WO2007064141A1 - Appareil pour affichage à électromouillage luminescent - Google Patents
Appareil pour affichage à électromouillage luminescent Download PDFInfo
- Publication number
- WO2007064141A1 WO2007064141A1 PCT/KR2006/005087 KR2006005087W WO2007064141A1 WO 2007064141 A1 WO2007064141 A1 WO 2007064141A1 KR 2006005087 W KR2006005087 W KR 2006005087W WO 2007064141 A1 WO2007064141 A1 WO 2007064141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- fluid
- emissive
- electrowetting display
- display according
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 132
- 239000000758 substrate Substances 0.000 claims abstract description 80
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims description 46
- 238000005192 partition Methods 0.000 claims description 27
- 238000010276 construction Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 6
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 abstract description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
- G02B3/14—Fluid-filled or evacuated lenses of variable focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/004—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
- G02B26/005—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/54—Encapsulations having a particular shape
Definitions
- the invention relates to light emissive electrowetting devices and, more specifically, to light emissive display devices that incorporate a printed phosphor to emit light by UV irradiation with controlling the surface area of fluids using electrowetting phenomenon so as to display an image appropriately.
- FIG. 1 is a schematic diagram to depict a conventional active matrix emissive LCD, a prior art disclosed in the Korean Patent Publication No. 1997-0016689.
- FIG. 1 As shown in Fig. 1, it is composed of liquid crystal display 30, a light source of bottom-emission 21 to generate excitons disposed at a rear side of the liquid crystal display 30, a front glass 29 placed in the fore side so as to protect the liquid crystal display 30, and a printed active emissive part 27 so as to have color patterns inside the front glass 29.
- the liquid crystal display 30 includes a first substrate 31, a second substrate 37 arranged apart facing the first substrate, a first electrode 32 formed with a plurality of striped patterns inside the first substrate 31, a second electrode 36 formed with a plurality of striped patterns inside the second substrate arranged perpendicular to those of the first electrode, a first alignment layer 33 formed on the first substrate 31 while covering the first electrode 32, a second alignment layer 35 formed on the second substrate 37 while covering the second electrode 36, a liquid crystal layer 34 inserted between the first 35 and the second alignment layer 36 and aligned along the predetermined direction by rubbing method.
- the conventional technology has improved such characteristics as brightness, contrast ratio and viewing angle through the innovation of manufacturing method, printing a laser paint instead of traditional color filter among a variety of constituent factors in LCD.
- a slow switching time of liquid crystal also deteriorates the performance of emissive materials.
- FIG. 2 shows a prior art disclosed in the Japanese Patent Publication No. 2004-287008, where (a) is a normal bright state of the colored water droplet when Sl is switched off, (b) is a dark state when S 1 is switched on.
- FIG. 2 it is a display device making use of electro wetting phenomenon, which includes a first transparent substrate 12 placed in the bottom layer of the display device, a first transparent electrode 14 installed on the first substrate 12, an insulating layer 16 consisting of an insulation film 16a and a film of low surface e nergy 16b, a second transparent electrode 15 on the insulating layer 16, a cavity 17 enclosing the second transparent electrode 15 with a certain gap, a second transparent substrate 18 to form the uppermost layer placed upon the cavity 17, a colored water droplet W injected into the gap inside the cavity 17, the size of which the water droplet is varied by the application of electricity.
- E means a direct current power source
- Sl is a switch
- the present invention is to solve the aforementioned problems of the conventional art, and it is an object of the present invention to provide a light emissive electrowetting display apparatus which incorporates a printed phosphor to emit light by UV irradiation with controlling the surface area of fluids using electrowetting phenomenon so as to display an image appropriately.
- an apparatus for light emissive electrowetting display including:
- a first and a second substrate arranged apart in parallel with a certain distance; a first and a second fluid which is placed between the first and second substrates, one of them at the least has conductivity or polarity, and does not mix with each other; a first and a second electrode to apply voltage to each of the fluids respectively; an insulating layer placed between the second fluid and the second electrode, and there is a characteristic of technical construction that the first substrate is comprised of an emissive layer where an emissive substance is printed inside to get color patterns.
- a light emissive electrowetting display apparatus of the present invention there is an advantage that it can display an image through controlling the surface area of fluids using electrowetting phenomenon incorporated by a phosphor which is printed on the substrate and emits light by UV irradiation.
