WO2007125959A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2007125959A1
WO2007125959A1 PCT/JP2007/058953 JP2007058953W WO2007125959A1 WO 2007125959 A1 WO2007125959 A1 WO 2007125959A1 JP 2007058953 W JP2007058953 W JP 2007058953W WO 2007125959 A1 WO2007125959 A1 WO 2007125959A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
indoor
communication pipe
air conditioner
Prior art date
Application number
PCT/JP2007/058953
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Kasahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007125959A1 publication Critical patent/WO2007125959A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle

Definitions

  • the present invention relates to a function for determining the suitability of the amount of refrigerant in a refrigerant circuit of an air conditioner, in particular, an air conditioner configured by connecting a heat source unit and a utilization unit via a refrigerant communication pipe.
  • the present invention relates to a function for determining the suitability of the refrigerant amount in the refrigerant circuit.
  • a separate air conditioner configured by connecting a heat source unit and a utilization unit via a refrigerant communication pipe leads to an insufficient amount of refrigerant in the refrigerant circuit.
  • information such as the length of the refrigerant communication pipe is input (for example, see Patent Document 1).
  • Patent Document 1 JP-A-8-200905
  • An object of the present invention is to make it possible to determine with high accuracy whether or not the amount of refrigerant in the refrigerant circuit is accurate, while reducing the effort of inputting information on the refrigerant communication pipe before the operation of the separate type air conditioner.
  • the air conditioner according to the first invention is capable of performing a pipe length determination operation and a refrigerant circuit configured by connecting a heat source unit and a utilization unit via a refrigerant communication pipe.
  • Operation control means and pipe length calculation means are provided.
  • the pipe length judgment operation is an operation that changes the control state of the component equipment to the second state that is different from the first state force and the first state.
  • the pipe length calculation means is a propagation time required for a change in the operation state quantity that appears in the refrigerant flowing in the refrigerant circuit by the pipe length judgment operation to propagate at least within a predetermined section in the refrigerant circuit including the refrigerant communication pipe. Based on the above, the pipe length of the refrigerant communication pipe is calculated.
  • the control state of the component devices is different from the first state to the first state.
  • the pipe length judgment operation to be changed to the second state is performed, and the change in the operation state quantity that appears in the refrigerant flowing in the refrigerant circuit due to such a state change is at least within a predetermined section in the refrigerant circuit including the refrigerant communication pipe. For example, after installing the component equipment, the pipe length of the refrigerant communication pipe is calculated based on this propagation time. Even if is unknown, the pipe length of the refrigerant connection pipe can be known.
  • the length of the refrigerant communication pipe can be obtained while reducing the time for inputting the information of the refrigerant communication pipe, and as a result, the suitability of the refrigerant amount in the refrigerant circuit can be determined with high accuracy.
  • An air conditioner according to a second invention is the air conditioner according to the first invention, wherein the refrigerant circuit includes a compressor, a condenser, an expansion valve, and an evaporator.
  • the operation control means changes the opening of the expansion valve to the first opening force as the first state and the second opening as the second state in the pipe length determination operation.
  • the opening of the expansion valve in the pipe length determination operation, is changed to the first opening force as the first state and the second opening as the second state.
  • the change of the operating state quantity appearing in the refrigerant flowing inside can be made to appear rapidly and clearly, and the propagation time can be accurately detected.
  • An air conditioner according to the third invention is an air conditioner according to the second invention!
  • the refrigerant communication pipe includes a liquid refrigerant communication pipe and a gas refrigerant communication pipe.
  • the heat source unit includes a compressor and a heat source side heat exchanger that can function as a condenser.
  • the utilization unit has an expansion valve and a utilization-side heat exchange that can function as an evaporator.
  • the refrigerant circuit is configured by connecting a compressor, a heat source side heat exchanger, a liquid refrigerant communication pipe, an expansion valve, a use side heat exchanger, and a gas refrigerant communication pipe. The propagation time is detected from the change in the operating state quantity of the refrigerant flowing on the suction side of the compressor in the pipe length judgment operation.
  • the operation state of the refrigerant flowing on the suction side of the compressor in the pipe length determination operation is used as the operation state quantity for detecting the propagation time in the pipe length determination operation in which the opening degree of the expansion valve is changed. Therefore, this change in the operating state quantity is required to propagate at least in a predetermined section in the refrigerant circuit including the gas refrigerant communication pipe. The sowing time can be detected, and the pipe length of the gas refrigerant communication pipe can be obtained from this propagation time.
  • the air conditioner according to the fourth invention is the same as the air conditioner according to the third invention!
  • the operating state quantity of the refrigerant flowing on the suction side of the compressor used for detecting the propagation time Is the degree of superheat of the refrigerant flowing on the suction side of the compressor.
  • the degree of superheat of the refrigerant flowing on the suction side of the compressor is used as the operating state quantity of the refrigerant flowing on the suction side of the compressor used for detecting the propagation time.
  • the effect of change becomes apparent and the propagation time can be detected more accurately.
  • An air conditioner according to a fifth aspect of the present invention is the air conditioner according to any of the first to fourth aspects, wherein a plurality of utilization units are connected to the heat source unit.
  • the operation control means performs a pipe length judgment operation for one of a plurality of usage units.
  • a plurality of use units are connected to the heat source unit, and when calculating the pipe length of the refrigerant communication pipe, the pipe length judgment operation is performed for one of the plurality of use units. Therefore, the propagation time can be accurately detected without any disturbance on the other usage unit side.
  • An air conditioner according to a sixth aspect of the invention is the air conditioner according to any of the first to fifth aspects of the invention, wherein the pipe length calculation means is a relationship between the propagation time and the pipe length of the refrigerant communication pipe. Calculate the refrigerant communication pipe length from the equation and calculate the refrigerant communication pipe diameter from the refrigerant communication pipe diameter obtained from the information of the units that make up the refrigerant circuit and the refrigerant communication pipe length calculated using the relational expression. The volume of is calculated.
  • the pipe length of the refrigerant communication pipe is calculated from the propagation time detected in the pipe length judgment operation using the relational expression between the propagation time and the pipe length of the refrigerant communication pipe, and the calculated pipe length and Information capacity of the usage unit Pipe diameter and force of the refrigerant communication pipe obtained
  • the volume of the refrigerant communication pipe is calculated, so the effort to input the information of the refrigerant communication pipe is reduced, and the volume of the refrigerant communication pipe is reduced.
  • An air conditioner according to a seventh invention is the air according to any of the first to sixth inventions.
  • the refrigerant amount for determining the adequacy of the refrigerant amount in the refrigerant circuit using the pipe length of the refrigerant communication pipe calculated by the pipe length calculating means and the operating state quantity of the refrigerant flowing through the refrigerant circuit or the component device The determination unit is further provided.
  • the suitability of the refrigerant amount in the refrigerant circuit is determined by using the pipe length of the refrigerant communication pipe calculated by the pipe length calculating means and the operating state quantity of the refrigerant flowing through the refrigerant circuit or the component equipment.
  • the pipe length of the refrigerant communication pipe calculated by the pipe length calculating means and the operating state quantity of the refrigerant flowing through the refrigerant circuit or the component equipment.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is a control block diagram of the air conditioner according to the first embodiment.
  • FIG. 3 is a flowchart of a test operation mode.
  • FIG. 4 is a flowchart of an automatic refrigerant charging operation.
  • FIG. 5 is a schematic diagram showing the state of refrigerant flowing in the refrigerant circuit in the refrigerant quantity determination operation (illustration of a four-way switching valve and the like is omitted).
  • FIG. 6 is a flowchart of pipe length judgment operation.
  • FIG. 7 is a diagram showing changes over time in the degree of opening of the indoor expansion valve and the compressor suction superheat degree in the pipe length judgment operation.
  • FIG. 8 A table showing comparison data of indoor unit models, relational expressions between pipe length and propagation time, pipe diameter (gas), and pipe diameter (liquid).
  • FIG. 9 is a flowchart of an initial refrigerant quantity determination operation.
  • FIG. 10 is a flowchart of a refrigerant leak detection operation mode.
  • FIG. 11 is a schematic configuration diagram of an air conditioner according to a second embodiment of the present invention.
  • FIG. 12 is a control block diagram of the air conditioner according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 1 according to the first embodiment of the present invention.
  • the air conditioner 1 is an apparatus used for air conditioning in a room such as a building by performing a vapor compression refrigeration cycle operation.
  • the air conditioner 1 is mainly composed of an outdoor unit 2 as one heat source unit, an indoor unit 4 as one utilization unit, and a liquid refrigerant as a refrigerant communication pipe connecting the outdoor unit 2 and the indoor unit 4.
  • Connecting pipe 6 and gas refrigerant connecting pipe 7 are provided. That is, the vapor compression refrigerant circuit 10 of the air conditioner 1 of the present embodiment is configured by connecting the outdoor unit 2, the indoor unit 4, the liquid refrigerant communication pipe 6, and the gas refrigerant communication pipe 7. Has been.
  • the indoor unit 4 is installed by being embedded or suspended in the ceiling of a room such as a building or by hanging on the wall surface of the room.
  • the indoor unit 4 is connected to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4 mainly includes an indoor refrigerant circuit 10a that forms part of the refrigerant circuit 10. Have.
  • This indoor refrigerant circuit 10a mainly has an indoor expansion valve 41 as an expansion mechanism and an indoor heat exchanger 42 as a use side heat exchanger.
  • the indoor expansion valve 41 is an electric expansion valve connected to the liquid side of the indoor heat exchanger 42 in order to adjust the flow rate of the refrigerant flowing in the indoor refrigerant circuit 10a.
  • the indoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. It is a heat exchanger that functions as a refrigerant condenser during heating operation to heat indoor air.
  • the indoor unit 4 sucks indoor air into the unit, exchanges heat with the refrigerant in the indoor heat exchanger 42, and then supplies the indoor fan 43 as a blower fan to be supplied indoors as supply air.
  • the indoor fan 43 is a fan capable of changing the air volume Wr of air supplied to the indoor heat exchanger 42, and in this embodiment, the centrifugal fan or the multiblade fan driven by the motor 43a that also has DC fan motor power.
  • the indoor unit 4 is provided with various sensors. On the liquid side of the indoor heat exchanger 42, a liquid side temperature sensor 44 that detects the temperature of the refrigerant (that is, the refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation) is provided. ing. A gas side temperature sensor 45 for detecting the refrigerant temperature Teo is provided on the gas side of the indoor heat exchanger 42. An indoor temperature sensor 46 for detecting the temperature of indoor air flowing into the unit (that is, the indoor temperature Tr) is provided on the indoor air inlet side of the indoor unit 4.
  • the liquid side temperature sensor 44, the gas side temperature sensor 45, and the room temperature sensor 46 are composed of thermistors.
  • the indoor unit 4 also has an indoor side control unit 47 that controls the operation of each part constituting the indoor unit 4.
  • the indoor control unit 47 includes a microcomputer, a memory, and the like provided for controlling the indoor unit 4, and a remote controller (not shown) for individually operating the indoor unit 4. Control signals etc. can be exchanged with the outdoor unit 2 and control signals etc. can be exchanged with the outdoor unit 2 via the transmission line 8a.
  • the outdoor unit 2 is installed outside a building or the like, and is connected to the indoor unit 4 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7, and the refrigerant circuit 10 is connected between the indoor units 4. It is composed.
  • the outdoor unit 2 mainly has an outdoor refrigerant circuit 10c that constitutes a part of the refrigerant circuit 10.
  • This outdoor refrigerant circuit 10c mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23 as a heat source side heat exchange, an outdoor expansion valve 38 as an expansion mechanism, an accumulator 24, A supercooler 25 as a temperature adjusting mechanism, a liquid side closing valve 26 and a gas side closing valve 27 are provided.
  • the compressor 21 is a compressor whose operating capacity can be varied.
  • the compressor 21 is a positive displacement compressor driven by a motor 21a whose rotational speed Rm is controlled by an inverter.
  • the number of the compressors 21 is only one, but is not limited to this, and two or more compressors may be connected in parallel according to the number of indoor units connected.
  • the four-way switching valve 22 is a valve for switching the direction of the refrigerant flow.
  • the outdoor heat exchanger 23 is used as a refrigerant condenser compressed by the compressor 21, and the indoor
  • the heat exchanger 42 to function as an evaporator for the refrigerant condensed in the outdoor heat exchanger 23
  • the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected and the suction side of the compressor 21 (specifically Specifically, the accumulator 24) is connected to the gas refrigerant communication pipe 7 side (see the solid line of the four-way selector valve 22 in FIG. 1), and the indoor heat exchanger 42 is compressed by the compressor 21 during heating operation.
  • the discharge side of the compressor 21 and the gas refrigerant communication pipe 7 side are connected and compressed. Connect the suction side of unit 21 to the gas side of outdoor heat exchanger 23. (Refer to the broken line of the four-way switching valve 22 in FIG. 1).
  • the outdoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant condenser during cooling operation. This is heat exchange that functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 23 has its gas side connected to the four-way selector valve 22 and its liquid side liquid-cooled. Connected to the medium communication pipe 6.
  • the outdoor expansion valve 38 is an electric expansion valve connected to the liquid side of the outdoor heat exchanger 23 in order to adjust the pressure and flow rate of the refrigerant flowing in the outdoor refrigerant circuit 10c.
  • the outdoor unit 2 has an outdoor fan 28 as a blower fan for sucking outdoor air into the unit, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air outside.
  • the outdoor fan 28 is a fan capable of changing the air volume Wo of the air supplied to the outdoor heat exchanger ⁇ 23.
  • the outdoor fan 28 is a propeller fan or the like driven by a motor 28a having a DC fan motor power. is there.
  • the accumulator 24 is connected between the four-way switching valve 22 and the compressor 21, and stores excess refrigerant generated in the refrigerant circuit 10 in accordance with fluctuations in the operating load of the indoor unit 4. It is a container that can.
  • the supercooler 25 is a double-pipe heat exchanger, and is provided to cool the refrigerant that is condensed in the outdoor heat exchanger 23 and then sent to the indoor expansion valve 41. It has been.
  • the supercooler 25 is connected between the outdoor expansion valve 38 and the liquid side closing valve 26.
  • a bypass refrigerant circuit 61 as a cooling source for the subcooler 25 is provided.
  • the part excluding the bypass refrigerant circuit 61 from the refrigerant circuit 10 will be referred to as a main refrigerant circuit for convenience.
  • the bypass refrigerant circuit 61 is connected to the main refrigerant circuit so that a main part of the refrigerant sent from the outdoor heat exchanger to the indoor expansion valve 41 is branched to return to the suction side of the compressor 21. .
  • the bypass refrigerant circuit 61 is connected so that part of the refrigerant sent from the outdoor expansion valve 38 to the indoor expansion valve 41 also branches the positional force between the outdoor heat exchanger and the subcooler 25.
  • a junction circuit 61b connected to the suction side of the compressor 21 so as to return from the outlet on the bypass refrigerant circuit side of the subcooler 25 to the suction side of the compressor 21.
  • the branch circuit 61a is provided with a bypass expansion valve 62 for adjusting the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61.
  • the bypass expansion valve 62 also has an electric expansion valve force. As a result, it is sent from the outdoor heat exchange to the indoor expansion valve 41.
  • the refrigerant that is cooled is cooled by the refrigerant that flows through the bypass refrigerant circuit 61 after being depressurized by the bypass expansion valve 62. That is, the capacity control of the subcooler 25 is performed by adjusting the opening degree of the bypass expansion valve 62.
  • the liquid side shutoff valve 26 and the gas side shutoff valve 27 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7).
  • the liquid side closing valve 26 is connected to the outdoor heat exchanger 23.
  • the gas side closing valve 27 is connected to the four-way switching valve 22.
  • the outdoor unit 2 is provided with various sensors. Specifically, the outdoor unit 2 includes a suction pressure sensor 29 that detects the suction pressure Ps of the compressor 21, a discharge pressure sensor 30 that detects the discharge pressure Pd of the compressor 21, and the compressor 21. A suction temperature sensor 31 for detecting the suction temperature Ts and a discharge temperature sensor 32 for detecting the discharge temperature Td of the compressor 21 are provided. The suction temperature sensor 31 is provided at a position between the accumulator 24 and the compressor 21.
  • the outdoor heat exchanger 23 includes a heat exchange temperature sensor that detects the temperature of the refrigerant flowing in the outdoor heat exchanger 23 (that is, the refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation or the evaporation temperature Te during the heating operation). 33 is provided.
  • a liquid side temperature sensor 34 for detecting the temperature Tco of the refrigerant is provided on the liquid side of the outdoor heat exchanger 23 .
  • a liquid pipe temperature sensor 35 that detects the temperature of the refrigerant (that is, the liquid pipe temperature Tip) is provided at the outlet of the subcooler 25 on the main refrigerant circuit side.
  • the junction circuit 6 lb of the no-pass refrigerant circuit 61 is provided with a bypass temperature sensor 63 for detecting the temperature of the refrigerant flowing through the outlet of the subcooler 25 on the bypass refrigerant circuit side.
  • An outdoor temperature sensor 36 for detecting the temperature of the outdoor air flowing into the unit (that is, the outdoor temperature Ta) is provided on the outdoor air inlet side of the outdoor unit 2.
  • the suction temperature sensor 31, the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, the liquid pipe temperature sensor 35, the outdoor temperature sensor 36, and the binos temperature sensor 63 are composed of thermistors.
  • the outdoor unit 2 also has an outdoor control unit 37 that controls the operation of each part constituting the outdoor unit 2.
  • the outdoor control unit 37 includes a microcomputer provided for controlling the outdoor unit 2, a memory, an inverter circuit for controlling the motor 21a, and the like, and an indoor control unit 47 of the indoor unit 4 Control signals, etc., between them via transmission line 8a Is getting ready to do. That is, the control unit 8 that controls the operation of the entire air conditioner 1 is configured by the indoor control unit 47, the outdoor control unit 37, and the transmission line 8a that connects the control units 37 and 47.
  • the control unit 8 is connected so as to receive detection signals of various sensors 29 to 36, 44 to 46, and 63, and based on these detection signals and the like. It is connected so that various devices and valves 21, 22, 24, 28a, 38, 41, 43a, 62 can be controlled. Also, the control unit 8 is connected with a warning display unit 9 that is an LED or the like for notifying that a refrigerant leak has been detected in the refrigerant leak detection operation described later.
  • FIG. 2 is a control block diagram of the air conditioner 1.
  • Refrigerant communication pipes 6 and 7 are refrigerant pipes that are installed on site when the air conditioner 1 is installed in a building or other location, such as a combination of the installation location or outdoor unit and indoor unit. Depending on the installation conditions, those having various lengths and pipe diameters are used. For this reason, for example, when a new air conditioner is installed, it is necessary to accurately grasp information such as the length of the refrigerant communication pipes 6 and 7 in order to calculate the refrigerant charge amount. Therefore, the calculation of the refrigerant amount is complicated. In addition, when the existing unit is used to update the indoor unit or the outdoor unit, information such as the diameter of the refrigerant communication pipes 6 and 7 may be lost.
  • the indoor refrigerant circuit 10a, the outdoor refrigerant circuit 10c, and the refrigerant communication pipes 6 and 7 are connected to form the refrigerant circuit 10 of the air conditioner 1.
  • the refrigerant circuit 10 is composed of a bypass refrigerant circuit 61 and a main refrigerant circuit excluding the bypass refrigerant circuit 61.
  • the air conditioner 1 of the present embodiment includes a four-way switching valve by a control unit 8 including an indoor side control unit 47, an outdoor side control unit 37, and a transmission line 8a that connects the control units 37 and 47. The operation is switched between the cooling operation and the heating operation by 22 and the devices of the outdoor unit 2 and the indoor unit 4 are controlled according to the operation load of the indoor unit 4.
  • the operation mode of the air conditioner 1 of the present embodiment includes a normal operation mode for controlling the components of the outdoor unit 2 and the indoor unit 4 in accordance with the operation load of the indoor unit 4, and the air conditioner 1
  • installation of component equipment specifically, not limited to after installation of the first equipment, for example, after modification such as addition or removal of component equipment such as indoor units, or after repair of equipment failure
  • the normal operation mode mainly includes a cooling operation for cooling the room and a heating operation for heating the room.
  • the test operation mode mainly includes an automatic refrigerant filling operation for filling the refrigerant in the refrigerant circuit 10, a pipe length determination operation for detecting the pipe length of the refrigerant communication pipes 6 and 7, and after the installation of the constituent devices or the refrigerant And an initial refrigerant quantity detection operation for detecting the initial refrigerant quantity after the refrigerant is filled in the circuit.
  • the cooling operation in the normal operation mode will be described with reference to FIGS. 1 and 2.
  • the four-way switching valve 22 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is the outdoor heat. It is connected to the gas side of the exchanger 23, and the suction side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42 via the gas side closing valve 27 and the gas refrigerant communication pipe 7.
  • the outdoor expansion valve 38 is fully opened.
  • the liquid side closing valve 26 and the gas side closing valve 27 are opened.
  • the opening of the indoor expansion valve 41 is adjusted so that the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchanger 42 (that is, the gas side of the indoor heat exchanger 42) becomes constant at the superheat degree target value SHrs. It has become.
  • the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchanger 42 is calculated from the refrigerant temperature value detected by the gas side temperature sensor 45 to the refrigerant temperature value detected by the liquid side temperature sensor 44 (evaporation temperature Te).
  • the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29, or the saturation temperature value corresponding to the evaporation temperature Te is calculated from the refrigerant temperature value detected by the gas side temperature sensor 45 to the refrigerant temperature value detected by the liquid side temperature sensor 44 (evaporation temperature Te.
  • a temperature sensor for detecting the temperature of the refrigerant flowing in the indoor heat exchanger 42 is provided, and the refrigerant temperature value corresponding to the evaporation temperature Te detected by this temperature sensor is By subtracting the refrigerant temperature value detected by the gas side temperature sensor 45, the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchange may be detected. Further, the opening of the bypass expansion valve 62 is adjusted so that the superheat degree SHb of the refrigerant at the outlet of the supercooler 25 on the bypass refrigerant circuit side becomes the superheat degree target value SHbs.
  • the superheat degree SHb of the refrigerant at the outlet of the bypass refrigerant circuit side of the supercooler 25 is the saturation temperature value corresponding to the evaporation temperature Te, which is the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29.
  • the refrigerant temperature value force detected by the bypass temperature sensor 63 is also detected by subtracting the saturation temperature value of this refrigerant.
  • a temperature sensor is provided at the inlet of the supercooler 25 on the binos refrigerant circuit side, and the refrigerant temperature value detected by this temperature sensor is detected by the bypass temperature sensor 63. By subtracting the temperature value force, the superheat degree SHb of the refrigerant at the outlet of the subcooler 25 on the bypass refrigerant circuit side may be detected.
  • the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the outdoor heat exchanger 23 via the four-way switching valve 22, exchanges heat with the outdoor air supplied by the outdoor fan 28, and condenses to condense. It becomes. Then, the high-pressure liquid refrigerant passes through the outdoor expansion valve 38 and flows into the supercooler 25, and is further cooled by exchanging heat with the refrigerant flowing through the bypass refrigerant circuit 61 to be in a supercooled state.
  • a part of the high-pressure liquid refrigerant condensed in the outdoor heat exchange is branched to the no-pass refrigerant circuit 61, and after being depressurized by the bypass expansion valve 62, is returned to the suction side of the compressor 21.
  • a part of the refrigerant passing through the binos expansion valve 62 is evaporated by being reduced to near the suction pressure Ps of the compressor 21.
  • the outlet force of the bypass expansion valve 62 of the bypass refrigerant circuit 61 also flows toward the suction side of the compressor 21, passes through the subcooler 25, and passes from the outdoor heat exchanger 23 on the main refrigerant circuit side to the indoor refrigerant.
  • the high-pressure liquid refrigerant in a supercooled state is sent to the indoor unit 4 via the liquid side closing valve 26 and the liquid refrigerant communication pipe 6.
  • the high-pressure liquid coolant sent to the indoor unit 4 is reduced to near the suction pressure Ps of the compressor 21 by the indoor expansion valve 41 to become a low-pressure gas-liquid two-phase refrigerant and sent to the indoor heat exchanger.
  • heat is exchanged with the room air to evaporate into a low-pressure gas refrigerant.
  • This low-pressure gas refrigerant is sent to the outdoor unit 2 via the gas refrigerant communication pipe 7 and flows into the accumulator 24 via the gas side closing valve 27 and the four-way switching valve 22. Then, the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
  • the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the indoor heat exchanger 42 via the gas-side stop valve 27 and the gas refrigerant communication pipe 7. And the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23.
  • the degree of opening of the outdoor expansion valve 38 is adjusted so as to reduce the refrigerant flowing into the outdoor heat exchanger 23 to a pressure at which the refrigerant can evaporate in the outdoor heat exchanger 23 (that is, the evaporation pressure Pe). . Further, the liquid side closing valve 26 and the gas side closing valve 27 are opened.
  • the opening degree of the indoor expansion valve 41 is adjusted so that the degree of supercooling SCr of the refrigerant at the outlet of the indoor heat exchange becomes constant at the supercooling degree target value SCrs.
  • the refrigerant subcooling degree SCr at the outlet of the indoor heat exchanger 42 is converted from the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30 to a saturation temperature value corresponding to the condensation temperature Tc,
  • the refrigerant is detected by subtracting the refrigerant temperature value detected by the liquid temperature sensor 44.
  • a temperature sensor for detecting the temperature of the refrigerant flowing in the indoor heat exchanger is provided, and the refrigerant temperature value corresponding to the condensation temperature Tc detected by the temperature sensor is set as follows.
  • the subcooling degree SCr of the refrigerant at the outlet of the indoor heat exchanger 42 may be detected by subtracting the refrigerant temperature value detected by the liquid side temperature sensor 44.
  • the bypass expansion valve 62 is closed.
  • the high-pressure gas refrigerant sent to the indoor unit 4 is condensed by exchanging heat with the indoor air in the outdoor heat exchanger 42 to become a high-pressure liquid refrigerant, and then passes through the indoor expansion valve 41. At this time, the pressure is reduced according to the opening degree of the indoor expansion valve 41.
  • the refrigerant that has passed through the indoor expansion valve 41 is sent to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and further depressurized via the liquid side closing valve 26, the subcooler 25, and the outdoor expansion valve 38. After that, it flows into the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 28 to evaporate into a low-pressure gas refrigerant. Flows into the accumulator 24. Then, the low-pressure gas refrigerant flowing into the accumulator 24 is again sucked into the compressor 21.
  • control unit 8 (more specifically, the indoor side control unit 47 and the room functioning as normal operation control means for performing normal operation including cooling operation and heating operation). This is performed by the transmission line 8a) connecting the outer control unit 37 and the control units 37 and 47.
  • Fig. 3 is a flowchart of the test operation mode.
  • the test operation mode first, the automatic refrigerant charging operation in step S1 is performed, then the pipe length determination operation in step S2 is performed, and further, the initial refrigerant amount detection operation in step S3 is performed. .
  • the outdoor unit 2 pre-filled with the refrigerant and the indoor unit 4 are installed at an installation location such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 to form the refrigerant circuit 10.
  • an installation location such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 to form the refrigerant circuit 10.
  • the refrigerant circuit 10 is additionally filled with a refrigerant that is insufficient in accordance with the volumes of the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 after the above-described configuration will be described.
  • Step S1 Automatic refrigerant charging operation
  • the liquid side shutoff valve 26 and the gas side shutoff valve 27 of the outdoor unit 2 are opened, and the refrigerant circuit 10 is filled with the refrigerant filled in the outdoor unit 2 in advance.
  • FIG. 4 is a flowchart of the automatic refrigerant charging operation.
  • Step S11 Refrigerant amount judgment operation
  • the refrigerant circuit 10 When a command to start the automatic refrigerant charging operation is issued, the refrigerant circuit 10 is in a state where the four-way switching valve 22 of the outdoor unit 2 is shown by the solid line in FIG. 1 and the indoor expansion valve 41 and the outdoor unit of the indoor unit 4 The expansion valve 38 is opened, the compressor 21, the outdoor fan 28, and the indoor fan 43 are started, and the cooling operation is performed.
  • the high-pressure gas refrigerant compressed and discharged in the compressor 21 flows through the flow path from the compressor 21 to the outdoor heat exchange functioning as a condenser ( (Refer to the hatched part in Fig. 5 from the compressor 21 to the outdoor heat exchanger 23), and the outdoor heat exchanger 23 functioning as a condenser is changed from a gas state to a liquid state by heat exchange with the outdoor air. (Refer to the portion corresponding to the outdoor heat exchanger 23 in the hatched and black hatched portions in FIG.
  • High-pressure liquid refrigerant flows through the flow path including the outdoor expansion valve 38, the part on the main refrigerant circuit side of the subcooler 25 and the liquid refrigerant communication pipe 6 and the flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62.
  • FIG. 5 is a schematic diagram showing the state of the refrigerant flowing in the refrigerant circuit 10 in the refrigerant quantity determination operation (illustration of the four-way switching valve 22 and the like is omitted).
  • the following device control is performed to shift to an operation for stabilizing the state of the refrigerant circulating in the refrigerant circuit 10.
  • the indoor expansion valve 41 is controlled so that the superheat degree SHr of the indoor heat exchanger 42 functioning as an evaporator becomes constant (hereinafter referred to as superheat degree control) so that the evaporation pressure Pe becomes constant.
  • the operation capacity of the compressor 21 is controlled (hereinafter referred to as evaporation pressure control) and supplied to the outdoor heat exchanger 23 by the outdoor fan 28 so that the refrigerant condensing pressure Pc in the outdoor heat exchange becomes constant.
  • Controls the air volume Wo of the outdoor air (hereinafter referred to as condensing pressure control) and controls the capacity of the subcooler 25 so that the temperature of the refrigerant sent from the subcooler 25 to the indoor expansion valve 41 is constant ( In the following, the liquid pipe temperature control is performed), and the indoor fan 43 supplies the indoor heat exchange to the indoor heat exchanger ⁇ 42 so that the evaporation pressure Pe of the refrigerant is stably controlled by the above-described evaporation pressure control.
  • Air volume Wr is kept constant.
  • the evaporation pressure control is performed in the indoor heat exchanger 42 functioning as an evaporator, in a gas-liquid two-phase state force by heat exchange with room air, and a low-pressure cooling while changing phase to a gas state.
  • Refrigerant in the indoor heat exchanger 42 through which the medium flows (refer to the portion corresponding to the indoor heat exchanger 42 in the grid-shaped hatched and hatched portions in FIG. 5 and hereinafter referred to as the evaporator section C).
  • the amount is also a force that greatly affects the evaporation pressure Pe of the refrigerant.
  • the evaporation pressure Pe of the refrigerant in the indoor heat exchanger 42 is made constant, and the evaporator section C The state of the refrigerant flowing inside is stabilized, and a state in which the amount of refrigerant in the evaporator C is changed mainly by the evaporation pressure Pe is created.
  • the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensor 44 of the indoor heat exchanger 42 is converted into a saturation pressure value.
  • the operating capacity of the compressor 21 is controlled so that the pressure value becomes constant at the low pressure target value Pes (that is, control for changing the rotational speed Rm of the motor 21a), and the refrigerant circuit 10 This is achieved by increasing or decreasing the amount of refrigerant circulating in the interior, Wc.
  • the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29, which is an operation state quantity equivalent to the refrigerant pressure at the refrigerant evaporating pressure Pe in the indoor heat exchange is the low pressure target value Pes.
  • the operating capacity of the compressor 21 may be controlled so that the saturation temperature value corresponding to the suction pressure Ps (corresponding to the evaporation temperature Te) becomes constant at the low pressure target value Tes.
  • the operating capacity of the compressor 21 is controlled so that the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensor 44 of the indoor heat exchanger 42 is constant at the low pressure target value Tes. Also good.
  • gas refrigerant circulation part D The state of the refrigerant flowing through the heat exchanger 42 to the compressor 21 (hereinafter referred to as “gas refrigerant circulation part D”) is also stable and is mainly operated equivalent to the refrigerant pressure in the gas refrigerant circulation part D.
  • Condensation pressure control is also performed in the outdoor heat exchanger ⁇ 23 in which high-pressure refrigerant flows while changing the gas state force to the liquid state due to heat exchange with the outdoor air (hatched hatched and blackened in Fig. 5).
  • the condenser portion A which is also the force that greatly affects the refrigerant condensing pressure Pc. Since the refrigerant condensing pressure Pc in the condenser part A changes greatly due to the influence of the outdoor temperature Ta, the air volume Wo of the indoor air supplied from the outdoor fan 28 to the outdoor heat exchanger 23 is controlled by the motor 28a.
  • the condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 is made constant, and the state of the refrigerant flowing in the condenser section A is stabilized, and mainly the liquid side of the outdoor heat exchanger 23 (hereinafter referred to as the refrigerant).
  • the refrigerant amount in the condenser A is changed by the degree of supercooling SCo at the outlet of the outdoor heat exchanger 23).
  • the compressor 21 detected by the discharge pressure sensor 30 which is an operation state amount equivalent to the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is used.
  • the discharge pressure Pd or the temperature of the refrigerant flowing in the outdoor heat exchanger 23 detected by the heat exchange temperature sensor 33 (that is, the condensation temperature Tc) is used. [0036] Then, by performing such condensing pressure control, the outdoor expansion valve 38 from the outdoor heat exchange to the indoor expansion valve 41, the portion on the main refrigerant circuit side of the subcooler 25, and the liquid refrigerant communication pipe 6
  • the high-pressure liquid refrigerant flows through the flow path including the outdoor heat exchanger 23 and the flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62 of the bypass refrigerant circuit 61.
  • the refrigerant pressure is also stable and liquid refrigerant circulation section B is sealed with liquid refrigerant and stabilized It becomes.
  • the liquid pipe temperature control is performed in the refrigerant pipe including the liquid refrigerant communication pipe 6 from the subcooler 25 to the indoor expansion valve 41 (the subcooler 25 in the liquid refrigerant circulation section B shown in FIG. 5). To the indoor expansion valve 41)) so that the refrigerant density does not change.
  • the capacity control of the subcooler 25 is performed by adjusting the refrigerant temperature Tip detected by the liquid pipe temperature sensor 35 provided at the outlet of the main refrigerant circuit of the subcooler 25 to the liquid pipe temperature target value Tips.
  • the superheat control is performed because the amount of refrigerant in the evaporator section C greatly affects the dryness of the refrigerant at the outlet of the indoor heat exchanger 42.
  • the degree of superheat SHr of the refrigerant at the outlet of the indoor heat exchange is controlled by controlling the opening degree of the indoor expansion valve 41.
  • the superheat degree SHr of the refrigerant on the gas side of the indoor heat exchanger 42 (hereinafter referred to as the outlet of the indoor heat exchanger 42 in the description of the refrigerant quantity determination operation) is made constant at the superheat degree target value SHrs (that is, The gas refrigerant at the outlet of the indoor heat exchanger 42 is overheated), and the state of the refrigerant flowing in the evaporator section C is stabilized.
  • the state of the refrigerant circulating in the refrigerant circuit 10 is stabilized, and the distribution of the refrigerant amount in the refrigerant circuit 10 becomes constant.
  • the refrigerant begins to be charged, it is possible to create a state in which the change in the refrigerant amount in the refrigerant circuit 10 mainly appears as a change in the refrigerant amount in the outdoor heat exchanger 23 (hereinafter, this operation is performed). Is the refrigerant quantity determination operation).
  • control unit 8 (more specifically, between the indoor side control unit 47, the outdoor side control unit 37, and the control units 37, 47 functioning as a refrigerant amount determination operation control means for performing the refrigerant amount determination operation. This is performed as step S11 by the transmission line 8a).
  • step S12 additional refrigerant charging is performed in the refrigerant circuit 10 while performing the above-described refrigerant amount determination operation.
