WO2007069624A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2007069624A1
WO2007069624A1 PCT/JP2006/324806 JP2006324806W WO2007069624A1 WO 2007069624 A1 WO2007069624 A1 WO 2007069624A1 JP 2006324806 W JP2006324806 W JP 2006324806W WO 2007069624 A1 WO2007069624 A1 WO 2007069624A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air conditioner
stagnation
compression mechanism
heat source
Prior art date
Application number
PCT/JP2006/324806
Other languages
French (fr)
Japanese (ja)
Inventor
Tadafumi Nishimura
Shinichi Kasahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP06834561.0A priority Critical patent/EP1965150B1/en
Priority to AU2006324541A priority patent/AU2006324541B2/en
Priority to CN2006800473776A priority patent/CN101331366B/en
Priority to ES06834561.0T priority patent/ES2636912T3/en
Priority to US12/096,967 priority patent/US20090314017A1/en
Publication of WO2007069624A1 publication Critical patent/WO2007069624A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present invention relates to a refrigerant circuit for an air conditioner and an air conditioner including the refrigerant circuit.
  • Patent Document 1 As a refrigerant leakage detection device of a conventional refrigeration apparatus, there is one disclosed in Patent Document 1.
  • the condensed refrigerant temperature and the evaporated refrigerant temperature adjusting means adjust the condensed refrigerant temperature and the evaporated refrigerant temperature to a constant value, and the output signal and set value of the discharged refrigerant temperature detector are adjusted.
  • a refrigerant leak detection operation for detecting refrigerant leak in the refrigeration cycle is performed by a temperature difference calculation means for calculating a temperature difference by comparison.
  • the discharge refrigerant temperature under an appropriate amount of refrigerant is set as a set value, and the set value and the discharge refrigerant temperature are set.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-212292
  • An object of the present invention is to eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism, and to minimize the prediction error of the refrigerant amount due to the difference in the solubility of the refrigerant in the oil.
  • An air conditioner includes a refrigerant circuit, a refrigerant stagnation judging means, and an operation control device.
  • the refrigerant circuit includes a heat source unit, a refrigerant communication pipe, an expansion mechanism, Circuit including a unit for use.
  • the heat source unit has a compression mechanism and a heat source side heat exchange.
  • a heat source unit is connected to the refrigerant communication pipe.
  • the usage unit has usage side heat exchange and is connected to the refrigerant communication pipe.
  • the refrigerant stagnation determining means can determine whether or not the refrigerant is sleeping in the compressor.
  • the operation control device When the operation control device performs the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit, if the refrigerant stagnation determining means determines in advance that the refrigerant is stagnation in the compression mechanism, the refrigerant stagnation Perform refrigerant stagnation elimination operation to eliminate the problem.
  • the refrigerant stagnation determination means when the refrigerant amount determination operation is performed, it is determined in advance by the refrigerant stagnation determination means whether or not the refrigerant has stagnation in the refrigerating machine oil in the compression mechanism. Then, when the refrigerant stagnation determining means determines that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism, the operation control device performs the refrigerant stagnation elimination operation.
  • the refrigerant amount determination operation can be performed after eliminating the stagnation of the refrigerant with respect to the refrigeration oil in the compression mechanism. For this reason, during the refrigerant quantity determination operation, the refrigerant quantity dissolved in the refrigerating machine oil in the compression mechanism can be reduced as much as possible, and the prediction error of the refrigerant quantity can be reduced. As a result, the refrigerant stagnation with respect to the refrigerating machine oil in the compression mechanism can be eliminated during the refrigerant quantity judgment operation, so that more accurate refrigerant quantity judgment operation can be performed.
  • An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on the temperature in the compression mechanism.
  • the determination by the refrigerant stagnation determination means is made based on the temperature in the compression mechanism.
  • the temperature in the compression mechanism is low, the refrigerant easily stagnates in the refrigeration oil. Therefore, when the temperature in the compression mechanism is low, it is possible to determine that the cooling medium has stagnated in the refrigerating machine oil in the compression mechanism. For this reason, based on the temperature in the compression mechanism, it is possible to determine whether or not the refrigerant is stagnant in the refrigerating machine oil in the compression mechanism.
  • An air conditioner according to a third aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on the outside air temperature.
  • the determination by the refrigerant stagnation determination means is made based on the outside air temperature.
  • the temperature in the compression mechanism When the temperature in the compression mechanism is low, the refrigerant easily stagnates in the refrigeration oil. Gatsutsu Since the outside air temperature can be measured, the temperature in the compression mechanism can be predicted. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigeration oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism.
  • An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on weather information.
  • the determination by the refrigerant stagnation determination means is made based on weather information obtained via a network connected to the refrigerant stagnation determination means. Therefore, the weather information ability can also acquire the outside air temperature, and the temperature in the compression mechanism can be predicted. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism.
  • An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means is based on a refrigerant stagnation period in which it is predicted that the refrigerant is likely to stagnate in the compression mechanism. Make a decision.
  • the determination by the refrigerant stagnation determination means is made based on a preset period.
  • the refrigerant is likely to stagnate in the refrigeration oil. This determination is made by providing a period during which the temperature in the compression mechanism is expected to be low.
  • the user can predict the stagnation of the refrigerant without measuring the temperature in the compression mechanism by setting a period during which the temperature in the compression mechanism is predicted to be low. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism. In addition, it is not necessary to install a temperature sensor, etc., which can reduce production costs.
  • An air conditioner according to a sixth aspect of the present invention is the air conditioner according to any one of the first to fifth aspects of the invention, wherein the operation control unit operates the compression mechanism as a refrigerant stagnation elimination operation for a first predetermined time. Control to drive.
  • the refrigerant stagnation elimination operation is performed by driving the compressor for a first predetermined time. Warm-up operation. Therefore, in this refrigerant stagnation elimination operation, the inside of the compression mechanism can be warmed by operating the compressor for the first predetermined time. For this reason, it is possible to eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compressor premises.
  • An air conditioner according to a seventh aspect of the present invention is the air conditioner according to any one of the first to sixth aspects of the present invention, wherein there are a plurality of heat source units.
  • the heat source units in the system can be rotated and driven one unit at a time for a certain period of time, so that the load is not biased to one unit even at low loads, and the life of the entire system can be extended.
  • An air conditioner according to an eighth invention is the air conditioner according to any of the first to seventh inventions, wherein the compression mechanism has a plurality of compressors.
  • the compression mechanism has a plurality of compressors. Therefore, since the capacity of the compression mechanism can be changed by controlling the number of compressors, it becomes possible to continue operation of all the heat source units even when the operating load of the units used decreases, and the refrigerant circuit It is possible to prevent accumulation of oil as much as possible. In addition, even if one of the compressors fails, the remaining compressors can handle them. For this reason, complete shutdown of air conditioning can be avoided.
  • An air conditioner according to a ninth invention is the air conditioner according to the eighth invention, wherein the refrigerant stagnation elimination operation is an operation that drives at least a compressor that is not driven during the refrigerant quantity determination operation. is there.
  • the compressor driven by the refrigerant amount determination can be sufficiently warmed during the refrigerant amount determination operation.
  • the compressor not driven by Therefore, it is not necessary to drive all the compressors, so that the energy used can be reduced.
  • the time required for the refrigerant stagnation elimination operation can be shortened.
  • An air conditioner according to a tenth aspect of the present invention is the air conditioner according to the eighth aspect of the present invention, wherein the refrigerant control stagnation elimination operation is performed for a second predetermined time period during which the operation control device drives all the compressors one by one The operation is performed sequentially at intervals of.
  • this air conditioner when there are a plurality of compressors, all the compressors are rotated one by one and driven for a second predetermined time. And, since the cooling operation is performed at low outside air temperature during the refrigerant stagnation elimination operation, it is difficult to operate all the compressors at once because of the low load. For this reason, it is possible to drive all the compressors in advance by operating each unit for the second predetermined time.
  • An air conditioner according to an eleventh aspect of the present invention is the air conditioner according to the first aspect of the present invention, further comprising a heater that warms the compressor mechanism.
  • the refrigerant stagnation elimination operation is an operation in which the compression mechanism is heated by the heater.
  • the refrigerant stagnation elimination operation is performed by warming the compression mechanism with a heater. Therefore, it is possible to eliminate the stagnation of the refrigerant without driving the compressor. This eliminates the need to drive the compressor during the refrigerant stagnation elimination operation, so that the compressor drive time can be shortened and the life of the compressor can be extended.
  • An air conditioner according to a twelfth aspect of the present invention is the air conditioner according to any of the first to eleventh aspects of the invention, wherein the operation control device further performs an oil return operation immediately after the refrigerant stagnation elimination operation.
  • the oil return operation is an operation for returning the oil accumulated in the refrigerant circuit into the compression mechanism.
  • an oil return operation is further performed after the refrigerant stagnation elimination operation. Therefore, by further performing the oil return operation, it is possible to return the oil accumulated in the refrigerant circuit to the compressor structure. For this reason, more accurate refrigerant quantity determination operation becomes possible.
  • An air conditioner according to a thirteenth aspect of the present invention is the air conditioner according to the twelfth aspect of the present invention, wherein the oil return operation is performed so that the refrigerant flow rate in the pipe of the refrigerant flowing through the refrigerant circuit is not less than a predetermined flow rate. It is driving to control.
  • the oil return operation is an operation for controlling the refrigerant flow rate in the pipe to be equal to or higher than a predetermined flow rate. Therefore, it is possible to reliably return the oil accumulated in the refrigerant circuit into the compression mechanism. For this reason, a more accurate refrigerant quantity determination operation can be performed.
  • the invention's effect is an operation for controlling the refrigerant flow rate in the pipe to be equal to or higher than a predetermined flow rate. Therefore, it is possible to reliably return the oil accumulated in the refrigerant circuit into the compression mechanism. For this reason, a more accurate refrigerant quantity determination operation can be performed.
  • the refrigerant amount determination operation can be performed after eliminating the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism. For this reason, during the refrigerant quantity determination operation, the refrigerant quantity dissolved in the refrigerating machine oil in the compression mechanism can be reduced as much as possible, and the prediction error of the refrigerant quantity can be reduced. As a result, the refrigerant stagnation with respect to the refrigerating machine oil in the compression mechanism can be eliminated during the refrigerant quantity judgment operation, so that more accurate refrigerant quantity judgment operation can be performed.
  • the air conditioner according to the second aspect of the present invention when the temperature in the compression mechanism is low, it is possible to determine that the refrigerant is stagnant with respect to the refrigerating machine oil in the compression mechanism. Therefore, it is possible to determine whether or not the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism based on the temperature in the compression mechanism.
  • the temperature inside the compression mechanism can be predicted because the outside air temperature can be measured. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine if the refrigerant has stagnated in the refrigeration oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism.
  • the weather information power can also acquire the outside air temperature, and the temperature in the compression mechanism can be predicted. Therefore, when the temperature in the compression mechanism can be predicted to be low V, it can be determined that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism.
  • the user can predict the stagnation of the refrigerant without measuring the temperature in the compression mechanism by setting a period during which the temperature in the compression mechanism is predicted to be low. It becomes. As a result, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism. In addition, since it is not necessary to install a temperature sensor, production costs can be reduced.
  • the inside of the compression mechanism in the refrigerant stagnation elimination operation, the inside of the compression mechanism can be warmed by operating the compressor for the first predetermined time. For this reason, the compression mechanism It is possible to eliminate the stagnation of the refrigerant with respect to the internal refrigeration oil.
  • the heat source units in the system can be driven by rotating each unit for a certain period of time, so that the load is not biased to one unit even at low loads, thereby extending the life of the entire system. Can do.
  • the capacity of the compression mechanism can be changed by controlling the number of compressors, even when the operating load of the utilization unit is reduced, all the heat source units are continuously operated. It is possible to prevent the accumulation of oil in the refrigerant circuit as much as possible. In addition, even if one of the compressors fails, the remaining compressors can handle them. For this reason, complete stop of air conditioning can be avoided.
  • the air conditioner according to the eleventh aspect of the present invention it is possible to eliminate the refrigerant stagnation without driving the compressor. For this reason, it is not necessary to drive the compressor during the refrigerant stagnation elimination operation, so the drive time of the compressor can be shortened and the life of the compressor can be extended.
  • the oil that has accumulated in the refrigerant circuit can be returned to the compression mechanism by further performing the oil return operation. For this reason, it is possible to perform a more accurate cooling amount determination operation.
  • FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a flow of a refrigerant leakage detection operation according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing a flow of an automatic refrigerant charging operation according to the embodiment of the present invention.
  • ⁇ 4 A flowchart showing the flow of the refrigerant determination preparation operation according to the embodiment of the present invention.
  • [5] A flowchart showing the flow of the refrigerant stagnation elimination operation according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing a flow of oil return operation according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a weather information acquisition network of an air conditioner according to a modification of the embodiment of the present invention.
  • FIG. 1 shows a schematic refrigerant circuit diagram of the air-conditioning apparatus 1 according to the first embodiment of the present invention.
  • the air conditioner 1 is used for air conditioning of a building or the like, and includes a plurality of (in this embodiment, three) air-cooled heat source units 2a to 2c and a number of utilization units 3a, 3b, ⁇ are connected in parallel to the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5, respectively.
  • Each of the plurality of heat source units 2a to 2c includes one variable capacity compressor 22a to 22c and a plurality of (in this embodiment, two) constant capacity compressors 27a to 27c, 28a to 28c.
  • Compression mechanism 21a-21c Is provided.
  • Each of the usage units 3a, 3b, ... is mainly composed of the usage side expansion valves 31a, 31b, ..., ⁇ lj side heat exchange 32 & , 32b, ..., and the piping connecting them Has been.
  • the use side expansion valves 31a, 31b,... Are connected to the refrigerant liquid communication pipes 4 of the use side heat exchangers 32a, 32b,. This is an electric expansion valve connected to the side (hereinafter referred to as the liquid side).
  • the use side heat exchangers 32a, 32b,... are cross fin tube type heat exchangers, which are devices for exchanging heat with indoor air.
  • the utilization units 3a, 3b,... Are provided with indoor fans (not shown) for taking in and sending out indoor air into the mute, exchange 32 a, 32b, and a refrigerant flowing ... it is possible to heat exchange.
  • the heat source units 2a to 2c mainly include compression mechanisms 21a to 21c, four-way switching valves 23a to 23c, heat source side heat exchangers 24a to 24c, and liquid side closing valves 25a to 25c, respectively.
  • the gas side closing valves 26a to 26c, the heat source side expansion valves 29a to 29c, and a pipe connecting them are configured.
  • the heat source side expansion valves 29a to 29c are used for adjusting the refrigerant pressure, adjusting the refrigerant flow rate, etc., so as to adjust the refrigerant flow rate, etc., the refrigerant liquid communication pipe 4 side (hereinafter referred to as the liquid side) of the heat source side expansion valves 29a to 29c. It is an electric expansion valve connected to.
  • the compression mechanisms 21a to 21c include variable capacity compressors 22a to 22c, two constant capacity compressors 27a to 27c, 28a to 28c, and an oil separator (not shown).
  • the compressors 22 & ⁇ 22c, 27 & ⁇ 27c, 28 & ⁇ 28c are devices for compressing the sucked refrigerant gas.
  • the capacity can be changed by inverter control.
  • the four-way switching valves 23a to 23c are valves for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation.
  • the four-way switching valves 23a to 23c exchange heat with the compression mechanisms 21a to 21c ⁇ 24A ⁇ 24 C of the refrigerant gas communication pipe 5 side (hereinafter referred to as gas side) connects the suction side and the refrigerant gas communication pipe 5 of the compression mechanism 21a ⁇ 21c with connecting the (four-way switching valve of Figure 1 2 3a to 23c) (Refer to solid lines 3a-23c)
  • the outlets of the compression mechanisms 21a-21c and the refrigerant gas connection pipe 5 are connected and the intake side of the compression mechanisms 21a-21c and the heat source side heat exchange 24 & It is possible to connect to the gas side of ⁇ 24c (refer to the broken lines of the four-way switching valves 23a to 23c in Fig. 1).
  • the heat source side heat exchangers 24a to 24c are cross fin tube type heat exchangers, and are devices for exchanging heat with the refrigerant using air as a heat source.
  • the heat source units 2a to 2c are provided with outdoor fans (not shown) for taking in and sending outdoor air into the units, and the outdoor air and heat source side heat exchangers 24a to 24c. It is possible to exchange heat with the refrigerant flowing through
  • the liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c of the heat source units 2a to 2c are connected in parallel to the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5, respectively.
  • the refrigerant liquid connection pipe 4 is connected to the liquid side of the use side heat exchangers 32a, 32b, ... of the use units 3a, 3b, ... and the liquid side of the heat source side heat exchange 24a to 24c of the heat source units 2a to 2c.