- STN Super-Twisted Nematic
- TFT TFT
- TFT TFT
- TFT TFT
- TFT TFT
- PDP Plasma Display Panel
- FED Field Emission Display
- OLED Organic Light Emitting Diode
- Electrophoretic Display and Electrochromic Display, etc. are in mass production or under development.
- LCD is occupying a majority of market in the display devices, it has some problems like low optical efficiency due to use of polarizers, viewing angle dependence, and the emissive devices such as PDP, OLED have also some issues of a limited resolution, brightness, power consumption, and reliability.
- the present invention is related to a display device to control the light intensity of aperture region through varying the surface area of fluids using electrowetting phenomenon, more specifically to an emissive structure. According to the present invention, there is another advantage that it has an excellent performance in brightness, viewing angle, power consumption, high resolution, and high contrast ratio, and is good at moving picture representation, as well as being applicable to that of flexible substrate.
- the present invention has another advantage that is superior to PDP in the aspects of power consumption and high resolution, and has much better durability than OLED while OLED shows a sharp deterioration of device characteristics if its luminescent substance is exposed to the moisture or the air.
- Fig. 1 is a sectional view for illustrating a constitution of the conventional light emissive active liquid crystal display apparatus.
- FIG. 2 is schematic drawings of the conventional display device using electrowetting phenomenon, where (a) illustrates a normal bright state of colored water droplet when the switch S 1 is off, and (b) illustrates a dark state when the switch S 1 is on.
- FIG. 3 is a schematic diagram to illustrate an apparatus for light emissive electrowetting display embodied by the present invention.
- FIG. 4 is a schematic drawing to illustrate an apparatus for light emissive electrowetting display in accordance with one embodiment of the present invention.
- Fig. 5 is a schematic view showing an operation mechanism of the present invention when a pixel is off-state in Fig. 4.
- FIG. 6 is a schematic view showing an operation mechanism of the present invention when a pixel is on-state in Fig. 4.
- Fig. 7 is a schematic drawing for illustrating how color is represented in Fig. 4.
- Fig. 8 is a schematic view to illustrate an apparatus for light emissive electrowetting display in accordance with another embodiment of the present invention.
- Fig. 9 is a schematic view showing an operation mechanism of the present invention when a pixel is on-state in Fig. 8.
- Fig. 10 is a schematic view showing an operation mechanism of the present invention when a pixel is off-state in Fig. 8.
- FIG. 11 is a schematic drawing for illustrating how color is represented in Fig. 8.
- Fig. 12 is a schematic view to illustrate an apparatus for light emissive electrowetting display in accordance with another embodiment of the present invention.
- Fig. 13 is a schematic view showing an operation mechanism of the present invention when a pixel is off-state in Fig. 12.
- Fig. 14 is a schematic view showing an operation mechanism of the present invention when a pixel is on-state in Fig. 12.
- Fig. 15 is a schematic drawing for illustrating how color is represented in Fig. 12.
- FIG. 3 is a schematic diagram to illustrate an apparatus for light emissive electrowetting display embodied by the present invention.
- Fig. 3 it is featured by the construction including: a first and a second substrate 100 and 200 arranged apart in parallel with a certain distance; a light emissive elelctrowetting element 300 to display an image through controlling the surface area of fluids using electrowetting phenomenon, disposed between the first and second substrates 100 and 200.
- the apparatus for light emissive electrowetting display is also characterized by the constitution including a light source 400 to be used to generate excitons, installed outside the first or second substrates 100 and 200.
- FIG. 4 is a schematic drawing to illustrate an apparatus for light emissive electrowetting display in accordance with one embodiment of the present invention.
- Fig. 4 As shown in Fig. 4, it is characterized by the constitution including: a first and a second substrate 100 and 200 arranged apart in parallel with a certain distance; a first and a second fluid 311 and 312 which is placed between the first and second substrates 100 and 200, one of them at the least has conductivity or polarity, and does not mix with each other; a first and a second electrode 321 and 322 to apply voltage to each of the fluids 311 and 312 respectively; an insulating layer 331 placed between the second fluid 312 and the second electrode 322, and the first substrate 100 is featured by the construction of an emissive layer 112 where an emissive substance is printed inside to get color patterns.