  • the additional charging of the refrigerant in step S12 is performed by the control unit 8 functioning as the refrigerant amount calculating means.
  • the refrigerant amount in the refrigerant circuit 10 is calculated from the refrigerant flowing through the refrigerant circuit 10 at the time or the operating state quantity of the component equipment.
  • the refrigerant quantity calculating means calculates the refrigerant quantity in the refrigerant circuit 10 by dividing the refrigerant circuit 10 into a plurality of parts and calculating the refrigerant quantity for each of the divided parts. More specifically, for each of the divided parts, a relational expression between the refrigerant amount of each part and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is set. Use the amount of refrigerant in each part Can be calculated. And in this embodiment, a refrigerant circuit
  • FIG. 10 shows a state in which the four-way switching valve 22 is shown by a solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is closed to the gas side.
  • the compressor 21 and the four-way switching valve 22 from the compressor 21 (not shown in FIG. 5)
  • the outdoor heat exchanger 23 hereinafter referred to as the high pressure gas pipe section E
  • the outdoor heat exchanger 23 section that is, the condenser section A
  • the liquid refrigerant circulation section B the outdoor heat exchanger 23 section
  • the portion from the exchanger 23 to the subcooler 25 and the portion on the main refrigerant circuit side of the subcooler 25 (hereinafter referred to as the high temperature side liquid pipe section B1) and the liquid refrigerant circulation section B
  • the part on the outlet side of the main refrigerant circuit side of the cooler 25 and the part from the supercooler 25 to the liquid side shut-off valve 26 (not shown in FIG.
  • the low temperature side liquid pipe B2 (hereinafter referred to as the low temperature side liquid pipe) B2), the liquid refrigerant communication pipe 6 in the liquid refrigerant circulation section B (hereinafter referred to as the liquid refrigerant communication pipe section B3), and the liquid refrigerant communication pipe B in the liquid refrigerant communication section B from the liquid refrigerant communication pipe 6
  • the part up to the compressor 21 including the valve 22 and the accumulator 24 (hereinafter referred to as the low pressure gas pipe part H) and the liquid refrigerant circulation part B from the high temperature side liquid pipe part B1 to the bypass expansion valve 62 and the supercooler 25 Part up to the low pressure gas pipe part H including the part on the bypass refrigerant circuit side (hereinafter referred to as the nopass circuit part I)
  • the relational expression is set for each part. Next, the relational expressions set for each part will be described.
  • the relational expression between the refrigerant amount Mogl in the high-pressure gas pipe E and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
  • volume Vogl of the high-pressure gas pipe E of the outdoor unit 2 is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in advance in the memory of the control unit 8.
  • the density of the refrigerant in the high-pressure gas pipe E is the discharge temperature Td and It is obtained by converting the discharge pressure Pd.
  • the relational expression between the refrigerant quantity Mc in the condenser part A and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • Mc kclXTa + kc2XTc + kc3XSHm + kc4XWc
  • the outdoor temperature Ta, the condensation temperature Tc, the compressor discharge superheat SHm, the refrigerant circulation rate Wc, the saturated liquid density pc of the refrigerant in the outdoor heat exchanger 23, and the refrigerant density P at the outlet of the outdoor heat exchanger 23 It is expressed as a function expression of co.
  • the parameters kcl to kc7 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance.
  • the compressor discharge superheat degree S Hm is the refrigerant superheat degree on the discharge side of the compressor.
  • the discharge pressure Pd is converted to the refrigerant saturation temperature value, and the discharge temperature Td force is subtracted from the refrigerant saturation temperature value.
  • the saturated liquid density pc of the refrigerant is obtained by converting the condensation temperature Tc.
  • the refrigerant density p co at the outlet of the outdoor heat exchanger 23 is obtained by converting the condensation pressure Pc obtained by converting the condensation temperature Tc and the refrigerant temperature Tco.
  • the relational expression between the refrigerant amount Moll in the high temperature side liquid pipe part B1 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • the volume Voll of the high-temperature side liquid pipe part B1 of the outdoor unit 2 was multiplied by the refrigerant density p co in the high-temperature side liquid pipe part B1 (that is, the refrigerant density at the outlet of the above-mentioned outdoor heat exchanger 23).
  • the volume Voll of the high-pressure side liquid pipe section B1 is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance.
  • the relational expression between the refrigerant quantity Mol2 in the low temperature side liquid pipe part B2 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • Mol2 Vol2X ip t is expressed as a functional expression obtained by multiplying the volume Vol2 of the low temperature side liquid pipe portion B2 of the outdoor unit 2 by the refrigerant density p lp in the low temperature side liquid pipe portion B2.
  • the volume Vol2 of the low temperature side liquid pipe section B2 is also a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in advance in the memory of the control section 8.
  • the refrigerant density p lp in the low temperature side liquid pipe section B2 is the refrigerant density at the outlet of the supercooler 25, and the condensation pressure Pc and the refrigerant temperature Tip at the outlet of the supercooler 25 are converted. Obtained by.
  • the relational expression between the refrigerant quantity Mr in the indoor unit F and the operating state quantity of the refrigerant or component equipment flowing through the refrigerant circuit 10 is, for example,
  • Mr krl XTlp + kr2 X AT + kr3 X SHr + kr4 XWr + kr5
  • the refrigerant temperature Tlp at the outlet of the supercooler 25, the temperature difference ⁇ obtained by subtracting the evaporation temperature Te from the room temperature Tr, the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchanger 42, and the air volume Wr of the indoor fan 43 Expressed as a function expression.
  • the parameters krl to kr5 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance.
  • the relational expression of the refrigerant quantity Mr is set corresponding to each of the indoor units 4, and the total refrigerant quantity of the indoor unit part F is calculated.
  • relational expressions with different values of the meters krl to kr5 are used.
  • the density p gp is an average value of the refrigerant density ps on the suction side of the compressor 21 and the refrigerant density p eo at the outlet of the indoor heat exchanger 42 (that is, the inlet of the gas refrigerant communication pipe 7).
  • the refrigerant density ps is obtained by converting the suction pressure Ps and the suction temperature Ts.
  • the refrigerant density p eo is the conversion value of the evaporation temperature Te, the evaporation pressure Pe, and the outlet temperature Teo of the indoor heat exchanger 42. Is obtained by converting.
  • the relational expression between the refrigerant amount Mog2 in the low-pressure gas pipe part H and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
  • volume Vog2 of the low-pressure gas pipe H in the outdoor unit 2 is a known value of the pre-force that is shipped to the installation location, and is stored in the memory of the controller 8 in advance.
  • the relational expression between the refrigerant amount Mob in the no-pass circuit section I and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • Mob kobl X co + kob2 X ps + kob3 X Pe + kob4
  • the refrigerant density p co at the outlet of the outdoor heat exchanger 23, the refrigerant density p s at the outlet of the subcooler 25 on the bypass circuit side, and the evaporation pressure Pe are expressed as functional expressions.
  • the parameters kobl to kob3 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance.
  • the volume Mob of the bypass circuit part I may be smaller than the other parts, and may be calculated by a simpler relational expression. For example,
  • the volume Vob of the bypass circuit section I is also a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance.
  • the saturated liquid density pe in the portion of the subcooler 25 on the bypass circuit side can be obtained by converting the suction pressure Ps or the evaporation temperature Te.
  • a single outdoor unit 2 is used.
  • the refrigerant amounts Mogl, Mc, Moll, Mol2, Mog2 and Mob related to the outdoor units are: A relational expression of the refrigerant amount of each part is set corresponding to each of the plurality of outdoor units, and the total refrigerant quantity of the outdoor unit is calculated by adding the refrigerant amount of each part of the plurality of outdoor units. It has become so.
  • the relational expression for the refrigerant amount of each part with different parameter values is used.
  • the refrigerant flowing through the refrigerant circuit 10 in the refrigerant quantity determination operation or the operating state quantity of the component device is calculated.
  • the refrigerant amount of the refrigerant circuit 10 can be calculated.
  • step S12 Since this step S12 is repeated until a condition for determining whether the refrigerant amount is appropriate in step S13, which will be described later, is satisfied, until the additional charge of the refrigerant is started and the force is completed, the refrigerant is Using the relational expression for each part of circuit 10, the amount of refrigerant in each part is calculated. More specifically, the refrigerant amount Mo in the outdoor unit 2 and the refrigerant amount Mr in the indoor unit 4 (that is, the refrigerant communication pipes 6 and 7) necessary for determining the suitability of the refrigerant amount in step S 13 described later. The amount of refrigerant in each part of the refrigerant circuit 10 excluding is calculated.
  • the refrigerant amount Mo in the outdoor unit 2 is calculated by calculating the power of the refrigerant amounts Mogl, Mc, Moll, Mol2, Mog2, and Mob in each part in the outdoor unit 2 described above.
  • control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant automatic charging operation, performs step S. 12 processes are performed.
  • the refrigerant amount in the refrigerant circuit 10 gradually increases.
  • the volume of the refrigerant communication pipes 6 and 7 is unknown, the amount of refrigerant to be filled in the refrigerant circuit 10 after the additional charging of the refrigerant cannot be defined as the refrigerant amount of the refrigerant circuit 10 as a whole.
  • outdoor unit 2 and indoor unit 4 I.e., the refrigerant circuit 10 excluding the refrigerant communication pipes 6 and 7
  • the optimum refrigerant quantity of the outdoor unit 2 in the normal operation mode can be known in advance through tests and detailed simulations.
  • step S13 determines whether the value of the refrigerant amount obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor unit 4 in the automatic refrigerant charging operation reaches the charging target value Ms. In this way, the process determines whether or not the amount of the refrigerant charged in the refrigerant circuit 10 by the additional charging of the refrigerant is appropriate.
  • step S13 the additional charging of the refrigerant in which the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor unit 4 is smaller than the target charging value Ms is completed. If not, the process of step S13 is repeated until the filling target value Ms is reached. In addition, when the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor unit 4 reaches the charging target value Ms, the additional charging of the refrigerant is completed, and the automatic refrigerant charging is performed. Step S1 as the operation process is completed.
  • the degree of supercooling SCo mainly at the outlet of the outdoor heat exchanger 23 tends to increase, resulting in outdoor heat exchange. Since the refrigerant amount Mc in the chamber 23 increases and the refrigerant amount in the other parts tends to be kept almost constant, the refrigerant target amount of the outdoor unit 2 is less than the outdoor unit 2 and the indoor unit 4. It may be set as a value corresponding only to Mo, or set as a value corresponding to the refrigerant amount Mc of the outdoor heat exchanger 23, and additional charging of the refrigerant may be performed until the charging target value Ms is reached. .
  • the control unit 8 functions as a refrigerant amount determination means for determining the suitability of the refrigerant amount in the refrigerant circuit 10 in the refrigerant amount determination operation of the automatic refrigerant charging operation (that is, whether or not the charging target value Ms has been reached).
  • the control unit 8 performs the process of step S13.
  • Step S2 Pipe length judgment operation
  • Fig. 6 is a flow chart of the pipe length judgment operation.
  • step S21 to obtain the operation data necessary for calculating the pipe lengths of the refrigerant communication pipes 6 and 7, in order to obtain the pipe volume Vlp of the liquid refrigerant communication pipe 6 and the pipe volume Vgp of the gas refrigerant communication pipe 7
  • the pipe length judgment operation is performed.
  • the pipe length determination operation is an operation in which the operation state quantity of the refrigerant flowing in the refrigerant circuit 10 is changed by changing the control state of the constituent devices.
  • the pipe length determination operation in the present embodiment is performed as follows.
  • the first state which is the state before changing the control state, is created by performing cooling operation, condensing pressure control, liquid pipe temperature control, superheat degree control and evaporation pressure control. That is, in the refrigerant circuit 10, the condensing pressure Pc, the liquid pipe temperature Tlp, the degree of superheat SHr, and the evaporation pressure Pe are kept constant.
  • the superheat control is canceled (the opening degree of the indoor expansion valve 41 at this time is set to the first opening degree OV1), and as shown in FIG. Change stepwise to a second opening OV2 smaller than OV1.
  • the state at the second opening OV2 is the second state.
  • the temperature of the refrigerant at the outlet of the indoor heat exchanger increases, and a response appears that the degree of superheat SHr at the outlet of the indoor heat exchanger 42 increases.
  • This response is propagated to the suction side of the compressor 21 through the gas refrigerant communication pipe 7, the gas side closing valve 27, the four-way switching valve 22, and the accumulator 24. That is, by performing an operation to reduce the opening of the indoor expansion valve 41 from the first opening OV 1 to the second opening OV2, the degree of superheat of the refrigerant on the suction side of the compressor 21 (hereinafter referred to as compressor intake)
  • the superheat degree SHi) becomes a response similar to the superheat degree SHr at the outlet of the indoor heat exchanger 42.
  • Figure 7 (b ) As shown in (c), after the operation to reduce the opening of the indoor expansion valve 41 from the first opening OV1 to the second opening OV2, the inside of the indoor heat exchanger 42, the gas refrigerant communication pipe 7 After the passage of propagation time in the gas side shut-off valve 27, four-way selector valve 22 and accumulator 24 (hereinafter referred to as propagation time), this response (ie, from superheat SHil Response that changes to superheat SHi 2) appears.
  • the compressor suction superheat degree SHi is obtained by converting the suction pressure Ps of the compressor 21 into the saturation temperature value of the refrigerant and subtracting the saturation temperature value of the refrigerant from the suction temperature Ts.
  • FIG. 7 is a graph showing changes over time in the opening degree of the indoor expansion valve 41 and the compressor intake superheat degree SHi in the pipe length determination operation.
  • a response to increase the compressor suction superheat degree SHi appears by performing an operation to reduce the opening of the indoor expansion valve 41, but this is limited to this.
  • a response to decrease the compressor superheating degree SHi may appear, and the control state of other constituent devices may be changed.
  • First state force By changing to the second state, a response may appear as a change in compressor intake superheat SHi and other operating state quantities.
  • control described above is performed by the control unit 8 (more specifically, between the indoor side control unit 47, the outdoor side control unit 37, and the control units 37, 47 functioning as a pipe length determination operation control means for performing the pipe length determination operation. This is performed as a process of step S21 by the transmission line 8a) connecting the two.
  • step S22 the propagation time ⁇ during the pipe length judgment operation in step S21 is detected.
  • FIG. 7 data of the change over time of the compressor intake superheat SHi from the time when the opening of the indoor expansion valve 41 is reduced from the first opening OV 1 to the second opening OV2 is shown.
  • the propagation time ⁇ is detected by measuring the time until the compressor suction superheat degree SHi increases and stabilizes again. That is, the propagation time ⁇ is the amount of operation state that appears in the refrigerant flowing in the refrigerant circuit 10 by the pipe length determination operation described above.
  • Change within a predetermined section in the refrigerant circuit 10 including at least the gas refrigerant communication pipe 7 (here, in the indoor heat exchanger 42, in the gas refrigerant communication pipe 7, in the gas side shut-off valve 27, and in the four-way switching valve) 2 corresponds to the time required for propagation in 2 and in accumulator 24).
  • the process for detecting the propagation time ⁇ as described above is performed by the control unit 8 (more specifically, the indoor side control unit 47, the outdoor side control unit 37, and the control unit 37, which functions as a propagation time detection unit. This is performed as step S22 by the transmission line 8a) connecting 47.
  • Step S23 Calculation of the length of refrigerant communication pipe
  • step S23 the pipe lengths of the refrigerant communication pipes 6 and 7 are calculated based on the propagation time ⁇ detected in step S22.
  • the pipe length of the gas refrigerant communication pipe 7 is referred to as pipe length Lg (Fig. 7). See)
  • the relational expression between pipe length Lg and propagation time is
  • Fig. 8 is a table showing comparison data of indoor unit models, relational expressions between pipe length and propagation time, pipe diameter of gas refrigerant pipe, and pipe diameter of liquid refrigerant pipe. It is.
  • the pipe length Lg of the gas refrigerant communication pipe 7 is calculated from the relational expression between the pipe length Lg and the propagation time selected for the model information power of the indoor unit 4 and the propagation time detected in step S22. .
  • the pipe length Lg of the gas refrigerant communication pipe 7 and the pipe length L1 of the liquid refrigerant communication pipe 6 can be calculated from the propagation time.
  • step S23 is performed by the control unit 8 functioning as the pipe length calculating means for calculating the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 based on the propagation time.
  • Step S24 Calculation of refrigerant volume of refrigerant communication pipe
  • step S24 the volumes Vgp and Vlp of the refrigerant communication pipes 6 and 7 are calculated from the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 calculated in step S23.
  • data for obtaining the cross-sectional area of the refrigerant communication pipes 6 and 7 such as the pipe diameter of the gas refrigerant communication pipe 7 and the pipe diameter of the liquid refrigerant communication pipe 6 is required. It is. Therefore, in this embodiment, as in the relational expression between the pipe length Lg and the propagation time described above, as shown in FIG. 8, the pipe diameter dg and the indoor unit of the gas refrigerant pipe connected to the indoor unit are shown.
  • the pipe diameter dl of the gas refrigerant pipe connected to the indoor unit is prepared by being stored in advance in the memory of the outdoor control unit 37 constituting the control unit 8 in a form that is grouped for each indoor unit model. It is set by being selected according to the model information of the indoor unit 4. For example, when the model information acquired from the indoor unit 4 by the control unit 8 functioning as the information acquisition means is “a” via the transmission line 8a, dg a is set as the pipe diameter dg of the gas refrigerant pipe. Select dl a as the pipe diameter dl of the liquid refrigerant pipe.
  • the pipe diameter dg of the gas refrigerant pipe is set to the pipe diameter of the gas refrigerant communication pipe 7, and the liquid refrigerant Since the pipe diameter of the pipe dl can be the pipe diameter of the liquid refrigerant communication pipe 6, the pipe volume Vgp of the gas refrigerant connection pipe 7
  • Vgp Z4 X dg X dg X Lg
  • Vlp 7u / 4 X dl X dl X Ll
  • the pipe volumes Vgp and Vlp are calculated from these relational expressions.
  • pipe length Lg of gas refrigerant communication pipe 7 and liquid refrigerant communication pipe 6 pipe length L1 to gas refrigerant communication pipe 7 pipe volume Vgp and liquid refrigerant communication pipe 6 V lp It can be calculated.
  • control unit 8 functioning as the pipe length calculation means performs a calculation based on the pipe diameters dg and dl from which the model information of the indoor unit 4 is obtained and the pipe lengths Lg and L1 obtained in step S23. It also has a function to calculate the pipe volume Vgp of the refrigerant refrigerant pipe 7 and Vlp of the liquid refrigerant pipe 6.
  • Step S3 Initial refrigerant quantity detection operation
  • step S2 When the pipe length determination operation in step S2 is completed, the process proceeds to the initial refrigerant amount determination operation in step S3.
  • the control unit 8 performs the processes of step S31 and step S32 shown in FIG.
  • FIG. 9 is a flowchart of the initial refrigerant quantity detection operation.
  • Step S31 Refrigerant amount judgment operation
  • step S31 similar to the refrigerant amount determination operation in step S11 of the above-described automatic refrigerant charging operation, the refrigerant amount determination operation including the cooling operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control is performed.
  • the liquid pipe temperature target value Tlps in the liquid pipe temperature control, the superheat degree target value SHrs in the superheat degree control, and the low pressure target value Pes in the evaporation pressure control are, in principle, the refrigerant amount judgment operation in step S11 of the automatic refrigerant charging operation. The same value as the target value in is used.
  • control unit 8 that functions as the refrigerant amount determination operation control unit that performs the refrigerant amount determination operation including the cooling operation, the condensing pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control, performs step S31. Is performed.
  • control unit 8 that functions as the refrigerant amount calculation means while performing the refrigerant amount determination operation described above, the refrigerant flowing from the refrigerant circuit 10 in the initial refrigerant amount determination operation in step S32 or the operation state amount of the component device is used.
  • the refrigerant communication was established.
  • the initial refrigerant amount of the entire refrigerant circuit 10 can be detected.
  • This initial refrigerant quantity is used as a reference refrigerant quantity Mi for the refrigerant circuit 10 as a reference for determining the presence or absence of leakage from the refrigerant circuit 10 in the refrigerant leakage detection operation described later.
  • the control unit 8 that functions as a refrigerant amount calculating means that calculates the refrigerant amount in each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant amount detection operation or the operation state quantity of the constituent devices. Then, the process of step S32 is performed.
  • FIG. 10 is a flowchart of the refrigerant leak detection operation mode.
  • Step S41 Refrigerant amount judgment operation
  • the refrigerant leak detection operation mode is automatically or manually changed from the normal operation mode.
  • the refrigerant quantity judgment operation including the cooling operation, the condensing pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control is performed.
  • the liquid pipe temperature target value Tips in liquid pipe temperature control, the superheat degree target value SHrs in superheat degree control, and the low pressure target value Pes in evaporative pressure control are, in principle, the refrigerant quantity judgment operation in the initial refrigerant quantity detection operation. The same value as the target value in step S31 is used. [0059]
  • the refrigerant amount determination operation is performed for each refrigerant leakage detection operation. For example, if the condensation pressure Pc is different, the refrigerant leakage occurs! Even if the refrigerant temperature Tco fluctuates at the outlet of the outdoor heat exchanger 23 due to the difference in temperature, the temperature of the refrigerant in the liquid refrigerant communication pipe 6 is the same as the liquid pipe temperature. Will be kept.
  • step S41 is performed by the control unit 8 functioning as the refrigerant amount determination operation control means for performing the refrigerant amount determination operation including the cooling operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control. Done.
  • control unit 8 that functions as the refrigerant quantity calculation means while performing the refrigerant quantity determination operation described above, the refrigerant from the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device in the refrigerant leakage detection operation in step S42.
  • the refrigerant amount in the refrigerant circuit 10 is calculated using a relational expression between the refrigerant amount of each part of the refrigerant circuit 10 and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device.
  • the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated by the above-described pipe volume determination operation as in the initial refrigerant amount determination operation. Therefore, the refrigerant volumes Mlp and Mgp in the refrigerant communication pipes 6 and 7 are calculated by multiplying the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 by the density of the refrigerant. By adding the refrigerant amounts of the other parts, the refrigerant amount M of the entire refrigerant circuit 10 can be calculated.
  • the liquid refrigerant communication pipe section The refrigerant amount Mlp in B3 is kept constant even when the refrigerant temperature Tco fluctuates at the outlet of the outdoor heat exchanger 23, regardless of the operating conditions of the refrigerant leak detection operation.
  • control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant leakage detection operation causes the step S42. Is performed. (Steps S43, S44: Judgment of appropriateness of refrigerant amount, warning display)
  • the refrigerant amount M of the entire refrigerant circuit 10 calculated in step S42 described above is the reference refrigerant amount MU detected in the initial refrigerant amount detection operation when refrigerant leakage from the refrigerant circuit 10 occurs. If the refrigerant leaks from the refrigerant circuit 10 and becomes V, in this case, it becomes almost the same value as the reference refrigerant amount Mi.
  • step S43 it is determined whether or not refrigerant has leaked. If it is determined in step S43 that no refrigerant leaks from the refrigerant circuit 10, the refrigerant leak detection operation mode is terminated.
  • step S43 if it is determined in step S43 that refrigerant has leaked from the refrigerant circuit 10, the process proceeds to step S44, and a warning is sent to the warning display unit 9 informing that the refrigerant has been detected. After the display, the refrigerant leak detection operation mode is terminated.
  • the refrigerant amount determination means for detecting the presence or absence of refrigerant leakage by determining whether or not the refrigerant amount in the refrigerant circuit 10 is appropriate while performing the refrigerant amount determination operation in the refrigerant leakage detection operation mode.
  • the processing of steps S42 to S44 is performed by the control unit 8 that functions as one refrigerant leakage detection means.
  • the control unit 8 includes the refrigerant amount determination operation means, the refrigerant amount calculation means, the refrigerant amount determination means, the pipe length determination operation means, the pipe length calculation means, By functioning as information acquisition means and state quantity accumulation means, a refrigerant quantity determination system for determining the suitability of the refrigerant quantity charged in the refrigerant circuit 10 is configured.
  • the air conditioner 1 of the present embodiment has the following features.
  • the pipe length determination operation is performed to change the control state of the component device to the second state different from the first state force and the first state.
  • the change in the operating state amount that appears in the refrigerant flowing in the refrigerant circuit 10 is within a predetermined section in the refrigerant circuit 10 including at least the gas refrigerant communication pipe 7 (in this case, in the indoor heat exchange 42, the gas refrigerant communication pipe 7), the propagation time ⁇ required to propagate through the gas side shut-off valve 27, the four-way switching valve 22 and the accumulator 24) is detected, and based on this propagation time ⁇ , the refrigerant communication pipes 6 and 7 Since the pipe length is calculated, for example, even if the pipe length of the gas refrigerant communication pipe 7 is unknown after installing the components, the pipe length Lg of the refrigerant communication pipe 7 can be known. . Thereby, the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 can be obtained while reducing the time
  • the refrigerant communication pipe 6 after the propagation time detected in the pipe length determination operation using the relational expression between the propagation time and the pipe length Lg of the gas refrigerant communication pipe 7, Calculate the pipe lengths Lg and L1 of 7 and use the calculated pipe lengths Lg and L1 and the indoor unit 4 as the unit to be used. Since the volume Vgp and Vlp of the connecting pipes 6 and 7 are calculated, the piping volumes Vgp and Vlp of the refrigerant connecting pipes 6 and 7 are accurately determined while reducing the effort for inputting the information of the refrigerant connecting pipes 6 and 7. Can be calculated.
  • the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 calculated by the control unit 8 functioning as pipe length calculation means, and the refrigerant or component equipment flowing through the refrigerant circuit 10 Since the amount of refrigerant in the refrigerant circuit 10 is determined using the operating state quantity, it is possible to determine the appropriateness of the refrigerant quantity in the refrigerant circuit while reducing the effort of inputting information on the refrigerant communication pipes 6 and 7. Can be determined with high accuracy.
  • the opening OV of the indoor expansion valve 41 is changed from the first opening OV1 as the first state to the second opening OV2 as the second state. Therefore, the change in the operating state quantity appearing in the refrigerant flowing in the refrigerant circuit 10 can be made to appear rapidly and clearly, and the propagation time can be accurately detected.
  • the pipe length is used as the operation state quantity for detecting the propagation time. Since the operation state quantity of the refrigerant flowing in the suction side of the compressor 21 in the judgment operation (here, the compressor intake superheat degree SHi) is used, the change force of this operation state quantity is a refrigerant including at least the gas refrigerant communication pipe 7 It propagates in a predetermined section in the circuit 10 (in this case, in the indoor heat exchanger 42, in the gas refrigerant communication pipe 7, in the gas side shut-off valve 27, in the four-way selector valve 22, and in the accumulator 24).
  • the pipe length Lg of the gas refrigerant communication pipe 7 can be obtained from this propagation time.
  • the compressor suction superheat degree SHi as the superheat degree of the refrigerant flowing on the suction side of the compressor 21 is used as the operating state quantity of the refrigerant flowing on the suction side of the compressor 21 used for detecting the propagation time ⁇ . Therefore, the influence of the change in the opening degree of the indoor expansion valve 41 appears clearly, and the propagation time can be detected more accurately.
  • the pipe length determination operation is performed, the cooling operation, the condensing pressure control, the liquid pipe temperature control, and the evaporation pressure control are performed.
  • the opening degree OV of 41 is changed from the first opening degree OV1 to the second opening degree OV2
  • the inside of the refrigerant circuit 10 is maintained so that the condensation pressure Pc, the liquid pipe temperature Tip, and the evaporation pressure Pe are kept constant. Since the state of the flowing refrigerant is controlled, the temperature and pressure conditions of the refrigerant flowing into the indoor expansion valve 41 are stabilized, and the outlet force of the indoor expansion valve 41 is also reduced between the intake side of the compressor 21 and the refrigerant.
  • the pressure condition will be stable. As a result, the influence of the change in the opening degree of the indoor expansion valve 41 becomes clear, and the propagation time can be detected more accurately.
  • the refrigerant circuit 10 is divided into a plurality of parts, and a relational expression between the refrigerant amount and the operating state quantity of each part is set. Compared to the simulation, the calculation load can be reduced, and the operating state quantity important for calculating the refrigerant amount in each part can be selectively captured as a variable in the relational expression. The calculation accuracy of the refrigerant amount is also improved, and as a result, the suitability of the refrigerant amount in the refrigerant circuit 10 can be determined with high accuracy.
  • the control unit 8 serving as the refrigerant amount calculating means uses the relational expression to calculate the refrigerant flowing through the refrigerant circuit 10 or the operating state quantity force of the constituent device in the automatic refrigerant charging operation in which the refrigerant is filled into the refrigerant circuit 10. Also, the amount of refrigerant in each part can be calculated quickly. Moreover, the amount of refrigerant The control unit 8 serving as a determination unit uses the calculated refrigerant amount of each part to calculate the refrigerant amount in the refrigerant circuit 10 (specifically, the refrigerant amount Mo in the outdoor unit 2 and the refrigerant amount Mr in the indoor unit 4). It is possible to determine with high accuracy whether the force has reached the filling target value Ms.
  • control unit 8 uses the relational expression to determine whether the refrigerant flowing through the refrigerant circuit 10 in the initial refrigerant amount detection operation in which the initial refrigerant amount is detected after the component device is installed or after the refrigerant circuit 10 is filled with the refrigerant or By calculating the refrigerant amount of each part from the operation state quantities of the component devices, the initial refrigerant amount as the reference refrigerant amount Mi can be quickly calculated. Also, the initial cooling amount can be detected with high accuracy.
  • control unit 8 uses the relational expression to determine whether the refrigerant flowing through the refrigerant circuit 10 in the refrigerant leakage detection operation for determining whether or not the refrigerant leaks from the refrigerant circuit 10 or the operating state quantity force of the constituent devices.
  • the amount of refrigerant in the portion can be calculated quickly.
  • the control unit 8 also increases the presence or absence of refrigerant leakage from the refrigerant circuit 10 by comparing the calculated refrigerant amount of each part with the reference refrigerant amount Mi that serves as a reference for determining the presence or absence of leakage. The accuracy can be determined.
  • the subcooler as a temperature adjustment mechanism capable of adjusting the temperature of the refrigerant sent from the outdoor heat exchanger 23 as a condenser to the indoor expansion valve 41 as an expansion mechanism. 25 is provided, and the capacity control of the subcooler 25 is performed so that the temperature Tip of the refrigerant sent from the subcooler 25 to the indoor expansion valve 41 as the expansion mechanism is constant during the refrigerant quantity determination operation. Therefore, the refrigerant density p lp in the refrigerant piping from the supercooler 25 to the indoor expansion valve 41 is not changed, so that the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 as a condenser is the amount of refrigerant.
  • the effect of the difference in refrigerant temperature is such that the outlet power of the outdoor heat exchanger ⁇ 23 is contained only in the refrigerant pipe leading to the subcooler 25, and the refrigerant amount is judged.
  • the refrigerant at the outlet of the outdoor heat exchanger Differences in degrees Tco i.e., the difference in density of the refrigerant
  • Tco the difference in density of the refrigerant
  • the outdoor unit 2 as a heat source unit and the indoor unit 4 as a utilization unit are connected via a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7.
  • the refrigerant communication pipes 6 and 7 that connect between the outdoor unit 2 and the indoor unit 4 have different lengths depending on conditions such as the installation location. If the temperature increases, the difference in the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 causes the outlet power of the outdoor heat exchanger to also constitute the majority of the refrigerant pipe that reaches the indoor expansion valve 41.
  • the supercooler 25 is provided, and the refrigerant in the liquid refrigerant communication pipe 6 is used during the refrigerant amount judgment operation as described above.
  • the capacity control of the supercooler 25 is controlled so that the temperature tip of the refrigerant is constant, so that the refrigerant density p lp in the refrigerant pipe from the supercooler 25 to the indoor expansion valve 41 does not change. Therefore, when determining the amount of refrigerant, the phase of the refrigerant temperature at the outlet Tco of the outdoor heat exchanger ⁇ 23 The determination error due to the difference (that is, the difference in refrigerant density) can be reduced.
  • the initial refrigerant amount can be detected with high accuracy in the initial refrigerant amount detection operation in which the initial refrigerant amount is detected after the component device is installed or after the refrigerant circuit 10 is filled with the refrigerant.
  • the refrigerant leak detection operation for determining whether or not the refrigerant leaks from the refrigerant circuit 10, it is possible to accurately determine whether or not the refrigerant leaks from the refrigerant circuit 10.
  • FIG. 11 is a schematic configuration diagram of the air-conditioning apparatus 101 according to the second embodiment.
  • FIG. 12 is a control block diagram of the air conditioner 101.
  • the air conditioner 101 configures a vapor compression refrigerant circuit 110 by further connecting the indoor unit 5 having the same configuration as the indoor unit 4 of the first embodiment. Yes.
  • the refrigerant circuit is denoted by reference numeral 10b, and is denoted by reference numeral 50 in place of the reference numeral 40 indicating each part of the indoor unit 4, and description of each part is omitted.
  • the indoor side control unit 57 of the indoor unit 5 is connected to the indoor side control unit 47 of the indoor unit 4 and to the outdoor side control unit 37 of the outdoor unit 2 via a transmission line 108a. Can be exchanged.
  • control unit 108 that controls the operation of the entire air conditioner 101 by the indoor side control unit 47, the indoor side control unit 57, the outdoor side control unit 37, and the transmission line 108a that connects the control units 37, 47, and 57. Is configured.
  • the same automatic refrigerant charging operation, initial refrigerant amount detection operation, pipe length determination operation, and refrigerant leakage detection operation as the air conditioner 1 of the first embodiment are performed. It can be carried out.
  • the air conditioner 101 of the present embodiment since there are a plurality of indoor units (that is, the indoor units 4 and 5), for example, under the condition that both the indoor units 4 and 5 are operated,
  • the pipe length determination operation operation to change the opening OV of the indoor expansion valve
  • the operation state quantity from the indoor unit 4 side is reduced.
  • the change propagates to the suction side of the compressor 21 in a state in which the change of the operation state quantity of the indoor unit 5 side force is mixed.
  • the change in the operation state quantity on the indoor unit 4 side becomes a disturbance for the change in the operation state quantity on the indoor unit 4 side, and the operation condition on the indoor unit 4 side for the change in the operation state quantity on the indoor unit 5 side. Since the change in quantity becomes a disturbance, there is a possibility that the propagation time cannot be accurately detected.
  • the pipe length determination operation is performed only for one of the plurality of indoor units. By doing so, it is desirable that there be no disturbance on the other indoor unit side.
  • the control unit 108 as a pipe length determination operation control means includes the indoor units 4 and 5
  • the pipe length judgment operation is performed for one of them (for example, indoor unit 4) so that there is no disturbance on the other indoor unit (in this case, outdoor unit 5) side, and the propagation time ⁇ is accurately set. So that it can be detected.
  • the present invention is applied to an air conditioner capable of switching between cooling and heating.
  • the present invention is not limited to this, and other air conditioners such as a cooling-only air conditioner.
  • the present invention may be applied to.
  • the example in which the present invention is applied to the air conditioner including one outdoor unit has been described.
  • the present invention is not limited to this, and the air conditioner includes a plurality of outdoor units.
  • the present invention may be applied to an apparatus.
  • the suitability of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy while reducing the effort of inputting information of the refrigerant communication pipe before the operation of the separate type air conditioner. Become.

