WO2007072909A1 - NOVEL OLIGONUCLEOTIDE AND NF-κB DECOY COMPRISING THE SAME - Google Patents

NOVEL OLIGONUCLEOTIDE AND NF-κB DECOY COMPRISING THE SAME Download PDF

Info

Publication number
WO2007072909A1
WO2007072909A1 PCT/JP2006/325502 JP2006325502W WO2007072909A1 WO 2007072909 A1 WO2007072909 A1 WO 2007072909A1 JP 2006325502 W JP2006325502 W JP 2006325502W WO 2007072909 A1 WO2007072909 A1 WO 2007072909A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
decoy
sequence
modified
complementary
Prior art date
Application number
PCT/JP2006/325502
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Nakajima
Akiko Temma
Naho Suzuki
Original Assignee
Anges Mg, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anges Mg, Inc. filed Critical Anges Mg, Inc.
Priority to US12/086,923 priority Critical patent/US20100167390A1/en
Priority to JP2007551148A priority patent/JPWO2007072909A1/en
Priority to EP06835068A priority patent/EP1978096A1/en
Publication of WO2007072909A1 publication Critical patent/WO2007072909A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/13Decoys

Definitions

  • Novel oligonucleotide and NF- ⁇ B decoy comprising the same
  • the present invention relates to a novel oligonucleotide and an NF- ⁇ B decoy comprising the same.
  • the NF- ⁇ B decoy of the present invention is useful for prevention, improvement or treatment of ischemic disease, allergic disease, autoimmune disease, cancer transfer, infiltration and the like.
  • NF- ⁇ B nuclear factor kappa B
  • NF- ⁇ B is a collective term for a group of transcription factors that play a role in regulating the expression of genes related to immune responses, such as site force-in and adhesion factors. When it binds to the binding site on the gene, the gene related to immune response is overexpressed. For this reason, NF- ⁇ B is involved in allergic diseases such as atopic dermatitis and rheumatoid arthritis caused by immune reactions, autoimmune diseases, ischemic diseases such as myocardial infarction, and various diseases such as arteriosclerosis. Known to do.
  • decoy means “decoy” in English, and a substance with a structure resembling that which a substance should originally bind to or act on is called a decoy.
  • a decoy of a transcription factor that binds to a binding region on a genomic gene a double-stranded oligonucleotide having the same base sequence as the binding region is mainly used (Patent Documents 1 to 3).
  • oligonucleotide decoy In the presence of such an oligonucleotide decoy, a part of the transcription factor molecule binds to the oligonucleotide decoy without binding to the binding region on the genomic gene to be originally bound. For this reason, the number of molecules of transcription factors that bind to the binding region on the genomic gene to be originally bound decreases, and as a result, the activity of the transcription factor decreases.
  • the oligonucleotide is called a decoy because it functions as a fake (bait) of the binding region on the real genomic gene and binds a transcription factor.
  • oligonucleotide decoys for NF- ⁇ B are also known, and their pharmacological effects are also known (Patent Documents 4 to 4).
  • Patent Documents 4 to 4 It is a well-known fact that the force with which decoy oligonucleotides delivered into cells can exist stably in cells for a long time can be an important key for the above mechanism to work efficiently.
  • Oligonucleotides are degraded by intracellular nucleases, making them difficult to exist stably in cells and in the nucleus. To overcome this difficulty, various modifications are made to oligonucleotides. Have been attempted (eg, Non-Patent Document 1, Patent Document 13).
  • Non-Patent Document 2 Phosphorothioation is the conversion of one of the two non-bridging oxygen atoms bound to the phosphorus atom that constitutes the phosphoester bond between adjacent nucleotides to a thio atom.
  • phosphorothioate oligonucleotides have significantly higher nuclease resistance than natural phosphodiester oligonucleotides, while being more targeted than phosphodiester oligonucleotides.
  • disadvantages such as decreased binding ability to the molecule and decreased specificity to the target molecule are observed (Non-Patent Document 1, Non-Patent Document 3).
  • phosphorothioate groups are toxic, phosphorothioate oligonucleotides are often more cytotoxic than phosphodiester oligonucleotides (4).
  • Phosphorothioate oligonucleotides are disadvantageous in their use as therapeutic agents.
  • Patent Document 1 Japanese Patent Publication No. 96/035430
  • Patent Document 2 Japanese Patent No. 3392143
  • Patent Document 3 W095 / 11687
  • Patent Document 4 JP-A-2005-160464
  • Patent Document 5 International Publication No. WO96 / 35430
  • Patent Document 6 International Publication No. WO02 / 066070
  • Patent Document 7 International Publication WO03 / 043663
  • Patent Document 8 International Publication WO03 / 082331
  • Patent Document 9 International Publication WO03 / 099339
  • Patent Document 10 International Publication WO04 / 026342
  • Patent Document 11 International Publication No. WO05 / 004913
  • Patent Document 12 International Publication No. WO05 / 004914
  • Patent Document 13 JP-T 08-501928
  • Non-patent literature l Milligan et al., J. Med. Chem. 1993, 36, 1923
  • Non-Patent Document 2 Marwick, C., (1998) J. Am. Med. Assoc., 280, 871
  • Non-Patent Document 3 Stein & Cheng, Science 1993, 261, 1004
  • Non-Patent Document 4 Levin et al., Biochem. Biophys. Acta, 1999, 1489, 69
  • Non-Patent Document 5 Neish AS et al., J. Exp. Med. 1992, Vol. 176, 1583-1593.
  • Non-Patent Document 6 Leung K et al., Nature. 1988 Jun 23; 333 (6175): 776-778.
  • Non-Patent Document 7 Marina A. et al., The Journal of Biological Chemistry, 1995, Vol.270, Number 6, pp. 2620-2627
  • an object of the present invention is to provide a novel oligonucleotide useful as an NF- ⁇ B decoy having a higher binding ability to NF- ⁇ B than a known oligonucleotide decoy for NF- ⁇ B, and a pharmaceutical use thereof. Is to provide.
  • an object of the present invention is to provide an oligonucleotide decoy for a transcription factor that has a resistance to nuclease having a high binding ability to a target transcription factor.
  • the inventors of the present application show that by binding only the core sequence of the oligonucleotide decoy with nuclease resistance, the binding ability to a transcription factor is significantly increased as compared with the case where the entire sequence is completely nuclease-resistant modified.
  • the headline, the second invention of the present application was completed.
  • the present invention provides an oligonucleotide having a base sequence represented by the following general formula [I].
  • X is a consensus sequence represented by gggatttccc or gggactttcc
  • A is a 5 ′ additional sequence selected from the group consisting of cgc, ccc, gga, cgca, ccct and ggct
  • B is agc, acc
  • ggg, gcg, gcc and gcgg force The present invention also provides an NF- ⁇ B decoy comprising the oligonucleotide of the present invention, which is a substantially double-stranded oligonucleotide complementary to each other.
  • the present invention provides a pharmaceutical comprising the oligonucleotide of the present invention as described above, which contains oligonucleotides having substantially double-stranded strength complementary to each other as an active ingredient. Furthermore, the present invention provides a method for inhibiting NF- ⁇ B, which comprises interacting with the NF- ⁇ B the oligonucleotide of the present invention, which is a complementary double-stranded oligonucleotide complementary to each other. I will provide a. Furthermore, the present invention provides the use of the above-described oligonucleotide of the present invention, which is complementary to each other and has a substantially double-stranded force, for producing an inhibitor that inhibits NF- ⁇ B. .
  • the present invention cures or ameliorates by inhibiting NF- ⁇ B, which comprises administering an effective amount of the above-mentioned oligonucleotides of the present invention, which are complementary to each other and have substantially double-stranded strength.
  • the present invention provides the above-mentioned oligonucleotide of the present invention, which is for producing a medicament for a disease that is cured or ameliorated by inhibition of NF- ⁇ B of oligonucleotides that are complementary to each other and have substantially double-stranded strength. Provide use.
  • the present invention provides an oligonucleotide for a transcription factor comprising a core sequence and an oligonucleotide having a complementary double-stranded force and having an additional sequence bonded to one or both ends of the core sequence.
  • an oligonucleotide decoy is provided.
  • the present invention relates to an oligonucleotide decoy for a transcription factor, comprising a core sequence and oligonucleotides having substantially double-stranded forces complementary to each other, with additional sequences attached to one or both ends of the core sequence. Only the bond between the nucleotides constituting the core sequence is modified with nuclease resistance, and the bond between the other nucleotides is modified, and the effective amount of the oligonucleotide is characterized by interacting with the transcription factor.
  • a method for inhibiting the transcription factor is provided.
  • the present invention relates to an oligonucleotide for a transcription factor comprising a core sequence and oligonucleotides having a substantially double-stranded force complementary to each other and having an additional sequence bonded to one or both ends of the core sequence.
  • oligonucleotide decoy only the bond between the nucleotides constituting the core sequence is modified with nuclease resistance, and the bond between the other nucleotides is modified. Inhibiting Uses for producing inhibitors are provided.
  • a novel oligonucleotide having a higher binding ability to NF- ⁇ B than a known decoy oligonucleotide is provided. Since the oligonucleotide of the present invention has a high binding ability to NF- ⁇ B, it exhibits superior performance as a decoy for NF- ⁇ B than known oligonucleotides, and greatly reduces the physiological activity of NF- ⁇ B. Can be made. Therefore, various medicaments containing the decoy of the present invention as an active ingredient exhibit excellent medicinal effects.
  • the oligonucleotide of the present invention has the nucleotide sequence represented by the above general formula [I].
  • “having a base sequence” means that the bases of the oligonucleotide are arranged in such an order.
  • an “oligonucleotide having a base sequence represented by r C gcgggatttccca gc” means a 16-base size oligonucleotide having the base sequence of cgcgggatttcccagc.
  • the oligonucleotide having the base sequence represented by the general formula [I] includes a single-stranded oligonucleotide having the indicated base sequence, an oligonucleotide that is a complementary strand thereof, an oligonucleotide having a double-stranded force complementary to each other, and It includes partial duplexes that are partially hybridized with complementary strands to form duplexes.
  • an oligonucleotide having complementary double-stranded forces means a complete double-stranded oligonucleotide whose entire regions are complementary to each other. To do.
  • oligos having double-stranded forces complementary to each other Preferably it is a nucleotide.
  • the consensus sequence represented by X is gggatttccc (SEQ ID NO: 1, Non-Patent Document 5) or gggactttcc (SEQ ID NO: 2, Non-Patent Document 6).
  • An array is preferred.
  • These consensus sequences have the base sequence of the binding region of the genomic gene to which the NF- ⁇ B family binds in common.
  • a in the general formula [I] is a sequence added to the 5 'end of the consensus sequence represented by X, it is referred to as "5' additional sequence” in the present invention, and cgc , Ccc, gga, cgca, ccct and ggct.
  • B in the general formula [I] is a sequence added to the 3 ′ end of the consensus sequence represented by X, it is referred to as “3 ′ additional sequence” in the present invention. Selected from the group consisting of agc, acc, ggg, gcg, gcc and gcgg.