- first and second fluid 311 and 312 one is made up of substances to cut off the light and the other is made up of substances to transmit the light.
- the substances to cut off the light are characterized in that they are comprised of one or a combination of more than two oxides such as ZnO, TiO , Fe O , MgO.
- the apparatus for light emissive electrowetting display is formed to separate the first fluid 311 from the second fluid 312, and each pixel has its own partition 313 on the periphery to play a role of distributing the fluid uniformly.
- the partition 313 is made up of hydrophilic materials.
- the light emissive layer 112 is formed to have patterns printed with a combination of more than two emissive materials such as Red, Green, Blue, Cyan, Magenta, Yellow and White.
- the first substrate 100 further includes a black matrix(BM) 111 disposed between the emissive layers to absorb UV light.
- BM black matrix
- the apparatus for light emissive electrowetting display includes a light source
- the light source 400 is composed of UV light emitting diode.
- Fig. 8 is a schematic view to illustrate an apparatus for light emissive electrowetting display in accordance with another embodiment of the present invention.
- a first and a second substrate 100 and 200 arranged apart in parallel with a certain distance; a first and a second fluid 311 and 312 which is placed between the first and second substrates 100 and 200, one of them at the least has conductivity or polarity, and does not mix with each other; a first and a second electrode 321 and 322 to apply voltage to each of the fluid 311 and 312 respectively; an insulating layer 331 placed between the second fluid 312 and the second electrode 322, and a light emissive material is mixed with one of the first and second fluid.
- the substances to cut off the light are characterized in that they are comprised of one or a combination of more than two oxides such as ZnO, TiO 2 , Fe 2 O 3 , MgO.
- the apparatus for light emissive electrowetting display is formed to separate the first fluid 311 from the second fluid 312, and each pixel has its own partition 313 on the periphery to play a role of distributing the fluid uniformly.
- the partition 313 is made up of hydrophilic materials.
- the fluid mixed with light emissive materials is formed to have a combination of more than two emissive materials such as Red, Green, Blue, Cyan, Magenta, Yellow and White.
- the first substrate 100 further includes a black matrix(BM) 111 disposed between the emissive layers to absorb UV light.
- BM black matrix
- the apparatus for light emissive electrowetting display includes a light source
- the light source 400 is composed of UV light emitting diode.
- Fig. 12 is a schematic view to illustrate an apparatus for light emissive electrowetting display in accordance with another embodiment of the present invention.
- the apparatus for light emissive electrowetting display comprising: a first and a second substrate 100 and 200 arranged apart in parallel with a certain distance; a first and a second fluid 311 and 312 which is placed between the first and second substrates 100 and 200, one of them at the least has conductivity or polarity, and does not mix with each other; a first and a second electrode 321 and 322 to apply voltage to each of the fluid 311 and 312 respectively; an insulating layer 331 placed between the second fluid 312 and the second electrode 322; the light source 400 which is used to generate excitons and holds R, G, B patterns to be corresponded to each pixel, installed outside the first or second substrates 100 and 200.
- the substances to cut off the light are characterized in that they are comprised of one or a combination of more than two oxides such as ZnO, TiO , Fe O , MgO.
- the apparatus for light emissive electrowetting display is formed to separate the first fluid 311 from the second fluid 312, and each pixel has its own partition 313 on the periphery to play a role of distributing the fluid uniformly.
- the partition 313 is made up of hydrophilic materials.
- the light source 400 is formed to have a combination of more than two emissive materials such as Red, Green, Blue, Cyan, Magenta, Yellow and White. [68] The light source 400 is composed of UV light emitting diode.
- the present invention is intended to display an image on such a way that a phosphor to emit light by UV irradiation is printed on the surface and the surface area of the fluid is controlled using electrowetting phenomenon.
- FIG. 3 schematically shows the diagram of an apparatus for light emissive electrowetting display in accordance with the present invention.
- the first and second substrates 100 and 200 are arranged apart in parallel with a certain distance, thereby being separated with a spacing from each other.
- the light emissive elelctrowetting element 300 disposed between the first and second substrates 100 and 200 is used to display an image through controlling the surface area of fluids using electrowetting phenomenon.