  • Refrigerant gas communication pipe 5 is connected between the use side heat exchangers 32a, 32b, ... of the use units 3a, 3b, ... and the four-way switching valves 23a-23c of the heat source units 2a-2c. Is connected.
  • the air conditioner 1 further includes refrigerant stagnation determining means 8a to 8c and operation control devices 6a to 6c.
  • the refrigerant stagnation determining means 8a to 8c determine whether or not the refrigerant is sleeping in the compression mechanisms 21a to 21c.
  • the operation control devices 6a to 6c perform the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit 7, if the refrigerant is already in the compression mechanisms 21a to 21c, the operation control devices 6a to 6c stagnate the refrigerant. Perform refrigerant stagnation elimination operation to eliminate.
  • the refrigerant stagnation determining means and the operation control devices 6a to 6c are incorporated in the heat source units 2a to 2c.
  • the operation control as described above can be performed using only the operation control device (here 6a) of the heat source unit (here 2a) set as the master unit.
  • the operation control device (here 6b, 6c) of the heat source unit (here 2a, 2b) set as the other slave unit is the operation status of the equipment such as the compression mechanism and the detection data in various sensors. Can be sent to the operation control device 6a of the main unit, or can be functioned to issue operation and stop commands to devices such as the compression mechanism by commands from the operation control unit 6a of the main unit.
  • temperature sensors 61a to 61c see FIG. 1 are provided, the outside air temperature is measured by this temperature sensor, and the temperature data is transmitted to the operation control device 6a of the master unit. Then, the operation control device 6a determines whether or not to perform the refrigerant stagnation elimination operation. Make a decision.
  • the cooling operation will be described.
  • the four-way selector valves 23a to 23c are in the state indicated by the solid line in FIG. 1, that is, the discharge side of each compression mechanism 21a to 21c is the heat source side heat exchanger ⁇ It is connected to the gas side of 24c, and the suction side of each compression mechanism 21a to 21c is connected to the gas side of the use side heat exchanger 32a, 32b, ... via the refrigerant gas communication pipe 5.
  • the liquid side shutoff valves 25a to 25c and the gas side shutoff valves 26a to 26c are opened, and the use side expansion valves 31a, 31b,... Are adjusted so as to depressurize the refrigerant.
  • the evaporated refrigerant gas is sent to the heat source units 2 a to 2 c through the refrigerant gas connection pipe 5.
  • the refrigerant gas flowing through the refrigerant gas communication pipe 5 passes through the four-way switching valves 23a to 23c of the heat source units 2a to 2c, and is again sucked into the compression mechanisms 21a to 21c. In this way, the cooling operation is performed.
  • the heating operation will be described.
  • the four-way switching valves 23a to 23c are in the state indicated by the broken lines in FIG. 1, that is, the discharge side of each compression mechanism 21a to 21c is connected via the refrigerant gas communication pipe 5.
  • Use side heat exchangers 32a, 32b, ... connected to the gas side, and the suction side of each compression mechanism 21a-21c is heat source side heat exchange It is in the state connected to the gas side of vessels 24a-24c.
  • the liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c are opened, and the heat source side expansion valves 29a to 29c are adjusted in opening degree so as to depressurize the refrigerant.
  • the condensed refrigerant liquid joins the refrigerant liquid communication pipe 4 via the use side expansion valves 3 la, 31b,... And is sent to the heat source units 2a to 2c.
  • the refrigerant liquid flowing through the refrigerant liquid connection pipe 4 is evaporated by exchanging heat with the outside air at the heat source side heat exchange 24a to 24c of the heat source units 2a to 2c.
  • the evaporated refrigerant gas is again sucked into the compression mechanisms 21a to 21c via the four-way switching valves 23a to 23c of the heat source units 2a to 2c. In this way, the heating operation is performed.
  • the refrigerant quantity judgment operation includes a refrigerant leak detection operation and a refrigerant automatic charging operation.
  • FIG. 2 is a flowchart in the refrigerant leak detection operation.
  • step S 1 a refrigerant quantity determination preparation operation is performed before the refrigerant leakage detection operation. This refrigerant quantity determination preparation operation will be described later.
  • step S2 the operation in the normal operation such as the cooling operation and the heating operation described above is performed. It is judged whether or not the force has passed for a certain period of time (for example, 1 month), and if the operation in normal operation has passed for a certain period of time, the process proceeds to the next step S2.
  • a certain period of time for example, 1 month
  • step S3 when the operation in the normal operation has passed for a fixed time, the four-way switching valves 23a to 23c of the refrigerant circuit 7-power heat source units 2a to 2c are in the state shown by the solid line in FIG. 3b, the use side expansion valves 31a, 31b, ... are opened, the compression mechanisms 21a to 21c and the outdoor fan (not shown) are activated, and the use units 3a, 3b, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Forced cooling operation.
  • step S4 the condensation pressure control by the outdoor fan, the superheat degree control by the use side expansion valves 3la, 31b, ..., the evaporation pressure control by the compression mechanisms 21a to 21c are performed, and the inside of the refrigerant circuit 7 is performed. The state of the refrigerant circulating through the is stabilized.
  • step S6 it is determined whether or not the value of the supercooling degree detected in step S5 is appropriate.
  • the configuration of the use units 3a, 3b,... And the length of the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5 are irrelevant.
  • step S5 the refrigerant amount in the heat source side heat exchangers 24a to 24c becomes small (specifically, This means that the supercooling value detected in step S5 is smaller than the supercooling value corresponding to the required refrigerant amount at the condensation pressure of the heat source side heat exchangers 24a to 24c. For this reason, in step S5, the detected supercooling value is substantially the same as the target supercooling value (for example, the difference between the detected supercooling value and the target supercooling value is less than a predetermined value). ), It is determined that there is no refrigerant leakage, and the refrigerant leakage detection operation is terminated.
  • step S5 when the supercooling degree value detected in step S5 is smaller than the target supercooling degree value V, the value (for example, the difference between the detected supercooling degree value and the target supercooling degree value is a predetermined value or more). If there is, it is determined that a refrigerant leak has occurred, the process proceeds to step S7, a warning is displayed to notify that a refrigerant leak has been detected, and then the refrigerant leak detection operation is performed. finish.
  • the value for example, the difference between the detected supercooling degree value and the target supercooling degree value is a predetermined value or more.
  • FIG. 3 is a flowchart of the automatic refrigerant charging operation.
  • the heat source units 2a to 2c that are prefilled with refrigerant are connected to the usage units 3a, 3b, ... via the refrigerant liquid connection pipe 4 and the refrigerant gas connection pipe 5 at the site.
  • the refrigerant circuit 7 is additionally filled with a refrigerant that is insufficient according to the lengths of the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5 after the configuration of FIG.
  • the liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c of the heat source units 2a to 2c are opened, and the refrigerant circuit 7 is filled with the refrigerant preliminarily charged in the heat source units 2a to 2c.
  • a person who performs the refrigerant charging operation uses a remote controller (not shown), or a use side control unit (not shown) or a heat source unit 2a of the use units 3a, 3b,.
  • the operation control devices 6a to 6c of ⁇ 2c are directly instructed to perform the automatic refrigerant charging operation, which is one of the refrigerant quantity determination operations, the automatic refrigerant operation is performed according to the procedure from step S11 to step S14. Filling operation is performed.
  • step S11 a refrigerant quantity determination preparation operation is performed before the automatic refrigerant charging operation. This refrigerant quantity determination preparation operation will be described later.
  • step S12 when an instruction to start the automatic refrigerant charging operation is issued, the refrigerant circuit 7 is in a state where the four-way switching valves 23a to 23c of the heat source units 2a to 2c are indicated by solid lines in FIG.
  • the use side expansion valves 31a, 31b, 3a, 3b, ... are opened, the compression mechanisms 21a-21c and the outdoor fan (not shown) are activated, and the use units 3a, 3b, ... • All the items are forcibly cooled.
  • step S13 the condensation pressure control by the outdoor fan, the superheat degree control by the use side expansion valves 3la, 31b, ..., and the evaporation pressure control by the compression mechanisms 21a to 21c are performed, and the inside of the refrigerant circuit 7 is performed. The state of the refrigerant circulating through the is stabilized.
  • step S14 Detect the degree of supercooling at the mouth.
  • step S15 the suitability of the refrigerant amount is determined from the value of the degree of supercooling detected in step S14. Specifically, when the supercooling degree value detected in step S14 is smaller than the target supercooling degree value and refrigerant charging is not completed, the supercooling degree value reaches the target supercooling degree value. In addition, the above-described processing of Step S13 and Step S14 is repeated. In this automatic refrigerant charging operation, the refrigerant circuit 7 is filled only by the refrigerant leakage or the like during the trial operation after the site construction. It can also be used for additional charging of refrigerant when the amount of refrigerant decreases.
  • the refrigerant stagnation determination means 8a to 8c indicate that the refrigerant has stagnated in the compression mechanisms 21a to 21c when the temperature detected by the temperature sensors 6la to 61c is lower than the predetermined temperature. Judgment is made and a signal is sent to the operation control device 6a that the refrigerant has stagnated. Receiving the signal from the refrigerant stagnation judging means 8a to 8c, the operation control device 6a performs control to perform preliminary operation (refrigerant stagnation elimination operation) so that the compressors 22a to 22c, 27a to 27c, and 28a to 28c are sufficiently warmed. is doing.
  • step S21 the operation control device 6a determines whether or not the temperatures in the compression mechanisms 21a to 21c measured by the temperature sensors 61a to 61c are lower than a predetermined temperature, and the compressor temperature is If the temperature is lower than the predetermined temperature, the process proceeds to step S22, and if not, the process proceeds to step S23.
  • step S22 the refrigerant stagnation elimination operation is performed, and the process proceeds to step S23.
  • step 23 an oil return operation is performed, and when the oil return operation is completed, the process proceeds to step S2 when the refrigerant amount determination operation is the refrigerant leak detection operation, and when the refrigerant amount determination operation is the automatic refrigerant charging operation, the process proceeds to step S2. Move to S12.
  • the operation control device 6a When receiving a signal from the refrigerant stagnation determining means 8a to 8c, the operation control device 6a issues a command to drive all the compression mechanisms 21a to 21c of the heat source units 2a to 2c. However, for the heat source units 2b and 2c, the slave unit operation control devices 6b and 6c receive the command from the master unit operation control device 6a, and the slave unit operation control devices 6b and 6c apply to the compression mechanisms 21b and 21c. Drive The command is issued.
  • step S31 the compressors 22a to 22c are driven, and the process proceeds to step S32.
  • step S32 the compressors 22a to 22c are stopped 15 minutes after step S31, the compressors 27a to 27c are driven, and the process proceeds to step S33.
  • step S33 the compressors 27a to 27c are stopped 15 minutes after step S32, the compressors 28a to 28c are driven, and the process proceeds to step S34.
  • step S34 step S33 force also stops the compressors 28a to 28c after 15 minutes and ends the refrigerant stagnation elimination operation.
  • step S23 When the refrigerant stagnation elimination operation is completed, or when the compressor temperature is higher than the predetermined temperature in step S21, the oil return operation in step S23 is performed.
  • the oil return operation will be described with reference to FIG.
  • step S41 the operation control device 6a issues a command to drive one of the compressors of the heat source units 2a to 2c (here, the compressors 22a to 22c).
  • the operation control devices 6b and 6c of the slave units receive commands from the operation control device 6a of the master unit, and the operation control devices 6b and 6c of the slave units are connected to the compressors 22b and 22c.
  • step S41 ends, the process proceeds to step S42.
  • step S42 the operation control device 6a issues a command to stop after driving the compressors 22a to 22c for 5 minutes. Thereby, the oil accumulated in the refrigerant circuit 7 can be returned to the compression mechanisms 21a to 21c.
  • the air conditioner 1 when the refrigerant amount determination operation is performed, the refrigerant stagnation in the refrigerating machine oil inside the compressors 22a to 22c, 27a to 27c, and 28a to 28c in advance by the refrigerant stagnation determination means. A determination is made whether or not.
  • the refrigerant stagnation determining means determines that the refrigerant is stagnation in the refrigerating machine oil in the compression mechanisms 21a to 21c
  • the operation control device 6a performs the refrigerant stagnation elimination operation. Therefore, in the air conditioner 1, it is possible to perform the force determination operation by eliminating the refrigerant accumulation in the refrigerating machine oil in the compression mechanisms 21a to 21c.
  • the refrigerators in the compression mechanisms 21a to 21c The amount of refrigerant that dissolves in oil can be reduced, and the prediction error of the amount of refrigerant can be reduced. For this reason, during the refrigerant quantity determination operation, the refrigerant can be prevented from stagnation in the refrigerating machine oil in the compression mechanisms 21a to 21c, so that a highly accurate refrigerant quantity determination operation can be performed.
  • the determination of the refrigerant stagnation determination means is performed based on the temperature in the compression mechanisms 21a to 21c. Therefore, it is possible to measure the temperature inside the compressors 22a to 22c, 27a to 27c, 28a to 28c, and to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanisms 21a to 21c. Become.
  • the compressors 22a to 22c, 27a to 27c, and 28a to 28c are warmed up for a first predetermined time. Therefore, the refrigerant stagnation canceling operation can warm the compressor mechanisms 21a to 21c by operating the compressors 22a to 22c, 27a to 27c, and 28a to 28c for the first predetermined time (warm-up operation). . For this reason, the inside of the compression mechanisms 2la to 21c can be sufficiently warmed, and the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanisms 21a to 21c can be eliminated.
  • the air conditioner 1 there are a plurality of heat source units 2a to 2c. Therefore, by rotating the heat source units 2a to 2c in the system for a certain period of time, even if the load is low, the load is not biased to one unit and the life of the entire system can be extended.
  • the compression mechanisms 21a to 21c have a plurality of compressors 22a to 22c, 27a to 27c, 28 & to 28c! Therefore, it is possible to change the capacity of the compression mechanisms 21a to 21c by controlling the number of compressors 22 & ⁇ 22c, 27 & ⁇ 27c, 28a ⁇ 28c, so that the usage units 3a, 3b, ... Even when the operation load is reduced, it becomes possible to continue the operation of all the heat source units 2a to 2c, and the accumulation of oil in the refrigerant circuit 7 can be prevented as much as possible. Even if one of the compressors 22a-22c, 27a-27c, 28a-28c breaks down, the remaining compressors can handle them. For this reason, it is possible to avoid a complete stop of the air conditioning. [0044] (6)
  • this air conditioner 1 when there are a plurality of compressors 22a to 22c, 27a to 27c, and 28a to 28c, all the compressors 22a to 22c, 27a to 27c, and 28a to 28c are replaced one by one. Let it run for a predetermined time. Because the cooling operation is performed at a low outside temperature during the refrigerant stagnation elimination operation, it is difficult to operate all the compressors 22a to 22c, 27a to 27c, and 28a to 28c due to low load. For this reason, it is possible to drive all of the compressors 22a to 22c, 27a to 27c, and 28a to 28c in advance by operating them one by one for the second predetermined time.
  • the oil return operation is further performed after the refrigerant stagnation elimination operation. Further, in this oil return operation, control is performed so that the refrigerant flow rate in the pipe becomes equal to or higher than a predetermined flow rate. Therefore, the oil accumulated in the refrigerant circuit 7 can be returned by further performing the oil return operation. In addition, it is possible to reliably return the oil accumulated in the refrigerant circuit 7 to the compressor 22a to 22c, 27a to 27c, 28a to 28c. For this reason, it becomes possible to operate the refrigerant quantity determination operation with higher accuracy.
  • the air-cooled heat source units 2a to 2c that use air-cooled heat source units 2a to 2c using outside air as the heat source are used. Also good.
  • the air conditioner 1 is capable of switching between cooling and heating, but an air conditioner dedicated to cooling may be an air conditioner capable of simultaneous cooling and heating.
  • heat source units 2a to 2c having the same air conditioning capability are connected in parallel, but heat source units having different air conditioning capabilities may be connected in parallel. Two or more heat source units may be connected in parallel.
  • the operation control devices 6a to 6c may have one operation control device as a whole of the force and air conditioner built in each of the heat source units 2a to 2c.
  • the refrigerant stagnation determining means cuts the refrigerant power in the compressor 22a-22c, 27a-27c, 28a-28c inner casing based on the outside air temperature. It may be determined based on the temperature in the force compression mechanism 21a to 21c, or it may be determined based on the weather information obtained from the weather information providing external server 10 using the communication line 9 such as the Internet. Alternatively, it may be determined based on the refrigerant stagnation period in which the predicted refrigerant is likely to stagnate inside the compressors 22a to 22c, 27a to 27c, and 28a to 28c.
  • the heat source units 2a to 2c are not limited to a plurality of power units, but may be a single unit.
  • the three compressors 22a to 22c, 27a to 27c, and 28a to 28c are not limited to the force of 15 minutes by fifteen minutes f3 ⁇ 4. It may be 20, 30 minutes. Further, it is not necessary to drive all of the compressors 22a to 22c, 27a to 27c, and 28a to 28c, as long as it is an operation that drives at least the compressor that is not driven in the refrigerant amount determination operation.
  • the refrigerant stagnation elimination operation is not limited to the force performed by the warm-up operation that drives the compressors 22a to 22c, 27a to 27c, and 28a to 28c to warm the compression mechanisms 21a to 21c. You may carry out by heating 21a-21c with a heater.
  • the oil return operation is performed immediately after the refrigerant stagnation elimination operation. It is not always necessary to perform the oil return operation.
  • the air conditioner according to the present invention can eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism before the refrigerant amount determination operation, and enables a highly accurate refrigerant amount determination operation. This is useful as a refrigerant circuit and an air conditioner equipped with the refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Prediction error in quantity of refrigerant due to difference in solubility of refrigerant into oil is minimized by eliminating refrigerant liquefied into refrigerating machine oil in a compression machine mechanism. The air conditioner (1) comprises a refrigerant circuit (7), means (8a-8c) for judging refrigerant, and operation controllers (6a-6c). The refrigerant circuit includes heat source units (2a-2c), refrigerant communication pipings (4, 5), expansion mechanisms (31a, 31b, ...), and utilization units (29a-29c, 3a, 3b, ...). The refrigerant communication piping is connected with the heat source units and the utilization units. The heat source unit has compression mechanisms (21a-21c) and heat source side heat exchangers (24a-24c). The means for judging liquefied refrigerant can judge the situation of liquefied refrigerant in the compression mechanism. When liquefied refrigerant is detected in the compression mechanism before operation for judging the quantity of refrigerant in the circuit is performed, the operation controller performs an operation for eliminating the liquefied refrigerant.

