WO2007067098A1 - Procede pour examiner le frottement d'un revetement d'aerodrome - Google Patents

Procede pour examiner le frottement d'un revetement d'aerodrome Download PDF

Info

Publication number
WO2007067098A1
WO2007067098A1 PCT/RU2006/000670 RU2006000670W WO2007067098A1 WO 2007067098 A1 WO2007067098 A1 WO 2007067098A1 RU 2006000670 W RU2006000670 W RU 2006000670W WO 2007067098 A1 WO2007067098 A1 WO 2007067098A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
measuring
force
friction
driving force
Prior art date
Application number
PCT/RU2006/000670
Other languages
English (en)
French (fr)
Inventor
Anatoliy Vasil'evich Nizovoy
Nikolay Ivanovich Lukanov
Original Assignee
Obschestvo S Ogranichennoi Otvetstvennost Yu'finintek'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obschestvo S Ogranichennoi Otvetstvennost Yu'finintek' filed Critical Obschestvo S Ogranichennoi Otvetstvennost Yu'finintek'
Publication of WO2007067098A1 publication Critical patent/WO2007067098A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction

Definitions

  • the invention relates to the field of friction research
  • the maximum value of the coefficient of friction is determined by measuring the friction force during braking of the measuring wheel on the surface of the airfield coating, wetting the surface of the coating and constant slipping of the measuring wheel 15 -17%.
  • the device includes a measuring trolley 1 and block 2 registration.
  • the measuring trolley 1 is pulled by a towing vehicle (not shown), on which a registration unit 2 is mounted, connected to the measuring trolley 1 by a flexible electric cable.
  • Measuring trolley 1 contains:
  • the generator mode of the generator 5 is provided by the rotation of the measuring wheel 3 when rolling on the surface of the airfield coating;
  • Registration unit 2 contains:
  • the computer 20 receives information from the sensors 8 and 9 of the angular velocity of the measuring wheel 3 and the free wheel 4. It receives from the measuring element 13 information on the magnitude of the horizontal towing force of the measuring cart 1 and the dynamometer information of the power stand during calibration of the device.
  • the computer 20 in accordance with the software through the control element 22 controls the power element b, determines the maximum value of the coefficient of friction with the airfield coating, calculates the speed and collects information about the measurements.
  • coefficient of friction is calculated from the measured maximum braking force of the measuring wheel on the surface of the aerodrome coating obtained during operation of the DC generator in the generator mode, when the mechanical friction force of the measuring wheel turns into electric and is released in the form of thermal energy in the active load unit.
  • the maximum friction coefficient is determined by searching for the maximum friction force of the measuring wheel 3 with the surface of the airfield coating, and then the maximum friction force of the measuring wheel 3 with the coating surface is monitored, making the required adjustment.
  • the search for the maximum friction force begins with a uniform increase in the load current of the generator 5.
  • the braking force applied to the measuring wheel 3 will also be proportionally increased.
  • the degree of slippage of the measuring wheel 3 with respect to the surface of the airfield coating is usually characterized by relative slippage:
  • Wr is the angular velocity of the wheel 4.
  • Wm is the angular velocity of the measuring wheel 3.
  • the friction coefficient reaches its maximum value, depending on the state of the coating surface, with a relative slip S from 0, 1 to 0, 2 (10 -20%).
  • the longitudinal friction force of the measuring wheel 3 with the surface of the airfield coating is determined by the readings of the measuring element 13.
  • the maximum friction force of the measuring wheel with the coating surface decreases and, accordingly, the measured value of the maximum friction coefficient decreases.
  • a fixed (predetermined) slipping of the measuring wheel is undesirable, without taking into account the state of the coating surface.
  • measuring wheel may not always be applicable. In winter, wetting of the coating surface is excluded.
  • the objective of the present invention is to improve the accuracy of determining the maximum value of the coefficient of friction when examining the state of the surface of an airfield or road surface.
  • the method includes an initial search for the boundary value of the braking force of the measuring wheel corresponding to the appearance / termination of wheel slippage detected when the boundary value of the braking force is exceeded, the continuous braking force is maintained near the boundary value in a range determined by the accuracy of detection of wheel slippage, accompanied by continuous measurement and registration of the moving force attached to the wheel for its movement with a given speed on the studied coating.
  • the current value of the maximum coefficient of friction along the wheel path is calculated as the product of the ratio of the current value of the moving efforts to vertical load on a fixed correction factor.
