WO2007068778A1 - Method for producing activated carbon from waste pet - Google Patents

Method for producing activated carbon from waste pet Download PDF

Info

Publication number
WO2007068778A1
WO2007068778A1 PCT/ES2006/000705 ES2006000705W WO2007068778A1 WO 2007068778 A1 WO2007068778 A1 WO 2007068778A1 ES 2006000705 W ES2006000705 W ES 2006000705W WO 2007068778 A1 WO2007068778 A1 WO 2007068778A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
pyrolysis
pet waste
pet
potassium
Prior art date
Application number
PCT/ES2006/000705
Other languages
Spanish (es)
French (fr)
Inventor
Francisco Javier LÓPEZ GARZÓN
Inmaculada FERNÁNDEZ MORALES
María DOMINGO GARCÍA
Manuel José PÉREZ MENDOZA
María del Camen ALMAZÁN ALMAZÁN
Original Assignee
Universidad De Granada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada filed Critical Universidad De Granada
Publication of WO2007068778A1 publication Critical patent/WO2007068778A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the active carbons obtained according to the present invention have great applications in various industrial processes due to their excellent properties as adsorbents. Thus, they can be used in solvent recovery processes, air purification, gas separation, deodorization, desulfurization ... etc. They also have a wide range of applications as liquid phase adsorbents, which makes them useful in water treatments, solution bleaching and solute accumulation and recovery. Finally, they have applications in catalytic processes in which they can intervene as catalysts or catalyst supports.
  • the preparation of active carbons can be carried out from various precursors containing carbon of different origin.
  • it is a usual procedure based on agricultural lignocellulosic precursors, as set out in Spanish patents 426440, 544081 and P200002114, which describe processes for obtaining olive and pomace bone, the first one, from cereal straw and almond peel, the second and using apple pulp, the third.
  • Swiss patent 511192 collects the process starting from resinous wood
  • Polish patent 72948 uses sawdust and fruit bone.
  • German patent 2052507 and Hungarian 482750 start from plant material for the preparation of activated carbons.
  • Mineral carbons such as Coke or coal can be used, instead of the previous precursors, as described in the Spanish patent P9003143 and in the US patent 3840476.
  • the procedure basically consists of two stages: firstly The pyrolysis, in an inert atmosphere at high temperature that produces carbonized, and secondly the activation of said carbonized.
  • active carbons with specific developed surfaces and high nanoporosity are obtained.
  • this nanoporosity is polymodal: that is, the size of the nanopores they have in their structure is very varied, which is due to the fact that the structure of the starting precursor is very heterogeneous.
  • the active carbons that are obtained from this polymer by pyrolysis and activation have high surfaces and unimodal distributions of nanopores.
  • the yield in activated carbon is relatively small.
  • PET polyethylene terephthalate
  • the yield in carbonaceous material is never greater than 22%.
  • the carbonaceous material must be activated, the final yield in activated carbon is not more than 17% at best, and often does not reach 10%.
  • the fact that the yield in the pyrolysis process is low is due to the fact that the polymer chains are broken giving rise to volatile residues constituted mainly by terephthalic acid and benzoic acid, which sublimate at temperatures well below the pyrolysis.
  • the proposed invention manages to avoid wasting volatile residues, produced in the rupture of the polymer chains of PET during pyrolysis, which are used to obtain active carbons.
  • two types of activated carbon are obtained from PET.
  • the first one, 1F by means of conventional pyrolysis and activation.
  • the second type, 2F is obtained by taking advantage of the volatiles that are generated in the pyrolysis process.
  • the obtaining of the two types of active carbon is based on a device like the one shown in the figure.
  • This consists of a tubular furnace (H) that has a gas inlet (E) and an outlet (S) connected to an externally cooled container (R), which contains a concentrated solution of KOH.
  • This container in turn has an outlet to the air (A).
  • the PET that is to be converted into active carbon is placed in the oven (H) which is heated by passing a flow of nitrogen (pyrolysis) to the desired temperature resulting in a carbonized which is subsequently activated with carbon dioxide at the same temperature of the pyrolysis giving rise to the first fraction, 1 F.
  • waste PET typically, amounts between 5 and 50 g of waste PET are used which are placed in the tubular furnace (H) which has a temperature and heating rate programmer.
  • the nitrogen stream that enters through (E) has a flow of between 20 and 200 cm 3 / min.
  • the concentrated KOH solution found in the container (R) has a total hydroxide content that varies between 10% and 100% of the weight of PET in the oven (H).
  • the heating rate ranges between 5 and 50 ° C / min.
  • the final oven temperature is set between 700 and 95O 0 C and the residence time is close to one hour.
  • the carbonaceous material located in the furnace (H) is collected and this is activated in a carbon dioxide stream under flow conditions, heating rate and final temperature similar to those described above, giving rise to the first fraction , 1 F.
  • the container that has been connected to the pyrolysis furnace outlet contains the KTf + KOH mixture. This is brought to dryness by boiling, dried in an oven at 11O 0 C and subsequently introduced into the same oven (H) from which the container (R) is disconnected.
  • the oven is connected to a stream of nitrogen at the inlet and the outlet goes directly to the atmosphere.
  • the heating rate ranges between 5 and 50 ° C / min, the temperature
  • the oven end is set between 650 and 800 0 C and the residence time is set between 1 and 8 hours. In this way the second fraction of activated carbon 2F is achieved.
  • the two fractions 1F and 2F do not mix, once obtained, since their properties are different.
  • Tp pyrolysis temperature.
  • T a activation temperature.
  • R yield in active carbon.
  • S BET surface area measured by nitrogen adsorption
  • the active carbon 2F obtained as a consequence of the invention requires a single heating (pyrolysis), instead of the two (pyrolysis + activation) that are required to obtain the 1F carbon, and at a much lower temperature (65O 0 C versus 800 0 C).
  • the surface of the coal that is obtained by this invention, 2F is somewhat higher than that of the coal that results by the traditional method.
  • the nanoporosity in both cases is unimodal, the pore size being similar in both cases.
  • 2F activated carbon obtained as a consequence of the invention, requires only one heating (pyrolysis), instead of the two (pyrolysis + activation) that are required to obtain 1F carbon, and at a very high temperature lower (800 0 C versus 95 0 C). They are obtained in this case two coals with much higher adsorption capacities than the first example and very similar pore sizes.
  • an active carbon production process is presented from PET waste in which PET waste is subjected to pyrolysis at a temperature between 800 0 C and 1100 0 C for a period ranging from 50 minutes to eight hours, depending on whether you want to obtain a little or very developed surface, obtaining a first fraction of activated carbon that is then activated.
  • the Terephthalic Acid and Benzoic Acid resulting from the pyrosilis are captured by a basic hydrolysis process in which KOH is used (which acts as a carbon activating agent).
  • This captured mixture is subsequently desiccated and subjected to another pyrolysis process at a temperature between 65O 0 C and 1100 0 C and during a period that ranges between 50 minutes and eight hours (depending on whether a little surface is desired or very developed).
  • This second pyrolysis results in a second fraction of activated carbon.
  • FIG. 1 The figure shows the scheme of the system for obtaining the active carbons consisting essentially of a tubular furnace (H) in which the PET is heated to the desired temperature.
  • Said oven has an entrance of gases (E) through which nitrogen (N 2 ) is introduced in order to maintain an inert atmosphere. In this way, at high temperature, the pyrolysis of PET is produced.
  • the oven has an outlet (S) through which volatile residues that originate in the pyrolysis of PET are expelled. These are collected in the container (R) containing the aqueous solution of KOH.
  • the container (R) also has an outlet to the air (A) for the expulsion of gases.