- the light source 400 installed outside of the first or second substrates 100 and
- FIG. 4 is a schematic drawing to illustrate the apparatus for light emissive electrowetting display in accordance with one embodiment of the present invention
- Fig. 5 is a schematic view showing an operation mechanism of the present invention when a pixel is off-state in Fig. 4
- Fig. 6 is a schematic view showing an operation mechanism of the present invention when a pixel is on-state in Fig. 4
- Fig. 7 is a schematic drawing for illustrating how color is represented in Fig. 4.
- the first and second substrates 100 and 200 are arranged apart in parallel with a certain distance.
- a first and a second fluid 311 and 312 which is placed between the first and second substrates 100 and 200, one of them at the least has conductivity or polarity, and does not mix with each other.
- the example 1 shows one embodiment of the present invention that the first fluid 311 is disposed in the lower part of the first substrate 100 and the second fluid 312 is disposed on the upper part of the second substrate 200.
- a first and a second electrode 321 and 322 are used to apply voltage to each of the fluid 311 and 312 respectively. Therefore, referring to example 1, the first electrode 321 is formed between the first substrate 100 and the first electrode 311 so as to apply voltage to the first fluid 311 and the second electrode 322 is formed between the second substrate 200 and the second electrode 312 so as to apply voltage to the second fluid 312. And these electrodes 321 and 322 function to distribute uniformly the fluid in each pixel. Further a gray scale is performed by varying the magnitude of voltage applied to the electrodes 321 and 322.
- an insulating layer 331 is formed between the second fluid 312 and the second electrode 322 so as to do a function of insulation.
- an emissive layer 112 is also formed to get color patterns, which can be printed on the first substrate 100 with such emissive materials as R, G, B phosphors.
- the first and second fluid 311 and 312 one is made up of substances to cut off the light and the other is made up of substances to transmit the light.
- the first fluid 311 can be composed of substances to cut off the light
- the second fluid 312 can be composed of substances to transmit the light.
- There are two kinds of way to cut off the light(e.g. UV light) one is that the light is absorbed chemically by the substances and the other is that the light is reflected or scattered physically by the substances.
- the substances of the second fluid 312 desired to cut off the light such oxides like ZnO, TiO , Fe O , MgO. can be used, which belongs to the type of reflecting or scattering UV light physically.
- the partition 313 which is formed with a certain height so as to separate the first fluid 311 from the second fluid 312 plays a role of distributing the fluid uniformly within each pixel. Therefore, Fig. 4 or Fig. 7 shows an instance of which the partition 313 is formed to distribute the second fluid 312 uniformly.
- This kind of partition 313 is comprised of hydrophilic materials.
- the partition 313 can not only be set up with a height to distinguish the second fluid 312, but also be established with a height to isolate both the first and second fluid 311 and 312. Of course, the present invention can be realized without this physically-constructed partition 313.
- the emissive layer 112 is formed to get patterns printed with a combination of more than two emissive materials among which are included Red(R), Green(G), Blue(B), Cyan(C), Magenta(M), Yellow(Y) and White. It is to be desired that such patterns as RGB, CMY, RGBCMY, RGB + White, RGBCMY + White should be formed. The size of every pixel printed with such emissive materials can be the same or different from each other.
- the first substrate 100 is comprised of further including the black matrix(BM) 111 formed with UV cutting-off layer, thereby contributing to improve the display quality of the emissive layer 112.
- the light source 400 is installed outside of the first or second substrates 100 and
- Fig. 4 or Fig. 7 shows an instance of which excitons are generated from the light source 400 installed outside of the second substrate 200.
- This light source 400 can be made up of UV emitting diodes or flat fluorescent lamps.
- the second fluid 312 is distributed on the whole area of a pixel and the UV light emitted from the light source 400 is cut off by the second fluid 312 (Refer to Fig. 5).
- FIG. 8 is a schematic drawing to illustrate the apparatus for light emissive elec- trowetting display in accordance with another embodiment of the present invention
- Fig. 9 is a schematic view showing an operation mechanism of the present invention when a pixel is off-state in Fig. 8
- Fig. 10 is a schematic view showing an operation mechanism of the present invention when a pixel is on-state in Fig. 8,
- Fig. 11 is a schematic drawing for illustrating how color is represented in Fig. 8.
- first and second substrates 100 and 200 are arranged apart in parallel with a certain distance.