  • k is the correction factor
  • the correction factor is determined from the calibration results of the measuring device on a portion of the coating with constant friction.
  • the correction factor is determined from the calibration results of the measuring device on
  • the correction factor is calculated as the ratio of the measured values of the maximum driving force and the driving force corresponding to the boundary value of the braking force.
  • the braking force of the wheel is generated using an electric generator, the shaft of which is connected to the axis of the wheel, while the braking force is controlled by changing the magnitude of the active load connected to the electric generator.
  • the present invention will improve safety during landing due to improved accuracy of determination
  • FIG. 1 shows a block diagram of a known measuring device used to implement the method of the present invention.
  • FIG. 2 is a graph illustrating the invention as a function of the force required to move the measuring wheel of the device of FIG. 1 from the load current of the generator braking the measuring wheel.
  • FIG. 1 A simplified block diagram of the device is shown in FIG. 1 .
  • the measuring trolley 1 through the measuring element 13 is connected to a towing vehicle carrying the registration unit 2, which is connected by an electric cable to the measuring trolley 1.
  • the registration unit 2 is turned on and the date, time, runway number, direction of movement of the measuring trolley are set on the control panel 21. This information is recorded in the computer 20. Then press the button “py c to” of the control panel 21, while closing the contactor 12 and the battery 11 through the starting resistance 10
  • the measurement process is divided into two stages: search and tracking.
  • the search mode they search for the boundary value of the wheel braking force equal to the adhesion force of the measuring wheel 3 with the coating surface.
  • the braking force exceeds the limit value, a slipping of the measuring wheel 3 appears.
  • the search mode begins with a minimum and uniform
  • the information of the sensors 8 and 9 of the measuring and free wheels, respectively, enters the computer 20, where their readings are compared.
  • the appearance of slipping of the measuring wheel is detected by the difference in the readings of the sensors 8 and 9 of the angular velocities. This is where the search ends.
  • tracking mode provide tracking of the appearance / termination of slipping of the measuring wheel 3.
  • the information of the sensors 8 and 9 of the measuring and free wheels, respectively, enters the computer 20, where their readings are compared.
  • control 22 is supplied to the power switch 6, which increases the current in the active load 7. Increases the load of the generator 5,
  • the current of the active load reduce, respectively, decreases braking force
  • the computer 20 continuously records the readings of the measuring element 13, which measures the force
  • P m is the resistance force of the measuring wheel 3
  • the drag force of the free wheel 4 is determined on
  • Y is the coefficient of rolling resistance, which at
  • the resistance force P m of the measuring wheel is equal to and balances the driving force F m applied to the measuring wheel for its movement on the surface of the coating at a given speed.
  • measuring wheel is determined in accordance with formula (1) through correction factor .
  • the correction factor is determined during the measurement on the test bench during calibration of the device. But the correction factor is also determined in the field. To determine the correction factor in the field, select the segment
  • a towing vehicle with a measuring trolley 1 is accelerated to a predetermined speed at which the maximum value of the coefficient of friction of the measuring wheel 3 with the surface of the airfield coating is determined. To do this, increase the current in the active load of 7 V
  • the generator 5 creates an increasing braking force of the measuring wheel 3.
  • the computer 20 according to the data from the measuring element 13
  • the slip of the measuring wheel 3 increases and the rubber of its tire softens due to heating.
  • the coefficient is recorded in the memory of the computer 20, and is used to calculate the current values of the maximum coefficient of friction, according to the measurement results obtained in the study of coverage.
  • the method of the present invention eliminates significant
  • the measurement is carried out in a given range of the minimum degree of slipping, which increases the accuracy of determining the maximum value of the coefficient of friction. This method does not require
  • Measurements are taken in the wake of the main supports of the aircraft at any time of the day, regardless of the state of the surface of the airfield cover. The accuracy of measurements is increased, safety is enhanced while ensuring flights.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