Description

空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、空気調和装置の冷媒回路およびそれを備えた空気調和装置に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a refrigerant circuit for an air conditioner and an air conditioner including the refrigerant circuit.
[0002] 従来の冷凍装置の冷媒漏れ検出装置として、特許文献 1に開示されているようなも のが存在する。この冷媒漏れ検出装置では、凝縮冷媒温度調整手段と蒸発冷媒温 度調整手段とにより凝縮冷媒温度と蒸発冷媒温度とを一定値に調整し、吐出冷媒温 度検出器の出力信号と設定値とを比較して温度差を算出する温度差算出手段により 冷凍サイクルの冷媒漏れを検出する冷媒漏洩検知運転を行って ヽる。したがって、 凝縮器を流れる凝縮冷媒温度と蒸発器を流れる蒸発冷媒温度とを一定値に調整す ることで、適正な冷媒量の下での吐出冷媒温度を設定値としておき、設定値と吐出 冷媒温度検出器の出力信号とを比較し、設定値より低い場合には冷媒漏洩が生じて V、な 、と判断し、設定値より高 、場合には冷媒漏洩と判断して!/、る。  [0002] As a refrigerant leakage detection device of a conventional refrigeration apparatus, there is one disclosed in Patent Document 1. In this refrigerant leak detection device, the condensed refrigerant temperature and the evaporated refrigerant temperature adjusting means adjust the condensed refrigerant temperature and the evaporated refrigerant temperature to a constant value, and the output signal and set value of the discharged refrigerant temperature detector are adjusted. A refrigerant leak detection operation for detecting refrigerant leak in the refrigeration cycle is performed by a temperature difference calculation means for calculating a temperature difference by comparison. Therefore, by adjusting the condensing refrigerant temperature flowing through the condenser and the evaporating refrigerant temperature flowing through the evaporator to a constant value, the discharge refrigerant temperature under an appropriate amount of refrigerant is set as a set value, and the set value and the discharge refrigerant temperature are set. Compared with the output signal of the temperature detector, if it is lower than the set value, it is determined that the refrigerant leaks and V, and if it is higher than the set value, it is determined that the refrigerant leaks!
特許文献 1:特開平 11一 211292号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-212292
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、特許文献 1の技術では、低外気温時には圧縮機構内の冷凍機油に溶解す る冷媒量が多くなるため、冷媒量の予測誤差が大きくなる恐れがある。特に、圧縮機 の起動直後で内部油温が低 ヽ場合や、圧縮機を複数有しながら冷媒漏洩検知運転 の際に一部の圧縮機しか駆動しない場合に、冷媒漏洩の検知誤差が大きくなる。 本発明の課題は、圧縮機構内における冷凍機油に対する冷媒の寝込みを解消し、 冷媒の油への溶解度の差による冷媒量の予測誤差を極小化することにある。 [0003] However, in the technique of Patent Document 1, since the amount of refrigerant that dissolves in the refrigeration machine oil in the compression mechanism increases at low outside air temperature, the prediction error of the refrigerant amount may increase. In particular, when the internal oil temperature is low immediately after starting the compressor, or when only some of the compressors are driven during the refrigerant leak detection operation with multiple compressors, the refrigerant leak detection error increases. . An object of the present invention is to eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism, and to minimize the prediction error of the refrigerant amount due to the difference in the solubility of the refrigerant in the oil.
課題を解決するための手段  Means for solving the problem
[0004] 第 1発明に係る空気調和装置は、冷媒回路と、冷媒寝込み判断手段と、運転制御 装置とを備えている。冷媒回路は、熱源ユニットと、冷媒連絡配管と、膨張機構と、利 用ユニットとを含む回路である。熱源ユニットは、圧縮機構と熱源側熱交翻とを有 する。冷媒連絡配管には、熱源ユニットが接続される。利用ユニットは、利用側熱交 を有し、冷媒連絡配管に接続される。冷媒寝込み判断手段は、冷媒が圧縮機 構内に寝込んでいる力否かを判断可能である。運転制御装置は、冷媒回路内の冷 媒量を判定する冷媒量判定運転を行う際に、事前に、冷媒寝込み判断手段が圧縮 機構内に冷媒が寝込んでいると判断した場合に、冷媒の寝込みを解消する冷媒寝 込み解消運転を行う。 [0004] An air conditioner according to a first aspect of the present invention includes a refrigerant circuit, a refrigerant stagnation judging means, and an operation control device. The refrigerant circuit includes a heat source unit, a refrigerant communication pipe, an expansion mechanism, Circuit including a unit for use. The heat source unit has a compression mechanism and a heat source side heat exchange. A heat source unit is connected to the refrigerant communication pipe. The usage unit has usage side heat exchange and is connected to the refrigerant communication pipe. The refrigerant stagnation determining means can determine whether or not the refrigerant is sleeping in the compressor. When the operation control device performs the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit, if the refrigerant stagnation determining means determines in advance that the refrigerant is stagnation in the compression mechanism, the refrigerant stagnation Perform refrigerant stagnation elimination operation to eliminate the problem.
この空気調和装置では、冷媒量判定運転を行う際に、事前に、冷媒寝込み判断手 段により、冷媒が圧縮機構内の冷凍機油に寝込んでいるか否かの判定が行われる。 そして、圧縮機構内の冷凍機油に冷媒が寝込んでいると冷媒寝込み判断手段が判 断すると、運転制御装置により冷媒寝込み解消運転が行われる。  In this air conditioner, when the refrigerant amount determination operation is performed, it is determined in advance by the refrigerant stagnation determination means whether or not the refrigerant has stagnation in the refrigerating machine oil in the compression mechanism. Then, when the refrigerant stagnation determining means determines that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism, the operation control device performs the refrigerant stagnation elimination operation.
したがって、この空気調和装置では、圧縮機構内での冷凍機油に対する冷媒の寝 込みを解消してから冷媒量判定運転を行うことが可能である。このため、冷媒量判定 運転の際に、圧縮機構内の冷凍機油に溶解する冷媒量を極力少なくすることができ 、冷媒量の予測誤差を小さくできる。これにより、冷媒量判定運転の際に、圧縮機構 内の冷凍機油に対する冷媒の寝込みを解消できるので、より高精度な冷媒量判定運 転が可能となる。  Therefore, in this air conditioner, the refrigerant amount determination operation can be performed after eliminating the stagnation of the refrigerant with respect to the refrigeration oil in the compression mechanism. For this reason, during the refrigerant quantity determination operation, the refrigerant quantity dissolved in the refrigerating machine oil in the compression mechanism can be reduced as much as possible, and the prediction error of the refrigerant quantity can be reduced. As a result, the refrigerant stagnation with respect to the refrigerating machine oil in the compression mechanism can be eliminated during the refrigerant quantity judgment operation, so that more accurate refrigerant quantity judgment operation can be performed.
[0005] 第 2発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、冷媒寝 込み判断手段は、圧縮機構内の温度に基づいて判断を行う。  [0005] An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on the temperature in the compression mechanism.
この空気調和装置では、冷媒寝込み判断手段の判断は、圧縮機構内の温度に基 づいて行われる。圧縮機構内の温度が低いと、冷媒は、冷凍機油に寝込み易くなる 。したがって、圧縮機構内の温度が低い場合に、圧縮機構内の冷凍機油に対して冷 媒が寝込んでいるという判断が可能となる。このため、圧縮機構内の温度に基づいて 、圧縮機構内の冷凍機油に冷媒が寝込んでいる力否かの判断が可能となる。  In this air conditioner, the determination by the refrigerant stagnation determination means is made based on the temperature in the compression mechanism. When the temperature in the compression mechanism is low, the refrigerant easily stagnates in the refrigeration oil. Therefore, when the temperature in the compression mechanism is low, it is possible to determine that the cooling medium has stagnated in the refrigerating machine oil in the compression mechanism. For this reason, based on the temperature in the compression mechanism, it is possible to determine whether or not the refrigerant is stagnant in the refrigerating machine oil in the compression mechanism.
[0006] 第 3発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、冷媒寝 込み判断手段は、外気温度に基づいて判断を行う。  [0006] An air conditioner according to a third aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on the outside air temperature.
この空気調和装置では、冷媒寝込み判断手段の判断は、外気温度に基づいて行 われる。圧縮機構内の温度が低いと、冷媒は、冷凍機油に寝込み易くなる。したがつ て、外気温度を測定できるため、圧縮機構内の温度を予測することが可能となる。こ のため、圧縮機構内の温度が低いと予測できる場合に、圧縮機構内の冷凍機油に 対して冷媒が寝込んでいるという判断が可能となる。これにより、圧縮機構内の冷凍 機油に対して冷媒の寝込みがある力否かの判断が可能となる。 In this air conditioner, the determination by the refrigerant stagnation determination means is made based on the outside air temperature. When the temperature in the compression mechanism is low, the refrigerant easily stagnates in the refrigeration oil. Gatsutsu Since the outside air temperature can be measured, the temperature in the compression mechanism can be predicted. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigeration oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism.
[0007] 第 4発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、冷媒寝 込み判断手段は、気象情報に基づ!、て判断を行う。  [0007] An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on weather information.
この空気調和装置では、冷媒寝込み判断手段の判断は、冷媒寝込み判断手段に 接続されて 、るネットワークを介して得られる気象情報に基づ 、て行われる。したがつ て、気象情報力も外気温度を取得することができ、圧縮機構内の温度を予測すること が可能となる。このため、圧縮機構内の温度が低いと予測できる場合に、圧縮機構内 の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。これにより、圧縮 機構内の冷凍機油に対して冷媒の寝込みがある力否かの判断が可能となる。  In this air conditioner, the determination by the refrigerant stagnation determination means is made based on weather information obtained via a network connected to the refrigerant stagnation determination means. Therefore, the weather information ability can also acquire the outside air temperature, and the temperature in the compression mechanism can be predicted. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism.
[0008] 第 5発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、冷媒寝 込み判断手段は、冷媒が圧縮機構内に寝込み易いと予測される冷媒寝込み期間に 基づいて判断を行う。  [0008] An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means is based on a refrigerant stagnation period in which it is predicted that the refrigerant is likely to stagnate in the compression mechanism. Make a decision.
この空気調和装置では、冷媒寝込み判断手段の判断は、あらかじめ設定された期 間に基づいて行われる。圧縮機構内の温度が低いと、冷媒は、冷凍機油に寝込み 易くなる。この判断は、圧縮機構内の温度が低いと予測される期間を設けることで行 われる。  In this air conditioner, the determination by the refrigerant stagnation determination means is made based on a preset period. When the temperature in the compression mechanism is low, the refrigerant is likely to stagnate in the refrigeration oil. This determination is made by providing a period during which the temperature in the compression mechanism is expected to be low.
したがって、利用者が圧縮機構内の温度が低いと予測される期間を設定することで 、圧縮機構内の温度を測定することなく冷媒の寝込みを予測することが可能となる。 これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがある力否かの判断が可 能となる。また、温度センサなどを設置する必要が無くなるため、生産コストを削減す ることがでさる。  Therefore, the user can predict the stagnation of the refrigerant without measuring the temperature in the compression mechanism by setting a period during which the temperature in the compression mechanism is predicted to be low. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism. In addition, it is not necessary to install a temperature sensor, etc., which can reduce production costs.
[0009] 第 6発明に係る空気調和装置は、第 1発明から第 5発明のいずれかに係る空気調 和装置であって、運転制御装置は、冷媒寝込み解消運転として圧縮機構を第 1所定 時間駆動する制御を行う。  [0009] An air conditioner according to a sixth aspect of the present invention is the air conditioner according to any one of the first to fifth aspects of the invention, wherein the operation control unit operates the compression mechanism as a refrigerant stagnation elimination operation for a first predetermined time. Control to drive.
この空気調和装置では、冷媒寝込み解消運転は、圧縮機を第 1所定時間駆動させ ることによる暖機運転である。したがって、この冷媒寝込み解消運転では、圧縮機を 第 1所定時間運転させることで、圧縮機構内を暖めることができる。このため、圧縮機 構内の冷凍機油に対する冷媒の寝込みを解消することが可能となる。 In this air conditioner, the refrigerant stagnation elimination operation is performed by driving the compressor for a first predetermined time. Warm-up operation. Therefore, in this refrigerant stagnation elimination operation, the inside of the compression mechanism can be warmed by operating the compressor for the first predetermined time. For this reason, it is possible to eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compressor premises.
[0010] 第 7発明に係る空気調和装置は、第 1発明から第 6発明のいずれかに係る空気調 和装置であって、熱源ユニットは、複数存在する。  [0010] An air conditioner according to a seventh aspect of the present invention is the air conditioner according to any one of the first to sixth aspects of the present invention, wherein there are a plurality of heat source units.
この空気調和装置では、熱源ユニットが複数存在する。したがって、システム内の 熱源ユニットを 1ユニットずつ一定時間ローテーションさせて駆動することができるた め、低負荷時でも 1ユニットに負担が偏らず、システム全体の寿命を延ばすことができ る。  In this air conditioner, there are a plurality of heat source units. Therefore, the heat source units in the system can be rotated and driven one unit at a time for a certain period of time, so that the load is not biased to one unit even at low loads, and the life of the entire system can be extended.
[0011] 第 8発明に係る空気調和装置は、第 1発明から第 7発明のいずれかに係る空気調 和装置であって、圧縮機構は、複数の圧縮機を有する。  [0011] An air conditioner according to an eighth invention is the air conditioner according to any of the first to seventh inventions, wherein the compression mechanism has a plurality of compressors.
この空気調和装置では、圧縮機構は複数の圧縮機を有している。したがって、圧縮 機の台数制御による圧縮機構の容量変更を行うことができるため、利用ユニットの運 転負荷が小さくなつた場合でも、全ての熱源ユニットを運転継続させることが可能に なり、冷媒回路での冷媒ゃ油の溜まり込みを極力防ぐことができる。また、複数の圧 縮機の内 1台が故障しても残りの圧縮機が対応可能である。このため、空調の完全停 止を回避することができる。  In this air conditioner, the compression mechanism has a plurality of compressors. Therefore, since the capacity of the compression mechanism can be changed by controlling the number of compressors, it becomes possible to continue operation of all the heat source units even when the operating load of the units used decreases, and the refrigerant circuit It is possible to prevent accumulation of oil as much as possible. In addition, even if one of the compressors fails, the remaining compressors can handle them. For this reason, complete shutdown of air conditioning can be avoided.
[0012] 第 9発明に係る空気調和装置は、第 8発明に係る空気調和装置であって、冷媒寝 込み解消運転は、冷媒量判定運転の際に駆動しない圧縮機を少なくとも駆動する運 転である。  [0012] An air conditioner according to a ninth invention is the air conditioner according to the eighth invention, wherein the refrigerant stagnation elimination operation is an operation that drives at least a compressor that is not driven during the refrigerant quantity determination operation. is there.
この空気調和装置では、圧縮機が複数存在する場合に、冷媒量判定で駆動する 圧縮機は冷媒量判定運転時に十分に暖めることができるため、事前運転をする際の 圧縮機は少なくとも冷媒量判定で駆動しない圧縮機を駆動する。したがって、全ての 圧縮機を駆動する必要が無くなるため、使用するエネルギーを削減することが可能と なる。また、冷媒寝込み解消運転に要する時間を短縮することができる。  In this air conditioner, when there are a plurality of compressors, the compressor driven by the refrigerant amount determination can be sufficiently warmed during the refrigerant amount determination operation. Drive the compressor not driven by. Therefore, it is not necessary to drive all the compressors, so that the energy used can be reduced. Moreover, the time required for the refrigerant stagnation elimination operation can be shortened.
[0013] 第 10発明に係る空気調和装置は、第 8発明に係る空気調和装置であって、冷媒寝 込み解消運転は、運転制御装置が全ての圧縮機の駆動を 1台ずつ第 2所定時間の 間隔で順に行う運転である。 この空気調和装置では、圧縮機が複数存在する場合に、全ての圧縮機を 1台ずつ ローテーションさせて第 2所定時間駆動させる。そして、冷媒寝込み解消運転の際に 、低外気温時に冷房運転させるため、低負荷のために 1度に全ての圧縮機を行動さ せることは難しい。このため、 1台ずつ第 2所定時間運転させることにより、全ての圧 縮機を事前に駆動させることが可能となる。 [0013] An air conditioner according to a tenth aspect of the present invention is the air conditioner according to the eighth aspect of the present invention, wherein the refrigerant control stagnation elimination operation is performed for a second predetermined time period during which the operation control device drives all the compressors one by one The operation is performed sequentially at intervals of. In this air conditioner, when there are a plurality of compressors, all the compressors are rotated one by one and driven for a second predetermined time. And, since the cooling operation is performed at low outside air temperature during the refrigerant stagnation elimination operation, it is difficult to operate all the compressors at once because of the low load. For this reason, it is possible to drive all the compressors in advance by operating each unit for the second predetermined time.