Abstract

The invention relates to a method for producing activated carbon from waste PET, which prevents wastage of the volatile residues which are produced upon rupture of PET polymer chains during pyrolysis and which are used to obtain activated carbons. According to the invention, two types of activated carbon can be obtained from PET, namely one type using standard pyrolysis and activation and a second type using the volatiles that are generated in the pyrolysis process.

Description

Proceso de producción de carbón activo a partir de residuos de PETProduction process of activated carbon from PET waste
SECTOR DE LA TÉCNICA Los carbones activos que se obtienen según Ia presente invención presentan grandes aplicaciones en diversos procesos industriales debido a sus excelentes propiedades como adsorbentes. Así, se pueden utilizar en procesos de recuperación de disolventes, purificación de aire, separación de gases, desodorización, desulfuración....etc. Asimismo tienen un amplio campo de aplicación como adsorbentes de fase líquida Io cual les hace útiles en tratamientos de aguas, decoloración de disoluciones y acumulación y recuperación de solutos. Por último tienen aplicaciones en procesos catalíticos en los que pueden intervenir como catalizadores o soportes de catalizadores.SECTOR OF THE TECHNIQUE The active carbons obtained according to the present invention have great applications in various industrial processes due to their excellent properties as adsorbents. Thus, they can be used in solvent recovery processes, air purification, gas separation, deodorization, desulfurization ... etc. They also have a wide range of applications as liquid phase adsorbents, which makes them useful in water treatments, solution bleaching and solute accumulation and recovery. Finally, they have applications in catalytic processes in which they can intervene as catalysts or catalyst supports.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
La preparación de carbones activos se puede llevar a cabo a partir de diversos precursores que contienen carbón de distinto origen. Así, es un procedimiento habitual a partir de precursores lignocelulósicos agrícolas como se recoge en las patentes españolas 426440, 544081 y P200002114 las cuales describen procesos de obtención a partir de hueso de aceituna y orujo, Ia primera de ellas, a partir de paja de cereales y cascara de almendra, Ia segunda y usando pulpa de manzana, Ia tercera. La patente suiza 511192 recoge el procedimiento partiendo de madera resinosa, mientras que Ia patente polaca 72948 utiliza serrín y hueso de frutas. Análogamente Ia patente alemana 2052507 y Ia húngara 482750 parten de materia vegetal para Ia preparación de carbones activados. Carbones minerales como el coque o Ia hulla se pueden utilizar, en lugar de los precursores anteriores, tal y como se describe en Ia patente española P9003143 y en Ia patente US 3840476. En todos los casos anteriormente mencionados el procedimiento, básicamente consta de dos etapas: en primer lugar Ia pirólisis, en atmósfera inerte a elevada temperatura que produce carbonizados, y en segundo lugar Ia activación de dichos carbonizados. Mediante estos procedimientos, y utilizando los precursores anteriormente mencionados, se obtienen carbones activos con superficies específicas desarrolladas y una elevada nanoporosidad. Sin embargo esta nanoporosidad es polimodal: es decir el tamaño de los nanoporos que tienen en su estructura es muy variado, Io cual es debido a que Ia estructura del precursor de partida es muy heterogénea. Hay que tener en cuenta que este parámetro (distribución de los nanoporos) es fundamental en Ia aplicación de los carbones activos. Así los carbones activos con una distribución polimodal y con elevada superficie presentan una baja selectividad en aquellos procesos en que estas sustancias tienen aplicación, como son los de adsorción y catálisis. Por esta razón, gran parte de las utilidades de estos carbones activos son limitadas a pesar de su elevada superficie.The preparation of active carbons can be carried out from various precursors containing carbon of different origin. Thus, it is a usual procedure based on agricultural lignocellulosic precursors, as set out in Spanish patents 426440, 544081 and P200002114, which describe processes for obtaining olive and pomace bone, the first one, from cereal straw and almond peel, the second and using apple pulp, the third. Swiss patent 511192 collects the process starting from resinous wood, while Polish patent 72948 uses sawdust and fruit bone. Similarly, German patent 2052507 and Hungarian 482750 start from plant material for the preparation of activated carbons. Mineral carbons such as Coke or coal can be used, instead of the previous precursors, as described in the Spanish patent P9003143 and in the US patent 3840476. In all the aforementioned cases the procedure basically consists of two stages: firstly The pyrolysis, in an inert atmosphere at high temperature that produces carbonized, and secondly the activation of said carbonized. Through these procedures, and using the aforementioned precursors, active carbons with specific developed surfaces and high nanoporosity are obtained. However, this nanoporosity is polymodal: that is, the size of the nanopores they have in their structure is very varied, which is due to the fact that the structure of the starting precursor is very heterogeneous. It must be taken into account that this parameter (distribution of nanopores) is essential in the application of active carbons. Thus active carbons with a polymodal distribution and with a high surface area have a low selectivity in those processes in which these substances have application, such as adsorption and catalysis. For this reason, much of the profits of these active carbons are limited despite their high surface area.
