JP5812968B2 - Current sensor failure detection device, battery system, and current sensor failure detection method - Google Patents

Current sensor failure detection device, battery system, and current sensor failure detection method Download PDF

Info

Publication number
JP5812968B2
JP5812968B2 JP2012240488A JP2012240488A JP5812968B2 JP 5812968 B2 JP5812968 B2 JP 5812968B2 JP 2012240488 A JP2012240488 A JP 2012240488A JP 2012240488 A JP2012240488 A JP 2012240488A JP 5812968 B2 JP5812968 B2 JP 5812968B2
Authority
JP
Japan
Prior art keywords
current
current sensor
deviation
secondary battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012240488A
Other languages
Japanese (ja)
Other versions
JP2014089159A (en
Inventor
正隆 内田
正隆 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012240488A priority Critical patent/JP5812968B2/en
Publication of JP2014089159A publication Critical patent/JP2014089159A/en
Application granted granted Critical
Publication of JP5812968B2 publication Critical patent/JP5812968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、電流センサ故障検知装置、電池システム、及び電流センサ故障検知方法に関するものである。   The present invention relates to a current sensor failure detection device, a battery system, and a current sensor failure detection method.

リチウム電池等の二次電池が例えば電気自動車等の車両に搭載され、車両が運転される場合、二次電池の充放電が繰り返される。そして、車両の種々の制御に必要な二次電池の蓄電容量(SOC:State Of Charge)を二次電池の出力電流を用いて演算するために、電流センサが主として用いられている。電流センサを用いてSOCを演算する場合、電流センサの精度が重要となるため、高精度な電流センサが求められると共に、電流センサの故障検知が必要であった。   When a secondary battery such as a lithium battery is mounted on a vehicle such as an electric vehicle and the vehicle is driven, charging and discharging of the secondary battery is repeated. A current sensor is mainly used to calculate a storage capacity (SOC: State Of Charge) of a secondary battery necessary for various controls of the vehicle using an output current of the secondary battery. When calculating the SOC using a current sensor, the accuracy of the current sensor is important, so a highly accurate current sensor is required and a failure detection of the current sensor is necessary.

例えば、特許文献1に開示されている技術では、二次電池の電圧を検出する電圧センサと、電圧センサで検出した電圧値の基準変動量に対応する電流センサで検出した電流の変動量が基準値以下である時に電流センサが故障していると判定している。   For example, in the technology disclosed in Patent Document 1, the voltage sensor that detects the voltage of the secondary battery and the current fluctuation amount detected by the current sensor corresponding to the reference fluctuation amount of the voltage value detected by the voltage sensor are the reference. When the value is less than or equal to the value, it is determined that the current sensor has failed.

特開平10−253682号公報JP-A-10-253682

しかしながら、特許文献1に開示されている技術では、二次電池の電圧の変動量を検出するために高精度の電圧センサを必要とする。このため、上記技術には、装置自体が高価になり、又、回路構成が大きくなるという問題点があった。さらに、上記技術は、二次電池の特性上、内部インピーダンスが存在し、充放電時の電圧降下により正確に蓄電容量が把握できないという問題や、電圧センサのズレが発生した場合に、電流センサの故障検知ができないという問題点もあった。
また、電流センサは、充放電の際発生する残留磁気によるヒステリシスが存在するという問題がある。
さらに、電流センサは、大電流用の電流センサは0A近傍の精度が悪く、0A近傍の精度を向上させるためには小電流用の電流センサを必要とする。このように、電流センサは、フルレンジでの精度と0A近傍での精度がトレードオフの関係にある。
However, the technique disclosed in Patent Document 1 requires a highly accurate voltage sensor in order to detect the amount of voltage fluctuation of the secondary battery. For this reason, the above technique has a problem that the device itself is expensive and the circuit configuration becomes large. Furthermore, the above technology has a problem that the internal impedance exists due to the characteristics of the secondary battery, and the storage capacity cannot be accurately grasped due to the voltage drop during charging / discharging, or the current sensor There was also a problem that failure could not be detected.
In addition, the current sensor has a problem that there is hysteresis due to residual magnetism generated during charging and discharging.
Further, the current sensor for large currents has poor accuracy in the vicinity of 0A, and a current sensor for small current is required to improve the accuracy in the vicinity of 0A. Thus, in the current sensor, the accuracy in the full range and the accuracy in the vicinity of 0 A are in a trade-off relationship.

本発明は、このような事情に鑑みてなされたものであって、電圧センサを用いずに、かつ回路構成を大きくすることなく電流センサの故障を検知できる、電流センサ故障検知装置、電池システム、及び電流センサ故障検知方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a current sensor failure detection device, a battery system, which can detect a failure of a current sensor without using a voltage sensor and without increasing the circuit configuration, It is another object of the present invention to provide a current sensor failure detection method.

上記課題を解決するために、本発明の電流センサ故障検知装置、電池システム、及び電流センサ故障検知方法は以下の手段を採用する。   In order to solve the above problems, the current sensor failure detection device, the battery system, and the current sensor failure detection method of the present invention employ the following means.

本発明の第一態様に係る電流センサ故障検知装置は、充放電可能な二次電池に流れる電流を計測する電流センサの故障を検知する電流センサ故障検知装置であって、前記二次電池を、充電電流及び放電電流の平均絶対値を同一とし、充電されて放電されるまでの充放電サイクルを行う充放電均等運転させ、前記電流センサで計測された前記二次電池の充電電流と基準電流との偏差である充電電流偏差、及び前記電流センサで計測された前記二次電池の放電電流と前記基準電流との偏差である放電電流偏差を算出する電流偏差算出手段を備え、前記充電電流偏差と前記放電電流偏差との差が予め定められた許容誤差の範囲を超える場合に、前記電流センサが異常であると判定する。 A current sensor failure detection device according to the first aspect of the present invention, there is provided a current sensor failure detection device for detecting a failure of the current sensor for measuring a current flowing through the rechargeable secondary battery, the secondary battery, The charging battery and the charging current and the reference current measured by the current sensor are the same as the absolute absolute values of the charging current and the discharging current, and the charging / discharging equal operation is performed to perform the charging / discharging cycle until charging and discharging. Charging current deviation that is a deviation of the charging current deviation, and a current deviation calculating means for calculating a discharging current deviation that is a deviation between the discharge current of the secondary battery measured by the current sensor and the reference current, and the charging current deviation When the difference from the discharge current deviation exceeds a predetermined allowable error range, it is determined that the current sensor is abnormal.

本構成に係る電流センサ故障検知装置は、充放電可能な二次電池に流れる電流を計測する電流センサの故障を検知する。   The current sensor failure detection device according to this configuration detects a failure of a current sensor that measures a current flowing in a chargeable / dischargeable secondary battery.