Способ исследования трения аэродромного покрытия.
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области исследования трения,
обеспечиваемого в конкретных условиях поверхностью взлетно- посадочной полосы аэродрома, но может также использоваться для определения коэффициента трения дорожных покрытий.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Известно серийно выпускаемое шведской фирмой Sааb-Sсапiа
устройство измерения коэффициента трения Sааb 900/9000
В этом устройстве максимальное значение коэффициента трения определяют путем измерения силы трения при торможении измерительного колеса на поверхности аэродромного покрытия, смачивании поверхности покрытия и постоянной пробуксовке измерительного колеса 15 -17%. При этом коэффициент трения вычисляют как отношение f = Р/N, где f - коэффициент трения измерительного колеса с
поверхностью покрытия; P - сила трения измерительного колеса при его постоянной пробуксовке; N - величина вертикальной нагрузки на измерительное колесо . Недостатком данного способа является то, что на северных широтах в зимнее время исключается смачивание
поверхности, а постоянная пробуксовка занижает максимальное значение коэффициента трения.
Известно «Уcтpoйcтвo для определения коэффициента трения колеса с аэродромным пoкpытиeм» по патенту RU 2259669 . Упрощенная структурная схема этого устройства приведена на Фиг . 1.
Устройство включает измерительную тележку 1 и блок 2 регистрации . В процессе измерения измерительную тележку 1 тянет автомобиль-буксировщик (не показан) , на котором установлен блок 2 регистрации, соединенный с измерительной тележкой 1 гибким электрическим кабелем. Измерительная тележка 1 содержит :
- измерительное колесо 3 , на которое в вертикальном
направлении воздействует независимый груз (не показан) ; - свободное колесо 4 ;
- генератор 5 постоянного тока , который работает в двух режимах - генераторном и режиме электромотора; в режиме
электромотора обеспечивают разгон ротора генератора 5 до
номинальной скорости вращения, что исключает перегрузку во время разгона автомобиля - буксировщика; генераторный режим генератора 5 обеспечивается вращением измерительного колеса 3 при качении по поверхности аэродромного покрытия;
- силовой ключ б , изменяющий величину нагрузки генератора 5 ;
- активную нагрузку 7 ;
- датчик 8 угловой скорости измерительного колеса 3 ;
- датчик 9 угловой скорости свободного колеса 4 ;
- пусковое сопротивление 10 ;
- аккумуляторную батарею 11 , от которой питается генератор 5 в режиме электромотора;
- контактор 12 , которым в режиме электромотора подключают аккумуляторную батарею 11 к генератору 5 через пусковое
сопротивление 10;
- измерительный элемент 13 , которым измеряют горизонтальное усилие буксировки измерительной тележки 1.
Блок регистрации 2 содержит :
- компьютер 20;
- пульт управления 21;
- элемент управления 22.
Компьютер 20 осуществляет прием информации от датчиков 8 и 9 угловой скорости вращения измерительного колеса 3 и свободного колеса 4 . Принимает от измерительного элемента 13 информацию о величине горизонтального усилия буксировки измерительной тележки 1 и информацию динамометра силового стенда при проведении калибровки устройства . Компьютер 20 в соответствии с программным обеспечением через элемент управления 22 осуществляет управление силовым элементом б, определяет максимальное значение коэффициента трения с аэродромным покрытием, вычисляет скорость движения и накапливает информацию о проведенных измерениях.
При этом в известном способе максимальное значение
коэффициента трения вычисляют по измеренной максимальной силе торможения измерительного колеса на поверхности аэродромного покрытия, получаемой при работе генератора постоянного тока в генераторном режиме, когда механическая сила трения измерительного колеса превращается в электрическую и выделяется в виде тепловой энергии в блоке активной нагрузки .
Согласно патенту RU 2259669 максимальный коэффициент трения определяют путем поиска максимальной силы трения измерительного колеса 3 с поверхностью аэродромного покрытия, после чего выполняют слежение за максимальной силой трения измерительного колеса 3 с поверхностью покрытия, осуществляя при этом требуемую корректировку.
Поиск максимальной силы трения начинается с равномерного увеличения тока нагрузки генератора 5. При этом усилие торможения прикладываемое к измерительному колесу 3 будет также пропорционально увеличиваться .
Однако, набольшего силы торможения измерительное колесо 3 достигает при его пробуксовке . Степень пробуксовки измерительного колеса 3 по отношению к поверхности аэродромного покрытия принято характеризовать относительной пробуксовкой:
S = (Wm - Wr) / Wr, где
Wr - угловая скорость колеса 4 ;
Wm - угловая скорость измерительного колеса 3.
Максимального значения коэффициент трения достигает, в зависимости от состояния поверхности покрытия, при относительной пробуксовке S от 0, 1 до 0 , 2 (10 -20 % ) .
При наличии относительной пробуксовки S максимальная
продольная сила трения измерительного колеса 3 с поверхностью аэродромного покрытия определяется по показаниям измерительного элемента 13 .
Когда с увеличением тока на активной нагрузке блока 10 , показания измерительного элемента 13 достигают максимального значения включается режим слежения, в котором в соответствии с программным обеспечением отслеживается максимальное трение
измерительного колеса 3 с поверхностью аэродромного покрытия .
Недостатком известного способа определения максимального значения коэффициента трения является то, что в данном способе , как и в других известных способах измерения проводят при
значительной пробуксовке измерительного колеса (от 10 до 2 0 % ) . В результате такой пробуксовки поверхность измерительного колеса разогревается, резина его покрышки размягчается,
максимальная сила трения измерительного колеса с поверхностью покрытия уменьшается и, соответственно, уменьшается измеренное значение максимального коэффициента трения .
Тем более нежелательна фиксированная ( заданная) пробуксовка измерительного колеса, без учета состояния поверхности покрытия .
Для уменьшения разогрева измерительного колеса иногда применяется смачивание поверхности покрытия . Но на сухом покрытии пыль и влага образуют смазку между колесом и поверхностью, уменьшая тем самым измеренное максимальное значение коэффициента трения . Смачивание поверхности не исключает разогрева
измерительного колеса и не всегда может применяться . В зимнее время смачивание поверхности покрытия исключается .
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является повышение точности определения максимального значения коэффициента трения при исследовании состояния поверхности аэродромного или дорожного покрытия .
Поставленная задача решается тем, что в способе
определения максимального коэффициента трения исследуемого покрытия используют устройство, содержащее измерительное колесо к которому прикладывают заданную вертикальную нагрузку, катят колесо по поверхности исследуемого покрытия с заданной скоростью и наблюдают за пробуксовкой колеса при его торможении .
Способ включает начальный поиск граничной величины усилия торможения измерительного колеса, соответствующей появлению / прекращению пробуксовки колеса , обнаруживаемой при превышении граничной величины усилия торможения, последующее непрерывное поддержание тормозящего усилия вблизи граничной величины в диапазоне , определяемом точностью обнаружения пробуксовки колеса, сопровождаемое непрерывным измерением и регистрацией движущего усилия, прилагаемого к колесу для его перемещения с заданной скоростью по исследуемому покрытию . Текущее значение максимального коэффициента трения вдоль пути колеса вычисляют как произведение величины отношения текущего значения движущего усилия к вертикальной нагрузке на фиксированный поправочный коэффициент. Таким образом, максимальное значение коэффициента трения измерительного колеса с аэродромным покрытием вычисляют по формуле fmax = (Fm / Nm> k' гДe (D
Fm - движущее усилие, прилагаемое к измерительному колесу для его перемещения с заданной скоростью по исследуемому покрытию, равное противодействующей силе трения измерительного колеса;
Nm - сила вертикальной нагрузки на измерительное колесо;
k - поправочный коэффициент.
Как обнаружено изобретателями, определяемый
экспериментально поправочный коэффициент сохраняется постоянным независимо от величины максимального коэффициента трения.
В одной реализации поправочный коэффициент определяют по результатам калибровки измерительного устройства на отрезке покрытия с постоянным трением.
В другой реализации поправочный коэффициент определяют по результатам калибровки измерительного устройства на
испытательном стенде.
Целесообразно, в обеих реализациях калибровку выполнять путем торможения колеса с возрастающим усилием, сопровождаемого непрерывным измерением и регистрацией
прикладываемого к колесу движущего усилия при возрастании усилия торможения от граничной величины до величины, при которой после роста движущего усилия, при возрастающей пробуксовке колеса, обнаруживается снижение движущего усилия.
При этом поправочный коэффициент вычисляют как отношение измеренных величин максимального движущего усилия и движущего усилия, соответствующего граничной величине усилия торможения.
