7893652B2 (en) | Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery | |
JP4597501B2 (en) | Method and apparatus for estimating remaining capacity of secondary battery | |
JP5109304B2 (en) | Battery remaining capacity detection device | |
JP5616254B2 (en) | Battery state detection method and control device | |
WO2008026476A1 (en) | Method and device for estimating soc value of secondary battery and degradation judging method and device | |
JP2013542418A (en) | How to test if a current sensor is functioning correctly | |
JP5397013B2 (en) | Battery control device | |
JP6565446B2 (en) | Battery deterioration determination device, battery deterioration determination method, and vehicle | |
CN105378497A (en) | Method for estimating state of health of a battery in hybrid vehicle | |
US11054476B2 (en) | Method for monitoring a status of a battery, monitoring device and motor vehicle | |
CN110764014A (en) | Method and device for detecting short circuit in battery, terminal and readable storage medium | |
JPWO2017033311A1 (en) | Deterioration degree estimation device and deterioration degree estimation method | |
JP5812968B2 (en) | Current sensor failure detection device, battery system, and current sensor failure detection method | |
JP2018013456A (en) | Battery state monitoring device, battery state monitoring system, battery state monitoring method and control program | |
WO2005093446A1 (en) | Method and equipment for estimating residual capacity of storage battery | |
CN112816903A (en) | Ground fault detection device | |
JP4415074B2 (en) | Charge / discharge control system | |
WO2016132895A1 (en) | Battery system monitoring apparatus | |
JP2004301780A (en) | Battery state monitoring device, its method, and dischargeable capacity detecting method | |
JP3432463B2 (en) | Battery capacity measurement device | |
WO2007072988A1 (en) | Secondary cell degradation judging device and degradation judging method | |
JPH09243717A (en) | Method of detecting residual capacity of battery, and device therefor | |
JP2023511169A (en) | RELAY DIAGNOSTIC DEVICE, RELAY DIAGNOSTIC METHOD, BATTERY SYSTEM AND ELECTRIC VEHICLE | |
JP4588614B2 (en) | Battery cell short detection method and apparatus | |
JP4880451B2 (en) | Secondary battery remaining capacity estimation method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06843379 Country of ref document: EP Kind code of ref document: A1 |