- a first and a second fluid 311 and 312 which is placed between the first and second substrates 100 and 200, one of them at the least has conductivity or polarity, and does not mix with each other.
- the example 1 shows one embodiment of the present invention that the first fluid 311 is disposed in the lower part of the first substrate 100 and the second fluid 312 is disposed on the upper part of the second substrate 200.
- a first and a second electrode 321 and 322 are used to apply voltage to each of the fluid 311 and 312 respectively. Therefore, referring to example 1, the first electrode 321 is formed between the first substrate 100 and the first electrode 311 so as to apply voltage to the first fluid 311 and the second electrode 322 is formed between the second substrate 200 and the second electrode 312 so as to apply voltage to the second fluid 312. And these electrodes 321 and 322 function to distribute uniformly the fluid in each pixel. Further a gray scale is performed by varying the magnitude of voltage applied to the electrodes 321 and 322.
- an insulating layer 331 is formed between the second fluid 312 and the second electrode 322 so as to do a function of insulation.
- the emissive materials, mingled with one of the first and second fluid are composed of the substances which emit R, G, B spectrum in response to the illumination of UV light or emit C, M, Y spectrum in response to that of UV light.
- the first and second fluid 311 and 312 one is made up of substances to cut off the light and the other is made up of substances to transmit the light.
- the first fluid 311 can be composed of substances to cut off the light
- the second fluid 312 can be composed of substances to transmit the light.
- There are two kinds of way to cut off the light(e.g. UV light) one is that the light is absorbed chemically by the substances and the other is that the light is reflected or scattered physically by the substances.
- the substances of the second fluid 312 desired to cut off the light such oxides like ZnO, TiO , Fe O , MgO. can be used, which belongs to the type of reflecting or scattering UV light physically.
- the partition 313 which is formed with a certain height so as to separate the first fluid 311 from the second fluid 312 plays a role of distributing the fluid uniformly within each pixel. Therefore, Fig. 4 or Fig. 7 shows an instance of which the partition 313 is formed to distribute the second fluid 312 uniformly.
- This kind of partition 313 is comprised of hydrophilic materials.
- the partition 313 can not only be set up with a height to distinguish the second fluid 312, but also be established with a height to isolate both the first and second fluid 311 and 312. Of course, the present invention can be realized without this physically-constructed partition 313.
- the emissive materials to be mixed with the fluid are formed to have a combination of more than two emissive substances among which are included Red(R), Green(G), Blue(B), Cyan(C), Magenta(M), Yellow(Y) and White. It is to be desired that such patterns as RGB, CMY, RGBCMY, RGB + White, RGBCMY + White should be formed.
- the size of every pixel printed with such emissive materials can be the same or different from each other.
- the first substrate 100 is comprised of further including the black matrix(BM) 111 formed with UV cutting-off layer, thereby contributing to improve the display quality of the emissive layer 112.
- the light source 400 is installed outside of the first or second substrates 100 and
- Fig. 8 or Fig. 11 shows an instance of which excitons are generated from the light source 400 installed outside of the second substrate 200.
- This light source 400 can be made up of UV emitting diodes or flat fluorescent lamps.
- the UV light emitted from the light source 400 is illuminated into the fluid mixed with the emissive materials and the fluid mingled with the emissive substances radiates their own proper spectrum. (Refer to Fig. 9).
- Fig. 12 is a schematic drawing to illustrate the apparatus for light emissive elec- trowetting display in accordance with another embodiment of the present invention
- Fig. 13 is a schematic view showing an operation mechanism of the present invention when a pixel is off-state in Fig. 12
- Fig. 14 is a schematic view showing an operation mechanism of the present invention when a pixel is on-state in Fig. 12,
- Fig. 15 is a schematic drawing for illustrating how color is represented in Fig. 12.
- first and second substrates 100 and 200 are arranged apart in parallel with a certain distance.
- first and a second fluid 311 and 312 which is placed between the first and second substrates 100 and 200, one of them at the least has conductivity or polarity, and does not mix with each other.
- the example 1 shows one embodiment of the present invention that the first fluid 311 is disposed in the lower part of the first substrate 100 and the second fluid 312 is disposed on the upper part of the second substrate 200.