В предпочтительной реализации тормозящее усилие колеса создают с помощью электрического генератора, вал которого соединен с осью колеса, при этом управление тормозящим усилием осуществляют путем изменения величины активной нагрузки, подключаемой к электрическому генератору .
Настоящее изобретение позволит повысить безопасность при посадке самолетов благодаря повышению точности определения
коэффициента трения, обеспечиваемого поверхностью взлетно-посадочной полосы в конкретных условиях .
Далее настоящее изобретение подробно описано на примере его реализации со ссылкам на чертежи .
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг . 1 изображает структурную схему известного измерительного устройства , используемого для реализации способа настоящего изобретения .
Фиг . 2 изображает иллюстрирующий изобретение график зависимости усилия, требуемого для движения измерительного колеса устройства на Фиг . 1 от тока нагрузки генератора, тормозящего измерительное колесо .
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Реализация способа настоящего изобретения рассматривается на примере, в котором используется измерительное устройство, описанное в патенте RU 2259669 . Упрощенная структурная схема устройства приведена на Фиг . 1 .
Исследование трения аэродромного покрытия выполняют в следующем порядке .
Измерительную тележку 1 через измерительный элемент 13 соединяют с автомобилем-буксировщиком, несущим блок 2 регистрации, который соединяют электрическим кабелем с измерительной тележкой 1 .
Включают блок 2 регистрации и на пульте управления 21 устанавливают дату, время, номер взлетно-посадочной полосы, направление движения измерительной тележки . Эту информацию записывают в компьютер 20 . Затем нажимают кнопку « пy c к» пульта управления 21 , при этом замыкается цепь включения контактора 12 и аккумуляторная батарея 11 через пусковое сопротивление 10
подключается к генератору 8 , ротор генератора 8 раскручивается до номинальной скорости вращения . Автомобиль буксировщик набирает заданную скорость , после чего измерительное устройство готово к проведению измерений .
Процесс измерений делится на два этапа : поиска и слежения .
В режиме поиска осуществляют поиск граничной величины усилия торможения колеса равной силе сцепления измерительного колеса 3 с поверхностью покрытия . При превышении усилием торможения граничной величины появляется пробуксовка измерительного колеса 3.
В настоящем изобретении коэффициент трения колеса с
аэродромным покрытием определяют с использованием динамического торможения, когда электрический генератор , приводимый во вращение от измерительного колеса работает в генераторном режиме, при котором механическая энергия превращается в электрическую и
выделяется в форме тепловой энергии в активной нагрузке .
Режим поиска начинают с минимального и равномерного
увеличения тока активной нагрузки 7 . При этом усилие торможения измерительного колеса 3 будет также пропорционально расти .
Информация датчиков 8 и 9 измерительного и свободного колес, соответственно , поступает в компьютер 20 , где их показания сравниваются .
Появление пробуксовки измерительного колеса обнаруживается по разности показаний датчиков 8 и 9 угловых скоростей . На этом поиск заканчивают .
В режиме слежения обеспечивают слежение за появлением / прекращением пробуксовки измерительного колеса 3 . Информация датчиков 8 и 9 измерительного и свободного колес, соответственно, поступает в компьютер 20 , где их показания сравниваются .
Когда пробуксовка измерительного колеса отсутствует показания датчиков угловой скорости равны между собой . В этом случае от компьютера 20 в блок управления 22 поступает сигнал увеличения нагрузки генератора 5 . Сигнал увеличения нагрузки с блока
управления 22 поступает на силовой ключ 6 , который увеличивает ток в активной нагрузке 7 . Возрастает нагрузка генератора 5 ,
следовательно увеличивается усилие торможения измерительного колеса 3, с появлением пробуксовки которого увеличение тока активной нагрузки 7 прекращается.
Если пробуксовка измерительного колеса 3 становится в процессе измерений больше заданной величины, ток активной нагрузки уменьшают , соответственно , уменьшается усилие торможения
измерительного колеса 3, уменьшается его пробуксовка . При достижении заданной величины пробуксовки дальнейшее уменьшение тока нагрузки прекращается .
В соответствии с программным обеспечением компьютера 20 обеспечивают заданную минимальную величину пробуксовки в
диапазоне , определяемом точностью датчиков 8 , 9 угловой скорости .