二次電池が、充電電流及び放電電流の平均絶対値を同一とし、充電されて放電されるまでの充放電サイクルを行う充放電均等運転され、電流センサで計測された二次電池の充電電流と基準電流との偏差である充電電流偏差、及び電流センサで計測された二次電池の放電電流と基準電流との偏差である放電電流偏差が、電流偏差算出手段によって算出される。基準電流は、二次電池を備える電池システムに応じた充電電流及び放電電流である。この充電電流偏差及び放電電流偏差が、電流センサの計測誤差に相当する。 The secondary battery has the same average absolute value of the charging current and the discharging current, and is charged and discharged in a charge / discharge cycle until it is charged and discharged, and the charging current of the secondary battery measured by the current sensor The current deviation calculating means calculates a charging current deviation that is a deviation from the reference current and a discharge current deviation that is a deviation between the discharge current of the secondary battery measured by the current sensor and the reference current. The reference current is a charging current and a discharging current according to a battery system including a secondary battery. This charge current deviation and discharge current deviation correspond to the measurement error of the current sensor.

そして、充電電流偏差と放電電流偏差との差が予め定められた許容誤差の範囲を超える場合に、電流センサが異常であると判定される。
充電電流と放電電流とが同じ大きさであるならば、例え精度の高くない電流センサが用いられても、充電電流偏差と放電電流偏差との差は、相殺されて0(零)となるはずである。また、差があったとしても、充放電の際発生する残留磁気によるヒステリシスに起因するものであり、事前に電流センサを較正することでヒステリシスの影響を小さくできる。このため、充電電流偏差と放電電流偏差との差が許容誤差を超える場合とは、電流センサに異常が発生し、正しく電流を計測できない状態となっている可能性が高い。
When the difference between the charging current deviation and the discharging current deviation exceeds a predetermined allowable error range, it is determined that the current sensor is abnormal.
If the charge current and the discharge current are the same magnitude, the difference between the charge current deviation and the discharge current deviation should be offset to 0 (zero) even if a non-accurate current sensor is used. It is. Even if there is a difference, it is caused by hysteresis due to residual magnetism that occurs during charging and discharging, and the influence of hysteresis can be reduced by calibrating the current sensor in advance. For this reason, when the difference between the charge current deviation and the discharge current deviation exceeds the allowable error, there is a high possibility that an abnormality has occurred in the current sensor and the current cannot be measured correctly.

このように、本構成は、電流センサによって計測された充電電流偏差と放電電流偏差との差から、電流センサの異常を検知するので、電圧センサを必要としない。また、本構成は、充電電流偏差と放電電流偏差との差が許容誤差を超えるか否かを判定するだけなので、回路構成を大きくすることなく電流センサの故障を検知できる。
さらに、本構成は、充電電流偏差と放電電流偏差とを相殺することで、電流センサによる誤差を実質的に小さくできるので、精度の高くない電流センサを用いてもSOCを高い精度で計測できる。
Thus, since this structure detects abnormality of a current sensor from the difference of the charging current deviation measured by the current sensor, and a discharge current deviation, a voltage sensor is not required. In addition, since the present configuration only determines whether or not the difference between the charging current deviation and the discharging current deviation exceeds the allowable error, a failure of the current sensor can be detected without increasing the circuit configuration.
Furthermore, this configuration can substantially reduce the error due to the current sensor by canceling the charge current deviation and the discharge current deviation, so that the SOC can be measured with high accuracy even when using a current sensor with low accuracy.

上記第一態様では、所定の運転時間内において前記二次電池の充放電がサイクルで行われた第1の時間、及び前記運転時間内において前記サイクルを形成できなかった第2の時間を算出する充放電サイクル時間算出手段と、前記第1の時間における前記充電電流偏差の時間積分と前記放電電流偏差の時間積分との差に前記第2の時間における前記充電電流偏差又は前記放電電流偏差の時間積分を加算した結果が、前記運転時間における予め定められた許容誤差の範囲を超える場合に、前記電流センサが異常であると判定する異常判定手段と、を備えることが好ましい。   In the first aspect, a first time when the secondary battery is charged and discharged in a cycle within a predetermined operation time and a second time when the cycle cannot be formed within the operation time are calculated. The difference between the charging / discharging cycle time calculating means and the time integration of the charging current deviation in the first time and the time integration of the discharging current deviation is the time of the charging current deviation or the discharging current deviation in the second time. Preferably, the apparatus includes an abnormality determination unit that determines that the current sensor is abnormal when a result of adding the integrals exceeds a predetermined allowable error range in the operation time.

本構成によれば、充放電サイクル時間算出手段によって、所定の運転時間内において二次電池の充放電がサイクルで行われた第1の時間、及び運転時間内においてサイクルを形成できなかった第2の時間が算出される。第1の時間は、詳述すると、二次電池が充電されて放電されるまで、又は放電されて充電されるまでを1サイクルとし、それが運転時間内において1回以上行われた時間である。第2の時間は、充電又は放電が行われたものの、1サイクルに至らなかった時間、すなわち、運転時間と第1の時間との差である。通常、第2の時間は第1の時間に比べて非常に短い。   According to this configuration, the charging / discharging cycle time calculation means can perform the first time when the secondary battery is charged and discharged in the cycle within the predetermined operating time, and the second time when the cycle cannot be formed within the operating time. Is calculated. More specifically, the first time is a time during which the secondary battery is charged and discharged or discharged and charged for one cycle, which is performed at least once within the operation time. . The second time is the difference between the operation time and the first time when charging or discharging was performed but not reaching one cycle. Usually, the second time is very short compared to the first time.

そして、第1の時間における充電電流偏差の時間積分と放電電流偏差の時間積分との差に、第2の時間における充電電流偏差又は放電電流偏差の時間積分を加算した値が求められる。異常判定手段は、この加算結果が運転時間における予め定められた許容誤差の範囲を超える場合に、電流センサが異常であると判定する。   Then, a value obtained by adding the time integration of the charging current deviation or the discharge current deviation in the second time to the difference between the time integration of the charging current deviation in the first time and the time integration of the discharging current deviation is obtained. The abnormality determining means determines that the current sensor is abnormal when the addition result exceeds a predetermined allowable error range in the operation time.

このように、本構成は、運転時間内においてサイクルを形成した充放電電流の時間積分とサイクルを形成できなかった電流の時間積分から、電流センサの異常を判定するので、より精度高く電流センサの異常を判定できる。   Thus, this configuration determines the abnormality of the current sensor from the time integration of the charge / discharge current that formed the cycle within the operation time and the time integration of the current that could not form the cycle. Abnormality can be judged.