  • Preferred examples of the oligonucleotide represented by the general formula [I] include cgcgggatttcccagc (arrangement IJ number 3) ⁇ cccgggatttccacc (arrangement 4) ggagggatttcccggg cgcagggat ttcccgcg (eyes il ⁇ U number b), ccctgggatttcccgcc (eyes il ⁇ [J number 7 and ggctgggatttcccgcgg ( ⁇ self IJ number 8).
  • the oligonucleotide of the present invention is preferably DNA in principle, but the bond between at least two adjacent nucleotides is modified with nuclease resistance so that it is against nuclease. It is preferred to increase resistance.
  • nuclease-resistant modification means a modification that makes nuclease degradation more natural than natural DNA, and such DNA modification itself is well known.
  • nuclease resistance modification include phosphorothioation (sometimes referred to as “S” in the present specification), phosphorodithioation, phosphoramidate formation, and the like. Of these, S is preferred.
  • conversion to S means that one of two non-bridging oxygen atoms bonded to a phosphorus atom constituting a phosphate ester bond between adjacent nucleotides is converted to a thio atom.
  • the technique of converting the bond between any adjacent nucleotides to S is well known, and can be performed, for example, by the method described in Non-Patent Document 7, and S-modified oligonucleotides are also synthesized commercially. .
  • an oligonucleotide in which all of the linkages between nucleotides are converted to S (hereinafter, sometimes referred to as “fully-modified oligonucleotide” in the present specification) is also preferable.
  • the oligonucleotide (hereinafter referred to as this oligonucleotide) is modified.
  • Such oligonucleotides are sometimes referred to herein as “partially S-oligonucleotides”).
  • partially S-modified oligonucleotides have a binding capacity for NF- ⁇ B that is about 3-5 times higher compared to fully S-oligonucleotides having the same sequence.
  • the consensus sequence occupying the central part of the oligonucleotide is given resistance to nuclease by S ⁇ , the resistance to nuclease is not significantly reduced compared to a fully S-modified oligonucleotide.
  • the partially S-oligonucleotide exhibits excellent performance as an NF- ⁇ B decoy in vivo.
  • each of the above-mentioned nuclease resistance modification may be performed on only one of the strands, but it is preferable to modify both strands.
  • the oligonucleotide of the present invention can be synthesized using a commercially available nucleic acid synthesizer. It can also be prepared in large quantities by nucleic acid amplification methods such as PCR. [0021]
  • the oligonucleotides of the present invention which are substantially double-stranded oligonucleotides complementary to each other, have uses as NF- ⁇ B decoys. Accordingly, the present invention also provides an NF- ⁇ B decoy comprising the oligonucleotides of the present invention and substantially complementary to each other and having double-stranded strength.
  • NF- ⁇ BJ refers to a homo- or heterodimer of a protein of the NF- ⁇ BZRel family member.
  • NF- ⁇ B family refers to an NF-K BZRel family member. Of protein. For example, P50, P52, P65 (Rel-A), c-Rel, Rd-B. “Homo or heterodimers” include all combinations of NF- ⁇ B family single member proteins.
  • substantially double-strand force means a complete double-strand or at least one base having one or two bases in a single strand. To do.
  • the NF- ⁇ B decoy is preferably a complete double strand that can be used if it is an oligonucleotide that also has a double strand strength.
  • the single-stranded oligonucleotide has a use as a ligand when purifying the oligonucleotide of the present invention by affinity chromatography in the nucleic acid amplification method or by affinity chromatography.
  • the partial double-stranded oligonucleotide has a use as a starting material for producing a single-stranded oligonucleotide by generating or denaturing a substantially double-stranded oligonucleotide.
  • the NF- ⁇ B decoy of the present invention has a use as a medicine, similar to the known NF- ⁇ B decoy.
  • the NF- ⁇ B decoy of the present invention is an agent for preventing, improving or treating ischemic disease, allergic disease, inflammatory disease, autoimmune disease, cancer metastasis * invasion, or cachexia; Restenosis, acute coronary syndrome, cerebral ischemia, myocardial infarction, reperfusion injury of ischemic disease, atopic dermatitis, psoriasis vulgaris, contact dermatitis, keloid, wound, ulcerative colitis, Crohn's disease, Prevention, improvement or prevention of nephropathy, glomerulosclerosis, albuminuria, nephritis, renal failure, rheumatoid arthritis, osteoarthritis, intervertebral disc degeneration, asthma, chronic obstructive pulmonary disease or cystic fibrosis Therapeutic agent; and has medicinal use as a preventive, ameliorating or therapeutic agent for vascular restenosis that occurs after percutaneous coronary angioplasty, percutaneous angioplasty, neurosurgery, organ transplant
  • the vascular restenosis includes restenosis caused by the use of artificial blood vessels, catheters, stents, or vein transplantation.
  • Stenosis and restenosis resulting from surgical treatment for obstructive arteriosclerosis, aneurysm, aortic divergence, acute coronary syndrome, cerebral ischemia, Marfan syndrome, and pullover crab.
  • the route of administration of the oligonucleotide is not particularly limited, but is not limited to intravenous administration, intramuscular administration, subcutaneous administration, transdermal administration, direct administration to the target organ or tissue, and the like. Oral administration is preferred.
  • the dose is appropriately set according to the target disease, patient symptoms, administration route, etc.
  • 0.1 10000 ol, preferably 1 1000 nmol, more preferably 10 100 nmol per day for an adult can be administered.
  • the preparation can be performed by a conventional method.
  • it can be in the form of a solution in which the oligonucleotide of the present invention is dissolved in physiological saline.
  • additives commonly used in the pharmaceutical field such as preservatives, buffers, solubilizing aids, emulsifiers, diluents, tonicity agents and the like may be appropriately mixed.
  • the other medicinal component may be included.
  • the partial S-oligonucleotide decoy described above binds to a transcription factor more than the complete S-oligonucleotide decoy.
  • the consensus sequence that occupies the middle part of the oligonucleotide is more resistant to nuclease by S ⁇ , so its resistance to nuclease is much less than that of a fully S-modified oligonucleotide. do not do. For this reason, the partial S-oligonucleotide is considered to exhibit excellent performance as a decoy for transcription factors in vivo.
  • the present invention also provides an oligo for a transcription factor comprising a core sequence and oligonucleotides having substantially double-stranded strength complementary to each other and having additional sequences bound to one or both ends of the core sequence.
  • an oligonucleotide decoy is characterized in that only a bond between nucleotides constituting the core sequence is modified with nuclease resistance and a bond between other nucleotides is not modified.
  • the “core sequence” is a region to which a transcription factor binds, and in the case of NF- ⁇ B, the above-described consensus sequence.
  • transcription factors include STAT— 1 STAT— 3 STAT— 6 Ets AP— 1 E Examples include 2F, but are not limited thereto.
  • ODN oligodeoxyribonucleotides
  • SEQ ID NO: 1 which is a known consensus sequence of NF- ⁇ B Synthesized.
  • Two strands complementary to each other were chemically synthesized and hybridized to form a complete double-stranded ODN.
  • SODN was obtained by converting the bond between all nucleotides to S in both strands (hereinafter sometimes referred to as “SODN”).
  • SODN melting temperature
  • the oligonucleotide of the present invention represented by the general formula [I] is SODN7 (SEQ ID NO: 3), SODN8 (SEQ ID NO: 4). SODN9 (SEQ ID NO: 5), SODN16 (SEQ ID NO: 6), SODN17 (SEQ ID NO: 7) and SODN30 (SEQ ID NO: 8).
  • each SODN to bind to NF- ⁇ B is determined by reacting each SODN with NF- ⁇ ( ⁇ 65), and then converting the remaining free NF- ⁇ to a commercially available NF- ⁇ measurement kit ( Using TransAM Kit (NF- ⁇ , ⁇ 65, AC TIVE MOTIF), Jurkat, TPA and CI-Stimulated, Nuclear Extract (phorbol ester (TPA) and calcium ionophore (CI)) included in the kit Stimulated Jurk at cell nuclear extract) was measured using the NF- ⁇ B molecule, and the measurement was performed according to the kit instructions, which contained NF- ⁇ B (p65 protein).
  • TransAM Kit NF- ⁇ , ⁇ 65, AC TIVE MOTIF
  • TPA phorbol ester
  • CI calcium ionophore
  • NF- ⁇ B solution is added to the wells in which the column is immobilized, and after washing, NF- ⁇ B bound to the solid phase is quantified by E LISA.
  • E LISA the higher the binding ability of the oligonucleotide to NF- ⁇ B, the smaller the amount of NF- ⁇ quantified by ELISA.
  • the absorbance at 450 nm is subtracted from the absorbance at 630 nm, and the average value of the blank is further subtracted to calculate the ratio (%) of the average value of each concentration with respect to the control when the average value of the control is 100%.
  • the concentration at which the value was 50% was calculated from the regression line between two points across% (using analysis software (Graph Pad PRISM 4, GraphPad SOFTWARE)).
  • SODN7,8,9,16,17,30 (oligonucleotide of the present invention) is 2.5 to 3 times as much as control decoy oligonucleotide. Inhibitory activity was observed. There was a 5.2-fold difference between SODN82, which had the lowest activity, and SODN7, which had the highest activity.
  • SODN7,8,9,16,17 and 30 partial S-oligonucleotides of the oligonucleotide of the present invention both strands are S-converted only between nucleotides constituting the consensus sequence, hereinafter referred to as "PSODN"
  • PSODN S-converted only between nucleotides constituting the consensus sequence
  • NF- ⁇ B Family TransAM Kit (ACT IVE MOTIF) was used, and for p50, Jurkat, TPA and CI-Stimulated, Nuclear Extract (ACTIVE MOTIF) Re B and p52 were evaluated using various NF- ⁇ family protein molecules of Raji nuclear extract (manufactured by ACTIVE MOTIF).
  • ACTIVE MOTIF NF- ⁇ B Family TransAM Kit
  • Re B and p52 were evaluated using various NF- ⁇ family protein molecules of Raji nuclear extract (manufactured by ACTIVE MOTIF).
  • anti-NF- ⁇ 50 antibody, anti-NF- ⁇ 52 antibody or anti-Rel-B antibody was used, respectively, and HRP-labeled anti-rabbit IgG was used for all secondary antibodies.
  • each oligonucleic acid solution was serially diluted with Complete Binding Buffer and used as a measurement sample.
  • Samples to be measured were added to each 30 L well, and Complete Binding Buffer was added to the control and blank wells.
  • 20 ⁇ L of nuclear extract diluted with Complete Lysis Buffer was carved into each well, and Complete Lysis Buffer was placed in the blank well.
  • the wells were washed with IX Wash Buffer, and the primary antibody was covered and incubated for 1 hour. Wash well with IX Wash Buffer, add secondary antibody and incubate for 1 hour. I started. After washing with IX Wash Buffer and developing solution for 10 minutes, the reaction was stopped by adding Stop Solution and the absorbance at 450 nm and 630 nm was measured.
  • the analysis method involves subtracting the absorbance at 630 nm from the absorbance at 450 nm, subtracting the average value of the blank, and then the ratio of the average value of each concentration to the control when the average value of the control is 100% ( %) And 50% inhibitory concentration (IC50) was calculated using analysis software (Graph Pad PRISM 4, GraphPad S OFTWARE). The results are shown in Table 6. Note that p65 is based on the value in the secondary screening (Table 4 above).
  • B protein molecules were used for evaluation.
  • the test method was the same as in Example 5 above.
  • “additional sequence only is S” means that the inside of the attachment and between the addition and the core are S, for example, if the sequence is 7, CsGsCsGGGATTTCCCsAsGsC. Table 7 shows the comparison results.
  • PSODN uses values from the secondary screening (Table 4 above).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Pulmonology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Vascular Medicine (AREA)