- a first and a second electrode 321 and 322 are used to apply voltage to each of the fluid 311 and 312 respectively. Therefore, referring to example 1, the first electrode 321 is formed between the first substrate 100 and the first electrode 311 so as to apply voltage to the first fluid 311 and the second electrode 322 is formed between the second substrate 200 and the second electrode 312 so as to apply voltage to the second fluid 312. And these electrodes 321 and 322 function to distribute uniformly the fluid in each pixel. Further a gray scale is performed by varying the magnitude of voltage applied to the electrodes 321 and 322.
- an insulating layer 331 is formed between the second fluid 312 and the second electrode 322 so as to do a function of insulation.
- the light source 400 of which is comprised R, G, B patterns corresponding to each of the pixel illuminates R, G, B light from bottom side of each pixel.
- Both the light source 400 and pixel structures can be constructed with such various configurations as striped type, delta type, and honeycomb type, etc.
- the first and second fluid 311 and 312 one is made up of substances to cut off the light and the other is made up of substances to transmit the light.
- the first fluid 311 can be composed of substances to cut off the light
- the second fluid 312 can be composed of substances to transmit the light.
- There are two kinds of way to cut off the light(e.g. UV light) one is that the light is absorbed chemically by the substances and the other is that the light is reflected or scattered physically by the substances.
- the substances of the second fluid 312 desired to cut off the light such oxides like ZnO, TiO , Fe O , MgO. can be used, which belongs to the type of reflecting or scattering UV light physically.
- the partition 313 which is formed with a certain height so as to separate the first fluid 311 from the second fluid 312 plays a role of distributing the fluid uniformly within each pixel. Therefore, Fig. 4 or Fig. 7 shows an instance of which the partition 313 is formed to distribute the second fluid 312 uniformly.
- This kind of partition 313 is comprised of hydrophilic materials.
- the partition 313 can not only be set up with a height to distinguish the second fluid 312, but also be established with a height to isolate both the first and second fluid 311 and 312. Of course, the present invention can be realized without this physical partition 313.
- the emissive layer 112 is formed to get patterns printed with a combination of more than two emissive materials among which are included Red(R), Green(G), Blue(B), Cyan(C), Magenta(M), Yellow(Y) and White. It is to be desired that such patterns as RGB, CMY, RGBCMY, RGB + White, RGBCMY + White should be formed. The size of every pixel printed with such emissive materials can be the same or different from each other.
- the light source 400 is installed outside of the first or second substrates 100 and 200 and is used to generate excitons. Fig. 12 or Fig. 15 shows an instance of which excitons are generated from the light source 400 installed outside of the second substrate 200. This light source 400 can be made up of UV emitting diodes or flat fluorescent lamps.
- the second fluid 312 is distributed on the whole area of a pixel and the UV light emitted from the light source 400 is cut off by the second fluid 312 (Refer to Fig. 13).