上記第一態様では、前記電流センサが、前記異常判定手段によって前記電流センサが異常であると判定された場合に較正されることが好ましい。   In the first aspect, it is preferable that the current sensor is calibrated when the abnormality determination unit determines that the current sensor is abnormal.

本構成によれば、電流センサの異常を簡易に解消できる場合がある。   According to this configuration, the abnormality of the current sensor may be easily solved.

上記第一態様では、電流の向きを可変とする較正用回路を備え、前記電流センサが、前記較正用回路に流れる異なる向きの電流の計測結果に基づいて較正されることが好ましい。   In the first aspect, it is preferable that a calibration circuit that changes a current direction is provided, and that the current sensor is calibrated based on measurement results of currents in different directions flowing through the calibration circuit.

本構成によれば、較正用回路は例えばスイッチの切り替えによって流れる電流の向きを可変とする。そして、電流センサは、較正用回路に流れる異なる向きの電流の計測に基づいて、充放電の際発生する残留磁気によるヒステリシスの影響をキャンセルするように較正される。
従って、本構成は、電流センサを用いてより精度高く蓄電容量を計測することができる。
According to this configuration, the calibration circuit makes the direction of the flowing current variable by switching the switch, for example. The current sensor is calibrated so as to cancel the influence of hysteresis due to residual magnetism that occurs during charging and discharging based on the measurement of currents in different directions flowing through the calibration circuit.
Therefore, this configuration can measure the storage capacity with higher accuracy using the current sensor.

本発明の第二態様に係る電池システムは、充放電可能な二次電池と、前記二次電池に流れる電流を計測する電流センサと、上記記載の電流センサ故障検知装置と、を備える。   The battery system which concerns on the 2nd aspect of this invention is equipped with the secondary battery which can be charged / discharged, the current sensor which measures the electric current which flows into the said secondary battery, and the above-mentioned current sensor failure detection apparatus.

本発明の第三態様に係る電流センサ故障検知方法は、充放電可能な二次電池に流れる電流を計測する電流センサの故障を検知する電流センサ故障検知方法であって、前記二次電池を、充電電流及び放電電流の平均絶対値を同一とし、充電されて放電されるまでの充放電サイクルを行う充放電均等運転させ、前記電流センサで計測された前記二次電池の充電電流と基準電流との偏差である充電電流偏差、及び前記電流センサで計測された前記二次電池の放電電流と前記基準電流との偏差である放電電流偏差を算出する第1工程と、前記充電電流偏差と前記放電電流偏差との差が予め定められた許容誤差の範囲を超える場合に、前記電流センサが異常であると判定する第2工程と、を含む。 Current sensor failure detecting method according to the third aspect of the present invention, there is provided a current sensor failure detecting method for detecting a failure of the current sensor for measuring a current flowing through the rechargeable secondary battery, the secondary battery, The charging battery and the charging current and the reference current measured by the current sensor are the same as the absolute absolute values of the charging current and the discharging current, and the charging / discharging equal operation is performed to perform the charging / discharging cycle until charging and discharging. A first step of calculating a charging current deviation which is a deviation of the charging current deviation, and a discharging current deviation which is a deviation between the discharging current of the secondary battery measured by the current sensor and the reference current, and the charging current deviation and the discharging And a second step of determining that the current sensor is abnormal when the difference from the current deviation exceeds a predetermined allowable error range.

本発明によれば、電圧センサを用いずに、かつ回路構成を大きくすることなく電流センサの故障を検知できる、という優れた効果を有する。   According to the present invention, there is an excellent effect that a failure of a current sensor can be detected without using a voltage sensor and without increasing the circuit configuration.

本発明の実施形態に係る電池システムの構成図である。It is a block diagram of the battery system which concerns on embodiment of this invention. 本発明の実施形態に係る較正用回路の構成図である。It is a block diagram of the circuit for a calibration which concerns on embodiment of this invention. 本発明の実施形態に係る較正用回路に流れる電流の変化を示すグラフである。It is a graph which shows the change of the electric current which flows into the circuit for a calibration which concerns on embodiment of this invention. 本発明の実施形態に係るBMSの電気的構成を示す機能ブロック図である。It is a functional block diagram which shows the electrical structure of BMS which concerns on embodiment of this invention. 本発明の実施形態に係る基準運転時間内における充放電サイクルを示す模式図である。It is a schematic diagram which shows the charging / discharging cycle within the reference | standard driving | running time which concerns on embodiment of this invention. 本発明の実施形態に係る電流センサ異常検知処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the current sensor abnormality detection process which concerns on embodiment of this invention. 本発明の実施形態に係る電流センサが異常であると判定される範囲を示したグラフである。It is the graph which showed the range from which the current sensor which concerns on embodiment of this invention is determined to be abnormal.

以下に、本発明に係る電流センサ故障検知装置、電池システム、及び電流センサ故障検知方法の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a current sensor failure detection device, a battery system, and a current sensor failure detection method according to the present invention will be described with reference to the drawings.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本実施形態に係る電池システム10の構成図である。以下、電池システム10は、例えば電気自動車に備えられる場合を例に説明する。   FIG. 1 is a configuration diagram of a battery system 10 according to the present embodiment. Hereinafter, the battery system 10 will be described as an example when it is provided in an electric vehicle, for example.

図1に示されるように電池システム10は、1以上の充放電可能な二次電池12で構成される複数の組電池14、組電池14毎に設けられ、組電池14の状態を監視する監視装置(Cell Monitor Unit、以下「CMU」という)16、及びCMU16からの各種情報が入力される電池管理装置(Battery Management System、以下「BMS」という)18を備えている。なお、二次電池12は、充放電が可能であれば、リチウムイオン電池であっても鉛電池であってもよい。   As shown in FIG. 1, the battery system 10 is provided for each of a plurality of assembled batteries 14 and assembled batteries 14 including one or more rechargeable secondary batteries 12, and monitors the state of the assembled battery 14. A device (Cell Monitor Unit, hereinafter referred to as “CMU”) 16 and a battery management device (hereinafter referred to as “BMS”) 18 to which various information from the CMU 16 is input are provided. The secondary battery 12 may be a lithium ion battery or a lead battery as long as charging and discharging are possible.

図1に示される複数の組電池14は、負荷20に対して直列に接続されているが、これに限らず、複数の組電池14は、負荷20に対して並列に接続されてもよい。負荷20は、例えば車輪を回転させるためのモータ等である。   Although the plurality of assembled batteries 14 shown in FIG. 1 are connected in series to the load 20, the present invention is not limited to this, and the plurality of assembled batteries 14 may be connected in parallel to the load 20. The load 20 is, for example, a motor for rotating wheels.