Abstract

Disclosed is a novel oligonucleotide which has a higher NF-κB-binding ability than a known oligonucleotide decoy for NF-κB and is useful as an NF-κB decoy. Also disclosed is use of the oligonucleotide for medical purposes. The oligonucleotide has a nucleotide sequence which has a consensus sequence and in which a specific nucleotide sequence is added to each of the 5’-terminus and the 3’-terminus of the consensus sequence. An NF-κB decoy comprises a double strand composed of the oligonucleotides substantially complementary to each other.

Description

明 細 書  Specification
新規オリゴヌクレオチド及びそれから成る NF- κ Bデコイ  Novel oligonucleotide and NF-κB decoy comprising the same
技術分野  Technical field
[0001] 本発明は、新規なオリゴヌクレオチド及びそれから成る NF- κ Bデコイに関する。本 発明の NF- κ Bデコイは、虚血性疾患、アレルギー性疾患、自己免疫疾患、癌の転 移、浸潤等の予防、改善又は治療等に有用である。  [0001] The present invention relates to a novel oligonucleotide and an NF-κB decoy comprising the same. The NF-κB decoy of the present invention is useful for prevention, improvement or treatment of ischemic disease, allergic disease, autoimmune disease, cancer transfer, infiltration and the like.
背景技術  Background art
[0002] NF- κ B(nuclear factor kappa B)は、サイト力インや接着因子等、免疫反応に関する 遺伝子の発現を調節する役割を持つ一群の転写因子の総称であり、 NF- κ Bがゲノ ム遺伝子上の結合部位に結合すると、免疫反応に関する遺伝子が過剰に発現する 。このため、 NF- κ Bは、免疫反応が原因となるアトピー性皮膚炎や関節リウマチ等の アレルギー性疾患、自己免疫疾患、さらには心筋梗塞等の虚血性疾患や動脈硬化 等の各種疾患に関与することが知られて 、る。  [0002] NF-κB (nuclear factor kappa B) is a collective term for a group of transcription factors that play a role in regulating the expression of genes related to immune responses, such as site force-in and adhesion factors. When it binds to the binding site on the gene, the gene related to immune response is overexpressed. For this reason, NF-κB is involved in allergic diseases such as atopic dermatitis and rheumatoid arthritis caused by immune reactions, autoimmune diseases, ischemic diseases such as myocardial infarction, and various diseases such as arteriosclerosis. Known to do.
[0003] 一方、転写因子に対するデコイを投与することにより、対象となる転写因子の活性 を低下させ、該転写因子に起因して起きる疾患の治療や予防を行なうことが知られて いる。デコイ (decoy)とは、英語で「おとり」の意味であり、ある物質が本来結合あるいは 作用すべきものと似せた構造を有するものをデコイと呼んで 、る。ゲノム遺伝子上の 結合領域に結合する転写因子のデコイとしては、主として該結合領域と同じ塩基配 列を有する二本鎖オリゴヌクレオチドが用いられている(特許文献 1〜3)。このような オリゴヌクレオチドから成るデコイの共存下では、転写因子の分子のうちの一部は、 本来結合すべきゲノム遺伝子上の結合領域に結合せずに、オリゴヌクレオチドデコイ に結合する。このため、本来結合すべきゲノム遺伝子上の結合領域に結合する転写 因子の分子数が減少し、その結果、転写因子の活性が低下することになる。この場 合、オリゴヌクレオチドは、本物のゲノム遺伝子上の結合領域の偽物(おとり)として機 能して転写因子を結合するため、デコイと呼ばれる。 NF- κ Bに対するオリゴヌクレオ チドデコイも種々知られており、それらの薬理効果も種々知られている(特許文献 4〜 [0004] 細胞内に送達されたデコイオリゴヌクレオチドが細胞内でいかに長時間安定して存 在し得る力も、上記機序を効率よく作用させるための重要な鍵となりうることは、周知 の事実である。オリゴヌクレオチドは、細胞内のヌクレアーゼにより分解されるため、細 胞内および核内で安定して存在させることは難題であるが、この難題を克服するため に、オリゴヌクレオチドに種々の修飾を施す方法が試みられてきた (例えば非特許文 献 1、特許文献 13)。その中でも最もよく用いられる修飾は、ホスホロチォエート (PS) ィ匕による修飾であり、ホスホロチォエートイ匕オリゴヌクレオチドは、ヌクレアーゼに対す る抵抗性が高いことから、治療用オリゴヌクレオチドとして注目されている (例えば、非 特許文献 2)。なお、ホスホロチォエート化とは、隣接するヌクレオチド間のホスホジェ ステル結合を構成するリン原子に結合している 2個の非架橋酸素原子のうちの 1個を ィォゥ原子に変換することである。 [0003] On the other hand, it is known that administration of a decoy for a transcription factor reduces the activity of the transcription factor of interest and treats or prevents a disease caused by the transcription factor. Decoy means “decoy” in English, and a substance with a structure resembling that which a substance should originally bind to or act on is called a decoy. As a decoy of a transcription factor that binds to a binding region on a genomic gene, a double-stranded oligonucleotide having the same base sequence as the binding region is mainly used (Patent Documents 1 to 3). In the presence of such an oligonucleotide decoy, a part of the transcription factor molecule binds to the oligonucleotide decoy without binding to the binding region on the genomic gene to be originally bound. For this reason, the number of molecules of transcription factors that bind to the binding region on the genomic gene to be originally bound decreases, and as a result, the activity of the transcription factor decreases. In this case, the oligonucleotide is called a decoy because it functions as a fake (bait) of the binding region on the real genomic gene and binds a transcription factor. Various oligonucleotide decoys for NF-κB are also known, and their pharmacological effects are also known (Patent Documents 4 to 4). [0004] It is a well-known fact that the force with which decoy oligonucleotides delivered into cells can exist stably in cells for a long time can be an important key for the above mechanism to work efficiently. . Oligonucleotides are degraded by intracellular nucleases, making them difficult to exist stably in cells and in the nucleus. To overcome this difficulty, various modifications are made to oligonucleotides. Have been attempted (eg, Non-Patent Document 1, Patent Document 13). Among them, the most commonly used modification is modification with phosphorothioate (PS), and phosphorothioate oligonucleotides have high resistance to nucleases, and are therefore attracting attention as therapeutic oligonucleotides. (For example, Non-Patent Document 2). Phosphorothioation is the conversion of one of the two non-bridging oxygen atoms bound to the phosphorus atom that constitutes the phosphoester bond between adjacent nucleotides to a thio atom.
[0005] し力しながら、ホスホロチォエートイ匕オリゴヌクレオチドは、天然型のホスホジエステ ルオリゴヌクレオチドに比べて顕著に高 、ヌクレアーゼ抵抗性を有する一方で、ホス ホジエステルオリゴヌクレオチドに比べて、標的分子との結合能が低下すること、およ び標的分子への特異性が低下することなどの不利益が認められる場合が多い (非特 許文献 1、非特許文献 3)。さらにまた、ホスホロチォエート基は毒性を有するため、ホ スホロチォエートイ匕オリゴヌクレオチドは、ホスホジエステルオリゴヌクレオチドに比べ て、細胞毒性が高い場合が多く(非特許文献 4)、これもまた、ホスホロチォエートイ匕 オリゴヌクレオチドの治療薬としての用途における不利益となっている。  [0005] However, phosphorothioate oligonucleotides have significantly higher nuclease resistance than natural phosphodiester oligonucleotides, while being more targeted than phosphodiester oligonucleotides. In many cases, disadvantages such as decreased binding ability to the molecule and decreased specificity to the target molecule are observed (Non-Patent Document 1, Non-Patent Document 3). Furthermore, since phosphorothioate groups are toxic, phosphorothioate oligonucleotides are often more cytotoxic than phosphodiester oligonucleotides (4). , Phosphorothioate oligonucleotides are disadvantageous in their use as therapeutic agents.
[0006] 特許文献 1:特再表 96/035430号公報  [0006] Patent Document 1: Japanese Patent Publication No. 96/035430
特許文献 2:特許 3392143号公報  Patent Document 2: Japanese Patent No. 3392143
特許文献 3 : W095/ 11687号公報  Patent Document 3: W095 / 11687
特許文献 4:特開 2005-160464号公報  Patent Document 4: JP-A-2005-160464
特許文献 5:国際公開公報 WO96/35430  Patent Document 5: International Publication No. WO96 / 35430
特許文献 6:国際公開公報 WO02/066070  Patent Document 6: International Publication No. WO02 / 066070
特許文献 7:国際公開公報 WO03/043663  Patent Document 7: International Publication WO03 / 043663
特許文献 8:国際公開公報 WO03/082331  Patent Document 8: International Publication WO03 / 082331
特許文献 9:国際公開公報 WO03/099339 特許文献 10:国際公開公報 WO04/026342 Patent Document 9: International Publication WO03 / 099339 Patent Document 10: International Publication WO04 / 026342
特許文献 11:国際公開公報 WO05/004913  Patent Document 11: International Publication No. WO05 / 004913
特許文献 12:国際公開公報 WO05/004914  Patent Document 12: International Publication No. WO05 / 004914
特許文献 13:特表平 08— 501928号公報  Patent Document 13: JP-T 08-501928
非特許文献 l : Milliganら、 J. Med. Chem. 1993, 36, 1923  Non-patent literature l: Milligan et al., J. Med. Chem. 1993, 36, 1923
非特許文献 2 : Marwick, C.,(1998) J. Am. Med. Assoc., 280, 871  Non-Patent Document 2: Marwick, C., (1998) J. Am. Med. Assoc., 280, 871
非特許文献 3 : Stein & Cheng, Science 1993, 261 , 1004  Non-Patent Document 3: Stein & Cheng, Science 1993, 261, 1004
非特許文献 4 : Levinら、 Biochem. Biophys. Acta, 1999, 1489, 69  Non-Patent Document 4: Levin et al., Biochem. Biophys. Acta, 1999, 1489, 69
非特許文献 5 : Neish ASら、 J. Exp. Med. 1992, Vol. 176, 1583-1593.  Non-Patent Document 5: Neish AS et al., J. Exp. Med. 1992, Vol. 176, 1583-1593.
非特許文献 6 : Leung Kら、 Nature. 1988 Jun 23;333(6175):776-778.)  (Non-Patent Document 6: Leung K et al., Nature. 1988 Jun 23; 333 (6175): 776-778.)
非特許文献 7 : Marina A.ら、 The Journal of Biological Chemistry, 1995, Vol.270, Nu mber 6, pp. 2620-2627  Non-Patent Document 7: Marina A. et al., The Journal of Biological Chemistry, 1995, Vol.270, Number 6, pp. 2620-2627
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 上記のように NF- κ Bに対するオリゴヌクレオチドデコイは公知である力 公知のオリ ゴヌクレオチドデコイよりも NF- κ Bに対する結合能が高いオリゴヌクレオチドデコイを 提供することが望ましいことは言うまでもない。従って、本発明の目的は、 NF- κ Bに 対する公知のオリゴヌクレオチドデコイよりも NF- κ Bとの結合能が高い、 NF- κ Bデコ ィとして有用な新規なオリゴヌクレオチド及びその医薬用途を提供することである。  [0007] As described above, oligonucleotide decoys for NF-κB are known. Needless to say, it is desirable to provide an oligonucleotide decoy having a higher binding ability to NF-κB than known oligonucleotide decoys. . Therefore, an object of the present invention is to provide a novel oligonucleotide useful as an NF-κB decoy having a higher binding ability to NF-κB than a known oligonucleotide decoy for NF-κB, and a pharmaceutical use thereof. Is to provide.
[0008] さらに本発明の目的は、標的の転写因子に対する結合能が高ぐヌクレア一ゼに対 する耐性も有する、転写因子に対するオリゴヌクレオチドデコイを提供することである 課題を解決するための手段  [0008] Further, an object of the present invention is to provide an oligonucleotide decoy for a transcription factor that has a resistance to nuclease having a high binding ability to a target transcription factor.
[0009] 従来技術では、 NF- κ Bが結合する領域の改良に力が注がれて 、た。本願発明者 らは、 NF- κ Bが結合する領域に隣接する領域の塩基配列が、 NF- κ Bとの結合能に 重要な役割を果たしているのではないかと考えた。そして、下記実施例に具体的に 記載するように、同一の結合領域に隣接する領域について、 100種類ものオリゴヌク レオチドを作製し、その NF- κ Bとの結合能を試験し、 NF- κ Bとの結合能が高いオリ ゴヌクレオチドを見出し、本発明を完成した。 In the prior art, efforts have been made to improve the region where NF-κB binds. The inventors of the present application thought that the base sequence in the region adjacent to the region to which NF-κB binds may play an important role in the ability to bind to NF-κB. Then, as specifically described in the following examples, 100 types of oligonucleotides were prepared for the regions adjacent to the same binding region, and their binding ability to NF-κB was tested. NF-κB With high binding capacity The inventors have found gogonucleotide and completed the present invention.
[0010] さらに、本願発明者らは、オリゴヌクレオチドデコイのコア配列のみを耐ヌクレアーゼ 修飾することにより、全配列を完全に耐ヌクレアーゼ修飾する場合に比べて転写因子 に対する結合能が大幅に高まることを見出し、本願第 2の発明を完成した。  [0010] Furthermore, the inventors of the present application show that by binding only the core sequence of the oligonucleotide decoy with nuclease resistance, the binding ability to a transcription factor is significantly increased as compared with the case where the entire sequence is completely nuclease-resistant modified. The headline, the second invention of the present application was completed.
[0011] すなわち、本発明は、下記一般式 [I]で表される塩基配列を有するオリゴヌクレオチ ドを提供する。 [0011] That is, the present invention provides an oligonucleotide having a base sequence represented by the following general formula [I].
A-X-B [I]  A-X-B [I]