Una alternativa a este inconveniente es Ia utilización de precursores con una estructura molecular ordenada. Por esta razón se pueden utilizar polímeros sintéticos para Ia preparación de carbones activados en un proceso similar al que se utiliza cuando el precursor es un material lignocelulósico. Síntesis de carbones activos a partir de este tipo de precursores poliméricos se describen, por ejemplo, en las patentes US 3755193 y US 3859421. Sin embargo estos precursores tienen un elevado precio, Io cual hace que el producto final sea asimismo muy caro. Este inconveniente se puede evitar mediante Ia utilización de polímeros de desecho, los cuales tienen un bajo valor en ei mercado. Entre ellos, el tereftalato de polietileno (PET) es un polímero de amplio uso cuyos desechos pueden ser utilizados con este propósito. Los carbones activos que se obtienen a partir de este polímero mediante pirólisis y activación tienen elevadas superficies y distribuciones unimodales de nanoporos. Sin embargo en Ia pirólisis y activación de este polímero y, en general de cualquier polímero, el rendimiento en carbón activado es relativamente pequeño. Así, cuando el tereftalato de polietileno (PET) se somete a pirólisis el rendimiento en material carbonoso no es nunca superior al 22%. Pero además como posteriormente hay que activar el material carbonoso, el rendimiento final en carbón activo no es superior al 17% en el mejor de los casos, y frecuentemente no llega al 10%. El que el rendimiento en el proceso de pirólisis sea bajo es debido a que se rompen las cadenas del polímero dando lugar a residuos volátiles constituidos fundamentalmente por ácido tereftálico y ácido benzoico, los cuales subliman a temperaturas muy inferiores a Ia de pirólisis.An alternative to this drawback is the use of precursors with an ordered molecular structure. For this reason, synthetic polymers can be used for the preparation of activated carbons in a process similar to that used when the precursor is a lignocellulosic material. Synthesis of active carbons from this type of polymeric precursors are described, for example, in patents US 3755193 and US 3859421. However, these precursors have a high price, which makes the final product also very expensive. This inconvenience can be avoided by using waste polymers, which have a low market value. Among them, polyethylene terephthalate (PET) is a widely used polymer whose waste can be used for this purpose. The active carbons that are obtained from this polymer by pyrolysis and activation have high surfaces and unimodal distributions of nanopores. However, in the pyrolysis and activation of this polymer and, in general of any polymer, the yield in activated carbon is relatively small. Thus, when polyethylene terephthalate (PET) is subjected to pyrolysis, the yield in carbonaceous material is never greater than 22%. But in addition, as later, the carbonaceous material must be activated, the final yield in activated carbon is not more than 17% at best, and often does not reach 10%. The fact that the yield in the pyrolysis process is low is due to the fact that the polymer chains are broken giving rise to volatile residues constituted mainly by terephthalic acid and benzoic acid, which sublimate at temperatures well below the pyrolysis.
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Objeto de Ia invención La invención propuesta consigue evitar que se desaprovechen los residuos volátiles, producidos en la ruptura de las cadenas poliméricas del PET durante Ia pirólisis, los cuales se utilizan para Ia obtención de carbones activos. En esta invención se consiguen dos tipos de carbón activo a partir de PET. El primero de ellos, 1F, mediante Ia pirólisis y activación convencionales. El segundo tipo, 2F, se obtiene aprovechando los volátiles que se generan en el proceso de pirólisis. Con ello se consigue un doble objetivo: se aumenta considerablemente el rendimiento en carbón activo a partir de PET y se obtienen carbones activos a partir de los residuos volátiles los cuales, dada Ia estructura molecular homogénea, deben de producir un carbón activo con una nanoporosidad unimodal.Object of the invention The proposed invention manages to avoid wasting volatile residues, produced in the rupture of the polymer chains of PET during pyrolysis, which are used to obtain active carbons. In this invention two types of activated carbon are obtained from PET. The first one, 1F, by means of conventional pyrolysis and activation. The second type, 2F, is obtained by taking advantage of the volatiles that are generated in the pyrolysis process. With This achieves a double objective: the yield in active carbon from PET is considerably increased and active carbons are obtained from volatile residues which, given the homogeneous molecular structure, must produce an active carbon with a unimodal nanopoorosity.
Resumen de Ia invenciónSummary of the invention
Para poder aprovechar los volátiles se requiere su transformación en productos que eviten su sublimación durante Ia pirólisis. Esto se consigue transformándolos en sales potásicas derivadas cuya estabilidad es mayor. Ello es así porque en las sales se ha sustituido el protón (H+) del ácido por el catión K+ . Este último tiene Ia misma carga eléctrica que el protón pero es de -mayor tamaño, por Io que su carácter polarizante es menor. Este menor carácter polarizante del K+ es el que hace que Ia estabilidad de las sales potásicas sea mayor que Ia de los ácidos benzoico y tereftálico constituyentes fundamentales de los volátiles. Por ello, mientras que los ácidos subliman, sus sales potásicas no Io hacen y, por tanto, se pueden transformar en carbón. En esta invención, además, Ia formación de las sales potásicas se ha diseñado de modo que van acompañadas de un exceso de KOH el cual actúa como agente activante. Se obtiene, pues, una mezcla que denominamos KTf+KOH, Ia cual mediante calentamiento en una sola etapa, es decir sin posterior