На этапе слежения в компьютере 20 непрерывно регистрируются показания измерительного элемента 13 , измеряющего усилие ,
требуемое для буксировки измерительной тележки 1 с заданной скоростью .
F = Pm + Pr где ,
Pm - сила сопротивления измерительного колеса 3;
Pr - сила сопротивления свободного колеса 4.
Силу сопротивления свободного колеса 4 определяют на
испытательном стенде или вычисляют по формуле
Pr = Nr Y, где
Nr - нагрузка на ось свободного колеса 4 ;
Y - коэффициент сопротивления качению, который при
скорости движения до 80 км. /час . равен 0 , 012 .
Сила Pm сопротивления измерительного колеса равна и уравновешивает движущее усилие Fm, прилагаемое к измерительному колесу для его движения по поверхности покрытия с заданной скоростью.
Таким образом, величина движущего усилия F1n,
прикладываемого к измерительному колесу 3 равна регистрируемому усилию F буксировки измерительной тележки 1 за вычетом известной величины сопротивления свободного колеса 4 .
Согласно изобретению максимальный коэффициент трения
измерительного колеса определяют в соответствии с формулой ( 1 ) через поправочный коэффициент . Поправочный коэффициент определяют в процессе измерений на испытательном стенде при калибровке устройства . Но поправочный коэффициент определяют и в полевых условиях . Для определения поправочного коэффициента в полевых условиях выбирают отрезок
относительно ровного, сухого и чистого покрытия с постоянным
коэффициентом трения, длиной до 1 км.
Автомобиль-буксировщик с измерительной тележкой 1 разгоняют до заданной скорости, при которой определяют максимальное значение коэффициента трения измерительного колеса 3 с поверхностью аэродромного покрытия . Для этого увеличивают ток в активной нагрузке 7 в
резуль тате чего генератор 5 создает возрастающее усилие торможения измерительного колеса 3 .
При этом в память компьютера 20 непрерывно записывают :
- угловую скорость измерительного колеса 3 от датчика 8 ;
- угловую скорость свободного колеса 4 от датчика 9 ;
- силу тока активной нагрузки 7 ;
- показания измерительного элемента 13 .
Компьютер 20 по данным от измерительного элемента 13
вычисляет текущие значения величины движущего усилия Fm,
прикладываемого к измерительному колесу 3 , равного силе
торможения, создаваемой измерительным колесом 3 .
Зависимость величины Fm оα? тока J в нагрузке 7 иллюстрирует Фиг . 2 . При возрастании тока J нагрузки от нуля до Jl ,
соответствующего величине движущего усилия Pm = Fl, пробуксовка измерительного колеса 3 отсутствует, так как создаваемое генератором 5 усилие торможения меньше силы сцепления измерительного колеса 3 с поверхностью покрытия . При токе нагрузки равном Jl усилие торможения колеса достигает граничной величины, соответствующей появлению пробуксовки измерительного колеса 1 .
При увеличении тока нагрузки от Jl до J2 пробуксовка измерительного колеса 3 возрастает, так как усилие торможения, создаваемое генератором 5 , больше силы сцепления измерительного колеса
3 с поверхностью покрытия . При токе J2 усилие Fm = F2 достигает максимума . При дальнейшем увеличении электрического тока нагрузки генератора 5 от J2 до JЗ движущее усилие Fm уменьшается . Это объясняется тем, что одновременно с увеличением усилия торможения, создаваемого генератором 5 при увеличении тока нагрузки,
увеличивается пробуксовка измерительного колеса 3 и резина его покрышки размягчается вследствие нагрева.
По полученным значениям величины усилия Fm, прикладываемого к измерительному колесу 3 для его движения с постоянной заданной скоростью, вычисляют поправочный коэффициент k = F2 / Fl
При изменении состояния поверхности покрытия меняются величины максимального движущего усилия и движущего усилия,
соответствующего граничной величине усилия торможения, но их отношение (поправочный коэффициент k) сохраняется постоянным.
Коэффициент записывают в память компьютера 20 , и используют для вычисления текущих значений максимального коэффициента трения, по результатам измерений, полученным при исследовании покрытия .
Способ настоящего изобретения исключает значительную
пробуксовку измерительного колеса в процессе проведения измерения . Измерение проводится в заданном диапазоне минимальной степени пробуксовки, что увеличивает точность определения максимального значения коэффициента трения . Настоящий способ не требует
смачивания поверхности. Измерения проводятся по следам главных опор воздушного судна в любое время суток независимо от состояния поверхности аэродромного покрытия. Увеличивается точность проводимых измерений, повышается безопасность при обеспечении полетов .