(一般式 [I]中、 Xは gggatttccc又は gggactttccで示されるコンセンサス配列、 Aは cgc、 ccc、 gga、 cgca、 ccct及び ggctから成る群より選択される 5'側付加配列、 Bは agc、 acc、 ggg, gcg、 gcc及び gcgg力 成る群より選択される 3'側付加配列を示す)。また、本発 明は、上記本発明のオリゴヌクレオチドであって、互いに相補的な実質的に二本鎖か ら成るオリゴヌクレオチドから成る NF- κ Bデコイを提供する。さら〖こ、本発明は、上記 本発明のオリゴヌクレオチドであって、互いに相補的な実質的に二本鎖力 成るオリ ゴヌクレオチドを有効成分として含有する医薬を提供する。さらに、本発明は、上記本 発明のオリゴヌクレオチドであって互いに相補的な実質的に二本鎖力 成るオリゴヌ クレオチドを NF- κ Bと相互作用させることを含む、 NF- κ Bを阻害する方法を提供す る。さらに、本発明は、上記本発明のオリゴヌクレオチドであって互いに相補的な実質 的に二本鎖力も成るオリゴヌクレオチドの、 NF- κ Bを阻害する阻害剤を製造するた めの使用を提供する。さらに、本発明は、上記本発明のオリゴヌクレオチドであって、 互いに相補的な実質的に二本鎖力 成るオリゴヌクレオチドを効果量投与することを 含む、 NF- κ Bの阻害により治癒又は緩解する疾患の予防、改善または治療方法を 提供する。さらに本発明は、上記本発明のオリゴヌクレオチドであって、互いに相補 的な実質的に二本鎖力 成るオリゴヌクレオチドの、 NF- κ Bの阻害により治癒又は 緩解する疾患に対する医薬の製造のための使用を提供する。  (In the general formula [I], X is a consensus sequence represented by gggatttccc or gggactttcc, A is a 5 ′ additional sequence selected from the group consisting of cgc, ccc, gga, cgca, ccct and ggct, B is agc, acc A 3 ′ additional sequence selected from the group consisting of ggg, gcg, gcc and gcgg force). The present invention also provides an NF-κB decoy comprising the oligonucleotide of the present invention, which is a substantially double-stranded oligonucleotide complementary to each other. Further, the present invention provides a pharmaceutical comprising the oligonucleotide of the present invention as described above, which contains oligonucleotides having substantially double-stranded strength complementary to each other as an active ingredient. Furthermore, the present invention provides a method for inhibiting NF-κB, which comprises interacting with the NF-κB the oligonucleotide of the present invention, which is a complementary double-stranded oligonucleotide complementary to each other. I will provide a. Furthermore, the present invention provides the use of the above-described oligonucleotide of the present invention, which is complementary to each other and has a substantially double-stranded force, for producing an inhibitor that inhibits NF-κB. . Furthermore, the present invention cures or ameliorates by inhibiting NF-κB, which comprises administering an effective amount of the above-mentioned oligonucleotides of the present invention, which are complementary to each other and have substantially double-stranded strength. Provide methods for prevention, amelioration or treatment of disease. Furthermore, the present invention provides the above-mentioned oligonucleotide of the present invention, which is for producing a medicament for a disease that is cured or ameliorated by inhibition of NF-κB of oligonucleotides that are complementary to each other and have substantially double-stranded strength. Provide use.
[0012] さらに、本発明は、コア配列と、該コア配列の一端又は両端に付加配列が結合され た、互いに相補的な実質的に二本鎖力も成るオリゴヌクレオチドから成る、転写因子 に対するオリゴヌクレオチドデコイにぉ 、て、前記コア配列を構成するヌクレオチド間 の結合のみが耐ヌクレアーゼ修飾され、他のヌクレオチド間の結合は修飾されて 、な いことを特徴とするオリゴヌクレオチドデコイを提供する。さらに、本発明は、コア配列 と、該コア配列の一端又は両端に付加配列が結合された、互いに相補的な実質的に 二本鎖力も成るオリゴヌクレオチドから成る、転写因子に対するオリゴヌクレオチドデ コィにおいて、前記コア配列を構成するヌクレオチド間の結合のみが耐ヌクレアーゼ 修飾され、他のヌクレオチド間の結合は修飾されて 、な 、ことを特徴とするオリゴヌク レオチドの効果量を前記転写因子と相互作用させることを含む該転写因子の阻害方 法を提供する。さら〖こ、本発明は、コア配列と、該コア配列の一端又は両端に付加配 列が結合された、互いに相補的な実質的に二本鎖力 成るオリゴヌクレオチドから成 る、転写因子に対するオリゴヌクレオチドデコイにおいて、前記コア配列を構成するヌ クレオチド間の結合のみが耐ヌクレアーゼ修飾され、他のヌクレオチド間の結合は修 飾されて ヽな ヽことを特徴とするオリゴヌクレオチドの、前記転写因子活性を阻害する 阻害剤を製造するための使用を提供する。 [0012] Further, the present invention provides an oligonucleotide for a transcription factor comprising a core sequence and an oligonucleotide having a complementary double-stranded force and having an additional sequence bonded to one or both ends of the core sequence. In the decoy, only the bond between nucleotides constituting the core sequence is modified with nuclease resistance, and the bond between other nucleotides is modified. An oligonucleotide decoy is provided. Furthermore, the present invention relates to an oligonucleotide decoy for a transcription factor, comprising a core sequence and oligonucleotides having substantially double-stranded forces complementary to each other, with additional sequences attached to one or both ends of the core sequence. Only the bond between the nucleotides constituting the core sequence is modified with nuclease resistance, and the bond between the other nucleotides is modified, and the effective amount of the oligonucleotide is characterized by interacting with the transcription factor. A method for inhibiting the transcription factor is provided. Furthermore, the present invention relates to an oligonucleotide for a transcription factor comprising a core sequence and oligonucleotides having a substantially double-stranded force complementary to each other and having an additional sequence bonded to one or both ends of the core sequence. In the nucleotide decoy, only the bond between the nucleotides constituting the core sequence is modified with nuclease resistance, and the bond between the other nucleotides is modified. Inhibiting Uses for producing inhibitors are provided.
発明の効果  The invention's effect
[0013] 本発明により、公知のデコイオリゴヌクレオチドよりも高い NF- κ Bとの結合能を有す る新規なオリゴヌクレオチドが提供された。本発明のオリゴヌクレオチドは、 NF- κ Bと の結合能が高いので、公知のオリゴヌクレオチドよりも NF- κ Bに対するデコイとして 優れた性能を発揮し、 NF- κ Bの生理活性をより大きく低下させることができる。従つ て、本発明のデコイを有効成分として含む各種医薬は、優れた薬効を発揮する。  [0013] According to the present invention, a novel oligonucleotide having a higher binding ability to NF-κB than a known decoy oligonucleotide is provided. Since the oligonucleotide of the present invention has a high binding ability to NF-κB, it exhibits superior performance as a decoy for NF-κB than known oligonucleotides, and greatly reduces the physiological activity of NF-κB. Can be made. Therefore, various medicaments containing the decoy of the present invention as an active ingredient exhibit excellent medicinal effects.
[0014] また、コア配列を構成するヌクレオチド間の結合のみが耐ヌクレアーゼ修飾されて V、るオリゴヌクレオチドデコイである本願第 2の発明によれば、下記実施例にお!、て 具体的に記載されるように、同一の配列を有する完全 S化オリゴヌクレオチドと比較し て、転写因子に対する結合能が大幅に高ぐ一方、オリゴヌクレオチドの中央部分を 占めるコア配列は Sィ匕によりヌクレアーゼに対する耐性が付与されているので、ヌクレ ァーゼに対する耐性は完全 S化オリゴヌクレオチドと比較してそれほど低下しな 、。こ のため、部分 S化オリゴヌクレオチドは、生体内において転写因子に対するデコイとし て優れた性能を発揮すると考えられる。  [0014] In addition, according to the second invention of the present application, in which only the bond between nucleotides constituting the core sequence is modified with nuclease resistance and is an oligonucleotide decoy, it is specifically described in the following examples. As shown in the figure, compared to a fully S-modified oligonucleotide having the same sequence, the binding ability to a transcription factor is greatly increased, while the core sequence occupying the central portion of the oligonucleotide is resistant to nuclease by S 匕. As it is conferred, resistance to nuclease is not significantly reduced compared to fully S-modified oligonucleotides. For this reason, partial S-oligonucleotide is considered to exhibit excellent performance as a decoy for transcription factors in vivo.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 上記の通り、本発明のオリゴヌクレオチドは、上記一般式 [I]で表される塩基配列を 有する。なお、本発明において、「塩基配列を有する」とは、オリゴヌクレオチドの塩基 がそのような順序で配列しているという意味である。従って、例えば、 rCgcgggatttccca gcで示される塩基配列を有するオリゴヌクレオチド」とは、 cgcgggatttcccagcの塩基配 列を持つ 16塩基のサイズのオリゴヌクレオチドを意味する。一般式 [I]で表される塩基 配列を有するオリゴヌクレオチドは、示される塩基配列を有する一本鎖オリゴヌクレオ チド、その相補鎖であるオリゴヌクレオチド、互いに相補的な二本鎖力 成るオリゴヌ クレオチド及び部分的に相補鎖とハイブリダィズして二本鎖になっている部分的な二 本鎖を包含する。なお、本明細書及び特許請求の範囲において、「互いに相補的な 二本鎖力 成るオリゴヌクレオチド」は、全領域が互いに相補的な二本鎖になってい る完全な二本鎖オリゴヌクレオチドを意味する。後述のように、 NF- κ Bに対するデコ ィ (本明細書及び特許請求の範囲において「NF- K Bデコイ」と呼ぶことがある)として 用いる場合には、互いに相補的な二本鎖力 成るオリゴヌクレオチドであることが好ま しい。 [0015] As described above, the oligonucleotide of the present invention has the nucleotide sequence represented by the above general formula [I]. Have. In the present invention, “having a base sequence” means that the bases of the oligonucleotide are arranged in such an order. Thus, for example, an “oligonucleotide having a base sequence represented by r C gcgggatttccca gc” means a 16-base size oligonucleotide having the base sequence of cgcgggatttcccagc. The oligonucleotide having the base sequence represented by the general formula [I] includes a single-stranded oligonucleotide having the indicated base sequence, an oligonucleotide that is a complementary strand thereof, an oligonucleotide having a double-stranded force complementary to each other, and It includes partial duplexes that are partially hybridized with complementary strands to form duplexes. In the present specification and claims, “an oligonucleotide having complementary double-stranded forces” means a complete double-stranded oligonucleotide whose entire regions are complementary to each other. To do. As described later, when used as a decoy for NF-κB (sometimes referred to as “NF-KB decoy” in the present specification and claims), oligos having double-stranded forces complementary to each other Preferably it is a nucleotide.
[0016] 一般式 [I]中、 Xで表されるコンセンサス配列は、 gggatttccc (配列番号 1、非特許文 献 5)又は gggactttcc (配列番号 2、非特許文献 6)であり、配列番号 1の配列がより好ま しい。これらのコンセンサス配列は、 NF- κ Bファミリーが共通して結合するゲノム遺伝 子の結合領域の塩基配列を有する。  [0016] In the general formula [I], the consensus sequence represented by X is gggatttccc (SEQ ID NO: 1, Non-Patent Document 5) or gggactttcc (SEQ ID NO: 2, Non-Patent Document 6). An array is preferred. These consensus sequences have the base sequence of the binding region of the genomic gene to which the NF-κB family binds in common.
[0017] 一般式 [I]中の Aは、 Xで表されるコンセンサス配列の 5'側末端に付加されている配 列であるので、本発明において「5'側付加配列」と呼び、 cgc、 ccc、 gga、 cgca、 ccct及 び ggctから成る群より選択される。一般式 [I]中の Bは、 Xで表されるコンセンサス配列 の 3'側末端に付加されて 、る配列であるので、本発明にお 、て「3'側付加配列」と呼 び、 agc、 acc、 ggg、 gcg、 gcc及び gcggから成る群より選択される。  [0017] Since A in the general formula [I] is a sequence added to the 5 'end of the consensus sequence represented by X, it is referred to as "5' additional sequence" in the present invention, and cgc , Ccc, gga, cgca, ccct and ggct. Since B in the general formula [I] is a sequence added to the 3 ′ end of the consensus sequence represented by X, it is referred to as “3 ′ additional sequence” in the present invention. Selected from the group consisting of agc, acc, ggg, gcg, gcc and gcgg.
[0018] 一般式 [I]で表されるオリゴヌクレオチドの好まし 、例としては、 cgcgggatttcccagc (配 歹 IJ番号 3)ゝ cccgggatttcccacc (酉己歹幡号 4)ゝ ggagggatttcccggg (酉己歹 U番号 b八 cgcagggat ttcccgcg (目 il歹 U番号 bノ、 ccctgggatttcccgcc (目 il歹 [J番号 7及び ggctgggatttcccgcgg (酉己歹 IJ 番号 8)を挙げることができる。  [0018] Preferred examples of the oligonucleotide represented by the general formula [I] include cgcgggatttcccagc (arrangement IJ number 3) ゝ cccgggatttcccacc (arrangement 4) ggagggatttcccggg cgcagggat ttcccgcg (eyes il 歹 U number b), ccctgggatttcccgcc (eyes il 歹 [J number 7 and ggctgggatttcccgcgg (酉 self IJ number 8).
[0019] 本発明のオリゴヌクレオチドは、基本的に DNAであることが好ましいが、隣接する少 なくとも 2個のヌクレオチド間の結合を、耐ヌクレアーゼ修飾してヌクレアーゼに対する 耐性を増大させることが好ましい。ここで、「耐ヌクレアーゼ修飾」とは、ヌクレアーゼに よる分解を天然の DNAよりも受けに《する修飾のことを意味し、このような DNAの修 飾自体は周知である。耐ヌクレアーゼ修飾の例としては、ホスホロチォエート化 (本明 細書において「S化」と呼ぶことがある)、ホスホロジチォエート化、ホスホロアミデート 化等を挙げることができる。これらのうち、 S化が好ましい。 S化は、上記の通り、隣接 するヌクレオチド間のリン酸エステル結合を構成するリン原子に結合している 2個の非 架橋酸素原子のうちの 1個をィォゥ原子に変換することを意味する。任意の隣接する ヌクレオチド間の結合を S化する手法自体は周知であり、例えば、非特許文献 7に記 載された方法により行なうことができ、 S化オリゴヌクレオチドは商業的にも合成されて いる。本発明のオリゴヌクレオチドにおいて、全てのヌクレオチド間の結合が S化され たオリゴヌクレオチド (以下、本明細書にぉ 、て「完全 S化オリゴヌクレオチド」と呼ぶこ とがある)も好ましいが、コンセンサス配列を構成するヌクレオチド同士の間の結合の みが S化され、他のヌクレオチド間、すなわち、 5'付加配列を構成するヌクレオチド間 、 3'付加配列を構成するヌクレオチド間、コンセンサス配列の 5'末端のヌクレオチドと 5 '付加配列の 3'末端のヌクレオチドの間及びコンセンサス配列の 3'末端のヌクレオチド と 3'付加配列の 5'末端のヌクレオチドの間は修飾されて 、な 、オリゴヌクレオチド(以 下、このようなオリゴヌクレオチドを本明細書にぉ 、て「部分 S化オリゴヌクレオチド」と 呼ぶことがある)はより好ましい。下記実施例に具体的に示されるように、部分 S化オリ ゴヌクレオチドは、同一の配列を有する完全 S化オリゴヌクレオチドと比較して、 NF- κ Bに対する結合能が約 3〜5倍高ぐ一方、オリゴヌクレオチドの中央部分を占める コンセンサス配列は Sィ匕によりヌクレアーゼに対する耐性が付与されているので、ヌク レアーゼに対する耐性は完全 S化オリゴヌクレオチドと比較してそれほど低下しない。 このため、部分 S化オリゴヌクレオチドは、生体内において NF- κ Bデコイとして優れ た性能を発揮すると考えられる。なお、二本鎖オリゴヌクレオチドの場合、上記した各 耐ヌクレアーゼ修飾は、どちらか一方の鎖にのみ行なってもよいが、二本鎖とも修飾 することが好ましい。 [0019] The oligonucleotide of the present invention is preferably DNA in principle, but the bond between at least two adjacent nucleotides is modified with nuclease resistance so that it is against nuclease. It is preferred to increase resistance. Here, “nuclease-resistant modification” means a modification that makes nuclease degradation more natural than natural DNA, and such DNA modification itself is well known. Examples of the nuclease resistance modification include phosphorothioation (sometimes referred to as “S” in the present specification), phosphorodithioation, phosphoramidate formation, and the like. Of these, S is preferred. As described above, conversion to S means that one of two non-bridging oxygen atoms bonded to a phosphorus atom constituting a phosphate ester bond between adjacent nucleotides is converted to a thio atom. The technique of converting the bond between any adjacent nucleotides to S is well known, and can be performed, for example, by the method described in Non-Patent Document 7, and S-modified oligonucleotides are also synthesized commercially. . In the oligonucleotide of the present invention, an oligonucleotide in which all of the linkages between nucleotides are converted to S (hereinafter, sometimes referred to as “fully-modified oligonucleotide” in the present specification) is also preferable. Only the bonds between the nucleotides constituting the S are converted to S, and the other nucleotides, that is, the nucleotides constituting the 5 'addition sequence, the nucleotides constituting the 3' addition sequence, the 5 'end of the consensus sequence Between the nucleotide and the 3′-end nucleotide of the 5 ′ addition sequence and between the 3′-end nucleotide of the consensus sequence and the 5′-end nucleotide of the 3 ′ addition sequence, the oligonucleotide (hereinafter referred to as this oligonucleotide) is modified. Such oligonucleotides are sometimes referred to herein as “partially S-oligonucleotides”). As specifically shown in the Examples below, partially S-modified oligonucleotides have a binding capacity for NF-κB that is about 3-5 times higher compared to fully S-oligonucleotides having the same sequence. On the other hand, since the consensus sequence occupying the central part of the oligonucleotide is given resistance to nuclease by S 匕, the resistance to nuclease is not significantly reduced compared to a fully S-modified oligonucleotide. For this reason, it is considered that the partially S-oligonucleotide exhibits excellent performance as an NF-κB decoy in vivo. In the case of a double-stranded oligonucleotide, each of the above-mentioned nuclease resistance modification may be performed on only one of the strands, but it is preferable to modify both strands.