activación, da lugar al carbón activado. Este carbón activado presenta una estructura nanoporosa unimodal, dado que proviene de una sustancia molecular homogénea, y una elevada superficie. Descripción detallada de Ia invenciónTo be able to take advantage of volatiles, its transformation into products that prevent sublimation during pyrolysis is required. This is achieved by transforming them into derived potassium salts whose stability is greater. This is because in the salts the proton (H + ) of the acid has been replaced by the K + cation. The latter has the same electric charge as the proton but is larger in size, so its polarizing character is smaller. This lower polarizing character of K + is what makes the stability of potassium salts greater than that of the fundamental constituent benzoic and terephthalic acids of volatiles. Therefore, while acids sublimate, their potassium salts do not and, therefore, can be transformed into coal. In this invention, in addition, the formation of potassium salts has been designed so that they are accompanied by an excess of KOH which acts as an activating agent. Thus, a mixture is obtained that we call KTf + KOH, which, by heating in a single stage, that is to say without subsequent activation, gives rise to activated carbon. This activated carbon has a unimodal nanoporous structure, since it comes from a homogeneous molecular substance, and a high surface area. Detailed description of the invention
La obtención de los dos tipos de carbón activo se basa en un dispositivo como el que aparece en Ia figura. Este consta de un horno tubular (H) que dispone de una entrada de gases (E) y una salida (S) conectada a un recipiente (R), refrigerado externamente, el cual contiene una disolución concentrada de KOH. Este recipiente tiene a su vez una salida al aire (A). El PET que se quiere convertir en carbón activo se sitúa en el horno (H) el cual se calienta haciendo pasar un flujo de nitrógeno (pirólisis) hasta Ia temperatura deseada resultando un carbonizado el cual posteriormente se activa con dióxido de carbono a Ia misma temperatura de Ia pirólisis dando lugar a Ia primera fracción, 1 F. Durante el proceso de pirólisis se producen los materiales volátiles los cuales al llegar a (.R) se transforman en las sales alcalinas, KTf, quedando en disolución. Esta disolución se recoge, una vez acabada Ia pirólisis, y se lleva a sequedad obteniéndose Ia mezcla KTf+KOH, Ia cual asimismo se somete a pirólisis. Este proceso se lleva a cabo en un horno tubular, en flujo de nitrógeno, calentándose a temperaturas finales variables. La sai potásica, KTf, de dicha mezcla no sublima en las condiciones de Ia pirólisis sino que da lugar a un material carbonoso, 2F. Dado que Ia sal potásica KTf contiene el exceso de KOH, el proceso de pirólisis es a Ia vez de activación. Este hecho es relevante porque en una sola etapa se llevan a cabo los dos procesos: pirólisis y activación. Dependiendo de las condiciones de calentamiento el material carbonoso que se obtiene presenta propiedades relevantes en su estructura. Así se alcanzan elevadas superficies específicas (> 1300 m2/g) y porosidades desarrolladas (volumen de nanoporos 0.59 cm3/g) y unimodales (0.7-0.9 nm). La parte original de Ia invención es Ia utilización del residuo KTf como fuente de carbón activo. Esta produce Ia segunda fracción, que se ha denominado 2F, Ia cual unida al proceso clásico de Ia pirólisis y activación que permite obtener Ia primera fracción, 1 F, dan lugar a un rendimiento en carbón activo muy superior al que se obtiene mediante Ia pirólisis y activación clásica.The obtaining of the two types of active carbon is based on a device like the one shown in the figure. This consists of a tubular furnace (H) that has a gas inlet (E) and an outlet (S) connected to an externally cooled container (R), which contains a concentrated solution of KOH. This container in turn has an outlet to the air (A). The PET that is to be converted into active carbon is placed in the oven (H) which is heated by passing a flow of nitrogen (pyrolysis) to the desired temperature resulting in a carbonized which is subsequently activated with carbon dioxide at the same temperature of the pyrolysis giving rise to the first fraction, 1 F. During the pyrolysis process, volatile materials are produced which, upon reaching (.R), are transformed into the alkaline salts, KTf, remaining in solution. This solution is collected, once the pyrolysis is finished, and it is taken to dryness obtaining the KTf + KOH mixture, which also undergoes pyrolysis. This process is carried out in a tubular furnace, in nitrogen flow, heating at variable final temperatures. The potassium sai, KTf, of said mixture does not sublimate under the conditions of the pyrolysis but instead gives rise to a carbonaceous material, 2F. Since the potassium salt KTf contains the excess of KOH, the pyrolysis process is both activated. This fact is relevant because in a single stage the two processes are carried out: pyrolysis and activation. Depending on the heating conditions, the carbonaceous material obtained has relevant properties in its structure. Thus, high specific surfaces (> 1300 m 2 / g) and developed porosities (volume of nanopores 0.59 cm 3 / g) and unimodal (0.7-0.9 nm) are achieved. The original part of the invention is the use of the KTf residue as a source of activated carbon. This produces the second fraction, which has been called 2F, which together with the classic process of pyrolysis and activation that allows obtaining the first fraction, 1 F, give rise to a yield in active carbon much higher than that obtained through pyrolysis and classic activation.
Modo de Realización Preferido.Preferred Embodiment