Abstract

A separated-type air conditioner (1) where the labor of inputting information on refrigerant connection piping before starting operation of the air conditioner is reduced and where whether the amount of refrigerant in a refrigerant circuit is appropriate or not can be highly accurately determined. The air conditioner (1) has the refrigerant circuit (10) formed by connecting an outdoor unit (2) and an indoor unit (4) via the refrigerant connection piping (6, 7), operation control means capable of piping length determination operation, and piping length calculation means. The piping length determination operation is operation where the condition of control of constituting apparatuses is changed from a first condition to a second condition different from the first condition. The piping length calculation means calculates the length of the refrigerant connection piping (6, 7) based on a time period in which a change in the amount of operating conditions propagates in a predetermined segment of the refrigerant circuit (10) including at least the refrigerant connection piping (7), where the change appears in the refrigerant flowing in the refrigerant circuit (10) by the piping length determination operation.

Description

明 細 書  Specification
空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、空気調和装置の冷媒回路内の冷媒量の適否を判定する機能、特に、 熱源ユニットと利用ユニットとが冷媒連絡配管を介して接続されることによって構成さ れる空気調和装置の冷媒回路内の冷媒量の適否を判定する機能に関する。  The present invention relates to a function for determining the suitability of the amount of refrigerant in a refrigerant circuit of an air conditioner, in particular, an air conditioner configured by connecting a heat source unit and a utilization unit via a refrigerant communication pipe. The present invention relates to a function for determining the suitability of the refrigerant amount in the refrigerant circuit.
背景技術  Background art
[0002] 従来より、熱源ユニットと利用ユニットとが冷媒連絡配管を介して接続されることによ つて構成されるセパレート型の空気調和装置にぉ 、て、冷媒回路内の冷媒量の過不 足を精度よく判定できるようにするために、冷媒連絡配管の長さ等の情報を入力する ことが行われている(例えば、特許文献 1参照)。  Conventionally, a separate air conditioner configured by connecting a heat source unit and a utilization unit via a refrigerant communication pipe leads to an insufficient amount of refrigerant in the refrigerant circuit. In order to make it possible to accurately determine the length of the refrigerant communication pipe, information such as the length of the refrigerant communication pipe is input (for example, see Patent Document 1).
特許文献 1:特開平 8— 200905号公報  Patent Document 1: JP-A-8-200905
発明の開示  Disclosure of the invention
[0003] しかし、上述の冷媒連絡配管の情報を入力する作業は、非常に手間がかかる作業 であり、また、入力ミスも生じやすいという問題がある。  [0003] However, the above-described operation of inputting information on the refrigerant communication pipe is a very time-consuming operation, and there is a problem that an input error is likely to occur.
本発明の課題は、セパレート型の空気調和装置の運転前に冷媒連絡配管の情報 を入力する手間を減らしつつ、冷媒回路内の冷媒量の適否を高精度に判定できるよ うにすることにある。  An object of the present invention is to make it possible to determine with high accuracy whether or not the amount of refrigerant in the refrigerant circuit is accurate, while reducing the effort of inputting information on the refrigerant communication pipe before the operation of the separate type air conditioner.
[0004] 第 1の発明にかかる空気調和装置は、熱源ユニットと利用ユニットとが冷媒連絡配 管を介して接続されることによって構成される冷媒回路と、配管長判定運転を行うこと が可能な運転制御手段と、配管長演算手段とを備えている。配管長判定運転は、構 成機器の制御状態を第 1状態力 第 1状態とは異なる第 2状態に変化させる運転で ある。配管長演算手段は、配管長判定運転によって冷媒回路内を流れる冷媒に現 れる運転状態量の変化が、少なくとも冷媒連絡配管を含む冷媒回路内の所定の区 間内を伝播するのに要する伝播時間に基づいて、冷媒連絡配管の配管長を演算す る。  [0004] The air conditioner according to the first invention is capable of performing a pipe length determination operation and a refrigerant circuit configured by connecting a heat source unit and a utilization unit via a refrigerant communication pipe. Operation control means and pipe length calculation means are provided. The pipe length judgment operation is an operation that changes the control state of the component equipment to the second state that is different from the first state force and the first state. The pipe length calculation means is a propagation time required for a change in the operation state quantity that appears in the refrigerant flowing in the refrigerant circuit by the pipe length judgment operation to propagate at least within a predetermined section in the refrigerant circuit including the refrigerant communication pipe. Based on the above, the pipe length of the refrigerant communication pipe is calculated.
この空気調和装置では、構成機器の制御状態を第 1状態から第 1状態とは異なる 第 2状態に変化させる配管長判定運転を行い、このような状態変化によって冷媒回 路内を流れる冷媒に現れる運転状態量の変化が、少なくとも冷媒連絡配管を含む冷 媒回路内の所定の区間内を伝播するのに要する伝播時間を検出し、この伝播時間 に基づいて、冷媒連絡配管の配管長を演算するようにしているため、例えば、構成機 器を設置した後において冷媒連絡配管の配管長が未知の場合であっても、冷媒連 絡配管の配管長を知ることができる。これにより、冷媒連絡配管の情報を入力する手 間を減らしつつ、冷媒連絡配管の配管長を得ることができ、その結果、冷媒回路内の 冷媒量の適否を高精度に判定することができる。 In this air conditioner, the control state of the component devices is different from the first state to the first state. The pipe length judgment operation to be changed to the second state is performed, and the change in the operation state quantity that appears in the refrigerant flowing in the refrigerant circuit due to such a state change is at least within a predetermined section in the refrigerant circuit including the refrigerant communication pipe. For example, after installing the component equipment, the pipe length of the refrigerant communication pipe is calculated based on this propagation time. Even if is unknown, the pipe length of the refrigerant connection pipe can be known. Thus, the length of the refrigerant communication pipe can be obtained while reducing the time for inputting the information of the refrigerant communication pipe, and as a result, the suitability of the refrigerant amount in the refrigerant circuit can be determined with high accuracy.
[0005] 第 2の発明にかかる空気調和装置は、第 1の発明にかかる空気調和装置において 、冷媒回路は、圧縮機と、凝縮器と、膨張弁と、蒸発器とを含んでいる。運転制御手 段は、配管長判定運転において、膨張弁の開度を第 1状態としての第 1開度力 第 2 状態としての第 2開度に変化させる。  [0005] An air conditioner according to a second invention is the air conditioner according to the first invention, wherein the refrigerant circuit includes a compressor, a condenser, an expansion valve, and an evaporator. The operation control means changes the opening of the expansion valve to the first opening force as the first state and the second opening as the second state in the pipe length determination operation.
この空気調和装置では、配管長判定運転において、膨張弁の開度を第 1状態とし ての第 1開度力 第 2状態としての第 2開度に変化させるようにしているため、冷媒回 路内を流れる冷媒に現れる運転状態量の変化が急激にかつ明確に現れるようにでき 、伝播時間を正確に検出することができる。  In this air conditioner, in the pipe length determination operation, the opening of the expansion valve is changed to the first opening force as the first state and the second opening as the second state. The change of the operating state quantity appearing in the refrigerant flowing inside can be made to appear rapidly and clearly, and the propagation time can be accurately detected.
[0006] 第 3の発明に力かる空気調和装置は、第 2の発明に力かる空気調和装置にお!、て 、冷媒連絡配管は、液冷媒連絡配管及びガス冷媒連絡配管を有している。熱源ュニ ットは、圧縮機と、凝縮器として機能させることが可能な熱源側熱交^^とを有してい る。利用ユニットは、膨張弁と、蒸発器として機能させることが可能な利用側熱交翻 とを有している。冷媒回路は、圧縮機と、熱源側熱交換器と、液冷媒連絡配管と、膨 張弁と、利用側熱交換器と、ガス冷媒連絡配管とが接続されることによって構成され ている。伝播時間は、配管長判定運転における圧縮機の吸入側を流れる冷媒の運 転状態量の変化から検出される。  [0006] An air conditioner according to the third invention is an air conditioner according to the second invention! The refrigerant communication pipe includes a liquid refrigerant communication pipe and a gas refrigerant communication pipe. . The heat source unit includes a compressor and a heat source side heat exchanger that can function as a condenser. The utilization unit has an expansion valve and a utilization-side heat exchange that can function as an evaporator. The refrigerant circuit is configured by connecting a compressor, a heat source side heat exchanger, a liquid refrigerant communication pipe, an expansion valve, a use side heat exchanger, and a gas refrigerant communication pipe. The propagation time is detected from the change in the operating state quantity of the refrigerant flowing on the suction side of the compressor in the pipe length judgment operation.
この空気調和装置では、膨張弁の開度を変化させる配管長判定運転において、伝 播時間を検出するための運転状態量として、配管長判定運転における圧縮機の吸 入側を流れる冷媒の運転状態量を用いているため、この運転状態量の変化が、少な くともガス冷媒連絡配管を含む冷媒回路内の所定の区間内を伝播するのに要する伝 播時間を検出することができ、この伝播時間からガス冷媒連絡配管の配管長を得るこ とがでさる。 In this air conditioner, the operation state of the refrigerant flowing on the suction side of the compressor in the pipe length determination operation is used as the operation state quantity for detecting the propagation time in the pipe length determination operation in which the opening degree of the expansion valve is changed. Therefore, this change in the operating state quantity is required to propagate at least in a predetermined section in the refrigerant circuit including the gas refrigerant communication pipe. The sowing time can be detected, and the pipe length of the gas refrigerant communication pipe can be obtained from this propagation time.
[0007] 第 4の発明に力かる空気調和装置は、第 3の発明に力かる空気調和装置にお!、て 、伝播時間の検出に用いられる圧縮機の吸入側を流れる冷媒の運転状態量は、圧 縮機の吸入側を流れる冷媒の過熱度である。  [0007] The air conditioner according to the fourth invention is the same as the air conditioner according to the third invention! The operating state quantity of the refrigerant flowing on the suction side of the compressor used for detecting the propagation time Is the degree of superheat of the refrigerant flowing on the suction side of the compressor.
この空気調和装置では、伝播時間の検出に用いられる圧縮機の吸入側を流れる冷 媒の運転状態量として、圧縮機の吸入側を流れる冷媒の過熱度を用いているため、 膨張弁の開度変化による影響が明確に現れるようになり、伝播時間をさらに正確に 検出することができる。  In this air conditioner, the degree of superheat of the refrigerant flowing on the suction side of the compressor is used as the operating state quantity of the refrigerant flowing on the suction side of the compressor used for detecting the propagation time. The effect of change becomes apparent and the propagation time can be detected more accurately.
[0008] 第 5の発明にかかる空気調和装置は、第 1〜第 4の発明のいずれかにかかる空気 調和装置において、利用ユニットは、熱源ユニットに対して複数接続されている。運 転制御手段は、複数の利用ユニットのうちの 1つについて配管長判定運転を行う。 この空気調和装置では、利用ユニットが熱源ユニットに対して複数接続されており、 冷媒連絡配管の配管長を演算するに当たり、複数の利用ユニットのうちの 1つについ て配管長判定運転を行うようにしているため、他の利用ユニット側の外乱がない状態 で、伝播時間を正確に検出することができる。  [0008] An air conditioner according to a fifth aspect of the present invention is the air conditioner according to any of the first to fourth aspects, wherein a plurality of utilization units are connected to the heat source unit. The operation control means performs a pipe length judgment operation for one of a plurality of usage units. In this air conditioner, a plurality of use units are connected to the heat source unit, and when calculating the pipe length of the refrigerant communication pipe, the pipe length judgment operation is performed for one of the plurality of use units. Therefore, the propagation time can be accurately detected without any disturbance on the other usage unit side.
[0009] 第 6の発明にかかる空気調和装置は、第 1〜第 5の発明のいずれかにかかる空気 調和装置において、配管長演算手段は、伝播時間と冷媒連絡配管の配管長との関 係式から冷媒連絡配管の配管長を演算し、冷媒回路を構成する利用ユニットの情報 から得られる冷媒連絡配管の配管径と関係式を用いて演算される冷媒連絡配管の 配管長とから冷媒連絡配管の容積を演算する。  [0009] An air conditioner according to a sixth aspect of the invention is the air conditioner according to any of the first to fifth aspects of the invention, wherein the pipe length calculation means is a relationship between the propagation time and the pipe length of the refrigerant communication pipe. Calculate the refrigerant communication pipe length from the equation and calculate the refrigerant communication pipe diameter from the refrigerant communication pipe diameter obtained from the information of the units that make up the refrigerant circuit and the refrigerant communication pipe length calculated using the relational expression. The volume of is calculated.
この空気調和装置では、伝播時間と冷媒連絡配管の配管長との関係式を用いて配 管長判定運転において検出された伝播時間から冷媒連絡配管の配管長を演算し、 この演算された配管長と利用ユニットの情報力 得られる冷媒連絡配管の配管径と 力 冷媒連絡配管の容積を演算するようにしているため、冷媒連絡配管の情報を入 力する手間を減らしつつ、冷媒連絡配管の配管容積を正確に演算することができる  In this air conditioner, the pipe length of the refrigerant communication pipe is calculated from the propagation time detected in the pipe length judgment operation using the relational expression between the propagation time and the pipe length of the refrigerant communication pipe, and the calculated pipe length and Information capacity of the usage unit Pipe diameter and force of the refrigerant communication pipe obtained The volume of the refrigerant communication pipe is calculated, so the effort to input the information of the refrigerant communication pipe is reduced, and the volume of the refrigerant communication pipe is reduced. Can be calculated accurately
[0010] 第 7の発明にかかる空気調和装置は、第 1〜第 6の発明のいずれかにかかる空気 調和装置において、配管長演算手段によって演算される冷媒連絡配管の配管長と、 冷媒回路を流れる冷媒又は構成機器の運転状態量とを用いて、冷媒回路内の冷媒 量の適否を判定する冷媒量判定手段をさらに備えている。 [0010] An air conditioner according to a seventh invention is the air according to any of the first to sixth inventions. In the harmony device, the refrigerant amount for determining the adequacy of the refrigerant amount in the refrigerant circuit using the pipe length of the refrigerant communication pipe calculated by the pipe length calculating means and the operating state quantity of the refrigerant flowing through the refrigerant circuit or the component device The determination unit is further provided.
この空気調和装置では、配管長演算手段によって演算される冷媒連絡配管の配管 長と、冷媒回路を流れる冷媒又は構成機器の運転状態量とを用いて、冷媒回路内の 冷媒量の適否を判定するようにしているため、冷媒連絡配管の情報を入力する手間 を減らしつつ、冷媒連絡配管の配管長を得ることができ、その結果、冷媒回路内の冷 媒量の適否を高精度に判定することができる。  In this air conditioner, the suitability of the refrigerant amount in the refrigerant circuit is determined by using the pipe length of the refrigerant communication pipe calculated by the pipe length calculating means and the operating state quantity of the refrigerant flowing through the refrigerant circuit or the component equipment. As a result, it is possible to obtain the length of the refrigerant communication pipe while reducing the effort of inputting the information of the refrigerant communication pipe, and as a result, to determine the suitability of the amount of the refrigerant in the refrigerant circuit with high accuracy. Can do.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の第 1実施形態に力かる空気調和装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of an air conditioner according to a first embodiment of the present invention.
[図 2]第 1実施形態に力かる空気調和装置の制御ブロック図である。  FIG. 2 is a control block diagram of the air conditioner according to the first embodiment.
[図 3]試運転モードのフローチャートである。  FIG. 3 is a flowchart of a test operation mode.
[図 4]冷媒自動充填運転のフローチャートである。  FIG. 4 is a flowchart of an automatic refrigerant charging operation.
[図 5]冷媒量判定運転における冷媒回路内を流れる冷媒の状態を示す模式図(四路 切換弁等の図示を省略)である。  FIG. 5 is a schematic diagram showing the state of refrigerant flowing in the refrigerant circuit in the refrigerant quantity determination operation (illustration of a four-way switching valve and the like is omitted).
[図 6]配管長判定運転のフローチャートである。  FIG. 6 is a flowchart of pipe length judgment operation.
[図 7]配管長判定運転における室内膨張弁の開度及び圧縮機吸入過熱度の経時変 化を示す図である。  FIG. 7 is a diagram showing changes over time in the degree of opening of the indoor expansion valve and the compressor suction superheat degree in the pipe length judgment operation.
[図 8]室内ユニットの機種と、配管長と伝播時間との関係式、配管径 (ガス)、及び配 管径 (液)との対照データを表にして示した図である。  [FIG. 8] A table showing comparison data of indoor unit models, relational expressions between pipe length and propagation time, pipe diameter (gas), and pipe diameter (liquid).
[図 9]初期冷媒量判定運転のフローチャートである。  FIG. 9 is a flowchart of an initial refrigerant quantity determination operation.
[図 10]冷媒漏洩検知運転モードのフローチャートである。  FIG. 10 is a flowchart of a refrigerant leak detection operation mode.
[図 11]本発明の第 2実施形態に力かる空気調和装置の概略構成図である。  FIG. 11 is a schematic configuration diagram of an air conditioner according to a second embodiment of the present invention.
[図 12]第 2実施形態に力かる空気調和装置の制御ブロック図である。  FIG. 12 is a control block diagram of the air conditioner according to the second embodiment.
符号の説明  Explanation of symbols
[0012] 1、 101 空気調和装置 [0012] 1, 101 air conditioner
2 室外ユニット(熱源ユニット)  2 Outdoor unit (heat source unit)
4、 5 室内ユニット (利用ユニット) 6 液冷媒連絡配管 (冷媒連絡配管) 4, 5 Indoor unit (Usage unit) 6 Liquid refrigerant communication pipe (Refrigerant communication pipe)
7 ガス冷媒連絡配管 (冷媒連絡配管)  7 Gas refrigerant communication pipe (refrigerant communication pipe)
10、 110 冷媒回路  10, 110 Refrigerant circuit
21 圧縮機  21 Compressor
23 室外熱交換器 (熱源側熱交換器)  23 Outdoor heat exchanger (heat source side heat exchanger)
25 過冷却器 (温度調節機構)  25 Supercooler (Temperature adjustment mechanism)
41、 51 室内膨張弁 (膨張機構)  41, 51 Indoor expansion valve (expansion mechanism)
42、 52 室内熱交翻 (利用側熱交翻)  42, 52 Indoor heat exchange (use side heat exchange)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明 する。 Hereinafter, an embodiment of an air conditioner according to the present invention will be described based on the drawings.
[第 1実施形態]  [First embodiment]
(1)空気調和装置の構成  (1) Configuration of air conditioner
図 1は、本発明の第 1実施形態にかかる空気調和装置 1の概略構成図である。空 気調和装置 1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の室内 の冷暖房に使用される装置である。空気調和装置 1は、主として、 1台の熱源ユニット としての室外ユニット 2と、 1台の利用ユニットとしての室内ユニット 4と、室外ユニット 2 と室内ユニット 4とを接続する冷媒連絡配管としての液冷媒連絡配管 6及びガス冷媒 連絡配管 7とを備えている。すなわち、本実施形態の空気調和装置 1の蒸気圧縮式 の冷媒回路 10は、室外ユニット 2と、室内ユニット 4と、液冷媒連絡配管 6及びガス冷 媒連絡配管 7とが接続されることによって構成されている。  FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 1 according to the first embodiment of the present invention. The air conditioner 1 is an apparatus used for air conditioning in a room such as a building by performing a vapor compression refrigeration cycle operation. The air conditioner 1 is mainly composed of an outdoor unit 2 as one heat source unit, an indoor unit 4 as one utilization unit, and a liquid refrigerant as a refrigerant communication pipe connecting the outdoor unit 2 and the indoor unit 4. Connecting pipe 6 and gas refrigerant connecting pipe 7 are provided. That is, the vapor compression refrigerant circuit 10 of the air conditioner 1 of the present embodiment is configured by connecting the outdoor unit 2, the indoor unit 4, the liquid refrigerant communication pipe 6, and the gas refrigerant communication pipe 7. Has been.
[0014] <室内ユニット > [0014] <Indoor unit>
室内ユニット 4は、ビル等の室内の天井に埋め込みや吊り下げ等により、又は、室 内の壁面に壁掛け等により設置されている。室内ユニット 4は、液冷媒連絡配管 6及 びガス冷媒連絡配管 7を介して室外ユニット 2に接続されており、冷媒回路 10の一部 を構成している。  The indoor unit 4 is installed by being embedded or suspended in the ceiling of a room such as a building or by hanging on the wall surface of the room. The indoor unit 4 is connected to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 and constitutes a part of the refrigerant circuit 10.
次に、室内ユニット 4の構成について説明する。  Next, the configuration of the indoor unit 4 will be described.
室内ユニット 4は、主として、冷媒回路 10の一部を構成する室内側冷媒回路 10aを 有している。この室内側冷媒回路 10aは、主として、膨張機構としての室内膨張弁 41 と、利用側熱交^^としての室内熱交^^ 42とを有している。 The indoor unit 4 mainly includes an indoor refrigerant circuit 10a that forms part of the refrigerant circuit 10. Have. This indoor refrigerant circuit 10a mainly has an indoor expansion valve 41 as an expansion mechanism and an indoor heat exchanger 42 as a use side heat exchanger.
本実施形態において、室内膨張弁 41は、室内側冷媒回路 10a内を流れる冷媒の 流量の調節等を行うために、室内熱交換器 42の液側に接続された電動膨張弁であ る。  In the present embodiment, the indoor expansion valve 41 is an electric expansion valve connected to the liquid side of the indoor heat exchanger 42 in order to adjust the flow rate of the refrigerant flowing in the indoor refrigerant circuit 10a.
本実施形態において、室内熱交 は、伝熱管と多数のフィンとにより構成され たクロスフィン式のフィン 'アンド'チューブ型熱交換器であり、冷房運転時には冷媒 の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機 能して室内空気を加熱する熱交^^である。  In the present embodiment, the indoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. It is a heat exchanger that functions as a refrigerant condenser during heating operation to heat indoor air.
本実施形態において、室内ユニット 4は、ユニット内に室内空気を吸入して、室内熱 交 42において冷媒と熱交換させた後に、供給空気として室内に供給するための 送風ファンとしての室内ファン 43を有している。室内ファン 43は、室内熱交換器 42に 供給する空気の風量 Wrを可変することが可能なファンであり、本実施形態において 、 DCファンモータ力もなるモータ 43aによって駆動される遠心ファンや多翼ファン等 である。  In the present embodiment, the indoor unit 4 sucks indoor air into the unit, exchanges heat with the refrigerant in the indoor heat exchanger 42, and then supplies the indoor fan 43 as a blower fan to be supplied indoors as supply air. Have. The indoor fan 43 is a fan capable of changing the air volume Wr of air supplied to the indoor heat exchanger 42, and in this embodiment, the centrifugal fan or the multiblade fan driven by the motor 43a that also has DC fan motor power. Etc.
また、室内ユニット 4には、各種のセンサが設けられている。室内熱交換器 42の液 側には、冷媒の温度 (すなわち、暖房運転時における凝縮温度 Tc又は冷房運転時 における蒸発温度 Teに対応する冷媒温度)を検出する液側温度センサ 44が設けら れている。室内熱交換器 42のガス側には、冷媒の温度 Teoを検出するガス側温度セ ンサ 45が設けられている。室内ユニット 4の室内空気の吸入口側には、ユニット内に 流入する室内空気の温度 (すなわち、室内温度 Tr)を検出する室内温度センサ 46が 設けられている。本実施形態において、液側温度センサ 44、ガス側温度センサ 45及 び室内温度センサ 46は、サーミスタからなる。また、室内ユニット 4は、室内ユニット 4 を構成する各部の動作を制御する室内側制御部 47を有している。そして、室内側制 御部 47は、室内ユニット 4の制御を行うために設けられたマイクロコンピュータやメモ リ等を有しており、室内ユニット 4を個別に操作するためのリモコン(図示せず)との間 で制御信号等のやりとりを行ったり、室外ユニット 2との間で伝送線 8aを介して制御信 号等のやりとりを行うことができるようになって 、る。 [0016] <室外ユニット > The indoor unit 4 is provided with various sensors. On the liquid side of the indoor heat exchanger 42, a liquid side temperature sensor 44 that detects the temperature of the refrigerant (that is, the refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation) is provided. ing. A gas side temperature sensor 45 for detecting the refrigerant temperature Teo is provided on the gas side of the indoor heat exchanger 42. An indoor temperature sensor 46 for detecting the temperature of indoor air flowing into the unit (that is, the indoor temperature Tr) is provided on the indoor air inlet side of the indoor unit 4. In the present embodiment, the liquid side temperature sensor 44, the gas side temperature sensor 45, and the room temperature sensor 46 are composed of thermistors. The indoor unit 4 also has an indoor side control unit 47 that controls the operation of each part constituting the indoor unit 4. The indoor control unit 47 includes a microcomputer, a memory, and the like provided for controlling the indoor unit 4, and a remote controller (not shown) for individually operating the indoor unit 4. Control signals etc. can be exchanged with the outdoor unit 2 and control signals etc. can be exchanged with the outdoor unit 2 via the transmission line 8a. [0016] <Outdoor unit>
室外ユニット 2は、ビル等の室外に設置されており、液冷媒連絡配管 6及びガス冷 媒連絡配管 7を介して室内ユニット 4に接続されており、室内ユニット 4の間で冷媒回 路 10を構成している。  The outdoor unit 2 is installed outside a building or the like, and is connected to the indoor unit 4 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7, and the refrigerant circuit 10 is connected between the indoor units 4. It is composed.
次に、室外ユニット 2の構成について説明する。室外ユニット 2は、主として、冷媒回 路 10の一部を構成する室外側冷媒回路 10cを有している。この室外側冷媒回路 10 cは、主として、圧縮機 21と、四路切換弁 22と、熱源側熱交 としての室外熱交換 器 23と、膨張機構としての室外膨張弁 38と、アキュムレータ 24と、温度調節機構とし ての過冷却器 25と、液側閉鎖弁 26と、ガス側閉鎖弁 27とを有している。  Next, the configuration of the outdoor unit 2 will be described. The outdoor unit 2 mainly has an outdoor refrigerant circuit 10c that constitutes a part of the refrigerant circuit 10. This outdoor refrigerant circuit 10c mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23 as a heat source side heat exchange, an outdoor expansion valve 38 as an expansion mechanism, an accumulator 24, A supercooler 25 as a temperature adjusting mechanism, a liquid side closing valve 26 and a gas side closing valve 27 are provided.
圧縮機 21は、運転容量を可変することが可能な圧縮機であり、本実施形態におい て、インバータにより回転数 Rmが制御されるモータ 21aによって駆動される容積式圧 縮機である。本実施形態において、圧縮機 21は、 1台のみであるが、これに限定され ず、室内ユニットの接続台数等に応じて、 2台以上の圧縮機が並列に接続されてい てもよい。  The compressor 21 is a compressor whose operating capacity can be varied. In this embodiment, the compressor 21 is a positive displacement compressor driven by a motor 21a whose rotational speed Rm is controlled by an inverter. In the present embodiment, the number of the compressors 21 is only one, but is not limited to this, and two or more compressors may be connected in parallel according to the number of indoor units connected.
[0017] 四路切換弁 22は、冷媒の流れの方向を切り換えるための弁であり、冷房運転時に は、室外熱交 23を圧縮機 21によって圧縮される冷媒の凝縮器として、かつ、室 内熱交 42を室外熱交 23において凝縮される冷媒の蒸発器として機能させ るために、圧縮機 21の吐出側と室外熱交 23のガス側とを接続するとともに圧縮 機 21の吸入側 (具体的には、アキュムレータ 24)とガス冷媒連絡配管 7側とを接続し (図 1の四路切換弁 22の実線を参照)、暖房運転時には、室内熱交換器 42を圧縮機 21によって圧縮される冷媒の凝縮器として、かつ、室外熱交 を室内熱交換 器 42において凝縮される冷媒の蒸発器として機能させるために、圧縮機 21の吐出 側とガス冷媒連絡配管 7側とを接続するとともに圧縮機 21の吸入側と室外熱交換器 23のガス側とを接続することが可能である(図 1の四路切換弁 22の破線を参照)。  [0017] The four-way switching valve 22 is a valve for switching the direction of the refrigerant flow. During the cooling operation, the outdoor heat exchanger 23 is used as a refrigerant condenser compressed by the compressor 21, and the indoor In order for the heat exchanger 42 to function as an evaporator for the refrigerant condensed in the outdoor heat exchanger 23, the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected and the suction side of the compressor 21 (specifically Specifically, the accumulator 24) is connected to the gas refrigerant communication pipe 7 side (see the solid line of the four-way selector valve 22 in FIG. 1), and the indoor heat exchanger 42 is compressed by the compressor 21 during heating operation. In order to function as a refrigerant condenser and an outdoor heat exchanger as a refrigerant evaporator condensed in the indoor heat exchanger 42, the discharge side of the compressor 21 and the gas refrigerant communication pipe 7 side are connected and compressed. Connect the suction side of unit 21 to the gas side of outdoor heat exchanger 23. (Refer to the broken line of the four-way switching valve 22 in FIG. 1).
[0018] 本実施形態において、室外熱交 は、伝熱管と多数のフィンとにより構成され たクロスフィン式のフィン 'アンド'チューブ型熱交換器であり、冷房運転時には冷媒 の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交 であ る。室外熱交換器 23は、そのガス側が四路切換弁 22に接続され、その液側が液冷 媒連絡配管 6に接続されている。 [0018] In the present embodiment, the outdoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant condenser during cooling operation. This is heat exchange that functions as a refrigerant evaporator during heating operation. The outdoor heat exchanger 23 has its gas side connected to the four-way selector valve 22 and its liquid side liquid-cooled. Connected to the medium communication pipe 6.
本実施形態において、室外膨張弁 38は、室外側冷媒回路 10c内を流れる冷媒の 圧力や流量等の調節を行うために、室外熱交換器 23の液側に接続された電動膨張 弁である。  In the present embodiment, the outdoor expansion valve 38 is an electric expansion valve connected to the liquid side of the outdoor heat exchanger 23 in order to adjust the pressure and flow rate of the refrigerant flowing in the outdoor refrigerant circuit 10c.
本実施形態において、室外ユニット 2は、ユニット内に室外空気を吸入して、室外熱 交 23において冷媒と熱交換させた後に、室外に排出するための送風ファンとし ての室外ファン 28を有している。この室外ファン 28は、室外熱交^^ 23に供給する 空気の風量 Woを可変することが可能なファンであり、本実施形態において、 DCファ ンモータ力もなるモータ 28aによって駆動されるプロペラファン等である。  In the present embodiment, the outdoor unit 2 has an outdoor fan 28 as a blower fan for sucking outdoor air into the unit, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air outside. ing. The outdoor fan 28 is a fan capable of changing the air volume Wo of the air supplied to the outdoor heat exchanger ^ 23. In this embodiment, the outdoor fan 28 is a propeller fan or the like driven by a motor 28a having a DC fan motor power. is there.
[0019] アキュムレータ 24は、四路切換弁 22と圧縮機 21との間に接続されており、室内ュ ニット 4の運転負荷の変動等に応じて冷媒回路 10内に発生する余剰冷媒を溜めるこ とが可能な容器である。 [0019] The accumulator 24 is connected between the four-way switching valve 22 and the compressor 21, and stores excess refrigerant generated in the refrigerant circuit 10 in accordance with fluctuations in the operating load of the indoor unit 4. It is a container that can.
過冷却器 25は、本実施形態において、 2重管式の熱交換器であり、室外熱交換器 23にお 、て凝縮された後に、室内膨張弁 41に送られる冷媒を冷却するために設け られている。過冷却器 25は、本実施形態において、室外膨張弁 38と液側閉鎖弁 26 との間に接続されている。  In this embodiment, the supercooler 25 is a double-pipe heat exchanger, and is provided to cool the refrigerant that is condensed in the outdoor heat exchanger 23 and then sent to the indoor expansion valve 41. It has been. In the present embodiment, the supercooler 25 is connected between the outdoor expansion valve 38 and the liquid side closing valve 26.
本実施形態において、過冷却器 25の冷却源としてのバイパス冷媒回路 61が設け られている。尚、以下の説明では、冷媒回路 10からバイパス冷媒回路 61を除いた部 分を、便宜上、主冷媒回路と呼ぶことにする。  In the present embodiment, a bypass refrigerant circuit 61 as a cooling source for the subcooler 25 is provided. In the following description, the part excluding the bypass refrigerant circuit 61 from the refrigerant circuit 10 will be referred to as a main refrigerant circuit for convenience.
[0020] バイパス冷媒回路 61は、室外熱交 から室内膨張弁 41へ送られる冷媒のー 部を主冷媒回路力 分岐させて圧縮機 21の吸入側に戻すように主冷媒回路に接続 されている。具体的には、バイパス冷媒回路 61は、室外膨張弁 38から室内膨張弁 4 1に送られる冷媒の一部を室外熱交 と過冷却器 25との間の位置力も分岐さ せるように接続された分岐回路 6 laと、過冷却器 25のバイパス冷媒回路側の出口か ら圧縮機 21の吸入側に戻すように圧縮機 21の吸入側に接続された合流回路 61bと を有している。そして、分岐回路 61aには、バイパス冷媒回路 61を流れる冷媒の流量 を調節するためのバイパス膨張弁 62が設けられている。ここで、バイパス膨張弁 62 は、電動膨張弁力もなる。これにより、室外熱交 から室内膨張弁 41に送られ る冷媒は、過冷却器 25において、バイパス膨張弁 62によって減圧された後のバイパ ス冷媒回路 61を流れる冷媒によって冷却される。すなわち、過冷却器 25は、バイパ ス膨張弁 62の開度調節によって能力制御が行われることになる。 [0020] The bypass refrigerant circuit 61 is connected to the main refrigerant circuit so that a main part of the refrigerant sent from the outdoor heat exchanger to the indoor expansion valve 41 is branched to return to the suction side of the compressor 21. . Specifically, the bypass refrigerant circuit 61 is connected so that part of the refrigerant sent from the outdoor expansion valve 38 to the indoor expansion valve 41 also branches the positional force between the outdoor heat exchanger and the subcooler 25. And a junction circuit 61b connected to the suction side of the compressor 21 so as to return from the outlet on the bypass refrigerant circuit side of the subcooler 25 to the suction side of the compressor 21. The branch circuit 61a is provided with a bypass expansion valve 62 for adjusting the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61. Here, the bypass expansion valve 62 also has an electric expansion valve force. As a result, it is sent from the outdoor heat exchange to the indoor expansion valve 41. In the supercooler 25, the refrigerant that is cooled is cooled by the refrigerant that flows through the bypass refrigerant circuit 61 after being depressurized by the bypass expansion valve 62. That is, the capacity control of the subcooler 25 is performed by adjusting the opening degree of the bypass expansion valve 62.