本発明のオリゴヌクレオチドは、市販の核酸合成装置を用いて合成することができ る。また、 PCR等の核酸増幅法により大量調製することも可能である。 [0021] 本発明のオリゴヌクレオチドであって、互いに相補的な実質的に二本鎖力 成るォ リゴヌクレオチドは、 NF- κ Bデコイとしての用途を有する。従って、本発明は、本発明 のオリゴヌクレオチドであって、互いに相補的な実質的に二本鎖力 成るオリゴヌタレ ォチドから成る NF- κ Bデコイをも提供する。ここで、「NF- κ BJとは、 NF- κ BZRelフ アミリーメンバーのタンパク質のホモあるいはヘテロ二量体のことをいう。「NF- κ Bファ ミリ一」は、 NF- K BZRelファミリーメンバーのタンパク質をいう。例えば P50, P52, P65( Rel-A), c-Rel, Rd-Bのことである。「ホモあるいはヘテロ二量体」は、 NF- κ Bファミリ 一メンバーのタンパク質のすべての組み合わせを含む。また、ここで、「実質的に二 本鎖力も成る」とは、完全な二本鎖か又は少なくともいずれか一方の末端の 1塩基若 しくは 2塩基が一本鎖となっているものを意味する。 NF- κ Bデコイとしては、実質的 に二本鎖力も成るオリゴヌクレオチドであれば用いることができる力 完全な二本鎖が 好ましい。また、一本鎖のオリゴヌクレオチドは、核酸増幅法における铸型や、本発明 のオリゴヌクレオチドをァフィ-ティクロマトグラフィーで精製する際のリガンドとしての 用途を有する。また、部分的な二本鎖オリゴヌクレオチドは、実質的に二本鎖力 成 るオリゴヌクレオチドを生成させたり、変性させて一本鎖オリゴヌクレオチドを生成させ る出発物質としての用途を有する。 The oligonucleotide of the present invention can be synthesized using a commercially available nucleic acid synthesizer. It can also be prepared in large quantities by nucleic acid amplification methods such as PCR. [0021] The oligonucleotides of the present invention, which are substantially double-stranded oligonucleotides complementary to each other, have uses as NF-κB decoys. Accordingly, the present invention also provides an NF-κB decoy comprising the oligonucleotides of the present invention and substantially complementary to each other and having double-stranded strength. Here, “NF-κBJ” refers to a homo- or heterodimer of a protein of the NF-κBZRel family member. “NF-κB family” refers to an NF-K BZRel family member. Of protein. For example, P50, P52, P65 (Rel-A), c-Rel, Rd-B. “Homo or heterodimers” include all combinations of NF-κB family single member proteins. In addition, here, “substantially double-strand force” means a complete double-strand or at least one base having one or two bases in a single strand. To do. The NF-κB decoy is preferably a complete double strand that can be used if it is an oligonucleotide that also has a double strand strength. In addition, the single-stranded oligonucleotide has a use as a ligand when purifying the oligonucleotide of the present invention by affinity chromatography in the nucleic acid amplification method or by affinity chromatography. In addition, the partial double-stranded oligonucleotide has a use as a starting material for producing a single-stranded oligonucleotide by generating or denaturing a substantially double-stranded oligonucleotide.
[0022] 上記のように NF- κ Bデコイは、既に種々のものが公知であり、それらの医薬用途も 種々知られている。従って、本発明の NF- κ Bデコイも、公知の NF- κ Bデコイと同様 、医薬としての用途を有する。より詳細には、本発明の NF- κ Bデコイは、虚血性疾患 、アレルギー性疾患、炎症性疾患、自己免疫疾患、ガンの転移 *浸潤、または悪液質 の予防、改善または治療剤;血管再狭窄、急性冠症候群、脳虚血、心筋梗塞、虚血 性疾患の再灌流障害、アトピー性皮膚炎、尋常性乾癬、接触性皮膚炎、ケロイド、褥 創、潰瘍性大腸炎、クローン病、腎症、糸球体硬化症、アルブミン尿症、腎炎、腎不 全、慢性関節リウマチ、変形性関節症、椎間板変性症、喘息、慢性閉塞性肺疾患ま たは嚢胞性線維症の予防、改善または治療剤;並びに経皮的冠動脈形成術、経皮 的血管形成術、ノ ィパス手術、臓器移植または臓器の手術後におこる血管の再狭 窄の予防、改善または治療剤等としての医薬用途を有する。ここで、前記血管再狭 窄としては、人工血管、カテーテル、ステントの使用または静脈移植に起因する再狭 窄;並びに閉塞性動脈硬化症、動脈瘤、大動脈乖離、急性冠症候群、脳虚血、マル ファン症候群、プラークラブチヤ一に対する外科的治療に起因する再狭窄を挙げるこ とがでさる。 [0022] As described above, various NF-κB decoys are already known, and various pharmaceutical uses thereof are also known. Therefore, the NF-κB decoy of the present invention has a use as a medicine, similar to the known NF-κB decoy. More specifically, the NF-κB decoy of the present invention is an agent for preventing, improving or treating ischemic disease, allergic disease, inflammatory disease, autoimmune disease, cancer metastasis * invasion, or cachexia; Restenosis, acute coronary syndrome, cerebral ischemia, myocardial infarction, reperfusion injury of ischemic disease, atopic dermatitis, psoriasis vulgaris, contact dermatitis, keloid, wound, ulcerative colitis, Crohn's disease, Prevention, improvement or prevention of nephropathy, glomerulosclerosis, albuminuria, nephritis, renal failure, rheumatoid arthritis, osteoarthritis, intervertebral disc degeneration, asthma, chronic obstructive pulmonary disease or cystic fibrosis Therapeutic agent; and has medicinal use as a preventive, ameliorating or therapeutic agent for vascular restenosis that occurs after percutaneous coronary angioplasty, percutaneous angioplasty, neurosurgery, organ transplantation or organ surgery. Here, the vascular restenosis includes restenosis caused by the use of artificial blood vessels, catheters, stents, or vein transplantation. Stenosis; and restenosis resulting from surgical treatment for obstructive arteriosclerosis, aneurysm, aortic divergence, acute coronary syndrome, cerebral ischemia, Marfan syndrome, and pullover crab.
[0023] これらの医薬用途に用いる場合、オリゴヌクレオチドの投与経路は、特に限定され ないが、静脈内投与、筋肉内投与、皮下投与、経皮投与、対象臓器ないしは組織へ の直接投与等の非経口投与が好ましい。投与量は、対象疾患、患者の症状、投与 経路等により適宜設定される力 通常、成人 1日当たり 0.1 10000 ol、好ましくは 1 1000 nmol、より好ましくは 10 100 nmolを投与することができる。製剤は、常法によ り行なうことができ、例えば、注射剤の場合には、生理食塩水中に本発明のオリゴヌク レオチドを溶解した溶液の形態とすることができる。製剤中には、保存剤、緩衝剤、溶 解補助剤、乳化剤、希釈剤、等張化剤などの、製剤分野で常用される添加剤が適宜 混合されていてもよい。また、他の薬効成分を含んでいてもよい。  [0023] When used for these medicinal purposes, the route of administration of the oligonucleotide is not particularly limited, but is not limited to intravenous administration, intramuscular administration, subcutaneous administration, transdermal administration, direct administration to the target organ or tissue, and the like. Oral administration is preferred. The dose is appropriately set according to the target disease, patient symptoms, administration route, etc. Usually, 0.1 10000 ol, preferably 1 1000 nmol, more preferably 10 100 nmol per day for an adult can be administered. The preparation can be performed by a conventional method. For example, in the case of an injection, it can be in the form of a solution in which the oligonucleotide of the present invention is dissolved in physiological saline. In the preparation, additives commonly used in the pharmaceutical field such as preservatives, buffers, solubilizing aids, emulsifiers, diluents, tonicity agents and the like may be appropriately mixed. Moreover, the other medicinal component may be included.
[0024] 上記したように、また、下記実施例にお!、て具体的に記載されるように、上記した部 分 S化オリゴヌクレオチドデコイは、完全 S化オリゴヌクレオチドデコイよりも転写因子 に対する結合能が高ぐ一方、オリゴヌクレオチドの中央部分を占めるコンセンサス配 列は Sィ匕によりヌクレアーゼに対する耐性が付与されているので、ヌクレア一ゼに対 する耐性は完全 S化オリゴヌクレオチドと比較してそれほど低下しない。このため、部 分 S化オリゴヌクレオチドは、生体内において転写因子に対するデコイとして優れた 性能を発揮すると考えられる。従って、本発明は、また、コア配列と、該コア配列の一 端又は両端に付加配列が結合された、互いに相補的な実質的に二本鎖力 成るォ リゴヌクレオチドから成る、転写因子に対するオリゴヌクレオチドデコイにおいて、前記 コア配列を構成するヌクレオチド間の結合のみが耐ヌクレアーゼ修飾され、他のヌク レオチド間の結合は修飾されて 、な 、ことを特徴とするオリゴヌクレオチドデコイをも 提供する。ここで、「コア配列」は、転写因子が結合する領域であり、 NF- κ Bの場合 には上記したコンセンサス配列である。また、「実質的に二本鎖力も成る」の意味は上 記と同じであり、完全な二本鎖が好ましい。なお、上記した各耐ヌクレアーゼ修飾は、 どちらか一方の鎖にのみ行なってもよいが、二本鎖とも修飾することが好ましい。転写 因子としては、 NF- κ Bファミリーの他に、 STAT— 1 STAT— 3 STAT— 6 Ets AP— 1 E 2F等を例示することができるがこれらに限定されるものではない。 [0024] As described above, and as specifically described in the Examples below, the partial S-oligonucleotide decoy described above binds to a transcription factor more than the complete S-oligonucleotide decoy. The consensus sequence that occupies the middle part of the oligonucleotide is more resistant to nuclease by S 匕, so its resistance to nuclease is much less than that of a fully S-modified oligonucleotide. do not do. For this reason, the partial S-oligonucleotide is considered to exhibit excellent performance as a decoy for transcription factors in vivo. Therefore, the present invention also provides an oligo for a transcription factor comprising a core sequence and oligonucleotides having substantially double-stranded strength complementary to each other and having additional sequences bound to one or both ends of the core sequence. In the nucleotide decoy, an oligonucleotide decoy is characterized in that only a bond between nucleotides constituting the core sequence is modified with nuclease resistance and a bond between other nucleotides is not modified. Here, the “core sequence” is a region to which a transcription factor binds, and in the case of NF-κB, the above-described consensus sequence. Further, the meaning of “substantially double-strand force” is the same as described above, and complete double-strand is preferred. Each nuclease resistance modification described above may be performed on only one of the strands, but it is preferable to modify both strands. In addition to the NF-κB family, transcription factors include STAT— 1 STAT— 3 STAT— 6 Ets AP— 1 E Examples include 2F, but are not limited thereto.
[0025] 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実 施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
実施例  Example
[0026] 1. オリゴヌクレオチドの調製  [0026] 1. Preparation of oligonucleotide
NF- κ Bの公知のコンセンサス配列である配列番号 1の配列の両端に付カ卩配列が 結合された 100種類のオリゴデォキシリボヌクレオチド (以下、「ODN」と呼ぶことがあ る)をィ匕学合成した。互いに相補的な 2本の鎖をそれぞれィ匕学合成し、ハイブリダィズ させて完全な二本鎖 ODNとした。なお、各 ODNは、両鎖とも、全ヌクレオチド間の結 合を S化した(以下、「SODN」と呼ぶことがある)ものであった。その SODN番号、塩基 配列、配列番号、長さ、融解温度 (Tm)を表 1 1から表 1 3に示す。なお、表 1 1 力も表 1—3に示される 100種類のオリゴヌクレオチドのうち、一般式 [I]で表される本 発明のオリゴヌクレオチドは、 SODN7 (配列番号 3)、 SODN8 (配列番号 4)、 SODN9 ( 配列番号 5)、 SODN16 (配列番号 6)、 SODN17 (配列番号 7)及び SODN30 (配列番号 8)の 6種類である。  100 types of oligodeoxyribonucleotides (hereinafter sometimes referred to as “ODN”) in which an adjunct sequence is bound to both ends of the sequence of SEQ ID NO: 1, which is a known consensus sequence of NF-κB Synthesized. Two strands complementary to each other were chemically synthesized and hybridized to form a complete double-stranded ODN. Each ODN was obtained by converting the bond between all nucleotides to S in both strands (hereinafter sometimes referred to as “SODN”). The SODN number, base sequence, SEQ ID NO., Length, and melting temperature (Tm) are shown in Tables 11 to 13. Of the 100 kinds of oligonucleotides shown in Table 11 and Table 1-3, the oligonucleotide of the present invention represented by the general formula [I] is SODN7 (SEQ ID NO: 3), SODN8 (SEQ ID NO: 4). SODN9 (SEQ ID NO: 5), SODN16 (SEQ ID NO: 6), SODN17 (SEQ ID NO: 7) and SODN30 (SEQ ID NO: 8).
[0027] [表 1-1] [0027] [Table 1-1]
SODN No. 配列番号 塩基数 Tm (。C) 配列 (5'→3')SODN No. SEQ ID NO: Number of bases Tm (.C) Sequence (5 '→ 3')
1 9 16 50 ctt ggatttcccgtc1 9 16 50 ctt ggatttcccgtc
2 10 16 50 gtagggatttcccgtg2 10 16 50 gtagggatttcccgtg
3 11 16 50 c t ggatttcccttc3 11 16 50 c t ggatttcccttc
4 12 16 50 ct cgggatttc ccatc4 12 16 50 ct cgggatttc ccatc
5 13 16 50 cttgggatttc cctcc5 13 16 50 cttgggatttc cctcc
6 14 16 54 cgagggatttc ccggc6 14 16 54 cgagggatttc ccggc
7 3 16 54 cgcgggatttc ccagc7 3 16 54 cgcgggatttc ccagc
8 4 16 54 cccgggatttcccacc8 4 16 54 cccgggatttcccacc
9 5 16 54 ggagggatttcccggg9 5 16 54 ggagggatttcccggg
10 15 16 54 cct ggatttcccgcc10 15 16 54 cct ggatttcccgcc
11 16 17 54 gt tcgggattt ccctgc11 16 17 54 gt tcgggattt ccctgc