Típicamente se utilizan cantidades comprendidas entre 5 y 50 g de PET de desecho las cuales se sitúan en el horno tubular (H) que dispone de un programador de temperatura y de velocidad de calentamiento. La corriente de nitrógeno que entra por (E) tiene un flujo de entre 20 y 200 cm3/min. La disolución concentrada de KOH que se encuentra en el recipiente (R) tiene un contenido total de hidróxido que varía entre el 10% y el 100% del peso de PET situado en el horno (H). La velocidad de calentamiento oscila entre 5 y 50°C/min. La temperatura final del horno se fija entre 700 y 95O0C y el tiempo de residencia es próximo a una hora. Una vez finalizado este proceso se recoge el material carbonoso situado en el horno (H) y este se activa en corriente de dióxido de carbono en condiciones de flujo, velocidad de calentamiento y temperatura final similares a las descritas anteriormente, dando lugar a Ia primera fracción, 1 F. El recipiente que se ha conectado a Ia salida del horno de pirólisis contiene Ia mezcla KTf+KOH. Esta se lleva a sequedad calentando a ebullición, se seca en estufa a 11O0C y posteriormente se introduce en el mismo horno (H) del cual se desconecta el recipiente (R). El horno se encuentra conectado a una corriente de nitrógeno a Ia entrada y Ia salida va directamente a Ia atmósfera. La velocidad de calentamiento oscila entre 5 y 50°C/min, Ia temperatura final del horno se fija entre 650 y 8000C y el tiempo de residencia se fija entre 1 y 8 horas. De esta forma se consigue Ia segunda fracción de carbón activado 2F. Las dos fracciones 1F y 2F no se mezclan, una vez obtenidas, ya que sus propiedades son diferentes.Typically, amounts between 5 and 50 g of waste PET are used which are placed in the tubular furnace (H) which has a temperature and heating rate programmer. The nitrogen stream that enters through (E) has a flow of between 20 and 200 cm 3 / min. The concentrated KOH solution found in the container (R) has a total hydroxide content that varies between 10% and 100% of the weight of PET in the oven (H). The heating rate ranges between 5 and 50 ° C / min. The final oven temperature is set between 700 and 95O 0 C and the residence time is close to one hour. Once this process is completed, the carbonaceous material located in the furnace (H) is collected and this is activated in a carbon dioxide stream under flow conditions, heating rate and final temperature similar to those described above, giving rise to the first fraction , 1 F. The container that has been connected to the pyrolysis furnace outlet contains the KTf + KOH mixture. This is brought to dryness by boiling, dried in an oven at 11O 0 C and subsequently introduced into the same oven (H) from which the container (R) is disconnected. The oven is connected to a stream of nitrogen at the inlet and the outlet goes directly to the atmosphere. The heating rate ranges between 5 and 50 ° C / min, the temperature The oven end is set between 650 and 800 0 C and the residence time is set between 1 and 8 hours. In this way the second fraction of activated carbon 2F is achieved. The two fractions 1F and 2F do not mix, once obtained, since their properties are different.
Se exponen a continuación dos ejemplos ilustrativos de los rendimientos que se obtienen y de las propiedades de los carbones activados. Los resultados del primero de ellos se recogen en Ia siguiente tabla:Two illustrative examples of the yields obtained and the properties of activated carbons are set forth below. The results of the first of them are shown in the following table:
Figure imgf000008_0001
Figure imgf000008_0001
El significado de los símbolos es el siguiente: Tp= temperatura de pirólisis. Ta= temperatura de activación. R= rendimiento en carbón activo. SBET = superficie medida mediante adsorción de nitrógenoThe meaning of the symbols is as follows: Tp = pyrolysis temperature. T a = activation temperature. R = yield in active carbon. S BET = surface area measured by nitrogen adsorption
Estos datos se obtuvieron después de Ia pirólisis a 8000C en el horno (H) durante un tiempo aproximado de 1 hora. De este proceso se recogió el carbón que resultó en el horno el cual fue activado a 8000C dando lugar al carbón activado 1F. El carbón activado 2F, resultó del aprovechamiento de los volátiles, que se recogieron en R, y su posterior pirólisis a 65O0C. El primer dato relevante es que el rendimiento total en carbón activado es más del doble (17%+23%) del que se obtiene si solo se produce Ia pirólisis y activación mediante el método tradicional (17%). Además es importante asimismo que el carbón activo 2F obtenido como consecuencia de Ia invención requiere de un solo calentamiento (pirólisis), en lugar de los dos (pirólisis+activación) que se requieren para Ia obtención del carbón 1F, y a una temperatura mucho más baja (65O0C frente a 8000C). La superficie del carbón que se obtiene mediante esta invención, 2F, es algo superior a Ia del carbón que resulta mediante el método tradicional. La nanoporosidad en ambos casos es unimodal siendo el tamaño de poro similar en ambos casos.These data were obtained after pyrolysis at 800 0 C in the oven (H) for an approximate time of 1 hour. This process resulted in the coal oven which was operated at 800 0 C resulting activated carbon was collected 1F. The activated carbon 2F, resulted from the use of the volatiles, which were collected in R, and its subsequent pyrolysis at 65O 0 C. The first relevant fact is that the total yield in activated carbon is more than double (17% + 23%) which is obtained if only pyrolysis and activation occurs by the traditional method (17%). It is also It is also important that the active carbon 2F obtained as a consequence of the invention requires a single heating (pyrolysis), instead of the two (pyrolysis + activation) that are required to obtain the 1F carbon, and at a much lower temperature (65O 0 C versus 800 0 C). The surface of the coal that is obtained by this invention, 2F, is somewhat higher than that of the coal that results by the traditional method. The nanoporosity in both cases is unimodal, the pore size being similar in both cases.