[0014] 第 11発明に係る空気調和装置は、第 1発明に係る空気調和装置であって、圧縮機 構を暖めるヒータをさらに備える。冷媒寝込み解消運転は、圧縮機構をヒータで暖め る運転である。 [0014] An air conditioner according to an eleventh aspect of the present invention is the air conditioner according to the first aspect of the present invention, further comprising a heater that warms the compressor mechanism. The refrigerant stagnation elimination operation is an operation in which the compression mechanism is heated by the heater.
この空気調和装置では、冷媒寝込み解消運転は、圧縮機構をヒータで暖めることで 行う。したがって、圧縮機を駆動させることなく冷媒の寝込みを解消することが可能で ある。このため、冷媒寝込み解消運転の際に圧縮機を駆動させる必要が無くなるた め、圧縮機の駆動時間を短縮することができ、圧縮機の寿命を延ばすことが可能とな る。  In this air conditioner, the refrigerant stagnation elimination operation is performed by warming the compression mechanism with a heater. Therefore, it is possible to eliminate the stagnation of the refrigerant without driving the compressor. This eliminates the need to drive the compressor during the refrigerant stagnation elimination operation, so that the compressor drive time can be shortened and the life of the compressor can be extended.
[0015] 第 12発明に係る空気調和装置は、第 1発明から第 11発明のいずれかに係る空気 調和装置であって、運転制御装置は、冷媒寝込み解消運転の直後に油戻し運転を さらに行う。油戻し運転は、冷媒回路内に溜まっている油を圧縮機構内に戻す運転 である。  [0015] An air conditioner according to a twelfth aspect of the present invention is the air conditioner according to any of the first to eleventh aspects of the invention, wherein the operation control device further performs an oil return operation immediately after the refrigerant stagnation elimination operation. . The oil return operation is an operation for returning the oil accumulated in the refrigerant circuit into the compression mechanism.
この空気調和装置では、冷媒寝込み解消運転の後に、さらに油戻し運転を行う。し たがって、油戻し運転をさらに行うことで、冷媒回路内に溜まり込んでいる油を圧縮機 構内に戻すことが可能となる。このため、より高精度な冷媒量判定運転が可能となる  In this air conditioner, an oil return operation is further performed after the refrigerant stagnation elimination operation. Therefore, by further performing the oil return operation, it is possible to return the oil accumulated in the refrigerant circuit to the compressor structure. For this reason, more accurate refrigerant quantity determination operation becomes possible.
[0016] 第 13発明に係る空気調和装置は、第 12発明に係る空気調和装置であって、油戻 し運転は、冷媒回路を流れる冷媒の配管内冷媒流速を所定流速以上になるように制 御する運転である。 [0016] An air conditioner according to a thirteenth aspect of the present invention is the air conditioner according to the twelfth aspect of the present invention, wherein the oil return operation is performed so that the refrigerant flow rate in the pipe of the refrigerant flowing through the refrigerant circuit is not less than a predetermined flow rate. It is driving to control.
この空気調和装置では、油戻し運転は、配管内冷媒流速が所定流速以上になるよ うに制御する運転である。したがって、確実に冷媒回路内に溜まり込んでいる油を圧 縮機構内に戻すことが可能となる。このため、より高精度な冷媒量判定運転が可能と なる。 発明の効果 In this air conditioner, the oil return operation is an operation for controlling the refrigerant flow rate in the pipe to be equal to or higher than a predetermined flow rate. Therefore, it is possible to reliably return the oil accumulated in the refrigerant circuit into the compression mechanism. For this reason, a more accurate refrigerant quantity determination operation can be performed. The invention's effect
[0017] 第 1発明に係る空気調和装置では、圧縮機構内での冷凍機油に対する冷媒の寝 込みを解消してから冷媒量判定運転を行うことが可能である。このため、冷媒量判定 運転の際に、圧縮機構内の冷凍機油に溶解する冷媒量を極力少なくすることができ 、冷媒量の予測誤差を小さくできる。これにより、冷媒量判定運転の際に、圧縮機構 内の冷凍機油に対する冷媒の寝込みを解消できるので、より高精度な冷媒量判定運 転が可能となる。  [0017] In the air conditioner according to the first aspect of the present invention, the refrigerant amount determination operation can be performed after eliminating the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism. For this reason, during the refrigerant quantity determination operation, the refrigerant quantity dissolved in the refrigerating machine oil in the compression mechanism can be reduced as much as possible, and the prediction error of the refrigerant quantity can be reduced. As a result, the refrigerant stagnation with respect to the refrigerating machine oil in the compression mechanism can be eliminated during the refrigerant quantity judgment operation, so that more accurate refrigerant quantity judgment operation can be performed.
第 2発明に係る空気調和装置では、圧縮機構内の温度が低い場合に、圧縮機構 内の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。このため、圧縮 機構内の温度に基づ!/、て、圧縮機構内の冷凍機油に冷媒が寝込んで 、るか否かの 判断が可能となる。  In the air conditioner according to the second aspect of the present invention, when the temperature in the compression mechanism is low, it is possible to determine that the refrigerant is stagnant with respect to the refrigerating machine oil in the compression mechanism. Therefore, it is possible to determine whether or not the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism based on the temperature in the compression mechanism.
第 3発明に係る空気調和装置では、外気温度を測定できるため、圧縮機構内の温 度を予測することが可能となる。このため、圧縮機構内の温度が低いと予測できる場 合に、圧縮機構内の冷凍機油に対して冷媒が寝込んで 、ると 、う判断が可能となる 。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがある力否かの判断が 可能となる。  In the air conditioner according to the third aspect of the invention, the temperature inside the compression mechanism can be predicted because the outside air temperature can be measured. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine if the refrigerant has stagnated in the refrigeration oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnation with respect to the refrigerating machine oil in the compression mechanism.
[0018] 第 4発明に係る空気調和装置では、気象情報力も外気温度を取得することができ、 圧縮機構内の温度を予測することが可能となる。このため、圧縮機構内の温度が低 V、と予測できる場合に、圧縮機構内の冷凍機油に対して冷媒が寝込んで 、ると!、う 判断が可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがある か否かの判断が可能となる。  [0018] In the air conditioner according to the fourth aspect of the invention, the weather information power can also acquire the outside air temperature, and the temperature in the compression mechanism can be predicted. Therefore, when the temperature in the compression mechanism can be predicted to be low V, it can be determined that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. As a result, it is possible to determine whether or not the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism.
第 5発明に係る空気調和装置では、利用者が圧縮機構内の温度が低いと予測され る期間を設定することで、圧縮機構内の温度を測定することなく冷媒の寝込みを予測 することが可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みが ある力否かの判断が可能となる。また、温度センサなどを設置する必要が無くなるた め、生産コストを削減することができる。  In the air conditioner according to the fifth aspect of the invention, the user can predict the stagnation of the refrigerant without measuring the temperature in the compression mechanism by setting a period during which the temperature in the compression mechanism is predicted to be low. It becomes. As a result, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism. In addition, since it is not necessary to install a temperature sensor, production costs can be reduced.
[0019] 第 6発明に係る空気調和装置では、この冷媒寝込み解消運転では、圧縮機を第 1 所定時間運転させることで、圧縮機構内を暖めることができる。このため、圧縮機構 内の冷凍機油に対する冷媒の寝込みを解消することが可能となる。 In the air conditioner according to the sixth aspect of the present invention, in the refrigerant stagnation elimination operation, the inside of the compression mechanism can be warmed by operating the compressor for the first predetermined time. For this reason, the compression mechanism It is possible to eliminate the stagnation of the refrigerant with respect to the internal refrigeration oil.
第 7発明に係る空気調和装置では、システム内の熱源ユニットを 1ユニットずつ一定 時間ローテーションさせて駆動することができるため、低負荷時でも 1ユニットに負担 が偏らず、システム全体の寿命を延ばすことができる。  In the air conditioner according to the seventh aspect of the invention, the heat source units in the system can be driven by rotating each unit for a certain period of time, so that the load is not biased to one unit even at low loads, thereby extending the life of the entire system. Can do.
第 8発明に係る空気調和装置では、圧縮機の台数制御による圧縮機構の容量変 更を行うことができるため、利用ユニットの運転負荷が小さくなつた場合でも、全ての 熱源ユニットを運転継続させることが可能になり、冷媒回路での冷媒ゃ油の溜まり込 みを極力防ぐことができる。また、複数の圧縮機の内 1台が故障しても残りの圧縮機 が対応可能である。このため、空調の完全停止を回避することができる。  In the air conditioner according to the eighth aspect of the invention, since the capacity of the compression mechanism can be changed by controlling the number of compressors, even when the operating load of the utilization unit is reduced, all the heat source units are continuously operated. It is possible to prevent the accumulation of oil in the refrigerant circuit as much as possible. In addition, even if one of the compressors fails, the remaining compressors can handle them. For this reason, complete stop of air conditioning can be avoided.
[0020] 第 9発明に係る空気調和装置では、全ての圧縮機を駆動する必要が無くなるため、 使用するエネルギーを削減することが可能となる。また、冷媒寝込み解消運転に要 する時間を短縮することができる。 [0020] In the air conditioner according to the ninth aspect of the invention, it is not necessary to drive all the compressors, so that the energy used can be reduced. In addition, the time required for the refrigerant stagnation elimination operation can be shortened.
第 10発明に係る空気調和装置では、 1台ずつ第 2所定時間運転させることにより、 全ての圧縮機を事前に駆動させることが可能となる。  In the air conditioner pertaining to the tenth aspect of the invention, it is possible to drive all the compressors in advance by operating each unit for a second predetermined time.
第 11発明に係る空気調和装置では、圧縮機を駆動させることなく冷媒の寝込みを 解消することが可能である。このため、冷媒寝込み解消運転の際に圧縮機を駆動さ せる必要が無くなるため、圧縮機の駆動時間を短縮することができ、圧縮機の寿命を 延ばすことが可能となる。  In the air conditioner according to the eleventh aspect of the present invention, it is possible to eliminate the refrigerant stagnation without driving the compressor. For this reason, it is not necessary to drive the compressor during the refrigerant stagnation elimination operation, so the drive time of the compressor can be shortened and the life of the compressor can be extended.
第 12発明に係る空気調和装置では、油戻し運転をさらに行うことで、冷媒回路内に 溜まり込んでいる油を圧縮機構内に戻すことが可能となる。このため、より高精度な冷 媒量判定運転が可能となる。  In the air conditioner according to the twelfth aspect of the present invention, the oil that has accumulated in the refrigerant circuit can be returned to the compression mechanism by further performing the oil return operation. For this reason, it is possible to perform a more accurate cooling amount determination operation.
[0021] 第 13発明に係る空気調和装置では、確実に冷媒回路内に溜まり込んでいる油を 圧縮機構内に戻すことが可能となる。このため、より高精度な冷媒量判定運転が可能 となる。 [0021] In the air conditioner pertaining to the thirteenth aspect of the invention, it is possible to reliably return the oil that has accumulated in the refrigerant circuit into the compression mechanism. For this reason, a more accurate refrigerant quantity determination operation can be performed.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の実施の形態に係る空気調和装置の概略冷媒回路図。 FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
[図 2]本発明の実施の形態に係る冷媒漏洩検知運転の流れを示すフローチャート。  FIG. 2 is a flowchart showing a flow of a refrigerant leakage detection operation according to the embodiment of the present invention.
[図 3]本発明の実施の形態に係る冷媒自動充填運転の流れを示すフローチャート。 圆 4]本発明の実施の形態に係る冷媒判定準備運転の流れを示すフローチャート。 圆 5]本発明の実施の形態に係る冷媒寝込み解消運転の流れを示すフローチャート FIG. 3 is a flowchart showing a flow of an automatic refrigerant charging operation according to the embodiment of the present invention. 圆 4] A flowchart showing the flow of the refrigerant determination preparation operation according to the embodiment of the present invention. [5] A flowchart showing the flow of the refrigerant stagnation elimination operation according to the embodiment of the present invention.
[図 6]本発明の実施の形態に係る油戻し運転の流れを示すフローチャート。 FIG. 6 is a flowchart showing a flow of oil return operation according to the embodiment of the present invention.
[図 7]本発明の実施の形態の変形例 (E)〖こ係る空気調和装置の気象情報取得ネット ワーク概略図。  FIG. 7 is a schematic diagram of a weather information acquisition network of an air conditioner according to a modification of the embodiment of the present invention.
符号の説明  Explanation of symbols
[0023] 1 空気調和装置 [0023] 1 Air conditioner
2a〜2c 熱源ユニット  2a ~ 2c Heat source unit
3a, 3b, · · · 利用ユニット  3a, 3b, ...
4, 5 冷媒連絡配管  4, 5 Refrigerant communication piping
6a〜6c 運転制御装置  6a-6c Operation control device
8a〜8c 冷媒寝込み判断手段  8a-8c Refrigerant stagnation judgment means
21a〜21c 圧縮機構  21a-21c compression mechanism
22 &〜 22c, 27 &〜 27c, 28 &〜 28c 圧縮機  22 & ~ 22c, 27 & ~ 27c, 28 & ~ 28c compressor
24a〜24c 熱源側熱交^^  24a-24c Heat source side heat exchange ^^
29a〜29c 熱源側膨張弁  29a ~ 29c Heat source side expansion valve
31a, 31b,… 利用側膨張弁  31a, 31b,… User side expansion valve
32a, 32c, · · · 利用側熱交換器  32a, 32c, ...
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] (1)空気調和装置の構成 [0024] (1) Configuration of air conditioner
図 1に本発明の第 1実施形態の空気調和装置 1の概略冷媒回路図を示す。空気調 和装置 1は、ビル等の空気調和に使用されるものであって、複数 (本実施形態では、 3台)の空冷式の熱源ユニット 2a〜2cと、多数の利用ユニット 3a, 3b, · · ·とが冷媒液 連絡配管 4および冷媒ガス連絡配管 5に対して、それぞれ、並列に接続されて構成さ れている。ここでは、利用ユニットは 2台 3a, 3bのみ図示する。複数の熱源ユニット 2a 〜2cは、それぞれ 1台の容量可変式の圧縮機 22a〜22cと複数 (本実施形態では、 2台)の容量一定式の圧縮機 27a〜27c, 28a〜28cとを有する圧縮機構 21a〜21c を備える。 FIG. 1 shows a schematic refrigerant circuit diagram of the air-conditioning apparatus 1 according to the first embodiment of the present invention. The air conditioner 1 is used for air conditioning of a building or the like, and includes a plurality of (in this embodiment, three) air-cooled heat source units 2a to 2c and a number of utilization units 3a, 3b, ··· are connected in parallel to the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5, respectively. Here, only two units 3a and 3b are shown. Each of the plurality of heat source units 2a to 2c includes one variable capacity compressor 22a to 22c and a plurality of (in this embodiment, two) constant capacity compressors 27a to 27c, 28a to 28c. Compression mechanism 21a-21c Is provided.
利用ユニット 3a, 3b,…は、それぞれ、主に、利用側膨張弁 31a, 31b, · · ·と、禾 lj 用側熱交翻32&, 32b,…と、これらを接続する配管とから構成されている。本実 施形態において、利用側膨張弁 31a, 31b, · · ·は、冷媒圧力の調節ゃ冷媒流量の 調節等を行うために、利用側熱交換器 32a, 32b, …の冷媒液連絡配管 4側 (以下 液側とする)に接続された電動膨張弁である。本実施形態において、利用側熱交換 器 32a, 32b, · · ·は、クロスフィンチューブ式の熱交^^であり、室内の空気と熱交 換するための機器である。本実施形態において、利用ユニット 3a, 3b, · · ·は、ュ-ッ ト内に室内の空気を取り込み、送り出すための室内ファン(図示せず)を備えており、 室内の空気と利用側熱交 32a, 32b,…を流れる冷媒とを熱交換させることが 可能である。 Each of the usage units 3a, 3b, ... is mainly composed of the usage side expansion valves 31a, 31b, ..., 禾 lj side heat exchange 32 & , 32b, ..., and the piping connecting them Has been. In this embodiment, the use side expansion valves 31a, 31b,... Are connected to the refrigerant liquid communication pipes 4 of the use side heat exchangers 32a, 32b,. This is an electric expansion valve connected to the side (hereinafter referred to as the liquid side). In the present embodiment, the use side heat exchangers 32a, 32b,... Are cross fin tube type heat exchangers, which are devices for exchanging heat with indoor air. In the present embodiment, the utilization units 3a, 3b,... Are provided with indoor fans (not shown) for taking in and sending out indoor air into the mute, exchange 32 a, 32b, and a refrigerant flowing ... it is possible to heat exchange.