12 17 17 54 cctcgggattt cccat c12 17 17 54 cctcgggattt cccat c
13 18 17 54 cacagggattt cccgtc13 18 17 54 cacagggattt cccgtc
14 19 17 54 ccgtgggattt ccctt c14 19 17 54 ccgtgggattt ccctt c
15 20 17 54 caccgggattt cccaac15 20 17 54 caccgggattt cccaac
16 6 17 58 cgcagggattt cccgcg16 6 17 58 cgcagggattt cccgcg
17 7 17 58 ccctgggattt cccgcc17 7 17 58 ccctgggattt cccgcc
18 21 17 58 cggcgggatttccctgg18 21 17 58 cggcgggatttccctgg
19 22 17 58 cggagggatttcccggg19 22 17 58 cggagggatttcccggg
20 23 17 58 ggccgggattt ccctcg20 23 17 58 ggccgggattt ccctcg
21 24 18 54 ct gagggattt cccat tc21 24 18 54 ct gagggattt cccat tc
22 25 18 54 ct ttgggattt ccctgtc22 25 18 54 ct ttgggattt ccctgtc
23 26 18 54 catagggattt cccat cc23 26 18 54 catagggattt cccat cc
24 27 18 54 gctagggattt cccatag24 27 18 54 gctagggattt cccatag
25 28 18 54 gt ctgggattt ccctt tg25 28 18 54 gt ctgggattt ccctt tg
26 29 18 62 gggtgggatttcccgggg26 29 18 62 gggtgggatttcccgggg
27 30 18 62 cgcagggattt cccgcgc27 30 18 62 cgcagggattt cccgcgc
28 31 18 62 cggtgggatttcccgggc28 31 18 62 cggtgggatttcccgggc
29 32 18 62 cgccgggattt cccacgc29 32 18 62 cgccgggattt cccacgc
30 8 18 62 ggctgggatttcccgcgg30 8 18 62 ggctgggatttcccgcgg
31 33 19 58 cgcgggatttc ccaat ate31 33 19 58 cgcgggatttc ccaat ate
32 34 19 58 ctagggatttcccaccttc32 34 19 58 ctagggatttcccaccttc
33 35 19 58 cgcgggatttc cctat tag33 35 19 58 cgcgggatttc cctat tag
34 36 19 58 gtagggatttc ccgt aac34 36 19 58 gtagggatttc ccgt aac
35 37 19 58 cttgggatttc ccgct tag SODN No. 配列番号 塩基数 Tm (。C) 配列(5'→3' ) 35 37 19 58 cttgggatttc ccgct tag SODN No. Sequence number Number of bases Tm (.C) Sequence (5 '→ 3')
36 38 19 62 ct cggga tttcccagct eg 36 38 19 62 ct cggga tttcccagct eg
37 39 19 62 ct aggga tttcccgctggc37 39 19 62 ct aggga tttcccgctggc
38 40 19 62 gaagggatttc ccggt ccc38 40 19 62 gaagggatttc ccggt ccc
39 41 19 62 cc cggga tttccctaaccc39 41 19 62 cc cggga tttccctaaccc
40 42 19 62 ca cggga tttc ccagc gac40 42 19 62 ca cggga tttc ccagc gac
41 43 19 58 gataccgggat ttcccatg41 43 19 58 gataccgggat ttcccatg
42 44 19 58 catcgt ggat ttcccttc42 44 19 58 catcgt ggat ttcccttc
43 45 19 58 gaatgagggat ttcccgtg43 45 19 58 gaatgagggat ttcccgtg
44 46 19 58 ggaacagggat ttcccaag44 46 19 58 ggaacagggat ttcccaag
45 47 19 58 gtcttagggat ttcccacc45 47 19 58 gtcttagggat ttcccacc
46 48 19 62 ggtcacgggat ttccctgc46 48 19 62 ggtcacgggat ttccctgc
47 49 19 62 ct gtgcgggat ttccctgc47 49 19 62 ct gtgcgggat ttccctgc
48 50 19 62 cacctcgggat tt ccc tec48 50 19 62 cacctcgggat tt ccc tec
49 51 19 62 ccacgagggat ttcccagc49 51 19 62 ccacgagggat ttcccagc
50 52 19 62 gcaaccgggat ttcccacc50 52 19 62 gcaaccgggat ttcccacc
51 53 20 58 gc aggga tttcccattaaac51 53 20 58 gc aggga tttcccattaaac
52 54 20 58 cat ggatttc cctct taac52 54 20 58 cat ggatttc cctct taac
53 55 20 58 gt aggga tttc ccagt tttc53 55 20 58 gt aggga tttc ccagt tttc
54 56 20 58 gt aggga tttc ccagt atac54 56 20 58 gt aggga tttc ccagt atac
55 57 20 58 ctt ggatttccctttcttc55 57 20 58 ctt ggatttccctttcttc
56 58 20 62 ct cgggatttc ccatt cctc56 58 20 62 ct cgggatttc ccatt cctc
57 59 20 62 gt cgggatttc cctggtttg57 59 20 62 gt cgggatttc cctggtttg
58 60 20 62 c t ggatttcccggatatc58 60 20 62 c t ggatttcccggatatc
59 61 20 62 ctt gga tttc ccggt tagc59 61 20 62 ctt gga tttc ccggt tagc
60 62 20 62 gtt ggatttc cctct gagg60 62 20 62 gtt ggatttc cctct gagg
61 63 20 58 catagggattt cccatcttg61 63 20 58 catagggattt cccatcttg
62 64 20 58 ctttgggattt ccctgtttg62 64 20 58 ctttgggattt ccctgtttg
63 65 20 58 ct ctgggattt ccctt tatc63 65 20 58 ct ctgggattt ccctt tatc
64 66 20 58 ct tagggattt cccat gate64 66 20 58 ct tagggattt cccat gate
65 67 20 58 gtttgggattt cccttgttc65 67 20 58 gtttgggattt cccttgttc
66 68 20 62 catcgggattt cccaccttc66 68 20 62 catcgggattt cccaccttc
67 69 20 62 ct tcgggattt cccaccttg67 69 20 62 ct tcgggattt cccaccttg
68 70 20 62 gt gagggattt cccgatgtc68 70 20 62 gt gagggattt cccgatgtc
69 71 20 62 gtaagggattt cccggctag69 71 20 62 gtaagggattt cccggctag
70 72 20 62 gctagggattt cccagtagc SODN No. 配列番号 塩基数 Tm (。C) 配列(5'→3' ) 70 72 20 62 gctagggattt cccagtagc SODN No. Sequence number Number of bases Tm (.C) Sequence (5 '→ 3')
71 73 20 58 gatatgggatt tcccactag 71 73 20 58 gatatgggatt tcccactag
72 74 20 58 ct ttcgggatt tcccatttg72 74 20 58 ct ttcgggatt tcccatttg
73 75 20 58 gttttg gatttcccttctc73 75 20 58 gttttg gatttcccttctc
74 76 20 58 gatacgggatt tcccaatac74 76 20 58 gatacgggatt tcccaatac
75 77 20 58 gattcgggatt tccct tttg75 77 20 58 gattcgggatt tccct tttg
76 78 20 62 ggtacgggatt tcccactac76 78 20 62 ggtacgggatt tcccactac
77 79 20 62 gggtcgggatt tccca tatg77 79 20 62 gggtcgggatt tccca tatg
78 80 20 62 gt tacgggatt tccct ctcc78 80 20 62 gt tacgggatt tccct ctcc
79 81 20 62 ccctcgggatt tccca aatc79 81 20 62 ccctcgggatt tccca aatc
80 82 20 62 gtgatgggatt tcccgttgg80 82 20 62 gtgatgggatt tcccgttgg
81 83 20 58 gt tcttgggat ttccctttc81 83 20 58 gt tcttgggat ttccctttc
82 84 20 58 gtatatgggat ttccctagg82 84 20 58 gtatatgggat ttccctagg
83 85 20 58 caagtagggat ttcccatac83 85 20 58 caagtagggat ttcccatac
84 86 20 58 gatattgggat ttcccttcc84 86 20 58 gatattgggat ttcccttcc
85 87 20 58 gt ttttgggat ttccctgtc85 87 20 58 gt ttttgggat ttccctgtc
86 88 20 62 cgaattgggat ttccctccg86 88 20 62 cgaattgggat ttccctccg
87 89 20 62 gt ttatgggat ttcccgcgg87 89 20 62 gt ttatgggat ttcccgcgg
88 90 20 62 caatcagggat ttcccgtcc88 90 20 62 caatcagggat ttcccgtcc
89 91 20 62 cgtttcgggat ttccctctg89 91 20 62 cgtttcgggat ttccctctg
90 92 20 62 ggttgtgggat ttcccgatg90 92 20 62 ggttgtgggat ttcccgatg
91 93 20 58 gtaaaatgggatttcccgag91 93 20 58 gtaaaatgggatttcccgag
92 94 20 58 ctgaatagggatttcccatc92 94 20 58 ctgaatagggatttcccatc
93 95 20 58 gaattctgggatttccctac93 95 20 58 gaattctgggatttccctac
94 96 20 58 ctttttagggatt tec cage94 96 20 58 ctttttagggatt tec cage
95 97 20 58 gtaattaggga tttcccagg95 97 20 58 gtaattaggga tttcccagg
96 98 20 62 gct tttgggatttcccgtc96 98 20 62 gct tttgggatttcccgtc
97 99 20 62 gcaatacggga tttcccagg97 99 20 62 gcaatacggga tttcccagg
98 100 20 62 caagtat ggga tttcccggc98 100 20 62 caagtat ggga tttcccggc
99 101 20 62 gagtcgaggga tttcccatc99 101 20 62 gagtcgaggga tttcccatc
100 102 20 62 ctt tcagggatttcccacg 100 102 20 62 ctt tcagggatttcccacg
2. NF-κΒとの結合能の測定(一次スクリーニング) 2. Measurement of binding ability to NF-κΒ (primary screening)
各 SODNの NF- κ Bとの結合能は、各 SODNと NF- κ Β(ρ65)とを反応させた後、残存 する遊離の NF- κ Βを、市販の NF- κ Β測定用キット (TransAM Kit(NF- κ Β, ρ65、 AC TIVE MOTIF社)を用い、キットに含まれる Jurkat, TPA and CI- Stimulated, Nuclear E xtract (フオルボールエステル(TPA)及びカルシウムィオノフォア(CI)で刺激した Jurk at細胞の核抽出物)の NF- κ B分子を使用して評価した。測定は、キットの説明書に 従って行なった。なお、該キットは、 NF- κ B(p65タンパク)が結合するコンセンサス配 列を不動化したゥエルに NF- κ B溶液を加え、洗浄後、固相に結合された NF- κ Bを E LISAにより定量するものである。この測定方法によれば、オリゴヌクレオチドの NF- κ Bとの結合能が高いほど、 ELISAにより定量される NF- κ Βの量が少なくなる。 The ability of each SODN to bind to NF-κB is determined by reacting each SODN with NF-κΒ (ρ65), and then converting the remaining free NF-κΒ to a commercially available NF-κΒ measurement kit ( Using TransAM Kit (NF-κΒ, ρ65, AC TIVE MOTIF), Jurkat, TPA and CI-Stimulated, Nuclear Extract (phorbol ester (TPA) and calcium ionophore (CI)) included in the kit Stimulated Jurk at cell nuclear extract) was measured using the NF-κB molecule, and the measurement was performed according to the kit instructions, which contained NF-κB (p65 protein). Combined consensus arrangement An NF-κB solution is added to the wells in which the column is immobilized, and after washing, NF-κB bound to the solid phase is quantified by E LISA. According to this measurement method, the higher the binding ability of the oligonucleotide to NF-κB, the smaller the amount of NF-κΒ quantified by ELISA.
[0031] 上記の測定は、具体的には次のようにして行った。各 SODN溶液をキットに含まれる Complete Binding Bufferを用いて段階希釈し、測定検体とした (公比 3、 4段階、 n=3) 。測定検体を 30 μ Lずつゥエルに加え、コントロール及びブランクのゥエルには Compl ete Binding Bufferをカロえた。キットに含まれる Complete Lysis Bufferで 125 μ g/mLに なるように希釈した、キットに含まれる Jurkat, TPA and CI- Stimulated, Nuclear Extrac tを 20 μ Lずつ各ゥエルに加え、ブランクのゥエルには Complete Lysis Bufferをカ卩えた 。 1時間振とうしながらインキュベートした後、ゥエルをキットに含まれる IX Wash Buffer にて洗浄し、抗 NF- κ B(p65タンパク)抗体をカ卩えて 1時間インキュベートした。ゥエル を IX Wash Bufferにて洗浄し、抗ゥサギ HRP-結合 IgGをカ卩えて 1時間インキュベート した。 IX Wash Bufferにて洗浄し、キットに含まれる現像液 (Developing Solution)をカロ えて 10分間発色後、停止液 (Stop Solution)をカ卩えて反応を停止し、 450nmおよび 630 nmの吸光度を測定した。  [0031] Specifically, the above measurement was performed as follows. Each SODN solution was serially diluted using the Complete Binding Buffer included in the kit, and used as a measurement sample (ratio 3, 4 steps, n = 3). Samples of 30 μL were added to the wells, and the control and blank wells were filled with Compl ete Binding Buffer. Add 20 μL of Jurkat, TPA and CI-Stimulated, Nuclear Extract, each of which is diluted to 125 μg / mL with Complete Lysis Buffer included in the kit, to each well. I got the Complete Lysis Buffer. After incubation with shaking for 1 hour, the wells were washed with IX Wash Buffer included in the kit, and anti-NF-κB (p65 protein) antibody was added and incubated for 1 hour. The wells were washed with IX Wash Buffer, and anti-rabbit HRP-conjugated IgG was added and incubated for 1 hour. Wash with IX Wash Buffer, cover the developer (Developing Solution) included in the kit, develop color for 10 minutes, stop the reaction by adding Stop Solution, and measure the absorbance at 450 nm and 630 nm. .
[0032] 450nmの吸光度から 630nmの吸光度を差し引き、さらにブランクの平均値を差し引き 、コントロールの平均値を 100%とした時の各濃度の平均値のコントロールに対する割 合 (%)を算出し、 50%を挟む 2点間の回帰直線より値が 50%となる(結合を 50%阻害 する)濃度を算出した(解析ソフト(Graph Pad PRISM 4, GraphPad SOFTWARE)を使 用)。コントロールに用いたオリゴヌクレオチドの塩基配列は、公知の NF- κ Bデコイォ リゴヌクレオチドである完全 S化 ccttgaagggatttccctcc (配列番号 103)を用いた。測定 した 100種類の SODNのうち、活性の高かった 10種類の SODN (SODN6,7,8,9, 16, 17,2 7,30,36,91)及び活性の低かった 2種類の SODN (SODN82,83)につ!/、ての結果を表 2 に示す。なお、表 2において、対照デコイの IC 値にばらつきがあるのは、 100種類の  [0032] The absorbance at 450 nm is subtracted from the absorbance at 630 nm, and the average value of the blank is further subtracted to calculate the ratio (%) of the average value of each concentration with respect to the control when the average value of the control is 100%. The concentration at which the value was 50% (inhibition of binding by 50%) was calculated from the regression line between two points across% (using analysis software (Graph Pad PRISM 4, GraphPad SOFTWARE)). As the nucleotide sequence of the oligonucleotide used for control, a fully S-modified ccttgaagggatttccctcc (SEQ ID NO: 103), which is a known NF-κB decoygonucleotide, was used. Of the 100 SODN measured, 10 SODN with higher activity (SODN6,7,8,9, 16, 17,2 7,30,36,91) and 2 SODN with lower activity (SODN82 , 83)! The results are shown in Table 2. In Table 2, the IC values of the control decoys vary in 100 types.
50  50
SODNを 18群に分けて実験し、各実験 (run)において、それぞれ対照値を測定したた めである。  This is because SODN was divided into 18 groups and the control values were measured in each run.
[0033] [表 2] 対照デコイに 対照デコイの[0033] [Table 2] Contrast decoy contrast contrast
SODN No . 配列番号 塩基数 I C50 (nM) 対する割合( IC50 (nM)SODN No. SEQ ID NO: base number IC 50 (nM) against the ratio (IC 50 (nM)
6 14 16 1. 31 55. 0 2. 39 6 14 16 1. 31 55. 0 2. 39
7 3 16 1. 61 33. 2 4. 86  7 3 16 1. 61 33. 2 4. 86
8 4 16 2. 01 41. 3 4. 86  8 4 16 2. 01 41. 3 4. 86
9 5 16 2. 01 41. 3 4. 86  9 5 16 2. 01 41. 3 4. 86
16 6 17 1. 37 39. 2 3. 50 16 6 17 1. 37 39. 2 3. 50
17 7 17 1. 31 37. 4 3. 5017 7 17 1. 31 37. 4 3. 50
27 30 18 2. 23 48. 2 4. 64 27 30 18 2. 23 48. 2 4. 64
30 8 18 1. 33 28. 7 4. 64  30 8 18 1. 33 28. 7 4. 64
36 38 19 2. 10 53. 8 3. 91  36 38 19 2. 10 53. 8 3. 91
82 84 20 > 5 2. 70  82 84 20> 5 2. 70
83 85 20 > 5 2. 70  83 85 20> 5 2. 70
91 93 20 3. 06 43. 4 7. 06  91 93 20 3.06 43. 4 7. 06
[0034] 3. NF- κ Βとの結合能の測定(二次スクリーニング) [0034] 3. Measurement of binding ability to NF-κΒ (secondary screening)