Los resultados del segundo de los ejemplos se recogen en Ia siguiente tabla:The results of the second of the examples are shown in the following table:
Figure imgf000009_0001
Figure imgf000009_0001
Estos datos se obtuvieron después de Ia pirólisis a 95O0C en el horno (H) durante un tiempo aproximado de 1 hora. De este proceso se recogió el carbón que resultó en el horno el cual fue activado a 95O0C dando lugar al carbón activado 1 F. El carbón activado 2F, resultó del aprovechamiento de los volátiles, que se recogieron en R, y su posterior pirólisis a 8000C. Al igual que en el primer ejemplo el rendimiento total en carbón activado es más del doble (13%+16%) del que se obtiene si solo se produce la pirólisis y activación mediante el método tradicional (13%). Además es importante asimismo que el carbón activo 2F, obtenido como consecuencia de la invención, requiere de un solo calentamiento (pirólisis), en lugar de los dos (pirólisis+activación) que se requieren para Ia obtención del carbón 1F, y a una temperatura mucho más baja (8000C frente a 95O0C). Se obtienen en este caso dos carbones con capacidades de adsorción mucho mas elevadas que las del primer ejemplo y tamaños de poros muy similares.These data were obtained after pyrolysis at 95O 0 C in the oven (H) for an approximate time of 1 hour. From this process the coal that resulted in the furnace was collected which was activated at 95O 0 C giving rise to activated carbon 1 F. The activated carbon 2F, resulted from the use of the volatiles, which were collected in R, and their subsequent pyrolysis at 800 0 C. As in the first example, the total yield in activated carbon is more than double (13% + 16%) than that obtained if only pyrolysis and activation occurs using the traditional method (13%). Furthermore, it is also important that 2F activated carbon, obtained as a consequence of the invention, requires only one heating (pyrolysis), instead of the two (pyrolysis + activation) that are required to obtain 1F carbon, and at a very high temperature lower (800 0 C versus 95 0 C). They are obtained in this case two coals with much higher adsorption capacities than the first example and very similar pore sizes.
En resumen, se presenta un proceso de producción de carbón activo a partir de residuos de PET en que se los residuos de PET se someten a pirólisis a una temperatura entre 8000C y 11000C durante un periodo que oscila entre los 50 minutos y las ocho horas, según que se desee obtener una superficie poco o muy desarrollada, obteniendo una primera fracción de carbón activo que a continuación se activa. El Ácido Tereftálico y el Acido Benzoico resultantes de Ia pirósilis se capturan mediante un procedimiento de hidrólisis básica en el que se utiliza KOH (que actúa de agente activador del carbón). Esta mezcla capturada se deseca posteriomente y se somete a otro proceso de pirólisis a una temperatura entre 65O0C y 11000C y durante un periodo que oscila entre los 50 minutos y las ocho horas (en función de que se desee una superficie poco o muy desarrollada). Esta segunda pirólisis da lugar a una segunda fracción de carbón activo.In summary, an active carbon production process is presented from PET waste in which PET waste is subjected to pyrolysis at a temperature between 800 0 C and 1100 0 C for a period ranging from 50 minutes to eight hours, depending on whether you want to obtain a little or very developed surface, obtaining a first fraction of activated carbon that is then activated. The Terephthalic Acid and Benzoic Acid resulting from the pyrosilis are captured by a basic hydrolysis process in which KOH is used (which acts as a carbon activating agent). This captured mixture is subsequently desiccated and subjected to another pyrolysis process at a temperature between 65O 0 C and 1100 0 C and during a period that ranges between 50 minutes and eight hours (depending on whether a little surface is desired or very developed). This second pyrolysis results in a second fraction of activated carbon.
Mediante este proceso se obtiene un mayor porcentaje de carbón activado que es nanoporoso (su tamaño de poro está comprendido entre 0.5nm y 2nm) y presenta una elevada superficie específica que se encuentra comprendida entre 648 y 1391 m2/gThrough this process a higher percentage of activated carbon is obtained which is nanoporous (its pore size is between 0.5nm and 2nm) and has a high specific surface area that is between 648 and 1391 m 2 / g
Descripción de Ia FiguraDescription of the Figure
Figura 1.- La figura muestra el esquema del sistema para Ia obtención de los carbones activos que consta esencialmente de un horno tubular (H) en el cual se calienta el PET a Ia temperatura deseada. Dicho horno dispone de una entrada de gases (E) por Ia que se introduce nitrógeno (N2) con objeto de mantener una atmósfera inerte. De esta forma, a elevada temperatura, se produce Ia pirólisis del PET. Asimismo el horno tiene una salida (S) por Ia que son expulsados los residuos volátiles que se originan en Ia pirólisis del PET. Estos son recogidos en el recipiente (R) que contiene Ia disolución acuosa de KOH. El recipiente (R) dispone asimismo de una salida al aire (A) para Ia expulsión de gases. Figure 1.- The figure shows the scheme of the system for obtaining the active carbons consisting essentially of a tubular furnace (H) in which the PET is heated to the desired temperature. Said oven has an entrance of gases (E) through which nitrogen (N 2 ) is introduced in order to maintain an inert atmosphere. In this way, at high temperature, the pyrolysis of PET is produced. Likewise, the oven has an outlet (S) through which volatile residues that originate in the pyrolysis of PET are expelled. These are collected in the container (R) containing the aqueous solution of KOH. The container (R) also has an outlet to the air (A) for the expulsion of gases.