- the present invention relates to the light emissive display devices that incorporate a printed phosphor to emit light by UV irradiation with controlling the surface area of fluids using electrowetting phenomenon so as to display an image appropriately.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Cette invention concerne un appareil pour affichage à électromouillage électroluminescent qui comprend : un premier et un deuxième substrat disposés parallèlement à une certaine distance l'un de l'autre ; un premier et un deuxième fluide placés entre le premier et le deuxième substrat, au moins un de ces fluides présentant une conductivité ou une polarité donnée et ne se mélangeant pas avec l'autre ; une première et une deuxième électrode utilisées pour appliquer une tension respectivement sur le premier et le deuxième fluide ; et une couche isolante disposée entre le deuxième fluide et la première électrode. Du fait que le premier substrat est également composé d'une couche luminescente comportant des matériaux luminescents imprimés sur sa face interne de façon qu'on obtienne des motifs de couleur, cette invention vise à présenter une image de manière qu'un phosphore émettant de la lumière par rayonnement UV soit imprimé sur la surface et que la zone de surface du fluide soit commandée au moyen d'un phénomène d'électromouillage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2005-0115336 | 2005-11-30 | ||
KR1020050115336A KR100646810B1 (ko) | 2005-11-30 | 2005-11-30 | 발광형 전기습윤 디스플레이 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007064141A1 true WO2007064141A1 (fr) | 2007-06-07 |
Family
ID=37712682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2006/005087 WO2007064141A1 (fr) | 2005-11-30 | 2006-11-29 | Appareil pour affichage à électromouillage luminescent |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100646810B1 (fr) |
WO (1) | WO2007064141A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2188669A1 (fr) * | 2007-09-12 | 2010-05-26 | University of Cincinnati | Dispositifs électrofluidiques, afficheurs visuels, et procédés pour réaliser et exploiter ces dispositifs électrofluidiques |
CN101666908B (zh) * | 2008-09-04 | 2011-09-07 | 元太科技工业股份有限公司 | 应用于显示装置的像素结构及该显示装置 |
CN102221745A (zh) * | 2011-05-05 | 2011-10-19 | 友达光电股份有限公司 | 电湿润显示器及其驱动方法 |
US8059328B1 (en) | 2010-09-20 | 2011-11-15 | Industrial Technology Research Institute | Electrowetting display devices |
US8264777B2 (en) | 2007-06-26 | 2012-09-11 | Qd Vision, Inc. | Portable electronic device having an electro wetting display illuminated by quantum dots |
CN102687069A (zh) * | 2009-12-15 | 2012-09-19 | 夏普株式会社 | 显示元件和使用该显示元件的电气设备 |
CN103080826A (zh) * | 2010-08-27 | 2013-05-01 | 夏普株式会社 | 显示元件和使用该显示元件的电气设备 |
CN104049360A (zh) * | 2014-06-10 | 2014-09-17 | 京东方科技集团股份有限公司 | 电润湿显示装置 |
USRE46318E1 (en) | 2009-03-13 | 2017-02-21 | Sun Chemical Corporation | Colored fluids for electrowetting, electrofluidic, and electrophoretic technologies |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100873283B1 (ko) | 2007-01-30 | 2008-12-11 | 전북대학교산학협력단 | 총 천연색 전기 습윤 디스플레이 |
US7903061B2 (en) * | 2007-05-31 | 2011-03-08 | Motorola, Inc. | Self illuminating electro wetting display |
CN105093519A (zh) * | 2015-08-13 | 2015-11-25 | 信利半导体有限公司 | 一种电润湿显示面板、显示装置及显示面板的显示方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005036517A1 (fr) * | 2003-10-08 | 2005-04-21 | Koninklijke Philips Electronics N.V. | Dispositif d'affichage a electromouillage |
WO2005038764A1 (fr) * | 2003-10-08 | 2005-04-28 | E Ink Corporation | Affichages par electro-mouillage |
JP2005173605A (ja) * | 2003-12-10 | 2005-06-30 | Lg Electronics Inc | プラズマディスプレイパネル用光シャッター及びその駆動方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000356750A (ja) | 1999-06-16 | 2000-12-26 | Canon Inc | 表示素子および表示装置 |
US6924792B1 (en) | 2000-03-10 | 2005-08-02 | Richard V. Jessop | Electrowetting and electrostatic screen display systems, colour displays and transmission means |
-
2005
- 2005-11-30 KR KR1020050115336A patent/KR100646810B1/ko not_active IP Right Cessation
-
2006
- 2006-11-29 WO PCT/KR2006/005087 patent/WO2007064141A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005036517A1 (fr) * | 2003-10-08 | 2005-04-21 | Koninklijke Philips Electronics N.V. | Dispositif d'affichage a electromouillage |