液側閉鎖弁 26及びガス側閉鎖弁 27は、外部の機器,配管 (具体的には、液冷媒 連絡配管 6及びガス冷媒連絡配管 7)との接続口に設けられた弁である。液側閉鎖弁 26は、室外熱交翻23に接続されている。ガス側閉鎖弁 27は、四路切換弁 22に接 続されている。  The liquid side shutoff valve 26 and the gas side shutoff valve 27 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7). The liquid side closing valve 26 is connected to the outdoor heat exchanger 23. The gas side closing valve 27 is connected to the four-way switching valve 22.
また、室外ユニット 2には、各種のセンサが設けられている。具体的には、室外ュ- ット 2には、圧縮機 21の吸入圧力 Psを検出する吸入圧力センサ 29と、圧縮機 21の 吐出圧力 Pdを検出する吐出圧力センサ 30と、圧縮機 21の吸入温度 Tsを検出する 吸入温度センサ 31と、圧縮機 21の吐出温度 Tdを検出する吐出温度センサ 32とが 設けられている。吸入温度センサ 31は、アキュムレータ 24と圧縮機 21との間の位置 に設けられている。室外熱交換器 23には、室外熱交換器 23内を流れる冷媒の温度 (すなわち、冷房運転時における凝縮温度 Tc又は暖房運転時における蒸発温度 Te に対応する冷媒温度)を検出する熱交温度センサ 33が設けられている。室外熱交換 器 23の液側には、冷媒の温度 Tcoを検出する液側温度センサ 34が設けられて 、る 。過冷却器 25の主冷媒回路側の出口には、冷媒の温度 (すなわち、液管温度 Tip) を検出する液管温度センサ 35が設けられている。ノ ィパス冷媒回路 61の合流回路 6 lbには、過冷却器 25のバイパス冷媒回路側の出口を流れる冷媒の温度を検出する ためのバイパス温度センサ 63が設けられて!/、る。室外ユニット 2の室外空気の吸入口 側には、ユニット内に流入する室外空気の温度 (すなわち、室外温度 Ta)を検出する 室外温度センサ 36が設けられている。本実施形態において、吸入温度センサ 31、 吐出温度センサ 32、熱交温度センサ 33、液側温度センサ 34、液管温度センサ 35、 室外温度センサ 36及びバイノス温度センサ 63は、サーミスタからなる。また、室外ュ ニット 2は、室外ユニット 2を構成する各部の動作を制御する室外側制御部 37を有し ている。そして、室外側制御部 37は、室外ユニット 2の制御を行うために設けられた マイクロコンピュータ、メモリやモータ 21aを制御するインバータ回路等を有しており、 室内ユニット 4の室内側制御部 47との間で伝送線 8aを介して制御信号等のやりとり を行うことができるようになつている。すなわち、室内側制御部 47と室外側制御部 37 と制御部 37、 47間を接続する伝送線 8aとによって、空気調和装置 1全体の運転制 御を行う制御部 8が構成されて ヽる。 The outdoor unit 2 is provided with various sensors. Specifically, the outdoor unit 2 includes a suction pressure sensor 29 that detects the suction pressure Ps of the compressor 21, a discharge pressure sensor 30 that detects the discharge pressure Pd of the compressor 21, and the compressor 21. A suction temperature sensor 31 for detecting the suction temperature Ts and a discharge temperature sensor 32 for detecting the discharge temperature Td of the compressor 21 are provided. The suction temperature sensor 31 is provided at a position between the accumulator 24 and the compressor 21. The outdoor heat exchanger 23 includes a heat exchange temperature sensor that detects the temperature of the refrigerant flowing in the outdoor heat exchanger 23 (that is, the refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation or the evaporation temperature Te during the heating operation). 33 is provided. On the liquid side of the outdoor heat exchanger 23, a liquid side temperature sensor 34 for detecting the temperature Tco of the refrigerant is provided. A liquid pipe temperature sensor 35 that detects the temperature of the refrigerant (that is, the liquid pipe temperature Tip) is provided at the outlet of the subcooler 25 on the main refrigerant circuit side. The junction circuit 6 lb of the no-pass refrigerant circuit 61 is provided with a bypass temperature sensor 63 for detecting the temperature of the refrigerant flowing through the outlet of the subcooler 25 on the bypass refrigerant circuit side. An outdoor temperature sensor 36 for detecting the temperature of the outdoor air flowing into the unit (that is, the outdoor temperature Ta) is provided on the outdoor air inlet side of the outdoor unit 2. In the present embodiment, the suction temperature sensor 31, the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, the liquid pipe temperature sensor 35, the outdoor temperature sensor 36, and the binos temperature sensor 63 are composed of thermistors. The outdoor unit 2 also has an outdoor control unit 37 that controls the operation of each part constituting the outdoor unit 2. The outdoor control unit 37 includes a microcomputer provided for controlling the outdoor unit 2, a memory, an inverter circuit for controlling the motor 21a, and the like, and an indoor control unit 47 of the indoor unit 4 Control signals, etc., between them via transmission line 8a Is getting ready to do. That is, the control unit 8 that controls the operation of the entire air conditioner 1 is configured by the indoor control unit 47, the outdoor control unit 37, and the transmission line 8a that connects the control units 37 and 47.
[0022] 制御部 8は、図 2に示されるように、各種センサ 29〜36、 44〜46、 63の検出信号 を受けることができるように接続されるとともに、これらの検出信号等に基づいて各種 機器及び弁 21、 22、 24、 28a、 38、 41、 43a、 62を制御することができるように接続 されている。また、制御部 8には、後述の冷媒漏洩検知運転において、冷媒漏洩を検 知したことを知らせるための LED等力 なる警告表示部 9が接続されて 、る。ここで、 図 2は、空気調和装置 1の制御ブロック図である。 [0022] As shown in FIG. 2, the control unit 8 is connected so as to receive detection signals of various sensors 29 to 36, 44 to 46, and 63, and based on these detection signals and the like. It is connected so that various devices and valves 21, 22, 24, 28a, 38, 41, 43a, 62 can be controlled. Also, the control unit 8 is connected with a warning display unit 9 that is an LED or the like for notifying that a refrigerant leak has been detected in the refrigerant leak detection operation described later. Here, FIG. 2 is a control block diagram of the air conditioner 1.
<冷媒連絡配管 >  <Refrigerant piping>
冷媒連絡配管 6、 7は、空気調和装置 1をビル等の設置場所に設置する際に、現地 にて施工される冷媒配管であり、設置場所や室外ユニットと室内ユニットとの組み合 わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。このため、 例えば、新規に空気調和装置を設置する場合には、冷媒充填量を計算するために、 冷媒連絡配管 6、 7の長さゃ管径等の情報を正確に把握する必要があるが、その情 報管理ゃ冷媒量の計算自体が煩雑である。また、既設配管を利用して室内ユニット や室外ユニットを更新するような場合には、冷媒連絡配管 6、 7の長さゃ管径等の情 報が失われて 、ることがある。  Refrigerant communication pipes 6 and 7 are refrigerant pipes that are installed on site when the air conditioner 1 is installed in a building or other location, such as a combination of the installation location or outdoor unit and indoor unit. Depending on the installation conditions, those having various lengths and pipe diameters are used. For this reason, for example, when a new air conditioner is installed, it is necessary to accurately grasp information such as the length of the refrigerant communication pipes 6 and 7 in order to calculate the refrigerant charge amount. Therefore, the calculation of the refrigerant amount is complicated. In addition, when the existing unit is used to update the indoor unit or the outdoor unit, information such as the diameter of the refrigerant communication pipes 6 and 7 may be lost.
[0023] 以上のように、室内側冷媒回路 10aと、室外側冷媒回路 10cと、冷媒連絡配管 6、 7 とが接続されて、空気調和装置 1の冷媒回路 10が構成されている。また、この冷媒回 路 10は、バイパス冷媒回路 61と、バイパス冷媒回路 61を除く主冷媒回路とから構成 されていると言い換えることもできる。そして、本実施形態の空気調和装置 1は、室内 側制御部 47と室外側制御部 37と制御部 37、 47間を接続する伝送線 8aとから構成 される制御部 8によって、四路切換弁 22により冷房運転及び暖房運転を切り換えて 運転を行うとともに、室内ユニット 4の運転負荷に応じて、室外ユニット 2及び室内ュ- ット 4の各機器の制御を行うようになっている。 [0023] As described above, the indoor refrigerant circuit 10a, the outdoor refrigerant circuit 10c, and the refrigerant communication pipes 6 and 7 are connected to form the refrigerant circuit 10 of the air conditioner 1. In other words, the refrigerant circuit 10 is composed of a bypass refrigerant circuit 61 and a main refrigerant circuit excluding the bypass refrigerant circuit 61. The air conditioner 1 of the present embodiment includes a four-way switching valve by a control unit 8 including an indoor side control unit 47, an outdoor side control unit 37, and a transmission line 8a that connects the control units 37 and 47. The operation is switched between the cooling operation and the heating operation by 22 and the devices of the outdoor unit 2 and the indoor unit 4 are controlled according to the operation load of the indoor unit 4.
(2)空気調和装置の動作  (2) Operation of the air conditioner
次に、本実施形態の空気調和装置 1の動作について説明する。 [0024] 本実施形態の空気調和装置 1の運転モードとしては、室内ユニット 4の運転負荷に 応じて室外ユニット 2及び室内ユニット 4の構成機器の制御を行う通常運転モードと、 空気調和装置 1の構成機器の設置後 (具体的には、最初の機器設置後に限られず、 例えば、室内ユニット等の構成機器を追加や撤去する等の改造後や機器の故障を 修理した後等も含まれる)に行われる試運転を行うための試運転モードと、試運転を 終了して通常運転を開始した後において、冷媒回路 10からの冷媒の漏洩の有無を 判定する冷媒漏洩検知運転モードとがある。そして、通常運転モードには、主として 、室内の冷房を行う冷房運転と、室内の暖房を行う暖房運転とが含まれている。また 、試運転モードには、主として、冷媒回路 10内に冷媒を充填する冷媒自動充填運転 と、冷媒連絡配管 6、 7の配管長を検知する配管長判定運転と、構成機器を設置した 後又は冷媒回路内に冷媒を充填した後の初期冷媒量を検知する初期冷媒量検知 運転とが含まれている。 Next, the operation of the air conditioner 1 of the present embodiment will be described. [0024] The operation mode of the air conditioner 1 of the present embodiment includes a normal operation mode for controlling the components of the outdoor unit 2 and the indoor unit 4 in accordance with the operation load of the indoor unit 4, and the air conditioner 1 After installation of component equipment (specifically, not limited to after installation of the first equipment, for example, after modification such as addition or removal of component equipment such as indoor units, or after repair of equipment failure) There are a test operation mode for performing the test operation to be performed and a refrigerant leak detection operation mode for determining whether or not the refrigerant leaks from the refrigerant circuit 10 after the test operation is finished and the normal operation is started. The normal operation mode mainly includes a cooling operation for cooling the room and a heating operation for heating the room. The test operation mode mainly includes an automatic refrigerant filling operation for filling the refrigerant in the refrigerant circuit 10, a pipe length determination operation for detecting the pipe length of the refrigerant communication pipes 6 and 7, and after the installation of the constituent devices or the refrigerant And an initial refrigerant quantity detection operation for detecting the initial refrigerant quantity after the refrigerant is filled in the circuit.
[0025] 以下、空気調和装置 1の各運転モードにおける動作について説明する。  [0025] Hereinafter, the operation of each operation mode of the air conditioner 1 will be described.
<通常運転モード >  <Normal operation mode>
(冷房運転)  (Cooling operation)
まず、通常運転モードにおける冷房運転について、図 1及び図 2を用いて説明する 冷房運転時は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21 の吐出側が室外熱交換器 23のガス側に接続され、かつ、圧縮機 21の吸入側がガス 側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42のガス側に接続され た状態となっている。室外膨張弁 38は、全開状態にされている。液側閉鎖弁 26及び ガス側閉鎖弁 27は、開状態にされている。室内膨張弁 41は、室内熱交翻 42の出 口(すなわち、室内熱交換器 42のガス側)における冷媒の過熱度 SHrが過熱度目標 値 SHrsで一定になるように開度調節されるようになっている。本実施形態において、 室内熱交換器 42の出口における冷媒の過熱度 SHrは、ガス側温度センサ 45により 検出される冷媒温度値から液側温度センサ 44により検出される冷媒温度値 (蒸発温 度 Teに対応)を差し引くことによって検出される力、又は、吸入圧力センサ 29により 検出される圧縮機 21の吸入圧力 Psを蒸発温度 Teに対応する飽和温度値に換算し 、ガス側温度センサ 45により検出される冷媒温度値からこの冷媒の飽和温度値を差 し引くことによって検出される。尚、本実施形態では採用していないが、室内熱交換 器 42内を流れる冷媒の温度を検出する温度センサを設けて、この温度センサにより 検出される蒸発温度 Teに対応する冷媒温度値を、ガス側温度センサ 45により検出さ れる冷媒温度値力 差し引くことによって、室内熱交 の出口における冷媒の 過熱度 SHrを検出するようにしてもよい。また、バイパス膨張弁 62は、過冷却器 25の バイパス冷媒回路側の出口における冷媒の過熱度 SHbが過熱度目標値 SHbsにな るように開度調節されるようになっている。本実施形態において、過冷却器 25のバイ パス冷媒回路側の出口における冷媒の過熱度 SHbは、吸入圧力センサ 29により検 出される圧縮機 21の吸入圧力 Psを蒸発温度 Teに対応する飽和温度値に換算し、 バイパス温度センサ 63により検出される冷媒温度値力もこの冷媒の飽和温度値を差 し引くことによって検出される。尚、本実施形態では採用していないが、過冷却器 25 のバイノス冷媒回路側の入口に温度センサを設けて、この温度センサにより検出さ れる冷媒温度値をバイパス温度センサ 63により検出される冷媒温度値力も差し引くこ とによって、過冷却器 25のバイパス冷媒回路側の出口における冷媒の過熱度 SHb を検出するようにしてもよい。 First, the cooling operation in the normal operation mode will be described with reference to FIGS. 1 and 2. During the cooling operation, the four-way switching valve 22 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is the outdoor heat. It is connected to the gas side of the exchanger 23, and the suction side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42 via the gas side closing valve 27 and the gas refrigerant communication pipe 7. The outdoor expansion valve 38 is fully opened. The liquid side closing valve 26 and the gas side closing valve 27 are opened. The opening of the indoor expansion valve 41 is adjusted so that the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchanger 42 (that is, the gas side of the indoor heat exchanger 42) becomes constant at the superheat degree target value SHrs. It has become. In the present embodiment, the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchanger 42 is calculated from the refrigerant temperature value detected by the gas side temperature sensor 45 to the refrigerant temperature value detected by the liquid side temperature sensor 44 (evaporation temperature Te The suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29, or the saturation temperature value corresponding to the evaporation temperature Te. This is detected by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the gas side temperature sensor 45. Although not adopted in this embodiment, a temperature sensor for detecting the temperature of the refrigerant flowing in the indoor heat exchanger 42 is provided, and the refrigerant temperature value corresponding to the evaporation temperature Te detected by this temperature sensor is By subtracting the refrigerant temperature value detected by the gas side temperature sensor 45, the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchange may be detected. Further, the opening of the bypass expansion valve 62 is adjusted so that the superheat degree SHb of the refrigerant at the outlet of the supercooler 25 on the bypass refrigerant circuit side becomes the superheat degree target value SHbs. In the present embodiment, the superheat degree SHb of the refrigerant at the outlet of the bypass refrigerant circuit side of the supercooler 25 is the saturation temperature value corresponding to the evaporation temperature Te, which is the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29. The refrigerant temperature value force detected by the bypass temperature sensor 63 is also detected by subtracting the saturation temperature value of this refrigerant. Although not adopted in this embodiment, a temperature sensor is provided at the inlet of the supercooler 25 on the binos refrigerant circuit side, and the refrigerant temperature value detected by this temperature sensor is detected by the bypass temperature sensor 63. By subtracting the temperature value force, the superheat degree SHb of the refrigerant at the outlet of the subcooler 25 on the bypass refrigerant circuit side may be detected.
この冷媒回路 10の状態で、圧縮機 21、室外ファン 28及び室内ファン 43を起動す ると、低圧のガス冷媒は、圧縮機 21に吸入されて圧縮されて高圧のガス冷媒となる。 その後、高圧のガス冷媒は、四路切換弁 22を経由して室外熱交換器 23に送られて 、室外ファン 28によって供給される室外空気と熱交換を行って凝縮して高圧の液冷 媒となる。そして、この高圧の液冷媒は、室外膨張弁 38を通過して、過冷却器 25に 流入し、バイパス冷媒回路 61を流れる冷媒と熱交換を行ってさらに冷却されて過冷 却状態になる。このとき、室外熱交 において凝縮した高圧の液冷媒の一部は 、 ノ ィパス冷媒回路 61に分岐され、バイパス膨張弁 62によって減圧された後に、圧 縮機 21の吸入側に戻される。ここで、バイノ ス膨張弁 62を通過する冷媒は、圧縮機 21の吸入圧力 Ps近くまで減圧されることで、その一部が蒸発する。そして、バイパス 冷媒回路 61のバイパス膨張弁 62の出口力も圧縮機 21の吸入側に向かって流れる 冷媒は、過冷却器 25を通過して、主冷媒回路側の室外熱交換器 23から室内ュ-ッ ト 4へ送られる高圧の液冷媒と熱交換を行う。 When the compressor 21, the outdoor fan 28, and the indoor fan 43 are started in the state of the refrigerant circuit 10, the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the outdoor heat exchanger 23 via the four-way switching valve 22, exchanges heat with the outdoor air supplied by the outdoor fan 28, and condenses to condense. It becomes. Then, the high-pressure liquid refrigerant passes through the outdoor expansion valve 38 and flows into the supercooler 25, and is further cooled by exchanging heat with the refrigerant flowing through the bypass refrigerant circuit 61 to be in a supercooled state. At this time, a part of the high-pressure liquid refrigerant condensed in the outdoor heat exchange is branched to the no-pass refrigerant circuit 61, and after being depressurized by the bypass expansion valve 62, is returned to the suction side of the compressor 21. Here, a part of the refrigerant passing through the binos expansion valve 62 is evaporated by being reduced to near the suction pressure Ps of the compressor 21. The outlet force of the bypass expansion valve 62 of the bypass refrigerant circuit 61 also flows toward the suction side of the compressor 21, passes through the subcooler 25, and passes from the outdoor heat exchanger 23 on the main refrigerant circuit side to the indoor refrigerant. Tsu Heat exchange with high-pressure liquid refrigerant sent to
[0027] そして、過冷却状態になった高圧の液冷媒は、液側閉鎖弁 26及び液冷媒連絡配 管 6を経由して、室内ユニット 4に送られる。この室内ユニット 4に送られた高圧の液冷 媒は、室内膨張弁 41によって圧縮機 21の吸入圧力 Ps近くまで減圧されて低圧の気 液二相状態の冷媒となって室内熱交 に送られ、室内熱交 において 室内空気と熱交換を行って蒸発して低圧のガス冷媒となる。 [0027] Then, the high-pressure liquid refrigerant in a supercooled state is sent to the indoor unit 4 via the liquid side closing valve 26 and the liquid refrigerant communication pipe 6. The high-pressure liquid coolant sent to the indoor unit 4 is reduced to near the suction pressure Ps of the compressor 21 by the indoor expansion valve 41 to become a low-pressure gas-liquid two-phase refrigerant and sent to the indoor heat exchanger. In the heat exchange in the room, heat is exchanged with the room air to evaporate into a low-pressure gas refrigerant.
この低圧のガス冷媒は、ガス冷媒連絡配管 7を経由して室外ユニット 2に送られ、ガ ス側閉鎖弁 27及び四路切換弁 22を経由して、アキュムレータ 24に流入する。そして 、アキュムレータ 24に流入した低圧のガス冷媒は、再び、圧縮機 21に吸入される。  This low-pressure gas refrigerant is sent to the outdoor unit 2 via the gas refrigerant communication pipe 7 and flows into the accumulator 24 via the gas side closing valve 27 and the four-way switching valve 22. Then, the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
(暖房運転)  (Heating operation)
次に、通常運転モードにおける暖房運転について説明する。  Next, the heating operation in the normal operation mode will be described.
[0028] 暖房運転時は、四路切換弁 22が図 1の破線で示される状態、すなわち、圧縮機 21 の吐出側がガス側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42のガ ス側に接続され、かつ、圧縮機 21の吸入側が室外熱交換器 23のガス側に接続され た状態となっている。室外膨張弁 38は、室外熱交翻23に流入する冷媒を室外熱 交 23において蒸発させることが可能な圧力(すなわち、蒸発圧力 Pe)まで減圧 するために開度調節されるようになっている。また、液側閉鎖弁 26及びガス側閉鎖弁 27は、開状態にされている。室内膨張弁 41は、室内熱交 の出口における冷 媒の過冷却度 SCrが過冷却度目標値 SCrsで一定になるように開度調節されるように なっている。本実施形態において、室内熱交換器 42の出口における冷媒の過冷却 度 SCrは、吐出圧力センサ 30により検出される圧縮機 21の吐出圧力 Pdを凝縮温度 Tcに対応する飽和温度値に換算し、この冷媒の飽和温度値力 液側温度センサ 44 により検出される冷媒温度値を差し引くことによって検出される。尚、本実施形態では 採用して 、な 、が、室内熱交 内を流れる冷媒の温度を検出する温度センサ を設けて、この温度センサにより検出される凝縮温度 Tcに対応する冷媒温度値を、 液側温度センサ 44により検出される冷媒温度値力 差し引くことによって室内熱交 翻 42の出口における冷媒の過冷却度 SCrを検出するようにしてもよい。また、バイ パス膨張弁 62は、閉止されている。 [0029] この冷媒回路 10の状態で、圧縮機 21、室外ファン 28及び室内ファン 43を起動す ると、低圧のガス冷媒は、圧縮機 21に吸入されて圧縮されて高圧のガス冷媒となり、 四路切換弁 22、ガス側閉鎖弁 27及びガス冷媒連絡配管 7を経由して、室内ユニット 4に送られる。 [0028] During the heating operation, the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the indoor heat exchanger 42 via the gas-side stop valve 27 and the gas refrigerant communication pipe 7. And the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23. The degree of opening of the outdoor expansion valve 38 is adjusted so as to reduce the refrigerant flowing into the outdoor heat exchanger 23 to a pressure at which the refrigerant can evaporate in the outdoor heat exchanger 23 (that is, the evaporation pressure Pe). . Further, the liquid side closing valve 26 and the gas side closing valve 27 are opened. The opening degree of the indoor expansion valve 41 is adjusted so that the degree of supercooling SCr of the refrigerant at the outlet of the indoor heat exchange becomes constant at the supercooling degree target value SCrs. In the present embodiment, the refrigerant subcooling degree SCr at the outlet of the indoor heat exchanger 42 is converted from the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30 to a saturation temperature value corresponding to the condensation temperature Tc, The refrigerant is detected by subtracting the refrigerant temperature value detected by the liquid temperature sensor 44. In this embodiment, a temperature sensor for detecting the temperature of the refrigerant flowing in the indoor heat exchanger is provided, and the refrigerant temperature value corresponding to the condensation temperature Tc detected by the temperature sensor is set as follows. The subcooling degree SCr of the refrigerant at the outlet of the indoor heat exchanger 42 may be detected by subtracting the refrigerant temperature value detected by the liquid side temperature sensor 44. The bypass expansion valve 62 is closed. [0029] When the compressor 21, the outdoor fan 28, and the indoor fan 43 are started in the state of the refrigerant circuit 10, the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant. It is sent to the indoor unit 4 via the four-way switching valve 22, the gas side closing valve 27 and the gas refrigerant communication pipe 7.
そして、室内ユニット 4に送られた高圧のガス冷媒は、室外熱交換器 42において、 室内空気と熱交換を行って凝縮して高圧の液冷媒となった後、室内膨張弁 41を通 過する際に、室内膨張弁 41の弁開度に応じて減圧される。  The high-pressure gas refrigerant sent to the indoor unit 4 is condensed by exchanging heat with the indoor air in the outdoor heat exchanger 42 to become a high-pressure liquid refrigerant, and then passes through the indoor expansion valve 41. At this time, the pressure is reduced according to the opening degree of the indoor expansion valve 41.
この室内膨張弁 41を通過した冷媒は、液冷媒連絡配管 6を経由して室外ユニット 2 に送られ、液側閉鎖弁 26、過冷却器 25及び室外膨張弁 38を経由してさらに減圧さ れた後に、室外熱交換器 23に流入する。そして、室外熱交換器 23に流入した低圧 の気液二相状態の冷媒は、室外ファン 28によって供給される室外空気と熱交換を行 つて蒸発して低圧のガス冷媒となり、四路切換弁 22を経由してアキュムレータ 24に 流入する。そして、アキュムレータ 24に流入した低圧のガス冷媒は、再び、圧縮機 21 に吸入される。  The refrigerant that has passed through the indoor expansion valve 41 is sent to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and further depressurized via the liquid side closing valve 26, the subcooler 25, and the outdoor expansion valve 38. After that, it flows into the outdoor heat exchanger 23. The low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 28 to evaporate into a low-pressure gas refrigerant. Flows into the accumulator 24. Then, the low-pressure gas refrigerant flowing into the accumulator 24 is again sucked into the compressor 21.
[0030] 以上のような通常運転モードにおける運転制御は、冷房運転及び暖房運転を含む 通常運転を行う通常運転制御手段として機能する制御部 8 (より具体的には、室内側 制御部 47と室外側制御部 37と制御部 37、 47間を接続する伝送線 8a)によって行わ れる。  [0030] The operation control in the normal operation mode as described above is performed by the control unit 8 (more specifically, the indoor side control unit 47 and the room functioning as normal operation control means for performing normal operation including cooling operation and heating operation). This is performed by the transmission line 8a) connecting the outer control unit 37 and the control units 37 and 47.
<試運転モード >  <Test run mode>
次に、試運転モードについて、図 1〜図 3を用いて説明する。ここで、図 3は、試運 転モードのフローチャートである。本実施形態において、試運転モードでは、まず、ス テツプ S1の冷媒自動充填運転が行われ、続いて、ステップ S2の配管長判定運転が 行われ、さらに、ステップ S3の初期冷媒量検知運転が行われる。  Next, the trial operation mode will be described with reference to FIGS. Here, Fig. 3 is a flowchart of the test operation mode. In the present embodiment, in the test operation mode, first, the automatic refrigerant charging operation in step S1 is performed, then the pipe length determination operation in step S2 is performed, and further, the initial refrigerant amount detection operation in step S3 is performed. .
本実施形態では、冷媒が予め充填された室外ユニット 2と、室内ユニット 4とをビル 等の設置場所に設置し、液冷媒連絡配管 6及びガス冷媒連絡配管 7を介して接続し て冷媒回路 10を構成した後に、液冷媒連絡配管 6及びガス冷媒連絡配管 7の容積 に応じて不足する冷媒を冷媒回路 10内に追加充填する場合を例にして説明する。  In the present embodiment, the outdoor unit 2 pre-filled with the refrigerant and the indoor unit 4 are installed at an installation location such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 to form the refrigerant circuit 10. An example in which the refrigerant circuit 10 is additionally filled with a refrigerant that is insufficient in accordance with the volumes of the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 after the above-described configuration will be described.
[0031] (ステップ S1:冷媒自動充填運転) まず、室外ユニット 2の液側閉鎖弁 26及びガス側閉鎖弁 27を開けて、室外ユニット 2に予め充填されている冷媒を冷媒回路 10内に充満させる。 [0031] (Step S1: Automatic refrigerant charging operation) First, the liquid side shutoff valve 26 and the gas side shutoff valve 27 of the outdoor unit 2 are opened, and the refrigerant circuit 10 is filled with the refrigerant filled in the outdoor unit 2 in advance.
次に、試運転を行う作業者が、追加充填用の冷媒ボンべを冷媒回路 10のサービス ポート(図示せず)に接続し、制御部 8に対して直接に又はリモコン(図示せず)等を 通じて遠隔から試運転を開始する指令を出すと、制御部 8によって、図 4に示されるス テツプ S11〜ステップ S13の処理が行われる。ここで、図 4は、冷媒自動充填運転の フローチャートである。  Next, an operator who performs a test run connects a refrigerant cylinder for additional charging to a service port (not shown) of the refrigerant circuit 10 and directly or remotely controls the control unit 8. When a command to start a trial run from a remote location is issued, the control unit 8 performs steps S11 to S13 shown in FIG. Here, FIG. 4 is a flowchart of the automatic refrigerant charging operation.
(ステップ S 11:冷媒量判定運転)  (Step S11: Refrigerant amount judgment operation)
冷媒自動充填運転の開始指令がなされると、冷媒回路 10が、室外ユニット 2の四路 切換弁 22が図 1の実線で示される状態で、かつ、室内ユニット 4の室内膨張弁 41及 び室外膨張弁 38が開状態となり、圧縮機 21、室外ファン 28及び室内ファン 43が起 動されて、冷房運転が行われる。  When a command to start the automatic refrigerant charging operation is issued, the refrigerant circuit 10 is in a state where the four-way switching valve 22 of the outdoor unit 2 is shown by the solid line in FIG. 1 and the indoor expansion valve 41 and the outdoor unit of the indoor unit 4 The expansion valve 38 is opened, the compressor 21, the outdoor fan 28, and the indoor fan 43 are started, and the cooling operation is performed.
すると、図 5に示されるように、冷媒回路 10において、圧縮機 21から凝縮器として 機能する室外熱交 までの流路には圧縮機 21において圧縮されて吐出され た高圧のガス冷媒が流れ(図 5の斜線のハッチング部分のうち圧縮機 21から室外熱 交換器 23までの部分を参照)、凝縮器として機能する室外熱交換器 23には室外空 気との熱交換によってガス状態から液状態に相変化する高圧の冷媒が流れ (図 5の 斜線のハッチング及び黒塗りのハッチングの部分のうち室外熱交換器 23に対応する 部分を参照)、室外熱交換器 23から室内膨張弁 41までの室外膨張弁 38、過冷却器 25の主冷媒回路側の部分及び液冷媒連絡配管 6を含む流路と室外熱交換器 23か らバイパス膨張弁 62までの流路には高圧の液冷媒が流れ(図 5の黒塗りのハツチン グ部分のうち室外熱交翻 23から室内膨張弁 41及びバイパス膨張弁 62までの部 分を参照)、蒸発器として機能する室内熱交 の部分と過冷却器 25のバイパス 冷媒回路側の部分とには室内空気との熱交換によって気液二相状態力 ガス状態 に相変化する低圧の冷媒が流れ(図 5の格子状のハッチング及び斜線のハッチング の部分のうち室内熱交換器 42の部分と過冷却器 25の部分を参照)、室内熱交換器 42から圧縮機 21までのガス冷媒連絡配管 7及びアキュムレータ 24を含む流路と過 冷却器 25のバイパス冷媒回路側の部分力も圧縮機 21までの流路とには低圧のガス 冷媒が流れるようになる(図 5の斜線のハッチングの部分のうち室内熱交換器 42から 圧縮機 21までの部分と過冷却器 25のバイパス冷媒回路側の部分力も圧縮機 21ま での部分とを参照)。図 5は、冷媒量判定運転における冷媒回路 10内を流れる冷媒 の状態を示す模式図(四路切換弁 22等の図示を省略)である。 Then, as shown in FIG. 5, in the refrigerant circuit 10, the high-pressure gas refrigerant compressed and discharged in the compressor 21 flows through the flow path from the compressor 21 to the outdoor heat exchange functioning as a condenser ( (Refer to the hatched part in Fig. 5 from the compressor 21 to the outdoor heat exchanger 23), and the outdoor heat exchanger 23 functioning as a condenser is changed from a gas state to a liquid state by heat exchange with the outdoor air. (Refer to the portion corresponding to the outdoor heat exchanger 23 in the hatched and black hatched portions in FIG. 5), and the flow from the outdoor heat exchanger 23 to the indoor expansion valve 41 High-pressure liquid refrigerant flows through the flow path including the outdoor expansion valve 38, the part on the main refrigerant circuit side of the subcooler 25 and the liquid refrigerant communication pipe 6 and the flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62. (Outdoor heat in the black-hatched area in Figure 5 (Refer to the part from the inversion 23 to the indoor expansion valve 41 and the bypass expansion valve 62), the indoor heat exchange part functioning as an evaporator and the bypass refrigerant circuit side part of the subcooler 25 Low-pressure refrigerant that changes phase into a gas-liquid phase due to heat exchange flows (the indoor heat exchanger 42 part and the supercooler 25 part in the grid-like hatched and hatched parts in Fig. 5) ), The flow path including the gas refrigerant communication pipe 7 and the accumulator 24 from the indoor heat exchanger 42 to the compressor 21 and the partial force on the bypass refrigerant circuit side of the subcooler 25 are also included in the flow path to the compressor 21. Low pressure gas The refrigerant begins to flow (the hatched portion in Fig. 5 is the portion from the indoor heat exchanger 42 to the compressor 21 and the partial force on the bypass refrigerant circuit side of the subcooler 25 is also the portion up to the compressor 21. See). FIG. 5 is a schematic diagram showing the state of the refrigerant flowing in the refrigerant circuit 10 in the refrigerant quantity determination operation (illustration of the four-way switching valve 22 and the like is omitted).
[0033] 次に、以下のような機器制御を行って、冷媒回路 10内を循環する冷媒の状態を安 定させる運転に移行する。具体的には、蒸発器として機能する室内熱交 42の過 熱度 SHrが一定になるように室内膨張弁 41を制御(以下、過熱度制御とする)し、蒸 発圧力 Peが一定になるように圧縮機 21の運転容量を制御(以下、蒸発圧力制御と する)し、室外熱交 における冷媒の凝縮圧力 Pcが一定になるように、室外フ アン 28によって室外熱交換器 23に供給される室外空気の風量 Woを制御(以下、凝 縮圧力制御とする)し、過冷却器 25から室内膨張弁 41に送られる冷媒の温度が一 定になるように過冷却器 25の能力を制御(以下、液管温度制御とする)し、上述の蒸 発圧力制御によって冷媒の蒸発圧力 Peが安定的に制御されるように、室内ファン 43 によって室内熱交^^ 42に供給される室内空気の風量 Wrを一定にしている。  Next, the following device control is performed to shift to an operation for stabilizing the state of the refrigerant circulating in the refrigerant circuit 10. Specifically, the indoor expansion valve 41 is controlled so that the superheat degree SHr of the indoor heat exchanger 42 functioning as an evaporator becomes constant (hereinafter referred to as superheat degree control) so that the evaporation pressure Pe becomes constant. Then, the operation capacity of the compressor 21 is controlled (hereinafter referred to as evaporation pressure control) and supplied to the outdoor heat exchanger 23 by the outdoor fan 28 so that the refrigerant condensing pressure Pc in the outdoor heat exchange becomes constant. Controls the air volume Wo of the outdoor air (hereinafter referred to as condensing pressure control) and controls the capacity of the subcooler 25 so that the temperature of the refrigerant sent from the subcooler 25 to the indoor expansion valve 41 is constant ( In the following, the liquid pipe temperature control is performed), and the indoor fan 43 supplies the indoor heat exchange to the indoor heat exchanger ^ 42 so that the evaporation pressure Pe of the refrigerant is stably controlled by the above-described evaporation pressure control. Air volume Wr is kept constant.