Claims

Reivindicaciones Claims
1. Proceso de producción de carbón activo a partir de residuos de PET que comprende las siguientes fases: a. Pirólisis de los residuos de PET, obteniendo una primera fracción de carbón. b. Captura del Ácido Tereftálico y el Acido Benzoico resultantes de Ia pirósilis mediante un procedimiento de hidrólisis básica en el que se utiliza KOH. c. Desecado de Ia mezcla Tereftalato Potásico, Benzoato potásico y el hidróxido potásico empleado en Ia hidrólisis. d. Activación de Ia primera fracción de carbón obtenido. e. Pirólisis de Ia mezcla desecada, dando lugar a una segunda fracción de carbón activado.1. Process of production of active carbon from PET waste, which comprises the following phases: a. Pyrolysis of PET waste, obtaining a first fraction of coal. b. Capture of Terephthalic Acid and Benzoic Acid resulting from pyrosilis by means of a basic hydrolysis process in which KOH is used. C. Drying of the mixture Terephthalate Potassium, Potassium Benzoate and potassium hydroxide used in the hydrolysis. d. Activation of the first fraction of coal obtained. and. Pyrolysis of the dried mixture, giving rise to a second fraction of activated carbon.
2. Proceso de producción de carbón activo a partir de residuos de PET según reivindicación 1 , caracterizado porque el hidróxido potásico empleado en Ia hidrólisis es un agente activador del carbón.2. Production process of activated carbon from PET waste according to claim 1, characterized in that the potassium hydroxide used in the hydrolysis is a carbon activating agent.
3. Proceso de producción de carbón activo a partir de residuos de PET según cualquiera de las reivindicaciones anteriores caracterizado porque Ia pirólisis de los residuos de PET se realiza a una temperatura entre 8000C y 11000C3. Production process of activated carbon from PET waste according to any of the preceding claims characterized in that the pyrolysis of PET waste is carried out at a temperature between 800 0 C and 1100 0 C
4. Proceso de producción de carbón activo a partir de residuos de PET según cualquiera de las reivindicaciones anteriores caracterizado porque Ia pirósilis de Ia mezcla desecada de Tereftalato Potásico, Benzoato potásico y el KOH en Ia hidrólisis se realiza a una temperatura entre 65O0C y 11000C. 4. Production process of activated carbon from PET waste according to any of the preceding claims characterized in that the pyrosilis of the dried mixture of Potassium Terephthalate, Potassium Benzoate and the KOH in the hydrolysis is carried out at a temperature between 65O 0 C and 1100 0 C.
5. Proceso de producción de carbón activo a partir de residuos de PET según cualquiera de las reivindicaciones anteriores caracterizado porque el tiempo de pirósilis de los residuos de PET está comprendido entre 50 minutos y 8 horas. 5. Production process of activated carbon from PET waste according to any of the preceding claims, characterized in that the pyrosilis time of the PET waste is between 50 minutes and 8 hours.
6. Proceso de producción de carbón activo a partir de residuos de PET según cualquiera de las reivindicaciones anteriores caracterizado porque el tiempo de pirósilis de Ia mezcla desecada de Tereftalato Potásico, Benzoato potásico y el KOH está comprendido entre 50 minutos y 8 horas.6. Production process of activated carbon from PET waste according to any of the preceding claims characterized in that the pyrosilis time of the dried mixture of Potassium Terephthalate, Potassium Benzoate and KOH is between 50 minutes and 8 hours.
7. Carbón activado obtenido mediante el proceso según reivindicaciones anteriores.7. Activated carbon obtained by the process according to previous claims.
8. Carbón activado obtenido mediante el proceso según Feivindicaciones 1 a 8 caracterizado por ser nanoporoso.8. Activated carbon obtained by the process according to claims 1 to 8 characterized by being nanoporous.
9. Carbón activado obtenido mediante el proceso según reivindicaciones 1 a 8 caracterizado porque su tamaño de poro está comprendido entre 0.5nm y 2nm9. Activated carbon obtained by the process according to claims 1 to 8 characterized in that its pore size is between 0.5nm and 2nm
10. Carbón activado obtenido mediante el proceso según reivindicaciones 1 a 8 caracterizado porque su tamaño de poro está comprendido entre 0.5 y 2 nm y su superficie específica está comprendida entre 648 y 1391 m2/g 10. Activated carbon obtained by the process according to claims 1 to 8 characterized in that its pore size is between 0.5 and 2 nm and its specific surface area is between 648 and 1391 m 2 / g
PCT/ES2006/000705 2005-12-16 2006-12-15 Method for producing activated carbon from waste pet WO2007068778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200503238A ES2277565B1 (en) 2005-12-16 2005-12-16 PRODUCTION PROCESS OF ACTIVE CARBON FROM PET WASTE.
ESP200503238 2005-12-16