CMU16は、一例として、数珠つなぎ(デイジーチェーン)で接続されており、一端部に位置するCMU16は、BMS18と接続されている。一方、他端部に位置するCMU16は、終端抵抗器22と接続されている。   As an example, the CMU 16 is connected by a daisy chain, and the CMU 16 located at one end is connected to the BMS 18. On the other hand, the CMU 16 located at the other end is connected to the termination resistor 22.

BMS18は、例えば、ECU(Engine Control Unit)、充電器、PLC(programmable logic controller)等の他の機器に接続され、これらの機器との間で適宜必要な情報の入出力を行う。   The BMS 18 is connected to other devices such as an ECU (Engine Control Unit), a charger, and a PLC (programmable logic controller), for example, and inputs / outputs necessary information to / from these devices.

さらに、電池システム10は、組電池14に流れる電流を計測する電流センサ24を備えている。   Further, the battery system 10 includes a current sensor 24 that measures a current flowing through the assembled battery 14.

電流センサ24は、二次電池12の充放電の際発生する残留磁気によるヒステリシスが存在するので、図2に示される較正用回路60を用いた較正(キャリブレーション)が予め行われる。   Since the current sensor 24 has hysteresis due to residual magnetism that occurs when the secondary battery 12 is charged and discharged, calibration using the calibration circuit 60 shown in FIG. 2 is performed in advance.

本実施形態に係る較正用回路60は、流れる電流の向きを可変とする回路であり、電池システム10に備えられている。電流センサ24は、組電池14に流れる電流と共に、較正用回路60に流れる電流を計測可能とされている。   The calibration circuit 60 according to the present embodiment is a circuit that makes the direction of flowing current variable, and is provided in the battery system 10. The current sensor 24 can measure the current flowing through the calibration circuit 60 together with the current flowing through the assembled battery 14.

較正用回路60は、スイッチ62A,62Bが直列に接続されたスイッチ列64Aとスイッチ62C,62Dが直列に接続されたスイッチ列64Bとが電池66に対して並列に接続されている。そして、スイッチ62Aとスイッチ62Bとの間に抵抗器68の一端が接続され、スイッチ62Cとスイッチ62Dとの間に抵抗器68の他端が接続される。すなわち、スイッチ列64Aとスイッチ列64Bとが抵抗器68を介して接続される。
そして、較正用回路60は、スイッチ62A,62Dを閉じる一方、スイッチ62B,62Cを開くことでa方向に電流が流れる。また、較正用回路60は、スイッチ62A,62Dを開く一方、スイッチ62B,62Cを閉じることでa方向と逆向きのb方向に電流が流れる。
In the calibration circuit 60, a switch row 64A in which switches 62A and 62B are connected in series and a switch row 64B in which switches 62C and 62D are connected in series are connected in parallel to the battery 66. One end of the resistor 68 is connected between the switch 62A and the switch 62B, and the other end of the resistor 68 is connected between the switch 62C and the switch 62D. In other words, the switch row 64A and the switch row 64B are connected via the resistor 68.
The calibration circuit 60 closes the switches 62A and 62D, while opening the switches 62B and 62C, a current flows in the direction a. Further, the calibration circuit 60 opens the switches 62A and 62D, while closing the switches 62B and 62C, a current flows in the b direction opposite to the a direction.

図3は、較正用回路60に流れる電流の変化を示すグラフである。図3に示されるように、較正用回路60は、スイッチ62A〜62Dの開閉状態を制御することによって、二次電池12の充放電における電流の流れの向きを再現する。なお、電池66の電圧及び抵抗器68の抵抗値は、組電池14の充放電で流れる電流(詳細を後述する基準電流)と同じ大きさの電流が較正用回路60に流れるよう調整されている。
そして、電流センサ24は、電流センサ24単体性能による充電偏差と放電偏差と、BMS18の計測回路単体が持つアナログ回路のバラつきと共に、較正用回路60に流れる異なる向きの電流の計測結果に基づいて、充放電の際発生する残留磁気によるヒステリシスの影響をキャンセルするように予め較正される。
FIG. 3 is a graph showing changes in the current flowing through the calibration circuit 60. As shown in FIG. 3, the calibration circuit 60 reproduces the direction of current flow in charging / discharging the secondary battery 12 by controlling the open / closed states of the switches 62 </ b> A to 62 </ b> D. Note that the voltage of the battery 66 and the resistance value of the resistor 68 are adjusted so that a current having the same magnitude as the current (reference current to be described in detail later) flowing through charging / discharging of the assembled battery 14 flows through the calibration circuit 60. .
The current sensor 24 is based on the measurement results of currents in different directions flowing through the calibration circuit 60 along with the charge deviation and discharge deviation due to the performance of the current sensor 24 alone, and the variation of the analog circuit of the measurement circuit alone of the BMS 18. Calibration is performed in advance so as to cancel the influence of hysteresis due to residual magnetism that occurs during charging and discharging.

本実施形態に係るBMS18は、電流センサ24の故障を検知する電流センサ故障検知装置としての機能を有している。   The BMS 18 according to the present embodiment has a function as a current sensor failure detection device that detects a failure of the current sensor 24.

図4は、BMS18の電気的構成を示す機能ブロック図である。なお、図4は、BMS18による電流センサ24の電流センサ故障検知装置としての機能を示している。
また、BMS18は、例えば、CPU(Central Processing Unit)、RAM(Random
Access Memory)、及びコンピュータ読み取り可能な記録媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
FIG. 4 is a functional block diagram showing an electrical configuration of the BMS 18. FIG. 4 shows the function of the current sensor 24 by the BMS 18 as a current sensor failure detection device.
The BMS 18 includes, for example, a CPU (Central Processing Unit), a RAM (Random
Access Memory) and a computer-readable recording medium. A series of processes for realizing various functions is recorded on a recording medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.

BMS18は、計測電流値記憶部70、電流偏差算出部72、充放電サイクル時間算出部74、及び異常判定部76を備える。   The BMS 18 includes a measured current value storage unit 70, a current deviation calculation unit 72, a charge / discharge cycle time calculation unit 74, and an abnormality determination unit 76.

計測電流値記憶部70は、電流センサ24で計測された電流値を計測時間に関連付けて記憶する。   The measured current value storage unit 70 stores the current value measured by the current sensor 24 in association with the measurement time.

電流偏差算出部72は、電流センサ24で計測された二次電池12の充電電流と基準電流との偏差である充電電流偏差、及び電流センサ24で計測された二次電池12の放電電流と基準電流との偏差である放電電流偏差を算出する。なお、基準電流の値(絶対値)は、二次電池12を備える電池システム10に応じた充電電流及び放電電流の値である。そして、充電電流偏差及び放電電流偏差が、電流センサ24の計測誤差に相当する。   The current deviation calculation unit 72 includes a charging current deviation that is a deviation between the charging current of the secondary battery 12 measured by the current sensor 24 and the reference current, and a discharging current of the secondary battery 12 measured by the current sensor 24 and the reference. A discharge current deviation which is a deviation from the current is calculated. Note that the value (absolute value) of the reference current is a value of a charging current and a discharging current according to the battery system 10 including the secondary battery 12. The charging current deviation and the discharging current deviation correspond to the measurement error of the current sensor 24.