[0025] 熱源ユニット 2a〜2cは、それぞれ、主に、圧縮機構 21a〜21cと、四路切換弁 23a 〜23cと、熱源側熱交換器 24a〜24cと、液側閉鎖弁 25a〜25cと、ガス側閉鎖弁 26 a〜26cと、熱源側膨張弁 29a〜29cと、これらを接続する配管とから構成されている 。本実施形態において、熱源側膨張弁 29a〜29cは、冷媒圧力の調節ゃ冷媒流量 の調節等を行うために、熱源側膨張弁 29a〜29cの冷媒液連絡配管 4側 (以下液側 とする)に接続された電動膨張弁である。圧縮機構 21a〜21cは、容量可変式の圧 縮機 22a〜22cと 2台の容量一定式の圧縮機 27a〜27c, 28a〜28cと油分離器(図 示せず)とを有する。  [0025] The heat source units 2a to 2c mainly include compression mechanisms 21a to 21c, four-way switching valves 23a to 23c, heat source side heat exchangers 24a to 24c, and liquid side closing valves 25a to 25c, respectively. The gas side closing valves 26a to 26c, the heat source side expansion valves 29a to 29c, and a pipe connecting them are configured. In the present embodiment, the heat source side expansion valves 29a to 29c are used for adjusting the refrigerant pressure, adjusting the refrigerant flow rate, etc., so as to adjust the refrigerant flow rate, etc., the refrigerant liquid communication pipe 4 side (hereinafter referred to as the liquid side) of the heat source side expansion valves 29a to 29c. It is an electric expansion valve connected to. The compression mechanisms 21a to 21c include variable capacity compressors 22a to 22c, two constant capacity compressors 27a to 27c, 28a to 28c, and an oil separator (not shown).
圧縮機 22 &〜 22c, 27 &〜 27c, 28 &〜 28cは、吸入した冷媒ガスを圧縮するため の機器であり、本実施形態において、インバータ制御により運転容量を変更すること が可能な容量可変式の 1台の圧縮機および容量一定式の 2台の圧縮機である。  The compressors 22 & ~ 22c, 27 & ~ 27c, 28 & ~ 28c are devices for compressing the sucked refrigerant gas. In this embodiment, the capacity can be changed by inverter control. One compressor and two constant capacity compressors.
[0026] 四路切換弁 23a〜23cは、冷房運転と暖房運転との切り換え時に、冷媒の流れの 方向を切り換えるための弁であり、冷房運転時には圧縮機構 21a〜21cと熱源側熱 交 ^^24a〜24Cの冷媒ガス連絡配管 5側(以下ガス側とする)とを接続するとともに 圧縮機構 21a〜21cの吸入側と冷媒ガス連絡配管 5とを接続し (図 1の四路切換弁 2 3a〜23cの実線を参照)、暖房運転時には圧縮機構 21a〜21cの出口と冷媒ガス連 絡配管 5とを接続するとともに圧縮機構 21a〜21cの吸入側と熱源側熱交 24& 〜24cのガス側とを接続することが可能である(図 1の四路切換弁 23a〜23cの破線 を参照)。 [0026] The four-way switching valves 23a to 23c are valves for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation. During the cooling operation, the four-way switching valves 23a to 23c exchange heat with the compression mechanisms 21a to 21c ^^ 24A~24 C of the refrigerant gas communication pipe 5 side (hereinafter referred to as gas side) connects the suction side and the refrigerant gas communication pipe 5 of the compression mechanism 21a~21c with connecting the (four-way switching valve of Figure 1 2 3a to 23c) (Refer to solid lines 3a-23c) During heating operation, the outlets of the compression mechanisms 21a-21c and the refrigerant gas connection pipe 5 are connected and the intake side of the compression mechanisms 21a-21c and the heat source side heat exchange 24 & It is possible to connect to the gas side of ~ 24c (refer to the broken lines of the four-way switching valves 23a to 23c in Fig. 1).
熱源側熱交^^ 24a〜24cは、本実施形態において、クロスフィンチューブ式の熱 交 であり、空気を熱源として冷媒と熱交換するための機器である。本実施形態に おいて、熱源ユニット 2a〜2cは、ユニット内に屋外の空気を取り込み、送り出すため の室外ファン(図示せず)を備えており、屋外の空気と熱源側熱交換器 24a〜24cを 流れる冷媒とを熱交換させることが可能である。  In the present embodiment, the heat source side heat exchangers 24a to 24c are cross fin tube type heat exchangers, and are devices for exchanging heat with the refrigerant using air as a heat source. In the present embodiment, the heat source units 2a to 2c are provided with outdoor fans (not shown) for taking in and sending outdoor air into the units, and the outdoor air and heat source side heat exchangers 24a to 24c. It is possible to exchange heat with the refrigerant flowing through
各熱源ユニット 2a〜2cの液側閉鎖弁 25a〜25cおよびガス側閉鎖弁 26a〜26cは 、冷媒液連絡配管 4および冷媒ガス連絡配管 5に並列に接続されている。冷媒液連 絡配管 4は、利用ユニット 3a, 3b, …の利用側熱交換器 32a, 32b, · · ·の液側と熱 源ユニット 2a〜2cの熱源側熱交翻 24a〜24cの液側との間を接続して 、る。冷媒 ガス連絡配管 5は、利用ユニット 3a, 3b, · · ·の利用側熱交換器 32a, 32b, · · ·のガ ス側と熱源ユニット 2a〜2cの四路切換弁 23a〜23cとの間を接続している。  The liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c of the heat source units 2a to 2c are connected in parallel to the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5, respectively. The refrigerant liquid connection pipe 4 is connected to the liquid side of the use side heat exchangers 32a, 32b, ... of the use units 3a, 3b, ... and the liquid side of the heat source side heat exchange 24a to 24c of the heat source units 2a to 2c. Connect between and. Refrigerant gas communication pipe 5 is connected between the use side heat exchangers 32a, 32b, ... of the use units 3a, 3b, ... and the four-way switching valves 23a-23c of the heat source units 2a-2c. Is connected.
空気調和装置 1は、冷媒寝込み判断手段 8a〜8cと運転制御装置 6a〜6cをさらに 備えている。冷媒寝込み判断手段 8a〜8cは、圧縮機構 21a〜21c内に冷媒が寝込 んでいる力否かの判断を行う。運転制御装置 6a〜6cは、冷媒回路 7内の冷媒量を 判定する冷媒量判定運転を行う際に、事前に、圧縮機構 21a〜21c内に冷媒が寝込 んでいる場合に、冷媒の寝込みを解消する冷媒寝込み解消運転を行う。本実施形 態において、冷媒寝込み判断手段と運転制御装置 6a〜6cとは、各熱源ユニット 2a 〜2cに内蔵されている。そして、親機として設定された熱源ユニット (ここでは、 2a)の 運転制御装置 (ここでは、 6a)のみを使用して、上記のような運転制御を行うことが可 能である。そして、他の子機として設定された熱源ユニット (ここでは、 2a, 2b)の運転 制御装置 (ここでは、 6b, 6c)は、圧縮機構等の機器の運転状態や各種センサにお ける検出データを親機の運転制御装置 6aに電送したり、親機の運転制御装置 6aか らの指令により、圧縮機構等の機器への運転および停止指令を行うように機能したり することが可能である。ここでは、温度センサ 61a〜61c (図 1参照)が設けられ、この 温度センサにより外気温が計測され、その温度データは親機の運転制御装置 6aに 電送される。そして、運転制御装置 6aでは、冷媒寝込み解消運転を行うか否かの判 断を行う。 The air conditioner 1 further includes refrigerant stagnation determining means 8a to 8c and operation control devices 6a to 6c. The refrigerant stagnation determining means 8a to 8c determine whether or not the refrigerant is sleeping in the compression mechanisms 21a to 21c. When the operation control devices 6a to 6c perform the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit 7, if the refrigerant is already in the compression mechanisms 21a to 21c, the operation control devices 6a to 6c stagnate the refrigerant. Perform refrigerant stagnation elimination operation to eliminate. In the present embodiment, the refrigerant stagnation determining means and the operation control devices 6a to 6c are incorporated in the heat source units 2a to 2c. The operation control as described above can be performed using only the operation control device (here 6a) of the heat source unit (here 2a) set as the master unit. The operation control device (here 6b, 6c) of the heat source unit (here 2a, 2b) set as the other slave unit is the operation status of the equipment such as the compression mechanism and the detection data in various sensors. Can be sent to the operation control device 6a of the main unit, or can be functioned to issue operation and stop commands to devices such as the compression mechanism by commands from the operation control unit 6a of the main unit. . Here, temperature sensors 61a to 61c (see FIG. 1) are provided, the outside air temperature is measured by this temperature sensor, and the temperature data is transmitted to the operation control device 6a of the master unit. Then, the operation control device 6a determines whether or not to perform the refrigerant stagnation elimination operation. Make a decision.
[0028] (2)空気調和装置の動作  [0028] (2) Operation of air conditioner
次に、空気調和装置 1の動作について、図 1を用いて説明する。  Next, the operation of the air conditioner 1 will be described with reference to FIG.
<通常運転 >  <Normal operation>
(冷房運転)  (Cooling operation)
まず、冷房運転について説明する。冷房運転時は、すべての熱源ユニット 2a〜2c において、四路切換弁 23a〜23cが図 1の実線で示される状態、すなわち、各圧縮 機構 21a〜21cの吐出側が熱源側熱交^^ 24a〜24cのガス側に接続され、かつ、 各圧縮機構 21a〜21cの吸入側が冷媒ガス連絡配管 5を介して利用側熱交換器 32 a, 32b, · · ·のガス側に接続された状態となっている。また、液側閉鎖弁 25a〜25c、 ガス側閉鎖弁 26a〜26cは開にされ、利用側膨張弁 31a, 31b, · · ·は冷媒を減圧す るように開度調節されて 、る。  First, the cooling operation will be described. During cooling operation, in all heat source units 2a to 2c, the four-way selector valves 23a to 23c are in the state indicated by the solid line in FIG. 1, that is, the discharge side of each compression mechanism 21a to 21c is the heat source side heat exchanger ^^ It is connected to the gas side of 24c, and the suction side of each compression mechanism 21a to 21c is connected to the gas side of the use side heat exchanger 32a, 32b, ... via the refrigerant gas communication pipe 5. ing. Further, the liquid side shutoff valves 25a to 25c and the gas side shutoff valves 26a to 26c are opened, and the use side expansion valves 31a, 31b,... Are adjusted so as to depressurize the refrigerant.
[0029] この空気調和装置 1の冷媒回路 7の状態で、各熱源ユニット 2a〜2cの室外ファン( 図示せず)、利用ユニット 3a, 3b, · · ·の室内ファン(図示せず)および各圧縮機構 21 a〜21cを起動すると、冷媒ガスは、各圧縮機構 21a〜21cに吸入されて圧縮された 後、四路切換弁 23a〜23cを経由して熱源側熱交翻 24a〜24cに送られて、外気 と熱交換して凝縮される。この凝縮した冷媒液は、冷媒液連絡配管 4に合流されて、 利用ユニット 3a, 3b, · · '側に送られる。そして、利用ユニット 3a, 3b, · · ·に送られた 冷媒液は、利用側膨張弁 31a, 31b,…で減圧された後、利用側熱交換器 32a, 3 2b, · · 'で室内空気と熱交換して蒸発される。この蒸発した冷媒ガスは、冷媒ガス連 絡配管 5を通じて熱源ユニット 2a〜2c側に送られる。冷媒ガス連絡配管 5を流れる冷 媒ガスは、各熱源ユニット 2a〜2cの四路切換弁 23a〜23cを通過した後、再び、各 圧縮機構 21a〜21cに吸入される。このようにして、冷房運転が行われる。  [0029] In the state of the refrigerant circuit 7 of the air conditioner 1, outdoor fans (not shown) of the heat source units 2a to 2c, indoor fans (not shown) of the utilization units 3a, 3b,. When the compression mechanisms 21a to 21c are started, the refrigerant gas is sucked into the compression mechanisms 21a to 21c and compressed, and then sent to the heat source side heat exchange 24a to 24c via the four-way switching valves 23a to 23c. It is condensed by exchanging heat with the outside air. This condensed refrigerant liquid is merged into the refrigerant liquid communication pipe 4 and sent to the use units 3a, 3b,. The refrigerant liquid sent to the usage units 3a, 3b,... Is decompressed by the usage side expansion valves 31a, 31b,. Evaporates through heat exchange. The evaporated refrigerant gas is sent to the heat source units 2 a to 2 c through the refrigerant gas connection pipe 5. The refrigerant gas flowing through the refrigerant gas communication pipe 5 passes through the four-way switching valves 23a to 23c of the heat source units 2a to 2c, and is again sucked into the compression mechanisms 21a to 21c. In this way, the cooling operation is performed.
[0030] (暖房運転)  [0030] (Heating operation)
次に、暖房運転について説明する。暖房運転時は、すべての熱源ユニット 2a〜2c において、四路切換弁 23a〜23cが図 1の破線で示される状態、すなわち、各圧縮 機構 21a〜21cの吐出側が冷媒ガス連絡配管 5を介して利用側熱交換器 32a, 32b , · · ·のガス側に接続され、かつ、各圧縮機構 21a〜21cの吸入側が熱源側熱交換 器 24a〜24cのガス側に接続された状態となっている。また、液側閉鎖弁 25a〜25c 、ガス側閉鎖弁 26a〜26cは開にされ、熱源側膨張弁 29a〜29cは冷媒を減圧する ように開度調節されている。 Next, the heating operation will be described. During heating operation, in all the heat source units 2a to 2c, the four-way switching valves 23a to 23c are in the state indicated by the broken lines in FIG. 1, that is, the discharge side of each compression mechanism 21a to 21c is connected via the refrigerant gas communication pipe 5. Use side heat exchangers 32a, 32b, ... connected to the gas side, and the suction side of each compression mechanism 21a-21c is heat source side heat exchange It is in the state connected to the gas side of vessels 24a-24c. Further, the liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c are opened, and the heat source side expansion valves 29a to 29c are adjusted in opening degree so as to depressurize the refrigerant.
この空気調和装置 1の冷媒回路 7の状態で、各熱源ユニット 2a〜2cの室外ファン( 図示せず)、各利用ユニット 3a, 3b, …の室内ファン(図示せず)および各圧縮機構 21a〜21cを起動すると、冷媒ガスは、各圧縮機構 21a〜21cに吸入されて圧縮され た後、各熱源ユニット 2a〜2cの四路切換弁 23a〜23cを経由して冷媒ガス連絡配管 5に合流されて、利用ユニット 3a, 3b, · · ·側に送られる。そして、利用ユニット 3a, 3b , · · ·に送られた冷媒ガスは、利用側熱交換器 32a, 32b, · · ·で室内空気と熱交換 して凝縮される。この凝縮した冷媒液は、利用側膨張弁 3 la, 31b,…を経由して、 冷媒液連絡配管 4に合流し、熱源ユニット 2a〜2c側に送られる。冷媒液連絡配管 4 を流れる冷媒液は、各熱源ユニット 2a〜2cの熱源側熱交翻 24a〜24cで外気と熱 交換して蒸発される。この蒸発した冷媒ガスは、各熱源ユニット 2a〜2cの四路切換 弁 23a〜23cを経由して、再び、圧縮機構 21a〜21cに吸入される。このようにして、 暖房運転が行われる。  In the state of the refrigerant circuit 7 of the air conditioner 1, outdoor fans (not shown) of the heat source units 2a to 2c, indoor fans (not shown) of the use units 3a, 3b,. When 21c is activated, the refrigerant gas is sucked into the compression mechanisms 21a to 21c and compressed, and then joined to the refrigerant gas communication pipe 5 via the four-way switching valves 23a to 23c of the heat source units 2a to 2c. And sent to the usage units 3a, 3b,. Then, the refrigerant gas sent to the use units 3a, 3b,... Is condensed by exchanging heat with room air in the use side heat exchangers 32a, 32b,. The condensed refrigerant liquid joins the refrigerant liquid communication pipe 4 via the use side expansion valves 3 la, 31b,... And is sent to the heat source units 2a to 2c. The refrigerant liquid flowing through the refrigerant liquid connection pipe 4 is evaporated by exchanging heat with the outside air at the heat source side heat exchange 24a to 24c of the heat source units 2a to 2c. The evaporated refrigerant gas is again sucked into the compression mechanisms 21a to 21c via the four-way switching valves 23a to 23c of the heat source units 2a to 2c. In this way, the heating operation is performed.
[0031] <冷媒量判定運転 > [0031] <Refrigerant amount determination operation>
次に、冷媒量判定運転について説明する。冷媒量判定運転には、冷媒漏洩検知 運転と冷媒自動充填運転とがある。  Next, the refrigerant quantity determination operation will be described. The refrigerant quantity judgment operation includes a refrigerant leak detection operation and a refrigerant automatic charging operation.
(冷媒漏洩検知運転)  (Refrigerant leak detection operation)
冷媒量判定運転の 1つである冷媒漏洩検知運転について、図 1、図 2を用いて説明 する。ここで、図 2は、冷媒漏洩検知運転時のフローチャートである。  The refrigerant leakage detection operation, which is one of the refrigerant quantity determination operations, will be described with reference to FIGS. Here, FIG. 2 is a flowchart in the refrigerant leak detection operation.
通常運転における冷房運転や暖房運転時に、定期的 (例えば、毎月 1回、空調空 間に負荷処理を必要としないとき等)に、冷媒量判定運転の 1つである冷媒漏洩検知 運転に切り換えて運転を行うことによって、不測の原因により冷媒回路 7内の冷媒が 外部に漏洩していないかどうかを検知する場合を例にして説明する。  During cooling operation or heating operation in normal operation, switch to the refrigerant leakage detection operation, which is one of the refrigerant amount determination operations, periodically (for example, once every month, when load processing is not required in the air-conditioned space). An example will be described in which it is detected whether or not the refrigerant in the refrigerant circuit 7 has leaked to the outside due to unforeseen reasons.
[0032] まず、ステップ S 1では、冷媒漏洩検知運転を行う前に冷媒量判定準備運転を行う 。この冷媒量判定準備運転については後述する。 First, in step S 1, a refrigerant quantity determination preparation operation is performed before the refrigerant leakage detection operation. This refrigerant quantity determination preparation operation will be described later.
次に、ステップ S2では、上記の冷房運転や暖房運転のような通常運転における運 転が一定時間(例えば、 1ヶ月等)経過した力どうかを判定し、通常運転における運転 がー定時間経過した場合には、次のステップ S2に移行する。 Next, in step S2, the operation in the normal operation such as the cooling operation and the heating operation described above is performed. It is judged whether or not the force has passed for a certain period of time (for example, 1 month), and if the operation in normal operation has passed for a certain period of time, the process proceeds to the next step S2.
ステップ S3では、通常運転における運転が一定時間経過した場合に、冷媒回路 7 力 熱源ユニット 2a〜2cの四路切換弁 23a〜23cが図 1の実線で示される状態で、 かつ、利用ユニット 3a, 3b, · · ·の利用側膨張弁 31a, 31b, · · ·が開けられた状態と なり、圧縮機構 21a〜21c、室外ファン(図示せず)が起動されて、利用ユニット 3a, 3 b, · · ·の全てについて強制的に冷房運転が行われる。  In step S3, when the operation in the normal operation has passed for a fixed time, the four-way switching valves 23a to 23c of the refrigerant circuit 7-power heat source units 2a to 2c are in the state shown by the solid line in FIG. 3b, the use side expansion valves 31a, 31b, ... are opened, the compression mechanisms 21a to 21c and the outdoor fan (not shown) are activated, and the use units 3a, 3b, · · · · · · · · · · Forced cooling operation.