WO2005038764A1 (fr) * | 2003-10-08 | 2005-04-28 | E Ink Corporation | Affichages par electro-mouillage |
JP2005173605A (ja) * | 2003-12-10 | 2005-06-30 | Lg Electronics Inc | プラズマディスプレイパネル用光シャッター及びその駆動方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8264777B2 (en) | 2007-06-26 | 2012-09-11 | Qd Vision, Inc. | Portable electronic device having an electro wetting display illuminated by quantum dots |
EP2188669A4 (fr) * | 2007-09-12 | 2011-08-03 | Univ Cincinnati | Dispositifs électrofluidiques, afficheurs visuels, et procédés pour réaliser et exploiter ces dispositifs électrofluidiques |
EP2188669A1 (fr) * | 2007-09-12 | 2010-05-26 | University of Cincinnati | Dispositifs électrofluidiques, afficheurs visuels, et procédés pour réaliser et exploiter ces dispositifs électrofluidiques |
US8111465B2 (en) | 2007-09-12 | 2012-02-07 | University Of Cincinnati | Electrofluidic devices, visual displays, and methods for making and operating such electrofluidic devices |
CN101666908B (zh) * | 2008-09-04 | 2011-09-07 | 元太科技工业股份有限公司 | 应用于显示装置的像素结构及该显示装置 |
USRE46318E1 (en) | 2009-03-13 | 2017-02-21 | Sun Chemical Corporation | Colored fluids for electrowetting, electrofluidic, and electrophoretic technologies |
US8976107B2 (en) | 2009-12-15 | 2015-03-10 | Sharp Kabushiki Kaisha | Display element and electrical device using the same |
CN102687069A (zh) * | 2009-12-15 | 2012-09-19 | 夏普株式会社 | 显示元件和使用该显示元件的电气设备 |
EP2500770A1 (fr) * | 2009-12-15 | 2012-09-19 | Sharp Kabushiki Kaisha | Elément d'affichage et dispositif électrique l'utilisant |
EP2500770A4 (fr) * | 2009-12-15 | 2013-01-23 | Sharp Kk | Elément d'affichage et dispositif électrique l'utilisant |
CN103080826A (zh) * | 2010-08-27 | 2013-05-01 | 夏普株式会社 | 显示元件和使用该显示元件的电气设备 |
US8059328B1 (en) | 2010-09-20 | 2011-11-15 | Industrial Technology Research Institute | Electrowetting display devices |
JP2012063767A (ja) * | 2010-09-20 | 2012-03-29 | Ind Technol Res Inst | エレクトロウェッティングディスプレイ装置 |
US8456731B2 (en) | 2011-05-05 | 2013-06-04 | Au Optronics Corporation | Electro-wetting display device and driving method thereof |
CN102221745A (zh) * | 2011-05-05 | 2011-10-19 | 友达光电股份有限公司 | 电湿润显示器及其驱动方法 |
CN104049360A (zh) * | 2014-06-10 | 2014-09-17 | 京东方科技集团股份有限公司 | 电润湿显示装置 |
US10509219B2 (en) | 2014-06-10 | 2019-12-17 | Boe Technology Group Co., Ltd. | Electrowetting display apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR100646810B1 (ko) | 2006-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007064141A1 (fr) | Appareil pour affichage à électromouillage luminescent | |
US8675167B2 (en) | Polymer dispersed display panels including quantum dots and display apparatuses including the same | |
KR101183571B1 (ko) | 광발광 칼라 액정디스플레이 | |
US20060284532A1 (en) | Color display unit | |
CN111048556A (zh) | 显示面板和具有显示面板的显示装置 | |
CN109188821B (zh) | 一种显示面板、制造方法、显示装置及其控制方法 | |
US20020163606A1 (en) | Liquid crystal display devices having an electroluminescent backlight assembly | |
CN1881034A (zh) | 彩色显示单元 | |
WO2012161012A1 (fr) | Substrat de conversion de couleur, dispositif d'éclairage, et dispositif d'affichage couleur | |
KR20010077981A (ko) | 형광 전면판을 포함하는 액정 디스플레이 스크린 | |
JP3826709B2 (ja) | 液晶表示装置 | |
WO2009141938A1 (fr) | Dispositif d'affichage | |
CN109031780A (zh) | 背光模组、显示装置及其led光源组切换方法 | |
JP2000241811A (ja) | フィールドシーケンシャル液晶表示装置 | |
JP3780952B2 (ja) | 液晶表示装置 | |
US9298059B2 (en) | Display device | |
JP2018506838A (ja) | 無電極有機ledおよびそれを用いたlcdシステム | |
KR20050086555A (ko) | 표시 장치 및 그 구동 방법 | |
US20140085703A1 (en) | Pixel structure | |
KR20100042128A (ko) | 컬러 표시 장치 | |
KR20110057771A (ko) | 전기습윤표시장치 | |
US9140954B2 (en) | Reflective type display device | |
JP2007004993A (ja) | 有機el装置、及びその製造方法、電子機器 | |
KR100732429B1 (ko) | 유기 발광 소자 | |
JP2004362938A (ja) | エレクトロルミネッセンス表示装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06823795 Country of ref document: EP Kind code of ref document: A1 |