Publications (1)

Publication Number Publication Date
WO2007068778A1 true WO2007068778A1 (en) 2007-06-21

Family

ID=38162594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000705 WO2007068778A1 (en) 2005-12-16 2006-12-15 Method for producing activated carbon from waste pet

Country Status (2)

Country Link
ES (1) ES2277565B1 (en)
WO (1) WO2007068778A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384223A (en) * 2018-09-07 2019-02-26 北京理工大学 A kind of preparation of the derivative porous carbon electrodes of inorganic salts
RU2769520C1 (en) * 2021-02-25 2022-04-01 Общество с ограниченной ответственностью Научно-производственное предприятие "Интор" Method for producing activated carbon powder
RU2809093C1 (en) * 2022-07-13 2023-12-06 Общество с ограниченной ответственностью "НаукаСорбция" ООО "НСОРБ" Method of preparing carbon sorption nanomaterial from biochar by electromagnetic method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FERNANDEZ-MORALES I. ET AL.: "PET as Precursor of Microporous Carbons: Preparation and Characterization", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 80, 2005, pages 107 - 115, XP003014165 *
PARRA J.B. ET AL.: "Textural Characterisation of Activated Carbons obtained from Poly(ethyleneterephtalate) by Carbon Dioxide Activation", STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 144, 2002, pages 537 - 543 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384223A (en) * 2018-09-07 2019-02-26 北京理工大学 A kind of preparation of the derivative porous carbon electrodes of inorganic salts
RU2769520C1 (en) * 2021-02-25 2022-04-01 Общество с ограниченной ответственностью Научно-производственное предприятие "Интор" Method for producing activated carbon powder
RU2809093C1 (en) * 2022-07-13 2023-12-06 Общество с ограниченной ответственностью "НаукаСорбция" ООО "НСОРБ" Method of preparing carbon sorption nanomaterial from biochar by electromagnetic method

Also Published As

Publication number Publication date
ES2277565B1 (en) 2008-06-16
ES2277565A1 (en) 2007-07-01

Similar Documents

Publication Publication Date Title
Hesas et al. Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: application in methylene blue adsorption
Selmi et al. Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin
Demiral et al. Surface properties of activated carbon prepared from wastes
US20130004408A1 (en) Moderate Temperature Synthesis of Mesoporous Carbon
CA2926530C (en) A process for preparing a microporous carbon material and its use as absorption product
Plaza et al. Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture
ES2209931T3 (en) PROCEDURE TO PREPARE CONFORMED ACTIVATED CARBON.
Nowicki et al. Sorption properties of active carbons obtained from walnut shells by chemical and physical activation
US8790548B2 (en) Carbonaceous materials
Nuithitikul et al. Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon
Li et al. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars
Lozano et al. Thermal analysis study of human bone
Baklanova et al. Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin
Fiuza Jr et al. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption
Tiwari et al. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics
Kamran et al. Acetic acid-mediated cellulose-based carbons: Influence of activation conditions on textural features and carbon dioxide uptakes
Zanetti et al. Micro porous carbon spheres from cyclodextrin nanosponges
CN106318390A (en) Biomass nitrogen doped fluorescent carbon dot preparation method
WO2007068778A1 (en) Method for producing activated carbon from waste pet
Girón et al. Adsorbents/catalysts from forest biomass fly ash. Influence of alkaline activating agent
JP4142341B2 (en) Activated carbon and its manufacturing method
Taher et al. Low-temperature hydrothermal carbonization of activated carbon microsphere derived from microcrystalline cellulose as carbon dioxide (CO2) adsorbent
Demiral et al. Preparation and characterization of activated carbons from poplar wood (Populus L.)
Sarıcı-Özdemir et al. Study to investigate the importance of mass transfer of naproxen sodium onto activated carbon
RU2490207C2 (en) Method of obtaining activated coal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06841757

Country of ref document: EP

Kind code of ref document: A1