[0033] ステップ S4では、室外ファンによる凝縮圧力制御、利用側膨張弁 3 la, 31b, · · ·に よる過熱度制御、圧縮機構 21a〜21cによる蒸発圧力制御が行われて、冷媒回路 7 内を循環する冷媒の状態が安定させられる。[0033] In step S4, the condensation pressure control by the outdoor fan, the superheat degree control by the use side expansion valves 3la, 31b, ..., the evaporation pressure control by the compression mechanisms 21a to 21c are performed, and the inside of the refrigerant circuit 7 is performed. The state of the refrigerant circulating through the is stabilized.
Figure imgf000015_0001
ステップ S6では、ステップ S5において検出された過冷却度の値力 冷媒量の適否 を判定する。ここで、ステップ S5における過冷却度の検出の際には、利用ユニット 3a , 3b, · · ·の形態や冷媒液連絡配管 4および冷媒ガス連絡配管 5の長さとは無関係
Figure imgf000015_0002
Figure imgf000015_0001
In step S6, it is determined whether or not the value of the supercooling degree detected in step S5 is appropriate. Here, when detecting the degree of supercooling in step S5, the configuration of the use units 3a, 3b,... And the length of the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5 are irrelevant.
Figure imgf000015_0002
内に充填されて ヽる冷媒量の適否が判定できるようになって!/ヽる。  It is now possible to judge the suitability of the amount of refrigerant charged in the inside! / Speak.
[0034] 追加充填される冷媒量が少なく必要冷媒量に達して 、な 、場合にぉ 、ては、熱源 側熱交^^ 24a〜24cにおける冷媒量が少ない状態となる(具体的には、ステップ S 5にお 、て検出された過冷却度値が、熱源側熱交換器 24a〜24cの凝縮圧力にお ける必要冷媒量に対応する過冷却度値よりも小さいことを意味する。 ) oこのため、ス テツプ S5にお 、て検出された過冷却度値が目標過冷却度値とほぼ同じ値 (例えば、 検出された過冷却度値と目標過冷却度値との差が所定値未満)である場合には、冷 媒の漏洩がな 、ものと判定して、冷媒漏洩検知運転を終了する。 [0034] If the amount of refrigerant to be additionally charged is small and the required amount of refrigerant has been reached, then the refrigerant amount in the heat source side heat exchangers 24a to 24c becomes small (specifically, This means that the supercooling value detected in step S5 is smaller than the supercooling value corresponding to the required refrigerant amount at the condensation pressure of the heat source side heat exchangers 24a to 24c. For this reason, in step S5, the detected supercooling value is substantially the same as the target supercooling value (for example, the difference between the detected supercooling value and the target supercooling value is less than a predetermined value). ), It is determined that there is no refrigerant leakage, and the refrigerant leakage detection operation is terminated.
一方、ステップ S5において検出された過冷却度値が目標過冷却度値とよりも小さ V、値 (例えば、検出された過冷却度値と目標過冷却度値との差が所定値以上)であ る場合には、冷媒の漏洩が発生しているものと判定して、ステップ S7の処理に移行し て、冷媒漏洩を検知したことを知らせる警告表示を行った後、冷媒漏洩検知運転を 終了する。 On the other hand, when the supercooling degree value detected in step S5 is smaller than the target supercooling degree value V, the value (for example, the difference between the detected supercooling degree value and the target supercooling degree value is a predetermined value or more). If there is, it is determined that a refrigerant leak has occurred, the process proceeds to step S7, a warning is displayed to notify that a refrigerant leak has been detected, and then the refrigerant leak detection operation is performed. finish.
[0035] (冷媒自動充填運転)  [0035] (Automatic refrigerant charging operation)
冷媒量判定運転の 1つである冷媒自動充填運転について、図 1、図 3を用いて説明 する。ここで、図 3は、冷媒自動充填運転時のフローチャートである。  The automatic refrigerant charging operation, which is one of the refrigerant quantity determination operations, will be described with reference to FIGS. Here, FIG. 3 is a flowchart of the automatic refrigerant charging operation.
現地において、冷媒があら力じめ充填された熱源ユニット 2a〜2cと、利用ユニット 3 a, 3b, · · ·とを冷媒液連絡配管 4および冷媒ガス連絡配管 5を介して接続して冷媒 回路 7を構成した後に、冷媒液連絡配管 4および冷媒ガス連絡配管 5の長さに応じて 不足する冷媒を冷媒回路 7内に追加充填する場合を例にして説明する。  The heat source units 2a to 2c that are prefilled with refrigerant are connected to the usage units 3a, 3b, ... via the refrigerant liquid connection pipe 4 and the refrigerant gas connection pipe 5 at the site. An example will be described in which the refrigerant circuit 7 is additionally filled with a refrigerant that is insufficient according to the lengths of the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5 after the configuration of FIG.
まず、熱源ユニット 2a〜2cの液側閉鎖弁 25a〜25cおよびガス側閉鎖弁 26a〜26 cを開けて、熱源ユニット 2a〜2cにあらかじめ充填された冷媒を冷媒回路 7内に充満 させる。  First, the liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c of the heat source units 2a to 2c are opened, and the refrigerant circuit 7 is filled with the refrigerant preliminarily charged in the heat source units 2a to 2c.
[0036] 次に、冷媒充填作業を行う者が、リモコン(図示せず)を通じて、または、利用ュ-ッ ト 3a, 3b, · · ·の利用側制御部(図示せず)や熱源ユニット 2a〜2cの運転制御装置 6 a〜6cに対して直接に、冷媒量判定運転の一つである冷媒自動充填運転を行うよう に指令を出すと、ステップ S 11からステップ S 14の手順で冷媒自動充填運転が行わ れる。  [0036] Next, a person who performs the refrigerant charging operation uses a remote controller (not shown), or a use side control unit (not shown) or a heat source unit 2a of the use units 3a, 3b,. When the operation control devices 6a to 6c of ~ 2c are directly instructed to perform the automatic refrigerant charging operation, which is one of the refrigerant quantity determination operations, the automatic refrigerant operation is performed according to the procedure from step S11 to step S14. Filling operation is performed.
ステップ S11では、冷媒自動充填運転を行う前に冷媒量判定準備運転を行う。この 冷媒量判定準備運転にっ ヽては後述する。  In step S11, a refrigerant quantity determination preparation operation is performed before the automatic refrigerant charging operation. This refrigerant quantity determination preparation operation will be described later.
ステップ S12では、冷媒自動充填運転の開始指令がなされると、冷媒回路 7が、熱 源ユニット 2a〜2cの四路切換弁 23a〜23cが図 1の実線で示される状態で、かつ、 利用ユニット 3a, 3b, …の利用側膨張弁 31a, 31b, · · ·が開けられた状態となり、 圧縮機構 21a〜21c、室外ファン(図示せず)が起動されて、利用ユニット 3a, 3b, · · •の全てについて強制的に冷房運転が行われる。  In step S12, when an instruction to start the automatic refrigerant charging operation is issued, the refrigerant circuit 7 is in a state where the four-way switching valves 23a to 23c of the heat source units 2a to 2c are indicated by solid lines in FIG. The use side expansion valves 31a, 31b, 3a, 3b, ... are opened, the compression mechanisms 21a-21c and the outdoor fan (not shown) are activated, and the use units 3a, 3b, ... • All the items are forcibly cooled.
[0037] ステップ S 13では、室外ファンによる凝縮圧力制御、利用側膨張弁 3 la, 31b, · · · による過熱度制御、圧縮機構 21a〜21cによる蒸発圧力制御が行われて、冷媒回路 7内を循環する冷媒の状態が安定させられる。 [0037] In step S13, the condensation pressure control by the outdoor fan, the superheat degree control by the use side expansion valves 3la, 31b, ..., and the evaporation pressure control by the compression mechanisms 21a to 21c are performed, and the inside of the refrigerant circuit 7 is performed. The state of the refrigerant circulating through the is stabilized.
ステップ S14では、
Figure imgf000016_0001
口における過冷却度を検出す る。 ステップ S 15では、ステップ S 14にお 、て検出された過冷却度の値から冷媒量の適 否を判定する。具体的には、ステップ S 14において検出された過冷却度値が目標過 冷却度値よりも小さく冷媒充填が完了していない場合には、過冷却度値が目標過冷 却度値に達するまで、上記のステップ S 13およびステップ S 14の処理が繰り返される なお、この冷媒自動充填運転は、現地施工後の試運転時の冷媒充填だけでなぐ 冷媒の漏洩等によって冷媒回路 7内に充填されている冷媒量が減少した場合の冷 媒の追加充填にも使用することが可能である。
In step S14,
Figure imgf000016_0001
Detect the degree of supercooling at the mouth. In step S15, the suitability of the refrigerant amount is determined from the value of the degree of supercooling detected in step S14. Specifically, when the supercooling degree value detected in step S14 is smaller than the target supercooling degree value and refrigerant charging is not completed, the supercooling degree value reaches the target supercooling degree value. In addition, the above-described processing of Step S13 and Step S14 is repeated. In this automatic refrigerant charging operation, the refrigerant circuit 7 is filled only by the refrigerant leakage or the like during the trial operation after the site construction. It can also be used for additional charging of refrigerant when the amount of refrigerant decreases.
[0038] <冷媒量判定準備運転 > [0038] <Refrigerant quantity determination preparation operation>
上記の冷媒量判定運転において、冷媒寝込み判断手段 8a〜8cは、温度センサ 6 la〜61cが感知した温度が所定温度よりも低い場合に、圧縮機構 21a〜21c内に冷 媒が寝込んでいると判断し、運転制御装置 6aに冷媒の寝込みがあるという信号を送 る。冷媒寝込み判断手段 8a〜8cより信号を受けた運転制御装置 6aは、圧縮機 22a 〜22c, 27a〜27c, 28a〜28cが十分に暖まるように事前運転 (冷媒寝込み解消運 転)を行う制御をしている。  In the refrigerant amount determination operation described above, the refrigerant stagnation determination means 8a to 8c indicate that the refrigerant has stagnated in the compression mechanisms 21a to 21c when the temperature detected by the temperature sensors 6la to 61c is lower than the predetermined temperature. Judgment is made and a signal is sent to the operation control device 6a that the refrigerant has stagnated. Receiving the signal from the refrigerant stagnation judging means 8a to 8c, the operation control device 6a performs control to perform preliminary operation (refrigerant stagnation elimination operation) so that the compressors 22a to 22c, 27a to 27c, and 28a to 28c are sufficiently warmed. is doing.
図 4において、ステップ S21では、運転制御装置 6aは、各温度センサ 61a〜61cに より測定された圧縮機構 21a〜21c内温度が所定温度よりも低いか否かを判断し、圧 縮機温度が所定温度よりも低 、場合にはステップ S22へ移行し、そうでな ヽ場合に はステップ S23へ移行する。ステップ S22では、冷媒寝込み解消運転を行いステップ S23へ移行する。ステップ 23では油戻し運転を行い、油戻し運転が終了すると、冷 媒量判定運転が冷媒漏洩検知運転の場合にはステップ S2へ移行し、冷媒量判定 運転が冷媒自動充填運転の場合にはステップ S 12へ移行する。  In FIG. 4, in step S21, the operation control device 6a determines whether or not the temperatures in the compression mechanisms 21a to 21c measured by the temperature sensors 61a to 61c are lower than a predetermined temperature, and the compressor temperature is If the temperature is lower than the predetermined temperature, the process proceeds to step S22, and if not, the process proceeds to step S23. In step S22, the refrigerant stagnation elimination operation is performed, and the process proceeds to step S23. In step 23, an oil return operation is performed, and when the oil return operation is completed, the process proceeds to step S2 when the refrigerant amount determination operation is the refrigerant leak detection operation, and when the refrigerant amount determination operation is the automatic refrigerant charging operation, the process proceeds to step S2. Move to S12.
[0039] (冷媒寝込み解消運転) [0039] (Refrigerant stagnation operation)
ここでは、上記のステップ S22の冷媒寝込み解消運転について説明する。運転制 御装置 6aは、冷媒寝込み判断手段 8a〜8cより信号を受信すると、熱源ユニット 2a〜 2cの圧縮機構 21a〜21cの全てに対して、駆動するように指令を出す。ただし、熱源 ユニット 2b, 2cについては、親機の運転制御装置 6aの指令を子機の運転制御装置 6b, 6cが受け、子機の運転制御装置 6b, 6cが圧縮機構 21b, 21cに対して駆動す るように指令を出す。 Here, the refrigerant stagnation elimination operation in step S22 will be described. When receiving a signal from the refrigerant stagnation determining means 8a to 8c, the operation control device 6a issues a command to drive all the compression mechanisms 21a to 21c of the heat source units 2a to 2c. However, for the heat source units 2b and 2c, the slave unit operation control devices 6b and 6c receive the command from the master unit operation control device 6a, and the slave unit operation control devices 6b and 6c apply to the compression mechanisms 21b and 21c. Drive The command is issued.
図 5において、ステップ S31では、圧縮機 22a〜22cを駆動させ、ステップ S32へ移 行する。ステップ S32では、ステップ S31から 15分後に圧縮機 22a〜22cを停止させ 、圧縮機 27a〜27cを駆動させ、ステップ S33へ移行する。ステップ S33では、ステツ プ S32から 15分後に圧縮機 27a〜27cを停止させ、圧縮機 28a〜28cを駆動させ、 ステップ S34へ移行する。ステップ S34では、ステップ S33力も 15分後に圧縮機 28a 〜28cを停止させ、冷媒寝込み解消運転を終了する。  In FIG. 5, in step S31, the compressors 22a to 22c are driven, and the process proceeds to step S32. In step S32, the compressors 22a to 22c are stopped 15 minutes after step S31, the compressors 27a to 27c are driven, and the process proceeds to step S33. In step S33, the compressors 27a to 27c are stopped 15 minutes after step S32, the compressors 28a to 28c are driven, and the process proceeds to step S34. In step S34, step S33 force also stops the compressors 28a to 28c after 15 minutes and ends the refrigerant stagnation elimination operation.
[0040] (油戻し運転) [0040] (Oil return operation)
上記の冷媒寝込み解消運転が終了した場合、もしくは、ステップ S21において圧縮 機温度が所定温度よりも高い場合には、ステップ S23の油戻し運転が行われる。ここ では、図 6により油戻し運転について説明する。  When the refrigerant stagnation elimination operation is completed, or when the compressor temperature is higher than the predetermined temperature in step S21, the oil return operation in step S23 is performed. Here, the oil return operation will be described with reference to FIG.
ステップ S41では、運転制御装置 6aは、各熱源ユニット 2a〜2cの圧縮機の内の 1 台(ここでは、圧縮機 22a〜22c)を駆動するように指令を出す。ただし、熱源ユニット 2b, 2cについては、親機の運転制御装置 6aの指令を子機の運転制御装置 6b, 6c が受け、子機の運転制御装置 6b, 6cが圧縮機 22b, 22cに対して駆動するように指 令を出す。ステップ S41が終了すると、ステップ S42へ移行する。そして、ステップ S4 2では、運転制御装置 6aは、圧縮機 22a〜22cを 5分間駆動させた後に停止するよう に指令を出す。これにより、冷媒回路 7内に溜まり込んでいる油を圧縮機構 21a〜21 c内に戻すことができる。  In step S41, the operation control device 6a issues a command to drive one of the compressors of the heat source units 2a to 2c (here, the compressors 22a to 22c). However, for the heat source units 2b and 2c, the operation control devices 6b and 6c of the slave units receive commands from the operation control device 6a of the master unit, and the operation control devices 6b and 6c of the slave units are connected to the compressors 22b and 22c. Give a command to drive. When step S41 ends, the process proceeds to step S42. In step S42, the operation control device 6a issues a command to stop after driving the compressors 22a to 22c for 5 minutes. Thereby, the oil accumulated in the refrigerant circuit 7 can be returned to the compression mechanisms 21a to 21c.
[0041] <特徴 > [0041] <Features>
(1)  (1)
この空気調和装置 1では、冷媒量判定運転を行う際に、事前に、冷媒寝込み判断 手段により、冷媒が圧縮機 22a〜22c, 27a〜27c, 28a〜28c内部の冷凍機油に寝 込んでいる力否かの判定が行われる。そして、冷媒寝込み判断手段が圧縮機構 21a 〜21c内の冷凍機油に冷媒が寝込んでいると判断すると、運転制御装置 6aにより冷 媒寝込み解消運転が行われる。したがって、この空気調和装置 1では、圧縮機構 21 a〜21c内での冷凍機油に対する冷媒溜まり込みを解消して力 判定運転を行うこと が可能である。このため、冷媒量判定運転の際に、圧縮機構 21a〜21c内の冷凍機 油に溶解する冷媒量を少なくすることができ、冷媒量の予測誤差を小さくできる。この ため、冷媒量判定運転の際に、圧縮機構 21a〜21c内での冷凍機油に対する冷媒 の寝込みを防止できるので、高精度な冷媒量判定運転が可能となる。 In the air conditioner 1, when the refrigerant amount determination operation is performed, the refrigerant stagnation in the refrigerating machine oil inside the compressors 22a to 22c, 27a to 27c, and 28a to 28c in advance by the refrigerant stagnation determination means. A determination is made whether or not. When the refrigerant stagnation determining means determines that the refrigerant is stagnation in the refrigerating machine oil in the compression mechanisms 21a to 21c, the operation control device 6a performs the refrigerant stagnation elimination operation. Therefore, in the air conditioner 1, it is possible to perform the force determination operation by eliminating the refrigerant accumulation in the refrigerating machine oil in the compression mechanisms 21a to 21c. For this reason, during the refrigerant quantity determination operation, the refrigerators in the compression mechanisms 21a to 21c The amount of refrigerant that dissolves in oil can be reduced, and the prediction error of the amount of refrigerant can be reduced. For this reason, during the refrigerant quantity determination operation, the refrigerant can be prevented from stagnation in the refrigerating machine oil in the compression mechanisms 21a to 21c, so that a highly accurate refrigerant quantity determination operation can be performed.