[0034] ここで、蒸発圧力制御を行うのは、蒸発器として機能する室内熱交換器 42内には 室内空気との熱交換によって気液二相状態力 ガス状態に相変化しながら低圧の冷 媒が流れる室内熱交換器 42内(図 5の格子状のハッチング及び斜線のハッチングの 部分のうち室内熱交換器 42に対応する部分を参照、以下、蒸発器部 Cとする)にお ける冷媒量が、冷媒の蒸発圧力 Peに大きく影響する力もである。そして、ここでは、ィ ンバータにより回転数 Rmが制御されるモータ 21aによって圧縮機 21の運転容量を 制御することによって、室内熱交換器 42における冷媒の蒸発圧力 Peを一定にして、 蒸発器部 C内を流れる冷媒の状態を安定させて、主として、蒸発圧力 Peによって蒸 発器 C内における冷媒量が変化する状態を作り出している。尚、本実施形態の圧縮 機 21による蒸発圧力 Peの制御においては、室内熱交換器 42の液側温度センサ 44 により検出される冷媒温度値 (蒸発温度 Teに対応)を飽和圧力値に換算して、この 圧力値が低圧目標値 Pesで一定になるように、圧縮機 21の運転容量を制御して (す なわち、モータ 21aの回転数 Rmを変化させる制御を行って)、冷媒回路 10内を流れ る冷媒循環量 Wcを増減することによって実現されている。尚、本実施形態では採用 して 、な 、が、室内熱交 における冷媒の蒸発圧力 Peにおける冷媒の圧力に 等価な運転状態量である、吸入圧力センサ 29によって検出される圧縮機 21の吸入 圧力 Psが、低圧目標値 Pesで一定になるように、又は、吸入圧力 Psに対応する飽和 温度値 (蒸発温度 Teに対応)が、低圧目標値 Tesで一定になるように、圧縮機 21の 運転容量を制御してもよいし、室内熱交換器 42の液側温度センサ 44により検出され る冷媒温度値 (蒸発温度 Teに対応)が、低圧目標値 Tesで一定になるように、圧縮機 21の運転容量を制御してもよい。 Here, the evaporation pressure control is performed in the indoor heat exchanger 42 functioning as an evaporator, in a gas-liquid two-phase state force by heat exchange with room air, and a low-pressure cooling while changing phase to a gas state. Refrigerant in the indoor heat exchanger 42 through which the medium flows (refer to the portion corresponding to the indoor heat exchanger 42 in the grid-shaped hatched and hatched portions in FIG. 5 and hereinafter referred to as the evaporator section C). The amount is also a force that greatly affects the evaporation pressure Pe of the refrigerant. And here, by controlling the operating capacity of the compressor 21 by the motor 21a whose rotation speed Rm is controlled by the inverter, the evaporation pressure Pe of the refrigerant in the indoor heat exchanger 42 is made constant, and the evaporator section C The state of the refrigerant flowing inside is stabilized, and a state in which the amount of refrigerant in the evaporator C is changed mainly by the evaporation pressure Pe is created. In the control of the evaporation pressure Pe by the compressor 21 of the present embodiment, the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensor 44 of the indoor heat exchanger 42 is converted into a saturation pressure value. Thus, the operating capacity of the compressor 21 is controlled so that the pressure value becomes constant at the low pressure target value Pes (that is, control for changing the rotational speed Rm of the motor 21a), and the refrigerant circuit 10 This is achieved by increasing or decreasing the amount of refrigerant circulating in the interior, Wc. In this embodiment, it is adopted However, the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29, which is an operation state quantity equivalent to the refrigerant pressure at the refrigerant evaporating pressure Pe in the indoor heat exchange, is the low pressure target value Pes. Or the operating capacity of the compressor 21 may be controlled so that the saturation temperature value corresponding to the suction pressure Ps (corresponding to the evaporation temperature Te) becomes constant at the low pressure target value Tes. The operating capacity of the compressor 21 is controlled so that the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensor 44 of the indoor heat exchanger 42 is constant at the low pressure target value Tes. Also good.
そして、このような蒸発圧力制御を行うことによって、室内熱交換器 42から圧縮機 2 1までのガス冷媒連絡配管 7及びアキュムレータ 24を含む冷媒配管内(図 5の斜線の ハッチングの部分のうち室内熱交換器 42から圧縮機 21までの部分を参照、以下、ガ ス冷媒流通部 Dとする)を流れる冷媒の状態も安定して、主として、ガス冷媒流通部 D における冷媒の圧力に等価な運転状態量である、蒸発圧力 Pe (すなわち、吸入圧力 Ps)によってガス冷媒流通部 D内における冷媒量が変化する状態を作り出して 、る。 また、凝縮圧力制御を行うのは、室外空気との熱交換によってガス状態力も液状態 に相変化しながら高圧の冷媒が流れる室外熱交^^ 23内(図 5の斜線のハッチング 及び黒塗りのハッチングの部分のうち室外熱交換器 23に対応する部分を参照、以下 、凝縮器部 Aとする)における冷媒量が、冷媒の凝縮圧力 Pcに大きく影響する力もで ある。そして、この凝縮器部 Aにおける冷媒の凝縮圧力 Pcは、室外温度 Taの影響よ り大きく変化するため、モータ 28aにより室外ファン 28から室外熱交換器 23に供給す る室内空気の風量 Woを制御することによって、室外熱交換器 23における冷媒の凝 縮圧力 Pcを一定にして、凝縮器部 A内を流れる冷媒の状態を安定させて、主として 、室外熱交換器 23の液側 (以下、冷媒量判定運転に関する説明では、室外熱交換 器 23の出口とする)における過冷却度 SCoによって凝縮器 A内における冷媒量が変 化する状態を作り出している。尚、本実施形態の室外ファン 28による凝縮圧力 Pcの 制御においては、室外熱交換器 23における冷媒の凝縮圧力 Pcに等価な運転状態 量である、吐出圧力センサ 30によって検出される圧縮機 21の吐出圧力 Pd、又は、 熱交温度センサ 33によって検出される室外熱交換器 23内を流れる冷媒の温度 (す なわち、凝縮温度 Tc)が用いられる。 [0036] そして、このような凝縮圧力制御を行うことによって、室外熱交 から室内膨 張弁 41までの室外膨張弁 38、過冷却器 25の主冷媒回路側の部分及び液冷媒連 絡配管 6を含む流路と室外熱交翻 23からバイパス冷媒回路 61のバイパス膨張弁 62までの流路とには高圧の液冷媒が流れて、室外熱交翻23から室内膨張弁 41 及びバイパス膨張弁 62までの部分(図 5の黒塗りのハッチング部分を参照、以下、液 冷媒流通部 Bとする)における冷媒の圧力も安定し、液冷媒流通部 Bが液冷媒でシ ールされて安定した状態となる。 By performing such evaporation pressure control, the gas refrigerant communication pipe 7 from the indoor heat exchanger 42 to the compressor 21 and the refrigerant pipe including the accumulator 24 (in the hatched portion in FIG. The state of the refrigerant flowing through the heat exchanger 42 to the compressor 21 (hereinafter referred to as “gas refrigerant circulation part D”) is also stable and is mainly operated equivalent to the refrigerant pressure in the gas refrigerant circulation part D. A state in which the amount of refrigerant in the gas refrigerant circulation portion D is changed by the evaporation amount Pe (that is, the suction pressure Ps), which is a state quantity, is created. Condensation pressure control is also performed in the outdoor heat exchanger ^^ 23 in which high-pressure refrigerant flows while changing the gas state force to the liquid state due to heat exchange with the outdoor air (hatched hatched and blackened in Fig. 5). Among the hatched portions, see the portion corresponding to the outdoor heat exchanger 23 (hereinafter referred to as the condenser portion A), which is also the force that greatly affects the refrigerant condensing pressure Pc. Since the refrigerant condensing pressure Pc in the condenser part A changes greatly due to the influence of the outdoor temperature Ta, the air volume Wo of the indoor air supplied from the outdoor fan 28 to the outdoor heat exchanger 23 is controlled by the motor 28a. As a result, the condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 is made constant, and the state of the refrigerant flowing in the condenser section A is stabilized, and mainly the liquid side of the outdoor heat exchanger 23 (hereinafter referred to as the refrigerant). In the description of the quantity determination operation, the refrigerant amount in the condenser A is changed by the degree of supercooling SCo at the outlet of the outdoor heat exchanger 23). In the control of the condensation pressure Pc by the outdoor fan 28 of the present embodiment, the compressor 21 detected by the discharge pressure sensor 30 which is an operation state amount equivalent to the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is used. The discharge pressure Pd or the temperature of the refrigerant flowing in the outdoor heat exchanger 23 detected by the heat exchange temperature sensor 33 (that is, the condensation temperature Tc) is used. [0036] Then, by performing such condensing pressure control, the outdoor expansion valve 38 from the outdoor heat exchange to the indoor expansion valve 41, the portion on the main refrigerant circuit side of the subcooler 25, and the liquid refrigerant communication pipe 6 The high-pressure liquid refrigerant flows through the flow path including the outdoor heat exchanger 23 and the flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62 of the bypass refrigerant circuit 61. From the outdoor heat exchanger 23 to the indoor expansion valve 41 and the bypass expansion valve 62 (Refer to the black hatched area in Fig. 5; hereinafter referred to as liquid refrigerant circulation section B) The refrigerant pressure is also stable and liquid refrigerant circulation section B is sealed with liquid refrigerant and stabilized It becomes.
また、液管温度制御を行うのは、過冷却器 25から室内膨張弁 41に至る液冷媒連 絡配管 6を含む冷媒配管内(図 5に示される液冷媒流通部 Bのうち過冷却器 25から 室内膨張弁 41までの部分を参照)の冷媒の密度が変化しないようにするためである 。そして、過冷却器 25の能力制御は、過冷却器 25の主冷媒回路側の出口に設けら れた液管温度センサ 35によって検出される冷媒の温度 Tipが液管温度目標値 Tips で一定になるようにバイパス冷媒回路 61を流れる冷媒の流量を増減して、過冷却器 25の主冷媒回路側を流れる冷媒とバイパス冷媒回路側を流れる冷媒との間の交換 熱量を調節することによって実現されている。尚、このバイパス冷媒回路 61を流れる 冷媒の流量の増減は、バイパス膨張弁 62の開度調節によって行われる。このように して、過冷却器 25から室内膨張弁 41に至る液冷媒連絡配管 6を含む冷媒配管内に おける冷媒の温度が一定となる液管温度制御が実現されている。  The liquid pipe temperature control is performed in the refrigerant pipe including the liquid refrigerant communication pipe 6 from the subcooler 25 to the indoor expansion valve 41 (the subcooler 25 in the liquid refrigerant circulation section B shown in FIG. 5). To the indoor expansion valve 41)) so that the refrigerant density does not change. The capacity control of the subcooler 25 is performed by adjusting the refrigerant temperature Tip detected by the liquid pipe temperature sensor 35 provided at the outlet of the main refrigerant circuit of the subcooler 25 to the liquid pipe temperature target value Tips. This is realized by increasing or decreasing the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61 so as to adjust the amount of exchange heat between the refrigerant flowing through the main refrigerant circuit side of the subcooler 25 and the refrigerant flowing through the bypass refrigerant circuit side. ing. The flow rate of the refrigerant flowing through the bypass refrigerant circuit 61 is increased or decreased by adjusting the opening degree of the bypass expansion valve 62. In this way, liquid pipe temperature control is realized in which the refrigerant temperature in the refrigerant pipe including the liquid refrigerant communication pipe 6 extending from the supercooler 25 to the indoor expansion valve 41 is constant.
[0037] そして、このような液管温度一定制御を行うことによって、冷媒回路 10に冷媒を充 填することによって冷媒回路 10内の冷媒量が徐々に増加するのに伴って、室外熱交 23の出口における冷媒の温度 Tco (すなわち、室外熱交換器 23の出口におけ る冷媒の過冷却度 SCo)が変化する場合であっても、室外熱交換器 23の出口にお ける冷媒の温度 Tcoの変化の影響力、室外熱交 の出口力も過冷却器 25に 至る冷媒配管のみに収まり、液冷媒流通部 Bのうち過冷却器 25から液冷媒連絡配管 6を含む室内膨張弁 41までの冷媒配管には影響しない状態となる。  [0037] Then, by performing such liquid pipe temperature constant control, as the refrigerant amount in the refrigerant circuit 10 gradually increases by charging the refrigerant circuit 10 with the refrigerant, the outdoor heat exchange 23 The refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 is changed even when the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 changes (that is, the degree of refrigerant supercooling SCo at the outlet of the outdoor heat exchanger 23). The influence of this change and the outlet force of the outdoor heat exchange are also contained only in the refrigerant pipe reaching the subcooler 25, and the refrigerant from the subcooler 25 to the indoor expansion valve 41 including the liquid refrigerant communication pipe 6 in the liquid refrigerant circulation section B The pipe is not affected.
さらに、過熱度制御を行うのは、蒸発器部 Cにおける冷媒量が、室内熱交換器 42 の出口における冷媒の乾き度に大きく影響するからである。この室内熱交 の 出口における冷媒の過熱度 SHrは、室内膨張弁 41の開度を制御することによって、 室内熱交換器 42のガス側(以下、冷媒量判定運転に関する説明では、室内熱交換 器 42の出口とする)における冷媒の過熱度 SHrが過熱度目標値 SHrsで一定になる ように (すなわち、室内熱交換器 42の出口のガス冷媒を過熱状態)にして、蒸発器部 C内を流れる冷媒の状態を安定させている。 Further, the superheat control is performed because the amount of refrigerant in the evaporator section C greatly affects the dryness of the refrigerant at the outlet of the indoor heat exchanger 42. The degree of superheat SHr of the refrigerant at the outlet of the indoor heat exchange is controlled by controlling the opening degree of the indoor expansion valve 41. The superheat degree SHr of the refrigerant on the gas side of the indoor heat exchanger 42 (hereinafter referred to as the outlet of the indoor heat exchanger 42 in the description of the refrigerant quantity determination operation) is made constant at the superheat degree target value SHrs (that is, The gas refrigerant at the outlet of the indoor heat exchanger 42 is overheated), and the state of the refrigerant flowing in the evaporator section C is stabilized.
[0038] そして、このような過熱度制御を行うことによって、ガス冷媒連絡部 Dにガス冷媒が 確実に流れる状態を作り出して ヽる。  [0038] Then, by performing such superheat degree control, a state in which the gas refrigerant surely flows in the gas refrigerant communication portion D is created.
上述の各種制御によって、冷媒回路 10内を循環する冷媒の状態が安定して、冷媒 回路 10内における冷媒量の分布が一定となるため、続いて行われる冷媒の追加充 填によって冷媒回路 10内に冷媒が充填され始めた際に、冷媒回路 10内の冷媒量 の変化が、主として、室外熱交換器 23内の冷媒量の変化となって現れる状態を作り 出すことができる(以下、この運転を冷媒量判定運転とする)。  By the various controls described above, the state of the refrigerant circulating in the refrigerant circuit 10 is stabilized, and the distribution of the refrigerant amount in the refrigerant circuit 10 becomes constant. When the refrigerant begins to be charged, it is possible to create a state in which the change in the refrigerant amount in the refrigerant circuit 10 mainly appears as a change in the refrigerant amount in the outdoor heat exchanger 23 (hereinafter, this operation is performed). Is the refrigerant quantity determination operation).
以上のような制御は、冷媒量判定運転を行う冷媒量判定運転制御手段として機能 する制御部 8 (より具体的には、室内側制御部 47と室外側制御部 37と制御部 37、 47 間を接続する伝送線 8a)により、ステップ S11の処理として行われる。  The above control is performed by the control unit 8 (more specifically, between the indoor side control unit 47, the outdoor side control unit 37, and the control units 37, 47 functioning as a refrigerant amount determination operation control means for performing the refrigerant amount determination operation. This is performed as step S11 by the transmission line 8a).
[0039] 尚、本実施形態と異なり、室外ユニット 2に予め冷媒が充填されていない場合には、 このステップ S11の処理に先だって、上述の冷媒量判定運転を行う際に、構成機器 が異常停止してしまうことがない程度の冷媒量になるまで冷媒充填を行う必要がある  [0039] Note that, unlike the present embodiment, if the outdoor unit 2 is not prefilled with refrigerant, the constituent devices are stopped abnormally when performing the above-described refrigerant amount determination operation prior to the processing of step S11. It is necessary to charge the refrigerant until the amount of refrigerant is low enough
(ステップ S 12:冷媒量の演算) (Step S12: Calculation of refrigerant quantity)
次に、上記の冷媒量判定運転を行いつつ、冷媒回路 10内に冷媒の追加充填を実 施するが、この際、冷媒量演算手段として機能する制御部 8によって、ステップ S12 における冷媒の追加充填時における冷媒回路 10を流れる冷媒又は構成機器の運 転状態量から冷媒回路 10内の冷媒量を演算する。  Next, additional refrigerant charging is performed in the refrigerant circuit 10 while performing the above-described refrigerant amount determination operation. At this time, the additional charging of the refrigerant in step S12 is performed by the control unit 8 functioning as the refrigerant amount calculating means. The refrigerant amount in the refrigerant circuit 10 is calculated from the refrigerant flowing through the refrigerant circuit 10 at the time or the operating state quantity of the component equipment.
まず、本実施形態における冷媒量演算手段について説明する。冷媒量演算手段 は、冷媒回路 10を複数の部分に分割して、分割された各部分ごとに冷媒量を演算 することで、冷媒回路 10内の冷媒量を演算するものである。より具体的には、分割さ れた各部分ごとに、各部分の冷媒量と冷媒回路 10を流れる冷媒又は構成機器の運 転状態量との関係式が設定されており、これらの関係式を用いて、各部分の冷媒量 を演算することができるようになつている。そして、本実施形態においては、冷媒回路First, the refrigerant quantity calculation means in this embodiment will be described. The refrigerant quantity calculating means calculates the refrigerant quantity in the refrigerant circuit 10 by dividing the refrigerant circuit 10 into a plurality of parts and calculating the refrigerant quantity for each of the divided parts. More specifically, for each of the divided parts, a relational expression between the refrigerant amount of each part and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is set. Use the amount of refrigerant in each part Can be calculated. And in this embodiment, a refrigerant circuit
10は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21の吐出側 が室外熱交換器 23のガス側に接続され、かつ、圧縮機 21の吸入側がガス側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42の出口に接続された状態にお いて、圧縮機 21の部分及び圧縮機 21から四路切換弁 22 (図 5では図示せず)を含 む室外熱交換器 23までの部分 (以下、高圧ガス管部 Eとする)と、室外熱交換器 23 の部分 (すなわち、凝縮器部 A)と、液冷媒流通部 Bのうち室外熱交換器 23から過冷 却器 25までの部分及び過冷却器 25の主冷媒回路側の部分の入口側半分 (以下、 高温側液管部 B1とする)と、液冷媒流通部 Bのうち過冷却器 25の主冷媒回路側の 部分の出口側半分及び過冷却器 25から液側閉鎖弁 26 (図 5では図示せず)までの 部分 (以下、低温側液管部 B2とする)と、液冷媒流通部 Bのうち液冷媒連絡配管 6の 部分 (以下、液冷媒連絡配管部 B3とする)と、液冷媒流通部 Bのうち液冷媒連絡配 管 6から室内膨張弁 41及び室内熱交換器 42の部分 (すなわち、蒸発器部 C)を含む ガス冷媒流通部 Dのうちガス冷媒連絡配管 7までの部分 (以下、室内ユニット部 Fとす る)と、ガス冷媒流通部 Dのうちガス冷媒連絡配管 7の部分 (以下、ガス冷媒連絡配管 部 Gとする)と、ガス冷媒流通部 Dのうちガス側閉鎖弁 27 (図 5では図示せず)から四 路切換弁 22及びアキュムレータ 24を含む圧縮機 21までの部分 (以下、低圧ガス管 部 Hとする)と、液冷媒流通部 Bのうち高温側液管部 B1からバイパス膨張弁 62及び 過冷却器 25のバイパス冷媒回路側の部分を含む低圧ガス管部 Hまでの部分 (以下 、ノ ィパス回路部 Iとする)とに分割されて、各部分ごとに関係式が設定されている。 次に、上述の各部分ごとに設定された関係式について、説明する。 10 shows a state in which the four-way switching valve 22 is shown by a solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is closed to the gas side. In the state where it is connected to the outlet of the indoor heat exchanger 42 via the valve 27 and the gas refrigerant communication pipe 7, the compressor 21 and the four-way switching valve 22 from the compressor 21 (not shown in FIG. 5) Of the outdoor heat exchanger 23 (hereinafter referred to as the high pressure gas pipe section E), the outdoor heat exchanger 23 section (that is, the condenser section A), and the liquid refrigerant circulation section B. The portion from the exchanger 23 to the subcooler 25 and the portion on the main refrigerant circuit side of the subcooler 25 (hereinafter referred to as the high temperature side liquid pipe section B1) and the liquid refrigerant circulation section B The part on the outlet side of the main refrigerant circuit side of the cooler 25 and the part from the supercooler 25 to the liquid side shut-off valve 26 (not shown in FIG. 5) (hereinafter referred to as the low temperature side liquid pipe) B2), the liquid refrigerant communication pipe 6 in the liquid refrigerant circulation section B (hereinafter referred to as the liquid refrigerant communication pipe section B3), and the liquid refrigerant communication pipe B in the liquid refrigerant communication section B from the liquid refrigerant communication pipe 6 A portion of the gas refrigerant circulation section D including the valve 41 and the indoor heat exchanger 42 (that is, the evaporator section C) up to the gas refrigerant communication pipe 7 (hereinafter referred to as an indoor unit section F), and a gas refrigerant Four-way switching from the part of the gas refrigerant communication pipe 7 in the circulation part D (hereinafter referred to as gas refrigerant communication pipe part G) and the gas side closing valve 27 (not shown in FIG. 5) of the gas refrigerant circulation part D The part up to the compressor 21 including the valve 22 and the accumulator 24 (hereinafter referred to as the low pressure gas pipe part H) and the liquid refrigerant circulation part B from the high temperature side liquid pipe part B1 to the bypass expansion valve 62 and the supercooler 25 Part up to the low pressure gas pipe part H including the part on the bypass refrigerant circuit side (hereinafter referred to as the nopass circuit part I) The relational expression is set for each part. Next, the relational expressions set for each part will be described.
本実施形態において、高圧ガス管部 Eにおける冷媒量 Moglと冷媒回路 10を流れ る冷媒又は構成機器の運転状態量との関係式は、例えば、  In the present embodiment, the relational expression between the refrigerant amount Mogl in the high-pressure gas pipe E and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mogl = Vogl X p d  Mogl = Vogl X p d
という、室外ユニット 2の高圧ガス管部 Eの容積 Voglに高圧ガス管部 Eにおける冷媒 の密度/ 0 dを乗じた関数式として表される。尚、高圧ガス管部 Eの容積 Voglは、室外 ユニット 2が設置場所に設置される前力 既知の値であり、予め制御部 8のメモリに記 憶されている。また、高圧ガス管部 Eにおける冷媒の密度 は、吐出温度 Td及び 吐出圧力 Pdを換算することによって得られる。 This is expressed as a functional expression obtained by multiplying the volume Vogl of the high-pressure gas pipe E of the outdoor unit 2 by the refrigerant density / 0 d in the high-pressure gas pipe E. Note that the volume Vogl of the high-pressure gas pipe E is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in advance in the memory of the control unit 8. In addition, the density of the refrigerant in the high-pressure gas pipe E is the discharge temperature Td and It is obtained by converting the discharge pressure Pd.
凝縮器部 Aにおける冷媒量 Mcと冷媒回路 10を流れる冷媒又は構成機器の運転 状態量との関係式は、例えば、  The relational expression between the refrigerant quantity Mc in the condenser part A and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Mc=kclXTa+kc2XTc+kc3XSHm+kc4XWc Mc = kclXTa + kc2XTc + kc3XSHm + kc4XWc
Figure imgf000023_0001
Figure imgf000023_0001
という、室外温度 Ta、凝縮温度 Tc、圧縮機吐出過熱度 SHm、冷媒循環量 Wc、室 外熱交換器 23における冷媒の飽和液密度 p c及び室外熱交換器 23の出口におけ る冷媒の密度 P coの関数式として表される。尚、上述の関係式におけるパラメータ kc l〜kc7は、試験や詳細なシミュレーションの結果を回帰分析することによって求めら れたものであり、予め制御部 8のメモリに記憶されている。また、圧縮機吐出過熱度 S Hmは、圧縮機の吐出側における冷媒の過熱度であり、吐出圧力 Pdを冷媒の飽和 温度値に換算し、吐出温度 Td力 この冷媒の飽和温度値を差し引くことにより得られ る。冷媒循環量 Wcは、蒸発温度 Teと凝縮温度 Tcとの関数 (すなわち、 Wc = f (Te、 Tc))として表される。冷媒の飽和液密度 p cは、凝縮温度 Tcを換算することによって 得られる。室外熱交換器 23の出口における冷媒の密度 p coは、凝縮温度 Tcを換算 することによって得られる凝縮圧力 Pc及び冷媒の温度 Tcoを換算することによって得 られる。 The outdoor temperature Ta, the condensation temperature Tc, the compressor discharge superheat SHm, the refrigerant circulation rate Wc, the saturated liquid density pc of the refrigerant in the outdoor heat exchanger 23, and the refrigerant density P at the outlet of the outdoor heat exchanger 23 It is expressed as a function expression of co. The parameters kcl to kc7 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance. The compressor discharge superheat degree S Hm is the refrigerant superheat degree on the discharge side of the compressor. The discharge pressure Pd is converted to the refrigerant saturation temperature value, and the discharge temperature Td force is subtracted from the refrigerant saturation temperature value. Can be obtained. The refrigerant circulation amount Wc is expressed as a function of the evaporation temperature Te and the condensation temperature Tc (that is, Wc = f (Te, Tc)). The saturated liquid density pc of the refrigerant is obtained by converting the condensation temperature Tc. The refrigerant density p co at the outlet of the outdoor heat exchanger 23 is obtained by converting the condensation pressure Pc obtained by converting the condensation temperature Tc and the refrigerant temperature Tco.
高温側液管部 B1における冷媒量 Mollと冷媒回路 10を流れる冷媒又は構成機器 の運転状態量との関係式は、例えば、  The relational expression between the refrigerant amount Moll in the high temperature side liquid pipe part B1 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Moll=VollX p co  Moll = VollX p co
t 、う、室外ユニット 2の高温側液管部 B1の容積 Vollに高温側液管部 B1における 冷媒の密度 p co (すなわち、上述の室外熱交換器 23の出口における冷媒の密度) を乗じた関数式として表される。尚、高圧側液管部 B1の容積 Vollは、室外ユニット 2 が設置場所に設置される前力 既知の値であり、予め制御部 8のメモリに記憶されて いる。 t, u, the volume Voll of the high-temperature side liquid pipe part B1 of the outdoor unit 2 was multiplied by the refrigerant density p co in the high-temperature side liquid pipe part B1 (that is, the refrigerant density at the outlet of the above-mentioned outdoor heat exchanger 23). Expressed as a function expression. The volume Voll of the high-pressure side liquid pipe section B1 is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance.
低温側液管部 B2における冷媒量 Mol2と冷媒回路 10を流れる冷媒又は構成機器 の運転状態量との関係式は、例えば、  The relational expression between the refrigerant quantity Mol2 in the low temperature side liquid pipe part B2 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Mol2=Vol2X ip t 、う、室外ユニット 2の低温側液管部 B2の容積 Vol2に低温側液管部 B2における 冷媒の密度 p lpを乗じた関数式として表される。尚、低温側液管部 B2の容積 Vol2 は、室外ユニット 2が設置場所に設置される前力も既知の値であり、予め制御部 8のメ モリに記憶されている。また、低温側液管部 B2における冷媒の密度 p lpは、過冷却 器 25の出口における冷媒の密度であり、凝縮圧力 Pc及び過冷却器 25の出口にお ける冷媒の温度 Tipを換算することによって得られる。 Mol2 = Vol2X ip t is expressed as a functional expression obtained by multiplying the volume Vol2 of the low temperature side liquid pipe portion B2 of the outdoor unit 2 by the refrigerant density p lp in the low temperature side liquid pipe portion B2. Note that the volume Vol2 of the low temperature side liquid pipe section B2 is also a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in advance in the memory of the control section 8. Further, the refrigerant density p lp in the low temperature side liquid pipe section B2 is the refrigerant density at the outlet of the supercooler 25, and the condensation pressure Pc and the refrigerant temperature Tip at the outlet of the supercooler 25 are converted. Obtained by.
[0042] 液冷媒連絡配管部 B3における冷媒量 Mlpと冷媒回路 10を流れる冷媒又は構成 機器の運転状態量との関係式は、例えば、 [0042] The relational expression between the refrigerant amount Mlp in the liquid refrigerant communication pipe section B3 and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mlp=Vlp X ip  Mlp = Vlp X ip
という、液冷媒連絡配管 6の容積 Vlpに液冷媒連絡配管部 B3における冷媒の密度 lp (すなわち、過冷却器 25の出口における冷媒の密度)を乗じた関数式として表さ れる。  This is expressed as a function equation obtained by multiplying the volume Vlp of the liquid refrigerant communication pipe 6 by the refrigerant density lp (that is, the refrigerant density at the outlet of the subcooler 25) in the liquid refrigerant communication pipe section B3.
室内ュニット部 Fにおける冷媒量 Mrと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、  The relational expression between the refrigerant quantity Mr in the indoor unit F and the operating state quantity of the refrigerant or component equipment flowing through the refrigerant circuit 10 is, for example,
Mr=krl XTlp+kr2 X AT+kr3 X SHr+kr4 XWr+kr5  Mr = krl XTlp + kr2 X AT + kr3 X SHr + kr4 XWr + kr5
という、過冷却器 25の出口における冷媒の温度 Tlp、室内温度 Trから蒸発温度 Teを 差し引いた温度差 ΔΤ、室内熱交換器 42の出口における冷媒の過熱度 SHr及び室 内ファン 43の風量 Wrの関数式として表される。尚、上述の関係式におけるパラメ一 タ krl〜kr5は、試験や詳細なシミュレーションの結果を回帰分析することによって求 められたものであり、予め制御部 8のメモリに記憶されている。尚、ここでは、室内ュ- ット 4のそれぞれに対応して冷媒量 Mrの関係式が設定されており、室内ユニット部 F の全冷媒量が演算されるようになっている。尚、室内ユニット 4の機種や容量が異なる 場合には、ノ メータ krl〜kr5の値が異なる関係式が使用されることになる。  The refrigerant temperature Tlp at the outlet of the supercooler 25, the temperature difference ΔΤ obtained by subtracting the evaporation temperature Te from the room temperature Tr, the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchanger 42, and the air volume Wr of the indoor fan 43 Expressed as a function expression. The parameters krl to kr5 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance. Here, the relational expression of the refrigerant quantity Mr is set corresponding to each of the indoor units 4, and the total refrigerant quantity of the indoor unit part F is calculated. When the indoor unit 4 is different in model and capacity, relational expressions with different values of the meters krl to kr5 are used.
[0043] ガス冷媒連絡配管部 Gにおける冷媒量 Mgpと冷媒回路 10を流れる冷媒又は構成 機器の運転状態量との関係式は、例えば、 [0043] The relational expression between the refrigerant amount Mgp in the gas refrigerant communication pipe section G and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mgp=Vgp X gp  Mgp = Vgp X gp
という、ガス冷媒連絡配管 7の容積 Vgpにガス冷媒連絡配管部 Hにおける冷媒の密 度 p gpを乗じた関数式として表される。また、ガス冷媒配管連絡部 Gにおける冷媒の 密度 p gpは、圧縮機 21の吸入側における冷媒の密度 p sと、室内熱交換器 42の出 口(すなわち、ガス冷媒連絡配管 7の入口)における冷媒の密度 p eoとの平均値であ る。冷媒の密度 p sは、吸入圧力 Ps及び吸入温度 Tsを換算することによって得られ、 冷媒の密度 p eoは、蒸発温度 Teの換算値である蒸発圧力 Pe及び室内熱交換器 4 2の出口温度 Teoを換算することによって得られる。 This is expressed as a function expression obtained by multiplying the volume Vgp of the gas refrigerant communication pipe 7 by the refrigerant density p gp in the gas refrigerant communication pipe section H. In addition, the refrigerant refrigerant in the gas refrigerant pipe connection G The density p gp is an average value of the refrigerant density ps on the suction side of the compressor 21 and the refrigerant density p eo at the outlet of the indoor heat exchanger 42 (that is, the inlet of the gas refrigerant communication pipe 7). . The refrigerant density ps is obtained by converting the suction pressure Ps and the suction temperature Ts. The refrigerant density p eo is the conversion value of the evaporation temperature Te, the evaporation pressure Pe, and the outlet temperature Teo of the indoor heat exchanger 42. Is obtained by converting.
低圧ガス管部 Hにおける冷媒量 Mog2と冷媒回路 10を流れる冷媒又は構成機器 の運転状態量との関係式は、例えば、  The relational expression between the refrigerant amount Mog2 in the low-pressure gas pipe part H and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mog2=Vog2 X p s  Mog2 = Vog2 X p s
という、室外ユニット 2内の低圧ガス管部 Hの容積 Vog2に低圧ガス管部 Hにおける 冷媒の密度 p sを乗じた関数式として表される。尚、低圧ガス管部 Hの容積 Vog2は、 設置場所に出荷される前力 既知の値であり、予め制御部 8のメモリに記憶されてい る。 This is expressed as a functional expression obtained by multiplying the volume Vog2 of the low-pressure gas pipe H in the outdoor unit 2 by the refrigerant density p s in the low-pressure gas pipe H. Note that the volume Vog2 of the low-pressure gas pipe H is a known value of the pre-force that is shipped to the installation location, and is stored in the memory of the controller 8 in advance.
ノ ィパス回路部 Iにおける冷媒量 Mobと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、  The relational expression between the refrigerant amount Mob in the no-pass circuit section I and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Mob = kobl X co + kob2 X p s + kob3 X Pe + kob4  Mob = kobl X co + kob2 X ps + kob3 X Pe + kob4
という、室外熱交換器 23の出口における冷媒の密度 p co、過冷却器 25のバイパス 回路側の出口における冷媒の密度 p s及び蒸発圧力 Peの関数式として表される。尚 、上述の関係式におけるパラメータ kobl〜kob3は、試験や詳細なシミュレーション の結果を回帰分析することによって求められたものであり、予め制御部 8のメモリに記 憶されている。また、バイパス回路部 Iの容積 Mobは、他の部分に比べて冷媒量が少 ないこともあり、さらに簡易的な関係式によって演算されてもよい。例えば、 The refrigerant density p co at the outlet of the outdoor heat exchanger 23, the refrigerant density p s at the outlet of the subcooler 25 on the bypass circuit side, and the evaporation pressure Pe are expressed as functional expressions. Note that the parameters kobl to kob3 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance. Further, the volume Mob of the bypass circuit part I may be smaller than the other parts, and may be calculated by a simpler relational expression. For example,
Mob=Vob X e X kob5  Mob = Vob X e X kob5
という、バイパス回路部 Iの容積 Vobに過冷却器 25のバイパス回路側の部分におけ る飽和液密度 p e及び補正係数 kobを乗じた関数式として表される。尚、バイパス回 路部 Iの容積 Vobは、室外ユニット 2が設置場所に設置される前力も既知の値であり、 予め制御部 8のメモリに記憶されている。また、過冷却器 25のバイパス回路側の部分 における飽和液密度 p eは、吸入圧力 Ps又は蒸発温度 Teを換算することによって得 られる。 [0045] 尚、本実施形態において、室外ユニット 2は 1台である力 室外ユニットが複数台接 続される場合には、室外ユニットに関する冷媒量 Mogl、 Mc、 Moll, Mol2、 Mog2 及び Mobは、複数の室外ユニットのそれぞれに対応して各部分の冷媒量の関係式 が設定され、複数の室外ユニットの各部分の冷媒量を加算することにより、室外ュニ ットの全冷媒量が演算されるようになっている。尚、機種や容量が異なる複数の室外 ユニットが接続される場合には、パラメータの値が異なる各部分の冷媒量の関係式が 使用されること〖こなる。 This is expressed as a functional expression obtained by multiplying the volume Vob of the bypass circuit part I by the saturated liquid density pe and the correction coefficient kob in the bypass circuit side part of the subcooler 25. Incidentally, the volume Vob of the bypass circuit section I is also a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance. The saturated liquid density pe in the portion of the subcooler 25 on the bypass circuit side can be obtained by converting the suction pressure Ps or the evaporation temperature Te. [0045] In the present embodiment, a single outdoor unit 2 is used. When a plurality of outdoor units are connected, the refrigerant amounts Mogl, Mc, Moll, Mol2, Mog2 and Mob related to the outdoor units are: A relational expression of the refrigerant amount of each part is set corresponding to each of the plurality of outdoor units, and the total refrigerant quantity of the outdoor unit is calculated by adding the refrigerant amount of each part of the plurality of outdoor units. It has become so. When multiple outdoor units with different models and capacities are connected, the relational expression for the refrigerant amount of each part with different parameter values is used.
以上のように、本実施形態では、冷媒回路 10の各部分についての関係式を用いて 、冷媒量判定運転における冷媒回路 10を流れる冷媒又は構成機器の運転状態量 力 各部分の冷媒量を演算することで、冷媒回路 10の冷媒量を演算することができ るようになっている。  As described above, in the present embodiment, using the relational expression for each part of the refrigerant circuit 10, the refrigerant flowing through the refrigerant circuit 10 in the refrigerant quantity determination operation or the operating state quantity of the component device is calculated. By doing so, the refrigerant amount of the refrigerant circuit 10 can be calculated.