充放電サイクル時間算出部74は、所定の運転時間(以下、「基準運転時間」という。)内において二次電池12の充放電がサイクルで行われた第1の時間、及び基準運転時間内においてサイクルを形成できなかった第2の時間を算出する。   The charging / discharging cycle time calculation unit 74 includes a first time during which charging / discharging of the secondary battery 12 is performed in a cycle within a predetermined operation time (hereinafter referred to as “reference operation time”), and a reference operation time. The second time when the cycle could not be formed is calculated.

異常判定部76は、第1の時間における充電電流偏差の時間積分と放電電流偏差の時間積分との差に第2の時間における充電電流偏差又は放電電流偏差の時間積分を加算した結果が、基準運転時間における予め定められた許容誤差の範囲を超える場合に、電流センサ24が異常であると判定する。   The abnormality determination unit 76 adds the time integration of the charging current deviation or the discharging current deviation in the second time to the difference between the time integration of the charging current deviation and the time integration of the discharging current deviation in the first time, and the result When the predetermined allowable error range in the operation time is exceeded, it is determined that the current sensor 24 is abnormal.

なお、以下の説明では、第1の時間を充放電均等運転時間と称呼し、第2の時間を充放電不均等運転時間と称呼し、異常判定部76で行われる処理を異常判定処理と称呼する。   In the following description, the first time is referred to as charge / discharge equal operation time, the second time is referred to as charge / discharge uneven operation time, and the process performed by the abnormality determination unit 76 is referred to as abnormality determination process. To do.

図5は、基準運転時間内における充放電サイクルを示す模式図である。
図5に示されるように、充放電均等運転時間Lは、二次電池12が充電されて放電されるまでを1サイクルとし、それが基準運転時間内において1回以上行われた時間である。充放電不均等運転時間Lは、充電又は放電が行われたものの、1サイクルに至らなかった時間、すなわち、基準運転時間と充放電均等運転時間Lとの差である。通常、充放電不均等運転時間Lは充放電均等運転時間Lに比べて非常に短い。
なお、図5において、充電電流(+100A)近傍の斜線で示される領域が、充電電流偏差xを示し、放電電流(−100A)近傍の斜線で示される領域が、放電電流偏差yを示す。
FIG. 5 is a schematic diagram showing a charge / discharge cycle within the reference operation time.
As shown in FIG. 5, the charge / discharge equal operation time L 1 is a time in which one cycle is taken until the secondary battery 12 is charged and discharged, and this is performed one or more times within the reference operation time. . Discharge unequal operating time L 2, although the charging or discharging is performed, the time did not lead to a cycle, i.e., a difference between the reference operating time and the charge-discharge equivalent operating time L 1. Usually, the charge-discharge unequal operating time L 2 is very short compared to the charge and discharge uniformly the operating time L 1.
In FIG. 5, a region indicated by hatching near the charging current (+100 A) indicates the charging current deviation x, and a region indicated by hatching near the discharging current (−100 A) indicates the discharge current deviation y.

ここで、基準運転時間において許容されるSOCの誤差(以下、「許容SOC誤差」という。)の範囲を±Eとすると、電流センサ24の異常を判定する判定式は、(1)式となる。

Figure 0005812968
Here, assuming that the range of allowable SOC error (hereinafter referred to as “allowable SOC error”) within the reference operation time is ± E, the determination formula for determining the abnormality of the current sensor 24 is the formula (1). .
Figure 0005812968

図6は、本実施形態に係るBMS18によって行われる電流センサ異常検知処理の流れを示すフローチャートである。電流センサ異常検知処理は、例えば、BMS18に対して電流センサ異常検知処理の開始信号が入力された場合に開始される。   FIG. 6 is a flowchart showing a flow of current sensor abnormality detection processing performed by the BMS 18 according to the present embodiment. The current sensor abnormality detection process is started, for example, when a start signal of the current sensor abnormality detection process is input to the BMS 18.

まず、ステップ100では、充放電サイクル時間算出部74によって、基準運転時間における充放電サイクルの時間を算出する。これにより、基準運転時間における充放電均等運転時間及び充放電不均等運転時間が得られる。   First, in step 100, the charge / discharge cycle time calculation unit 74 calculates the charge / discharge cycle time in the reference operation time. Thereby, the charge / discharge equal operation time and the charge / discharge non-uniform operation time in the reference operation time are obtained.

次のステップ102では、充放電均等運転時間及び充放電不均等運転時間における電流値を計測電流値記憶部70から読み出し、電流偏差算出部72によって充電電流偏差及び放電電流偏差を算出する。   In the next step 102, the current values in the charge / discharge equal operation time and the charge / discharge non-uniform operation time are read from the measured current value storage unit 70, and the current deviation calculation unit 72 calculates the charge current deviation and the discharge current deviation.

次のステップ104では、異常判定部76による電流センサ24の異常判定処理が行われる。   In the next step 104, abnormality determination processing of the current sensor 24 by the abnormality determination unit 76 is performed.

ここで、異常判定処理の具体例について説明する。   Here, a specific example of the abnormality determination process will be described.

一例として、二次電池12のセル容量を45[Ah]、充電電流及び放電電流の平均絶対値を100[A]、さらに、電池システム10のSOCの運用範囲を30%から85%とし、その差55%とする。また、基準運転時間を4[h]とし、基準運転時間後の許容SOC誤差を5%以内に収める必要があるとする。
この場合、1回の充放電サイクルは下記(2)式から求められる。なお、下記(2)式で2が乗算されている理由は、1サイクルで充電と放電とが行われるためである。

Figure 0005812968
As an example, the cell capacity of the secondary battery 12 is 45 [Ah], the average absolute value of the charging current and discharging current is 100 [A], and the SOC operating range of the battery system 10 is 30% to 85%. The difference is 55%. Further, it is assumed that the reference operation time is 4 [h] and the allowable SOC error after the reference operation time needs to be within 5%.
In this case, one charge / discharge cycle is obtained from the following equation (2). The reason why 2 is multiplied in the following equation (2) is that charging and discharging are performed in one cycle.
Figure 0005812968