1次スクリーニングで活性の高かった 10種類の SODN (SODN6,7,8,9, 16, 17,27,30,36 ,91)及び活性の低かった 2種類の SODN (SODN82,83)について、公比 3、 6段階、 n=3 で 1次スクリーニングと同様の試験方法で NF- κ B (p65タンパク)への結合阻害活性を 比較した。比較対照として公知の NF- κ Bデコイオリゴヌクレオチドである完全 S化 cct tgaagggatttccctcc (配列番号 103)を用いた。結果を表 3— 1及び表 3— 2に示す。  10 kinds of SODN (SODN6,7,8,9, 16, 17,27,30,36,91) and 2 kinds of SODN (SODN82,83) with low activity that were highly active in the primary screening The inhibitory activity of binding to NF-κB (p65 protein) was compared in the same test method as the primary screening at a ratio of 3, 6 and n = 3. As a comparative control, a fully S-modified cct tgaagggatttccctcc (SEQ ID NO: 103), which is a known NF-κB decoy oligonucleotide, was used. The results are shown in Table 3-1 and Table 3-2.
[0035] [表 3-1]  [0035] [Table 3-1]
IC 50 (nM) 封照デコイ IC 50 (nM) Sealing Decoy
0DN 0DN
1 2 3 Mean SD 対する% 对照デコイ 5. 30 5. 11 5. 36 5. 26 0. 1 1 100. 0  1 2 3 Mean SD vs. contrast decoy 5. 30 5. 11 5. 36 5. 26 0. 1 1 100. 0
Figure imgf000016_0001
Figure imgf000016_0001
[0036] [表 3- 2] IC 50 (nM) 対照デコイ[0036] [Table 3-2] IC 50 (nM) contrast decoy
ODN ODN
1 2 3 Mean S D 対する ¾ 对照デ: ィ 4. 48 4. 89 4. 95 4. 77 0. 21 100. 0 S0DN27 2. 94 2. 88 2. 79 2. 87 0. 06 60. 1  1 2 3 Mean S D against ¾ Cons: De 4. 48 4. 89 4. 95 4. 77 0. 21 100. 0 S0DN27 2. 94 2. 88 2. 79 2. 87 0. 06 60. 1
1. 71 1. 95 1. 95 1. 87 0. 11  1. 71 1. 95 1. 95 1. 87 0. 11
S0DN36 2. 34 2. 80 2. 69 2. 61 0. 20 54. 7  S0DN36 2. 34 2. 80 2. 69 2. 61 0. 20 54. 7
SOD觀 8. 88 8. 06 7. 84 8. 26 0. 44 173. 1  SOD 觀 8. 88 8. 06 7. 84 8. 26 0. 44 173.1
S0DN83 7. 47 7. 36 7. 17 7. 33 0. 12 153. 7  S0DN83 7. 47 7. 36 7. 17 7. 33 0. 12 153.7
S0DN91 2. 72 2. 39 2. 62 2. 58 0. 14 54. 0  S0DN91 2. 72 2. 39 2. 62 2. 58 0. 14 54. 0
[0037] 表 3— 1及び表 3— 2に示されるように、 SODN7,8,9,16,17,30 (本発明のオリゴヌタレ ォチド)で対照デコイオリゴヌクレオチドと比較して 2.5倍から 3倍の阻害活性がみられ た。最も活性の低かった SODN82と最も活性の高かった SODN7を比較すると、 5.2倍 の差があった。 [0037] As shown in Table 3-1 and Table 3-2, SODN7,8,9,16,17,30 (oligonucleotide of the present invention) is 2.5 to 3 times as much as control decoy oligonucleotide. Inhibitory activity was observed. There was a 5.2-fold difference between SODN82, which had the lowest activity, and SODN7, which had the highest activity.
[0038] 4. 部分 S化オリゴヌクレオチドの結合能  [0038] 4. Binding ability of partially S-oligonucleotide
本発明のオリゴヌクレオチドである SODN7,8,9,16,17及び 30の部分 S化オリゴヌタレ ォチド(両鎖とも、コンセンサス配列を構成するヌクレオチド間のみを S化したもの、以 下、「PSODN」と呼ぶことがある)の NF- κ B(p65タンパク)との結合能を上記と同様に調 ベた。結果を表 4及び表 5に示す。なお、表 5は、 SODNの結合能と PSODNの結合能 を並べて比較した表である。また、これらの表中、対照デコイは、配列番号 103で示 される塩基配列を有する完全 S化オリゴヌクレオチドである。また、例えば、 SODN7と P SODN7のように、番号が同じオリゴヌクレオチドは、同じ塩基配列を有し、その塩基配 列は上記したとおりである。  SODN7,8,9,16,17 and 30 partial S-oligonucleotides of the oligonucleotide of the present invention (both strands are S-converted only between nucleotides constituting the consensus sequence, hereinafter referred to as "PSODN") The ability to bind to NF-κB (p65 protein) (which may be called) was examined in the same manner as described above. The results are shown in Tables 4 and 5. Table 5 is a table comparing SODN binding ability and PSODN binding ability side by side. In these tables, the control decoy is a completely S-modified oligonucleotide having the base sequence represented by SEQ ID NO: 103. For example, oligonucleotides having the same number, such as SODN7 and PSODN7, have the same base sequence, and the base sequence is as described above.
[0039] [表 4]  [0039] [Table 4]
IC50 (nM) 对照デコイに IC50 (nM)
0DN 0DN
1 2 3 Μ ' san SD 対する% 対照デコイ 4. 42 5. 39 4. 97 4. 93 0. 40 100. 0 1 2 3 %% of san SD Control Decoy 4. 42 5. 39 4. 97 4. 93 0. 40 100. 0
PS0DN7 0. 46 0. 53 0. 63 0. 54 0. 07 1 1 . 0 PS0DN7 0. 46 0. 53 0. 63 0. 54 0. 07 1 1. 0
PS0DN8 0. 53 0. 64 0. 72 0. 63 0. 08 12. 8  PS0DN8 0. 53 0. 64 0. 72 0. 63 0. 08 12. 8
PS0DN9 0. 35 0. 66 0. 61 0. 54 0. 14 10. 9  PS0DN9 0. 35 0. 66 0. 61 0. 54 0. 14 10. 9
PS0DN16 0. 38 0. 49 0. 37 0. 41 0. 05 8. 4  PS0DN16 0. 38 0. 49 0. 37 0. 41 0. 05 8. 4
PS0DN17 0. 44 0. 47 0. 53 0. 48 0. 03 9. 8  PS0DN17 0. 44 0. 47 0. 53 0. 48 0. 03 9. 8
PS0DN30 0. 41 0. 50 0. 53 0. 48 0. 05 9. 7  PS0DN30 0. 41 0. 50 0. 53 0. 48 0. 05 9. 7
[0040] [表 5] IC50 (n ) 対照デコイに対する ¾[0040] [Table 5] IC50 (n) ¾ against control decoy
OD赠号 OD 赠
SOD N PS ODN S ODN P SODN  SOD N PS ODN S ODN P SODN
7 1.75 0.54 33.3 ) 0.3  7 1.75 0.54 33.3) 0.3
8 2. 1 2 0.S 3 40.3 I 2.0  8 2. 1 2 0.S 3 40.3 I 2.0
9 1.88 0.54 35.7 ( 0.2  9 1.88 0.54 35.7 (0.2
1 6 1.98 0.4 1 37.6 7.9  1 6 1.98 0.4 1 37.6 7.9
1 7 1.81 0.48 9.1  1 7 1.81 0.48 9.1
30 1.87 0.48 39. ) 9.1  30 1.87 0.48 39.) 9.1
[0041] 上記表 4及び表 5に示すように、 PSODNは、同じ塩基配列を有する SODNと比較し て、 NF- κ B(p65タンパク)に対する結合能が 3.2倍〜 4.8倍高力つた。 [0041] As shown in Tables 4 and 5 above, PSODN was 3.2 to 4.8 times more potent in binding ability to NF-κB (p65 protein) than SODN having the same base sequence.
[0042] 5. 他の各種 NF- κ Bファミリータンパク質に対する結合阻害試験  [0042] 5. Binding inhibition test for other NF-κB family proteins
コアのみ S化したデコイ核酸 (PSODN7,8,9, 16, 17および 30)について、他の NF- κ Β ファミリータンパク質 (p50, p52, Rel-B)についても同様に阻害がみられるかどうか検 討した。上記検討の方法は基本的に前記 1次スクリーニングの実験手法と同様である 。公比 3、 6段階、 n=2で各種 NF- κ Βファミリータンパク質の NF- κ Βコンセンサス結 合部位への結合阻害活性を比較した。比較対照として公知の NF- κ Βデコイオリゴヌ クレオチドである完全 S化 ccttgaagggatttccctcc (配列番号 103)を用いた。各種 NF- κ Βファミリータンパク質に対する結合阻害試験は、 NF- κ B Family TransAM Kit(ACT IVE MOTIF社製)を用い、 p50については Jurkat, TPA and CI- Stimulated, Nuclear E xtract(ACTIVE MOTIF社製)、 Re B、 p52については Raji nuclear extract(ACTIVE MOTIF社製)の各種 NF- κ Βファミリータンパク質分子を使用して評価した。また、 1 次抗体は、それぞれ抗 NF- κ Β ρ50抗体、抗 NF- κ Β ρ52抗体または抗 Rel-B抗体を 使用し、 2次抗体はすべて HRP標識抗ゥサギ IgGを使用した。  Check whether the core-only S-decoy nucleic acid (PSODN7,8,9,16,17 and 30) is also inhibited in other NF-κΒ family proteins (p50, p52, Rel-B). I debated. The examination method is basically the same as the primary screening experiment method. We compared the binding inhibitory activity of various NF-κΒ family proteins to the NF-κΒ consensus binding site at a common ratio of 3, 6 and n = 2. As a comparative control, a fully S-modified ccttgaagggatttccctcc (SEQ ID NO: 103), which is a known NF-κΒ decoy oligonucleotide, was used. For binding inhibition tests on various NF-κΒ family proteins, NF-κB Family TransAM Kit (ACT IVE MOTIF) was used, and for p50, Jurkat, TPA and CI-Stimulated, Nuclear Extract (ACTIVE MOTIF) Re B and p52 were evaluated using various NF-κΒ family protein molecules of Raji nuclear extract (manufactured by ACTIVE MOTIF). As the primary antibody, anti-NF-κΒρ50 antibody, anti-NF-κΒρ52 antibody or anti-Rel-B antibody was used, respectively, and HRP-labeled anti-rabbit IgG was used for all secondary antibodies.
[0043] 上記の測定は、具体的には次のようにして行った。各オリゴ核酸溶液を Complete Bi nding Bufferを用いて段階希釈し、測定検体とした。測定検体を 30 Lずつゥエルに 加え、コントロール及びブランクのゥエルには Complete Binding Bufferを加えた。 Com plete Lysis Bufferで希釈した核抽出液(nuclear extract)を 20 μ Lずつ各ゥエルにカロ え、ブランクのゥエルには Complete Lysis Bufferをカ卩えた。 1時間振とうしながらインキ ュペートした後、ゥエルを IX Wash Bufferにて洗浄し、 1次抗体をカ卩えて 1時間インキュ ペートした。ゥエルを IX Wash Bufferにて洗浄し、 2次抗体を加えて 1時間インキュべ ートした。 IX Wash Bufferにて洗浄し、 Developing Solutionをカ卩えて 10分間発色後、 S top Solutionをカ卩えて反応を停止し、 450nmおよび 630nmの吸光度を測定した。 [0043] Specifically, the above measurement was performed as follows. Each oligonucleic acid solution was serially diluted with Complete Binding Buffer and used as a measurement sample. Samples to be measured were added to each 30 L well, and Complete Binding Buffer was added to the control and blank wells. 20 μL of nuclear extract diluted with Complete Lysis Buffer was carved into each well, and Complete Lysis Buffer was placed in the blank well. After incubating with shaking for 1 hour, the wells were washed with IX Wash Buffer, and the primary antibody was covered and incubated for 1 hour. Wash well with IX Wash Buffer, add secondary antibody and incubate for 1 hour. I started. After washing with IX Wash Buffer and developing solution for 10 minutes, the reaction was stopped by adding Stop Solution and the absorbance at 450 nm and 630 nm was measured.
[0044] 解析方法は、 450nmの吸光度から 630nmの吸光度を差し引き、さらにブランクの平 均値を差し引いた後、コントロールの平均値を 100%とした時の各濃度の平均値のコ ントロールに対する割合 (%)を算出し、解析ソフト(Graph Pad PRISM 4, GraphPad S OFTWARE)を用いて 50%阻害濃度 (IC50)を算出した。結果を表 6に示す。なお、 p65 は 2次スクリーニングでの値 (上記表 4)を援用して 、る。  [0044] The analysis method involves subtracting the absorbance at 630 nm from the absorbance at 450 nm, subtracting the average value of the blank, and then the ratio of the average value of each concentration to the control when the average value of the control is 100% ( %) And 50% inhibitory concentration (IC50) was calculated using analysis software (Graph Pad PRISM 4, GraphPad S OFTWARE). The results are shown in Table 6. Note that p65 is based on the value in the secondary screening (Table 4 above).
[0045] [表 6]  [0045] [Table 6]
IC50(n M)  IC50 (n M)
R el-B p52 50 p65fr 従来型の Bデコイ 9.45 8.42 8.45 4.93 R el-B p52 50 p65 fr Conventional B decoy 9.45 8.42 8.45 4.93
PSODN 7 1 .S 1 3.01 1 .02 0.54 PSODN 7 1 .S 1 3.01 1 .02 0.54
PSODN 3 1 .82 3.22 1 .08 0.63PSODN 3 1 .82 3.22 1 .08 0.63
PSODN 9 1 .95 1 .55 0.91 0.54PSODN 9 1 .95 1 .55 0.91 0.54
PSODN 16 2.26 2.37 0.80 0.41PSODN 16 2.26 2.37 0.80 0.41
PSODN 17 1 .87 4.29 0.91 0.48PSODN 17 1 .87 4.29 0.91 0.48
PSODN 30 0.92 2.11 0.69 0.4S PSODN 30 0.92 2.11 0.69 0.4S
[0046] 従来型の NF- K Bデコイ(完全 S化配列番号 103、以下同じ)と IC50値を比較した 場合、 Rd-Bに関しては 4.2〜10.3倍、 p52に関しては 5.4〜2.0倍、 50にっぃては12.2 〜7.8倍強い結合阻害活性がみられた。従って、コアのみ Sィ匕した新規配列デコイ核 酸は p65タンパク質だけでなぐその他の各種 NF- κ Bファミリータンパク質に対しても 強!ヽ結合阻害活性をもつことが示された。 [0046] When comparing IC50 values with a conventional NF-KB decoy (completely S-modified SEQ ID NO: 103, the same shall apply hereinafter), 4.2 to 10.3 times for Rd-B, 5.4 to 2.0 times for p52, 50 times It showed 12.2-7.8 times stronger binding inhibitory activity. Therefore, it was shown that the novel sequence decoy nucleate with only the core has strong binding inhibitory activity against other NF-κB family proteins other than p65 protein alone.
[0047] 5. S化位置を変えたデコイ核酸の NF- κ B p65タンパク質に対する結合阻害試験 オリゴヌクレオチド配列上の S化の位置の影響にっ 、て、付加配列のみ Sィ匕したデコイ 核酸(FSODN)、 S化なしのデコイ核酸(ODN)を同配列について合成し、公比 3、 6段 階、 n=2で NF- κ Bコンセンサス結合部位への結合阻害活性を比較した。 NF- κ B p6 5タンパク質に対する結合阻害試験は、 NF- κ B, p65 TransAM Kit(ACTIVE MOTIF 社製)を用い、 Jurkat, TPA and CI— Stimulated, Nuclear Extract(ACTIVE MOTIF社 製)の NF- κ Bタンパク質分子を使用して評価した。試験方法は上記実施例 5と同様 に行った。なお、「付加配列のみ S化」とは、付カ卩内および付加とコアの間が S化されて いるものを意味しており、例えば配列 7なら CsGsCsGGGATTTCCCsAsGsCとなる。 比較した結果を表 7に示す。また、 PSODNは 2次スクリーニングでの値(上記表 4)を 援用している。 [0047] 5. Binding inhibition test of decoy nucleic acid with changed S-position to NF-κB p65 protein Decoy nucleic acid in which only the additional sequence was changed due to the influence of S-position on the oligonucleotide sequence ( FSODN), S-decoy nucleic acid (ODN) was synthesized for the same sequence, and its binding inhibition activity to the NF-κB consensus binding site was compared at a common ratio of 3, 6 and n = 2. The binding inhibition test for NF-κB p6 5 protein was performed using NF-κB, p65 TransAM Kit (ACTIVE MOTIF) and Jurkat, TPA and CI—Stimulated, Nuclear Extract (ACTIVE MOTIF) NF-κ. B protein molecules were used for evaluation. The test method was the same as in Example 5 above. Note that “additional sequence only is S” means that the inside of the attachment and between the addition and the core are S, for example, if the sequence is 7, CsGsCsGGGATTTCCCsAsGsC. Table 7 shows the comparison results. In addition, PSODN uses values from the secondary screening (Table 4 above).
[表 7] [Table 7]
IC50 M)  IC50 M)
0DN番号  0DN number
PS0DN* FS0DN 0DN  PS0DN * FS0DN 0DN
7 0.54 >100 >100  7 0.54> 100> 100
8 0.63 >100 >100  8 0.63> 100> 100
9 0.54 >100 >100  9 0.54> 100> 100
16 0.41 1.11 >100  16 0.41 1.11> 100
17 0.48 >100 >100  17 0.48> 100> 100
30 0.48 >100 >100  30 0.48> 100> 100
従来型の NF-κΒデコィ 4.93 4.30 3.24 コア配列のみ Sィ匕したデコイ核酸(PSODN)と比較した結果、 FSODNおよび ODNに よる阻害活性は、 IC50値が ΙΟΟηΜ以上と低くなつた。ただし、 FSODN16については従 来型の NF- K Bデコイよりも約 3.9倍強い結合阻害活性がみられた。従って、同じ配列 でも、 Sィ匕の位置により、結合阻害活性が大きく異なることが示唆された。 Compared to conventional NF-κΒ decoy 4.93 4.30 3.24 Core sequence only Si decoy nucleic acid (PSODN), the inhibitory activity by FSODN and ODN was low at IC50 value of ΙΟΟηΜ or more. However, Traditional of NF- K B about 3.9-fold stronger binding inhibitory activity than the decoy was observed for FSODN16. Therefore, it was suggested that even with the same sequence, the binding inhibitory activity varies greatly depending on the position of S 匕.