[0046] そして、このステップ S 12は、後述のステップ S 13における冷媒量の適否の判定の 条件が満たされるまで繰り返されるため、冷媒の追加充填が開始して力 完了するま での間、冷媒回路 10の各部分についての関係式を用いて、冷媒充填時における運 転状態量力 各部分の冷媒量が演算される。より具体的には、後述のステップ S 13 における冷媒量の適否の判定に必要な室外ユニット 2内の冷媒量 Mo及び室内ュニ ット 4内の冷媒量 Mr (すなわち、冷媒連絡配管 6、 7を除く冷媒回路 10の各部分の冷 媒量)が演算される。ここで、室外ユニット 2内の冷媒量 Moは、上述の室外ユニット 2 内の各部分の冷媒量 Mogl、 Mc、 Moll, Mol2、 Mog2及び Mobを力卩算することに よって演算される。  [0046] Since this step S12 is repeated until a condition for determining whether the refrigerant amount is appropriate in step S13, which will be described later, is satisfied, until the additional charge of the refrigerant is started and the force is completed, the refrigerant is Using the relational expression for each part of circuit 10, the amount of refrigerant in each part is calculated. More specifically, the refrigerant amount Mo in the outdoor unit 2 and the refrigerant amount Mr in the indoor unit 4 (that is, the refrigerant communication pipes 6 and 7) necessary for determining the suitability of the refrigerant amount in step S 13 described later. The amount of refrigerant in each part of the refrigerant circuit 10 excluding is calculated. Here, the refrigerant amount Mo in the outdoor unit 2 is calculated by calculating the power of the refrigerant amounts Mogl, Mc, Moll, Mol2, Mog2, and Mob in each part in the outdoor unit 2 described above.
このように、冷媒自動充填運転における冷媒回路 10内を流れる冷媒又は構成機器 の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段として 機能する制御部 8により、ステップ S 12の処理が行われる。  In this way, the control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant automatic charging operation, performs step S. 12 processes are performed.
[0047] (ステップ S 13:冷媒量の適否の判定) [0047] (Step S 13: Determination of Appropriate Refrigerant Quantity)
上述のように、冷媒回路 10内に冷媒の追加充填を開始すると、冷媒回路 10内の 冷媒量が徐々に増加する。ここで、冷媒連絡配管 6、 7の容積が未知である場合には 、冷媒の追加充填後に冷媒回路 10内に充填されるべき冷媒量を、冷媒回路 10全体 の冷媒量として規定することができない。しかし、室外ユニット 2及び室内ユニット 4だ けに着目すれば (すなわち、冷媒連絡配管 6、 7を除く冷媒回路 10)、試験や詳細な シミュレーションにより通常運転モードにおける最適な室外ユニット 2の冷媒量を予め 知ることができるため、この冷媒量を充填目標値 Msとして予め制御部 8のメモリに記 憶しておき、上述の関係式を用いて冷媒自動充填運転における冷媒回路 10内を流 れる冷媒又は構成機器の運転状態量力も演算される室外ユニット 2の冷媒量 Moと室 内ユニット 4の冷媒量 Mrとを加算した冷媒量の値が、この充填目標値 Msに到達する まで、冷媒の追カ卩充填を行えばよいことになる。すなわち、ステップ S 13は、冷媒自 動充填運転における室外ユニット 2の冷媒量 Moと室内ユニット 4の冷媒量 Mrとを加 算した冷媒量の値が充填目標値 Msに到達した力どうかを判定することで、冷媒の追 加充填により冷媒回路 10内に充填された冷媒量の適否を判定する処理である。 As described above, when additional charging of the refrigerant into the refrigerant circuit 10 is started, the refrigerant amount in the refrigerant circuit 10 gradually increases. Here, when the volume of the refrigerant communication pipes 6 and 7 is unknown, the amount of refrigerant to be filled in the refrigerant circuit 10 after the additional charging of the refrigerant cannot be defined as the refrigerant amount of the refrigerant circuit 10 as a whole. . However, outdoor unit 2 and indoor unit 4 (I.e., the refrigerant circuit 10 excluding the refrigerant communication pipes 6 and 7), the optimum refrigerant quantity of the outdoor unit 2 in the normal operation mode can be known in advance through tests and detailed simulations. Is stored in advance in the memory of the control unit 8 as the charging target value Ms, and the operating state quantity force of the refrigerant or component equipment flowing in the refrigerant circuit 10 in the automatic refrigerant charging operation is also calculated using the above-described relational expression. Additional refrigerant charging may be performed until the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor unit 4 reaches the target charging value Ms. That is, step S13 determines whether the value of the refrigerant amount obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor unit 4 in the automatic refrigerant charging operation reaches the charging target value Ms. In this way, the process determines whether or not the amount of the refrigerant charged in the refrigerant circuit 10 by the additional charging of the refrigerant is appropriate.
[0048] そして、ステップ S13において、室外ユニット 2の冷媒量 Moと室内ユニット 4の冷媒 量 Mrとを加算した冷媒量の値が充填目標値 Msよりも小さぐ冷媒の追加充填が完 了していない場合には、充填目標値 Msに到達するまで、ステップ S13の処理が繰り 返される。また、室外ユニット 2の冷媒量 Moと室内ユニット 4の冷媒量 Mrとを加算し た冷媒量の値が充填目標値 Msに到達した場合には、冷媒の追加充填が完了し、冷 媒自動充填運転処理としてのステップ S 1が完了する。  [0048] Then, in step S13, the additional charging of the refrigerant in which the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor unit 4 is smaller than the target charging value Ms is completed. If not, the process of step S13 is repeated until the filling target value Ms is reached. In addition, when the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor unit 4 reaches the charging target value Ms, the additional charging of the refrigerant is completed, and the automatic refrigerant charging is performed. Step S1 as the operation process is completed.
尚、上述の冷媒量判定運転においては、冷媒回路 10内への冷媒の追加充填が進 むにつれて、主として、室外熱交換器 23の出口における過冷却度 SCoが大きくなる 傾向が現れて室外熱交換器 23における冷媒量 Mcが増加し、他の部分における冷 媒量がほぼ一定に保たれる傾向になるため、充填目標値 Msを、室外ユニット 2及び 室内ユニット 4ではなぐ室外ユニット 2の冷媒量 Moのみに対応する値として設定し たり、又は、室外熱交換器 23の冷媒量 Mcに対応する値として設定して、充填目標 値 Msに到達するまで冷媒の追加充填を行うようにしてもよい。  In the refrigerant amount determination operation described above, as the additional charging of the refrigerant into the refrigerant circuit 10 progresses, the degree of supercooling SCo mainly at the outlet of the outdoor heat exchanger 23 tends to increase, resulting in outdoor heat exchange. Since the refrigerant amount Mc in the chamber 23 increases and the refrigerant amount in the other parts tends to be kept almost constant, the refrigerant target amount of the outdoor unit 2 is less than the outdoor unit 2 and the indoor unit 4. It may be set as a value corresponding only to Mo, or set as a value corresponding to the refrigerant amount Mc of the outdoor heat exchanger 23, and additional charging of the refrigerant may be performed until the charging target value Ms is reached. .
[0049] このように、冷媒自動充填運転の冷媒量判定運転における冷媒回路 10内の冷媒 量の適否 (すなわち、充填目標値 Msに到達したかどうか)を判定する冷媒量判定手 段として機能する制御部 8により、ステップ S 13の処理が行われる。  [0049] In this way, it functions as a refrigerant amount determination means for determining the suitability of the refrigerant amount in the refrigerant circuit 10 in the refrigerant amount determination operation of the automatic refrigerant charging operation (that is, whether or not the charging target value Ms has been reached). The control unit 8 performs the process of step S13.
(ステップ S2:配管長判定運転)  (Step S2: Pipe length judgment operation)
上述のステップ S1の冷媒自動充填運転が完了したら、ステップ S 2の配管長判定 運転に移行する。配管長判定運転では、制御部 8によって、図 6に示されるステップ S 21〜ステップ S24の処理が行われる。ここで、図 6は、配管長判定運転のフローチヤ ートである。 When the automatic refrigerant charging operation in step S1 is completed, the pipe length determination in step S2 Transition to driving. In the pipe length determination operation, the processing of step S21 to step S24 shown in FIG. Here, Fig. 6 is a flow chart of the pipe length judgment operation.
(ステップ S21:配管長判定運転)  (Step S21: Pipe length judgment operation)
ステップ S21では、液冷媒連絡配管 6の配管容積 Vlp及びガス冷媒連絡配管 7の 配管容積 Vgpを得ることを目的として、冷媒連絡配管 6、 7の配管長の演算に必要な 運転データを取得するための配管長判定運転を行う。配管長判定運転は、構成機 器の制御状態を変化させることによって、冷媒回路 10内を流れる冷媒の運転状態量 を変化させる運転である。本実施形態における配管長判定運転は、以下のように行 われる。  In step S21, to obtain the operation data necessary for calculating the pipe lengths of the refrigerant communication pipes 6 and 7, in order to obtain the pipe volume Vlp of the liquid refrigerant communication pipe 6 and the pipe volume Vgp of the gas refrigerant communication pipe 7 The pipe length judgment operation is performed. The pipe length determination operation is an operation in which the operation state quantity of the refrigerant flowing in the refrigerant circuit 10 is changed by changing the control state of the constituent devices. The pipe length determination operation in the present embodiment is performed as follows.
まず、上述の冷媒自動充填運転におけるステップ S11の冷媒量判定運転と同様に First, in the same manner as the refrigerant amount determination operation in step S11 in the above-described automatic refrigerant charging operation.
、冷房運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸発圧力制御を行つ て制御状態を変化させる前の状態である第 1状態を作り出す。すなわち、冷媒回路 1 0において、凝縮圧力 Pc、液管温度 Tlp、過熱度 SHr、及び蒸発圧力 Peが一定に保 たれた状態にする。 Then, the first state, which is the state before changing the control state, is created by performing cooling operation, condensing pressure control, liquid pipe temperature control, superheat degree control and evaporation pressure control. That is, in the refrigerant circuit 10, the condensing pressure Pc, the liquid pipe temperature Tlp, the degree of superheat SHr, and the evaporation pressure Pe are kept constant.
そして、この第 1状態において、過熱度制御を解除し (このときの室内膨張弁 41の 開度を第 1開度 OV1とする)、図 7 (a)に示されるように、第 1開度 OV1よりも小さい第 2開度 OV2にステップ的に変化させる。ここで、第 2開度 OV2における状態を第 2状 態とする。このように、室内膨張弁 41の開度を第 1開度 OV1から第 2開度 OV2に小 さくすると、室内膨張弁 41における流動抵抗が大きくなるため、室内膨張弁 41及び 室内熱交換器 42を通過する冷媒の流量が減少することになる。このため、室内熱交 の出口における冷媒の温度が高くなり、室内熱交換器 42の出口における過 熱度 SHrが大きくなる応答が現れる。そして、この応答は、ガス冷媒連絡配管 7内、 ガス側閉鎖弁 27内、四路切換弁 22内、及びアキュムレータ 24内を通じて、圧縮機 2 1の吸入側まで伝播することになる。すなわち、室内膨張弁 41の開度を第 1開度 OV 1から第 2開度 OV2に小さくする操作を行うことによって、圧縮機 21の吸入側におけ る冷媒の過熱度 (以下、圧縮機吸入過熱度 SHiとする)が、室内熱交換器 42の出口 における過熱度 SHrと同様に大きくなる応答が現れるのである。具体的には、図 7 (b ) (c)に示されるように、室内膨張弁 41の開度を第 1開度 OV1から第 2開度 OV2に小 さくする操作を行ってから、室内熱交換器 42内、ガス冷媒連絡配管 7内、ガス側閉鎖 弁 27内、四路切換弁 22内、及びアキュムレータ 24内を伝播する伝播時間(以下、伝 播時間てとする)が経過した後に、この応答 (すなわち、過熱度 SHilから過熱度 SHi 2まで変化する応答)が現れることになる。ここで、圧縮機吸入過熱度 SHiは、圧縮機 21の吸入圧力 Psを冷媒の飽和温度値に換算し、吸入温度 Tsからこの冷媒の飽和 温度値を差し引くことにより得られる。そして、この伝播時間ては、ガス冷媒連絡配管 7が長いほど大きくなるため、例えば、図 7 (b)に示されるように、ガス冷媒連絡配管 7 が短い場合には、伝播時間 τが τ 1になり、ガス冷媒連絡配管 7が長い場合には、 伝播時間 τが τ 1よりも長い τ 2になる傾向にある。ここで、図 7は、配管長判定運転 における室内膨張弁 41の開度及び圧縮機吸入過熱度 SHiの経時変化を示す図で ある。 Then, in this first state, the superheat control is canceled (the opening degree of the indoor expansion valve 41 at this time is set to the first opening degree OV1), and as shown in FIG. Change stepwise to a second opening OV2 smaller than OV1. Here, the state at the second opening OV2 is the second state. Thus, if the opening of the indoor expansion valve 41 is reduced from the first opening OV1 to the second opening OV2, the flow resistance in the indoor expansion valve 41 increases, so the indoor expansion valve 41 and the indoor heat exchanger 42 The flow rate of the refrigerant passing through will decrease. For this reason, the temperature of the refrigerant at the outlet of the indoor heat exchanger increases, and a response appears that the degree of superheat SHr at the outlet of the indoor heat exchanger 42 increases. This response is propagated to the suction side of the compressor 21 through the gas refrigerant communication pipe 7, the gas side closing valve 27, the four-way switching valve 22, and the accumulator 24. That is, by performing an operation to reduce the opening of the indoor expansion valve 41 from the first opening OV 1 to the second opening OV2, the degree of superheat of the refrigerant on the suction side of the compressor 21 (hereinafter referred to as compressor intake) The superheat degree SHi) becomes a response similar to the superheat degree SHr at the outlet of the indoor heat exchanger 42. Specifically, Figure 7 (b ) As shown in (c), after the operation to reduce the opening of the indoor expansion valve 41 from the first opening OV1 to the second opening OV2, the inside of the indoor heat exchanger 42, the gas refrigerant communication pipe 7 After the passage of propagation time in the gas side shut-off valve 27, four-way selector valve 22 and accumulator 24 (hereinafter referred to as propagation time), this response (ie, from superheat SHil Response that changes to superheat SHi 2) appears. Here, the compressor suction superheat degree SHi is obtained by converting the suction pressure Ps of the compressor 21 into the saturation temperature value of the refrigerant and subtracting the saturation temperature value of the refrigerant from the suction temperature Ts. Since this propagation time becomes larger as the gas refrigerant communication pipe 7 is longer, for example, as shown in FIG. 7B, when the gas refrigerant communication pipe 7 is short, the propagation time τ is τ 1 When the gas refrigerant communication pipe 7 is long, the propagation time τ tends to be τ 2 longer than τ 1. Here, FIG. 7 is a graph showing changes over time in the opening degree of the indoor expansion valve 41 and the compressor intake superheat degree SHi in the pipe length determination operation.
尚、本実施形態においては、室内膨張弁 41の開度を小さくする操作を行うことによ つて、圧縮機吸入過熱度 SHiが大きくなる応答が現れるようにしているが、これに限 定されるものではなぐ室内膨張弁 41の開度を大きくする操作を行うことによって、圧 縮機吸入過熱度 SHiが小さくなる応答が現れるようにしてもよいし、また、他の構成機 器の制御状態を第 1状態力 第 2状態に変化させることによって、圧縮機吸入過熱度 SHiやその他の運転状態量の変化として応答が現れるようにしてもよ ヽ。  In the present embodiment, a response to increase the compressor suction superheat degree SHi appears by performing an operation to reduce the opening of the indoor expansion valve 41, but this is limited to this. In response to the operation of increasing the opening of the indoor expansion valve 41, a response to decrease the compressor superheating degree SHi may appear, and the control state of other constituent devices may be changed. First state force By changing to the second state, a response may appear as a change in compressor intake superheat SHi and other operating state quantities.
以上のような制御は、配管長判定運転を行う配管長判定運転制御手段として機能 する制御部 8 (より具体的には、室内側制御部 47と室外側制御部 37と制御部 37、 47 間を接続する伝送線 8a)により、ステップ S21の処理として行われる。  The control described above is performed by the control unit 8 (more specifically, between the indoor side control unit 47, the outdoor side control unit 37, and the control units 37, 47 functioning as a pipe length determination operation control means for performing the pipe length determination operation. This is performed as a process of step S21 by the transmission line 8a) connecting the two.
(ステップ S22:伝播時間の検出)  (Step S22: Propagation time detection)
次に、ステップ S22では、ステップ S21における配管長判定運転の際の伝播時間 τを検出する。ここでは、図 7に示されるように、室内膨張弁 41の開度を第 1開度 OV 1から第 2開度 OV2に小さくした時点から、圧縮機吸入過熱度 SHiの経時変化のデ ータを取得し、圧縮機吸入過熱度 SHiの値が大きくなり、再び安定する時点までの 時間を計測することによって、伝播時間 τを検出する。すなわち、伝播時間 τは、上 述の配管長判定運転によって冷媒回路 10内を流れる冷媒に現れる運転状態量の 変化が、少なくともガス冷媒連絡配管 7を含む冷媒回路 10内の所定の区間内(ここで は、室内熱交換器 42内、ガス冷媒連絡配管 7内、ガス側閉鎖弁 27内、四路切換弁 2 2内、及びアキュムレータ 24内)を伝播するのに要する時間に対応している。 Next, in step S22, the propagation time τ during the pipe length judgment operation in step S21 is detected. Here, as shown in FIG. 7, data of the change over time of the compressor intake superheat SHi from the time when the opening of the indoor expansion valve 41 is reduced from the first opening OV 1 to the second opening OV2 is shown. , And the propagation time τ is detected by measuring the time until the compressor suction superheat degree SHi increases and stabilizes again. That is, the propagation time τ is the amount of operation state that appears in the refrigerant flowing in the refrigerant circuit 10 by the pipe length determination operation described above. Change within a predetermined section in the refrigerant circuit 10 including at least the gas refrigerant communication pipe 7 (here, in the indoor heat exchanger 42, in the gas refrigerant communication pipe 7, in the gas side shut-off valve 27, and in the four-way switching valve) 2 corresponds to the time required for propagation in 2 and in accumulator 24).
[0052] 以上のような伝播時間 τを検出する処理は、伝播時間検出手段として機能する制 御部 8 (より具体的には、室内側制御部 47と室外側制御部 37と制御部 37、 47間を 接続する伝送線 8a)により、ステップ S22の処理として行われる。 [0052] The process for detecting the propagation time τ as described above is performed by the control unit 8 (more specifically, the indoor side control unit 47, the outdoor side control unit 37, and the control unit 37, which functions as a propagation time detection unit. This is performed as step S22 by the transmission line 8a) connecting 47.
(ステップ S23:冷媒連絡配管の配管長の演算)  (Step S23: Calculation of the length of refrigerant communication pipe)
次に、ステップ S23では、ステップ S22において検出された伝播時間 τに基づいて 、冷媒連絡配管 6、 7の配管長を演算する。上述のように、伝播時間てとガス冷媒連 絡配管 7の配管長 (以下、ガス冷媒連絡配管 7の配管長を配管長 Lgとする)との間に は、相関があることから(図 7参照)、配管長 Lgと伝播時間てとの関係式は、  Next, in step S23, the pipe lengths of the refrigerant communication pipes 6 and 7 are calculated based on the propagation time τ detected in step S22. As described above, there is a correlation between the propagation time and the pipe length of the gas refrigerant communication pipe 7 (hereinafter, the pipe length of the gas refrigerant communication pipe 7 is referred to as pipe length Lg) (Fig. 7). See), and the relational expression between pipe length Lg and propagation time is
Lg = f ( r )  Lg = f (r)
として表すことができる。尚、この関係式は、予め実施された試験等の結果力 求めら れたものであり、予め制御部 8のメモリに記憶されている。  Can be expressed as This relational expression is obtained as a result of a test or the like performed in advance, and is stored in the memory of the control unit 8 in advance.
[0053] ここで、配管長 Lの関係式は、図 8に示されるように、室内ユニットと室外ユニットとの 組み合わせに依存するため、配管長 Lgと伝播時間てとの関係式等が、室内ユ ット の機種ごとにまとめられた形で制御部 8を構成する室外側制御部 37のメモリに予め 記憶されることで準備されており、室内ユニット 4の機種情報に応じて選択されること によって設定されるようになっている。例えば、情報取得手段として機能する制御部 8 力 伝送線 8aを介して室内ユニット 4から取得した機種情報が「 α」である場合には、 配管長 Lの関係式として、 Lg = f a ( τ )を選択することになる。尚、図 8は、室内ュ- ットの機種と、配管長と伝播時間との関係式、ガス冷媒配管の配管径、及び液冷媒 配管の配管径との対照データを表にして示した図である。 Here, since the relational expression of the pipe length L depends on the combination of the indoor unit and the outdoor unit as shown in FIG. 8, the relational expression between the pipe length Lg and the propagation time is Prepared by pre-stored in the memory of the outdoor control unit 37 that constitutes the control unit 8 in a form that is grouped for each model of the unit, and is selected according to the model information of the indoor unit 4 It is set by. For example, if the model information acquired from the indoor unit 4 via the control unit 8 force transmission line 8a that functions as an information acquisition means is `` α '', the relational expression for the pipe length L is Lg = fa (τ) Will be selected. Fig. 8 is a table showing comparison data of indoor unit models, relational expressions between pipe length and propagation time, pipe diameter of gas refrigerant pipe, and pipe diameter of liquid refrigerant pipe. It is.
そして、室内ユニット 4の機種情報力も選択された配管長 Lgと伝播時間てとの関係 式と、ステップ S22において検出された伝播時間てとから、ガス冷媒連絡配管 7の配 管長 Lgが演算される。  Then, the pipe length Lg of the gas refrigerant communication pipe 7 is calculated from the relational expression between the pipe length Lg and the propagation time selected for the model information power of the indoor unit 4 and the propagation time detected in step S22. .
[0054] また、液冷媒連絡配管 6の配管長 L1は、ガス冷媒連絡配管 7の配管長 Lgとほぼ同 じとみなすことができるため、本実施形態において、液冷媒連絡配管 6の配管長 L1は Ll=Lg [0054] Further, since the pipe length L1 of the liquid refrigerant communication pipe 6 can be regarded as substantially the same as the pipe length Lg of the gas refrigerant communication pipe 7, in this embodiment, the pipe length L1 of the liquid refrigerant communication pipe 6 Is Ll = Lg
として表すことができる。そして、この関係式により、液冷媒連絡配管 6の配管長 L1が 演算される。 Can be expressed as The pipe length L1 of the liquid refrigerant communication pipe 6 is calculated from this relational expression.
以上のような関係式を用いて、伝播時間てからガス冷媒連絡配管 7の配管長 Lg及 び液冷媒連絡配管 6の配管長 L1を演算することができる。  Using the above relational expression, the pipe length Lg of the gas refrigerant communication pipe 7 and the pipe length L1 of the liquid refrigerant communication pipe 6 can be calculated from the propagation time.
このように、伝播時間てに基づいて冷媒連絡配管 6、 7の配管長 Lg、 L1を演算する 配管長演算手段として機能する制御部 8により、ステップ S 23の処理が行われる。  In this way, the process of step S23 is performed by the control unit 8 functioning as the pipe length calculating means for calculating the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 based on the propagation time.
(ステップ S24:冷媒連絡配管の配管容積の演算)  (Step S24: Calculation of refrigerant volume of refrigerant communication pipe)
次に、ステップ S24では、ステップ S23において演算された冷媒連絡配管 6、 7の配 管長 Lg、 L1から冷媒連絡配管 6、 7の容積 Vgp、 Vlpを演算する。容積 Vgp、 Vlpを 演算するためには、ガス冷媒連絡配管 7の配管径及び液冷媒連絡配管 6の配管径 等のような冷媒連絡配管 6、 7の流路断面積を得るためのデータが必要である。そこ で、本実施形態においては、上述の配管長 Lgと伝播時間てとの関係式と同様、図 8 に示されるように、室内ユニットに接続されるガス冷媒配管の配管径 dg及び室内ュ- ットに接続されるガス冷媒配管の配管径 dlが、室内ユニットの機種ごとにまとめられた 形で制御部 8を構成する室外側制御部 37のメモリに予め記憶されることで準備され ており、室内ユニット 4の機種情報に応じて選択されることによって設定されるようにな つている。例えば、情報取得手段として機能する制御部 8が、伝送線 8aを介して室内 ユニット 4から取得した機種情報が「 a」である場合には、ガス冷媒配管の配管径 dgと して dg aを選択し、液冷媒配管の配管径 dlとして dl aを選択することになる。  Next, in step S24, the volumes Vgp and Vlp of the refrigerant communication pipes 6 and 7 are calculated from the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 calculated in step S23. In order to calculate the volumes Vgp and Vlp, data for obtaining the cross-sectional area of the refrigerant communication pipes 6 and 7 such as the pipe diameter of the gas refrigerant communication pipe 7 and the pipe diameter of the liquid refrigerant communication pipe 6 is required. It is. Therefore, in this embodiment, as in the relational expression between the pipe length Lg and the propagation time described above, as shown in FIG. 8, the pipe diameter dg and the indoor unit of the gas refrigerant pipe connected to the indoor unit are shown. The pipe diameter dl of the gas refrigerant pipe connected to the indoor unit is prepared by being stored in advance in the memory of the outdoor control unit 37 constituting the control unit 8 in a form that is grouped for each indoor unit model. It is set by being selected according to the model information of the indoor unit 4. For example, when the model information acquired from the indoor unit 4 by the control unit 8 functioning as the information acquisition means is “a” via the transmission line 8a, dg a is set as the pipe diameter dg of the gas refrigerant pipe. Select dl a as the pipe diameter dl of the liquid refrigerant pipe.
すると、本実施形態のように、室外ユニット 2に 1台の室内ユニット 4が接続されてい る場合には、ガス冷媒配管の配管径 dgをガス冷媒連絡配管 7の配管径とし、また、液 冷媒配管の配管径 dlを液冷媒連絡配管 6の配管径とすることができるため、ガス冷媒 連絡配管 7の配管容積 Vgpは、  Then, as in this embodiment, when one indoor unit 4 is connected to the outdoor unit 2, the pipe diameter dg of the gas refrigerant pipe is set to the pipe diameter of the gas refrigerant communication pipe 7, and the liquid refrigerant Since the pipe diameter of the pipe dl can be the pipe diameter of the liquid refrigerant communication pipe 6, the pipe volume Vgp of the gas refrigerant connection pipe 7
Vgp = Z4 X dg X dg X Lg  Vgp = Z4 X dg X dg X Lg
として表すことができ、また、液冷媒連絡配管 6の配管容積 Vlpは、 It can also be expressed as the pipe volume Vlp of the liquid refrigerant communication pipe 6
Vlp = 7u /4 X dl X dl X Ll として表すことができる。そして、これらの関係式により、配管容積 Vgp、 Vlpが演算さ れる。 Vlp = 7u / 4 X dl X dl X Ll Can be expressed as The pipe volumes Vgp and Vlp are calculated from these relational expressions.
以上のような関係式を用いて、ガス冷媒連絡配管 7の配管長 Lg及び液冷媒連絡配 管 6の配管長 L1からガス冷媒連絡配管 7の配管容積 Vgp及び液冷媒連絡配管 6の V lpを演算することができる。  Using the above relationship, pipe length Lg of gas refrigerant communication pipe 7 and liquid refrigerant communication pipe 6 pipe length L1 to gas refrigerant communication pipe 7 pipe volume Vgp and liquid refrigerant communication pipe 6 V lp It can be calculated.
[0056] このように、配管長演算手段として機能する制御部 8は、室内ユニット 4の機種情報 力も得られた配管径 dg、 dlと、ステップ S23において得られた配管長 Lg、 L1とからガ ス冷媒連絡配管 7の配管容積 Vgp及び液冷媒連絡配管 6の Vlpを演算する機能も有 している。 [0056] In this way, the control unit 8 functioning as the pipe length calculation means performs a calculation based on the pipe diameters dg and dl from which the model information of the indoor unit 4 is obtained and the pipe lengths Lg and L1 obtained in step S23. It also has a function to calculate the pipe volume Vgp of the refrigerant refrigerant pipe 7 and Vlp of the liquid refrigerant pipe 6.
(ステップ S3:初期冷媒量検知運転)  (Step S3: Initial refrigerant quantity detection operation)
上述のステップ S 2の配管長判定運転が完了したら、ステップ S3の初期冷媒量判 定運転に移行する。初期冷媒量検知運転では、制御部 8によって、図 9に示されるス テツプ S31及びステップ S32の処理が行われる。ここで、図 9は、初期冷媒量検知運 転のフローチャートである。  When the pipe length determination operation in step S2 is completed, the process proceeds to the initial refrigerant amount determination operation in step S3. In the initial refrigerant quantity detection operation, the control unit 8 performs the processes of step S31 and step S32 shown in FIG. Here, FIG. 9 is a flowchart of the initial refrigerant quantity detection operation.
(ステップ S31:冷媒量判定運転)  (Step S31: Refrigerant amount judgment operation)
ステップ S31では、上述の冷媒自動充填運転のステップ S11の冷媒量判定運転と 同様に、冷房運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸発圧力制御 を含む冷媒量判定運転が行われる。ここで、液管温度制御における液管温度目標 値 Tlps、過熱度制御における過熱度目標値 SHrs及び蒸発圧力制御における低圧 目標値 Pesは、原則として、冷媒自動充填運転のステップ S11の冷媒量判定運転に おける目標値と同じ値が使用される。  In step S31, similar to the refrigerant amount determination operation in step S11 of the above-described automatic refrigerant charging operation, the refrigerant amount determination operation including the cooling operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control is performed. . Here, the liquid pipe temperature target value Tlps in the liquid pipe temperature control, the superheat degree target value SHrs in the superheat degree control, and the low pressure target value Pes in the evaporation pressure control are, in principle, the refrigerant amount judgment operation in step S11 of the automatic refrigerant charging operation. The same value as the target value in is used.
[0057] このように、冷房運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸発圧力 制御を含む冷媒量判定運転を行う冷媒量判定運転制御手段として機能する制御部 8により、ステップ S31の処理が行われる。 [0057] In this way, the control unit 8 that functions as the refrigerant amount determination operation control unit that performs the refrigerant amount determination operation including the cooling operation, the condensing pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control, performs step S31. Is performed.
(ステップ S32:冷媒量の演算)  (Step S32: Calculation of refrigerant amount)
次に、上述の冷媒量判定運転を行!、つつ冷媒量演算手段として機能する制御部 8 によって、ステップ S32における初期冷媒量判定運転における冷媒回路 10を流れる 冷媒又は構成機器の運転状態量から冷媒回路 10内の冷媒量を演算する。冷媒回 路 10内の冷媒量の演算は、上述の冷媒回路 10の各部分の冷媒量と冷媒回路 10を 流れる冷媒又は構成機器の運転状態量との関係式を用いて演算されるが、この際、 上述の配管容積判定運転によって、空気調和装置 1の構成機器の設置後において 未知であった冷媒連絡配管 6、 7の容積 Vlp、 Vgpが演算されて既知となっているた め、これらの冷媒連絡配管 6、 7の容積 Vlp、 Vgpに冷媒の密度を乗算することによつ て、冷媒連絡配管 6、 7内の冷媒量 Mlp、 Mgpを演算し、さらに他の各部分の冷媒量 を加算することにより、冷媒回路 10全体の初期冷媒量を検知することができる。この 初期冷媒量は、後述の冷媒漏洩検知運転において、冷媒回路 10からの漏洩の有無 を判定する基準となる冷媒回路 10全体の基準冷媒量 Miとして使用されるため、運 転状態量の 1つとして、状態量蓄積手段としての制御部 8のメモリに記憶される。 このように、初期冷媒量検知運転における冷媒回路 10内を流れる冷媒又は構成機 器の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段とし て機能する制御部 8により、ステップ S32の処理が行われる。 Next, the control unit 8 that functions as the refrigerant amount calculation means while performing the refrigerant amount determination operation described above, the refrigerant flowing from the refrigerant circuit 10 in the initial refrigerant amount determination operation in step S32 or the operation state amount of the component device is used. Calculate the amount of refrigerant in circuit 10. Refrigerant times The refrigerant amount in the passage 10 is calculated by using a relational expression between the refrigerant amount of each part of the refrigerant circuit 10 and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device. Since the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 were calculated by the above-described pipe volume determination operation, the refrigerant communication was established. By multiplying the volume of the pipes 6 and 7 by the refrigerant density, calculate the refrigerant amounts Mlp and Mgp in the refrigerant communication pipes 6 and 7, and then add the refrigerant quantities in the other parts. Thus, the initial refrigerant amount of the entire refrigerant circuit 10 can be detected. This initial refrigerant quantity is used as a reference refrigerant quantity Mi for the refrigerant circuit 10 as a reference for determining the presence or absence of leakage from the refrigerant circuit 10 in the refrigerant leakage detection operation described later. Is stored in the memory of the control unit 8 as state quantity storage means. In this way, the control unit 8 that functions as a refrigerant amount calculating means that calculates the refrigerant amount in each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant amount detection operation or the operation state quantity of the constituent devices. Then, the process of step S32 is performed.
<冷媒漏洩検知運転モード >  <Refrigerant leak detection operation mode>
次に、冷媒漏洩検知運転モードについて、図 1、図 2、図 5及び図 10を用いて説明 する。ここで、図 10は、冷媒漏洩検知運転モードのフローチャートである。  Next, the refrigerant leak detection operation mode will be described with reference to FIGS. 1, 2, 5, and 10. FIG. Here, FIG. 10 is a flowchart of the refrigerant leak detection operation mode.
本実施形態において、定期的 (例えば、休日や深夜等で空調を行う必要がない時 間帯等)に、不測の原因により冷媒回路 10から冷媒が外部に漏洩していないかどう かを検知する場合を例にして説明する。  In the present embodiment, it is detected periodically (for example, when it is not necessary to perform air conditioning during holidays, late at night, etc.) whether refrigerant has leaked from the refrigerant circuit 10 due to unforeseen causes. A case will be described as an example.
(ステップ S41:冷媒量判定運転)  (Step S41: Refrigerant amount judgment operation)
まず、上記の冷房運転や暖房運転のような通常運転モードにおける運転が一定時 間(例えば、半年〜 1年ごと等)経過した場合に、自動又は手動で通常運転モードか ら冷媒漏洩検知運転モードに切り換えて、初期冷媒量検知運転の冷媒量判定運転 と同様に、冷房運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸発圧力制 御を含む冷媒量判定運転を行なう。ここで、液管温度制御における液管温度目標値 Tips,過熱度制御における過熱度目標値 SHrs及び蒸発圧力制御における低圧目 標値 Pesは、原則として、初期冷媒量検知運転の冷媒量判定運転のステップ S31に おける目標値と同じ値が使用される。 [0059] 尚、この冷媒量判定運転は、冷媒漏洩検知運転ごとに行われることになるが、例え ば、凝縮圧力 Pcが異なる場合ゃ冷媒漏洩が生じて!/ヽる場合のような運転条件の違 いによって室外熱交換器 23出口における冷媒の温度 Tcoが変動する場合において も、液管温度制御によって、液冷媒連絡配管 6内の冷媒の温度 Tipが同じ液管温度 目標値 Tipsで一定に保たれることになる。 First, when a certain amount of time (for example, every six months to one year) has elapsed in the normal operation mode such as the cooling operation or the heating operation described above, the refrigerant leak detection operation mode is automatically or manually changed from the normal operation mode. In the same manner as the refrigerant quantity judgment operation in the initial refrigerant quantity detection operation, the refrigerant quantity judgment operation including the cooling operation, the condensing pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control is performed. Here, the liquid pipe temperature target value Tips in liquid pipe temperature control, the superheat degree target value SHrs in superheat degree control, and the low pressure target value Pes in evaporative pressure control are, in principle, the refrigerant quantity judgment operation in the initial refrigerant quantity detection operation. The same value as the target value in step S31 is used. [0059] The refrigerant amount determination operation is performed for each refrigerant leakage detection operation. For example, if the condensation pressure Pc is different, the refrigerant leakage occurs! Even if the refrigerant temperature Tco fluctuates at the outlet of the outdoor heat exchanger 23 due to the difference in temperature, the temperature of the refrigerant in the liquid refrigerant communication pipe 6 is the same as the liquid pipe temperature. Will be kept.