(2)式から1サイクルに要する時間は、0.495[h]と算出されるので、基準運転時間である4時間における充放電サイクルの数は、8.08サイクルとなる。
そして、算出された充放電サイクル数の小数点以下が、充放電不均等運転時間Lに相当する。すなわち、基準運転時間である4時間における充放電不均等運転時間Lは、0.08サイクルに1サイクルの時間である0.495[h]を乗算した0.04[h]となる。
一方、充放電均等運転時間Lは、基準運転時間と充放電不均等運転時間Lとの差であるため、3.96[h]となる。
Since the time required for one cycle is calculated as 0.495 [h] from the equation (2), the number of charge / discharge cycles in 4 hours, which is the reference operation time, is 8.08 cycles.
The following calculated number of charge and discharge cycles of the decimal point corresponds to the charge and discharge unequal operating time L 2. That is, the charge-discharge unequal operating time L 2 in 4 hours which is the reference operating time becomes 0.04 [h] multiplied by 0.495 [h] is the time of one cycle to 0.08 cycles.
On the other hand, the charge and discharge uniformly the operating time L 1, since the reference operating time and the charge-discharge unequal operation time which is the difference between L 2, a 3.96 [h].

また、許容SOC誤差は、セル容量に対して5%である±2.25Ahとされる。   The allowable SOC error is ± 2.25 Ah, which is 5% of the cell capacity.

以上のように求められた値が(1)式に代入されると、下記(3)式となる。

Figure 0005812968
(3)式から求められる範囲を図7に示す。すなわち、図7のハッチング範囲が許容誤差の範囲であり、この許容誤差から充電電流偏差及び放電電流偏差が外れると、異常判定部76によって電流センサ24が異常であると判定される。 When the value obtained as described above is substituted into the equation (1), the following equation (3) is obtained.
Figure 0005812968
The range obtained from the equation (3) is shown in FIG. That is, the hatched range in FIG. 7 is the allowable error range. When the charging current deviation and the discharging current deviation deviate from the allowable error, the abnormality determination unit 76 determines that the current sensor 24 is abnormal.

このように、BMS18は、二次電池12の充電電流偏差と放電電流偏差との差が予め定められた許容誤差を超える場合に、電流センサ24が異常であると判定することとなる。   In this manner, the BMS 18 determines that the current sensor 24 is abnormal when the difference between the charging current deviation and the discharging current deviation of the secondary battery 12 exceeds a predetermined allowable error.

ここで、充電電流と放電電流とが同じ大きさであるならば、例え精度の高くない電流センサ24が用いられても、充電電流偏差と放電電流偏差との差は、相殺されて0(零)となるはずである。また、差があったとしても、充放電の際発生する残留磁気によるヒステリシスに起因するものであり、較正用回路60を用いて電流センサ24を事前に較正することでヒステリシスの影響を小さくできる。このため、充電電流偏差と放電電流偏差との差が許容誤差を超える場合とは、電流センサ24に異常が発生し、正しく電流を計測できない状態となっている可能性が高い場合である。   Here, if the charging current and the discharging current are the same magnitude, even if the current sensor 24 having a low accuracy is used, the difference between the charging current deviation and the discharging current deviation is canceled out to 0 (zero). ) Should be. Even if there is a difference, it is caused by hysteresis due to residual magnetism that occurs during charging / discharging, and the influence of hysteresis can be reduced by calibrating the current sensor 24 in advance using the calibration circuit 60. For this reason, the case where the difference between the charging current deviation and the discharging current deviation exceeds the allowable error is a case where there is a high possibility that an abnormality has occurred in the current sensor 24 and the current cannot be correctly measured.

図7の例では、較正用回路60によって較正した電流センサ24を用いて計測した複数の電流偏差を示す。そして、図7の例では、充電電流及び放電電流が300Aの場合であって、充電電流偏差xが1.86[A]で放電電流偏差yが1[A]の場合、及び充電電流偏差xが0.62[A]で放電電流偏差yが2.54[A]の場合が、異常判定部76によって電流センサ24が異常であると判定される。   In the example of FIG. 7, a plurality of current deviations measured using the current sensor 24 calibrated by the calibration circuit 60 are shown. In the example of FIG. 7, the charging current and the discharging current are 300 A, the charging current deviation x is 1.86 [A], the discharging current deviation y is 1 [A], and the charging current deviation x Is 0.62 [A] and the discharge current deviation y is 2.54 [A], the abnormality determination unit 76 determines that the current sensor 24 is abnormal.

また、図7に示されるように充電電流偏差と放電電流偏差とが大きい場合、精度の高くない電流センサ24が用いられた場合でも、充電電流偏差と放電電流偏差との差が許容誤差内の場合には、電流センサ24が異常であるとは判定されない。
この理由は、異常判定処理によって、充電電流偏差と放電電流偏差とが相殺(キャンセル)されることで、電流センサ24による誤差を実質的に小さくできるためである。このため、例えば、許容SOC誤差が5%であっても計測誤差が7%の電流センサ24を用いることもでき、精度の高くない電流センサ24を用いてもSOCを高い精度で計測できることとなる。
Further, as shown in FIG. 7, when the charge current deviation and the discharge current deviation are large, even when the current sensor 24 having a low accuracy is used, the difference between the charge current deviation and the discharge current deviation is within the allowable error. In this case, it is not determined that the current sensor 24 is abnormal.
This is because the error due to the current sensor 24 can be substantially reduced by canceling (cancelling) the charge current deviation and the discharge current deviation by the abnormality determination process. For this reason, for example, even if the allowable SOC error is 5%, the current sensor 24 having a measurement error of 7% can be used, and the SOC can be measured with high accuracy even if the current sensor 24 having a low accuracy is used. .

次のステップ106では、上述した異常判定処理による判定結果が、電流センサ24の異常を示しているか否かを判定し、肯定判定の場合はステップ108へ移行し、否定判定の場合、すなわち電流センサ24に異常が発生していない場合は、本電流センサ異常検知処理を終了する。   In the next step 106, it is determined whether or not the determination result by the abnormality determination process described above indicates an abnormality of the current sensor 24. If the determination is affirmative, the process proceeds to step 108. If the determination is negative, that is, the current sensor. If no abnormality has occurred in 24, the current sensor abnormality detection process is terminated.

ステップ108では、較正用回路60を用いた電流センサ24の較正が行われる。電流センサ24の異常が、充放電の際発生する残留磁気によるヒステリシスに起因している可能性のためである。なお、較正用回路60を用いた電流センサ24の較正を行う場合、抵抗器68には、基準電流が流れる。これにより、電流センサ24の異常を簡易に解消できる場合がある。   In step 108, the current sensor 24 is calibrated using the calibration circuit 60. This is because the abnormality of the current sensor 24 may be caused by hysteresis due to residual magnetism that occurs during charging and discharging. Note that when the current sensor 24 is calibrated using the calibration circuit 60, a reference current flows through the resistor 68. Thereby, the abnormality of the current sensor 24 may be easily eliminated.