Claims

請求の範囲 The scope of the claims
[I] 下記一般式 [I]で表される塩基配列を有するオリゴヌクレオチド。  [I] An oligonucleotide having a base sequence represented by the following general formula [I].
A-X-B [I]  A-X-B [I]
(一般式 [I]中、 Xは gggatttccc又は gggactttccで示されるコンセンサス配列、 Aは cgc、 ccc、 gga、 cgca、 ccct及び ggctから成る群より選択される 5'側付加配列、 Bは agc、 acc、 ggg, gcg、 gcc及び gcgg力 成る群より選択される 3'側付加配列を示す)。  (In the general formula [I], X is a consensus sequence represented by gggatttccc or gggactttcc, A is a 5 ′ additional sequence selected from the group consisting of cgc, ccc, gga, cgca, ccct and ggct, B is agc, acc A 3 ′ additional sequence selected from the group consisting of ggg, gcg, gcc and gcgg force).
[2] 前記コンセンサス配列が gggatttcccである請求項 1記載のオリゴヌクレオチド。 [2] The oligonucleotide according to claim 1, wherein the consensus sequence is gggatttccc.
[3] cgcgggatttcccagc、 cccgggatttcccacc、 ggagggatttcccggg、 cgcagggatttcccgcg、 ccctgg gatttcccgcc又は ggctgggatttcccgcggで示される塩基配列を有する請求項 2記載のオリ ゴヌクレオチド。 [3] The oligonucleotide according to claim 2, which has a base sequence represented by cgcgggatttcccagc, cccgggatttcccacc, ggagggatttcccggg, cgcagggatttcccgcg, ccctgg gatttcccgcc or ggctgggatttcccgcgg.
[4] 互いに相補的な二本鎖力 成る請求項 1記載のオリゴヌクレオチド。  [4] The oligonucleotide according to claim 1, comprising double-stranded forces complementary to each other.
[5] 隣接する少なくとも 2個のヌクレオチド間の結合力 耐ヌクレアーゼ修飾されている 請求項 1記載のオリゴヌクレオチド。  [5] The oligonucleotide according to claim 1, wherein the oligonucleotide is modified with a nuclease-resistant binding force between at least two adjacent nucleotides.
[6] 互いに相補的な二本鎖力も成るオリゴヌクレオチドであって、二本鎖とも耐ヌクレオ チド修飾されている請求項 5記載のオリゴヌクレオチド。 [6] The oligonucleotide according to [5], wherein the oligonucleotide also has double-stranded forces complementary to each other, both of which are modified with nucleotide resistance.
[7] 少なくとも前記コンセンサス配列を構成する全ヌクレオチド間の結合が耐ヌクレア一 ゼ修飾されている請求項 5記載のオリゴヌクレオチド。 7. The oligonucleotide according to claim 5, wherein at least all nucleotides constituting the consensus sequence are nuclease-resistant modified.
[8] 全ヌクレオチド間の結合力 耐ヌクレアーゼ修飾されている請求項 7記載のオリゴヌ クレオチド。 [8] The oligonucleotide according to claim 7, wherein the oligonucleotide has a nuclease-resistant modification.
[9] 前記コンセンサス配列を構成するヌクレオチド間の結合のみが耐ヌクレアーゼ修飾 され、他のヌクレオチド間の結合は修飾されて 、な 、請求項 7記載のオリゴヌクレオ チド。  [9] The oligonucleotide according to claim 7, wherein only a bond between nucleotides constituting the consensus sequence is modified with nuclease resistance, and a bond between other nucleotides is modified.
[10] 前記耐ヌクレアーゼ修飾力 ホスホロチォエートイ匕である請求項 5記載のオリゴヌク レオチド。  [10] The oligonucleotide according to [5], wherein the nuclease-resistant modifying ability is phosphorothioate.
[I I] 請求項 1記載のオリゴヌクレオチドであって、互いに相補的な実質的に二本鎖から 成るオリゴヌクレオチド力も成る NF- κ Bデコイ。  [I I] The oligonucleotide according to claim 1, wherein the NF-κB decoy also has a substantially double-stranded oligonucleotide force complementary to each other.
[12] 前記オリゴヌクレオチドが完全な二本鎖である請求項 11記載の NF- κ Bデコイ。  12. The NF-κB decoy according to claim 11, wherein the oligonucleotide is a complete double strand.
[13] 前記 NF- κ Bデコイが p65、 p50、 p52及び Re卜 Bタンパクから成る群より選ばれる少な くとも 1種の分子種に結合する請求項 11記載の NF- κ Bデコイ。 [13] A small amount of the NF-κB decoy selected from the group consisting of p65, p50, p52 and Re 卜 B protein. 12. The NF-κB decoy according to claim 11, which binds to at least one molecular species.
[14] 請求項 1ないし 10のいずれ力 1項に記載のオリゴヌクレオチドであって、互いに相 補的な実質的に二本鎖力 成るオリゴヌクレオチドを有効成分として含有する医薬。 [14] The pharmaceutical agent according to any one of [1] to [10] above, which comprises, as an active ingredient, an oligonucleotide having a substantially double-stranded force complementary to each other.
[15] 前記オリゴヌクレオチドが完全な二本鎖である請求項 14記載の医薬。 15. The medicament according to claim 14, wherein the oligonucleotide is a complete double strand.
[16] 虚血性疾患、アレルギー性疾患、炎症性疾患、 自己免疫疾患、ガンの転移'浸潤、 または悪液質の予防、改善または治療剤である請求項 14記載の医薬。 [16] The medicament according to claim 14, which is an agent for preventing, improving or treating ischemic disease, allergic disease, inflammatory disease, autoimmune disease, cancer metastasis' invasion, or cachexia.
[17] 血管再狭窄、急性冠症候群、脳虚血、心筋梗塞、虚血性疾患の再灌流障害、アト ピー性皮膚炎、尋常性乾癬、接触性皮膚炎、ケロイド、褥創、潰瘍性大腸炎、クロー ン病、腎症、糸球体硬化症、アルブミン尿症、腎炎、腎不全、慢性関節リウマチ、変 形性関節症、椎間板変性症、喘息、慢性閉塞性肺疾患または嚢胞性線維症の予防[17] Vascular restenosis, acute coronary syndrome, cerebral ischemia, myocardial infarction, reperfusion injury of ischemic disease, atopic dermatitis, psoriasis vulgaris, contact dermatitis, keloid, sores, ulcerative colitis , Crohn's disease, nephropathy, glomerulosclerosis, albuminuria, nephritis, renal failure, rheumatoid arthritis, osteoarthritis, intervertebral disc degeneration, asthma, chronic obstructive pulmonary disease or cystic fibrosis
、改善または治療剤である請求項 14記載の医薬。 15. The medicament according to claim 14, which is an ameliorating or therapeutic agent.
[18] 経皮的冠動脈形成術、経皮的血管形成術、バイパス手術、臓器移植または臓器の 手術後におこる血管の再狭窄の予防、改善または治療剤である請求項 14記載の医 薬。 [18] The medicine according to claim 14, which is an agent for preventing, improving or treating vascular restenosis that occurs after percutaneous coronary angioplasty, percutaneous angioplasty, bypass surgery, organ transplantation or organ surgery.
[19] 前記血管再狭窄が、人工血管、カテーテル、ステントの使用または静脈移植に起 因する再狭窄である請求項 18記載の医薬。  19. The medicament according to claim 18, wherein the vascular restenosis is restenosis caused by use of an artificial blood vessel, a catheter, a stent, or vein transplantation.
[20] 前記血管再狭窄が、閉塞性動脈硬化症、動脈瘤、大動脈乖離、急性冠症候群、脳 虚血、マルファン症候群、プラークラブチヤ一に対する外科的治療に起因する請求 項 18記載の医薬。 [20] The medicament according to claim 18, wherein the vascular restenosis is caused by surgical treatment for obstructive arteriosclerosis, aneurysm, aortic detachment, acute coronary syndrome, cerebral ischemia, Marfan syndrome, or puller crab chest. .
[21] コア配列と、該コア配列の一端又は両端に付加配列が結合された、互いに相補的 な実質的に二本鎖力も成るオリゴヌクレオチドから成る、転写因子に対するオリゴヌク レオチドデコイにぉ 、て、前記コア配列を構成するヌクレオチド間の結合のみが耐ヌ クレアーゼ修飾され、他のヌクレオチド間の結合は修飾されて ヽな 、ことを特徴とする オリゴヌクレオチドデコイ。  [21] An oligonucleotide decoy for a transcription factor comprising a core sequence and oligonucleotides complementary to each other and having substantially double-stranded force, each having an additional sequence bonded to one or both ends of the core sequence. An oligonucleotide decoy characterized in that only a bond between nucleotides constituting a core sequence is modified with nuclease resistance and a bond between other nucleotides is modified.
[22] 前記耐ヌクレアーゼ修飾力 ホスホロチォエートイ匕である請求項 21記載のオリゴヌ タレ才チドデコイ。  [22] The oligodeoxytide decoy according to claim 21, which is a phosphorothioate-resistant potency.
[23] 請求項 1な 、し 10の!、ずれ力 1項に記載のオリゴヌクレオチドであって互いに相補 的な実質的に二本鎖力 成るオリゴヌクレオチドを NF- κ Bと相互作用させることを含 む、 NF- κ Bを阻害する方法。 [23] The oligonucleotide according to claim 1, wherein the oligonucleotide has a double-strand force that is complementary to each other and interacts with NF-κB. Including A method for inhibiting NF-κB.
[24] 請求項 1な 、し 10の!、ずれ力 1項に記載のオリゴヌクレオチドであって互いに相補 的な実質的に二本鎖力 成るオリゴヌクレオチドの、 NF- κ Bを阻害する阻害剤を製 造するための使用。 [24] The inhibitor according to claim 1, which is an oligonucleotide according to claim 1, wherein the oligonucleotide is substantially double-stranded and complementary to each other, and inhibits NF-κB. Use for manufacturing.
[25] 請求項 1ないし 10のいずれ力 1項に記載のオリゴヌクレオチドであって、互いに相 補的な実質的に二本鎖力 成るオリゴヌクレオチドを効果量投与することを含む、 NF - κ Bの阻害により治癒又は緩解する疾患の予防、改善または治療方法。  [25] The oligonucleotide according to any one of claims 1 to 10, which comprises administering an effective amount of an oligonucleotide having substantially double-stranded strength complementary to each other, NF-κB For the prevention, amelioration, or treatment of diseases that are cured or ameliorated by inhibition of.
[26] 請求項 1ないし 10のいずれ力 1項に記載のオリゴヌクレオチドであって、互いに相 補的な実質的に二本鎖力 成るオリゴヌクレオチドの、 NF- κ Bの阻害により治癒又 は緩解する疾患に対する医薬の製造のための使用。  [26] The oligonucleotide according to any one of claims 1 to 10, wherein the oligonucleotide is substantially double-stranded and complementary to each other, and is cured or ameliorated by inhibiting NF-κB. For the manufacture of a medicament for the disease to be treated.
[27] コア配列と、該コア配列の一端又は両端に付加配列が結合された、互いに相補的 な実質的に二本鎖力も成るオリゴヌクレオチドから成る、転写因子に対するオリゴヌク レオチドデコイにぉ 、て、前記コア配列を構成するヌクレオチド間の結合のみが耐ヌ クレアーゼ修飾され、他のヌクレオチド間の結合は修飾されて ヽな 、ことを特徴とする オリゴヌクレオチドの効果量を前記転写因子と相互作用させることを含む該転写因子 の阻害方法。  [27] An oligonucleotide decoy for a transcription factor comprising a core sequence and an oligonucleotide having complementary double strands and having an additional sequence bonded to one end or both ends of the core sequence. Only the bond between nucleotides constituting the core sequence is modified with nuclease resistance, and the bond between other nucleotides should be modified. The effective amount of the oligonucleotide is allowed to interact with the transcription factor. A method for inhibiting the transcription factor.
[28] コア配列と、該コア配列の一端又は両端に付加配列が結合された、互いに相補的 な実質的に二本鎖力も成るオリゴヌクレオチドから成る、転写因子に対するオリゴヌク レオチドデコイにぉ 、て、前記コア配列を構成するヌクレオチド間の結合のみが耐ヌ クレアーゼ修飾され、他のヌクレオチド間の結合は修飾されて ヽな 、ことを特徴とする オリゴヌクレオチドの、前記転写因子活性を阻害する阻害剤を製造するための使用。  [28] An oligonucleotide decoy for a transcription factor comprising a core sequence and an oligonucleotide having complementary double strands and having an additional sequence bonded to one end or both ends of the core sequence. Producing an inhibitor of an oligonucleotide that inhibits the transcription factor activity, characterized in that only the bond between nucleotides constituting the core sequence is modified with nuclease resistance and the bond between other nucleotides is modified. Use to do.
PCT/JP2006/325502 2005-12-22 2006-12-21 NOVEL OLIGONUCLEOTIDE AND NF-κB DECOY COMPRISING THE SAME WO2007072909A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/086,923 US20100167390A1 (en) 2005-12-22 2006-12-21 Novel Oligonucleotide and NF-kB Decoy Comprising the Same
JP2007551148A JPWO2007072909A1 (en) 2005-12-22 2006-12-21 Novel oligonucleotide and NF-κB decoy comprising the same
EP06835068A EP1978096A1 (en) 2005-12-22 2006-12-21 Novel oligonucleotide and nf-kappa b decoy comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-370188 2005-12-22
JP2005370188 2005-12-22

Publications (1)

Publication Number Publication Date
WO2007072909A1 true WO2007072909A1 (en) 2007-06-28

Family

ID=38188684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325502 WO2007072909A1 (en) 2005-12-22 2006-12-21 NOVEL OLIGONUCLEOTIDE AND NF-κB DECOY COMPRISING THE SAME

Country Status (4)

Country Link
US (1) US20100167390A1 (en)
EP (1) EP1978096A1 (en)
JP (1) JPWO2007072909A1 (en)
WO (1) WO2007072909A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123231A1 (en) * 2007-03-26 2008-10-16 Anges Mg, Inc. Novel cyclic staple-type oligonucleotide, and nf-κb decoy comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371840B1 (en) 2008-11-28 2014-04-16 AnGes MG, Inc. Novel polypeptide having angiogenesis-inducing activity and antibacterial activity, and use thereof for medical purposes
WO2010101237A1 (en) 2009-03-06 2010-09-10 アンジェスMg株式会社 Polypeptides and antibacterial or antiseptic use of same
JP5750766B2 (en) 2009-05-25 2015-07-22 株式会社ファンペップ Polypeptide having angiogenesis-inducing activity and antibacterial activity and wound therapeutic agent containing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011687A1 (en) 1993-10-29 1995-05-04 Dzau Victor J Therapeutic use of cis-element decoys in vivo
JPH08501928A (en) 1992-07-02 1996-03-05 ハイブライドン インコーポレイテッド Self-stabilizing oligonucleotides as therapeutic agents
WO1996035430A1 (en) 1995-05-12 1996-11-14 Fujisawa Pharmaceutical Co., Ltd. REMEDY AND PREVENTIVE FOR DISEASES CAUSED BY NF-λB
WO2002066070A1 (en) 2001-02-20 2002-08-29 Anges Mg, Inc. Pharmaceutical compositions containing decoy and method of using the same
JP3392143B2 (en) 1994-11-17 2003-03-31 大鵬薬品工業株式会社 Double-stranded oligonucleotide and anticancer agent containing the same as active ingredient
WO2003043663A1 (en) 2001-11-22 2003-05-30 Anges Mg, Inc. Compositions inhibiting rejection in organ transplantation and method of using the same
WO2003082331A1 (en) 2002-03-29 2003-10-09 Anges Mg, Inc. Decoy compositions for treating and preventing brain diseases and disorders
WO2003099339A1 (en) 2002-05-29 2003-12-04 Anges Mg, Inc. Decoy composition for treating and preventing inflammatory disease
WO2004026342A1 (en) 2002-09-20 2004-04-01 Anges Mg, Inc. AGENT CONTAINING NFκB DECOY FOR PROTECTING GRAFT AGAINST NEOINTIMAL THICKENING
WO2005004913A1 (en) 2003-07-09 2005-01-20 Anges Mg, Inc. Pharmaceutical composition containing decoy and method of using the same
JP2005160464A (en) 2003-12-02 2005-06-23 Corgentech Inc NF-kappaB OLIGONUCLEOTIDE DECOY MOLECULE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1691817A2 (en) * 2003-12-02 2006-08-23 Corgentech, Inc. NF-kB OLIGONUCLEOTIDE DECOY MOLECULES

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08501928A (en) 1992-07-02 1996-03-05 ハイブライドン インコーポレイテッド Self-stabilizing oligonucleotides as therapeutic agents
WO1995011687A1 (en) 1993-10-29 1995-05-04 Dzau Victor J Therapeutic use of cis-element decoys in vivo
JP3392143B2 (en) 1994-11-17 2003-03-31 大鵬薬品工業株式会社 Double-stranded oligonucleotide and anticancer agent containing the same as active ingredient
WO1996035430A1 (en) 1995-05-12 1996-11-14 Fujisawa Pharmaceutical Co., Ltd. REMEDY AND PREVENTIVE FOR DISEASES CAUSED BY NF-λB
WO2002066070A1 (en) 2001-02-20 2002-08-29 Anges Mg, Inc. Pharmaceutical compositions containing decoy and method of using the same
WO2003043663A1 (en) 2001-11-22 2003-05-30 Anges Mg, Inc. Compositions inhibiting rejection in organ transplantation and method of using the same
WO2003082331A1 (en) 2002-03-29 2003-10-09 Anges Mg, Inc. Decoy compositions for treating and preventing brain diseases and disorders
WO2003099339A1 (en) 2002-05-29 2003-12-04 Anges Mg, Inc. Decoy composition for treating and preventing inflammatory disease
WO2004026342A1 (en) 2002-09-20 2004-04-01 Anges Mg, Inc. AGENT CONTAINING NFκB DECOY FOR PROTECTING GRAFT AGAINST NEOINTIMAL THICKENING
WO2005004913A1 (en) 2003-07-09 2005-01-20 Anges Mg, Inc. Pharmaceutical composition containing decoy and method of using the same
WO2005004914A1 (en) 2003-07-09 2005-01-20 Anges Mg, Inc. MEDICINAL COMPOSITION CONTAINING NF-κB DECOY FOR TREATING AND PREVENTING RESPIRATORY DISEASES AND METHOD OF USING THE SAME
JP2005160464A (en) 2003-12-02 2005-06-23 Corgentech Inc NF-kappaB OLIGONUCLEOTIDE DECOY MOLECULE

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LEUNG K ET AL., NATURE, vol. 333, no. 6175, 23 June 1988 (1988-06-23), pages 776 - 778
LEVIN ET AL., BIOCHEM. BIOPHYS. ACTA, vol. 1489, 1999, pages 69
MARINA A. ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 6, 1995, pages 2620 - 2627
MARWICK, C., J. AM. MED. ASSOC., vol. 280, 1998, pages 871
MILLIGAN ET AL., J. MED. CHEM., vol. 36, 1993, pages 1923
NEISH AS ET AL., J. EXP. MED., vol. 176, 1992, pages 1583 - 1593
STEIN; CHENG, SCIENCE, vol. 261, 1993, pages 1004

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123231A1 (en) * 2007-03-26 2008-10-16 Anges Mg, Inc. Novel cyclic staple-type oligonucleotide, and nf-κb decoy comprising the same

Also Published As

Publication number Publication date
EP1978096A1 (en) 2008-10-08
JPWO2007072909A1 (en) 2009-06-04
US20100167390A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP6250078B2 (en) Induction of exon skipping in eukaryotic cells
JP4718541B2 (en) Improved coagulation factor regulator
EP1389637B1 (en) Blunt-ended interfering RNA molecules
CN102459587B (en) Hepcidin binding nucleic acids
TW201726918A (en) Compositions and methods for inhibiting gene expression of LPA
TW200838551A (en) Methods for treating hypercholesterolemia
CN107106874A (en) The method for treating the amyloidosis of transthyretin (TTR) mediation
CN105452464A (en) Compounds and methods for modulation of dystrophia myotonica-protein kinase (DMPK) expression
CN106983768A (en) Composition and method for adjusting SMN2 montages in object
JP2005523703A (en) Circular dumbbell decoy oligodeoxynucleotide (CDODN) containing a transcriptional DNA binding site
CN103946380A (en) Compounds for the modulation of SMN2 splicing
JP2021185149A (en) MODULATING APOLIPOPROTEIN (a) EXPRESSION
US20220160880A1 (en) Antisense nucleic acid targeting pcsk9
UA124961C2 (en) Compositions and methods for inhibiting expression of the alas1 gene
US5874567A (en) Therapeutic oligonucleotides targeting the human MDR1 and MRP genes
CN103958682A (en) Glucagon binding nucleic acids
JPWO2005030960A1 (en) Staple oligonucleotide and pharmaceutical comprising the same
WO2007072909A1 (en) NOVEL OLIGONUCLEOTIDE AND NF-κB DECOY COMPRISING THE SAME
EP4359530A1 (en) Novel rna therapeutics and uses thereof
HUE032289T2 (en) Futher novel forms of interfering RNA molecules
JP5730508B2 (en) Treatment or prevention agent for inflammatory bowel disease
JP5601777B2 (en) Novel oligonucleotide derivative and NF-κB decoy comprising the same
JP5777240B2 (en) Novel oligonucleotide derivative and NF-κB decoy comprising the same
JP2010130900A (en) NOVEL CYCLIC STAPLE-TYPE OLIGONUCLEOTIDE, AND NF-kappaB DECOY COMPRISING THE SAME
KR101671100B1 (en) Composition for preventing or treating metabolic disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551148

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006835068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12086923

Country of ref document: US