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ определения максимального коэффициента трения, обеспечиваемого исследуемым аэродромным или дорожным покрытием, в котором колесо измерительного устройства движут по
поверхности исследуемого покрытия с постоянной заданной скоростью и заданной вертикальной нагрузкой, способ включает: наблюдение за пробуксовкой колеса при его торможении, поиск граничной величины усилия торможения колеса, соответствующей появлению / прекращению пробуксовки колеса, обнаруживаемой при превышении граничной величины усилия торможения,
последующее непрерывное поддержание усилия торможения вблизи граничной величины в диапазоне, определяемом точностью обнаружения пробуксовки колеса, сопровождаемое непрерывным измерением и регистрацией движущего усилия, прилагаемого к колесу для его движения по поверхности покрытия с заданной скоростью,
определение текущего значения максимального коэффициента трения вдоль пути колеса как величины отношения текущего значения движущего усилия к вертикальной нагрузке, умноженного на фиксированный поправочный коэффициент.
2. Способ по п. 1, в котором поправочный коэффициент определяют по результатам калибровки измерительного устройства на отрезке покрытия с постоянным трением.
3. Способ по п. 2, в котором поправочный коэффициент определяют по результатам калибровки измерительного устройства на испытательном стенде.
4. Способ по пунктам 2, или 3, в котором калибровка включает торможение колеса с возрастающим усилием, непрерывное измерение и регистрацию прикладываемого к колесу движущего усилия при возрастании усилия торможения от граничной величины до величины, при которой после роста движущего усилия, при возрастающей пробуксовке колеса, обнаруживается снижение движущего усилия, и последующее вычисление поправочного коэффициента как отношения измеренных величин максимального движущего усилия и движущего усилия, соответствующего граничной величине усилия торможения .
5. Способ по п. 1, в котором усилие торможения колеса создают с помощью электрического генератора, вал которого соединен с осью колеса, при этом управление усилием торможения осуществляют путем изменения величины активной нагрузки, подключаемой к электрическому генератору.
PCT/RU2006/000670 2005-12-09 2006-12-11 Procede pour examiner le frottement d'un revetement d'aerodrome WO2007067098A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005138440/28A RU2298166C1 (ru) 2005-12-09 2005-12-09 Способ определения коэффициента сцепления колеса с аэродромным покрытием
RU2005138440 2005-12-09