次のステップ110では、較正を行った電流センサ24を用いてステップ100からステップ104の処理を再び行うことによって、電流センサ24の異常が解消されたか否かを判定し、肯定判定の場合は本電流センサ異常検知処理を終了する。一方、否定判定の場合は、ステップ112へ移行する。   In the next step 110, it is determined whether or not the abnormality of the current sensor 24 has been resolved by performing the processing from step 100 to step 104 again using the calibrated current sensor 24. The current sensor abnormality detection process is terminated. On the other hand, in the case of negative determination, the routine proceeds to step 112.

ステップ112では、BMS18に接続されている機器(例えばモニタ等)に電流センサ24の異常を報知させる報知処理を行った後に、本電流センサ異常検知処理を終了する。   In step 112, after performing notification processing for notifying a device (for example, a monitor) connected to the BMS 18 of abnormality of the current sensor 24, the current sensor abnormality detection processing is terminated.

以上説明したように、本実施形態に係るBMS18は、充放電可能な二次電池12に流れる電流を計測する電流センサ24の故障を検知する電流センサ故障検知装置の機能を有している。BMS18は、電流センサ24で計測された二次電池12の充電電流と基準電流との偏差である充電電流偏差、及び電流センサ24で計測された二次電池12の放電電流と基準電流との偏差である放電電流偏差を算出する。そして、BMS18は、充電電流偏差の時間積分と放電電流偏差の時間積分との差が予め定められた許容誤差の範囲を超える場合に、電流センサ24が異常であると判定する。   As described above, the BMS 18 according to the present embodiment has the function of a current sensor failure detection device that detects a failure of the current sensor 24 that measures the current flowing through the chargeable / dischargeable secondary battery 12. The BMS 18 includes a charging current deviation that is a deviation between the charging current of the secondary battery 12 measured by the current sensor 24 and the reference current, and a deviation between the discharging current of the secondary battery 12 measured by the current sensor 24 and the reference current. The discharge current deviation is calculated. The BMS 18 determines that the current sensor 24 is abnormal when the difference between the time integration of the charging current deviation and the time integration of the discharge current deviation exceeds a predetermined allowable error range.

このように、本実施形態に係るBMS18は、電流センサ24によって計測された充電電流偏差と放電電流偏差との差から、電流センサ24の異常を検知するので、電圧センサを必要としない。また、BMS18は、充電電流偏差と放電電流偏差との差が許容誤差を超えるか否かを判定するだけなので、回路構成を大きくすることなく電流センサ24の故障を検知できる。   Thus, the BMS 18 according to the present embodiment detects an abnormality of the current sensor 24 from the difference between the charging current deviation and the discharging current deviation measured by the current sensor 24, and thus does not require a voltage sensor. Further, since the BMS 18 only determines whether or not the difference between the charging current deviation and the discharging current deviation exceeds the allowable error, the failure of the current sensor 24 can be detected without increasing the circuit configuration.

以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。   As mentioned above, although this invention was demonstrated using said each embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various changes or improvements can be added to the above-described embodiments without departing from the gist of the invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention.

例えば、上記各実施形態では、スイッチ列64Aとスイッチ列64Bとが抵抗器68を介して接続される形態について説明したが、本発明は、これに限定されるものではなく、スイッチ列64Aとスイッチ列64Bとは抵抗器68を介さずに接続される形態としてもよい。この形態の場合、抵抗器68は、例えば電池66とスイッチ列64A,64Bとの間に設けられる。   For example, in each of the above-described embodiments, the mode in which the switch row 64A and the switch row 64B are connected via the resistor 68 has been described. However, the present invention is not limited to this, and the switch row 64A and the switch row are connected. It is good also as a form connected with the row | line | column 64B not via the resistor 68. FIG. In the case of this form, the resistor 68 is provided between the battery 66 and the switch rows 64A and 64B, for example.

また、上記実施形態で説明した電流センサ異常検知処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。   The flow of the current sensor abnormality detection process described in the above embodiment is also an example, and unnecessary steps are deleted, new steps are added, or the processing order is changed within a range not departing from the gist of the present invention. Or you may.

10 電池システム
12 二次電池
18 BMS
24 電流センサ
60 較正用回路
72 電流偏差算出部
74 充放電サイクル時間算出部
76 異常判定部
10 Battery system 12 Secondary battery 18 BMS
24 Current Sensor 60 Calibration Circuit 72 Current Deviation Calculation Unit 74 Charge / Discharge Cycle Time Calculation Unit 76 Abnormality Determination Unit

Claims (6)