[0042] (2) [0042] (2)
この空気調和装置 1では、冷媒寝込み判断手段の判断は、圧縮機構 21a〜21c内 の温度【こ基づ ヽて行われる。このため、圧縮機 22a〜22c, 27a~27c, 28a~28c 内部の温度の測定が可能となり、圧縮機構 21a〜21c内の冷凍機油に対して冷媒の 寝込みがある力否かの判断が可能となる。  In the air conditioner 1, the determination of the refrigerant stagnation determination means is performed based on the temperature in the compression mechanisms 21a to 21c. Therefore, it is possible to measure the temperature inside the compressors 22a to 22c, 27a to 27c, 28a to 28c, and to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanisms 21a to 21c. Become.
(3)  (3)
この空気調和装置 1では、冷媒寝込み解消運転において、圧縮機 22a〜22c, 27 a〜27c, 28a〜28cを第 1所定時間暖機運転させる。したがって、この冷媒寝込み解 消運転は、圧縮機 22a〜22c, 27a〜27c, 28a〜28cを第 1所定時間運転させるこ とで、圧縮機構 21a〜21c内を暖めることができる(暖機運転)。このため、圧縮機構 2 la〜21c内を十分に暖めることができ、圧縮機構 21a〜21c内の冷凍機油に対する 冷媒の寝込みを解消することができる。  In the air conditioner 1, in the refrigerant stagnation elimination operation, the compressors 22a to 22c, 27a to 27c, and 28a to 28c are warmed up for a first predetermined time. Therefore, the refrigerant stagnation canceling operation can warm the compressor mechanisms 21a to 21c by operating the compressors 22a to 22c, 27a to 27c, and 28a to 28c for the first predetermined time (warm-up operation). . For this reason, the inside of the compression mechanisms 2la to 21c can be sufficiently warmed, and the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanisms 21a to 21c can be eliminated.
[0043] (4) [0043] (4)
この空気調和装置 1では、熱源ユニット 2a〜2cが複数存在する。したがって、シス テム内の熱源ユニット 2a〜2cを一定時間ローテーションすることで、低負荷時でも 1 ユニットに負担が偏らず、システム全体の寿命を延ばすことができる。  In the air conditioner 1, there are a plurality of heat source units 2a to 2c. Therefore, by rotating the heat source units 2a to 2c in the system for a certain period of time, even if the load is low, the load is not biased to one unit and the life of the entire system can be extended.
(5)  (Five)
この空気調和装置 1では、圧縮機構 21a〜21cが複数の圧縮機 22a〜22c, 27a 〜27c, 28 &〜 28cを有して!/ヽる。した力 ^つて、圧縮機 22 &〜 22c, 27 &〜 27c, 28a 〜28cの台数制御による圧縮機構 21a〜21cの容量変更を行うことができるため、利 用ユニット 3a, 3b, · · ·の運転負荷が小さくなつた場合でも、全ての熱源ユニット 2a〜 2cを運転継続させることが可能になり、冷媒回路 7での冷媒ゃ油の溜まり込みを極力 防ぐことができる。また、複数の圧縮機 22a〜22c, 27a〜27c, 28a〜28cの内 1台 が故障しても残りの圧縮機が対応可能である。このため、空調の完全停止を回避す ることがでさる。 [0044] (6) In this air conditioner 1, the compression mechanisms 21a to 21c have a plurality of compressors 22a to 22c, 27a to 27c, 28 & to 28c! Therefore, it is possible to change the capacity of the compression mechanisms 21a to 21c by controlling the number of compressors 22 & ~ 22c, 27 & ~ 27c, 28a ~ 28c, so that the usage units 3a, 3b, ... Even when the operation load is reduced, it becomes possible to continue the operation of all the heat source units 2a to 2c, and the accumulation of oil in the refrigerant circuit 7 can be prevented as much as possible. Even if one of the compressors 22a-22c, 27a-27c, 28a-28c breaks down, the remaining compressors can handle them. For this reason, it is possible to avoid a complete stop of the air conditioning. [0044] (6)
この空気調和装置 1では、圧縮機 22a〜22c, 27a〜27c, 28a〜28cが複数存在 する場合に、全ての圧縮機 22a〜22c, 27a〜27c, 28a〜28cを 1台ずつ交代で第 2所定時間運転させる。冷媒寝込み解消運転の際に、低外気温時に冷房運転させる ため、低負荷のため【こ 1度【こ全ての圧縮機 22a〜22c, 27a~27c, 28a〜28cを運 転させることは難しい。このため、 1台ずつ第 2所定時間運転させることにより、全ての 圧縮機 22a〜22c, 27a〜27c, 28a〜28cを事前に駆動させることが可能となる。  In this air conditioner 1, when there are a plurality of compressors 22a to 22c, 27a to 27c, and 28a to 28c, all the compressors 22a to 22c, 27a to 27c, and 28a to 28c are replaced one by one. Let it run for a predetermined time. Because the cooling operation is performed at a low outside temperature during the refrigerant stagnation elimination operation, it is difficult to operate all the compressors 22a to 22c, 27a to 27c, and 28a to 28c due to low load. For this reason, it is possible to drive all of the compressors 22a to 22c, 27a to 27c, and 28a to 28c in advance by operating them one by one for the second predetermined time.
(7)  (7)
この空気調和装置 1では、冷媒寝込み解消運転の後に、さらに油戻し運転を行う。 また、この油戻し運転では、配管内冷媒流速が所定流速以上になるような制御が行 われる。したがって、油戻し運転をさらに行うことで、冷媒回路 7内に溜まり込んでいる 油を戻すことが可能となる。また、確実に冷媒回路 7内に溜まり込んでいる油を圧縮 機 22a〜22c, 27a〜27c, 28a〜28c内咅に戻すこと力 ^可會となる。このため、冷媒 量判定運転をさらに精度良く運転することが可能となる。  In the air conditioner 1, the oil return operation is further performed after the refrigerant stagnation elimination operation. Further, in this oil return operation, control is performed so that the refrigerant flow rate in the pipe becomes equal to or higher than a predetermined flow rate. Therefore, the oil accumulated in the refrigerant circuit 7 can be returned by further performing the oil return operation. In addition, it is possible to reliably return the oil accumulated in the refrigerant circuit 7 to the compressor 22a to 22c, 27a to 27c, 28a to 28c. For this reason, it becomes possible to operate the refrigerant quantity determination operation with higher accuracy.
[0045] <他の実施形態 > [0045] <Other embodiments>
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。  As mentioned above, although embodiment of this invention was described based on drawing, specific structure can be changed in the range which does not deviate from the summary of this invention which is not restricted to these embodiment.
(A)  (A)
前記実施形態においては、空気調和装置 1の熱源ユニット 2a〜2cとして外気を熱 源とした空冷式の熱源ユニット 2a〜2cを使用している力 水冷式や氷蓄熱式の熱源 ユニットを使用しても良い。  In the above-described embodiment, the air-cooled heat source units 2a to 2c that use air-cooled heat source units 2a to 2c using outside air as the heat source are used. Also good.
(B)  (B)
前記実施形態においては、冷暖切換運転が可能な空気調和装置 1であったが、冷 房専用の空気調和装置ゃ冷暖同時運転が可能な空気調和装置であっても良い。  In the above embodiment, the air conditioner 1 is capable of switching between cooling and heating, but an air conditioner dedicated to cooling may be an air conditioner capable of simultaneous cooling and heating.
[0046] (C) [0046] (C)
前記実施形態においては、同じ空調能力を有する 3台の熱源ユニット 2a〜2cを並 列接続しているが、異なる空調能力を有する熱源ユニットを並列接続しても良いし、 3 台に限らず 2台以上の熱源ユニットを並列接続しても良い。 In the above embodiment, three heat source units 2a to 2c having the same air conditioning capability are connected in parallel, but heat source units having different air conditioning capabilities may be connected in parallel. Two or more heat source units may be connected in parallel.
(D)  (D)
前記実施形態においては、運転制御装置 6a〜6cが各熱源ユニット 2a〜2cに内蔵 されている力 空気調和装置全体として 1つの運転制御装置を有するものであっても 良い。  In the above-described embodiment, the operation control devices 6a to 6c may have one operation control device as a whole of the force and air conditioner built in each of the heat source units 2a to 2c.
(E)  (E)
前記実施形態においては、冷媒寝込み判断手段は、外気温度に基づいて圧縮機 22a〜22c, 27a〜27c, 28a〜28c内咅に冷媒カ ^寝込んで!/ヽるカ否力を半 IJ断する 力 圧縮機構 21a〜21c内の温度に基づいて判断しても良いし、インターネットなど の通信回線 9を利用して気象情報提供外部サーバ 10より気象情報を取得しその気 象情報に基づいて判断しても良いし(図 7参照)、予測される冷媒が圧縮機 22a〜22 c, 27a〜27c, 28a〜28c内部に寝込み易い冷媒寝込み期間に基づいて判断して も良い。  In the above embodiment, the refrigerant stagnation determining means cuts the refrigerant power in the compressor 22a-22c, 27a-27c, 28a-28c inner casing based on the outside air temperature. It may be determined based on the temperature in the force compression mechanism 21a to 21c, or it may be determined based on the weather information obtained from the weather information providing external server 10 using the communication line 9 such as the Internet. Alternatively, it may be determined based on the refrigerant stagnation period in which the predicted refrigerant is likely to stagnate inside the compressors 22a to 22c, 27a to 27c, and 28a to 28c.
[0047] (F) [0047] (F)
前記実施形態においては、熱源ユニット 2a〜2cは複数台であった力 複数台に限 らず 1台でも良い。  In the embodiment, the heat source units 2a to 2c are not limited to a plurality of power units, but may be a single unit.
(G)  (G)
前記実施形態においては、冷媒寝込み解消運転の際に、 3台の圧縮機 22a〜22c , 27a〜27c, 28a〜28cを 15分 f¾ずつ馬区動させた力 15分 に限らず 5, 10, 20, 30分間などでもよい。また、圧縮機 22a〜22c, 27a~27c, 28a〜28c全てを駆動 しなくとも良ぐ冷媒量判定運転の際に駆動しない圧縮機を少なくとも駆動する運転 であればよい。  In the above embodiment, during the refrigerant stagnation elimination operation, the three compressors 22a to 22c, 27a to 27c, and 28a to 28c are not limited to the force of 15 minutes by fifteen minutes f¾. It may be 20, 30 minutes. Further, it is not necessary to drive all of the compressors 22a to 22c, 27a to 27c, and 28a to 28c, as long as it is an operation that drives at least the compressor that is not driven in the refrigerant amount determination operation.
(H)  (H)
前記実施形態においては、冷媒寝込み解消運転は圧縮機 22a〜22c, 27a〜27c , 28a〜28cを駆動させて圧縮機構 21a〜21cを暖める暖機運転により行った力 こ れに限らず、圧縮機構 21a〜21cをヒータで暖めることにより行っても良い。  In the embodiment, the refrigerant stagnation elimination operation is not limited to the force performed by the warm-up operation that drives the compressors 22a to 22c, 27a to 27c, and 28a to 28c to warm the compression mechanisms 21a to 21c. You may carry out by heating 21a-21c with a heater.
[0048] (I) [0048] (I)
前記実施形態においては、冷媒寝込み解消運転の直後に油戻し運転を行ったが 、必ずしも油戻し運転を行わなくとも良い。 In the embodiment, the oil return operation is performed immediately after the refrigerant stagnation elimination operation. It is not always necessary to perform the oil return operation.
産業上の利用可能性 Industrial applicability
本発明に係る空気調和装置は、冷媒量判定運転の前に圧縮機構内における冷凍 機油に対する冷媒の寝込みを解消することができ、高精度な冷媒量判定運転が可 能となるため、空気調和装置の冷媒回路およびそれを備えた空気調和装置等として 有用である。  The air conditioner according to the present invention can eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism before the refrigerant amount determination operation, and enables a highly accurate refrigerant amount determination operation. This is useful as a refrigerant circuit and an air conditioner equipped with the refrigerant circuit.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機構 (21a〜21c)と熱源側熱交翻 (24a〜24c)とを有する熱源ユニット (2a 〜2c)と、前記熱源ユニットが接続される冷媒連絡配管 (4, 5)と、膨張機構 (29a〜2 9c, 31a, 31b, · · · )と、利用側熱交翻(32&, 32b, · · · )を有し前記冷媒連絡配 管に接続される利用ユニット(3a, 3b, · · ·)と、を含む冷媒回路(7)と、  [1] A heat source unit (2a to 2c) having a compression mechanism (21a to 21c) and a heat source side heat exchange (24a to 24c), a refrigerant communication pipe (4, 5) to which the heat source unit is connected, Use units (3a, 3b) that have expansion mechanisms (29a to 29c, 31a, 31b, ...) and use-side heat exchange (32 &, 32b, ...) and are connected to the refrigerant communication pipe A refrigerant circuit (7) comprising:
前記冷媒が前記圧縮機構内に寝込んでいるか否かを判断可能な冷媒寝込み判断 手段(8a〜8c)と、  Refrigerant stagnation judging means (8a-8c) capable of judging whether or not the refrigerant is stagnation in the compression mechanism;
前記冷媒回路内の冷媒量を判定する冷媒量判定運転を行う際に、事前に、前記冷 媒寝込み判断手段が前記圧縮機構内に前記冷媒が寝込んでいると判断した場合に 、前記冷媒の寝込みを解消する冷媒寝込み解消運転を行う運転制御装置 (6a〜6c )と、  When performing the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit, if the refrigerant stagnation determining means determines in advance that the refrigerant is stagnation in the compression mechanism, the refrigerant stagnation An operation control device (6a to 6c) for performing refrigerant stagnation elimination operation to eliminate
を備えた空気調和装置(1)。  Air conditioner (1) with
[2] 前記冷媒寝込み判断手段 (8a〜8c)は、前記圧縮機構 (21a〜21c)内の温度に 基づいて判断を行う、 [2] The refrigerant stagnation determining means (8a to 8c) makes a determination based on the temperature in the compression mechanism (21a to 21c).
請求項 1に記載の空気調和装置( 1)。  The air conditioner (1) according to claim 1.
[3] 前記冷媒寝込み判断手段 (8a〜8c)は、外気温度に基づいて判断を行う、 [3] The refrigerant stagnation determining means (8a to 8c) makes a determination based on the outside air temperature.
請求項 1に記載の空気調和装置( 1)。  The air conditioner (1) according to claim 1.
[4] 前記冷媒寝込み判断手段 (8a〜8c)は、ネットワーク(9)と接続されており、前記ネ ットワークを介して気象情報を取得し前記気象情報に基づいて判断を行う、 請求項 1に記載の空気調和装置( 1)。 [4] The refrigerant stagnation determination means (8a to 8c) is connected to a network (9), acquires weather information via the network, and makes a determination based on the weather information. The air conditioner (1) described.
[5] 前記冷媒寝込み判断手段 (8a〜8c)は、前記冷媒が圧縮機構 (21a〜21c)内に 寝込み易いと予測される冷媒寝込み期間に基づいて判断を行う、 [5] The refrigerant stagnation determining means (8a to 8c) makes a determination based on a refrigerant stagnation period in which the refrigerant is predicted to easily stagnate in the compression mechanism (21a to 21c).
請求項 1に記載の空気調和装置( 1)。  The air conditioner (1) according to claim 1.
[6] 前記運転制御装置 (6a〜6c)は、前記冷媒寝込み解消運転として前記圧縮機構([6] The operation control devices (6a to 6c) perform the refrigerant stagnation elimination operation as the compression mechanism (
21a〜21c)を第 1所定時間駆動する制御を行う、 21a-21c) is driven for the first predetermined time,
請求項 1から 5の 、ずれかに記載の空気調和装置(1)。  The air conditioner (1) according to any one of claims 1 to 5.
[7] 前記熱源ユニット(2a〜2c)は、複数存在する、 [7] There are a plurality of the heat source units (2a to 2c).
請求項 1から 6の 、ずれかに記載の空気調和装置(1)。 The air conditioner (1) according to any one of claims 1 to 6.
[8] 前記圧縮機構(21a〜21c)は、複数の圧縮機(22a〜22c, 27a〜27c, 28a〜28 c)を有している、 [8] The compression mechanism (21a-21c) has a plurality of compressors (22a-22c, 27a-27c, 28a-28c),
請求項 1から 7の 、ずれかに記載の空気調和装置(1)。  The air conditioner (1) according to any one of claims 1 to 7.
[9] 前記冷媒寝込み解消運転は、前記冷媒量判定運転の際に駆動しな!、圧縮機を少 なくとも駆動する運転である、 [9] The refrigerant stagnation elimination operation is an operation that does not drive at the time of the refrigerant quantity determination operation, and drives the compressor at least.
請求項 8に記載の空気調和装置( 1 )。  The air conditioner (1) according to claim 8.
[10] 前記冷媒寝込み解消運転は、前記運転制御装置 (6a〜6c)が全ての前記圧縮機 ([10] In the refrigerant stagnation elimination operation, the operation control device (6a to 6c)
22a〜22c, 27a〜27c, 28a〜28c)の運転を 1台ずつ第 2所定時間の間隔で順に 行う運転である、 22a-22c, 27a-27c, 28a-28c) are performed one by one at intervals of the second predetermined time,
請求項 8に記載の空気調和装置( 1 )。  The air conditioner (1) according to claim 8.
[11] 前記圧縮機構(21a〜21c)を暖めるヒータをさらに備え、 [11] A heater for heating the compression mechanism (21a to 21c) is further provided,
前記冷媒寝込み解消運転は、前記圧縮機構を前記ヒータで暖める運転である、 請求項 1に記載の空気調和装置( 1)。  The air conditioner (1) according to claim 1, wherein the refrigerant stagnation elimination operation is an operation of heating the compression mechanism with the heater.
[12] 前記運転制御装置 (6a〜6c)は、前記冷媒寝込み解消運転の直後に油戻し運転 をさらに行う、 [12] The operation control devices (6a to 6c) further perform an oil return operation immediately after the refrigerant stagnation elimination operation,
請求項 1から 11のいずれかに記載の空気調和装置(1)。  The air conditioner (1) according to any one of claims 1 to 11.
[13] 前記油戻し運転は、前記冷媒回路(7)を流れる前記冷媒の配管内冷媒流速を所 定流速以上になるように制御する運転である、 [13] The oil return operation is an operation of controlling the refrigerant flow rate in the pipe of the refrigerant flowing through the refrigerant circuit (7) to be equal to or higher than a predetermined flow rate.
請求項 12に記載の空気調和装置( 1 )。  The air conditioner (1) according to claim 12.
PCT/JP2006/324806 2005-12-16 2006-12-13 Air conditioner WO2007069624A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06834561.0A EP1965150B1 (en) 2005-12-16 2006-12-13 Air conditioner
AU2006324541A AU2006324541B2 (en) 2005-12-16 2006-12-13 Air conditioner
CN2006800473776A CN101331366B (en) 2005-12-16 2006-12-13 Air conditioner
ES06834561.0T ES2636912T3 (en) 2005-12-16 2006-12-13 Air conditioner
US12/096,967 US20090314017A1 (en) 2005-12-16 2006-12-13 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-363739 2005-12-16
JP2005363739A JP2007163106A (en) 2005-12-16 2005-12-16 Air conditioner