このように、冷房運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸発圧力 制御を含む冷媒量判定運転を行う冷媒量判定運転制御手段として機能する制御部 8により、ステップ S41の処理が行われる。  As described above, the process of step S41 is performed by the control unit 8 functioning as the refrigerant amount determination operation control means for performing the refrigerant amount determination operation including the cooling operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control. Done.
(ステップ S42:冷媒量の演算)  (Step S42: Calculation of refrigerant quantity)
次に、上述の冷媒量判定運転を行!、つつ冷媒量演算手段として機能する制御部 8 によって、ステップ S42における冷媒漏洩検知運転における冷媒回路 10を流れる冷 媒又は構成機器の運転状態量から冷媒回路 10内の冷媒量を演算する。冷媒回路 1 0内の冷媒量の演算は、上述の冷媒回路 10の各部分の冷媒量と冷媒回路 10を流 れる冷媒又は構成機器の運転状態量との関係式を用いて演算されるが、この際、初 期冷媒量判定運転と同様に、上述の配管容積判定運転によって、空気調和装置 1 の構成機器の設置後において未知であった冷媒連絡配管 6、 7の容積 Vlp、 Vgpが 演算されて既知となっているため、これらの冷媒連絡配管 6、 7の容積 Vlp、 Vgpに冷 媒の密度を乗算することによって、冷媒連絡配管 6、 7内の冷媒量 Mlp、 Mgpを演算 し、さらに他の各部分の冷媒量を加算することにより、冷媒回路 10全体の冷媒量 M を演算することができる。  Next, the control unit 8 that functions as the refrigerant quantity calculation means while performing the refrigerant quantity determination operation described above, the refrigerant from the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device in the refrigerant leakage detection operation in step S42. Calculate the amount of refrigerant in circuit 10. The refrigerant amount in the refrigerant circuit 10 is calculated using a relational expression between the refrigerant amount of each part of the refrigerant circuit 10 and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device. At this time, the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated by the above-described pipe volume determination operation as in the initial refrigerant amount determination operation. Therefore, the refrigerant volumes Mlp and Mgp in the refrigerant communication pipes 6 and 7 are calculated by multiplying the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 by the density of the refrigerant. By adding the refrigerant amounts of the other parts, the refrigerant amount M of the entire refrigerant circuit 10 can be calculated.
[0060] ここで、上述のように、液管温度制御によって液冷媒連絡配管 6内の冷媒の温度 T1 Pが同じ液管温度目標値 Tipsで一定に保たれているため、液冷媒連絡配管部 B3に おける冷媒量 Mlpは、冷媒漏洩検知運転の運転条件の違いによらず、室外熱交換 器 23出口における冷媒の温度 Tcoが変動する場合においても、一定に保たれること になる。 [0060] Here, as described above, since the temperature T1 P of the refrigerant in the liquid refrigerant communication pipe 6 is kept constant at the same liquid pipe temperature target value Tips by the liquid pipe temperature control, the liquid refrigerant communication pipe section The refrigerant amount Mlp in B3 is kept constant even when the refrigerant temperature Tco fluctuates at the outlet of the outdoor heat exchanger 23, regardless of the operating conditions of the refrigerant leak detection operation.
このように、冷媒漏洩検知運転における冷媒回路 10内を流れる冷媒又は構成機器 の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段として 機能する制御部 8により、ステップ S42の処理が行われる。 (ステップ S43、 S44 :冷媒量の適否の判定、警告表示) In this way, the control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant leakage detection operation causes the step S42. Is performed. (Steps S43, S44: Judgment of appropriateness of refrigerant amount, warning display)
冷媒回路 10から冷媒が外部に漏洩すると、冷媒回路 10内の冷媒量が減少する。 そして、冷媒回路 10内の冷媒量が減少すると、主として、室外熱交換器 23の出口に おける過冷却度 SCが小さくなる傾向が現れ、これに伴い、室外熱交 におけ る冷媒量 Mcが減少し、他の部分における冷媒量がほぼ一定に保たれる傾向になる 。このため、上述のステップ S42において演算された冷媒回路 10全体の冷媒量 Mは 、冷媒回路 10からの冷媒漏洩が生じている場合には、初期冷媒量検知運転におい て検知された基準冷媒量 MUりも小さくなり、冷媒回路 10からの冷媒漏洩が生じて V、な 、場合には、基準冷媒量 Miとほぼ同じ値になる。  When the refrigerant leaks from the refrigerant circuit 10 to the outside, the amount of refrigerant in the refrigerant circuit 10 decreases. When the amount of refrigerant in the refrigerant circuit 10 decreases, the degree of supercooling SC at the outlet of the outdoor heat exchanger 23 tends to decrease, and accordingly, the amount of refrigerant Mc in the outdoor heat exchange decreases. However, the refrigerant amount in other parts tends to be kept almost constant. For this reason, the refrigerant amount M of the entire refrigerant circuit 10 calculated in step S42 described above is the reference refrigerant amount MU detected in the initial refrigerant amount detection operation when refrigerant leakage from the refrigerant circuit 10 occurs. If the refrigerant leaks from the refrigerant circuit 10 and becomes V, in this case, it becomes almost the same value as the reference refrigerant amount Mi.
[0061] このことを利用して、ステップ S43では、冷媒の漏洩の有無を判定している。そして 、ステップ S43において、冷媒回路 10からの冷媒の漏洩が生じていないと判定され る場合には、冷媒漏洩検知運転モードを終了する。 Utilizing this fact, in step S43, it is determined whether or not refrigerant has leaked. If it is determined in step S43 that no refrigerant leaks from the refrigerant circuit 10, the refrigerant leak detection operation mode is terminated.
一方、ステップ S43において、冷媒回路 10からの冷媒の漏洩が生じていると判定さ れる場合には、ステップ S44の処理に移行して、冷媒漏洩を検知したことを知らせる 警告を警告表示部 9に表示した後、冷媒漏洩検知運転モードを終了する。  On the other hand, if it is determined in step S43 that refrigerant has leaked from the refrigerant circuit 10, the process proceeds to step S44, and a warning is sent to the warning display unit 9 informing that the refrigerant has been detected. After the display, the refrigerant leak detection operation mode is terminated.
このように、冷媒漏洩検知運転モードにお!ヽて冷媒量判定運転を行!ヽつつ冷媒回 路 10内の冷媒量の適否を判定して冷媒漏洩の有無を検知する、冷媒量判定手段の 一つである冷媒漏洩検知手段として機能する制御部 8により、ステップ S42〜S44の 処理が行われる。  In this way, the refrigerant amount determination means for detecting the presence or absence of refrigerant leakage by determining whether or not the refrigerant amount in the refrigerant circuit 10 is appropriate while performing the refrigerant amount determination operation in the refrigerant leakage detection operation mode. The processing of steps S42 to S44 is performed by the control unit 8 that functions as one refrigerant leakage detection means.
[0062] 以上のように、本実施形態の空気調和装置 1では、制御部 8が、冷媒量判定運転 手段、冷媒量演算手段、冷媒量判定手段、配管長判定運転手段、配管長演算手段 、情報取得手段、及び状態量蓄積手段として機能することにより、冷媒回路 10内に 充填された冷媒量の適否を判定するための冷媒量判定システムを構成している。  [0062] As described above, in the air conditioner 1 of the present embodiment, the control unit 8 includes the refrigerant amount determination operation means, the refrigerant amount calculation means, the refrigerant amount determination means, the pipe length determination operation means, the pipe length calculation means, By functioning as information acquisition means and state quantity accumulation means, a refrigerant quantity determination system for determining the suitability of the refrigerant quantity charged in the refrigerant circuit 10 is configured.
(3)空気調和装置の特徴  (3) Features of the air conditioner
本実施形態の空気調和装置 1には、以下のような特徴がある。  The air conditioner 1 of the present embodiment has the following features.
(A)  (A)
本実施形態の空気調和装置 1では、構成機器の制御状態を第 1状態力 第 1状態 とは異なる第 2状態に変化させる配管長判定運転を行い、このような状態変化によつ て冷媒回路 10内を流れる冷媒に現れる運転状態量の変化が、少なくともガス冷媒連 絡配管 7を含む冷媒回路 10内の所定の区間内(ここでは、室内熱交翻 42内、ガス 冷媒連絡配管 7内、ガス側閉鎖弁 27内、四路切換弁 22内、及びアキュムレータ 24 内)を伝播するのに要する伝播時間 τを検出し、この伝播時間 τに基づいて、冷媒 連絡配管 6、 7の配管長を演算するようにしているため、例えば、構成機器を設置した 後においてガス冷媒連絡配管 7の配管長が未知の場合であっても、冷媒連絡配管 7 の配管長 Lgを知ることができる。これにより、冷媒連絡配管 6、 7の情報を入力する手 間を減らしつつ、冷媒連絡配管 6、 7の配管長 Lg、 L1を得ることができる。 In the air conditioner 1 of the present embodiment, the pipe length determination operation is performed to change the control state of the component device to the second state different from the first state force and the first state. The change in the operating state amount that appears in the refrigerant flowing in the refrigerant circuit 10 is within a predetermined section in the refrigerant circuit 10 including at least the gas refrigerant communication pipe 7 (in this case, in the indoor heat exchange 42, the gas refrigerant communication pipe 7), the propagation time τ required to propagate through the gas side shut-off valve 27, the four-way switching valve 22 and the accumulator 24) is detected, and based on this propagation time τ, the refrigerant communication pipes 6 and 7 Since the pipe length is calculated, for example, even if the pipe length of the gas refrigerant communication pipe 7 is unknown after installing the components, the pipe length Lg of the refrigerant communication pipe 7 can be known. . Thereby, the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 can be obtained while reducing the time for inputting the information of the refrigerant communication pipes 6 and 7.
[0063] そして、この空気調和装置 1では、伝播時間てとガス冷媒連絡配管 7の配管長 Lgと の関係式を用いて配管長判定運転において検出された伝播時間てから冷媒連絡配 管 6、 7の配管長 Lg、 L1を演算し、この演算された配管長 Lg、 L1と利用ユニットとして の室内ユニット 4の機種情報力も得られる冷媒連絡配管 6、 7の配管径 dg、 dlとから冷 媒連絡配管 6、 7の容積 Vgp、 Vlpを演算するようにしているため、冷媒連絡配管 6、 7 の情報を入力する手間を減らしつつ、冷媒連絡配管 6、 7の配管容積 Vgp、 Vlpを正 確に演算することができる。  [0063] Then, in this air conditioner 1, the refrigerant communication pipe 6, after the propagation time detected in the pipe length determination operation using the relational expression between the propagation time and the pipe length Lg of the gas refrigerant communication pipe 7, Calculate the pipe lengths Lg and L1 of 7 and use the calculated pipe lengths Lg and L1 and the indoor unit 4 as the unit to be used. Since the volume Vgp and Vlp of the connecting pipes 6 and 7 are calculated, the piping volumes Vgp and Vlp of the refrigerant connecting pipes 6 and 7 are accurately determined while reducing the effort for inputting the information of the refrigerant connecting pipes 6 and 7. Can be calculated.
そして、この空気調和装置 1では、配管長演算手段として機能する制御部 8によつ て演算される冷媒連絡配管 6、 7の配管長 Lg、 L1と、冷媒回路 10を流れる冷媒又は 構成機器の運転状態量とを用いて、冷媒回路 10内の冷媒量の適否を判定するよう にしているため、冷媒連絡配管 6、 7の情報を入力する手間を減らしつつ、冷媒回路 内の冷媒量の適否を高精度に判定することができる。  In this air conditioner 1, the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7 calculated by the control unit 8 functioning as pipe length calculation means, and the refrigerant or component equipment flowing through the refrigerant circuit 10 Since the amount of refrigerant in the refrigerant circuit 10 is determined using the operating state quantity, it is possible to determine the appropriateness of the refrigerant quantity in the refrigerant circuit while reducing the effort of inputting information on the refrigerant communication pipes 6 and 7. Can be determined with high accuracy.
[0064] (B)  [0064] (B)
本実施形態の空気調和装置 1では、配管長判定運転において、室内膨張弁 41の 開度 OVを第 1状態としての第 1開度 OV1から第 2状態としての第 2開度 OV2に変化 させるようにしているため、冷媒回路 10内を流れる冷媒に現れる運転状態量の変化 が急激にかつ明確に現れるようにでき、伝播時間てを正確に検出できるようになって いる。  In the air conditioner 1 of the present embodiment, in the pipe length determination operation, the opening OV of the indoor expansion valve 41 is changed from the first opening OV1 as the first state to the second opening OV2 as the second state. Therefore, the change in the operating state quantity appearing in the refrigerant flowing in the refrigerant circuit 10 can be made to appear rapidly and clearly, and the propagation time can be accurately detected.
具体的には、この空気調和装置 1では、室内膨張弁 41の開度 OVを変化させる配 管長判定運転において、伝播時間てを検出するための運転状態量として、配管長 判定運転における圧縮機 21の吸入側を流れる冷媒の運転状態量 (ここでは、圧縮 機吸入過熱度 SHi)を用いているため、この運転状態量の変化力 少なくともガス冷 媒連絡配管 7を含む冷媒回路 10内の所定の区間内(ここでは、室内熱交換器 42内 、ガス冷媒連絡配管 7内、ガス側閉鎖弁 27内、四路切換弁 22内、及びアキュムレー タ 24内)を伝播するのに要する伝播時間てを検出することができ、この伝播時間てか らガス冷媒連絡配管 7の配管長 Lgを得ることができるようになつている。し力も、この 伝播時間 τの検出に用いられる圧縮機 21の吸入側を流れる冷媒の運転状態量とし て、圧縮機 21の吸入側を流れる冷媒の過熱度としての圧縮機吸入過熱度 SHiを用 いているため、室内膨張弁 41の開度変化による影響が明確に現れるようになり、伝 播時間てをさらに正確に検出できるようになつている。 Specifically, in this air conditioner 1, in the pipe length determination operation in which the opening OV of the indoor expansion valve 41 is changed, the pipe length is used as the operation state quantity for detecting the propagation time. Since the operation state quantity of the refrigerant flowing in the suction side of the compressor 21 in the judgment operation (here, the compressor intake superheat degree SHi) is used, the change force of this operation state quantity is a refrigerant including at least the gas refrigerant communication pipe 7 It propagates in a predetermined section in the circuit 10 (in this case, in the indoor heat exchanger 42, in the gas refrigerant communication pipe 7, in the gas side shut-off valve 27, in the four-way selector valve 22, and in the accumulator 24). It is possible to detect the propagation time required for this, and the pipe length Lg of the gas refrigerant communication pipe 7 can be obtained from this propagation time. Also, the compressor suction superheat degree SHi as the superheat degree of the refrigerant flowing on the suction side of the compressor 21 is used as the operating state quantity of the refrigerant flowing on the suction side of the compressor 21 used for detecting the propagation time τ. Therefore, the influence of the change in the opening degree of the indoor expansion valve 41 appears clearly, and the propagation time can be detected more accurately.
[0065] また、この空気調和装置 1では、配管長判定運転にお!、ても、冷房運転、凝縮圧力 制御、液管温度制御、及び蒸発圧力制御を行っており、これにより、室内膨張弁 41 の開度 OVが第 1開度 OV1から第 2開度 OV2に変化された場合にも、凝縮圧力 Pc、 液管温度 Tip及び蒸発圧力 Peが一定に保たれるように冷媒回路 10内を流れる冷媒 の状態が制御されるため、室内膨張弁 41に流入する冷媒の温度や圧力の条件が安 定し、また、室内膨張弁 41の出口力も圧縮機 21の吸入側までの間における冷媒の 圧力の条件が安定することになる。これにより、室内膨張弁 41の開度変化による影響 が明確に現れるようになり、伝播時間てをさらに正確に検出できるようになつている。 [0065] Further, in this air conditioner 1, although the pipe length determination operation is performed, the cooling operation, the condensing pressure control, the liquid pipe temperature control, and the evaporation pressure control are performed. Even when the opening degree OV of 41 is changed from the first opening degree OV1 to the second opening degree OV2, the inside of the refrigerant circuit 10 is maintained so that the condensation pressure Pc, the liquid pipe temperature Tip, and the evaporation pressure Pe are kept constant. Since the state of the flowing refrigerant is controlled, the temperature and pressure conditions of the refrigerant flowing into the indoor expansion valve 41 are stabilized, and the outlet force of the indoor expansion valve 41 is also reduced between the intake side of the compressor 21 and the refrigerant. The pressure condition will be stable. As a result, the influence of the change in the opening degree of the indoor expansion valve 41 becomes clear, and the propagation time can be detected more accurately.
(C)  (C)
本実施形態の空気調和装置 1では、冷媒回路 10を複数の部分に分割して、各部 分の冷媒量と運転状態量との関係式を設定しているため、従来のような冷凍サイクル 特性のシミュレーションを行う場合に比べて、演算負荷を抑えることができるとともに、 各部分の冷媒量を演算する上で重要な運転状態量を関係式の変数として選択的に 取り込むことができるため、各部分の冷媒量の演算精度も向上し、その結果、冷媒回 路 10内の冷媒量の適否を高精度に判定することができる。  In the air conditioner 1 of the present embodiment, the refrigerant circuit 10 is divided into a plurality of parts, and a relational expression between the refrigerant amount and the operating state quantity of each part is set. Compared to the simulation, the calculation load can be reduced, and the operating state quantity important for calculating the refrigerant amount in each part can be selectively captured as a variable in the relational expression. The calculation accuracy of the refrigerant amount is also improved, and as a result, the suitability of the refrigerant amount in the refrigerant circuit 10 can be determined with high accuracy.
[0066] 例えば、冷媒量演算手段としての制御部 8は、関係式を用いて、冷媒回路 10内に 冷媒を充填する冷媒自動充填運転における冷媒回路 10を流れる冷媒又は構成機 器の運転状態量力も各部分の冷媒量を素早く演算することができる。しかも、冷媒量 判定手段としての制御部 8は、演算された各部分の冷媒量を用いて、冷媒回路 10内 の冷媒量 (具体的には、室外ユニット 2における冷媒量 Moと室内ユニット 4における 冷媒量 Mrとを加算した値)が充填目標値 Msに到達した力どうかを高精度に判定す ることがでさる。 [0066] For example, the control unit 8 serving as the refrigerant amount calculating means uses the relational expression to calculate the refrigerant flowing through the refrigerant circuit 10 or the operating state quantity force of the constituent device in the automatic refrigerant charging operation in which the refrigerant is filled into the refrigerant circuit 10. Also, the amount of refrigerant in each part can be calculated quickly. Moreover, the amount of refrigerant The control unit 8 serving as a determination unit uses the calculated refrigerant amount of each part to calculate the refrigerant amount in the refrigerant circuit 10 (specifically, the refrigerant amount Mo in the outdoor unit 2 and the refrigerant amount Mr in the indoor unit 4). It is possible to determine with high accuracy whether the force has reached the filling target value Ms.
また、制御部 8は、関係式を用いて、構成機器を設置した後又は冷媒回路 10内に 冷媒を充填した後の初期冷媒量を検知する初期冷媒量検知運転における冷媒回路 10を流れる冷媒又は構成機器の運転状態量から各部分の冷媒量を演算することで 、基準冷媒量 Miとしての初期冷媒量を素早く演算することができる。し力も、初期冷 媒量を高精度に検知することができる。  Further, the control unit 8 uses the relational expression to determine whether the refrigerant flowing through the refrigerant circuit 10 in the initial refrigerant amount detection operation in which the initial refrigerant amount is detected after the component device is installed or after the refrigerant circuit 10 is filled with the refrigerant or By calculating the refrigerant amount of each part from the operation state quantities of the component devices, the initial refrigerant amount as the reference refrigerant amount Mi can be quickly calculated. Also, the initial cooling amount can be detected with high accuracy.
[0067] さらに、制御部 8は、関係式を用いて、冷媒回路 10からの冷媒の漏洩の有無を判 定する冷媒漏洩検知運転における冷媒回路 10を流れる冷媒又は構成機器の運転 状態量力も各部分の冷媒量を素早く演算することができる。し力も、制御部 8は、演算 された各部分の冷媒量と、漏洩の有無を判定する基準となる基準冷媒量 Miとを比較 することで、冷媒回路 10からの冷媒の漏洩の有無を高精度に判定することができる。 [0067] Further, the control unit 8 uses the relational expression to determine whether the refrigerant flowing through the refrigerant circuit 10 in the refrigerant leakage detection operation for determining whether or not the refrigerant leaks from the refrigerant circuit 10 or the operating state quantity force of the constituent devices. The amount of refrigerant in the portion can be calculated quickly. The control unit 8 also increases the presence or absence of refrigerant leakage from the refrigerant circuit 10 by comparing the calculated refrigerant amount of each part with the reference refrigerant amount Mi that serves as a reference for determining the presence or absence of leakage. The accuracy can be determined.
(D)  (D)
本実施形態の空気調和装置 1では、凝縮器としての室外熱交換器 23から膨張機 構としての室内膨張弁 41に送られる冷媒の温度を調節することが可能な温度調節 機構としての過冷却器 25が設けられており、冷媒量判定運転の際に過冷却器 25か ら膨張機構としての室内膨張弁 41に送られる冷媒の温度 Tipが一定になるように過 冷却器 25の能力制御を行うことで過冷却器 25から室内膨張弁 41に至る冷媒配管 内の冷媒の密度 p lpが変化しないようにしているため、凝縮器としての室外熱交換 器 23の出口における冷媒の温度 Tcoが冷媒量判定運転を行うごとに異なる場合で あっても、このような冷媒の温度の相違の影響が室外熱交^^ 23の出口力も過冷却 器 25に至る冷媒配管のみに収まることとなり、冷媒量判定の際に、室外熱交 の出口における冷媒の温度 Tcoの相違 (すなわち、冷媒の密度の相違)による判定 誤差を小さくすることができる。  In the air conditioner 1 of the present embodiment, the subcooler as a temperature adjustment mechanism capable of adjusting the temperature of the refrigerant sent from the outdoor heat exchanger 23 as a condenser to the indoor expansion valve 41 as an expansion mechanism. 25 is provided, and the capacity control of the subcooler 25 is performed so that the temperature Tip of the refrigerant sent from the subcooler 25 to the indoor expansion valve 41 as the expansion mechanism is constant during the refrigerant quantity determination operation. Therefore, the refrigerant density p lp in the refrigerant piping from the supercooler 25 to the indoor expansion valve 41 is not changed, so that the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 as a condenser is the amount of refrigerant. Even if it is different for each judgment operation, the effect of the difference in refrigerant temperature is such that the outlet power of the outdoor heat exchanger ^^ 23 is contained only in the refrigerant pipe leading to the subcooler 25, and the refrigerant amount is judged. The refrigerant at the outlet of the outdoor heat exchanger Differences in degrees Tco (i.e., the difference in density of the refrigerant) can be reduced decision error due.
[0068] 特に、本実施形態のように、熱源ユニットとしての室外ユニット 2と利用ユニットとして の室内ユニット 4とが液冷媒連絡配管 6及びガス冷媒連絡配管 7を介して接続されて いる場合には、室外ユニット 2と室内ユニット 4との間を接続する冷媒連絡配管 6、 7の 長さゃ管径等が設置場所等の条件により異なるため、冷媒連絡配管 6、 7の容積が 大きくなる場合には、室外熱交翻 23の出口における冷媒の温度 Tcoの相違が、室 外熱交 の出口力も室内膨張弁 41に至る冷媒配管の大部分を構成する液冷 媒連絡配管 6内の冷媒の温度の相違となってしまい、判定誤差が大きくなる傾向にあ る力 上述のように、過冷却器 25を設けるとともに、冷媒量判定運転の際に液冷媒連 絡配管 6内の冷媒の温度 Tipが一定になるように過冷却器 25の能力制御を行ってお り、過冷却器 25から室内膨張弁 41に至る冷媒配管内の冷媒の密度 p lpが変化しな いようにしているため、冷媒量判定の際に、室外熱交^^ 23の出口 Tcoにおける冷 媒の温度の相違 (すなわち、冷媒の密度の相違)による判定誤差を小さくすることが できる。 [0068] In particular, as in this embodiment, the outdoor unit 2 as a heat source unit and the indoor unit 4 as a utilization unit are connected via a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7. The refrigerant communication pipes 6 and 7 that connect between the outdoor unit 2 and the indoor unit 4 have different lengths depending on conditions such as the installation location. If the temperature increases, the difference in the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 causes the outlet power of the outdoor heat exchanger to also constitute the majority of the refrigerant pipe that reaches the indoor expansion valve 41. As described above, the supercooler 25 is provided, and the refrigerant in the liquid refrigerant communication pipe 6 is used during the refrigerant amount judgment operation as described above. The capacity control of the supercooler 25 is controlled so that the temperature tip of the refrigerant is constant, so that the refrigerant density p lp in the refrigerant pipe from the supercooler 25 to the indoor expansion valve 41 does not change. Therefore, when determining the amount of refrigerant, the phase of the refrigerant temperature at the outlet Tco of the outdoor heat exchanger ^^ 23 The determination error due to the difference (that is, the difference in refrigerant density) can be reduced.
[0069] 例えば、冷媒回路 10内に冷媒を充填する冷媒自動充填運転の際には、冷媒回路 10内の冷媒量が充填目標値 Miに到達した力どうかを高精度に判定することができる 。また、構成機器を設置した後又は冷媒回路 10内に冷媒を充填した後の初期冷媒 量を検知する初期冷媒量検知運転の際には、初期冷媒量を高精度に検知すること ができる。また、冷媒回路 10からの冷媒の漏洩の有無を判定する冷媒漏洩検知運 転の際には、冷媒回路 10からの冷媒の漏洩の有無を高精度に判定することができる  [0069] For example, in the automatic refrigerant charging operation in which the refrigerant in the refrigerant circuit 10 is charged, it is possible to determine with high accuracy whether or not the amount of the refrigerant in the refrigerant circuit 10 has reached the target charging value Mi. In addition, the initial refrigerant amount can be detected with high accuracy in the initial refrigerant amount detection operation in which the initial refrigerant amount is detected after the component device is installed or after the refrigerant circuit 10 is filled with the refrigerant. In addition, in the refrigerant leak detection operation for determining whether or not the refrigerant leaks from the refrigerant circuit 10, it is possible to accurately determine whether or not the refrigerant leaks from the refrigerant circuit 10.
[第 2実施形態] [Second Embodiment]
上述の第 1実施形態の空気調和装置 1においては、熱源ユニットとしての室外ュ- ット 2に対して利用ユニットとしての室内ユニット 4が 1台接続されたものに本発明を適 用した例を説明したが、図 11及び図 12に示されるように、室外ユニット 2に対して複 数 (ここでは、 2台)の室内ユニット 4、 5が接続された空気調和装置 101に本発明を 適用してもよい。ここで、図 11は、第 2実施形態にかかる空気調和装置 101の概略構 成図である。図 12は、空気調和装置 101の制御ブロック図である。  In the air conditioner 1 of the first embodiment described above, an example in which the present invention is applied to an outdoor unit 2 as a heat source unit and one indoor unit 4 as a utilization unit connected thereto. As described above, as shown in FIGS. 11 and 12, the present invention is applied to the air conditioner 101 in which a plurality of (here, two) indoor units 4 and 5 are connected to the outdoor unit 2. May be. Here, FIG. 11 is a schematic configuration diagram of the air-conditioning apparatus 101 according to the second embodiment. FIG. 12 is a control block diagram of the air conditioner 101.
[0070] 具体的には、空気調和装置 101は、第 1実施形態の室内ユニット 4と同様の構成を 有する室内ユニット 5がさらに接続されることによって、蒸気圧縮式の冷媒回路 110を 構成している。尚、室内ユニット 5の構成については、室内ユニット 5が有する室内側 冷媒回路については 10bの符号を付すとともに、室内ユニット 4の各部を示す 40番 台の符号の代わりに 50番台の符号を付して、各部の説明を省略する。また、室内ュ ニット 5の室内側制御部 57は、室内ユニット 4の室内側制御部 47との間及び室外ュ ニット 2の室外側制御部 37との間で伝送線 108aを介して制御信号等のやりとりを行 うことができるようになつている。すなわち、室内側制御部 47と室内側制御部 57と室 外側制御部 37と制御部 37、 47、 57間を接続する伝送線 108aとによって、空気調和 装置 101全体の運転制御を行う制御部 108が構成されている。 [0070] Specifically, the air conditioner 101 configures a vapor compression refrigerant circuit 110 by further connecting the indoor unit 5 having the same configuration as the indoor unit 4 of the first embodiment. Yes. In addition, about the structure of the indoor unit 5, it is the indoor side which the indoor unit 5 has. The refrigerant circuit is denoted by reference numeral 10b, and is denoted by reference numeral 50 in place of the reference numeral 40 indicating each part of the indoor unit 4, and description of each part is omitted. Further, the indoor side control unit 57 of the indoor unit 5 is connected to the indoor side control unit 47 of the indoor unit 4 and to the outdoor side control unit 37 of the outdoor unit 2 via a transmission line 108a. Can be exchanged. That is, the control unit 108 that controls the operation of the entire air conditioner 101 by the indoor side control unit 47, the indoor side control unit 57, the outdoor side control unit 37, and the transmission line 108a that connects the control units 37, 47, and 57. Is configured.
[0071] このような構成を有する空気調和装置 101においても、第 1実施形態の空気調和 装置 1と同様の冷媒自動充填運転、初期冷媒量検知運転、配管長判定運転、及び 冷媒漏洩検知運転を行うことができる。  [0071] Also in the air conditioner 101 having such a configuration, the same automatic refrigerant charging operation, initial refrigerant amount detection operation, pipe length determination operation, and refrigerant leakage detection operation as the air conditioner 1 of the first embodiment are performed. It can be carried out.
但し、本実施形態の空気調和装置 101では、室内ユニットが複数台(すなわち、室 内ユニット 4、 5)存在することから、室内ユニット 4、 5の両方が運転されている条件に おいて、例えば、第 1実施形態における配管長判定運転 (室内膨張弁の開度 OVを 変化させる運転)を室内ユニット 4及び室内ユニット 5の両方に対して同時に行うと、 室内ユニット 4側からの運転状態量の変化と室内ユニット 5側力もの運転状態量の変 ィ匕とが混ざった状態で圧縮機 21の吸入側まで伝播することになる。すると、室内ュ- ット 4側の運転状態量の変化にとっては室内ユニット 5側の運転状態量の変化が外乱 となり、室内ユニット 5側の運転状態量の変化にとっては室内ユニット 4側の運転状態 量の変化が外乱となるため、伝播時間てを正確に検出できない可能性がある。  However, in the air conditioner 101 of the present embodiment, since there are a plurality of indoor units (that is, the indoor units 4 and 5), for example, under the condition that both the indoor units 4 and 5 are operated, When the pipe length determination operation (operation to change the opening OV of the indoor expansion valve) in the first embodiment is performed simultaneously on both the indoor unit 4 and the indoor unit 5, the operation state quantity from the indoor unit 4 side is reduced. The change propagates to the suction side of the compressor 21 in a state in which the change of the operation state quantity of the indoor unit 5 side force is mixed. Then, the change in the operation state quantity on the indoor unit 4 side becomes a disturbance for the change in the operation state quantity on the indoor unit 4 side, and the operation condition on the indoor unit 4 side for the change in the operation state quantity on the indoor unit 5 side. Since the change in quantity becomes a disturbance, there is a possibility that the propagation time cannot be accurately detected.
[0072] このため、本実施形態の空気調和装置 101のように、室外ユニットに複数の室内ュ ニットが接続されたものにおいては、複数の室内ユニットのうちの 1つのみについて配 管長判定運転を行うことによって、他の室内ユニット側の外乱がない状態にすること が望ましい。  [0072] Therefore, in the case where a plurality of indoor units are connected to the outdoor unit as in the air conditioner 101 of the present embodiment, the pipe length determination operation is performed only for one of the plurality of indoor units. By doing so, it is desirable that there be no disturbance on the other indoor unit side.
そこで、本実施形態の空気調和装置 101では、冷媒連絡配管 6、 7の配管長 Lg、 L 1を演算するに当たり、配管長判定運転制御手段としての制御部 108が、室内ュニッ ト 4、 5のうちの 1つ(例えば、室内ユニット 4)について配管長判定運転を行うようにし て、他の室内ユニット (ここでは、室外ユニット 5)側の外乱がない状態にして、伝播時 間 τを正確に検出することができるようにしている。 [他の実施形態] Therefore, in the air conditioner 101 of the present embodiment, when calculating the pipe lengths Lg and L1 of the refrigerant communication pipes 6 and 7, the control unit 108 as a pipe length determination operation control means includes the indoor units 4 and 5 The pipe length judgment operation is performed for one of them (for example, indoor unit 4) so that there is no disturbance on the other indoor unit (in this case, outdoor unit 5) side, and the propagation time τ is accurately set. So that it can be detected. [Other embodiments]
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。  As mentioned above, although embodiment of this invention was described based on drawing, specific structure can be changed in the range which does not deviate from the summary of this invention which is not restricted to these embodiment.
[0073] 例えば、上述の実施形態では、冷暖切り換え可能な空気調和装置に本発明を適 用した例を説明したが、これに限定されず、冷房専用の空気調和装置等の他の空気 調和装置に本発明を適用してもよい。また、上述の実施形態では、 1台の室外ュ-ッ トを備えた空気調和装置に本発明を適用した例を説明したが、これに限定されず、 複数台の室外ユニットを備えた空気調和装置に本発明を適用してもよい。  For example, in the above-described embodiment, an example in which the present invention is applied to an air conditioner capable of switching between cooling and heating has been described. However, the present invention is not limited to this, and other air conditioners such as a cooling-only air conditioner. The present invention may be applied to. In the above-described embodiment, the example in which the present invention is applied to the air conditioner including one outdoor unit has been described. However, the present invention is not limited to this, and the air conditioner includes a plurality of outdoor units. The present invention may be applied to an apparatus.
産業上の利用可能性  Industrial applicability
[0074] 本発明を利用すれば、セパレート型の空気調和装置の運転前に冷媒連絡配管の 情報を入力する手間を減らしつつ、冷媒回路内の冷媒量の適否を高精度に判定で さるようになる。 [0074] If the present invention is used, the suitability of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy while reducing the effort of inputting information of the refrigerant communication pipe before the operation of the separate type air conditioner. Become.