Publications (1)

Publication Number Publication Date
WO2007067098A1 true WO2007067098A1 (fr) 2007-06-14

Family

ID=38106992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000670 WO2007067098A1 (fr) 2005-12-09 2006-12-11 Procede pour examiner le frottement d'un revetement d'aerodrome

Country Status (2)

Country Link
RU (1) RU2298166C1 (ru)
WO (1) WO2007067098A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2562355C1 (ru) * 2014-07-09 2015-09-10 Николай Иванович Луканов Устройство для определения коэффициента сцепления колеса с поверхностью искусственного покрытия
RU2616018C1 (ru) * 2016-02-25 2017-04-12 Общество с ограниченной ответственностью "Спецдортехника" Устройство для определения коэффициента сцепления колеса с поверхностью дорожного покрытия
RU2638360C1 (ru) * 2016-11-14 2017-12-13 Владимир Иванович Винокуров Способ определения коэффициента сцепления аэродромного покрытия и устройство для его осуществления
RU175478U1 (ru) * 2017-07-12 2017-12-06 Общество с ограниченной ответственностью "Спецдортехника" Устройство для измерения коэффициента сцепления дорожного покрытия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747691A2 (en) * 1995-06-05 1996-12-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus and method for detecting friction characteristics
RU2161671C2 (ru) * 1998-01-26 2001-01-10 Медрес Лев Петрович Способ оценки сцепных качеств дороги с твердым покрытием
RU2165610C1 (ru) * 2000-03-16 2001-04-20 Санкт-Петербургское государственное унитарное предприятие "Планета" Устройство для измерения коэффициента сцепления колеса транспортного средства, имеющего постоянную степень скольжения, с поверхностью взлетно-посадочной полосы
RU2259569C1 (ru) * 2004-01-08 2005-08-27 Низовой Анатолий Васильевич Устройство для определения коэффициента сцепления колеса с аэродромным покрытием

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747691A2 (en) * 1995-06-05 1996-12-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus and method for detecting friction characteristics
RU2161671C2 (ru) * 1998-01-26 2001-01-10 Медрес Лев Петрович Способ оценки сцепных качеств дороги с твердым покрытием
RU2165610C1 (ru) * 2000-03-16 2001-04-20 Санкт-Петербургское государственное унитарное предприятие "Планета" Устройство для измерения коэффициента сцепления колеса транспортного средства, имеющего постоянную степень скольжения, с поверхностью взлетно-посадочной полосы
RU2259569C1 (ru) * 2004-01-08 2005-08-27 Низовой Анатолий Васильевич Устройство для определения коэффициента сцепления колеса с аэродромным покрытием

Also Published As

Publication number Publication date
RU2298166C1 (ru) 2007-04-27

Similar Documents

Publication Publication Date Title
US4158961A (en) Device for testing vehicles
KR101679669B1 (ko) 구동 트레인의 시험 시스템
JP5339121B2 (ja) スリップ率推定装置及びその方法と、スリップ率制御装置及びその方法
SE501182C2 (sv) Förfarande och anordning för bestämning av banfriktionsförhållanden
CN109159787B (zh) 一种电动汽车轮胎附着稳定状态实时检测系统和方法
WO2007067098A1 (fr) Procede pour examiner le frottement d'un revetement d'aerodrome
CN110203205B (zh) 一种电动汽车附着稳定性和准最优滑移率检测方法
CN104704331A (zh) 用于估算机动车辆负载的装置和方法
US20040020695A1 (en) Apparatus and a method for determining hybrid-electric vehicle performance
RU2390003C1 (ru) Способ определения коэффициента сцепления колеса с поверхностью аэродромного покрытия
CA1320354C (en) Method of and apparatus for determining the engine power of an automotive vehicle
CN109941248B (zh) 一种基于电气传动的电动车辆驱动/制动防滑控制系统及方法
JPH02105023A (ja) 車両計量方法および装置
RU165080U1 (ru) Тележка аэродромная тормозная для определения условий торможения авиационных пневматических колес
CN108572086A (zh) 一种基于牵引电机电气参数的轮胎与地面附着状态检测系统和方法
US4577497A (en) Dynamometers
CN103558038A (zh) 牵引力控制检测系统
CN103344424B (zh) 通风盘式制动器电惯量模拟试验台及其电惯量模拟控制方法
RU118753U1 (ru) Устройство измерения коэффициента сцепления транспортных колес с аэродромными и автодорожными покрытиями
RU2626581C1 (ru) Способ определения коэффициента сцепления колеса с поверхностью и устройство для его осуществления
CN1310112A (zh) 滑行标定检测汽车底盘传动系效率方法
CN105258830B (zh) 汽车驱动轮表面输出功率检测方法
RU2259569C1 (ru) Устройство для определения коэффициента сцепления колеса с аэродромным покрытием
US11754434B1 (en) Real-time reporting and estimating of mass of vehicles using drive characteristics
RU2393460C1 (ru) Способ определения коэффициента сцепления колеса с поверхностью аэродромного покрытия

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06844007

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - 04-11-2009 (FORM 1205A)