Publications (1)

Publication Number Publication Date
WO2007069624A1 true WO2007069624A1 (en) 2007-06-21

Family

ID=38162931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324806 WO2007069624A1 (en) 2005-12-16 2006-12-13 Air conditioner

Country Status (8)

Country Link
US (1) US20090314017A1 (en)
EP (1) EP1965150B1 (en)
JP (1) JP2007163106A (en)
KR (1) KR20080071601A (en)
CN (1) CN101331366B (en)
AU (1) AU2006324541B2 (en)
ES (1) ES2636912T3 (en)
WO (1) WO2007069624A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088391A2 (en) * 2008-02-05 2009-08-12 LG Electronics Inc. Air-conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
EP2103889A3 (en) * 2008-03-21 2011-04-13 LG Electronics Inc. Air-conditioner and method for charging refrigerant of air-conditioner
JP2014185786A (en) * 2013-03-22 2014-10-02 Mitsubishi Electric Corp Drive control device for refrigeration cycle compressor

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562650B2 (en) * 2005-12-16 2010-10-13 ダイキン工業株式会社 Air conditioner
JP5124404B2 (en) * 2008-09-12 2013-01-23 日立アプライアンス株式会社 Air conditioner
JP5263522B2 (en) * 2008-12-11 2013-08-14 株式会社富士通ゼネラル Refrigeration equipment
JP5183609B2 (en) 2009-10-23 2013-04-17 三菱電機株式会社 Refrigeration air conditioner
JP2011102674A (en) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp Air conditioning machine
JP5464615B2 (en) * 2010-02-04 2014-04-09 株式会社前川製作所 HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION METHOD
US9222711B2 (en) * 2010-03-12 2015-12-29 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
JP4888583B2 (en) * 2010-05-31 2012-02-29 ダイキン工業株式会社 Refrigeration equipment
AU2010363489B2 (en) * 2010-11-04 2015-05-07 Mitsubishi Electric Corporation Air conditioner
JP5831830B2 (en) * 2011-08-11 2015-12-09 Kyb株式会社 Vibration control device for railway vehicles
US9759465B2 (en) * 2011-12-27 2017-09-12 Carrier Corporation Air conditioner self-charging and charge monitoring system
JP5288020B1 (en) * 2012-03-30 2013-09-11 ダイキン工業株式会社 Refrigeration equipment
JP6111665B2 (en) * 2012-12-28 2017-04-12 ダイキン工業株式会社 Refrigeration equipment
JP6191447B2 (en) * 2013-12-25 2017-09-06 株式会社富士通ゼネラル Air conditioner
CN103912958B (en) * 2014-04-10 2017-12-01 安徽美芝精密制造有限公司 Control method, control device and the air-conditioning system of air-conditioning system
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
JP6238876B2 (en) * 2014-11-21 2017-11-29 三菱電機株式会社 Refrigeration cycle equipment
US10641268B2 (en) * 2015-08-11 2020-05-05 Emerson Climate Technologies, Inc. Multiple compressor configuration with oil-balancing system
JP2017180894A (en) * 2016-03-29 2017-10-05 株式会社富士通ゼネラル Air conditioner
AU2016420272B2 (en) * 2016-08-16 2019-07-04 Mitsubishi Electric Corporation Air-conditioning apparatus
US10571171B2 (en) * 2017-01-27 2020-02-25 Emerson Climate Technologies, Inc. Low charge detection system for cooling systems
JP6859461B2 (en) * 2018-02-16 2021-04-14 東芝キヤリア株式会社 Refrigeration cycle equipment
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
JP7282157B2 (en) * 2019-03-19 2023-05-26 三菱電機株式会社 Outdoor unit and refrigeration cycle device provided with the same
CN110553440B (en) * 2019-09-04 2021-07-27 广东美的暖通设备有限公司 Multi-split system, liquid impact prevention control method and device and readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101755U (en) * 1986-12-23 1988-07-02
JPH0618103A (en) * 1992-06-30 1994-01-25 Toshiba Corp Air conditioner
JP2001263885A (en) * 2000-03-24 2001-09-26 Japan Climate Systems Corp Device for detecting insufficient quantity of refrigerant for air-conditioning vehicle
JP2004028503A (en) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd Vehicle-transporting freezing device
JP2005043008A (en) * 2003-07-24 2005-02-17 Denso Corp Refrigerating cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990039709A (en) * 1997-11-13 1999-06-05 최진호 Refrigeration system design method
JP2002350014A (en) * 2001-05-22 2002-12-04 Daikin Ind Ltd Refrigerating equipment
US6886354B2 (en) * 2003-04-04 2005-05-03 Carrier Corporation Compressor protection from liquid hazards

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101755U (en) * 1986-12-23 1988-07-02
JPH0618103A (en) * 1992-06-30 1994-01-25 Toshiba Corp Air conditioner
JP2001263885A (en) * 2000-03-24 2001-09-26 Japan Climate Systems Corp Device for detecting insufficient quantity of refrigerant for air-conditioning vehicle
JP2004028503A (en) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd Vehicle-transporting freezing device
JP2005043008A (en) * 2003-07-24 2005-02-17 Denso Corp Refrigerating cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1965150A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088391A2 (en) * 2008-02-05 2009-08-12 LG Electronics Inc. Air-conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
EP2088391A3 (en) * 2008-02-05 2011-08-24 LG Electronics Inc. Air-conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
US8220280B2 (en) 2008-02-05 2012-07-17 Lg Electronics Inc. Air conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
EP2103889A3 (en) * 2008-03-21 2011-04-13 LG Electronics Inc. Air-conditioner and method for charging refrigerant of air-conditioner
US9027357B2 (en) 2008-03-21 2015-05-12 Lg Electronics Inc. Method for determining if refrigerant charge is sufficient and charging refrigerant
JP2014185786A (en) * 2013-03-22 2014-10-02 Mitsubishi Electric Corp Drive control device for refrigeration cycle compressor

Also Published As

Publication number Publication date
US20090314017A1 (en) 2009-12-24
JP2007163106A (en) 2007-06-28
AU2006324541B2 (en) 2009-11-12
AU2006324541A1 (en) 2007-06-21
EP1965150A1 (en) 2008-09-03
CN101331366A (en) 2008-12-24
EP1965150A4 (en) 2014-07-02
CN101331366B (en) 2010-09-22
KR20080071601A (en) 2008-08-04
EP1965150B1 (en) 2017-07-26
ES2636912T3 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2007069624A1 (en) Air conditioner
JP4165566B2 (en) Air conditioner
KR101207004B1 (en) Air conditioner
JP5971371B1 (en) Refrigeration equipment
EP2012079A1 (en) Air conditioner
WO2005121664A1 (en) Air conditioner
JP4075933B2 (en) Air conditioner
WO2007069587A1 (en) Air conditioner
WO2007069578A1 (en) Air conditioner
JP2007163100A (en) Air conditioner
JP2007212134A (en) Air conditioner
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
JP2008064456A (en) Air conditioner
JP4562650B2 (en) Air conditioner
JP2017141970A (en) Cooler and air conditioner
JP5104225B2 (en) Air conditioner
WO2007125959A1 (en) Air conditioner
JP2007163102A (en) Air conditioning system
JP4311470B2 (en) Air conditioner
JP2007163101A (en) Air conditioner
JP7488478B2 (en) Refrigeration cycle device and method for determining refrigerant leakage
JP4655107B2 (en) Air conditioner
JP4826247B2 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047377.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12096967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087015050

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2006834561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006834561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006324541

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006324541

Country of ref document: AU

Date of ref document: 20061213

Kind code of ref document: A