Claims

請求の範囲 The scope of the claims
[1] 熱源ユニット (2)と利用ユニット (4、 5)とが冷媒連絡配管 (6、 7)を介して接続される ことによって構成される冷媒回路(10、 110)と、  [1] Refrigerant circuit (10, 110) configured by connecting heat source unit (2) and utilization unit (4, 5) via refrigerant communication pipe (6, 7);
構成機器の制御状態を第 1状態力 前記第 1状態とは異なる第 2状態に変化させる 配管長判定運転を行うことが可能な運転制御手段と、  An operation control means capable of performing a pipe length determination operation for changing the control state of the component device to a second state different from the first state force and the first state;
前記配管長判定運転によって前記冷媒回路内を流れる冷媒に現れる運転状態量 の変化が、少なくとも前記冷媒連絡配管を含む前記冷媒回路の所定の区間内を伝 播するのに要する伝播時間に基づ!/、て、前記冷媒連絡配管の配管長を演算する配 管長演算手段と、  Based on the propagation time required for the change in the operating state quantity appearing in the refrigerant flowing in the refrigerant circuit by the pipe length judgment operation to propagate through at least a predetermined section of the refrigerant circuit including the refrigerant communication pipe! A pipe length calculating means for calculating the pipe length of the refrigerant communication pipe;
を備えた空気調和装置(1、 101)。  Air conditioner (1, 101) equipped with.
[2] 前記冷媒回路(10、 110)は、圧縮機 (21)と、凝縮器 (23)と、膨張弁 (41、 51)と、 蒸発器 (42、 52)とを含んでおり、 [2] The refrigerant circuit (10, 110) includes a compressor (21), a condenser (23), an expansion valve (41, 51), and an evaporator (42, 52).
前記運転制御手段は、前記配管長判定運転において、前記膨張弁の開度を前記 第 1状態としての第 1開度力 前記第 2状態としての第 2開度に変化させる、 請求項 1に記載の空気調和装置(1、 101)。  The said operation control means changes the opening degree of the said expansion valve into the 2nd opening degree as the 2nd opening degree as said 1st opening force as said 1st state in the said pipe length determination driving | operation. Air conditioner (1, 101).
[3] 前記冷媒連絡配管は、液冷媒連絡配管 (6)及びガス冷媒連絡配管(7)を有してお り、 [3] The refrigerant communication pipe has a liquid refrigerant communication pipe (6) and a gas refrigerant communication pipe (7).
前記熱源ユニット (2)は、前記圧縮機 (21)と、前記凝縮器として機能させることが 可能な熱源側熱交 (23)とを有しており、  The heat source unit (2) includes the compressor (21) and a heat source side heat exchanger (23) capable of functioning as the condenser,
前記利用ユニット (4、 5)は、前記膨張弁 (41、 51)と、前記蒸発器として機能させる ことが可能な利用側熱交 (42、 52)とを有しており、  The utilization unit (4, 5) includes the expansion valve (41, 51) and a utilization side heat exchange (42, 52) capable of functioning as the evaporator,
前記冷媒回路(10、 110)は、前記圧縮機 (21)と、前記熱源側熱交換器 (23)と、 前記液冷媒連絡配管 (6)と、前記膨張弁 (41、 51)と、前記利用側熱交換器 (42、 5 2)と、前記ガス冷媒連絡配管(7)とが接続されることによって構成されており、 前記伝播時間は、前記配管長判定運転における前記圧縮機 (21)の吸入側を流 れる冷媒の運転状態量の変化から検出される、  The refrigerant circuit (10, 110) includes the compressor (21), the heat source side heat exchanger (23), the liquid refrigerant communication pipe (6), the expansion valve (41, 51), and the The use side heat exchanger (42, 52) is connected to the gas refrigerant communication pipe (7), and the propagation time is determined by the compressor in the pipe length determination operation (21). Detected from the change in the operating state quantity of the refrigerant flowing on the suction side of
請求項 2に記載の空気調和装置(1、 101)。  The air conditioner (1, 101) according to claim 2.
[4] 前記伝播時間の検出に用いられる前記圧縮機(21)の吸入側を流れる冷媒の運転 状態量は、前記圧縮機の吸入側を流れる冷媒の過熱度である、請求項 3に記載の空 気調和装置(1)。 [4] Operation of refrigerant flowing on the suction side of the compressor (21) used for detection of the propagation time The air conditioner (1) according to claim 3, wherein the state quantity is a degree of superheat of the refrigerant flowing on the suction side of the compressor.
[5] 前記利用ユニット (4、 5)は、前記熱源ユニット (2)に対して複数接続されており、 前記運転制御手段は、前記複数の利用ユニットのうちの 1つについて前記配管長 判定運転を行う、  [5] A plurality of the utilization units (4, 5) are connected to the heat source unit (2), and the operation control means performs the pipe length determination operation for one of the plurality of utilization units. I do,
請求項 1〜4のいずれかに記載の空気調和装置(101)。  The air conditioner (101) according to any one of claims 1 to 4.
[6] 前記配管長演算手段は、前記伝播時間と前記冷媒連絡配管 (6、 7)の配管長との 関係式から前記冷媒連絡配管の配管長を演算し、前記冷媒回路(10、 110)を構成 する前記利用ユニット (4、 5)の情報から得られる前記冷媒連絡配管の配管径と前記 関係式を用いて演算される前記冷媒連絡配管の配管長とから前記冷媒連絡配管の 容積を演算する、請求項 1〜5のいずれかに記載の空気調和装置(1、 101)。  [6] The pipe length calculating means calculates the pipe length of the refrigerant communication pipe from the relational expression between the propagation time and the pipe length of the refrigerant communication pipe (6, 7), and the refrigerant circuit (10, 110) The volume of the refrigerant communication pipe is calculated from the pipe diameter of the refrigerant communication pipe obtained from the information of the utilization units (4, 5) constituting the pipe and the pipe length of the refrigerant communication pipe calculated using the relational expression. The air conditioner (1, 101) according to any one of claims 1 to 5.
[7] 前記配管長演算手段によって演算される前記冷媒連絡配管 (6、 7)の配管長と、前 記冷媒回路(10、 110)を流れる冷媒又は構成機器の運転状態量とを用いて、前記 冷媒回路内の冷媒量の適否を判定する冷媒量判定手段をさらに備えた、請求項 1〜 6のいずれかに記載の空気調和装置(1、 101)。  [7] Using the pipe length of the refrigerant communication pipe (6, 7) calculated by the pipe length calculation means and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit (10, 110), The air conditioner (1, 101) according to any one of claims 1 to 6, further comprising a refrigerant amount determination means for determining whether or not the refrigerant amount in the refrigerant circuit is appropriate.
PCT/JP2007/058953 2006-04-27 2007-04-25 Air conditioner WO2007125959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-123745 2006-04-27
JP2006123745A JP2007292429A (en) 2006-04-27 2006-04-27 Air conditioner

Publications (1)

Publication Number Publication Date
WO2007125959A1 true WO2007125959A1 (en) 2007-11-08

Family

ID=38655485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058953 WO2007125959A1 (en) 2006-04-27 2007-04-25 Air conditioner

Country Status (2)

Country Link
JP (1) JP2007292429A (en)
WO (1) WO2007125959A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757469A4 (en) * 2018-06-28 2021-05-19 Gree Electric Appliances, Inc. of Zhuhai Air conditioning system control method and device and air conditioning system
CN113557395A (en) * 2019-03-04 2021-10-26 大金工业株式会社 Support system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162435A (en) * 2008-01-08 2009-07-23 Daikin Ind Ltd Capacity diagnosis data recording device, air conditioner, and capacity diagnosis data calculating method
CN107514757A (en) * 2017-08-31 2017-12-26 四川长虹电器股份有限公司 The apparatus and method that a kind of refrigeration system pipeline length obtains

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674573A (en) * 1992-08-21 1994-03-15 Sanyo Electric Co Ltd Method for controlling expansion valve in vapor-compression refrigerating apparatus
JPH06159819A (en) * 1992-11-30 1994-06-07 Hitachi Ltd Air conditioner and method for controlling the same
JPH08114359A (en) * 1994-10-15 1996-05-07 Mitsubishi Heavy Ind Ltd Air conditioner
JPH08200905A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Indicator for amount of refrigerant
JPH11344275A (en) * 1998-06-01 1999-12-14 Daikin Ind Ltd Method for detecting piping length in air conditioner and air conditioner in which the method is applied
JP2001227779A (en) * 2000-02-18 2001-08-24 Fuji Electric Co Ltd Heat storage type refrigerating air conditioner
JP2005076939A (en) * 2003-08-29 2005-03-24 Yanmar Co Ltd Method and device for calculation of refrigerant charge, and refrigerant charger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674573A (en) * 1992-08-21 1994-03-15 Sanyo Electric Co Ltd Method for controlling expansion valve in vapor-compression refrigerating apparatus
JPH06159819A (en) * 1992-11-30 1994-06-07 Hitachi Ltd Air conditioner and method for controlling the same
JPH08114359A (en) * 1994-10-15 1996-05-07 Mitsubishi Heavy Ind Ltd Air conditioner
JPH08200905A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Indicator for amount of refrigerant
JPH11344275A (en) * 1998-06-01 1999-12-14 Daikin Ind Ltd Method for detecting piping length in air conditioner and air conditioner in which the method is applied
JP2001227779A (en) * 2000-02-18 2001-08-24 Fuji Electric Co Ltd Heat storage type refrigerating air conditioner
JP2005076939A (en) * 2003-08-29 2005-03-24 Yanmar Co Ltd Method and device for calculation of refrigerant charge, and refrigerant charger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757469A4 (en) * 2018-06-28 2021-05-19 Gree Electric Appliances, Inc. of Zhuhai Air conditioning system control method and device and air conditioning system
US11639802B2 (en) 2018-06-28 2023-05-02 Gree Electric Appliances, Inc. Of Zhuhai Control method and device of air conditioning system and air conditioning system
CN113557395A (en) * 2019-03-04 2021-10-26 大金工业株式会社 Support system
CN113557395B (en) * 2019-03-04 2022-10-14 大金工业株式会社 Support system

Also Published As

Publication number Publication date
JP2007292429A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
AU2007264431B2 (en) Air conditioner
AU2007208727B2 (en) Air conditioner
JP4120676B2 (en) Air conditioner
AU2006324596B2 (en) Air conditioner
AU2006324593B2 (en) Air conditioner
WO2007125951A1 (en) Air conditioner
WO2006109677A1 (en) Air conditioner coolant amount judgment system
WO2007126055A1 (en) Air conditioner
JP4075933B2 (en) Air conditioner
WO2007105604A1 (en) Air conditioner
WO2007108433A1 (en) Air conditioner
AU2006324598B2 (en) Air conditioner
WO2007125959A1 (en) Air conditioner
JP5104225B2 (en) Air conditioner
JP4665748B2 (en) Air conditioner
JP4311470B2 (en) Air conditioner
JP4655107B2 (en) Air conditioner
JP4826247B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742388

Country of ref document: EP

Kind code of ref document: A1