充放電可能な二次電池に流れる電流を計測する電流センサの故障を検知する電流センサ故障検知装置であって、
前記二次電池を、充電電流及び放電電流の平均絶対値を同一とし、充電されて放電されるまでの充放電サイクルを行う充放電均等運転させ、前記電流センサで計測された前記二次電池の充電電流と基準電流との偏差である充電電流偏差、及び前記電流センサで計測された前記二次電池の放電電流と前記基準電流との偏差である放電電流偏差を算出する電流偏差算出手段を備え、
前記充電電流偏差と前記放電電流偏差との差が予め定められた許容誤差の範囲を超える場合に、前記電流センサが異常であると判定する電流センサ故障検知装置。
A current sensor failure detection device that detects a failure of a current sensor that measures a current flowing in a chargeable / dischargeable secondary battery,
The secondary battery has the same average absolute value of the charging current and the discharging current, and is charged and discharged evenly until it is charged and discharged, and the secondary battery measured by the current sensor is used. A current deviation calculating means for calculating a charging current deviation which is a deviation between a charging current and a reference current, and a discharge current deviation which is a deviation between the discharge current of the secondary battery measured by the current sensor and the reference current; ,
A current sensor failure detection device that determines that the current sensor is abnormal when a difference between the charging current deviation and the discharging current deviation exceeds a predetermined allowable error range.
所定の運転時間内において前記二次電池の充放電がサイクルで行われた第1の時間、及び前記運転時間内において前記サイクルを形成できなかった第2の時間を算出する充放電サイクル時間算出手段と、
前記第1の時間における前記充電電流偏差の時間積分と前記放電電流偏差の時間積分との差に前記第2の時間における前記充電電流偏差又は前記放電電流偏差の時間積分を加算した結果が、前記運転時間における予め定められた許容誤差の範囲を超える場合に、前記電流センサが異常であると判定する異常判定手段と、
を備える請求項1記載の電流センサ故障検知装置。
Charge / discharge cycle time calculating means for calculating a first time during which charging / discharging of the secondary battery was performed in a cycle within a predetermined operation time and a second time during which the cycle could not be formed within the operation time. When,
The result of adding the charge current deviation or the discharge current deviation time integral in the second time to the difference between the charge current deviation time integral and the discharge current deviation time integral in the first time is An abnormality determining means for determining that the current sensor is abnormal when exceeding a predetermined allowable error range in operation time;
The current sensor failure detection device according to claim 1.
前記電流センサは、前記異常判定手段によって前記電流センサが異常であると判定され
た場合に較正される請求項2記載の電流センサ故障検知装置。
The current sensor failure detection device according to claim 2, wherein the current sensor is calibrated when the abnormality determination unit determines that the current sensor is abnormal.
電流の向きを可変とする較正用回路を備え、
前記電流センサは、前記較正用回路に流れる異なる向きの電流の計測結果に基づいて較正される請求項1から請求項3の何れか1項記載の電流センサ故障検知装置。
It has a calibration circuit that makes the direction of current variable,
4. The current sensor failure detection device according to claim 1, wherein the current sensor is calibrated based on measurement results of currents in different directions flowing through the calibration circuit. 5.
充放電可能な二次電池と、
前記二次電池に流れる電流を計測する電流センサと、
請求項1から請求項4の何れか1項記載の電流センサ故障検知装置と、
を備える電池システム。
A rechargeable secondary battery;
A current sensor for measuring a current flowing through the secondary battery;
The current sensor failure detection device according to any one of claims 1 to 4,
A battery system comprising:
充放電可能な二次電池に流れる電流を計測する電流センサの故障を検知する電流センサ故障検知方法であって、
前記二次電池を、充電電流及び放電電流の平均絶対値を同一とし、充電されて放電されるまでの充放電サイクルを行う充放電均等運転させ、前記電流センサで計測された前記二次電池の充電電流と基準電流との偏差である充電電流偏差、及び前記電流センサで計測された前記二次電池の放電電流と前記基準電流との偏差である放電電流偏差を算出する第1工程と、
前記充電電流偏差と前記放電電流偏差との差が予め定められた許容誤差の範囲を超える場合に、前記電流センサが異常であると判定する第2工程と、
を含む電流センサ故障検知方法。
A current sensor failure detection method for detecting a failure of a current sensor that measures a current flowing in a chargeable / dischargeable secondary battery,
The secondary battery has the same average absolute value of the charging current and the discharging current, and is charged and discharged evenly until it is charged and discharged, and the secondary battery measured by the current sensor is used. A first step of calculating a charging current deviation which is a deviation between a charging current and a reference current, and a discharging current deviation which is a deviation between the discharging current of the secondary battery measured by the current sensor and the reference current;
A second step of determining that the current sensor is abnormal when a difference between the charging current deviation and the discharging current deviation exceeds a predetermined allowable error range;
A current sensor failure detection method including:
JP2012240488A 2012-10-31 2012-10-31 Current sensor failure detection device, battery system, and current sensor failure detection method Expired - Fee Related JP5812968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240488A JP5812968B2 (en) 2012-10-31 2012-10-31 Current sensor failure detection device, battery system, and current sensor failure detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240488A JP5812968B2 (en) 2012-10-31 2012-10-31 Current sensor failure detection device, battery system, and current sensor failure detection method

Publications (2)

Publication Number Publication Date
JP2014089159A JP2014089159A (en) 2014-05-15
JP5812968B2 true JP5812968B2 (en) 2015-11-17

Family

ID=50791162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240488A Expired - Fee Related JP5812968B2 (en) 2012-10-31 2012-10-31 Current sensor failure detection device, battery system, and current sensor failure detection method

Country Status (1)

Country Link
JP (1) JP5812968B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104648183B (en) * 2015-01-06 2017-02-22 东南(福建)汽车工业有限公司 Control method for safety driving current of electric automobile
CN105203826B (en) * 2015-09-11 2017-12-05 同济大学 A kind of electric current detecting method of redundant current sensor electrokinetic cell system
US11353484B2 (en) * 2018-11-02 2022-06-07 Lg Energy Solution, Ltd. Current sensor diagnosing apparatus and method
CN112904072B (en) * 2021-01-14 2024-03-01 福建时代星云科技有限公司 Method, system, equipment and medium for detecting current precision of vehicle-mounted battery
CN113071320A (en) * 2021-05-14 2021-07-06 奇瑞商用车(安徽)有限公司 High-voltage interlocking system of electric automobile
CN113848524A (en) * 2021-09-06 2021-12-28 中国第一汽车股份有限公司 Method, device, terminal and storage medium for diagnosing current sensor fault by battery management system
JP7416498B1 (en) 2023-05-22 2024-01-17 エイターリンク株式会社 System, transmitter, method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467918B2 (en) * 2003-07-30 2010-05-26 東芝三菱電機産業システム株式会社 Power converter
JP2005269752A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Power supply device of hybrid car
JP2007192723A (en) * 2006-01-20 2007-08-02 Nissan Motor Co Ltd Current sensor correcting system and technique

Also Published As

Publication number Publication date
JP2014089159A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP5812968B2 (en) Current sensor failure detection device, battery system, and current sensor failure detection method
US10553896B2 (en) Battery capacity degradation resolution methods and systems
CN108539300B (en) Method and system for balancing electric quantity of battery pack
JP5777303B2 (en) Battery deterioration detection device, battery deterioration detection method and program thereof
JP5439126B2 (en) Status detector for power supply
US10124789B2 (en) In-range current sensor fault detection
JP5287844B2 (en) Secondary battery remaining capacity calculation device
JP6634854B2 (en) Storage element management device, storage element management method, storage element module, storage element management program, and moving object
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
US9018897B2 (en) Electric storage device condition determination device, electrically chargeable device, and method of determining electric storage device condition
US9018907B2 (en) Method for precise power prediction for battery packs
US20150134282A1 (en) Battery residual capacitance calculation device and battery residual capacitance calculation method
JP2020174530A (en) Method and system for effective battery cell balancing using duty control
WO2016136788A1 (en) Cell deterioration diagnostic method and cell deterioration diagnostic device
JP2013542418A (en) How to test if a current sensor is functioning correctly
JP6558108B2 (en) Power storage device and power storage method
JP5942882B2 (en) Battery system
JP2018125977A (en) Control apparatus of battery module
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP2018197708A (en) Failure determination device of current measuring circuit
JP2014176196A (en) Battery controller and battery control method
JP5783116B2 (en) Battery degradation diagnosis method and charge / discharge monitoring control system
US20230296688A1 (en) Battery Diagnosing Apparatus and Method
WO2010140230A1 (en) Battery state of charge calculation device
JP3975738B2 (en) Storage battery status detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150915

R151 Written notification of patent or utility model registration

Ref document number: 5812968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees